Distributed Parallel Processing

and the Factoring Problem

By

Brian Cox, B.Sc.

A dissertation presented in fulfilment of the requirements

for a M.Sc. Degree.

Supervisor
Dr. Michael Scott

School of Computer Applications

Dublin City University

September 1995



Declaration

I hereby certify that this material, which | now submit for assessment on the programme of
study leading to the award of M.Sc. degree in Computer Science is entirely my own work and

has not been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work.

Signed: & S 4 -14 * ID No,

Brian Cox

Date:



Acknowledgements

I would like to express my deep thanks to Dr. Michael Scott whose help, encouragement and

supervision were invaluable.

Special thanks must go to my parents Ann and Tony, sister Ann-Marie, and girlfriend

Bernadette for their encouragement, support and patience which helped me enormously.

I would also like to thank the School of Computer Applications for the opportunity of doing a

M.Sc. and for their financial support.

Finally, I would like to thank all my friends in DCU for their help and a very enjoyable time -
especially Brien, Colmén, Mike, and Ray, and the System Health Check group in Digital,
Galway.



Distributed Parallel Processing

and the Factoring Problem
Brian Cox B.Sc.

Abstract

This research is concerned with distributed parallel processing and how a computer
cluster/network may be used to solve large and computationally expensive problems,

specifically in the area of cryptography and the problem of factoring very large numbers.

Until recently few methods or systems were capable of harnessing the full potential power of
a distributed environment. In order to realise the full potential of computer clusters, specially

designed distributed parallel processing systems are needed.

Cryptography is the science of secure communications and has recently become
commercially important and widely used. This research focuses on public key cryptography,

the security of which is based on the difficulty of factoring extremely large numbers.

The research described in this thesis covers parallelism and distributed computing and
describes an implementation of a distributed processing system. An introduction to
cryptography is presented, followed by a discussion on factoring which centres on describing

and implementing a distributed parallel version of Lenstra’s Elliptic Curve factoring method.
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1. Introduction

Computers are not powerful enough, and never will be. No matter how fast and cheap they
become, someone will always want more MIPS or FLOPS. General purpose machines draw
power from their cheapness and flexibility - but not all general purpose computers are suited
to the tasks they are given. Some problems are so demanding that they are effectively beyond
ordinary computers - the sheer number of calculations required is so vast that they take too

long to solve.

An example is the many-body problem in astrophysics. Calculating the interaction of the
gravitational attraction between numerous masses demands huge computational resources.
Realistic simulation of the dynamics of an astrophysical system should use a teraflops year of
computing power; equivalent to a DEC Vax 11/780 running for a million years! To solve
such problems in reasonable times, special purpose machines have been developed. However,
very few have access to such machines, or the money to build or buy one. This thesis looks at

a combination of old and new strategies for getting more MIPS from available chips.

11 The Hidden Cray Twin

Like most people | had seen a network as a way of passing information from one independent
system to another - information such as electronic mail or data interchange between a client
system and a database server system. However a network is a single system in its own right;
a parallel processor. Hiding in every PC network there could be a computer as powerful as a

CRAY [Bea90].

Supercomputers of the current generation are nearly all multi-processor systems. Some, like
the latest CRAYs, use a small number of extremely powerful and fast processors working in
parallel. Others, like the CONNECTION machine, use tens of thousands of simple and
relatively slow microprocessors. All these supercomputers have in common the fact that their
power derives from splitting a task between a number of processors. The number may vary
but in every system processors are connected in such a way that data can be quickly passed
between them. We can thus loosely define a parallel processor, and therefore a
supercomputer, as consisting of a number of processors connected by an efficient high speed

network.

This brings us back to our network of multi-tasking PCs. It’s basic architecture is much the
same as that of a parallel processor. The main difference is that network processors are

physically far apart, so that communication between them is slower.



However, you can considerably increase the speed by carefully designing the pattern of
network connections. A standard network is thus a basis for creating a parallel processing

system many times more powerful than any single processor on the network.

Of course the parallel processor works only because the operating system is capable of
dividing a task optimally between processors, and synchronising the operations involved.
Unfortunately no parallel processing language and operating system for networks is
commercially available, although a few experimental systems are being used in universities
and research establishments. However, all the necessary communication and multi-tasking

functions can be performed by operating systems such as Unix, OS/2 and Windows NT.

1.2 Overview of the Thesis

1.2.1 Aims and Objectives
The subject of this project - distributed parallel processing, is a specialised and complex area

usually requiring special hardware and software. However, the most common, generally
available parallel processing capable system is a local area network. With this in mind | set
about designing and implementing a system, called DISTPROC, whereby programs could

exploit the full power of a local area network.

1.2.2 Organisation of the Thesis
The first chapter introduces parallelism, the basic ideas, the problems involved, approaches

taken and the possible benefits and costs involved.

Chapter two looks at distributed computing systems. The general design issues involved in
developing a distributed system are covered and some distributed computing systems, such as

PVM, are discussed.

This is followed by a description of the DistProc system. The objectives, design decisions,

system architecture and interface are described in detail.

Chapter five covers cryptography, and in particular public-key cryptography, and its uses.

Chapter six looks at factoring large numbers, the problems involved, and the algorithms used.

Chapter seven looks at how the DISTPROC system fared in factoring very large numbers using

a distributed version of Lenstra’s Elliptic Curve factoring algorithm.

1.3 References
[Bea90] Nick Beard PCW, Sept. 1990, Frontiers, page 247/8.



2. Parallelism

Computer performance has improved so fast that writers struggle to find cliches to apply.
Supercomputer, however, is a relative term [Bea90]. It is reserved for the fastest machines of
the day - today’s supercomputer is tomorrow’s sluggard. Today, supercomputing means

parallel processing.

What sort of problems require today’s supercomputers? A major application is simulation.
Supercomputers find a place in nuclear weapon simulation, oceanography, weather
prediction, geology, seismic activity analysis and special effects development in the film

industry.

Some argue that sequential computers are pushing at the limits of physics and that future
architectures must embrace parallelism, however not everyone agrees. Amdahl, a computer
architect who ranks alongside Cray, says that ‘demonstration is made of the continued
validity of the single processor approach’. A crucial point is suitability. Not all styles of
parallelism and computer are suited to all problems. The value of parallelism has been

established for certain problem domains but not for others.

Any development in computing technology has to operate in a framework of existing
systems. There are techniques, such as Amdahl’s Law [Amd67], for measuring the speedup
likely to be gained by any particular enhancement. Amdahl’s Law states that the performance
improvement gained by enhancing some portion of a system is limited by the fraction of
execution time for which the enhancement is used. This is basically the law of diminishing
returns; the cost of faster enhancements to the system is not always reflected in the overall
benefit. Nevertheless, performance benefits are often achieved by gradually chipping away at

whatever obstacle comes into view.

2.1 Types of Parallelism
There are many approaches to parallelism. The principal architectures are classified
according to their instruction and data streams. Flynn’s [Fly66] classification is the most

common but is slightly dated at this stage.



2.1.1 SISD Architectures
A conventional computer is an SISD machine - single instruction stream, single data stream

[Figure 1]. In conventional sequential programming languages a statement is executed and
then control passes to the next statement in sequence. Various constructs exist to alter the
sequence of execution, e.g. if, loops, functions, coroutines, etc., which means that most
sequential programming languages are deterministic; that is, the order in which statements

are executed is uniquely determined by the state of the program variables.

2.1.2 SIMD Architectures

|
Cortroller Instruction stream Processor fA Data Stream

/
OuU LTD U 'LTD

Figure 1. Model ofa SISD computer
If a number of separate concurrent processors are operating on different data items, but doing
the same thing to all of them, the computer is called a SIMD machine - single instruction

stream, multiple data streams [Figure 2]; this covers processor arrays and pipeline processors.

2.1.2.1 Array Processing
Processor arrays consist of a number of identical processing units all under the control of a

common control unit and correspond to Flynn’s SIMD model. Each processing unit has

Figure 2. Model ofa SIMD computer

13



memory associated with it and access to its own data items; therefore the same operation can
be performed on many data items simultaneously. The speed of transfer and communication
between processors, host and memory will influence the performance capabilities of an

architecture [Hoc88].

2.1.2.2 Pipeline or Vector Processing
In a pipeline system, arithmetical operations are split into successive stages, and separate

chunks of hardware used to attack each stage. These machines are also known as vector
processors, because they are efficient only when arithmetic operations to be performed are
vectorised - turned into continuous streams of data. A vector is a group of numbers of a
similar type that can be treated simultaneously by the machine, as opposed to scalar values
which are single quantities. Scalar operations affect pairs of data items, and are better suited
to conventional architectures. Vector processors can be remarkably fast when applicable, but
unfortunately many important applications cannot be vectorised. The overhead of using a
pipeline is the pipe priming time - the time it takes for the pipe to fill, so the more

consecutive times a pipeline is used, the better the performance.

2.1.3 MIMD Architectures

Figure 3. Model ofa MIMD computer
A third approach is the more complex MIMD - multiple instruction streams, multiple data
streams - machine [Figure 3]. Here each processing element has a control unit in addition to

an arithmetical logic unit and memory. Each element of the network can function as a fully

14



fledged digital computer, acting in concert to amplify the power of the group. The M1MD
model is used to describe both tightly and loosely coupled processors working on a single
problem. It does not allow for the interconnection topology or the mechanism of sharing and

protecting information.

Another approach to parallel supercomputing is the multicomputer method, which really took
off only in the mid ‘80s. This is based on networks of computers, and is much less expensive

than ‘conventional’ supercomputing.

2.1.3.1 Shared Memory Processing
A shared memory machine consists of a number of processors all having access to a single

shared memory [Figure 4], This makes communication between processes easy in principle,
however when there are many fast CPUs vying for access to the same memory, bus
contention can bring the system to its knees. To alleviate this caches are often added to
provide each processor with its own private memory for copies of live variables;
unfortunately this introduces the problem of cache coherency. These problems limit the

number of processors you can usefully put into a bus shared memory computer (i.e.,

CPUs

Figure 4. Shared Memory MIMD, Tightly Coupled System

15



scalability) to tens rather than hundreds.

Shared memory processes are usually controlled by the Fork / Join or Cobegin statements.
Techniques for synchronisation must be used to protect the integrity of information shared
between processes; mechanisms used include semaphores and monitors. Variants on the
shared memory architecture are sometimes classified as PRAM (parallel random access

machines).

2.1.3.2 Distributed Memory Processing
In a distributed memory MIMD machine, every computing node is a complete computer, with

its own local memory [Figure 5]. These machines are often referred to as multicomputers.
Since there is no shared common memory between the nodes, results must be passed between

nodes over a communication network. Distributed memory MIMD architectures are also

16



called message-passing architectures.

The performance of a multicomputer is as much affected by the speed of its communication
network as it is by the speed of the processing elements. The balance between
communication time and computation time in a message passing machine varies according to
the problem, the algorithm used and the topology and performance of the communications
network used. Applying more processors to a problem on a message passing computer does
not ensure improved performance because the machine may spend all its time communicating

while half its processors lie idle.

2.2 Synchronisation

In a shared memory environment great care must be taken when two or more processes
simultaneously access a shared variable. Sections of code that need to be protected are known
as critical sections, with controlled access enforced through mutual exclusion which treats
sections of code as an indivisible operation. Semaphores and monitors are among a number

of mechanisms proposed to achieve mutual exclusion in a shared memory architecture.

In a distributed memory environment synchronisation can be achieved implicitly through the

use of synchronous message passing which will be discussed later.

2.2.1 Semaphores
Dijkstra [Dij65] originally proposed semaphores as a synchronisation mechanism. A

semaphore’s value can only be accessed and altered by the operations P and V and an
initialisation operation. Binary semaphores can assume only the value 0 or 1. General
semaphores (also known as counting semaphores) can assume only non-negative integer

values.

The operations P and V are indivisible. Mutual exclusion on the semaphore, S, is enforced
within P(S) and V(S). If several processes attempt a P(S) simultaneously, only one will be
allowed to proceed. The others will be kept waiting, but the implementation of P and V

guarantee that processes will not suffer indefinite postponement.

2.2.2 Monitors
A monitor, introduced by Dijkstra [Dij71], is a concurrency construct that consists of a set of

permanent variables, a set of procedures and a body (i.e. a sequence of statements) and is
used to control allocation access to a resource. The body is executed when the program is
initiated and provides initial values for the monitor variables. Thereafter the monitor is only

accessed via its procedures. The underlying system schedules the execution of the monitor’s
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procedures. Access to these procedures is granted to only selected processes. Since mutual
exclusion is guaranteed, concurrency problems, such as indeterminate outcomes, are avoided.
When a monitor is used it guarantees that the initialisation code will be executed before any

contention can occur, and only one procedure will be executed at any one time.

2.3 Message Passing
With the trend towards distributed systems, there has been a surge of interest in message-
based interprocess communications, resulting in standards such as the Message Passing

Interface [MPI].

In a message-passing programming environment processes share data by explicitly sending it
from one process to another by means of channels. This can be viewed as extending
semaphores to convey data as well as synchronisation, or as an extension of the shared
memory processing model where processors only have private memory. Either synchronous

(blocking) or asynchronous (non-blocking) message passing can be used.

There are a few disadvantages of message passing systems. Communications in a distributed
system pose serious security problems, such as the authentication problem which deals with
verifying the identity of the remote communications entity. There is also the possibility that
transmissions can be flawed and even lost so an acknowledgement protocol must be used to

ensure each transmission succeeds.

2.3.1 Communications Schemes
A number of communications schemes have been proposed including:

» direct naming
» global mailboxes
» channel naming

Naming each process unambiguously is an additional complication in distributed systems.
Process creation and destruction can be co-ordinated through some centralised naming
mechanism, but this introduces considerabletransmissionoverhead. The most  viable option
is to have each computer in a distributedsystem usea uniquename;nOWpProcesses

identified by a combination of the computer name and process name.

A mailbox is a message queue that may be used by multiple senders and receivers and acts as
an intermediary. The advantage of global mailboxes is also the disadvantage; the sender does

not have control over who will receive the message. In a distributed system, the receivers can
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be dispersed across many computers, thus requiring two transmissions for most of the
messages. This problem is solved by giving each receiver a port-, this is defined as a mailbox
used by multiple senders and a single receiver. In distributed systems, each server ordinarily

has a port at which it receives requests from many clients.

Channels are used to link two processes in one direction (e.g. send x via channel 2) and can

be either static or dynamic.

2.3.2 Communications Patterns
Message passing implies the co-operation of the sender and receiver, but there are a number

of possible patterns. The pattern in which processes are distributed throughout the system and
the means used to identified them dictates which of these communications patterns can be

used.

One to One: Both parties are specified, by using their names, or defining a distinct channel
between them, or defining them as the only parties who can use this mailbox. When two
processes pass messages at several points [Figure 6] matching on a particular communication
cannot be achieved by process naming. Matching communications can be achieved by

channel naming or mailboxes as these can be defined for separate transactions.

Process 1 Process 2

Figure 6: Matching communications?
Many to One: A single process is prepared to accept messages from any of a set of processes.

Thus there are still only two parties to a transaction, but the sender can be one of many.
One to Many: In this case there is one sender and many potential receivers.

Many to Many: In this case there are many potential receivers and many potential senders
with either one or all of the receivers accepting communications from one or any one of the
senders or else some combination of receivers and senders will agree on a communication.
Such a strategy is difficult to implement, and with multiple clients and multiple servers will

closely resemble the shared memory processing model.
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2.3.3 Synchronous Message Passing
Synchronous message passing makes both the sender and receiver wait until both sides are

ready to proceed. Once the message has been exchanged both sides can continue. Advantages
of synchronous message passing are that there is no need for buffering and the state of the

corresponding process is more readily available.

Synchronised, zero-buffered communication greatly simplifies programming and can be
efficiently implemented. Zero buffered communication eliminates the need for message
buffers and queues. Synchronised communication prevents accidental loss of data arising
from programming errors, e.g forgetting to wait for a reply. This form of communication
means that one process must wait for the other. Synchronisation is achieved when one task is
ready to execute an input primitive and the second process is ready to execute an output

primitive.

2.3.4 Asynchronous Message Passing
In asynchronous message passing the sender initiates the message and then continues with its

processing. The message is accepted by the underlying system and some time later is
delivered to its destination. A process awaiting a message will be delayed until the message
arrives. Such a framework was described by [Whi87] and implemented as the language

PLITS (Programming Language In The Sky).

Messages may not be received in the order that they were sent, but this may be a benefit as
important messages can be prioritised. Other disadvantages are the necessity of large buffers
for storing unreceived messages, as well the lack of an immediate acknowledgement of
message receipt. The receiver can explicitly acknowledge the receipt of a message, but then

should the original sender be expected to acknowledge the acknowledgement?

2.4 Parallel Programming
For every parallel system there is a wide range of programming models and languages. We

will now look at some popular parallel programming models.

2.4.1 Parallel Constructs
Several approaches have been introduced to allow users to declare explicitly which sections

of a program can be executed in parallel on shared memory processors [Die90], with the two

most popular being Fork / Join, and Cobegin.

Structured languages are better served with a structured parallel operator rather than a loosely

structured Fork / Join. Structured languages are also more able to support the use of variables



local to a process, which is useful in shared memory architectures that have additional cache
or private memory available. Cobegins are also easily nested whereas Fork / Join are not as

flexible in this regard.

2.4.1.1 ForkandJoin
Anderson [And65] suggested two primitives called Fork, which starts a parallel process, and

Join, which waits for parallel processes to finish (it synchronises processes). These calls

correspond to the fork() and wait() system calls in the Unix operating systems.

A Fork call is similar to a procedure, allowing another process (routine) to start, while
allowing the calling process to continue execution. The calling process must at some further
stage contain a Join, where it will wait until the new process has terminated, which may

already have happened due to the very nature of parallel processing.

2.4.1.2 Process Declaration
A variation on the Fork / Join model is based on process declarations. When processes are

created they can be considered to be in a state of suspended animation. Such processes can be
brought to life by a call such as Fork. In Concurrent Pascal this explicit animation can only
be used during program initialisation, therefore giving a fixed number of processes. ADA
uses TASKs (its version of processes) which allow a variable number of processes at run

time.

2.4.1.3 Cobegin or the Parallel Clause
The Cobegin or parallel clause (par) provides a structured means of specifying parallel

execution of a set of statements. The Cobegin terminates only when all the constituent tasks
have completed. This single -entry -exit control structure allows specification of most
concurrent computations while maintaining ease of readability.

par begin

statement 1;
statement 2;

statement n;
par end

All statements can be executed in any order or in parallel, and all must finish before the

program can continue past the end statement.

2.4.2 Communicating Sequential Processes
The CSP approach to parallel programming, based on the original ideas developed by Hoare

[Hoa85], assumes processes run sequentially. CSP has had a major impact on concurrent



programming ideas and research because of its conceptual simplicity and potential for
efficient implementation. The concepts of synchronisation and communication are unified in
CSP. This model has been adopted by two major languages, Occam and Ada, that incorporate

facilities for representing concurrent activities.

2.4.3 The Occam Model of Process Parallelism
Occam, developed by INMOS [1INM88], is based around the ideas of CSP and allows

advantage to be taken of the concurrent processing capabilities that are available in the

INMOS transputer system.

One of the main aims of Occam was to remove the problems caused by using shared memory
as a means to implement process communications, as such systems become less efficient as
the number of communicating processes increase. It achieves this by allowing an application
to be expressed in terms of a number of concurrent processes which communicate using

channels, (localised processing and communication).

A process [Figure 7] may be defined as being carried out sequentially or in parallel with
respect to other defined constructs. It may be used as part of a larger construct thereby
allowing a hierarchical decomposition of applications to occur naturally. Each channel
provides a one-way communication between two constructs. Communications between the
constructs is synchronised, i.e. the first process which is ready to communicate waits until the

second is also ready; when both are ready the exchange can take place.

Figure 7. Description ofa process in Occam. The process has an input channel called IN and an output channel
called OUT

2.4.4 Adding Parallelism - Linda
Linda [Car89] consists of a small set of operations that can be added to any language to allow

parallel processing. The concept of Linda is based on the tuple space model of parallel
processing. Processes and data can be considered to be objects floating in tuple space. Sender
and receiver processes communicate by the sender creating a data object that it releases into
the tuple space; the receiver can examine such objects, hence the communication takes place.
Processes are generated in a similar manner, only they are considered to be live tuples that

can carry out their own process and then become data objects. Linda appears to be able to



support most models of parallelism, excluding some pipeline processing and array models.

There are four basic operations defined in Linda:
1 in - removes and reads a tuple from the tuple  space.
2. rd - reads a tuple without removing it from the tuple space..
3. out - adds a tuple to the tuple space.
4. eval - evaluates an object.

Tuples exist independent of the creators and are matched by element type and position.
Creation of tuples is non-blocking but reading will block if there is no match, and where there
are a number of matches a non-deterministic choice will be made between the matching

tuples. Tuples can be grouped together to yield a variety of data structures.

2.45 Object-Oriented Programming
The object-oriented model is based on the concept of encapsulating data and its operations

together into an object [Boo91]. Therefore, the object-oriented approach is well suited to
decentralised systems, as each instance of an object can be thought of as a separate process
which can be allocated to a processor. Objects are activated when they receive a message,
which relates to the message passing model. Some experimental systems include POOL

(Parallel Object Oriented Language) [Ame87] and Mentat [Gri93].

2.4.6 Other Models
There are many alternative models to the basic models. The functional model concentrates on

what the program is to do rather than how to do it and can be split into two parts; applicative
programming models based on the operations of functions, and dataflow models where
programs are driven by the need for data to flow through the system. Logic programming
models are based on symbolic processing where parallelism is found in four ways: OR-

parallelism, AND-parallelism, Stream parallelism or Unification parallelism.

2.5 Summary

For several years parallel processing was in danger of joining that not so exclusive club of
can’t miss technologies. The difficulty of parallel software development caused widespread
disillusionment. This has turned around somewhat with the remarkable progress in processors
and advances in the understanding of communications networks to produce a technology that

can solve real world problems.
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There are still many issues to be addressed, such as the diversity of parallel models and
architectures. There is much debate as to whether a unified parallel architecture can be
achieved or if it is totally desirable, but it should be followed up as a means of defining an
ideal machine that is mapable onto all real parallel hardware. Other areas for improvement
include support tools and compilers, which are currently not up to the task of automatic

translations and must rely on guidance from the programmer.
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3. Distributed Computing

3.1 Introduction

‘Distributed computing systems' can mean almost anything in the language of computing.
The meaning intended here is that it consists of multiple independent processors that co-
operate by message passing over a communications network. So, we are concentrating on
multicomputers, workstation LANs and workstation WANs. Distributed computing systems
are gradually evolving and research on architectures and interconnection networks has
resulted in low cost distributed systems with large numbers of powerful processors that can

communicate at high speeds.

Distributed computing’ is coercing autonomous, networked computers to work
simultaneously on a set of problems in a co-operative manner [Bal90], Such systems are
becoming commonplace and are now available to many potential users and used for many
different types of application. Distributed systems are favoured over other architectures, such
as uniprocessors or shared-memory multiprocessors, because they can provide better
computer performance at a lower cost, utilise idle cycles and resources, increase reliability
and availability, match applications to hardware (inherently distributed) or hardware to

applications (special requirements).

We’ll first look at some of the issues that must be addressed when dealing with distributed
systems, followed by a look at various systems specifically targeted at supporting distributed
computing. We’ll finish with an introduction to the object oriented approach to distributed

systems and computing.

Frequently, distributed computing systems are used for running different jobs or services on
different machines, however this thesis is concerned with how multiple computers can co-
operate in executing single jobs. In particular we look at how the turn-around time of a job

can be reduced by running different parts of ajob in parallel on multiple machines.

3.1.1 Distributed Computing Systems
Distributed computing systems can be classified according to their interconnection networks.

Traditionally, a distributed architecture in which communication is fast and reliable and
where processors are physically close to one another is said to be closely / tightly coupled’,
systems with slow and unreliable communication between processors that are physically

dispersed are termed loosely coupled.



Closely coupled distributed systems use a communications network consisting of fast,
reliable, point-to-point links, which connect each processor to some subset of the other

processors (e.g. the hypercubes [Ran88], Transputer networks [May84]).

A more loosely coupled type of distributed system is a workstation LAN, where direct
communication between any two processors is allowed. Communication in many LANS is not
always reliable and a message may be damaged, arrive out of order, or not arrive at its
destination at all; therefore software protocols must be used to implement reliable
communications. LANSs are limited to relatively short distances, so to interconnect processors
that are further apart a wide area network (WAN) is needed; this can be viewed as a very
loosely coupled distributed system. Communication in a WAN is slower and less reliable
than in a LAN, but the distinctions will be reduced with the increased availability of newer

high speed lines.

There is a wide range of distributed systems, ranging from closely coupled to very loosely
coupled. Regardless, all systems fit into the same model, i.e. autonomous processors

connected by some kind of message passing network..

3.1.2 Distributed Computing
Achieving speedup through parallelism is a common reason for running an application on a

distributed computing system. By executing different parts of a program on different
processors at the same time some programs will execute faster and finish sooner. These
applications can be run just as well on shared-memory multiprocessors, but there is trouble
scaling up to large numbers of processors, which explains the interest in implementing

parallel programs on distributed systems.

Parallel applications can be classified by the grain of parallelism used, which is measured as
the ratio of computation to communication. Large-grain parallel programs consist mostly of
computation with little communication; fine-grain parallel programs communicate more
frequently; medium grain parallel programs are in between. The grain size refers to the nature

of the application, whereas coupling describes the architecture.

Fine-grain and medium-grain parallelism are most suited to closely coupled distributed
systems, as the communications overhead in loosely coupled systems is usually prohibitively
expensive. Large-grain parallelism is suitable for both closely and loosely coupled distributed
systems. Numerous applications can benefit from large-grain parallelism, [Ran88][Ath88],

such as heuristic search algorithms.
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3.1.3 Design Issues in Distributed Computing
Within a distributed computing system many issues arise that are more difficult to address

than in single-workstation computing, such as load balancing, scalability, security, fault
tolerance, data distribution / locality, distributed 1/0, programming environment, and
debugging. Sometimes the local workstation operating system makes addressing these issues
arbitrarily difficult, suggesting the need to make workstation operating systems aware of their

distributed computing environment.

The principal requirements for a distributed computing environment are that applications
must be able to locate the processing capability it requires, send and receive parameters and
results which must be meaningful on various machine architectures within the environment,
and a process must be useable across platforms and languages. Other requirements include
security, interface description, and how information is transmitted. These are the absolute

basics without which distributed computing will not work well.

3.1.4 Approaches to Distributed Computing
Programming support for implementing distributed applications may be provided by a variety

of levels ranging from the (distributed) operating system to a language especially designed

for distributed programming.

We will ignore the approach where the application is built directly on top of the hardware,
which although it provides total control over all primitives provided by the hardware, is

highly hardware-dependent and labour intensive.

The first approach that is usually considered is based on the operating system which can be a
nucleus (providing only processes and interprocess communication), a network operating
system, or a full-blown distributed operating system. With this approach, sequential
languages are used along with a collection of operating system primitives accessed through
library routines. Disadvantages of this approach are that the control structures and data types

of sequential languages are often inadequate for distributed programming.

Another approach uses a programming language with all the necessary constructs for
distributed programs. This shields the programmer from both the hardware and operating
system and can also present a higher level model of a distributed system. Language level
support for distributed programming can overcome these disadvantages while providing
improved readability, portability, and static type checking. A language may also present a
programming model that is higher level and more abstract than the message-passing model

supported by most operating systems.



The approach that we will concentrate on consists of systems specifically designed to enable
distributed parallel processing on top of a network of autonomous workstations. With such an
approach we can program to a higher level than that provided by a distributed operating
system, in a more consistent and complete environment created with parallelism in mind.
However, this method does not overcome the disadvantages associated with extending or

augmenting sequential languages.

We will also consider the latest approach to distributed computing, distributed/interoperable
objects. Objects can hide much of the complexity involved in developing distributed
applications, leaving the programmer to concentrate on the core design and implementation

rather than ancillary details.

3.1.5 Programming Issues in Distributed Computing
There are basically three issues that distinguish distributed programming from sequential

programming:
1. The use of multiple processors.
2. The co-operation among the processors.
3. The potential for partial failure.

Distributed programs execute pieces of their code in parallel on different processors. In high-
performance applications, where the goal is to make the best possible use of the available
processors to achieve maximum speedup, the decision as to which computations to run in
parallel is of great importance. In fault-tolerant applications, decisions to perform functions
on different processors are based on increasing reliability or availability. For special-function
and inherently distributed applications, functions may be performed on a given processor
because it has certain capabilities or contains needed data. The first requirement for
distributed programming support is the ability to assign different parts of a program to

different processors.

The processors of a distributed system need to co-operate while executing a distributed
application. With parallel applications, processors sometimes have to exchange intermediate
results, and synchronise their actions. Therefore the second requirement for programming

distributed systems is that processes are able to communicate and synchronise.

In a distributed system some processors may fail while others continue. This property can be

used to write programs that can tolerate hardware failures and is particularly important for
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fault-tolerant applications. Therefore, the third requirement for distributed programming

support, is the ability to detect and recover from partial failure of the system.

3.2 Design Issues
In this section we will look at some of the various design issues that arise when designing and
implementing a distributed computing system. Many of the areas covered are relevant across

the spectrum of distributed systems.

3.2.1 Communication and Synchronisation
Primitives that allow processes to exchange information and synchronise their actions should

be provided by all distributed systems. The chosen mechanism is usually based on the
message passing model, although other models such as the RPC (Remote Procedure Call)
[Tan88] and transactions are also popular. Once the model is chosen several additional issues

and decisions must be considered for a complete communication and synchronisation service.

Reliable communication is not usually provided by the underlying hardware, and must be
provided by the system. Message passing can be made reliable by adding software protocols,

which are included in the system kernel by most distributed operating systems.

Synchronous (blocking) and asynchronous (non-blocking) messaging passing must also be
considered. Synchronous message passing systems, such as RPC, are easier to use, but might

reduce the possible level of parallelism.

Messages are usually considered as a sequence of bytes by the operating system with no
regard to the contents. This means that the sender and receiver of a message must agree on

the form and content of the message.

A certain degree of non-determinism should be supported by the communications primitives,
whereby a receiver can receive a message from any of a set of processes, with support for

multicast and forwarding of messages being desirable.

3.2.2 Process Management
Process management deals with the distributed systems mechanisms and policies for sharing

processing resources spread around a network among all processes, and in particular to
perform local and remote operations on processes. In an ideal case all operations on remote

processes should be transparent to the user.

The following operations should be supported remotely: create, destroy, suspend, resume,

and run processes. The major problem in remote execution of a process is the selection of an
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execution site, but this is a policy decision and should be decided by the resource

management system.

Another important part of process management is process migration, which is crucial to
distributed scheduling (load balancing). A process migration policy is needed to define when
to migrate which process where, but once again this belongs in the resource management

system.

There are four basic models for process interaction in a distributed computing environment,

namely:
1. The client-server model.
2. The integrated model.
3. The pipe mode - based on the concept of a process.

4. A remote procedure call - which allows a process to call a procedure at a remote

computer.

The majority of distributed systems fall into the client-server model. In this model control is
distributed among the various processes in the system, with many of the system’s functions
implemented in user processes. Processes are generally classified as being either clients or
servers. To request a service, a user (client) process sends a request to a server process, which
then does the work and returns a response. In this model, control of individual resources is

centralised in a server. There are three major problems with the client-server model:

Control of individual resources is centralised in a single server. This means that if a server
fails then that element of control fails, which is unacceptable if that server is critical to the

operation of the system.
1. Each server is a potential bottleneck, which worsens as more clients are added.

2. To improve performance multiple implementations of similar functions can be used,
however this adds to the cost of a distributed system. Local caching can help

overcome this problem somewhat.

Solutions to these problems have been proposed, such as multiple resource managers. Many
of these solutions just move these problems to other areas. These problems led to the
integrated model, where each computer’s software is designed as a complete facility with a
general file system and name interpretation mechanisms, on which LOCUS [Wal83] was

based.
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3.2.2.1 Data Marshalling / Persistence (Serialisation)
If a data structure is passed as a value parameter in a fork or operation invocation it has to be

placed (marshalled) into a network packet, which is usually a linear sequence of bytes. Also,
any structured values returned by a remote operation - either as result or output parameter,
have to be unmarshalled. Finally, if the run time system decides to create a copy of a shared
data object on a certain processor, the current value of the object has to be sent, which may

also require marshalling.

For data structures that are represented as contiguous memory blocks, the above tasks are
simple. Unfortunately, data structures whose size can change dynamically (e.g., graphs,
arrays, sets) are hard to implement efficiently using a single contiguous memory block. In
general data structures consist of multiple blocks of memory, linked through pointers. The
run time system therefore needs to have information about the representation of structured

variables (i.e., variables of a structured type), in order to carry out each of the above tasks.

3.2.3 Resource Allocation
Resource management is one of the basic and most important problems of distributed

systems. Resource management in distributed systems consists of three issues, namely
resource allocation, deadlock detection and resolution, and resource protection. In this

section we will look at resource allocation.

Resource allocation can be managed by server based resource managers or agent based
resource managers. Management systems allocating resources to processes can be divided
into two groups. The first group consists of those systems which provide a variety of
resources. The second group contains those systems which provide access to a single type of

resource, and is mainly oriented towards processor / workstation allocation.

One of the basic resources managed in any computer system, particularly in a distributed

system, are processors so we will now look at distributed scheduling.

3.2.3.1 Load Distribution - Sharing and Balancing
A distributed scheduling policy consists of two components:

1. A local scheduling discipline which determines the allocation of a processor among

its local processes.

2. A load distributing strategy that is responsible for the distribution of the system
workload among the computers of a distributed system by means of process

migration and remote execution.



Since load scheduling in a distributed system is no different to that in a normal operating
system we will ignore it here and concentrate instead on load distributing strategies.
Approaches to the problem of load distribution can be divided in two groups, load sharing

and load balancing.

Allowing processes to get computation service on idle workstations is called load sharing.
Load sharing, also known as processor allocation or hunting for an idle processor, can be
performed on the basis of many different organisations imposed on a set of available
processors. Processors can be organised in a logical hierarchy, in a logical ring, or no special
structure. Load sharing provides a local solution, as it improves performance indices of only

a few users and their processes.

Load balancing algorithms on the other hand, strive to equalise the system workload among
all computers of a distributed system and improve performance indices globally. Load
balancing (distributed scheduling) algorithms can be grouped into task placement algorithms
and dynamic load balancing. The former algorithm finds the optimal location for all
processes before they start execution (static load balancing), while the latter includes
algorithms which allow processes to migrate to remote computers once they have begun

execution and is associated with process migration.

Scheduling processes on processors is an important issue in the design of a distributed
system. Schedulers should try to spread the load of the system evenly over the available
processors and also give each process a fair share of the processor cycles. Strategies for
scheduling should consider both local and global scheduling. Global scheduling determines
which processes are to be run on which processors while local scheduling of a single

processor determines which of the competing processes is to be run at a given point in time.

3.2.4 Protection and Security
One of the main aspects of distributed systems is the sharing of resources between certain

users. However, not all users are allowed access to all resources. Moreover, there could be
users trying to eavesdrop or tamper with messages, or attempting to masquerade as someone
else. This demonstrates the need for security in a distributed system. Distributed system
security is a vast topic which covers not only such advanced topics as access control,
communication security and authentication measures, but also more conventional measures

such as physical, procedural and personal security.

To deal with all aspects of security a distributed system must provide resource protection

(authorisation), secure communication, and user authentication. Resource protection involves



protecting objects in the distributed system from unauthorised access. Communication
security safeguards information transmitted between computers connected by communication
media. Authentication assures the receiver of a message that it came from the reputed source

and that it has not been changed since.

Methods for achieving these goals are based on the use of cryptography to protect messages
and communications along with an authentication service to enable clients, servers and other

communication partners to verify each others identities.

3.2.4.1 Kerberos
One of the best known security services is Kerberos which is an encryption-based system

designed to authenticate users and network connections. It was developed at MIT’s Project
Athena in the 1980’s and is used to prevent unauthorised access. It does this so well that it is
now almost a de facto standard for effecting secure, authenticated communications across a
network. Kerberos assumes it is in a distributed environment of unsecured workstations,
moderately secure servers, and highly secure key-distribution machines. However, Kerberos
is not a complete security solution as it does not handle authorisation for applications. Any

determination of access authorisation and rights must be handled by other system services.

Kerberos uses private key encryption to provide three levels of protection. The lowest level
only requires the user’s authenticity to be established at the initiation of a connection,
assuming that subsequent network messages flow from the authenticated principal. The next
level up requires the authentication of each network message. The most secure level is where

each message is encrypted as well as authenticated.

3.2.5 Transparency
A distributed system should try and hide to some degree, although maybe not completely, the

differences between local and remote resources so that they are transparent to users. It is
possible to identify various degrees of network transparency that can be required to achieve a
distributed system. These include access, location, name, control, data, execution, and
performance transparency. Transparency in a distributed system gives the advantages of
easier development, support for incremental change, potential for increased reliability and a

simpler user model of the distributed system.

3.2.6 Heterogeneous Environment
Heterogeneity in distributed systems is a major problem because it restricts the efficient and

effective utilisation of resources. In general, the heterogeneity issue is a very important but

still open problem which requires a global solution.



3.2.7 Scalability
A scaleable distributed system is one that can easily cope with the addition of users and sites,

and whose growth involves minimal expense, performance degradation, and administrative

complexity.

Scalability permeates almost every aspect of distributed system design. In centralised
computer systems certain shared resources - memory, processors, input-output channels, are
in limited supply and cannot be replicated indefinitely. In distributed systems the limitation in
the supply of some of these resources is automatically removed but other limitations may

remain as the design of the system does not recognise the need for scalability.

A distributed system should be designed so that the work involved in processing any single
request to access a shared resource should be nearly independent of the size of the system.
Techniques that have been successful in overcoming the problems associated with expanding

systems include replicating data, caching, and using multiple servers.

3.2.8 Fault Tolerance
Sooner or later every man made system will fail because of physical faults. If the inherent

fallibility of a system is not acceptable then redundancy must be provided in order to make

the system fault-tolerant.

Therefore, an important issue in the design of a distributed programming model is the
handling of processor failures. The usual approach for dealing with faults is to provide a
mechanism for failure detection, and letting the programmer take care of clearing up. The
main problem is to bring the system back to a consistent state; this is achieved by anticipating
processor crashes and precautions, such as checkpoints, are taken during normal operation.
To shield the programmer from these details, models have been suggested to make recovery
from failures easier. Alternatively, a higher-level mechanisms for expressing which processes
and data are important and how they should be recovered after a crash can be provided for the
programmer (e.g. Argus, Aeolus). Current distributed systems support for fault tolerance
ranges from specifically designed fault tolerant systems to systems with no special provisions

what so ever.

Distributed systems also provide a high degree of availability in the case of faults. The
availability of a system is a measure of the proportion of time that it is available for use.
When a component in a distributed system fails only the work that was using that component

is affected.



Networks are usually one of the weakest components in a distributed systems since they are
not normally redundant. Failure of the network causes programs that use the network to hang
until communication is restored, and the service to users will be interrupted. Overloading of
the network degrades the performance and responsiveness of the system to users. Much effort

has gone into the design of reliable and fault-tolerant networks.

Many different approaches have been taken in tackling fault tolerance. Amoeba uses a boot
service for guarding important services. A process registered with the boot server is
periodically polled to see if it is still alive, and if it fails to respond the boot server assumes
that it has crashed and starts a new version of the process. The Clouds system supports fault-
tolerant distributed applications through the use of persistent objects. Operations on objects
can be grouped into atomic transactions, which either fully succeed, or fail completely with
no side-effects. Resilient objects and atomic transactions together facilitate the

implementation of fault-tolerant applications.

3.3 Systems for Distributed Computing

3.3.1 PVM - Parallel Virtual Machines

3.3.1.1 Introduction
PVM [Gei93] is a basic message passing system for heterogeneous collections of networked

computers. Each computer may belong to any hardware classification that may be
interconnected by a variety of networks, such as ethemet, etc. PVM support software
executes on each machine in a user configurable pool, and presents a unified, general and
powerful computational environment for concurrent applications. Access to PVM functions
such as process initiation, message transmission and reception, and synchronisation is
provided through PVM library routines. The execution location of specific application
components is also under the optional control of the user, with the PVM system transparently
handling message routing, data conversion where necessary and various other tasks that are

necessary for operations in a heterogeneous, network environment.

3.3.1.2 PVM Overview
The goals of the original system (version 1.0) were to allow the execution of large parallel

programs consisting of relatively independent components with good performance, on the
best suited machine in a general, flexible, portable, and inexpensive concurrent programming
environment, and also to provide a unified framework for developing large parallel systems

efficiently. Many of the original ideas proposed were never implemented in a release version



of PYM and this can cause some confusion. We will use PVM 1.0 to refer to the original

experimental system.

PVM 3 provided many improvements and a change of emphasis. These changes included an
updated user interface and a more stable and robust system, better multiprocessor integration,
improved message passing capabilities and greater support for dynamic process groups. We

now look at how PVM addresses the issues that arise in distributed computing.

33121 Load Balancing Issues
Whereas PVM 1.0 used a form of dynamic load balancing PVM 3 has no capabilities in this

area, and this is one of its most serious limitations. In version 3, hosts are assigned in a
round-robin manner and specific hosts and architectures may be requested. However no
attempt is made to obtain the relative speeds or loads of the hosts and load balancing is left to

the programmer to implement.

3.3.1.2.2 Scalability Issues
PVM 3 is not really a scaleable distributed computing environment. In many instances

communication is serialised through daemons (pvmds), while linear spawning and
authentication’s are used. This is workable for a small number of distributed computers but
will eventually cause the system to bog down. Scalability is further impaired due to file
descriptor limits on Unix; there’s a limited number of TCP descriptors available at any one

time.

3.3.1.2.3 Security Issues
Security is not a major concern in PVM which relies entirely on UNIX-based security

techniques, and encourages the widespread use of .rhosts files to avoid explicit password
authentication. The main aspects are that all processes run as user processes, virtual machines
are set up on a per-user basis, slave pvmds are spawned with rsh() or rexec() and data

encryption is not provided by PVM.

3.3.1.2.4 Fault Tolerant Behaviour
Fault tolerance must be implemented by the developer. No attempt is made to automatically

recover tasks that are killed because of a host failure - P\VM simply deletes the host from the
virtual machine. No form of checkpointing is supported but processes can check the status of

other processes.

3.3.1.2,5 Data Distribution/Locality Issues
Distributed shared memory was originally described in the PVM 1.0 documents but has not

appeared since. This supported distributed locks, typed and untyped shared blocks and
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automatic data-format conversion applied to typed blocks. No support for data mapping, data

distribution or data replication is provided at all.

3.3.1.2.6 Distributed 1/0 under PVYM
PVM does not really address the issue of distributed input-output very much but does not

inhibit the use of any other existing distributed 1/0 mechanism, e.g. NFS, AFS.

3.3.1.2.7 Multicomputer Interface
PVM 3 is designed so that the native multiprocessor calls can be compiled into the source.

This allows the fast message-passing of a particular system to be utilised by the PVM

application.

3.3.1.2.8 PVM Programming Environment
The main points of the PVM environment are that it has an easy to learn user interface, is

portable with C and Fortran libraries, with a command line interface to the master pvmd.

There are some notable omissions, such as no applications or numerical libraries, no support
for parallel debugging although several unsupported debugging features are provided, no way

to trace execution other than debugging messages and no facility for monitoring performance.

Some of these short-comings can be overcome through various additions to the basic PVM
system, such as the Paragraph tool which supports post-mortem traces and constructs a

graphical view of execution from trace data.

3.3.1.3 The PVM Daemons
The PVM daemons are responsible for the majority of the inter-host communication

occurring in the system, and also store most of the state needed by the system, such as the
virtual machine configuration and client-process information. The master pvmd also provides

a means for the user to access more information about the running system.

When a pvmd is started it spawns the slave daemons on all the hosts listed in the hostfile.
Once all the PVM slave daemons have been initialised the master PVM daemon prints a
message. If an error occurs while spawning a slave pvmd, a message describing the problem

will be displayed.

The master PVM daemon can also be used in an interactive mode which allows the user to
quit the program, get help, list the configuration of the virtual machine and to check and kill

processes.



3.3.1.4 Functionality
PVM is portable to any machine running a version of UNIX that supports Berkeley sockets

and provides basic message-passing facilities, barrier synchronisation, a form of user defined
event handling and the ability to initiate new processes on demand. PVM s intended for
medium to course grained parallel applications, which does not preclude large grain
parallelism. PVM allows programmers to take advantage of the architectural advantages of
different machines, so that each independent component of a program may be concurrently
executed on the most suitable computer. Generally, the programming model used can either
be SIMD/SPMD (a simple, general purpose client can be used to spawn functionally identical

programs) or full MIMD/MPMD (e.g., a master/slave paradigm)1

3.3.1.5 Conclusion
PVM is being increasingly used around the world for distributed scientific computing. An

important motivation for the use of PVM and other cluster computing systems is price
performance as clusters are a lot more cost-effective than supercomputers for a given
performance capability, for several classes of applications. Other motivations include a high
degree of portability and a straightforward, robust interface that is well suited for scientific

application development.

PVM’s advantages are that it is small, simple, easy to run and understand, portable, with
support for a heterogeneous environment and a large user base. Against this, PVM is an
evolving research project, with no support for semaphores, message passing contexts, receipt
selectivity, load balancing, execution tracing, or checkpointing and limited support for fault

tolerance, scalability, and performance.

3.3.2 Message Passing Interface (MPI)
MPI [MPI93] is the new de facto standard for multicomputer and cluster message passing,

The goal of MPI, simply stated, is to develop a widely used standard for writing message-

passing programs.

Message passing is a paradigm used widely on certain classes of parallel machines, especially
those with distributed memory. Although there are many variations, the basic concept of
processes communicating through messages is well understood. Over the last ten years,
substantial progress has been made in casting significant applications in this paradigm. In
designing MPI the most attractive features of a number of existing message passing systems

were used. Thus, MPI has been strongly influenced by work at the IBM T. J. Watson

1‘SPMD’ stands for single program, multiple data; ‘SIMD’ indicates single program, multiple data; ‘MPMD’ stands for
multiple program, multiple data; ‘MIMD’ indicates multiple program, multiple data.
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Research Centre, Intel’s NX/2, Express, nCUBE’s Vertex, p4 [But92], and PARMACS
[Cal94], along with contributions fromZipcode [Skj93b], PVM [Gei93], and PICL [Gei92],

The main advantages of establishing a message passing standard are portability, ease-of-use
and support for parallel libraries and the creation of large-scale multicomputer software. In a
distributed memory communications environment in which the higher level routines and/or
abstractions are built upon lower level message passing routines the benefits of
standardisation are particularly apparent. Furthermore, the definition of a message passing
standard provides vendors with a clearly defined base set of routines that they can implement

efficiently, or in some cases provide hardware support for, thereby enhancing scalability.

MPI provides a higher level of abstraction than common message-passing systems, which
helps library writers develop more efficient and understandable code. MPI was designed to
support primitives that would map efficiently to the existing and expected high performance
message passing hardware of multicomputers and gigabit cluster networks while allowing

portable MPI libraries to be developed.

Parallel libraries are needed to hide the intricate technical details associated with distributed
implementations of important algorithms. Libraries help ensure consistency in program
correctness and quality of implementation, while offering a higher level of portability than a
message passing system, such as MPI, can provide. In the distributed memory message-
passing environment it is difficult to write libraries with either vendor or portability systems.

In order to develop and support such libraries, three key areas must be addressed:

1. A safe communication space (isolation) which guarantees that a library can send and
receive point-to-point messages without interference from other point-to-point

messages generated in the system.
2. Support for collective operations, notjust point-to-point.

3. Abstract names for processes based on virtual topologies which do not rely on

hardware-dependent names.
MPI supports these areas through the following features:

1. Process Groups define an ordered collection of processes, each with a rank. Process
groups define the low-level names, rank of sender and receiver, and the set of
participants for inter-process communication, point-to-point message passing, and

collective communication respectively.



2. Virtual Topologies provide an alternative to simple rank naming for libraries with
support for both Cartesian and general graph topologies as well as user-definable

topology strategies.

3. Contexts allow separate safe “universes” of message-passing for process groups in
MPI and help restrict the scope of messages. Contexts in MPI are implemented with

communicators.

4. Communicators hide contexts, groups and virtual topologies in an object that
provides the appropriate scope for all communication operations in MPI. Processes
and contexts are bound together by communicators to form a safe communication

space within the group.

Some possible MPI-2 extensions which were proposed at the February 1994 MPI Forum
meeting include active messages, 1/O, process start-up, dynamic process control, remote

store/access, Fortran 90 and C++ language bindings, graphics and real-time support.

3.3.3 OSF’s Distributed Computing Environment
To meet the needs of distributed computing the Open Software Foundation (OSF) have put

forward it’s Distributed Computing Environment (DCE). OSF’s DCE is an integrated set of
operating system and network independent services that support the development, use and

maintenance of distributed applications [Byt94],

DCE is constructed in layers, from the basic services (e.g., operating systems) up to higher-
end clients of services (e.g., applications). Security and management are essential to all layers
in the model. Currently DCE consists of seven tools and services that are divided into

fundamental distributed services and data-sharing services.

The fundamental distributed services include threads, RPCs, directory services, time services,
and security services. Data Sharing Services build on top of the fundamental services and
include Distributed File System (DFS) and diskless support. The OSF has reserved space for
possible future services, such as spooling, transaction services, and distributed object-

oriented environments.

41



3.3.3.1 Threads
Threads were introduced to allow multiple related tasks to co-exist and execute in a single

process and are an important emerging model for expressing parallelism within a process,
especially within a distributed environment. The DCE RPC, security, directory, time services,

and DFS (Distributed File System) all use the threads service.

3.3.3.2 Remote Procedure Calls (RPC)
A well known and tested method for implementing a distributed application is the RPC

(Remote Procedure Call), which extends a function call across networks. RPCs handle the
core responsibilities of the distribution such as the semantics of the call, binding to the
server, and communication failure transparently, simply, efficiently, and reliably. This allows
the programmer to concentrate on the distribution of the problem at hand. The RPC protocol
is consistent and clearly specified and is not subject to user modification. The DCE RPC fits

in well with the other needs of DCE such as naming, DFS, security, and time service.

3.3.3.3 Distributed Directory Service (Naming)
The directory service is used to find users, resources, data, applications, etc., in a distributed

network. Naming or directory services must map large numbers of system objects to user-
oriented names in a transparent manner. OSF specified a two-tiered architecture for the name

service to address both intracell and world-wide communications. Cells are the fundamental

Applications

Threads

Operating System and Transport Services

Figure 8: The OSF DCE Architecture

The DCE architecture follows a layered model. The most basic, or supplier, services are at the bottom, with the highest

level being service consumers. The security and management services apply to all layers



organisational unit and can map to social or organisational boundaries etc., consisting of

computers that must communicate frequently with one another.

3.3.3.4 Distributed Security Service
There are two general categories of security; authentication and authorisation. Authentication

verifies the identity of an entity while authorisation, which is not enough on its own, is
responsible for checking and granting access rights to resources. OSF security is based on the
Kerberos authentication system, augmented by security components such as a registry and
authorisation service and is also looking at further improvements. DCE applications will also
be portable from Kerberos to public-key authentication schemes such as that provided by

RSA.

3.3.3.5 Distributed File System (DFS)
The OSF DFS, which is based on the Andrew File System (AFS), is intended to provide

transparent access to any file residing anywhere on a network. A major concern for such a
system is that it remain simple and easy to use while providing a uniform name space. Other
considerations are integrated security, data consistency and availability, reliability and
recovery, performance and scalability to very large configurations without performance

degradation, and coherent, location-independent management and administration.

3.3.3.6 Distributed Time Service (DTS)
Many distributed services, such as distributed file systems and authentication services,

compare dates generated on different computers. For the comparison to be meaningful, DCE
must support a consistent time stamp. DCE uses a time server to provides the time to other
systems for the purpose of synchronisation, and is interoperable with the NTP, the protocol
used by the Internet. There are three types of time servers (local, global and courier) to co-
ordinate network time. At periodic intervals, servers synchronise with every other local

server on the LAN via the DTS protocol. Any non-time server system is called a clerk.

3.3.3.7 Areasfor Extension
Object orientation will prove fundamental to the rapid proliferation of network based

applications, for some of the same reasons that are propelling the transparency of DCE to
developers. Currently it is too hard to write a network based application without either
extensive training or a technology that camouflages the intricacies of the network. Object
orientation provides this necessary transparency. OSF is exploring extensions to its RPC

interface definition language that will add object oriented functionality. Once implemented,



such features will support the Object Management Group’s CORBA (Common Object

Request Broker Architecture) on top of the DCE infrastructure.

3.3.4 A Brief Note on Other Systems
Those interested in other systems should investigate p4 [But92], Parmacs [Cal94], and

Zipcode [Skj93b] and the discussion of Linda in section 2.4.4.

3.4 Distributed Objects

Distributed object computing is rapidly becoming the next computer industry battleground,
superseding the operating system battle. Everyone working in modem enterprise will be
engulfed because distributed computing represents the direction in which the broad
mainstream of information technology will likely evolve. At the heart of distributed
computing are interoperable objects that go beyond the traditional boundaries imposed by

programming languages, process address space, or network interfaces.

How is the idea of distributed objects different from the basic ideas of distributed processing?
Objects are an enabling technology for distributed systems. In the case of distributed systems,
the concerns - naming, address-space conversion, transport protocols, interface descriptions,
etc., are many. Objects provide a tractable means of organising the complexity of a modem
operating system, thereby simplifying distributed processing, by combining the data and

process together.

3.4.1 CORBA

The model for client/server is maturing into one based on peer-to-peer distributed processing.
Consequently a considerable amount of attention is being focused on technologies for linking
applications and objects across machine boundaries in a heterogeneous, networked

environment. These technologies fall under the title of ‘distributed object computing
[Dob94],

Many of the technologies vying for dominance rely on an emerging standard called the
“Common Object Request Broker Architecture” (CORBA) specification. Current systems
based on or compliant with CORBA include the Distributed System Object Model (DSOM)
from IBM, Digital’s Object Request Broker (ORB), Portable Distributed Objects (PDO) from
Next, and Sunsoft’s Distributed Objects Environment (DOE).

The CORBA specification is being promoted by the Object Management Group (OMG),
which is a consortium of three hundred companies and was founded in 1989. The CORBA

specification defines the architecture of an ORB whose job is to enable and regulate



interoperability between objects and applications. This facility is part of a larger vision called

the “Object Management Architecture” (OMA), which defines the OMG object model.

The concern of the CORBA specification is solely the interaction of applications and objects
and the mechanisms that enable it. The vision of the OMG s clearly cross platform and cross
operating system. It is a standard description of an architecture but it is not a standard for

implementation of that architecture, and it is not as well defined as it needs to be.

3.4.2 SOM & Distributed SOM
IBM’s System Object Model (SOM) [Dob94a] was designed to overcome several major

obstacles to the widespread use of object-class libraries. The goal of SOM is to enable the
development of ‘system objects’ which can be distributed and subclassed in binary form,
used across languages, and upwardly binary compatibility - i.e. subsequent modifications are

possible without having to recompile.

SOM supports all the concepts and mechanisms normally associated with object-oriented
systems, including inheritance, encapsulation, and polymorphism, as well as a number of

advanced types of method dispatch.

3.4.2.1 The SOM Framework and Distributed SOM
SOM is a peer-to-peer communications vehicle interconnecting objects and frameworks with

each other, rather than to a central ‘master’ controller. SOM includes with it a number of
frameworks, which are interrelated sets of SOM objects designed to solve a particular

problem, such as object persistence, object replication, and object distribution.

The purpose of the distribution framework (called ‘distributed SOM’ or DSOM) is to
seamlessly extend SOM’s internal method-dispatch mechanism so that methods can be
invoked in a programmer transparent way on objects in a different address space or in a

different machine from the caller.

Components that are included in DSOM allow messaging between objects in different
address spaces on the same machine. Other components, such as marshalling, transport,
naming or security, can be added to support messaging between objects on different
machines. Components can also be replaced, depending upon the particular distributed-

computing environment that needs to be supported.

3.4.2.2 SOM, DSOM, and CORBA
IBM is trying to achieve many of the same objectives that the Object Management Group

(OMG) is trying for with its CORBA specification. Their common goal is to facilitate the



interoperability of objects independent of where they are located, the programming language
in which they are implemented, or the operating system or hardware architecture on which

they are running.

The DSOM class library is fully compliant with the CORBA specification, supporting all
CORBA data types, functionality, and programming interfaces. DSOM is a framework built

using the SOM technology that allows developers to construct distributed-object applications.

SOM can be looked on as a single-address space, object request broker (ORB) that provides
interlanguage interoperability and supports binary subclassing and upward binary

compatibility.

SOM deals with object implementation rather than the narrower focus of the CORBA
specification which defines objects without regard to implementation. SOM advances on
CORBA by supporting implementation inheritance and polymorphism, providing metaclasses
that are manipulated as first order objects, and allowing dynamic addition of methods to a

class interface at run-time.

3.5 Conclusions

PVM and Linda, among others, have evolved over the past few years, but none of them can
be considered fully mature [Don93]. The field of network based concurrent computing is
relatively young and research on various aspects is ongoing. Although basic infrastructures

have been developed many of the refinements that are necessary are still evolving.

The rapid increases in computing power presents many challenges for network computing
systems. One aspect concerns scaling to hundreds and perhaps thousands of independent
machines. Protocols to support scaling and other system issues are currently under
investigation. Under the right conditions, the network based approach can be effective in
coupling several similar multiprocessors, resulting in a configuration that might be

economically and technically difficult to achieve with hardware.

Applications with large execution times will benefit greatly from mechanisms that make them
resilient to failures. Currently few platforms support application level fault tolerances. In a
network based computing environment application resilience to failures can be supported
without specialised enhancements to hardware or operating systems. Approaches based on
checkpointing, shadow execution and process migration are being looked at as possible

strategies for enabling fault tolerant applications.



The performance and effectiveness of network based concurrent computing environments
depends largely on the efficiency of the support software and on the minimisation of

overheads.

Another issue to be addressed concerns data conversions that are necessary in networked
heterogeneous systems. Aside from byte ordering, there is also a need to handle differences

in wordsize and precision, when operating in a heterogeneous environment.

Another concern is the efficient implementation of distributed primitives which are
inherently expensive parallel computing operations, such as barrier synchronisation, polling,
distributed fetch-and-add, global operations, automatic data-decomposition and distribution,
and mutual exclusion. This is all the more important in an irregular environment (where
interconnections within hardware multiprocessors are much faster than network channels), as

such operations can cause bottlenecks and severe load imbalance.

Hopefully the object oriented approach can go some way towards hiding many of these issues
and concerns from the application developer while providing a powerful means of harnessing

the full potential of distributed computing systems.
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4. DistProc
A Distributed Processing System

4.1 Introduction
DistProc is a basic distributed processing system for collections of networked computers

and presents a unified and powerful computational environment for concurrent applications.

DISTPROC is suitable for concurrent applications composed of many independent parts.
DISTPROC falls into the generic distributed computing category where workstations are
connected via a network (e.g. ethemet), rather than into the high performance distributed
computing category where supercomputers and very high speed connections are used. As a
loosely coupled computing environment DistProc is a viable computing system and has

been used on the factorisation of very large numbers.

Access to the DISTPROC services is provided through the DISTPROC Client library which
transparently handles the various tasks that are necessary for operations such as process

creation, termination and synchronisation.
The DistProc System was implemented, as part of the M.Sc., in C++ and the source code is
presented in Chapter 8.
4.2 Design Objectives of the DistProc System
The DistProc System was designed and implemented around the following goals. It should:
e use existing resources,
» provide good performance,

e provide a general, flexible, portable and inexpensive concurrent programming

environment,
e be astable and robust system,
» be easy to program and use,
* help investigate the issues surrounding distributed systems,

» allow the execution of large parallel applications consisting of relatively independent

components,

and most importantly that it should



» be capable of dealing with the factorisation of very large numbers.

4.3 Distributed Systems Issues
Before proceeding further a brief discussion on how the DISTPROC System addresses the

various issues that arise in distributed computing is presented.

4.3.1 Distributed Scheduling
Distributed scheduling in DISTPROC is based on a prioritised round robin scheduler.

Currently DISTPROC knows nothing about the relative speeds or loads of the hosts. One of the

most serious limitations is the lack of dynamic load balancing in DISTPROC.

4.3.2 Scalability Issues
DISTPROC is not really a scaleable distributed computing environment. For instance,

communication is serialised through a DISTPROC Server, which is workable for a small
number of distributed computers but will eventually cause the system to bog down.
Scalability is also affected by operating system and network limitations on which the system

is built.

4.3.3 Security Issues
Specific support for security is not provided by the DISTPROC System, but it does support

Unix based security techniques and encourages the use of .rhosts files to avoid explicit
password authentication. DISTPROC can run in either multi-user or single user mode. In the
single user mode the system is running solely for that user so security may be relaxed.
Regardless, all Remote Processes run as user processes and are spawned with rsh(). No

mechanism for data encryption is provided.
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4.3.4 Fault Tolerant Behaviour
There is a certain degree of fault tolerance in the DISTPROC System. Recovery from

situations where DPSlaves unexpectedly stop for whatever reason is possible. The DPSlave is
removed from the DPServers tables and any uncompleted RemProcs assigned to it are re-

distributed if possible.

The DPServer is a weak link in the system as it is central to running of the system. No form
of checkpointing is supported but could be added to the system. Further support for fault

tolerance could be implemented by the user.

4.3.5 DistProc Programming Environment
The DISTPROC environment is portable and has a simple and easy to learn interface.

However, it is lacking in support for parallel debugging and execution tracing and

performance monitoring.

DISTPROC is portable to any machine running a version of Unix that supports Berkeley
sockets and is intended for large grained parallel applications. DISTPROC is designed to allow
programmers to take advantage of multiple machines, so that each independent component of
a program may be concurrently executed on separate computers. Generally, the programming
model used is full MIMD/MPMD (e.g.,, a master/slave paradigm) but can also be
SIMD/SPMD (a simple, general purpose client can be used to spawn functionally identical

programs).

4.4 Design and Implementation

4.4.1 Overall System Architecture
The DISTPROC System consists of three separate, yet integrated, components; the DISTPROC

Server, Slaves, and Clients. The linch-pin of the system is the DISTPROC Server, which is
responsible for co-ordinating and managing the whole system. The DISTPROC Server stores
most of the state needed by the system, such as the virtual machine configuration and Client
Remote Process information, and also provides a means for the user to access more
information about the running system. The DISTPROC Slaves are the workhorses of the
system that execute Remote Processes on behalf of a DISTPROC Server. As each DISTPROC
Slave is initialised the DISTPROC Server daemon prints a message, and if an error occurs
while spawning a DISTPROC Slave, a message describing the problem will be displayed.
Access to the system is through the DISTPROC Client library, which provides a controlled
interface to the DISTPROC Server.
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The various elements of the DistProc System are distributed across a local area network,
and communicate by means of a messaging system based on persistent objects and uses the

TCP/IP communications protocol.



4.4.1.1 Messaging System
The messaging system consists of eleven distinct messages. Each message in the system is an

instance of a message class and every system message is derived from the BaseMsg class.
The BaseMsg class provides information on the message type, size, source, and destination,

etc., as well as the necessary data members.

The messaging passing system in the DISTPROC system is built around the idea of

persistence. Every message in the system must be able to save and reload an instance of itself.

To send a message it must be packed (marshalled, saved) into a buffer before transmission,
which is achieved through persistence. Every message class must provide two member
functions - SAVE and LOAD - which save and restore an object’s state from a buffer. Once a

message is saved, it can be transmitted to a DISTPROC Server, Slave or Client.

Since all system messages are derived from the BaseMsg class, and the BaseMsg is packed
first, the first few bytes of a buffer are always known, thereby allowing messages to be easily

identified.

The following messages (events) are used throughout the system, between Clients, Servers
and Slaves. The meaning of each message remains the same across the system, however the
systems re-action to a message depends on the context in which it occurs, i.e. between a
Server and a Slave or between a Client and a Server. Messages with the same name may

result in different actions depending on the context.

There are two problems in loosely-coupled distributed systems, namely: unpredictable delays
in communications mechanism, and the possibility of partial failure. The first problem is well
catered for already, any further ‘layers’ will add too much communications overhead. The

partial failure problem is a lot harder to solve.
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Remote Processes in the DISTPROC system can have one of the following states:

Status Meaning
PROCESS_ALLOCATED A Remote Process is allocated, but is not yet running.
PROCESS _RUNNING A Remote Process is currently executing on a slave.
PROCESS_FINISHED A Remote Process finished successfully and a result is

ready.
PROCESS_ABORTED A Remote Process finished unsuccessfully and no result is

available, e.g. core dump, killed, et cetera.

Remote Processes are started on a DISTPROC Slave through a call to the rsh() system call,
which in conjunction with .rhost files will handle security - if desired. All Remote Processes

run at reduced priority and therefore do not impinge excessively on other users.

.rhosts files are used to allow DISTPROC Slaves to execute a Remote Process on behalf of a
Client. This adds the overhead of the Unix security mechanism, and may not always be
necessary. If so, the DISTPROC System can be setup without the security overhead, by

running the system and all Remote Processes under the same account.

Should Remote Processes send results to the DISTPROC Server directly, or via the relevant
Slave? Sending a result directly to the Server is faster and more direct, but means that
Remote Processes need to know more information about the Server and is yet another point
of access to the Server. Sending results back via a Slave is slower, indirect, and requires that
Remote Processes know about it’s Slave/parent process, but has the benefit of reducing the

number of access points to a DISTPROC Server.

In the DISTPROC System, Remote Processes return results directly to Servers and then exit.
DISTPROC Slaves catch the resulting DOC (Death Of Child) signal, check the status, and only
if there was an error will a DOCMSsg be sent to the appropriate DISTPROC Server. On receipt
of a DOCMsg, a DISTPROC Server first checks if it has received a result from the relevant
RemProc; if so there is no problem. However if no result has been received the aborted
RemProc must be marked as PROCESS_ABORTED in the Process System Table and either
re-started on another DISTPROC Slave or reported as aborted when the relevant DistProc

Client tries to wait (for a result) on the process.
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4.4.1.3 How a Server and a Slave Co-operate to Create a Remote Process
When a DistProc Server receives a message from a DistProc Client requesting it to

execute a Remote Process the operations outlined in table below are carried out by and

between a DISTPROC Server and a DISTPROC Slave:

On the Server On the Slave

» Select whi.ch-SIave to use.
» Send a RunProcessMsg to Slave.
» Receive a RunProcessMsg.
» Spawn new child process.
» Send input parameters to child process.

* Send return code and process info to

Server.

» Receive information on new process and

update tables.

Each incarnation of a DISTPROC Slave’s run time system supports dynamic creation of local
processes. A Remote Process is created by sending a message to the run time system on the
Slave computer, asking it to create a local process. The implementation of the run time

system maps D istProc processes (Remote Processes) onto operating system processes.

4.4.1.4 How the System Deals with Results
When a Remote Process has completed its calculations it must return a result to its Client

application. This is carried out as follows.

To return a result a Remote Process first packs the results into a ResultMsg, connects to its
DISTPROC Server, and sends the completed message. On receipt of a ResultMsg a DistProc

Server carries out one of the following:

« If there are any outstanding wait requests for the newly returned result then it is
passed straight on to the appropriate Client. The Process, Slave, and Wait System
Tables must also be updated to reflect the fact that process has finished running.

Otherwise,
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* The newly returned result is saved in the Result System Table and status of the
Remote Process that generated the result is changed to PROCESS_FINISHED in the
Process System Table. The appropriate Slave must also be updated in the Slave

System Table to reflect the fact that it there is one less process running.

4.4.1.5 Fault Tolerance
In the DISTPROC System no message passing system is made publicly available and it is not

intended that inter process communication be part of a DISTPROC Application. Therefore, no
inter-dependence should exist among Remote Processes and if a Remote Process abnormally
dies, it can be restarted without worrying about the state of, and the effect on, other Remote

Processes.

In the system, the DISTPROC Server is critical, and if it goes down the system comes to a halt
and cannot recover. Once this happens all connected DISTPROC Slaves shutdown and any
connected DISTPROC Clients receive an error if a request is made to the downed DISTPROC

Server.

The system can also detect and handle the abnormal termination of Remote Processes and

DPSlaves.
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4.4.2 DistProc Server

4.4.2.1 Architecture

For reasons of portability, the DISTPROC Server is based on a sequential design. Therefore,
the Server can handle only one transaction at a time. This could be a performance bottleneck,
but since all operations carried out by a Server in response to a message are short and do not
consume much time this is acceptable. This approach avoids the overhead of multiple
processes and the additional cost of an interprocess communications mechanism (e.g., shared
memory, sockets, etc.) needed for co-ordinate. Basically, the Server is an event (message)

driven system with a single input queue; each message is dealt with in sequence (FIFO).

In order to make decisions, such as process distribution etc., the state of the system and all of
its components must be maintained. This role is filled by the various resource managers and
system tables. Each resource group in the system has an associated system table which is
responsible for maintaining the relevant information (e.g., DISTPROC Slaves, or Remote
Processes), while resource managers provide the mechanisms which implement the system’s

policy decisions.
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DistProc Slaves and Clients can be dynamically added to and deleted from the virtual

machine at any time, excepting the DistProc Server, which must be present for the duration.

% /
- DPServer /

Figure 14. DistProc Server Class Diagram.

4.4.2.2 Resource Management
The DistProc Server needs to keep a wide range of information about the state of the system

in order to make decisions. Resource Managers are used to make system decisions. Each
Resource Manager has its own System Table which is used to keep track of the necessary
information for each resource. In all there are five Resource Managers - RemProcResMgr,
ClientResMgr, SlaveResMgr, ResultResMgr, and WaitResMgr which are used for decisions
made regarding Remote Processes, Clients, Slaves, Results, and Wait transactions

respectively.
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4.4.2.3 Fault Tolerance
If an error occurs while a DISTPROC Server is dispatching a message (i.e. carrying out the

necessary operations) the information on the error is saved, and control is passed to the top

level of the Server system, where the error can be more easily dealt with.

The DISTPROC Server daemon keeps information, which is available on request, about

aborted Remote Processes.

The role of the DISTPROC Server in fault detection is to convert a Slaves failure, which might
ordinarily cause an application to hang forever, into a detectable event, such as a message.
No method of handing over the duty of a Server has been implemented. So, if a DISTPROC
Slave loses contact with its Server, it cleans up and exits, knowing that the Server will mark it

dead.

Failure of a Slave or Client is detected when trying to send it a message. Time-outs for
messages sent eventually trigger and the DISTPROC Server gives up. It marks the failed
Slave/Client in the appropriate System Tables and tries to complete any pending operations
elsewhere, using information stored in the various System Tables. Any further requests for

the failed host will return immediately with an error status.

Each DISTPROC Server has an idle timer and periodically sends messages to DISTPROC Slaves

so that traffic never goes to zero and Slave host failure detected.

Once a host fails the DISTPROC Slave that was running on it is considered dead forever.
Another DISTPROC Slave may be started on the same host at a later time, but it will be
considered a different one. There is no way to reclaim any tasks running on the failed host

but they can be restarted from scratch.

4.4.3 DistProc Slaves

4.4.3.1 Architecture

The role of the DISTPROC Slaves in the system is to execute Remote Processes for a
DISTPROC Server on behalf of a DISTPROC Client Application. It is the DISTPROC Slave that
is ultimately responsible for carrying out a DISTPROC Client’s requests, for example running
and killing a Remote Process. The DISTPROC Slave also keeps the DISTPROC Server

informed in the case of the abnormal termination of a Remote Process.

4.4.3.2 Process Management
The DISTPROC Slave uses the normal operating system process primitives to carry out the

DistProc Remote Process primitives. The RunProcessMsg results in calls to fork(), execlp(),
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and the rsh() functions. The fork() starts a new process, execlp() loads the required Remote
Process, and rsh() provides the security. The KillProcessMsg eventually leads to a call to the
signal() function on the appropriate DISTPROC Slave; this Kills off the required process. The
only message that a DISTPROC Slave generates regarding processes, is the DOCMsg; this

only happens if a child process is abnormally terminated.

4.4.3.3 Fault Tolerance
The role of the slave with respect to fault tolerance is to monitor child processes and only

report to the DISTPROC Server cases of abnormal termination. Such cases are discovered by
examining the status fields in the death of child signal which is generated for the death of

every child process.

If an error is detected, the DISTPROC Slave sends a DOCMSsg to the DISTPROC Server. This

message contains the child’s process id and the DISTPROC Slaves own SlavelD.

4.4.4 DistProc Clients/ Applications

4.4.4.1 The Client’s System Architecture
Access to the DISTPROC System is only possible through the DISTPROC Client Application

Library. The Client Application Library provides a straight-forward interface to the system

and is callable from C++.

Operations are made as atomic in nature as possible. For example, when run_process(...) is
called it sends a message to a DISTPROC Server requesting it to execute a particular process
and waits for an acknowledgement before it continues. No other message will arrive in the

meantime.

The Client module is comprised of three main components; the Event Queues (System and

Application queue), the Event Manager and the Main process.

4.4.4.2 System Interface
The functions provided by the system allow programmers to connect, disconnect, run

processes, Kill processes, and wait for processes to finish. Functions are also provided to help

with data marshalling. The interface is discussed further in section 4.5.

4.4.4.3 Handling Errors and Tracing Execution
When an error occurs in one of the Client library routines, an error code is returned which

indicates the nature of the error. If more debug information is needed then the DISTPROC
Client Library can be compiled with the -DDEBUG_ON flag. This is the extent of the
debugging support in DISTPROC.
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4.4.5 Assumptions about the execution environment
The best environment for the system is a multi-tasking one and it is preferable that the Server

and Slaves run on such. The DISTPROC Client Applications can run in a single tasking

environment.
The messaging system is built for TCP/IP, but can be changed without too much difficulty.

Currently, the system is running on an Unix network of IBM RS/6000s running AIX 3.2. The
whole system can be easily ported to other Unix systems, while the DISTPROC Slaves are
portable to most any multi-tasking system, and the Client library can be moved to nearly any
platform. The main difficulty in moving platforms is data representation, which changes from
processor to processor and operating system to operating system. To overcome this problem
some form of platform independent data representation mechanism must be implemented, for

example Sun’s External Data Representation (XDR).

4.5 DistProc Programming Interface
DISTPROC provides primitives for process creation, termination, and synchronisation, as well

as data marshalling and system enquiry.

4.5.1 Connecting/Disconnecting
To connect to a DISTPROC Server simply create an instance of the DPClient class. For

example:

DPClient ~ dp;
dp = new DPClient(srvhostname); //create a DPClientobject & connect to DPServer
if (dp->Registered() -= FAILED)
exit(-1);
‘srvrhostname’ is the name of the computer running the DISTPROC Server we wish to connect
to. This will take care of enrolling the Client program with the specified Server by sending

the ClientConnectMsg and setting up the necessary data structures.

Disconnecting from a DISTPROC Server is handled automatically by the DPClient’s
destructor. When a DPClient object is deleted:

delete dp; /ldeletes the DPClient object & disconnectsfrom DPServer

the destructor sends a ClientDisconnectMsg to the Client’s DistProc Server, before cleaning
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4.5.2 Marshalling Services
Message buffers and the Buffer class. A template based approach to saving objects is used.

The following data types can be saved:
1. all fundamental data types in C++
2. arrays and memory blocks of any fundamental data type
To handle additional data types/structures simply over-ride the SAVE and LOAD functions.
SAVE template functions are used to save an object to a buffer.
/lIntegral data types - int, char, double, float etc.

template <class T> void SAVE (Buffer &b, T elem)

/IPointer to block ofmemory - Array or pointer. Won’t take ’void

template <class T> void SAVE(Buffer &b, T ~ elem, size_t num_elems)

LOAD template functions are used to reconstruct objects from a buffer.

/lIntegral data types - int, char, double, float etc.

template <class T> Buffer LOAD (const Buffer &b, T &elem)

/IPointer to block ofmemory - Array or pointer.

template <class T> Buffer LOAD (const Buffer &b, T = elem, sizejt num_elems)

4.5.3 Process Control
All processes within DISTPROC are representedby anidentifier called a DPID, which is a

distributed process id number and is the only supported methodof identifying processes.

4.5.3.1 Process Creation and Execution - Run
The DPClient::run() member function expects three parameters. The first one, filename, is

the name of the file / remote process that is to be executed remotely. The second parameter is
a buffer which contains the marshalled input to the new remote process, and the last

parameter is the address of a buffer where the result is to be stored.

int numl, num2, answer, rc;
Buffer inbuf, resbuf;
DPID rpid;

SAVE (inbuf, numl);
SAVE (inbuf, num2);



if ((rpid= dp->run ("remprocl”, inbuf, &resbuf) ) == INVALID_DPID)
cerr« "\nCouldn’tstart remprocl running!" « flush;
To prepare to send data it must first be packed into a buffer, and is done by calling the
appropriate SAVE() functions. Message transmission is handled automatically by the

DISTPROC Client Library.

4.5.3.2 Process Synchronisation - Wait
The DPClient::wait() member function expects one parameter, the DPID of the process to

wait.

if( (rc = dp->wait(rpid) ) == FAILED)

cerr « AnError waitingfor remprocl "
else

resbuf= LOAD(resbuf, answer);

After wait() returns successfully the result buffer must be unpacked by using the appropriate

LOAD() functions.

4.5.3.3 Process Termination - Kill
The DPClient::kill() member function takes one parameter - the DPID of the process to Kill,

and returns whether it was successful or not.

if ((rc =dp->kill (rpid) ) == FAILED)

cerr «  “\nCouldn'tkill remote process #" «  rpid;

4.5.4 Querying Services
The DPClient::query() member function is used to obtain information about the state of the
system. To obtain information about the DISTPROC system call ::query() with a Querylnfo

object as the only parameter.

Querylnfo qinfo;
if ((rc = dp->query (ginfo) ) == FAILED)
cerr «  “\nCouldn’t get system information”;
else
cout «  “\nThere are “ « ginfo.getNumSlaves() «  “available and"
“\nthere are “ « ginfo.getNumRemProcs() « “ running.\n”;

QuerylInfo is used to hold information on the system such as the number of currently

available Slaves and the number of Remote Processes executing on the system.
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4.6 Observations - User Wariness & Reluctance

Some users may be reluctant to allow other processes to execute on their computer for two
main reasons. Firstly, they believe that the background process could damage their system.
However, since the background process is executing in its own account and user address
space, the risks of it causing damage are the same as another user logging in remotely and
subsequently causing damage. Secondly, users worry that it will impinge on system
performance, however the system is designed with other users in mind and only uses idle
processor cycles for computation. Processes in DISTPROC are executed at a lower priority

than normal and cause the minimum of disruption to others.

4.7 Conclusions and Future Research
The DISTPROC System has achieved many of its original design goals. It is a small, easy to
run system, portable and could possiby be extended to support a heterogeneous environment.

There is limited support for fault tolerance, scalability, and performance.

Looking beyond the original goals however there are many new features that could be added.
Currently there is no support for execution tracing, checkpointing, dynamic load balancing or
advanced parallelism primitives. To develop these features using the current approach of
building a distributed system around an existing language such as C/C++ is difficult, both

from the developers’ and end users’ point of view.

Fortunately, the area of distributed computing is changing rapidly with the move to
distributed interoperable object technology. Distributed objects provide a means of
overcoming many of the difficulties involved in distributing computing systems. However,
there would still be a need for a system, such as the DISTPROC System, to control the

distributed objects and to provide process management (distributed scheduling, etc.).

In conclusion, DISTPROC is useful for investigating distributed computing and for connecting
a small number of workstations together for applications with well defined, independent and

computationally expensive components and low communications requirements.
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5. Cryptography

5.1 Introduction to Cryptography

Cryptography was once of interest primarily to the military and diplomatic services. Today it
is particularly important in the area of computing [Die90]. Eavesdropping is becoming easier
as huge volumes of business are handled over communications networks and the use of

electronic mail and electronic funds transfer (EFT) is increasing.

Cryptography is the use of data transformations to make the data incomprehensible to all
except its intended users. The privacy problem is concerned with preventing the unauthorised
extraction of information from a communication channel. The authentication problem is
concerned with preventing an adversary from modifying a transmission or inserting false data
into a transmission. The problem of dispute is concerned with providing the receiver of a
message with legal proof of the sender’s identity, i.e. the electronic equivalent of a written

signature.

Two of the most popular encryption schemes in use today are the Data Encryption Standard
(DES) [NBS77] and the Rivest, Shamir, and Adleman (RSA) scheme [Riv78]. DES is a
symmetric encryption scheme - the same key is used for encryption and decryption, and RSA

is an asymmetric encryption scheme - different keys are used for encryption and decryption.

Cryptanalysis is the process of attempting to regenerate plaintext from ciphertext but without
knowledge of the decryption key; this is the normal task of the eavesdropper. If the
eavesdropper, or cryptanalyst, cannot determine the plaintext from the ciphertext (without the

key), then the cryptographic system is secure.

5.1.1 What is encryption?
Encryption is a process used to scramble a message, so that only the sender and legitimate

recipient knows what it contains [Lia93]. Only the recipient knows the secret method for
decrypting the message, so that when it is received it can be restored to its original form. Its
purpose is to ensure privacy by keeping information hidden from anyone for whom it is not

intended, even those who can see the encrypted data.

Encryption allows secure communication in multi-user environments. Suppose two people, A
and B, want to send messages to each other without anyone else being able to read it. A
encrypts the message, called the plaintext, with an encryption key and sends the encrypted
message, called the ciphertext, to B. To read the plaintext B must decrypt the ciphertext using

the decryption key. An attacker can try to obtain the secret key or to recover the plaintext



without using the secret key. If the cryptosystem is secure then the attacker cannot recover

the plaintext from the ciphertext except by using the decryption key.

5.1.2 Public key cryptography
Throughout history many complex systems have been used to keep information secret from

prying eyes. These systems have all been based on some form of cryptographic algorithm and
a secret key. If you have the key then you can encrypt and decrypt messages. This method is
known as secret-key cryptography. The weakness of this system is getting the sender and
receiver to agree on the secret key without anyone else finding out. Anyone who overhears or
intercepts the key in transit can later read all messages encrypted with the key. The
generation, transmission and storage of keys are called key management. Secret-key

cryptosystems often have difficulty providing secure key management.

Diffie and Heilman [Dif76] changed all this when they introduced Public-Key Cryptography.
Public key cryptography solves the problem of key management by using two keys, one
public and the other private, instead of the more traditional one key algorithm. Each person’s
public key is published while the private key is kept secret. The necessity for sender and
receiver to share secret information is eliminated as is the need to trust some form of
communication. Any person with the public key can encrypt messages, but it can only be
decrypted with the private key that is in the sole possession of the intended receiver. It is

computationally impossible to deduce the private key from the public key.

The benefits of public-key cryptography over secret-key cryptography include increased
security, authentication and privacy. Security is increased as the private keys need never be
transmitted or revealed to anyone. In secret-key systems there is always the possibility that
the secret key may be divulged in transit. Authentication can be provided by way of digital
signatures. Authentication by secret-key systems requires the sharing of some secret and
sometimes requires the trust of a third party as well whereas in public-key systems each user
has sole responsibility for protecting his or her private key. Digitally signed messages can be
proved to be authentic to a third party. Using public key cryptography for encryption is slow
in comparison to many popular secret-key systems. This disadvantage can be overcome by
combining the security advantages of public-key systems and the speed advantages of secret-
key systems. The public-key system is first used to encrypt a secret key, it is then used to

encrypt a message before sending it to the intended receiver.

The first use of public-key techniques was for secure key exchange in an otherwise secret-key

system [Dif76] and this is still one of its main functions.
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5.2 Some Maths Background
In order to understand cryptography a basic knowledge of number theory is helpful, so | am
just going to give a quick introduction to some of the main points; for a detailed study see

[Hua82].

5.2.1 Modular arithmetic
In modular arithmetic all calculations are performed modulo n, which basically means the

results of all operations are ‘reduced modulo n\ or, reduced to their remainder when divided

by n.

Modular arithmetic is like generalised clock arithmetic, where if you advance the clock five
hours from 10.00, it does not become 15.00 but 3.00. Clock arithmetic is arithmetic modulo
12 (or modulo 60 with the minutes hand), but it is possible to do arithmetic modulo anything.

For example, 26 + 9 modulo 27 is 8; 5 * 5 modulo 18 is 7; and 9*3 modulo 7 is 6.

Basically, a = b (mod n) ifa = b + ktt for some integer k. If a and b are positive and a is less
the n, a can be considered the remainder of b when divided by n. In general, a and b leave the
same remainder when divided by n. Sometimes, b is called the residue of a, modulo n, and
sometimes a is called congruent to b, module n (= denotes congruence); both mean the same

thing.

So, two integers a and b are said to be congruent modulo a third integer, n, if and only if
(iff) their difference is exactly divisible by n; alternatively iff they each leave the same
remainder on division by n. We write a = b(n), for example, 80 s 25(11) because 80 - 25 =55
=5*11

A negative answer is made positive by adding n to it, so the result of any operation is a
positive number between 0 and n-1. Raising a number to a large power modulo n is just a

series of multiplications and divisions, as intermediate results can always be reduced.

For example, to calculate a8 mod n, perform three small multiplications and modular
reductions, ((a2mod nf mod n)2mod n, instead of three multiplications and one big modular

reduction, ((a2 2 2mod n.

Cryptography uses computation modulo n a lot, because problems like calculating discrete
logarithms and square roots are hard. It is also easier to work with, because it restricts the
range of all intermediate values and the result, so we can perform exponentiation in modular

arithmetic, without generating huge intermediate results.

The opposite of exponentiation modulo n is calculating a discrete logarithm.
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5.2.2 Prime numbers
A prime number, p, is an integer (whole number) which is only exactly divisible by itself

and unity (one), for example, 2, 3, 5, ...31, ...613... A integer is said to be composite if it is

not prime.

There are an infinite number of prime numbers. Large primes are used throughout various

cryptography techniques.

5.2.3 Greatest common divisor
Two integers a and b are said to be coprime or relatively prime iff they have no common

divisor other than 1. We write gcd(a, b) = 1 or simply (a, b) = 1. In general (a, b) denotes the
greatest common divisor of a and b. 16 and 57 are coprime while 96 and 172 are not. A prime
number is relatively prime to all other numbers except its multiples. GCDs are usually found

using Euclid’s algorithm.

5.2.4 Inverses Modulo n
Normally it’s easy to find the inverse of a number; the multiplicative inverse of 4 is 1/4, as 4

* 1/4 = 1. Finding the inverse of a number modulo n is more complicated. For instance, 4* x

= 1mod 7, is like solving 4x = Ik +1, where x and k are integers.

The general problem is finding an x such that 1= (a* x) mod n, which is also writtenasa 1 =
x (mod n). For example, the inverse of 5, modulo 14, is 3; 5 *3= 15= 1 (mod 14). However,

2 has no inverse modulo 14.

In general, a 1=x (mod n) has a unique solution if a and n are relatively prime. If a and n are
not relatively prime, then aA =x (mod n) has no solution. If n is a prime number, then every

number from 1to n-1 is relatively prime to n and has exactly one inverse in that range.

Euclid’s algorithm, sometimes called the extended Euclid algorithm, can be used to find the
inverse of a number modulo n. See [Knu81] for a detailed explanation. Another method for
calculating the inverse modulo n is via Euler’s Totient Function, but it cannot always be

used.

5.2.5 Fermat’s little theorem

If m is a prime, and a is not a multiple of m, then Fermat’s little theorem says that al™1= 1

(mod m).
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5.2.6 Euler’s Totient Function
Euler’s Totient Function (also known as Euler’s phi function), 0(a) is defined for all

positive integers, a, as the number of integers in 0, 1, 2,...a-\ which are coprime with a. That
is the number of positive integers less than a and relatively prime to a (i.e. not sharing a
common factor other than 1). For example, 0 (15) = 8, the eight numbers being 1, 2, 4, 7, 8,

11,13 and 14, and 0(4) = 2; 0(a) = a -1 when a is prime, 0(5) = 4.

If a and m are positive integers such that (a, m) = 1 then the smallest positive integer k such
that aks 1(m) (i.e. akleaves the remainder 1 when divided by m) is called either the order of
a modulo m and written ordmii, or the exponent to which a belongs modulo m. For example, 7

belongs to exponent 2 modulo 4, i.e. 72s 1(4).

If, however, k = 0(m) then a is called a primitive root modulo m. For example, 3 is a

primitive root to moduli 17, 289, and 578.

5.2.7 Quadratic residues
If p is prime and a is less that p, (i.e., a and p are coprime) then a is called a quadratic

residue modulo p if x2 = a (mod p), for some x. For example, 13 is a quadratic residue
modulo 23 because 62 = 13(23). However, not all values of a satisfy this property. For

example, ifp = 7, the quadratic residues are 1, 2, and 4:

12=1 = 1(mod7)
= = 4 (mod 7)
32=9 = 2 (mod 7)
42 =16 s 2 (mod7)
=i = 4 (mod 7)
62 =36 = 1(mod 7)

Each quadratic residue appears twice on this list. There are no values of x that satisfy any of

these equations:

x2 = 3 (mod 7)

x2 = 5 (mod 7)
x2 = 6 (mod7)

The quadratic nonresidues modulo 7 are 3, 5, and 6.
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5.3 Introduction to RSA

Of all the public-key algorithms proposed over the years, RSA is by far the easiest to
understand and implement and the most popular. Named after its inventors, Ron Rivest, Adi
Shamir, and Leonard Adleman, who first introduced the algorithm in 1978, it has withstood
intensive scrutiny; although the analysis neither proved nor disproved security it does

indicate a high level of confidence in the algorithm.

The method for encrypting messages is public knowledge. Anyone who wants to receive a
message gives out a pair of specially prepared numbers which can be used in a standard
fashion to encrypt all the messages sent to the receiver. The numbers are chosen in
conjunction with another one that the receiver keeps private and uses to decrypt the message.

No-one can reverse the process without the private number.

5.3.1 Primes and RSA
RSA gets its security from the difficulty of factoring large numbers. The public and private

keys are functions of a pair of very large (100 or more digits) prime numbers. The algorithm
calculates both keys from the prime numbers, and determining one key from the other is

conjectured to be equivalent to factoring the product of the two primes.

5.3.2 How RSA Works
RSA works as follows [Sch92][Fah94]: to generate two keys choose two large prime numbers

p and q and find their product n=p q which is called the modulus. Then randomly choose the
public key, e, less than n and relatively prime to (p-1)(gq-\) (i.e. e has no factors in common
with (/>1)(<?-1)). The easiest way to do this is to select another prime number for e that is
larger than both (p-1) and (¢/-1). Finally, compute the private key, d, such that e.d = 1 mod
{(p-\).(g-\)). In other words, d = e ] mod ((p-1).(g-1)). The numbers e and d are called the
public and private exponents, respectively. The public key is the pair (e, n) and the pair (d, n)

is the private key.

5.3.3 How To Use RSA
To perform encryption, the sender must first divide the message m into numerical blocks, by

using the characters ASCII codes for example, such that each block has a unique
representation modulo n (with binary data, choose the lowest power of 2 less than n). That is,
if both p and g are hundred digit primes, then n will have about 200 digits, and each message
block, m, should be 200 digits long. The encrypted message, c, will be made up of similarly

sized message blocks q of about the same length. The encryption formula is simply ¢, =
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We(mod n). Once all blocks have been processed the resulting ciphertext can be safely sent to

the recipient who can then decrypt it using the secret key pair (d, n).

To decrypt the message take each encrypted block g and compute m, = ¢\ (mod n). With all

blocks of digits decrypted, the message can be put back together by reversing the original pre-
encryption organisation, typically by interpreting the numbers as ASCII codes and converting

back to characters.

The message could just as easily have been encrypted with d and decrypted with e.

5.3.4 The Security of RSA
The security of the system is totally dependent on the fact (as yet unproved) that there exists

no fast algorithm (not even a probabilistic one, as in generating primes) for factoring large

numbers.

Any adversary will have the public key e and the modulo n. To find the decryption key, d, n
must be factored. At the moment the best factoring algorithms take on the order of 0 (esdrt(In

n *In(In n))) sjeps  soi\e. If nis a 200 bit number, factoring will take on the order of 2.7 *
101 steps; for a 664 bit n (200 digits) about 1.2 * 1023 steps. Assuming a computer can
perform a million steps per second it will take 3.8* 109 years to factor a 200 digit number. If

you need more security, increase the length of n.

This is an area of great interest to computer scientists and mathematicians, and although it all

remains unproved, the general consensus is that these types of encryption systems are safe.

5.3.5 Breaking RSA
There are a few possible interpretations of what it take to break RSA. The most serious

would be for an attacker to discover the private key corresponding to a given public key as
this would allow complete access. The most obvious means of attack is to factor n, the public
modulus, into its two prime factors, p and g. The private key, d, can then be easily found
from p, g, and e, the public exponent. The hard part is factoring n, and this is what the
security of RSA depends on. The task of recovering the private key is equivalent to the task
of factoring the modulus; you can use d to factor n, as well as use the factorisation of n to
find d.

Another way to break RSA is to find a technique to compute e-th roots mod n. Since ¢ = me,
the e-th root of c, the ciphertext, is the message m. This attack would allow encrypted

message to be recovered and signatures forged without knowing the private key. This attack
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is not known to be equivalent to factoring and currently no such methods are used against

RSA.

Aside from the brute force method of trying every key the above attacks are the only ways to
break RSA so that all messages encrypted under a given key are recoverable. Other methods
aim to recover single messages in isolation; other messages encrypted under the same key

would remain locked.

The simplest single message attack is the guessed plaintext attack. An attacker sees a
ciphertext, guesses what the message might be and encrypts this guess with the public key of
the recipient. By comparing the actual ciphertext with the guessed ciphertext the attacker will
know if the guess was correct. This attack can be thwarted by appending some random bits to
the message. Another single message attack discussed by [Has88] can occur if someone sends
the same message to three others, who each have public exponent e = 3. An attacker who
knows this and sees the three messages will be able to recover the message m using the
Chinese Remainder Theorem. There are also some “chosen ciphertext” attacks in which the
attacker creates some ciphertext and gets to see the corresponding plaintext as explained by

[Dav82],

There are also attacks that aim not at RSA itself but at insecure key management. For

example, if someone stores his private key insecurely, an attacker may discover it.

5.3.6 Strong Primes
It has often been suggested that in choosing a key pair, one should use “strong” primes p and

q to generate the modulus n. Strong primes are those with certain properties that make the
product n hard to factor by specific factoring methods; such properties have included, for
example, the existence of a large prime factor of p-1 and a large prime factor of p+1 The
reason for these concerns is that some factoring methods are especially suited to primes p

such that p-1 orp+1 has only small factors; strong primes are resistant to these attacks.

However, recent advances in factoring appear to have obviated the advantage of strong
primes; the elliptic curve factoring algorithm is one such advance. The new factoring
methods have as good a chance of success on strong primes as on “weak” primes; therefore,
choosing strong primes does not significantly increase resistance to attacks. However, new
factoring techniques may be developed in the future which are based on certain properties; if

so, then choosing strong primes may help to increase security.
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5.3.7 Key Size
The two primes p and g, which compose the modulus, should be roughly equal in length. This

will make the modulus harder to factor than if one of the primes was very small. Thus if one
chooses to use a 512-bit modulus, the primes should each have a length approximately 256

bits.

5.3.8 Alternatives to RSA
A look at the annual Crypto and Eurocrypt proceedings shows that many other public key

cryptosystems have been proposed. A mathematical problem called the knapsack problem
was the basis for several systems, but these have lost favour as many versions have been

broken. EIGamal is another popular system that is based on the discrete logarithm problem.

5.3.9 Protocols and Applications of Public Key Cryptography
Public key cryptography is currently used in a plethora of areas which have implications far

beyond simple data encryption [Sch92], It allows people to do things securely over computer
networks that are impossible in other ways such as password protection, digital signatures,

simultaneous contract signing and oblivious transfer.

5.3.9.1 Password Protection
Conventional password protection schemes, where the host computer stores the password in

encrypted form, have serious security problems. For one, when the user types his password
into the system, anyone who has access to his data path can read it. Secondly, anyone with
access to the processor memory can see the password before the system encrypts and

compares it with the encrypted password in the password file.

Public-key cryptography solves the problem by allowing the host computer to keep a file
containing every user’s public key; each user keeps his own private key. When logging in the
host sends the user some random strings, which the user encrypts with the private key and
returns to the host. The host then decrypts the message using the user’s public key. If the

decrypted message matches the original message then authentication is complete.

5.3.9.2 Digital Signatures
With traditional paper communications the problems of authentication are all handled by

formal written signatures on documents, but for electronic communications an electronic

signature is needed.

A property of public-key cryptography is that either key can be used for encryption. Encrypt a

document with your private key, and you have a secure digital signature. Anyone with your
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public key can decrypt the document, so anyone can read it. Only you have access to your
private key so no one else could have signed it. Also, no one can modify the encrypted
document as any modification to the encrypted document will produce gibberish when

decrypted.

The problem with this protocol is that generating a public-key cryptography digital signature
on an entire document takes a lot of time. It is easier to use a one-way hash function on the

document, which produces a small fingerprint, and then sign the fingerprint with a private

5.3.9.3 Improved Key Exchange
Using digital signatures during a DES-key exchange protocol circumvents a potential security

breach. Consider the situation where an adversary intercepts data from Alice and Bob. The
adversary could pretend to be Alice and send a Bob a different DES key. Since Bob’s public
key is public he could be easily misled, complete the protocol, and use the new key to encrypt
his messages to “Alice”. The adversary would then be able to read all the data Bob sends to
Alice. The adversary could also fool Alice using the same technique. If the adversary is quick
enough he can decrypt Bob’s data and reencrypt it for Alice, and then decrypt Alice’s data
and reencrypt it for Bob. Neither Alice nor Bob would have any idea that their supposedly
secure communications were being intercepted by a third party. This is called “man-in-the-

middle” attack.

With digital signatures, a central trusted authority can sign both Alice’s and Bob’s public
keys. The signed keys would include a signed certification of who they belonged to. Now
both know that the public key they received over the communications link actually belongs to
the other person. The DES key exchange can then proceed. Finally, to ensure that neither
Alice nor Bob are not impostors, both should initiate the challenge and reply protocol

described in the password protection example.
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6. Factoring

6.1 Introduction

Factoring is the act of splitting an integer into a set of smaller integers (factors) which, when
multiplied together, form the original integer. For example, the factors of 15 are 3 and 5; the
factoring problem is to find 3 and 5 when given 15. Prime factorisation requires splitting an
integer into factors that are prime numbers; every integer has a unique prime factorisation.
Multiplying two prime integers together is easy, but as far as is known, factoring the product

is much more difficult.

Factoring is the underlying, presumably hard problem upon which several public-key
cryptosystems are based, including RSA. Factoring an RSA modulus would allow an attacker
to figure out the private key and thereby allowing anyone who can factor the modulus to
decrypt messages and forge signatures. The security of RSA therefore depends on the
factoring problem being difficult. Unfortunately, it has not been proven that factoring must be
difficult, and there remains a possibility that a quick and easy factoring method might be

discovered, although factoring researchers consider this possibility remote.

Factoring large numbers takes more time than factoring smaller numbers. This is why the size
of the modulus in RSA determines how secure an actual use of RSA is; the larger the
modulus, the longer it would take an attacker to factor, and thus the more resistant to attack

the RSA implementation is.

Around 1978 Rivest et al. discovered that the difficulty of breaking certain cryptographic
codes depends on the difficulty of factoring large numbers. This discovery renewed interest
in the classical problem of the factorisation of integers. In 1974 it was considered very
difficult to factor numbers in the 40-50 decimal digit range. Now, 20 years later, the
factorisation of 100 digit numbers and larger is possible. This shows the huge progress over
the intervening years, particularly when we take into account the - experimental - fact that if
the number of decimal digits of the number to be factorised is increased by three, then the

amount of CPU time needed is roughly doubled.

6.2 The Current State of Factoring
In the last decade factoring has become easier for two main reasons: computer hardware has

increased in power, and newer, better factoring algorithms have been developed.

Improvements in hardware will continue unabated and will allow ever larger numbers to be

factored. When considering public-key cryptosystems this point is largely redundant; simply



increasing the size of the public and private keys will compensate for any hardware
improvements. This rule may fail in the case where fast machines of the future are used to
factor old keys; in which case the attacker gains the advantage. To allay this possibility one
should continually update the size of the keys in use and consider using a larger key than is

considered prudent.

Better factoring algorithms have been more helpful to attackers of public key cryptosystems
than have hardware improvements. As the importance of cryptography has burgeoned, so has
interest in the factoring problem, and many researchers have found new factoring methods or
improved existing ones. The most successful factoring attempts in recent years have used a
wide range of distributed systems from computer clusters to the internet [Len90a] to divide
the workload among multiple computers and thereby reduce the time taken to factor a
number. This has made factoring easier for numbers of any size, however factoring remains a

very difficult problem.

Overall, any recent decrease in security due to algorithm improvement can be offset by
increasing the key size. As long as hardware continues to increase in performance at a faster
rate than that at which the complexity of factoring algorithms decreases, the security of
public key cryptosystems will increase or at the minimum result in no net loss in security,
assuming key sizes are increased accordingly. The open question is how much faster
factoring algorithms can get; there must be some intrinsic limit to factoring speed, but the

limit remains unknown.

6.3 Factoring Methods

Factoring [Fah94] [Sch94] [Sco89] is a very active field of research among mathematicians
and computer scientists. Factoring algorithms measured by their big-0 asymptotic efficiency.
O notation measures how fast an algorithm is; it gives an upper bound on the number of
operations (to order of magnitude) in terms of n, the number to be factored, and, p, a prime
factor of n. See [Cor90] for an introduction to big-0 notation and [Bre89] for a discussion of

factorisation.

A “general number” is one with no special form that might make it easier to factor; an RSA
modulus is a general number. Note that a 512-bit number has about 155 digits. Numbers
which are composed of two prime divisors of approximately equal size are the hardest to

factorise, and are particularly interesting for cryptography.

Factoring algorithms come in two flavours, special and general purpose; the efficiency of the

former depends on the unknown factors, whereas the latter depends on the numbers to be

83



factored. Special purpose algorithms are best for factoring numbers with small factors, but
the numbers used in public-key cryptosystems (e.g., RSA) should not have any small factors.
Therefore, general purpose factoring algorithms are the more important ones in the context of

cryptographic systems and their security.

Special purpose factoring algorithms include the Pollard rho method [Pol75], with expected
running time of 0(sqrt(p)), and Pollard’s p-1 method [Pol74], with expected running time
O(p'), where p * is the largest prime factor ofp-1. Both of these take an amount of time that is
exponential in the size ofp, the prime factor that they find; thus these algorithms are too slow
for most factoring jobs. Pollard’s (p-1) method specialises in quickly finding a factorp of a
number N for which ip - 1) has itself only small factors. William’s [Wil82][Mon87] factoring
algorithm is similar to Pollard’s (p-1) method, but can find a factor p of N for which (p + 1)
has only small factors. Another special purpose factoring algorithm is Brent-Pollard [Bre80]

which is good for finding factors in the range 10A4 - 10A10.

The elliptic curve method (ECM) [Len87] is superior to these; its asymptotic running time is
O(exp(™2In/?Inlnpj). The ECM is often used in practice to find factors of randomly

generated numbers; it is not strong enough to factor a large public-key modulus. ECM’s
computing time depends on the size of the smallest prime factor of the number to be

factorised.

The multiple polynomial quadratic sieve (mpgs) [Sil87] algorithm, the fastest general
purpose factoring algorithm, is capable of factoring numbers between 110 and 135 digits
irrespective of the size of the factors and has a running time in the order of
O(exp(Vinnininn)). The mpgs technique (and some of its variants) has successfully

factored numbers greater than 110 digits; a variation known as ppmpgs [Len91] has been

particularly popular.

The best special purpose factoring algorithm is the number field sieve [Len90b][Buh92],
which runs in approximately 0(exp(1.9(In«)X3(Inlnn)2/i3)). This is the fastest known
factoring algorithm and has recently been implemented by [BLZ94], The Number-Field Sieve
works particularly well for numbers of the form bn+c with b and ¢ quite small. The number
field sieve is overtaking the mpgs as the most widely used factoring algorithm, as the size of

numbers which can be factored increases from about 120 digits to 130 or 140 digits.

Numbers that have a special form can already be factored up to 155 digits or more [Len93],
The Cunningham Project [Bri88] keeps track of the factorisations of numbers with these

special forms and maintains a “10 Most Wanted” list of desired factorisations. Another good
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way to monitor current factoring capability is to look at recent results of the RSA Factoring

Challenge.

6.3.1 Distributed Factoring Methods
In recent years a lot of work has gone into developing factoring algorithms that can be easily

worked on in parallel. The ECM, MPQS, and NFS algorithms have all been used in a
parallel/distributed form by [Dix91], [Len90a], [Len90b] and [Len93].

One of the most impressive efforts to date has been by Lenstra and Manasse [Len93]. Using
the Number-Field Sieve, they completed the factorisation of the 155-digit number 2512+ 1, the
ninth Fermat number, which turns out to be the product of primes that are 7, 49, and 99 digits
in length. The calculations were done on approximately 700 workstations and in one of the
final stages a supercomputer was used. The entire factorisation was accomplished in four
months. The work involved in factoring the number was distributed via electronic mail, the
results returned to a central site. Once all the results were collected the final ‘matrix step’ of

the NFS algorithm was carried out on a 65536-processor Connection Machine.

6.4 Lenstra’s Elliptic Curve Method

Lenstra’s factorisation method is similar to Pollard’s and William’s methods, but is
potentially much more powerful. It works by randomly generating an Elliptic Curve, which
can then be used to find a factor p of N, for whichp + 1-5 has only small factors, where 8
depends on the particular curve chosen. If one curve fails then another can be tried, an option
not possible with the Pollard / Williams methods. This method also uses two phases and
although it has very good asymptotic behaviour, it is much slower than the Pollard / Williams

methods for each iteration.

The elliptic curve method (ecm) [Len90a] consists of a number of independent factorisation
trials (curves). Any curve might find a factorisation, independently of any other curve.
ECM’s probability of success is related to the size of the smallest factor of the number to be
factored; the larger the smallest factor is the smaller the probability of success. The elliptic
curve method is a special purpose factoring algorithm in that it can only be expected to work

if the number to be factored has a reasonably small factor.

The elliptic curve method is a very useful method to find small factors of large numbers, but
one doesn’t know if a number has a small factor until the number is factored! If ecm is
applied to a number that has a small factor, ecm has a reasonable chance of succeeding; if
there is no small factor then ecm has little chance of success. This leads to the question of

how much time should be spent on a factorisation attempt with ecm.
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The time invested in a failed ecm factorisation attempt is completely wasted. A failed result
from ecm contributes nothing useful that might help in further factorisation attempts. There is

even the possibility if ecm fails, that a small factor does exist, though this is less likely.

So why bother with ecm at all? Firstly, ECM is easily distributed and is suitable for
implementing in a distributed parallel environment. It is also useful for doing a preliminary

check on big numbers for small factors before using other, more time consuming methods.

6.4.1 Description of the Elliptic Curve Method
The Elliptic Curve Method can be broken down into three stages [Len90a].

Stage 1. Given a number n to be factored, make sure that it’s not a prime number, randomly
select an elliptic curve modulo n and a point x in the group of points of this elliptic

curve.

Stage 2: Select an integer mu and raise x to the power k, where k is the product of all prime
powers < mi. If this computation fails because a non-trivial factor has been found

then quit. Otherwise, start all over again on a new curve.

. k .
Stage 3: Select an integer m2> m\, and try to compute x 9 for the primes q between mxand m1

in succession. If this computation fails because a non-trivial factor has been found,

then terminate. Otherwise, start all over again.

The limits are calculated from the same formula as used in Yoichi Koyama’s [Koy91] Ubasic

ECM system.

Every iteration or trial of ECM is completely independent of every other trial and any number
of them can be carried out in simultaneously. Although each iteration is quite time-
consuming, the asymptotic behaviour of this algorithm is very good. Therefore an algorithm,
such as Brent-Pollard [Bre80], that is good at finding small factors should be used to find any

small factors before applying the Elliptic Curve method.

6.5 The Future of Factoring

Factoring is strongly believed to be a difficult mathematical problem, although it has not been
proved so. Therefore there remains a possibility that an easy factoring algorithm will be
discovered. This development, which could seriously weaken RSA, would be highly
surprising and the possibility is considered extremely remote by the researchers most actively

engaged in factoring research.



Another possibility is that someone will prove that factoring is difficult. This negative
breakthrough is probably more likely than the positive breakthrough discussed above, but
would also be unexpected at the current state of theoretical factoring research. This

development would guarantee the security of RSA beyond a certain key size.
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7. Results

71 The Environment Used
The test environment consisted of an ethemet network of IBM RS/6000’s running AlX 3.2,
IBM’s flavour of Unix. This platform provides full multi-tasking, as well as a local and

remote inter-process communications facility.

The maximum number of workstations used at any one time was 17. The code was compiled
with xIC - IBM’s C++ compiler for AlX, and a special numerical library for handling very
large numbers and arithmetic - MIRACL [Sc095], was used in the implementation of the

ECM factoring program.

It should be noted that the tests were carried out while other users used the network and

workstations although the load was relatively light.

7.2 Notes on the ECM Factoring Program

The Elliptic Curve Factoring program used was adapted from [Sco89] for use in a parallel
system. No major changes to the basic ECM code were required, however the formulae to
calculate the limits was updated. The new formula to calculate the optimum limits in the

ECM program are from the ECM factoring program included in Ubasic [Koy91].

Limitl = int(log(N)A2.65/10)
Limitl = min(130000, max(LIMITI,500))

Limit2 = 40*Limitl

7.3 Performance of the DistProc System
Utilising between one and seventeen DPSlaves, two numbers - 1039+1 and 1059+1, were

factored using the distributed version of Lenstra’s Elliptic Curve factoring method described
in section 6.3.1. The following is a summary of the results presented at the end of this

chapter.

.. 39
7.3.1 Factorisation of 10 +1
The following figures are averaged from several tests and represent a good cross section of

typical results. The time required for each process (each process represents one curve in an

ECM factorisation) to complete was 88.1 seconds on average and overall there were 121



processes tried (in this example). There was only one remote process (curve) per DISTPROC
Slave at any one time and each DISTPROC Slave was running on a separate computer,
although other users were using the computers and network while the tests ran. The results
presented in [Table 1] and the graphs that follow are based on the timings and results shown

in section 7. These results were obtained from the factorisation of 1037 +1 using a distributed

version of Lenstra’s Elliptic Curve factorisation method.

Number of DPSlaves (IBM Run Time with ~ Curves /minute Speedup over 1
RS/6000 320’s) used Security (Mins) with Security DistProc Slave

1 164.65 0.73 1.00

2 81.87 1.48 201

4 44.43 272 371

8 2293 5.28 7.18

16 12.30 9.84 13.39

Table 1. Times and speedupfor thefactorisation of1037+1 using a distributed version ofLenstra's Elliptic Curve
factoring method.

The greater than linear speedup achieved when going from one to two DPSlaves could have
arisen from a change in the load on the network or from other users using one of the DPSlave
computers. While this is unfortunate it is an acceptable aspect of distributed computing when

using a network of shared computers.

Speedup as number of DistProc Slaves increases.
From factorisations of 10A37+1.

18.00
16.00
14.00
12.00

a 10.00

0 2 4 6 8 10 12 14 16 18
Number of DistProc Slaves (RS/6000s)

Figure 17. Graph ofprocessing speedup in the DistProc System.

The graph in [Figure 17] is based on the figures in [Table 1] and compares the maximum

possible speedup (linear speedup) against the actual speedup achieved. It should be noted that
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these measurements are from a suitable application where there is a high ratio of computation

to communication. As the level of communication increases the actual speedup would fall.

Curves/ minute as the number of DistProc Slaves increase.

Number of DistProc Slaves (computers)

Figure 18. Graph ofcurves/min as the number of DistP roc Slaves increase.

The graph in [Figure 18] shows how the number of curves (an ECM factorisation tries many
curves when trying to factor a number) completed per minute increases as the number of

DISTPROC Slaves increases up to a maximum of 16.

Run time (in minutes) as the number of DistProc Slaves increase.

Number of DistProc Slaves (computers)

Figure 19. Graph ofDistProc Slaves against run time (mins)

The graph in [Figure 19] shows how the time taken in minutes to complete a set amount of

work decreases as the number of DISTPROC Slaves increases to a maximum of 16.
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7.3.2 Factorisation of 1059 +1

The results from the factorisation of 1059+1 using 17 DPSlaves are shown in section 7.7.1.

The important information from this set of results is:

Start Time: Sun Jan 15 01:07:50 1995

Trying to factor ((10A59)+1)

Factors of 100000000000000000000000000000000000000000000000000000000001 = (10A9)+1
found with curve #253

Limitl = 36929 and Limit2 = 1477160

prime factors 1090805842068098677837

prime factor (num = num/t) 4411922770996074109644535362851087

Start Time: Sun Jan 15 01:07:50 1995

Finish Time: Sun Jan 15 06:04:37 1995

Running Time: 296.783 minutes.

There were 17 DPSlaves used.

The results from this factorisation cannot be compared directly to the results obtained from
the factorisation of 10°'+1 since completely different limits and curves were used during the

factorisation process.

74 Security

The DISTPROC System is a non-dedicated distributed parallel processing system in that it runs
on resources which are shared with other users. Currently the balancing algorithm does not
distinguish between processes from different DISTPROC Client applications, which could

result in one application hogging the system if it gets in first.

If a DISTPROC system (cluster) is shared between several users then security must be used in

order to authenticate each user.

The DISTPROC system was tested with and without security. All told, the overhead for
security added on average two seconds to the setup time of each remote process. The
overhead of using security varies between different systems but is generally negligible in
comparison to the computation time of typical DISTPROC applications. However most
systems will not be concerned with security and will therefore not encounter any time

penalties.
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7.5 Explanation of the Results
In the result output the following should be noted that all times were calculated on the
DPClient and that wait requests wait on specific processes to finish - not the first available

process.

Another point is that the DPClient is responsible for buffering run process requests due to a
bug in the DPServer’s load balancing mechanism. Once a wait request completes the
DPClient starts the next process running. This can result in a wait request on a slow process
delaying the execution of the next process, and even if another DPSlave becomes available in
the mean time (by a process finishing while a wait request is blocked) it will not receive a

process until the blocked wait request completes.

There are many reasons that one process could take longer to complete than other processes,
for instance if a computer is heavily loaded by other jobs or is simply not as powerful a

computer as the other computers in the DISTPROC system.
The following explains the meaning of the columns in the results output.
The Start Time is when the DPClient application issued a run request to a DPServer.

End Time is when the DPClient application completed a wait() call. Wait requests were
paired with an associated run request and the DPClient was responsible for process buffering

which explains why there is a knock on effect once one process is delayed.

This effect shows up clearly under Wait Time which is the time that the DPClient was

blocked waiting for a process to finish.

Run Setup Time gives the time taken to start a process running. This covers the time taken for
a DPClient to send a run request to a DPServer and get a process id back. This column shows

the additional setup time overhead that enabling security incurs.
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7.6 Results from the Factorisation of 10A37 + 1

7.6.1 Results for One DPSlave with Security

Start Time:Thu Jan 12 21:37:39 1995
((10A37)+1)
Received result from RPLenstra #121

Trying

Factors

found with curve #124
9037 and Lirait2

Limitl

to factor

of 10000000000000000000000000000000000001

= 361480

prime factors 422650073734453

prima factor

Start Time: Thu Jan

Finish Tima: Fri Jan

Running Time: 164.65 minutes.

13 00:22:18 1995

There were 1 DPSlavee used.

curve

© @ N o 0 s w

(Start Time)
789946660
789946742
769946823
709946904
789946985
789947066
789947147
789947228
789947310
769947391
789947472
789947553
789947634
789947715
789947801
769947883
789947964
789948045
709948126
789948208
769948289
709948370
789948451
769948532
709948613
789948694
789948776
789948857
789948938
789949023
769949104
789949187
789949267
789949348
789949430
789949511
709949592
789949673
7B9949755
769949836
789949917
789949998
789950079
789950161
789950242
769950323
789950404
769950405
789950566
789950648
789950729
709950810
789950891
789950972
789951054
789951135
769951215
709951297
789951378
789951464
769951545

(End Time)

789946742
789946823
789946904
769946985
789947066
789947147
769947226
789947310
789947391
789947472
709947553
789947634
769947715
709947797
789947883
789947964
789948045
789948126
789948208
789948289
789948369
709946451
789948532
769948613
789948694
789948776
769948857
769948938
789949019
789949104
769949187
789949267
789949346
769949430
789949511
789949592
789949673
789949755
709949836
789949917
789949998
769950079
789950161
789950242
769950323
769950404
789950485
789950566
769950648
789950729
789950810
709950891
789950972
789951054
789951135
789951215
789951297
789951378
789951459
789951545
789951626

(num = num/t) 296557347313446299
12 21:37:39 1995

4
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(Run Setup Time)

94

789951626
769951707
789951788
789951869
769951950
789952031
789952113
709952194
789952274
789952356
769952437
789952518
789952599
709952685
789952766
789952847
769952926
789953009
789953091
789953172
789953253
789953334
769953415
789953496
789953577
789953658
789953740
709953821
709953902
789953983
789954064
789954145
789954226
789954307
789954389
789954470
709954551
709954632
789954713
789954794
789954875
789954957
789955038
789955123
789955204
789955285
769955367
789955447
789955529
769955610
789955692
789955772
789955853
789955935
789956016
789956097
789956179
789956260
769956341
789956422
789956503

789951707
789951788
789951869
789951950
789952031
789952113
789952194
789952274
789952356
789952437
789952510
789952599
709952680
789952766
789952847
709952928
789953009
789953091
789953172
709953253
789953334
789953 415
769953496
789953577
789953658
789953740
789953821
709953902
789953963
789954064
709954145
7B9954226
709954307
789954389
789954470
789954551
789954632
789954713
789954794
709954875
789954957
789955038
789955119
709955204
789955285
789955367
709955447
709955529
7B9955610
789955692
789955772
789955853
709955935
789956016
789956097
709956179
709956260
789956341
789956422
789956503
709956537



7.6.2 Results for Two DPSlaves with Security

Start TimeijThu Jan 12 17:27:23 1995

Trying to factor ((10A37)+1)

Received result from RPLenstra #121

Factors of 1000000000000000000QOODOOOOOOO0000000I * (10A37)+1
found with curve 1124

Limitl = 9037 and Limit2 = 361480

prime factors 422650073734453

prime factor (num = num/t) 296557347313446299

Start Time:
Finish Time:

Running Time:

There were 2 DPSlaves used.

Thu Jan 12 17:27:23 1995
Thu Jan 12 18:49:15 1995
81,8667 minutes.

curve (Start Time) (End Time) (Run Setup Time) (W ait Time) 64 789934110 789934191
3 789931644 789931714 3 63 65 709934113 789934195
4 789931647 789931729 4 13 66 789934191 789934273
5 709931714 789931782 2 50 67 789934195 709934278
6 789931729 789931810 3 25 68 709934273 789934356
7 789931782 789931850 3 37 69 789934278 789934359
e 789931810 789931091 3 38 70 789934356 789934437
9 789931850 789931920 3 25 71 709934359 789934440
10 789931091 789931973 4 50 72 789934437 789934518
11 789931920 789931989 3 13 73 7B9934440 789934522
12 789931973 789932054 3 63 74 789934518 789934600
13 789931989 789932057 2 0 75 789934522 789934603
14 789932054 789932135 3 76 76 789934600 789934680
15 789932057 789932138 2 0 77 789934603 789934604
16 789932135 789932216 3 76 78 709934680 789934762
17 789932138 789932220 2 0 79 789934604 789934765
18 789932216 789932298 A 76 80 789934762 789934843
19 709932220 789932301 2 0 81 789934765 789934847
20 789932298 789932379 3 71 82 789934844 789934925
21 789932301 789932383 7 0 83 789934047 789934928
22 789932379 789932460 4 74 84 7B9934925 789935006
23 789932383 789932464 3 0 85 789934928 789935009
24 789932460 789932542 4 76 86 789935006 789935087
25 789932464 789932547 1 87 789935009 789935090
26 789932542 789932624 4 74 88 789935087 789935168
27 789932547 789932620 3 0 89 789935090 789935172
28 789932625 789932706 3 75 90 789935168 789935249
29 789932628 709932709 3 0 91 789935172 789935253
30 789932706 789932787 3 75 92 709935249 789935330
31 789932709 789932790 3 0 93 789935253 709935334
32 789932787 789932869 3 7 94 789935330 789935411
33 789932790 789932873 2 0 95 789935334 789935415
34 789932869 789932951 4 76 96 789935411 789935492
35 789932873 789932954 0 97 789935415 709935511
36 789932951 789933032 3 75 98 789935493 789935575
37 789932954 789933035 3 0 99 789935511 789935576
38 789933032 789933112 3 75 100 709938575 789935653
39 789933035 789933116 2 0 101 789935576 789935657
40 789933112 789933194 4 75 102 789935653 789935720
41 789933116 789933190 3 1 103 789935657 789935738
42 789933194 789933276 3 76 104 789935720 789935789
43 709933198 789933279 0 105 789935738 789935019
44 789933276 789933357 3 75 106 789935794 709935871
45 789933279 789933360 3 0 107 789935819 789935901
46 789933357 789933437 3 74 108 789935071 789935939
47 789933360 789933447 3 1 109 789935901 789935982
40 789933442 789933525 4 74 110 709935939 789936007
49 789933447 789933537 4 8 111 789935982 769936063
50 789933525 789933600 4 66 112 789936007 789936073
51 789933537 789933667 5 43 113 789936063 789936144
52 7B9933608 789933704 16 33 114 769936073 789936148
53 789933667 789933744 4 37 115 789936144 789936226
54 789933704 789933785 3 39 116 789936148 709936229
55 789933744 789933817 2 29 117 789936226 789936307
56 7B9933785 789933867 3 46 118 789936229 789936310
57 789933817 789933888 4 18 119 789936307 789936388
58 789933867 789933940 3 57 120 789936310 789936391
59 789933888 789933957 3 6 121 789936380 789936470
60 789933948 789934029 3 68 122 709936391 789936473
61 789933957 789934033 4 1 123 789936470 789936551
62 789934029 789934110 3 75 124 789936473 789936555
63 789934033 789934113 2 0
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7.6.3 Results for Four DPSlaves with Security

Start Time:Fri Jan 13 15:25:25 1995

Trying to factor ((10A37)+1)

Received result from RPLenstra #121

Factors of 10000000000000000000000000000000000001 = <10A37)+1
found with curve #124

Limitl = 9037 and Limit2 = 361460

prime factors 422650073734453

prime factor (num = num/t) 296557347313446299
Start Time: Fri Jan 13 15:25:25 1995

Finish Time: Fri Jan 13 16:09:51 1995
Running Time: 44.4333 minutes.

There were 4 DPSlaves used.

curve (Start Time) (End Time) (Run Se up Time) (Wait Time)

3 790010726 790010805 72
4 790010727 790010822 13
5 790010731 790010823 0
6 790010732 790010825 1
7 790010805 790010887 61
a 790010922 790010911 23
9 790010B23 790010913 1
10 790010825 790010914 0
11 790010887 790010966 51
12 790010911 790010997 30
13 790010913 790010998 0
14 790010914 790011000 0
15 790010966 790011045 44
16 790010997 790011080 34
17 790010998 790011082 0
18 790011000 790011091 8
19 790011045 790011123 31
20 790011080 790011166 41
21 790011082 790011167 0
22 790011091 790011177 9
23 790011123 790011202 24
24 790011166 790011258 55
25 790011168 790011260 1
26 790011177 790011261 0
27 790011202 790011281 18
28 790011258 790011345 63
29 790011260 790011347 0
30 790011261 790011348 0
31 790011281 790011360 11
32 790011345 790011431 70
33 790011347 790011437 0
34 790011348 790011438 0
35 790011360 790011439 0
36 790011435 790011525 85
37 790011437 790011527 0
38 790011438 790011528 0
39 790011439 790011529 0
40 790011525 790011614 84
41 790011527 790011616 0
42 790011528 790011617 0
43 790011529 79001161B 0
44 790011614 790011704 BS
45 790011616 790011706 0
46 790011617 790011707 0
47 790011618 790011709 0
4B 790011704 790011793 83
49 790011706 790011794 0
50 790011707 790011795 0
51 790011709 790011797 0
52 790011793 790011883 B5
53 790011794 790011885 1
54 790011795 790011B86 0
55 790011797 790011887 0
56 790011883 790011971 82
57 790011885 790011973 1
58 790011886 790011974 0
59 790011887 790011975 0
60 790011971 790012056 80
61 790011973 790012058 1
62 790011974 790012059 0
63 790011975 790012060 0

96

101

115
116

118
119
120
121
122
123
124

790012056
790012058
790012059
790012060
790012146
790012147
790012148
790012150
790012232
790012234
790012235
790012236
790012321
790012322
790012323
790012325
790012408
790012410
790012411
790012413
790012495
790012496
790012498
790012499
790012581
790012583
790012584
790012585
790012670
790012672
790012673
790012674
790012755
790012757
790012758
790012760
790012845
790012847
790012848
790012849
790012930
790012931
790012932
790012933
790013015
790013016
790013017
790013019
790013099
790013100
790013101
790013103
7900131B3
790013185
790013186
790013187
790013268
790013269
790013270
790013272
790013353

790012146
790012147
790012148
790012150
790012232
790012234
790012235
790012236
790012320
790012322
790012323
790012325
790012408
790012410
790012411
790012413
790012495
790012496
790012498
790012499
7900125B1
790012583
790012584
790012585
790012670
790012672
790012673
790012674
790012755
790012757
790012758
790012760
790012845
790012846
790012848
790012849
790012929
790012931
790012932
790012933
790013015
790013016
790013017
790013019
790013099
790013100
790013101
790013103
790013183
790013185
790013186
790013187
79001326B
790013269
790013270
790013272
790013353
790013354
790013355
790013356
790013390
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7.6.4 Results for Eight DPSlaves with Security

Trying to factor ((10*37)+1)

Received result from RPLenstra #121

Factors of 10000Q00000000000000000000000000000001 = (10A37)+1
found with curve 1124

Limitl = 9037 and Limit2 = 361480

prime factors 422650073734453

prime factor (num = num/t) 296557347313446299

Start Timet Tue Jan 10 22:20:24 1995

Finish Times Tue Jan 10 22:43:20 1995

Running Time: 22.9333 minutes.

There were 6 DPSlaves used.

curve (Start Time) (End Time) (Run Setup Time) (Wait Time) 64 789777046 789777135
3 789776425 769776512 4 55 65 789777051 789777138
4 789776429 789776515 1 0 66 789777055 789777142
5 789776432 7B9776510 3 0 67 769777112 789777197
6 789776435 789776523 6 1 68 789777115 789777201
7 7B9776441 789776528 3 1 69 7B9777117 709777203
B 789776444 769776531 3 0 70 789777128 789777214
9 789776447 789776534 4 o 71 789777131 789777217
10 789776451 789776537 © 0 72 769777135 789777221
11 789776512 709776598 3 58 73 789777138 7B9777224
12 789776515 789776601 3 0 74 789777142 709777227
13 709776518 769776604 4 1 75 769777197 789777203
14 789776523 789776611 4 4 76 789777201 789777286
15 789776528 769776615 i 0 7 789777203 789777289
16 789776531 789776618 3 0 78 789777214 789777300
17 789776534 789776621 3 o 79 789777217 789777303
18 709776537 789776624 3 0 80 789777221 789777307
19 789776598 789776604 3 56 81 789777224 789777310
20 789776601 789776687 2 0 82 789777227 789777313
21 789776604 789776690 3 1 83 789777263 709777369
22 7B9776611 769776696 4 6 84 789777286 789777372
23 789776615 709776701 3 0 85 769777289 789777375
24 789776618 789776705 3 1 86 789777300 789777386
25 789776621 7B9776708 3 1 87 7B9777303 789777390
26 789776624 789776712 4 0 88 789777307 789777393
27 7B9776684 789776769 3 54 89 7B9777310 789777396
28 789776687 789776773 2 1 90 789777313 789777399
29 789776690 789776776 2 0 91 789777369 789777454
30 789776698 789776784 3 5 92 769777372 789777458
31 789776701 789776767 3 0 93 789777375 789777461
32 789776705 789776791 3 0 94 789777386 789777472
33 789776708 789776794 4 0 95 789777390 789777476
34 789776712 789776798 3 0 96 789777393 709777479
35 789776769 789776655 3 54 97 789777396 789777403
36 789776773 789776858 3 0 96 709777399 709777487
37 7B9776776 789776660 3 0 99 789777454 789777540
38 709776784 789776870 3 7 100 789777458 789777543
39 789776787 789776873 4 0 101 789777461 789777545
40 789776791 789776876 3 0 102 789777472 789777559
41 709776794 789776880 4 0 103 789777476 709777562
42 789776798 789776883 3 0 104 789777479 789777565
43 789776855 769776941 3 55 105 7B97774B3 769777569
44 709776850 789776944 2 0 106 789777487 789777572
45 789776860 789776946 3 0 107 789777540 789777625
46 789776870 789776956 3 7 108 789777543 789777620
47 709776873 789776959 3 0 109 789777545 789777631
48 789776876 789776962 4 0 110 789777559 789777645
49 789776800 789776966 3 0 111 789777562 7B9777648
50 789776883 789776969 3 0 112 789777565 789777651
51 769776941 789777026 3 54 113 789777569 789777655
52 789776944 789777029 % 0 114 789777572 709777656
53 789776946 789777033 3" 1 115 789777625 789777711
54 769776956 789777042 3 6 116 789777628 789777714
55 789776959 789777045 3 0 117 789777631 709777717
56 789776962 789777046 4 0 118 789777645 789777731
57 789776966 789777051 3 0 119 789777648 789777735
58 789776969 789777055 3 0 120 789777651 789777738
59 789777026 789777112 3 54 121 789777655 789777742
60 789777029 789777115 3 0 122 789777658 789777745
61 789777033 789777117 3 0 123 709777711 789777796
62 789777042 789777128 3 7 124 789777714 789777800
63 789777045 789777131 3 0
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7.6.5 Results for Sixteen DPSlaves with Security

Start Time:Tue Jan 10 23:17:53 1995

Trying to factor {(10A37)+1)

Received result from RPLenstra #121

Factors of 10000000000000000000000000000000000001 = (10A37)+1
found with curve #124

Limitl = 9037 and Lirait2 = 361480

prime factors 422650073734453

prime factor (num = num/t) 296557347313446299
Start Time: Tue Jan 10 23j17:53 1995

Finish Time: Tue Jan 10 23:30:11 1995
Running Time: 12.3 minutes.

There were 16 DPSlaves used.

curve (start Time) (End Time) (Run Setup Time) (W ait Time) 64 789780180 789700268
3 789779874 789779946 2 14 65 7B97B01B3 789700272
4 789779876 789779963 4 14 66 789780187 789780275
5 789779880 789779966 3 0 67 789780190 709780278
6 789779883 789779969 3 0 68 789780221 789780307
7 789779886 789779972 3 0 69 789700229 789780314
8 789779809 789779978 4 3 70 7B9780232 709700317
9 789779893 709779981 3 0 71 789780235 789780321
10 789779896 789779985 0 72 7B9780243 709700331
11 789779902 709779989 4 0 73 789780246 769780335
12 789779906 709779993 3 1 74 709780249 709780339
13 789779909 789779996 J 1 75 789780252 709700342
14 789779912 789779999 4 1 76 789700255 789780345
15 789779916 789780003 4 1 7 789780258 789700340
16 789779920 789780007 4 1 78 7897B0261 789780351
17 709779924 709700012 4 1 79 789780264 789780354
18 789779928 789780015 4 0 80 7897802 68 709700357
19 789779946 789780019 3 0 81 709780272 789780360
20 709779963 789780050 3 29 82 789780275 789780363
21 789779966 789780056 3 3 83 709780278 709700367
22 789779969 789780060 3 1 84 789780307 709780393
23 789779972 789780063 3 1 05 789780314 7B9780400
24 709779978 789780066 3 1 86 789780317 789780403
25 789779982 789780070 3 0 87 789780321 789780406
26 789779986 789780073 3 0 88 789780331 789780421
27 789779989 789700076 3 0 89 789780335 789700425
28 789779993 709780079 2 0 90 789780339 789780429
29 789779996 789780083 0 91 789780342 709780432
30 789779999 789780086 3 0 92 789780345 789700435
31 789780003 789780089 3 0 93 789780348 709780438
32 789780007 789780094 L 8 2 94 789780351 789780441
33 789780012 789780097 3 0 95 789780354 789780444
34 789780015 709780101 4 1 96 789780357 7B9780447
35 789780019 789780104 2 0 97 789780360 789700450
36 789760050 789780135 3 29 98 789780363 789780453
37 789780057 709780142 3 99 789780367 7897B0456
38 709780060 789700146 2 0 100 789780393 709700470
39 789780063 789780150 2 1 101 789780400 789780485
40 789780066 789780155 < 3 102 789780403 709700489
41 709780070 789780158 3 0 103 709780406 789780493
42 789780073 789780161 3 0 104 709700421 789780509
43 789780076 789780164 3 0 105 789780425 789780513
44 789780079 789700167 4 0 106 789760429 709700516
45 789700083 789780171 3 1 107 789780432 789780518
46 709780086 7697B0174 3 1 108 789780435 709700522
47 789780089 709780177 3 0 109 709780438 789700526
48 789780094 789780180 3 0 110 789780441 789780529
49 709700097 789780183 3 0 111 789780444 789700532
50 789780101 789780187 3 1 112 789780447 789700536
51 789780104 789780190 1 113 789780450 709780539
52 789700135 789780221 4 30 114 789780453 789780541
53 789780142 709780229 4 5 115 7B9780456 789780545
54 789780146 789780232 3 0 116 789780478 789780565
55 789780150 789780235 2 0 117 789780485 709760571
56 789700155 7B9780243 3 5 118 709780489 789780574
57 709780158 789700246 3 0 119 7897B0493 789780578
58 769780161 789780249 3 0 120 789780509 789780597
59 7897B0164 789780252 3 0 121 769760513 789780601
60 789700167 789700255 3 0 122 709780516 789780604
61 789780171 789780258 0 123 789780519 789780607
62 789780174 789780261 3 0 124 789780522 789700610
63 789780177 789780264 3 0

98

W oW bW W W W W W W W RN W

B w oW ow NN N ®

AN NN W WA ® AN ®®® W R W ww bW O W R W

© o o »

S

-

© o o »



7.6.6 Results for One DPSlave without Security

Start TimejFri Jan 13 09:16:26 1995

Trying to factor ((10A37)+1)

Received result from RPLenstra #121

Factors of 10000000000000000000000000000000000001 = (10A37)+1
found with curve #124

Limitl = 9037 and Limit2 = 361480

prime factors 422650073734453

prime factor (num = num/t) 296557347313446299
start Time: Fri Jan 13 09:16:26 1995

Finish Time: Fri Jan 13 H r56j45 1995
Running Time: 160.317 minutes.

There were 1 DPSlavea used.

63 789993350 709993429

64 789993429 789993500
curve (start Time) (End Time) (Run Setup Time) (Wait Time) 65 789993508 789993586
3 789968587 789988666 1 78 66 789993566 789993665
4 7B998B666 789988744 1 77 67 789993665 769993745
5 789988744 789988824 2 78 68 789993745 789993823
6 7899B8B24 789988905 1 60 69 789993823 789993902
7 789988905 709988984 1 7B 70 789993902 789993981
B 7899BB984 709989062 1 77 71 789993982 7B9994061
9 789989062 769989141 2 77 72 7B9994061 789994140
10 789989141 789989220 1 78 73 789994140 789994219
11 769989220 789989299 2 77 74 789994219 789994298
12 789989299 709989378 1 70 75 769994298 789994377
13 789909378 789989457 1 78 76 789994377 789994455
14 789989457 789989536 1 78 77 789994455 789994535
15 789909536 789989615 1 78 76 789994535 789994614
16 789989615 789989693 1 77 79 789994614 789994692
17 7899B9693 789909772 2 77 80 789994692 709994771
1B 709989772 709989851 1 78 81 709994771 789994850
19 789989851 789989930 1 78 82 789994850 789994928
20 789989930 789990009 1 78 83 789994928 789995007
21 789990009 789990088 i 78 84 789995007 7B9995086
22 789990080 789990166 j 77 85 789995086 789995165
23 789990166 789990245 2 77 86 789995165 789995244
24 789990245 789990324 1 78 87 789995244 789995322
25 789990324 789990403 1 76 88 789995322 789995401
26 789990403 789990402 1 78 89 709995401 789995480
27 789990482 789990560 1 77 90 789995480 709995559
28 769990560 789990639 3 77 91 789995559 789995638
29 789990639 789990718 2 77 92 789995638 789995717
30 789990723 789990802 1 78 93 789995717 789995796
31 789990802 789990880 1 77 94 789995796 7B9995875
32 789990861 789990960 1 78 95 7B9995875 789995953
33 789990960 789991039 1 78 96 709995953 789996032
34 789991039 789991118 1 78 97 789996032 789996111
35 769991118 709991197 1 78 96 769996111 789996189
36 789991197 789991280 1 62 99 7B9996189 709996268
37 789991280 789991368 2 86 100 789996268 789996347
38 789991368 789991446 1 77 101 789996347 789996426
39 789991446 789991525 3 77 102 709996426 789996505
40 789991525 789991605 3 78 103 789996505 789996583
41 789991605 789991687 A 76 104 789996583 789996663
42 789991687 789991766 J 78 105 789996663 789996742
43 789991766 789991844 1 77 106 789996747 789996825
44 789991844 789991923 2 77 107 789996826 789996904
45 789991928 789992006 1 77 108 789996904 789996983
46 789992006 789992085 2 77 109 789996983 709997062
47 789992085 709992164 i 78 110 789997062 789997142
48 709992164 789992243 s 76 111 789997142 789997220
49 789992243 709992321 1 77 112 789997220 789997299
50 789992321 789992400 1 78 113 789997299 789997378
51 789992400 709992470 1 77 114 789997378 789997457
52 789992478 789992557 1 78 115 789997457 789997536
53 789992557 789992636 2 77 116 7B9997536 789997615
54 789992636 789992714 1 77 117 789997615 789997694
55 789992714 789992793 t 77 118 789997694 789997773
56 789992793 789992872 3 77 119 789997773 789997852
57 789992872 789992951 1 78 120 789997852 789997931
58 789992951 789993030 1 78 121 789997931 789998010
59 789993030 789993108 1 77 122 789998014 789996093
60 789993113 789993191 i 77 123 709990093 789998172
61 709993191 709993270 2 77 124 789996172 769998204
62 789993270 789993350 2 78
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7.6.7 Results for Two DPSlaves without Security

Start Time:Fri Jan

Trying

to factor

13 13:56:50 1995
((10%37>+1)

Received result from RPLenstra #121
of 10000000000000000000000000000000000001

Factors
found with
Limitl
prime factors

prime factor (num =

curve Al24
= 9037 and Limit2 = 361480
422650073734453

num/t) 296557347313446299

Start Time: Fri Jan 13 13:56:50 1995

Finish Time: Fri Jan

Running Time:

There were 2 DPSlavea used.

curve

I SRS BN

®

10
11
12
13
14
15
16
17

ia

(Start Time)
790005411
790005412
790005490
790005492
790005569
790005570
790005648
790005650
790005726
790005732
790005310
790005811
790005886
790005890
790005967
790005969
790006047
790006048
790006126
790006128
790006205
790006207
790006286
790006288
790006366
7900063 67
790006444
790006446
790006529
790006530
790006608
790006609
790006687
790006689
790006766
790006768
790006845
790006847
790006924
790006926
790007003
790007005
7900070B2
790007085
790007161
790007163
790007240
790007242
790007319
790007321
790007396
790007400
790007477
790007479
790007556
790007558
790007635
790007637
790007714
790007716
790007798

(End Time)
790005490
790005491
790005568
790005570
790005648
790005650
790005728
790005732
790005B10
790005811
790005888
790005890
790005967
790005969
790006047
790006048
790006126
790006128
790006205
790006207
790006286
790006286
790006366
790006367
790006444
790006446
790006524
790006530
790006600
790006609
790006667
790006689
790006766
790006768
790006845
790006847
790006924
790006926
790007003
790007005
790007082
790007084
790007161
790007163
790007240
790007242
790007319
790007321
790007398
790007400
790007477
790007479
790007556
790007558
790007635
790007637
790007714
790007715
790007793
790007799
790007877

13 15:17:46 1995
80.9333 minutes.

(Run Se up Time)
7
0
75
0
76
0

(10A37)+1

(Wait Time)

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

790007799
790007877
790007879
790007956
790007957
790008035
790008037
790008115
790008116
790008194
790006196
790008273
790006276
790008353
790008356
790008432
790006435
790000511
790008514
790000590
790008593
790008670
790008672
790008751
790008753
790008631
790008833
790009910
790008912
790008993
790008994
790009072
790009074
790009152
790009154
790009231
790009233
790009311
790009313
790009391
790009393
790009470
790009472
790009549
790009550
790009628
790009630
790009707
790009709
790009786
790009791
790009868
790009870
790009946
790009949
790010027
790010028
790010106
790010107
790010165
790010187

790007879
790007956
790007957
790008035
790006037
790008115
790008116
790008194
790006196
790008273
790008276
790008352
790000356
790008432
790008435
790008511
790008514
790008590
790008593
790006670
790008672
790008751
790008753
790008831
790000833
790008910
790008912
790008989
790006994
790009072
790009074
790009152
790009154
790009231
790009233
790009311
790009313
790009391
790009392
790009470
790009472
790009549
790009550
790009628
790009630
790009707
790009709
790009766
790009791
790009868
790009870
790009948
790009949
790010027
790010028
790010105
790010107
790010165
790010187
790010264
790010265
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7.6.8 Results for Four DPSlaves without Security

Start Time:Wed Dec 7 18:47:53 1994

Trying to factor {(10A37)+1)

Factors of 10000000000000000000000000000000Q00001 =
found with curve #124

Limitl = 9037 and Limit2 = 361480

prime factors 42265007373 4453

prime factor (num = num/t) 296557347313446299

Start Time: Wed Dec 7 10:47:53 1994

Finish Time: Wed Dec 7 19:30:23 1994

Running Time: 42.5 minutes.

There were 4 DPSlaves used.

curve (Start Time) (End Time) (Run Setup Time)

3 786847674 786847759 6 59
4 786647600 786847767 6 1

5 786847688 706047774 6 0

6 786847694 766047782 6 1

7 706847759 786847845 7 58
8 786847767 786847852 7 3

9 786847774 786847060 7 0

10 766847782 786047866 5 0

11 786847845 786847927 4 56
12 786847852 766847938 8 8

13 786847860 786047942 6 1

14 786847067 766847949 4 5

15 786847927 706848008 3 56
16 786847938 786840020 3 9

17 786847942 706040023 2 0

18 786847949 706048031 3 6

19 786848008 786048090 3 56
20 786848020 706040101 3 8

21 786848023 786048104 2 0

22 766848031 786848112 i 5

23 786848090 706840171 3 55
24 786848101 786848182 3 7

25 786846104 786848185 3

26 786848112 706840194 7

27 766848171 786848253 4 56
28 7868481B2 786848263 3 7

29 786648185 786848267

30 786848194 786848276 3 7

31 786848253 786846334 3 55
32 786848263 786848345 4

33 786846267 786048349 2. 1

34 786848276 786848357 3

35 786848334 786848416 3 55
36 786848345 786848427 3 7

37 786848349 786846430 2

38 786848357 706846439 4 7

39 78684B416 786848498 4 55
40 786848427 786848500 3 7

41 786048430 786848511

42 786848439 786848521 4 7

43 706848498 786848579 55
44 786848508 786848589 3 7

45 786848511 786048593 3 1

46 786848521 766848603 3 0

47 786848579 706848661 3 55
48 786848589 786848670 3 6

49 786848593 786848674 2 1

50 706848603 786848685 3 9

51 78684B661 786848743 3 55
52 786840670 786848751 3 5

53 786848674 786846755 0

54 786848685 786848766 9

55 786848743 786848024 3 54
56 766648751 706046032 4 4

57 706048755 706848836 2 1

58 786848766 786848840 4 10
59 786848824 786846907 4 56
60 786848832 786848914 3 4

61 786848836 786848918 1

62 766840848 786848930 3 10

63 766840907 706840986 3 56

(10A37)+1

(W ait Time)

766840914
706040910
766848930
786848988
786848996
786649000
786849011
786849070
786849077
766649083
786849093
786849152
706049160
706649164
786049175
786849235
786049242
786849246
706049256
706849316
786849324
786049328
786849338
786849398
766849405
786849409
786849420
786849481
706049407
706049491
786849502
786849562
786849569
786849572
786849584
706849643
786849651
786849654
706049665
786849725
786849732
786849736
786849747
786049809
706849813
786849817
786849629
706049890
706049895
786849900
786049911
786049972
706649970
786849981
786849993
786850054
786050059
786850062
786850075
786850136
786850140

786840996
786849000
706049011
7B6849070
786049077
706849003
786049093
766849152
786849160
786849164
786849175
786849235
786649242
766049246
786849256
786849316
786849324
786849320
766849330
706849398
786849405
786849409
786849420
786049481
786649487
786849491
786849502
786049562
786849569
766649572
786049584
786849643
786849651
786649654
786849665
786849725
786849732
786849736
766849747
786849809
7B6B49013
786849817
786849829
786849890
786849895
786849900
766649911
786849972
786849978
786049981
706049993
786850054
706850059
706850062
786650075
786850136
766050140
786850146
786850157
786850217
786650221
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7.7 Results from the Factorisation of 10A59 + 1

7.7.1 Results for Seventeen DPSlaves with Secur

Start Time: Sun Jan 15 01:07:50 1995

Trying to factor ((10A59)+1)

Factors of 100000000000000000000000000000000000000000000000000000000001 = (10A59)+1
found with curve #253

Limitl = 36929 and Limit2 = 1477160

prime factors 1090805042060098677837

prime factor (num = num/t) 4411922770996074109644535362051087
Start Time: Sun Jan 15 01:07:50 1995

Finish Time: Sun Jan 15 06:04:37 1995

Running Time: 296.703 minutes.

There were 17 DPSlaves used.

curve (Start Time) (End Time) (Run Setup Time) (W ait Time) 60
3 790132070 790132496 2 407 69
4 790132072 790132498 1 0 70
5 790132073 790132516 X 17 71
6 790132074 790132519 1 1 72
7 790132075 790132520 1 0 73
8 790132076 790132521 1 0 74
9 790132077 790132522 1 0 75
10 790132078 790132524 2 1 76
11 790132030 790132525 1 0 77
12 790132081 790132527 1 0 70
13 790132082 790133272 1 744 79
14 790132003 790133273 1 0 00
15 790132004 790133275 1 1 o1
16 790132005 790133276 1 0 82
17 790132086 790133277 1 0 83
18 790132087 790133279 1 0 84
19 790132088 790133280 1 0 85
20 790132496 790133281 2 0 86
21 790132490 790133283 1 0 07
22 790132516 790133204 2 0 88
23 790132519 790133285 1 0 B9
24 790132520 790133286 1 0 90
25 790132521 790133288 1 0 91
26 790132522 790133290 1 0 92
27 790132524 790133291 1 0 93
20 790132525 790133292 2 0 94
29 790132527 790133294 1 1 95
30 790133272 790134458 1 1163 96
31 790133273 790134464 1 1 97
32 790133275 790134465 1 1 90
33 790133276 790134466 1 0 99
34 790133277 790134467 2 0 100
35 790133279 790134468 1 0 101
36 790133280 790134470 1 1 102
37 790133281 790134471 2 0 103
33 790133283 790134472 1 0 104
39 790133284 790134473 1 0 105
40 790133285 790134475 1 1 106
41 790133287 790134476 0 107
42 790133200 790134477 2 0 100
43 790133290 790134479 1 1 109
44 790133291 790134480 1 0 no
45 790133292 790134481 1 0 111
46 790133294 790134402 1 0 112
47 790134462 790135649 1 1166 113
48 790134464 790135654 0, 0 114
49 790134465 790135655 t 0 115
50 790134466 790135657 1 1 116
51 790134467 790135658 1 0 117
52 790134460 790135659 1 0 110
53 790134470 790135660 1 0 119
54 790134471 790135662 1 0 120
55 790134472 790135664 1 1 121
56 790134473 790135665 1 0 122
57 790134475 790135666 1 0 123
50 790134476 790135663 1 ] 124
59 790134477 790135669 1 0 125
60 790134479 790135670 1 0 126
61 790134480 790135672 1 0 127
62 790134401 790135673 1 0 120
63 790134482 790135675 i 1 129
64 790135653 790136044 1 1160 130
65 790135654 790136049 1 0 131
66 790135655 790136051 1 1 132
67 790135657 790136852 1 0 133

ity

790135658
790135659
790135660
790135662
790135664
790135665
790135666
790135668
790135669
790135670
790135672
790135673
790135675
790136048
790136849
790136851
790136852
790136953
790136855
790136056
790136057
790136859
790136060
790136861
790136864
790136065
790136067
790136868
790136069
790136870
790130027
790130020
790138030
790138031
790130033
790130035
790130036
790130030
790130039
790130040
790130042
790130043
790138044
790138046
790138047
790130048
790138050
790139213
790139214
790139216
790139217
790139219
790139222
790139223
790139224
790139226
790139220
790139229
790139231
790139232
790139233
790139235
790139236
790139230
790140394
790140396

790136053
790136054
790136056
790136057
790136859
790136060
790136861
790136063
790136065
790136067
790136068
790136069
790136870
790138027
790138028
790138030
790138031
790138033
790138034
790138036
790138037
790138039
790138040
790138042
790130043
790130044
790130045
790138047
790138048
790130050
790139213
790139214
790139216
790139217
790139219
790139222
790139223
790139224
790139226
790139228
790139229
790139231
790139232
790139233
790139235
790139236
790139230
790140390
790140396
790140390
790140400
790140401
790140403
790140405
790140406
790140400
790140409
790140411
790140413
790140415
790140417
790140418
790140420
790140422
790141581
790141507
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134
135
136
137
138
139
140
141

147
14a

150
151
152
153
154

156
157

159
160
161
162
163

165
166

166
169
170
171
172
173
174

176
177

190
191
192

194
195
196
197
198
199

201
202
203
204
205
206
207
20a
209
210
211
212
213
214
215
216
217
216

790140398
790140400
790140401
790140403
790140405
790140406
790140406
790140409
790140411
790140413
790140415
790140417
790140418
790140420
790140422
790141585
790141587
790141588
790141590
790141592
790141593
790141595
790141597
790141598
790141600
790141602
790141603
790141605
790141606
790141600
790141609
790141611
790142760
790142770
790142771
790142773
790142774
790142775
790142776
790142778
790142779
790142780
790142702
790142783
790142785
790142786
790142787
790142769
790142790
790143946
790143947
790143949
790143950
790143951
790143953
790143954
790143956
790143957
790143958
790143959
790143960
790143962
790143963
790143965
790143967
790143968
790145139
790145141
790145143
790145144
790145146
790145147
790145148
790145150
790145151
790145153
790145154
790145155
790145157
790145158
790145159
790145161
790145162
790146319
790146325

790141588
790141590
790141592
790141593
790141595
790141597
790141598
790141600
790141602
790141603
790141605
790141606
790141608
790141609
790141611
790142768
790142770
790142771
790142773
790142774
790142775
790142776
790142778
790142779
790142780
790142782
790142783
790142785
790142706
790142787
790142789
790142790
790143946
790143947
790143949
790143950
790143951
790143953
790143954
790143956
790143957
790143958
790143959
790143960
790143962
790143963
790143965
790143967
790143968
790145135
790145141
790145143
790145144
790145146
790145147
790145140
790145150
790145151
790145153
790145154
790145155
790145157
790145158
790145159
790145161
790145162
790146319
790146321
790146326
790146327
790146329
790146330
790146331
790146333
790146334
790146336
790146337
790146339
790146340
790146341
790146343
790146344
790146345
790147502
790147503
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219
220
221
222
223

240
249
250
251
252

790146326
790146327
790146329
790146330
790146331
790146333
790146334
790146336
790146337
790146339
790146340
790146341
790146343
7901463 44
790146345
790147502
790147503
790147504
790147505
790147507
790147509
790147510
790147511
790147513
790147514
790147515
790147517
790147518
790147520
790147525
790147527
790147520
790146685
790148687
790148688

790147504
790147505
790147507
790147509
790147510
790147511
790147512
790147514
790147515
790147517
790147518
790147520
790147521
790147527
790147528
790148685
790140687
790148688
790146691
790148693
790148694
790148695
790148697
790148698
790148700
790148702
790148703
790148704
790148705
790148707
790148708
790148709
790149873
790149875
790149877
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8. Source Code for the
DistProc System

8.1 DistProc Client

clnhndls.C
Brian Cox
9th September 1993

D istributed Processing Client - message handling routines*

<stdio«h>

<atring.h>

<stdlib.h>

<iostream .h>

<sys/types.h> I* getlogin() stuff

<unistd.h>

<limits,h>

<syB/param.h> /* getcwd(), MAXPATHLEN */
#inelude mdiatproc ,h" /* system defines */
Finclude -tcp.h’ /* network communications *,

elude mmessages.h” /* message objects */

«include “cinhndls.h’

I* i
//; DistProc Client global variables. 9?

anr + DPClients sClientVer = "0.95"; /* client version number,

r */
/* Constructor */

BPClient::DPC1llent(char * srvname)
int rc;
if (spgname I- NULL)
ClientIlD = 0;

if (ConnectToServer(Brvname) == GOOD)
registered = GOOD;

else{
registered = FAILED;

)vserr("Could not connect to DistProc Server")j

syserr("No DistProc Server host name given");

else

»

—

fxRestructor 3
DPClient::~DPClient()
(

DisconnectFromServer{);

if (DPServerHostName 1= NULL)
delete [] DPServerHostName;

cout « endl;

handle a RUN_PROCESS request.

unsigned long DPClient::run(char ~filename, Buffer &inbuf, Buffer
*resbuf)

RunProcessMsg msg, rmsg;
Buffer request, response;
char pathname[MAXPATHLEN];
int rc;
debug("DPClient::rim ()") ;

if (registered == FAILED)
return FAILED?

1l debug('run: Fil

ng in message..,*);

getcwd(pathname, MAXPATHLEN);
streat(pathname, m/");
streat{pathname, filename);

** Fill in a RunProcessMsg message

*/
msg.aetSystemlD(ClientlID) ;
msg.pinfo.setClientName(getloginQ);
msg.pinfo.setFileName(pathname);
msg.pinfo.9etinput(inbuf.data,
msg.pinfo.setOutputPtr(resbuf);

nbuf_length);

** make the request to the server

/
I/l debug(mrun: Saving the msg and making the request...");

msg,savef{request ) ;
if (M{keRequesl(reques!‘ response) == FAILED)

syswarn("couldn't send Run message*),-
r)elurn INVALID_DPID;
/1 debug("runt reloading message");
rmsg.load(response);
if (rrgsg.retcode == FAILED)
s{swarn(llnvalld pid returned from DP Server");
return INVALID_DPID;
> /* 0 is an invalid pid => error */
return the PID for the spawned process

Il debug(“"run: returning retcode™);
return rmsg.pinfo,getPID ();

/fkhandle a KILL_PROCESS request. %

int DPClient;ikill(unsigned long pid)

t KillProcessM sg msg, rmsg;
Buffer request, response;
debug("DPClient::kill()");

if ((registered == FAILED) || (pid == INVALID_DPID))
return FAILED;

msg.setSystem ID (ClientID);
1*
*q fill in KILL_PROCESS message,

msg.pinfo.setP 1D (pid);

%4 make the request to the server.

msg.save(request) ;
if (MakeRequest(request, response) == FAILED)

syswarn("couldn't send Kill message");
return FAILED;

** check the response to make sure that everything is ok
\
rmsg.load(response);

return rmsg.retcode;

1* */
/fk handle aWAIT_PROCESSrequest,

I* theresult is obtained fromthe server here! */

int DPClient: jwait(unsigned long pid)

W aitProcessM sg msg, rmsg;
Buffer request, reply, *reabufj
void * output;

int outsize;

debugC'DPClient; :waitQm);

if ((registered == FAILED) || (pid == INVALID_DPID))
return FAILED;

msg.setSystem ID (ClientID);
msg.pinfo.setP 1D (pid);

** make the request to the server

*/

I/ debug("wait: Baving and sending messagel);
msg.save(request);

if {KakeRequest(request, reply) == FAILED)

syswarn("couldn't send Wait message");
return FAILED;

°
=~

** check the response to make sure that everything is
*/

Il debug("wait: reloading massage")?
rmsg.load(reply);

if (rmsg.retcode == FAILED)

9yawarn(‘W aitProcess reply message is bad");
return FAILED;

)
if (rmsg.pinfo.getstatus () == PROCESS__ABORTED)

syswarn(mRemProc was abnormally terminated/aborted.");
return FAILED;

)

Il ok, so now we need to copy the result from the process
Il that just finished to the location that was specified
/1 by the Output parameter to the run_procesa{) function

11 this gets the address of the output pointer
11 debug(‘wait: getting address of the output pointer™);
rmag,pinfo.getOutputPtr((Buffer *)&reebuf);



if (regbuf == NULL)
s{serr("Address of Result Buffer is

NULL");
rgturn FAILED;
E|56ﬁ
/1 make sure the output buffer is en®>ty and
7/ then copy the result into resbuf
resbuf->empty {) -
r)'nsg.rinfo.gelResuIl(resbuf),—
Il debug('wait: returning GOOD’);
return GOOD;
/* check if connection was successful. */
i{\ DPClientsjRegistered ()
) return registered;
/* Protected member functions. */
L
i* open a connection with the server, send the request message

f* and then
I* the

read the response from the server. close

connection with the server.

Finally

DPClient:iM akeRequest{Buffer request. Buffer fcresponBe)

debug{"MakeRequest()m);

** perform a request/response transaction, i.e. send the
request

** to the server and then wait to read take the response back

% from the server.

if (TransactPipe(sock,

request.data,

request.length,

(void **)Aresponse.data,

{unsigned long *);response.length, 0) 1=
GOOD)

s{swarn{*couldn't send message to DPServer*);

r}tu rn FAILED;

debug{"MakeRequest{) succeeded");

return GOOD;

/ connect to the server to announce our engagement

The following aren't used at the momenti

1 what must the client send to the server?
requester type - client
client address, the server can get this itselfl

2. what must the server
/ client id

send back to the client?

Note?

I'm not sure about using a well
for special client/server system information messages.
A better way might be to let the client fork a function
which sends a SYSTEM_MSGS message to the server which
forks another function to handle any critical system
messages which may occur - i.e. Server shutting down, etc

known client socket

!
!
f
int DPCliwjti!CoiraoetToS~rvor[char *dpsrvhostnaroe)
(

ClientConnectM sg msg, rmsg;

Buffer request, response;

char myhostname [MAXHOSTNAMELEN] ;

debug("ConnectToServer()m);

if (dparvhostname == NULL)
{
syswarn{"no hostname specified for DistProc Server");
return FAILED;
}

DPServerHostName = new char[strlen(dpsrvhostname)+1];
strcpy(DPServerHostName, dpBrvhostname);

set up the client information block.
gethostname(myhoBtname, MAXHOSTNAMELEN);
msg.cinfo.setClientName(getlogin());
msg.cinfo.setHostName(myhostname);
msg.cinfo.setPort(CLIENT_TCP_PORT);

*y open a connection with the server

if (OpenPipe(fcsock, SERVER_TCP_PORT, DPServerHostName) 1=

syswarn(“opening pipe with
return(FAILED);

server");
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** Inform
client.
** make the

the server of our presence and that we are a

request to the server.
\

msg,save(requeBt);

if (MakeRequest(request, response) == FAILED)
syswarn("couldn't
r)elurn FAILED;

send Connect messagel);

rmsg.load{response

FAILED )

if {ymag.retcode
sCswarn('DislProc Server wouldn't accept clients
connection request”);

j!urn{FAILED);
clienfID = rmsg.cinfo.getciD O

1Now create a well known client
lcan send system information

See note above

MakePipe(CLIENT_TCP_PORT)

fork a function to handle this socket.
return rmsg.retcode;
/* disconnect from the server. This will kill off any
/* child processes that the

server is currently executing */
/* on behalf of the client; *!
- _x
i(nl DPClient:jDisconnectFromServer()

ClientDisconnectMeg msg,
Buffer request, response;

msg;

debug{*DPClient::DisconnectFromServer{)");

if (registered == FAILED)
return FAILED;

g.setSystem ID (C lientID);

** tell the
3y make the

server that we're closing down.
request to the server

I/l debug("DisconnectFromServer5 saving message and making
requestl);

msg.save(request);

if (M{keRequeSt(requeS(,

response) FAILED)

syswarn{"couldn't
7Iu rn FAILED;

send Disconnect message");

Il debug("DisconnectFromServer:
rmsg.load(response);

reloading reply");

if (ClosePipe(sock) 1= GOOD)
syswarn("closing the pipe");

}luvn(FAILED);

Il debug("DisconnectFromServer: pipe closed and returning
retcode*);
) return rmsg.retcode;

socket to which the server

o/



rpargio.C
Brian Cox

Remote Process ARGument Input/Output.

These functions take care of receiving input arguments and
returning the results to the Slave first and finally back
to the Client Application via the Server.

\

#include <stdio.h>
(¢include <stdlib.h>
«include <string.h>
#include <ioatream .h>
ftinclude "distproc.h”
((include mraeHaages.hm
#include "tcp.h™

/// Global variables.
n

char *HostNameForSlave;
char *DPServerHostName; /1 name of DistProc Server's
host

unsigned long RemProclD;
unsigned long SlavelD;

/* optm a connection with the server, send the request message
/* and thon road tfto response from the server. Finally close
/* the connection with the server

i{l MakeRequest(Buffer request, Buffer ~response)
int sock;

debug{"RemProc MakeRequest ()m);

Iy open a connection with the server

if (OpenPipe(tsock, SERVER_TCP_PORT, DPServerHostName) 1=

GOOD )
S{SWarn("opening pipe to Server");
r}lurn(FAILED):

/Il perform a request/response transaction, i.e.
request

I/l to the server and then wait to read take the response back
from the server

send the

if ( TransactPipe(sock, request.data, request.length,
(void **)tresponse.data,
(unsigned long *)iresponse.length, 60) !=
GOOD )
syswarn("in pipe transaction*);

1= GOOD )

if ( osePipe(sock)
syswarn(mclosing pipe*);

rjlurn(FAlLED):

} return(GOOD);

int GetlnputParameters (Buffer &inbuf)

Buffer rpidbuf, sidbuf; // buffer to hold slave id and
remproc id.

int sock;

char myhostname [MAXHOSTNAMELEN];
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unsigned long len;
int rc;

debug("GetlnputParameters()*);

*gyset up the client information block.

gethostname(myhostname, MAXHOSTNAMELEN);
HostNameForSlave = (char *) malloc(atrlen(myhostname)+1) ;
strcpy(HostNameForSlave, myhostname);

if (OpenPipe(taock, SLAVE_REMPROC_TCP_PORT, HostNameForSlave)
== FAILED)
sgswarn("couldn‘t open Slaves RemProc socket to get

process arguments.r);
rflurn FAILED;

** read ins the Byatem id for thisremproc,

Hx the slaves id number,
x the distproc servers host name,
* the input parameters.

ReadPipe(sock, (void **)fcrpidbuf.data, (unsigned long
*)arpidbuf.length, 120);
memcpy(tRemProcID, rpidbuf.data, rpidbuf.length);

sidbuf.length,

ReadPlpe(sock,m]id **)tsidbuf.data, (unsigned long
memcpy(tSlavelD,

idbuf.data, sidbuf.length);

ReadPipe(sock, (void t+)&DPServerH0O9tName, &len, 120);
ReadPipe(sock, (void **)&inbuf.data, (unsigned long
*)tinbuf.length, 12);

ClosePipe(sock);

return GOOD;

>

int ReturnResults (Buffer Greshuf)

ResultMsg msg, rmsg;
Buffer result, reply;
Resultlnfo rinfo;
int sock;

debug("ReturnResults()m);

msg.setSyatem ID (SlavelD);

msg.rinfo.setPID (RemProclID) -

msg.rinfo.setResult(reabuf.data, resbuf.length);

msg.retcode = GOOD; Il change this to reflect the RemProc
retcode

msg.save(result);

if (MakeRequest(reBUIt, reply) == FAILED)
syswarn("couldn't send ReturnResult message to Server");
rqturn FAILED;
rmsg.load(reply);
if ( gnsg.refccode 1= GOOD )
swarn("returning result to DistProc Server");

s
}tu rn FAILED;

return GOOD;

>



8.2 DistProc Server

t dpserver.c
H Brian Cox
9th September 1993

D istributed Processing server

#deEine debug_on

finduck <oAraA>

liociuitu <stdio.h>
iinclude <3tslng.h>
sinclude <stdiib*h>
sInclude h>
eincluda mLLotproc.il*
»include *i-ep.h*
«include ‘'aoflDngoB.h*
(include *®rvhndin.h*

1i Biatproc soever objoctl
OPServer 'dpnrv = (DPSorvor +)NOLL;
yfunclion to handle incoming requests
v{id HandleRequests()

int sock, rc;

debug(‘HandleRequests 0 m} ;

do {
i ({rc = dpsrv->W aitRequest(sock)) > o)
} rc = dpsrv->DispatchRequest (sock) ;

) while? (dpsrv->Servero K TRUE);

; All requests to the DistProc Server from various clients

and

; slaves must be aborted first The abort message should show

that

} the Server is Bhutting down. A signal could be Bent to each

; process on the server which ia currrently engaged to a
Client/Slave
apnd the appropriate message could be sent
\{Id shutdown(int status)
if (dpsrv == NOLL)
t

cout « m\nDPServer interrupted. Closing down.\n*

)XI! (1)

dpsrv->ServerOK = FALSE;
dpBrv->DPServer::-DPServer();

flushi

else

ain server function

M

ipt main(int argc, char *argv[])

~—

setvbuf(stderr, (char*)NOLL, _IONBF, 0);
setvbuf(stdout, (char*)NOLL, _IONBF, 0);

signal (SIGINT, ShutDown); /* interrupt */
signal(SIGTERM, ShutDown); /* terminate */

dpsrv = new DPServer?

if (d{arv == NULL)
cout « "\nError: Couldn't create DPServer.\n* «
turn FAILED;

if (dfprv->ServerOK == FALSE)

«

flush;

cdut « m\nCouldn't initialise DPServer.Sn" « flush;

delete dpsrv;

r}lu rn FAILED;

cout « "\nDistProc Server vl « dpsrv-»Version « *
started.\n' « flush;

HandleRequests();
delete dpsrv;

cout « m\nDistProc Server v* « dpsrv->Version « 1

down.\n* « flush;

) return;

Bbut



srvhndls .C
Brian Cox
September 1993

D istributed Processing Server - message handling routines.

«define debug_on
ttinclude "Brvhndls.h"
#inelude “waitrnuh”

Ainclude <sys/belect.h>
«Include <sys/time.h>

DPServer::DPServer()
i :DPServerPrimitives()

PServer:

The return values from selecto are as follows

—8 time out

> number of ready descriptors in the sets
failure, errno set, descriptors not changed

PServer::W aitRequest(int tnewsock)

int clilen, rc, fd, ssock;
struct sockaddr_in cli_addr;

debug(mDPServer::WaitRequest ()");

ClearUpErrors();

while{l)

tout.tv_sec = 60; Il times out after 60 seconds.
tout.tv_usec = 0;
bcopy((char *)6afds, (char *)fcrfds, sizeof(rfds));
rc = select(nfds, trfds, NULL, NULL, ttout);

I

7 Make sure select returned OK
if (rc < 0)
syserr('select error*);

return rc; // - returning -
>

elge //

//// Check if select timed out

if (r{:: 0)
cOut « *\nSelect timed out!ll\n* «
g&urn re; Il — -— returning -

flush;

I Check the main server socket for activity.
if (F{JSSET(Serversock‘ &rfds))
ut « "\nActivity on Berver socket #m «

serversock;
W aitConnectPipe(serversock, tssock, ficli_addr,

it (sgock < 0)
Isevr("accep( failed*);

rjlurn -1;
int s6_Elag =1; // non zero value turns

tclilen);

option/flag on
if (setsockopt(ssock, SOL_SOCKET, SO_KEEPALIVE,
(char*) tso_flag, sizeof(so_flag)) < 0)
syserr("SO_KEEPALIVE setsockopt error*5?

/1 Add new socket to the set of active sockets,
and loop again.

3D_SET(ssock, tafds);

/1 1f there's activity on a socket other than the
/ﬂ-sockel break out of loop,
it (rq-> 0)
Il Check each socket in tha active set Cor
activity //
for (fd=Q; fdcnfds; fd++)

if (fd 1= serversock &% FD_ISSET(fd,

newsock = fd;

cout « *\nActivity on socket «
return rc;
)
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if (Ed == nfds) /1 couldn't find active fd
syserr("could not find active file
descriptor");

} // end while

For the moment this is a serialised Server, It probably
should fork a process to handle the incoming request.
The reasons for Corking() a sub process to handle request are:

1. multiple DiBtProc Requesters

2. DistProc message from client/slave which effects either
the Slave process (ClientShutDown or ServerShutDown) or
a sub process it is executing on behalf of the DistProc
Server (e.g. KillProcess)

tA process should also be forked() for each WaitProcess request.
DPServer::DispatchRequest(int sock)
{

Service sv = no_service;

Buffer b;

BaseMag msg; /* base message object */

int rc;

debug("DispatchRequest*);

/* read the request from the pipe */

rc = ReadPipe(sock, (void **)tb.data,
*)&b.length, 60);

if (rc == FAILED)

(unsigned long

{

syserr("could not read request*);
cerr « "Error reading on socket ft' «
11-

sock << endl;

/1 Use ErrorOnSock() instead of handling the error

11
i-
H ErrorOnSocket(sock);
II ClosePipe(sock);
7/ FD_CLR(sock, tafds);
return rc;
>

il

11 make sure that b is not NULL before calling msg.load()

11
msg.load(b); I* recreate the message object */
sv = msg.getService(); /* what's the request? */

switch (sv)

{

I*

The following messages can only come from a client
*/

case client_connect : ClientAttachHnd(sock, b);
break;
:RunProcessHndfsock, b);
break;
:KillRemProcHnd(sock, b);
break;
ClientDetachHnd(sock, b);
break;

case run_proc
case kill_proc
case client_shutdown

1%

; wait_proc is a special case. If no result is ready
then the socket cannot be closed yet! Therefore

; WaitProcess() takes care of closing the socket itself*

*/

case wait_proc :WaitProcessHnd(sock, b);
return (GOOD) *

The following messages can only come from a Slave.
case blave_connect slaveAttachHnd(sock, b);
break;

SlaveDetachHnd(sock, b);
break;

case result ; ResultFroraRemProcHnd(sock, b);
break;

DeathOfChildHnd(sock, b);
break;

case slave_shutdown

case death_of_child

For the moment unknown messages are simply discarded_

default : cerr «
on socket K"

"\nDPServer: unknown message received
« sock « endl « flush;

break; /1 add code to handle unknown
messages

HANDLER ..

CLIENT REQUESTS

:'_receive a connection request from a client. §y

nt DPServer::ClientAttachKnd(int sock, Buffer th)



ClientConnectMsg msg(b);
Buffer response?
int rc;

msg,cinfo.eetSocket(sock);
rc = ClientAttach(msg); /* this sets cinfo.cid *7

msg.retcode = rc;
msg.save(response);
FulfillRequest(sock, response);

return rc;

>

/* a client is disconnecting. </
iiit DPServer::ClientDetachHnd(int sock, Buffer 6b)
ClientDisconnectM sg msg(b);
Buffer response;
int rc;
rc = ClientDetach (msg)
msg.retcode = rc;
msg.save(response);
FulfillRequeBt(sock, b);

Iy remove clients socket from the select descriptor set

FD_CLR(sock, fcafds);
ClosePipe(sock);

) return rcj

I* Y
7’* Handle aRUN_PROCESSrequest from a clie

ic DPServer::RunProceasHnd(int sock, Buffer &b)
RunProcessMsg msg(b);
Buffer reply;

int rc;

rc = RunProcess(msg);

gpend the response from the slave back to the Client,

msg.save (reply) ;
FulfillRequest(sock, reply);

) return rc;

/* this is a requestfrom aclientto wait for aRemProc *(

f* to terminate.

nt DPServer::W aitProceBsHnd(intsock, Buffer 6b)

W aitProcessMsg msg(b);
int rc;

rc = ViaitProcess(msg, sock);
) return rc;

1 handle a KILL_PROCESS request from the Client. */

|&l DPServerssKillRemProcHnd(int sock, Buffer 6b)
KillProcessM sg msg(b);
Buffer reply;
int rc;
rc = KillProcess(msg.pinfo.getP1D ());
msg.retcode = rc;
msg.save(reply);
rc = FulfillRequest(sock, reply);

I return rc;

* HANDLERS for SLAVE REQUESTS

*

* receive a registration request from a slave. */
nt DPServer::SlaveAttachHnd(int sock, Buffer 6b)
slaveConnectM sg msg(b);
Buffer response;

int rc;

msg.sinfo.setSocket(sock);
rc = siaveAttach(msg);

msg.retcode = rc;
msg.save(response);
FulfillRequeBt(sock, response);

return rc;

7*A Slave is closing down. '5\7

int DPServer:;SlaveDetachHnd{int sock. Buffer tb)
{

siaveDisconnectMag msg(b);

Buffer reply;

int rc;

11
Il Acknowledge Slaves message - shuts down regardless of

relco"a

msg.retcode = GOOD;
msg.save(reply);
FulfillRequest(sock, reply);

I/l remove Blaves socket from the select descriptor set
11

ClosePipe(sock);

FD_CLR(sock, 6afds);

rc = SlaveDetach(msg);

return GOOD;

/* Handle a RESULT from a RemProc process. */
int DPServers:ResultFroraRemProcHnd(int sock. Buffer 6b)
ResultMsg msg(b);

Buffer response;
int rc;

I

I/l send back OK to the Slave in question,
7/ it's our responsibility now....

msg.retcode = GOOD;
msg.save(response);
FulfillRequest(sock, response);

/ﬂRemove the socket connect with the RemProc immediately |

ClosePipe(sock);
FD_CLR(sock, 6afds);

rc = RemProcReturningResult(msg);

) return rc;

I* */

/* A Slave is closing down. */

ift DPServer::DeathOEChildHnd(int sock. Buffer 6b)
DOCMsg msg(b) j
Buffer reply;

int rcj

rc = DeathOfChildRemProc(msg);

; Acknowledge Slaves message ,
msg.retcode = rc;
msg.save(reply);
FulfillRequest(sock, reply);

) return GOOD;



/*

srvprim.C
Brian Cox
March '94

#DPServer‘s distributed processing primitives member functions.
#define debug_on

#includa "srvprim.h"

const char * const DPServerPrimitives::Version = "0.95%;

/* constructor */
T’ServerPrimi&ives::DPServeerimilives()
int listengsize = 20; // * of listens that are queued up for
us
** create the well known server socket to
which all slaves and clients attach
if (M{kePipe(tsarversock‘ SERVER_TCP_PORT, listengsize) 1= 0)

syserr{"making the Servers socket*);
grverOK = FALSE;

else{
ilrt so_flag =1; // non zero value turns option/flag on
if (setsockopttserversock, SOL_SOCKET, SO_KEEPALIVE,
(char*) &so_flag, slzeof(so_flag)) < 0)
syserr(mSO_KEEPALIVE setsockopt error");

ServerOK - TRUE;
nfds = getdtablesiZe();

FD_ZERO(ia fde);
ED _SET(serversock, &afds);

>

/* Destructor */
DPServerPrimitives::-DPServerPrimitivea()
t /*
we're really just informing the clients and slaves that
we are shutting down - it's up to each requester to
take the appropriate action.
Inform ClientsOfShutdown?) ;
if {InformSlavesOfshutdown() == FAILED)
syserr("couldn't inform Slaves of server shutdown");

My Close the original socket.

) ClosePipe(serversock);

r* i

/* ErrorOnSocket *1
i{l OPSorV GrPrifflitivosi:ErrorOnSocket (int sock)

int rc, reqtype;
unsigned long id;
Slavelnfo sinf
clientinfo cinfo;

/1G o through the slave tables looking for the socket in

questﬂn
rc = slaverm .FindFirst(ginfo);
while (rc == GOOD)
if (si{fo.getSocketO == sock)
I

= sinfo.getsiD ();
reqtype = SLAVE_REQUESTER -
cout « "Reading/W riting to DPSlave 8" « id «

endl « flush;
3reak: 11—

--break out of whileloop -

else
rc = slaverm .FindNext(sinfo);
/1 if rc == FAILED then
1 Socket is not associated with a slave, so check the

clients.
I/I/ This works causa we break out of the previous loop.

if (rg

FAILED)

/1 Go through the client tables looking for the socket

in queslio’/

rc = clientrm .FindFirst(cinfo);
while (rc == GOOD)
if (cinfo,getSocket() == sock)

i{d = cinfo.getCIDO ;

reqtype = CLIENT_REQUESTER;

cout « "Reading/W riting to DPClient #" « id
« endl « flush;

break; // ---

-- break out of while loop -

else
rc = clientrm.FindNext(cinfo);

FAILED then the socket is not associated

with either
/a DPClient or a DPSlave, so it must be a RemProc
socket|

m
it (rc == FAILED)

{
ClosePipe(sock);
FD_CLR(sock, tafds);

syserr("error on a RemProc socket, while receiving
a result");

11
I/ Don't need to do anything as the DPSlave should
return a DOCMag

/1 and we will then see that the RemProc never
returned a result before

Il it diedl
11
return FAILED;
)

>

if (reqtype == SLAVE_REQUESTER)

{

if (sinfo.getstatus() == SLAVE_UNAVAILABLE)
{
syserr("Cannot fulfill request to slave as it is

UNAVAILABLE/DEAD1);
return FAILED;

}

else
if (cinfo.getStatus() == CLIENT-UNAVAILABLE)

{

ayserr{"Cannot fulfill request to Client as it is
UNAVAILABLE/DEAD");

return FAILED;

>

ErrorOnSocket(sock, id, reqtype);

return GOOD; // regardless])

/* Sot the statuu oi tha requestor to UNAVAILABLE, */
I+ Log tho error and relevant information in the error qgtMrtja. */

void DPSorverPrimitlvesttErrorOnSockettint nock, unsigned long id,
int reqtype)
( Slavelnfo sinfo;

Clientinfo cinfo;

Errinfo err;

int rc;

debug("\nErrorOnSocket\nl);
err.sock =

err.id =i
err.reqtype = reqtype;

if (reqtype == SLAVE_REQUESTER)
slaverm .Find(id, sinfo);
sinfo.setstatus(REQ_UNAVAILABLE);
slaverm .U pdate(sinfo);

else
. . )
clientrm .Findfid, cinfo);

cinfo,setstatua(REQ_UNAVAILABLE);
clientrm .U pdate(cinfo)?

if (ErrQ.put(err) 1= 0)
syserr("error queue full");

Clear up any outstanding errors in the error queue

Close the socket and delete It from the active set of sockets

void DPServerPrimitives::ClearUpErrora()
Errinfo err;
ClientDisconnectMag clnmsg;
slaveDisconnectMsg slvmsg;
if (ErrQ.getitem Count() > 0)
debug(m\nClearUpErrors\in");

while (ErrQ.get(err)

0)

(
if (err.reqtype == SLAVE_REQUESTER)

11

/1 Error with a connection to a slave,
11

syswarn("error on a DPSlave socket");
slvmsg.aetSystem ID (err.id) ;
slaveDetach(elvmsg);

)
else if (err.reqtype == CLIENT_RECUESTER)
(

11
/1 Error with a connection to a client
1



gyawarn{merror on a DPClient socket*);
clnmsg.setSystem ID (err.id);
ClientDetach(cinmsg);

ClosePipe(err.sock);
FD_CLR(err.aock, ¢afds);

/* aend the request message and then read the response from the
slave. */

/* at the moment the Server doesn't make any requests to the
client, *1
I* however this might change in order to facilitate better error

gyhandling.

int DPServerPrimitives::MakeRequest(unsigned long aid, Buffer

r{quesl‘ Buffer ¢reply)

Slavelnfo sinfo;
int sock, rc, retrycount = 10*

debug(“MakeRequest *);

elaverm .Find(sid, sinfo);
if (siwfo.getStatus() == SLAVE_UNAVAILABLE)

syasrr(“Cannot contact Slave as it is
UNAVAILABLE/DEAD");

r}tu rn FAILED;

/1 perform a request/response transaction, i.e. send the
request

Il to the server and then wait to read take the response back

from the server.

sock = sinfo.getSocket();

cout « * - Making request to DPSlave #* « sid « endl «
flush;

if ( (rc = TransactPipe(sock, request.data, request.length,
(void **);reply.data,

(unsigned long *)ireply.length, 60)) == FAILED)

serr(“MakeRequest(): transaction failed");
3rrcr0n50ckel(sock, aid, SLAVE_REQUESTER);

return rc;

/* send back the filled in message to the requester.
/* The reason for the name change in the 2nd parameter
/* is that to fulfill a request from a server

/* a Server must retur’Q a response - this is it.

i&! DPServerPrimitives::FulfillRequest(int sock, Buffer response)

Slavelnfo sinfo;
Clientinfo cinfoj
unsigned long id;
int reqtype;

int rc;

debug(“FulfillRequest");

cout « wm - Fulfilling request to DPRequester on Bocket #*
« sock « endl « fluah;
Send the message to the requester - Client/Slave.

if (WritePipe(sock, response.data, response.length) ==
FAILED)

sLserr(“FulflllRequestO“);

ErrorOnSocket(aock);
return FAILED;

>

return GOOD;

Ilfg-receive a connection request from a client. %

i-Inl DPServerPrimitives;iClientAttach (ClientConnectMsg ¢mag)
int rc;

debug(*CllentAttach() “);

s

; Get the requesters info from the measage.
; Add it to the Client Syatem table and update the
; measage

rc = clientrm .Attach(msg.cinfo); I* this sets
cinfo.cid */

/* a client is diaconnecting.... */
/* so we must atop all it's RemProcs andclean up */
/* the system tables...don'tforget toclean outthe */

/ results table also!

i{l DPServerPrimitivestjClientD etach(ClientD isconnectM sg ¢msg)

Processinfo pinfo;
int rc;

debug(mClientDetach*);
rc = procrm .FindFirst(pinfo);
while{ == GOOD
i (pinfo.getciD () == mag.getSystem 1D ())

KillProce9s(pinfo.getPIDO); // ignore return
code!

r} = procrm.FindNext(pinfo);

rc = clientrm.Detach(msg.getSystemID());

return rc;

-

*

i{l DPServerPrimitives::RunProcess (RunProcessMsg &msg)

Buffer request, reply;
unsigned long sid;
int re, i;

debug(“RunProcess()“);

for (i=0; iolaverm .Numslaves; i++)
(
N/ ytry and allocate a slave
if ((rc = slaverm .Alloc(sid)) == GOOD)
{
msg.pinfo.setSID (sid)
1
11 try and allocate a new process entry
1
if ((rc =procrm.Alloc(msg.pinfo)) == GOOD)
{
11
/1 send runprocess msg to allocated slave
/1 if it worked, update process table and break

out of loop

msg.save(request);
if ((rc = MakeRequest(sid, request, reply)) ==

{
msg.load(reply);
if ( (rc = msg.retcode) == GOOD)

{
msg.pinfo.setStatus(PROCESS_RUNNING);
procrm.Update(msg.pinfo);

break; 11 *break out of for

>

Il rollback process allocation

11
debug(“Runprocess: undoing process
allocation™);

procrm -Dealloc (msg.pinfo.getPIDO );
}

vz
/1 rollback the Slave allocation

11
debug(“RunProcess: undoing slave allocation®);
slaverm .Dealloc(mag.pinfo.getSIDO);

)
<
syserr(“error in allocating a DPSlave");
break; // ---—— break out of for loop -
)

msg.retcode = rc;
return rc;

I* kill process primitive */
1* */
int DPServerPrimitivess:KillProceas (unsigned long pid)

{

KillProcessM sg msg;
Buffer request, reply;
int rc;

debug{"KillProcess()“);

Get the actual pid of the process on the DistProc Slave.
ft Delete the pid from the Process system table and

it send a KILL_PROCESS to the appropriate Slave.

ft

11 find the process entry
if ((rc = procrm.Find(pid, msg.pinfo)) == GOOD)
t

I/l delete the process entry

procrm.Dealloc (pid) ;

if (msg.pinfo.getStatus() == PROCESS_RUNNING)
{



Il send the kill message

mag.save(request); rmsg.pinfo = pinfo;
re = MakeRequest(msg.pinfo.getSID(), rmsg.rinfo = msg.rinfo;
reply) ? rmsg.save (resultreply) ;
rc = FulfillRequestjclientsock, resultreply);
if (rc == FAILED)
{ syserr("could not return result to client");
IT delete the result
re3rm.Delete(pid); procrm .Dealloc(pid); Il clear process table

msg.retcode = GOOD;
r)ag.save(reply);

H update the process table only if the process is still
/1 down as running. Don't do anything if it's aborted

11
if (pinfo.getStatus() == PROCESS_RUNNIKG)
l*recelve a registration request from a slave. */ pinfo.setStatus(PROCESS_FINISHED);
-/ procrm.Update(pinfo);
i{l DPServerPrimitives:islaveA ttach (SlaveConnectMsg fimsg) }
int rc; 1l add the new results to the results system table.
debug(*SlaveAttach () m) ; rc = resrm ,Add(msg.rinfo);
)
rc = slaverm .Attach(msg.sinfo);
return rc;
return rc;
/lch Slave is closing down. *1 this is a request from a client to wait for a RemProc to
terminate.

i(ll DPServerPrimitives::SlaveDetach (SlaveDiaconnectMsg tmsg)

MAKE SURE THAT THERE ARE NOT MULTIPLE WAITS ON ONE PIDI
ResultMag dummyresultmag;

unsigned long aid, pid; search the results table Eor a suitable result
int rc, i; if (one is found) then
Processinfo pinfo; copy it and then delete it Erom the table,
send back to the Client,
debug <mSlaveDetach()m); clean out process table etc.
sid = msg.getSystemIDO ; unlock tables.
else
1 add this request to the WaitRemProc queue.
11 remove the Slave in question Erom the Slave system table
11 beEore trying to reallocate its' processes. srvResultFrom Slave will look at the WaitRemProcQueue when
it is called to see if there are any outstanding WaitAny
slaverm ,Detach(sid); requests on itB current result,
1" int DPServerPrimitives: :W aitProcess (W aitProcessMsg tmsg, int
Il for each process in the system table ck)
11 check if it is executing on the slave sid Sf
11 if it is then Proceaslinfo pinfo;
11 start the process running again on its new Slave unsigned long pid;
1" Buffer reply;
rc =procrm.FindFirst{pinfo); int rc;

for (i = 0; i < procrm.NumProcesses; i++)
( debug ("W aitProcess()m);

it ((pinfo.getSIDO == sid) (pinfo.getStatus() ==
PROCESS_RUNNING)) pid = msg.pinfo.getPID();
)
Il Set result messages retcode to FAILED. Il Make sure that the process id # is actually in the system,
Il Update the process tables to show that the # if not then return an error.

process failed.

/1 Call RemProcReturningResult with dummy message if (procrm.Find(pid, pinfo) == FAILED)
to handle results & waits

syswarn(mcouldn't find Process ID # in system tables*);

dummyresultmsg.retcode = FAILED; msg.retcode = FAILED;
dummyresultmsg.rinfo.setPID {pinfo,getPID ()); msg.save(reply);
pinfo.setStatus(PROCESS_ABORTED); FulfillRequest(sock, reply);
procrm.Update(pinfo); return FAILED;
RemProcReturningResult(dummyresultmsg); >
rc = Lrocrm.FlndNext(plnfo); "
) U Check the results table to see if the result is present
Il In other words make sure that the process is not running
return GOOD; any morel

11 This way we cover the chance that it was aborted or core
dumpe"

if (pinfo.getStatus() 1= PROCESS_RUNNING)

Handlo * RESULT from a RojuPeoc process (
h ItoitFroee** call could bo waiting on this rc = resrm .Find(pid, msg.rinfo);
bo that it can coinpleto* debug("\tresult is in the Result System Tablel’);
msg.pinfo = pinfo
Don't forgot to cloao the nockot it a wait is msg.save(reply);
pending on this resultl FulfillRequest(sock, reply);
int DPSorvorPrimltlvaaj iRwaFracRoturoingRiiimIt{RoisultHa'g tinair) resrm .Delete(pid); 11 clear the result
W aitProcessMsg rmsg; procrm .Dealloc (pid) 5 U clear the process table
Buffer resultreply;
Processinfo pinf efae
unsigned long pid;
int clientsock; debug("\tresult is not ready yet - adding request to
int rc; Wai!RemPro" Queue.");
debug('RemProcReturningResult()m); Il add the Wait request to the WaitRemProcQueue
/III along with the socket in use.
look up pid in the process system table rc = waitrm .Add(pidj sock); Il pairs with GetWaitReraProc
I in ResultFromSlave
if (procrm.Find(msg.rinfo.getPID (), pinfo) == FAILED ) )
syswarn(*couldn't find process info"); debug(“returning from W aitProcess()
return FAILED; return rc;
)

11 ok, that's the normal stuff done - now check for any
outstanding I

ly Wait requests in the WaitRemProcQueue looking for our
current

1resull

ResultM sg duiranyresultmsg;
pid = pinEo.getPID(); unsigned long pid;
if (waitrm.Get(pid, clientsock) == GOOD) ProceasInfo pinfo;

DeathOfchildRemProc */

int DPServerPrimitives: jDeathOfchildRemProc (DOCMsg tmsg)
C
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int finished, found = FALSE;j

debugCDeathOfChildRemProcO ‘) ?

find the process in the process table

check it’s status,

if it'e down as still working then
mark it as ABORTED

hed = procrm .FindFirst(pinfo);
((finished 1= FAILED) &fc (found == FALSE))
|(

((pinfo.getSID () == mBg.sid) &% (pinfo.getActualPID ()

=- msg.realpid){u
found = TRUE;

pr

If (ppnfo.getStatus() == PROCESS_RUNNING)

/1l update the process tables to show that the

ocess failed
I/l set result msg's ratcode to FAILED

/Il finally call RemProcReturningResult to

handle results + wa/'/s

¥
{
¥

{

>

pinfo.aetstatus(PROCESS_ABORTED);
procrm.Update(pinfo);

dunmyresultmsg.retcode = OOOD;

duirenyreaultmsg.rinfo .setPID (pinfo .getPID());

3em ProcReturningResult (dunBnyresultmsg);

>
else

) finished = procrm.FindNext(pinfo);

return GOOD;

id DPSerVerPrimitivesi}InformClientsO fShutdown ()

/* it's up to Clients to fend for themselvesl */

t DPServerPrimitivess!InformSlavasofShutdown ()
ServerShutDownMag msg;
Buffer request, reply;
Slavelnfo sinfo;
msg.save(request)-

/* for each slave in the system table */
Vad send it a ServerShutdownM sg */

for ‘{1c i =0; 1 < slaverm.NUmSlaves; i++)
i (i

0) slaverm .FindFirst(sinfo);
else slaverm FindNext(sinfo);

!\SﬂkeReques&(sinfo.ge&SlD (), request, reply);

return GOOD;
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clientrm .C
Client Resource Management.

V Brian Cox.

flinclude “"clientrm .h*

Il static data members
unsigned long ClientResM gr::client_id - 0;

/+ add a client requester to the client table. */

int ClientResMgr:jAttach (Clientinfo fccinfo)

int rc;
cinfo.setCID (++client_id)j /* aet client id */
rc = Insert(cinfo);

) return rc;
* — o

f* remove a client requester from the client table. */
i(! ClientResM gr::Detach (ulong cid)
Clientinfo cinfo;

cinfo.setCID {cid);
) return System Table<ciientinfo>::Delete(cinfo);

/* Find the entry for a particular Client id */

i(nl ClientResMgr:iFind (ulong cid, Clientinfo tcinfo)

Clientinfo c;
int re;

C.setCID(cid);
rc = Syatemiable<Clientinfo>::Find(c);
if Ire == GOOD]

ctnCo * cj

) rocui'n rci



A ’*

resultrm .C

procrm.C Result resource management.
Functions dealing with the Process system Table. Brian cox.
Brian Cox.
v .
finclude mresultrm.h*
Ainclude "procrm.h* Il#include “"procrm.bl
I*« identifier for processes in the system. *7 I — * >/
unsigned long ProcessResMgr: :process_id = 0; /= Tho fiddling around might not bo nocassary if tho rooult </
/* *1 1* is handled "proptirly* by the Sorvot- */
ri Constructur,y int ReaiiitRooMgr: rAdd (Resulttinfo rinfo}
- ——— <
P{ocessResMgr::PrucessResMgr() int rc;
> NumProcesses =0 ; rc = Insert{rinfo);
return rcj
/e ., —m — — *! >
/* allocate a slave on which to run aprocess. */ /*

f* look up the slave tableforthe next freeslave */
/* and use thatl */ /* Delete a result from the results table. */
int Proc&aaRooHgr;:Alloc (Processinfo tpinfo) int ResultResMgr:iDelete (ulong pid)

int rcj int rcj

Resultinfo rinfo;
debug{‘ProcessResMgrs:Alloc(}m);

rinfo.setPID (pid);

if (pgnfo.getSID () == 0) rc = SystemTable<Resultinfo>::Delete(rinfo);
syserr(*SI1D field is invalid, no process allocated!'); return rc;
rilurn FAILED; I
/. Get the entry for a particular Result based
j pinfo.pid will be non zero if it is a process that is on a process id #.
being reallocated, so we must keep the old pid
N-B. Reaultinfo is an unknown size as
if (pigfo.getPID() == 0) the result buffer is a pointer|
{" Have to do some fiddling about.
pthfo.setPID (++proces9_id); /* this iB a kludge - fix
later */ int ResultResMgr:jFind (ulong pid, Resultinfo &rinfo)
t
Resultinfo r;
; update the process table. Might be better if we wait int rc;
until
j the slave has responded but causeB trouble with r.setPID (pid)j
srvRunProcess(). rc = SystemTable<Resultinfo>:jFind(r);
if (rc == GOOD)
rc = Insert(pinfo); rinfo =r;
if (rc == GOOD)

NUmProcesseB++; // add one to num of current return rc;

processes ) >

) return rc;

A Process is finished and the result has been
t accepted by a Client so delete it from the
Process System Table.

When should the process record be deleted?
* once the result has been entered in the
result table, no

N —

or
* once the client has accepted the result

NSNS

(l\ ProcessResM gr::Dealloc (ulong pid)

Processinfo pinfo;
int rc;

debug(mProcessResMgr::Dealloc()*);
NumProcesses—; // one less process to worry about
I* now delete the process entry */

pinfo.setPID (pid);
rc = SystemTable<Processinfo>:jDelete(pinfo);

} return rc;
I i

/* Find th« entry for a particular Procoon id =, =/ V

i{l ProcessRes.h;llg'r.:.il.:.ir:a..(.ull.olng pid, Processinfo &pinfo)

Processinfo p;
int rc;

p.setPID (pid);

rc = SystemTable<Processinfo>:iFind(p);
if (rc == GOOD)
pinfo =p;

) return rc;
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roturn FAILED;
slaverm .C

Function* destino with cha Slavo Resource Manager-
Brian cox..

/* De-nllocatw a alavo procesa "7

sincludo *Blavorm.h* Int SlavoRonKgriiDcnlloc lulelig sid)
/* 1dentifier for filavo* in the system. */
*

Slavolnfo sinfo;
uleng SinveR«ftMgr:iBlavo,ld *

int rc|

If {(re * Fimlisid, alnto)] »* 9000;
I -

/+ Constructor */

Ie o/
SlavoResHgr: tSlavoResK groO

(I 1821 %06)

(
9info .aotHumProcafainto.geUfciHProea (J-1» t

7 = updato(Binfe);

} return set

/« A Slavo Requester ha» attached to the Server *1 /‘ ‘
/= Bo add it to the Slava System Tftblo o/ /+ Find the entry tot a particular Slave, V
tot SlfiveRusHgrtjAttach (Slnvoinfe (.ninfo) int SlavoRmnWgiTf3Find (ulorsg »id, Slovelnfo fcalnfo)
( i
Int rcj Slavolnfo s;
int rcj
/* net the «lave id 1 V
jtinfo.BotSXDI**£iave_id| ; /e kludge - fix it later m/ n.sotSTO (oid)j
ainfo.aetatatus (SLAVE_RWIiHU5Q) i rc * SyotenfPahlo<Slavolnfe>MFil«J(B) j
If {rc == GOOD)
rc m insert;ainfo)i »info we;
if (rc mm GOOD!
NumSlaves* *; ) return rc;
17/ Loads [flOLCAD] .AppondEntry (slave_id) i
return rc;
>
/+ A Slave Ruquestor haa disconnected Crons tho >/
I* Server «o delete it from the Slave System Table. </
I* e e S .
Int SlavcReaKgn tisatach (ulony aid)l
(
Siavelnfo »info;
NumSlaven—
ft Loads (NOLOAD] -D életo{aidi f
minfo.sotSHHaidi *
return Delete(ainfolt
waitrm .c

Brian cox,

’y I i*agsm tables for both WaitProcea» and WaitAnyProeeaa
.l

I/« Select which Slave willruntho nextproeona *(
I* Select the next slave Inthetableandupdate
te Hound robin achodulor- *7

*
3

»Include *vaitriB.h*
Int slavoRonMgr:iAllec (uleng fc«id)

( Slavolnfo sinfOj f Add a WaltAnyProeoao raqueat to the table entry, */
int rc, i
int WaltRoaKger(uleno pld, Int neckJ
ft go to cU'tr.olavo*» position In the table (
Pind(curr_al»vs. ninfoH int rei
K aitinfo w,
/1 now loop until wo find a slave
for tha0j i < KumsSlaveej I*+) W .aetPID (pid)t
CD W,setSock Uock) i
ft rc * Insertiw);
ft if no more slavea loft go back to the atart oi the
tabla.

It
if (FIndliext(ninfo) = FAILED)

if (FIndFirnt[ninfo) m« FAILED)
I+ Got tho entry for a particular Walt requost. m/
/1 something wrong with »y«t«m tablesf
Bid = 1KVALID,DPIDi
oyflwarnt'no siavo available.
return FAILED/

int WflltRonKyr: sGot (uneigmed long pld, int urack)
t

int rcj
W aitinfo W

w.aotP TD fjiid) i
"IF Find alave into and make sure It's not dead or rc * Find(w); ft find entry in tho table
unnvfiilabl it (rc » GOOD)

(
if (ainfo.getstetunO = SLAVE.RUNNI»}) Sock = v.getSocKO;
t rc = Delete(w)j // delete entry from table
old = ninfo.getSIBO \ >

ainfe.sotNUmProcotainfo.gotNuEnProeaO *111
return Updatedsinfo)t

)

return rcj
)

aid s INVALID_DPID;
sy8warnl*no slave avallabia, *) =
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8.3 DistProc Slave

dps_lavs‘c
Bfi\tiv 198

Distributed Fracassino Slavo - main modulo.

edofino debug,on

sincludo
mtocludo
sincludo
sIncludo

«ptdio,h>

<iastroani,h*

<string.h>

<ot:dlib>h>

lincluda *bignal.h>

Vincluda ’diHtproc.h*

eIncludo "tcp.h* I* network
communicatiorni «/ H H
Includo ’tnaaaagea'.tr #l'.dm\ﬂ(“i]ws
.

eincludo "Elvhndls.h’ I+ slave
licridiera */

inassago

I *I
DPSlavo 'dpolv m NULL;

/* EGtmination and signnl handlor. </

void QPSlavoShlitDown(int sigi

<
ic (dpslv *= tiyLLj
= eout « 'VnDiseProc Slavo intorruptad. Closing down.\n*
« fnar
Olilo
|
cout « *\nDintProc Slavo V « dpsiv->Vorsion «
closancj down. ..Vii*
« fiunhi
dpBlv->SlavoOK * FALSE;
11 doluto dptflvj
fl oxit(1J;
>
/o .
I+ startwotctiDog Process </
/lint StaitWatch&og O
11(
/1 int pld;
)
// pid m forici) i
ft if (pid mm -ii 1/ error in fork
1
H cerr « 'VnCouldn't fork watchdog process.\n’ << Mush;
11 dpalv->SiuvDOK = FALSE;
1] raturn FAILED;
1
1" olBB (pid t- 0} f! parent procose continously monitors
DPSorvor
or 1l«
cloooPipoOr Il RersProc socket
tor (th

sloop (WATCItXXILISTHRVAIIJ |
if (ChockSorvurStatuaO FAILED)

{

Send Dunrnr/SrvShut Do-rfnMngToS1ave (11
exit ii»*

)
)
>
/1 child pro-cows
-/
/** Function to handlo incoming roctuosts Ero«s a tJLstProc server.
o/
I*
o/

void )larvdleRoc|uasta O
Int ftfiwflock;

dohug {"SlavaHandioRogtioat«{| *1;

do
t
dohugi’Waiting Cor a reqwoot*»e+*);
ii (dpslv->WaltRoqu«at {nowaockJ > 0)
dpslv->DispatchRetiue»tinows&cic) ;
while !dpslv->SXaV*0K ** TRUK)i

)
Jo I

t InitDPSlavo V
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int InlIfDPSlava (int argic* char *argvl >

Blgnnl (SIdiNT, BPSlavoShutDOWfi}i signal

»ignoi (SICTZRH. DPSlavo.ShutDovti)j

if (argc M 2)

carr « 'VnError: no DP5crvsr host i »given.\n*
flush;
oxit(l)>

>

dpslv a now DP5levo(argv[l))i

If (dpslv =» HULL)
{
corr « *\nCouldn't Croats DPHInva\n“ « Clush;
oxit(21;
b

If (dp8lv*>Reglatorodi) »m FAILED]
corr « ’\nCoUliin’C register with DPServor.\n* «
delete dpalv;
ox1t(3);

cout « 4\nDI»tProc Slave v* << dpolv~»Version « =

started,\n* « flush;
return OOOOi

i

I* main function. */

int main(int urge, char *argv|}}
Ini«>PSlavn(argc. argv) ;

1 StartW atchDog (J;
HandloRequaota (};
delsto dpslv;

return 0OO0O0O;

handler

flush;



slvhndls.C

By: Brian Cox

W rittem Sept '93

Updated: March '94

Use: D istributed Processing slave - message handler
functions

#define debug_on

#include <etdio.h>
Ifinclude <string.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
#include <iostream.h>
Ainclude <ays/wait.h>
#include <syB/m_wait.h>
#include <sys/time.h>
#include <sys/select.h>
sinclude “"distproc.h"” /* system network
constants */

flinclude ‘tcp.h’
communications */
include 'messages.h*

/* network
/* message objects

ftinclude 'slvhndls-h"

’*Distproc Slave global variables, ’:AI/

»define MAXRETRY 60

const char * const DPSlave::Veraion = m=0,95,j
number. */

unsigned long DPSlave::SlavelD =
char * DPSlave::DPServerHostName;
int DPSlave::slavesock;

/* slave version

/* Constructor */

P5lavo{char * srvname)

registered = FAILED; /Il pessimistic approach
SlaveOK =FALSE;
SlavelD =0;

Il place the slave server in its own, private process group.
Igy process group id is set to pid.
setpgrp();
if (sj\iname 1= NULL)
if create the well known slave socket to which the
Il new process(RemProc) can attach before we spawn it
Il just to be safe. Avoids trouble with socket in use

Iy timeouts also

if (MakePipe (&SlaveRainProcSack, SLAVE_REMPROC_TCP_PORT,

5) == 0)
11
/1 try and open a connection with the dp server
1
for (i=0;i<MAXRETRY i++)
if (OpenPipe(tslavesock, SERVER_TCP_PORT,
srvname) == GOOD )

if (C{nnec!ToServer(srvname) == GOOD)

r&gistered = GOOD;

SlaveOK = TRUE;

signal(SIGCLD,
DPSlave::DeathOfChildHandler);

Il Stuff for select()
nfdB = getdtablesize();
FD_ZERO(tafda);
3D_SET(sIavesock, tafda);

else
syserr("Could not connect to DistProc

igeak:

syswarnCcannot open socket to DPServer

Il break out of retry!

still trying’');
sleep{10);

syserr('SlaveRemProc Bocket already in use.l)»
syserr(*No DistProc Server host name given.\n*);

— 9

IfgD estructor

Tslave: :-DPSlave()

if (R{gia!eredo
CtosaPipe(SlaveRemProcSock);
DisconnectFromServer () ;

GOOD)

11
//I Close the original socket,

ClosePipe(slavesock);
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if {DPServerHoatName != NULL)
delete [] DPServerHostNamej

cout « endl « flush;

I Wait for a request */

int DPSlave: iHaitRoijUes6 (int &sock)

{ .
int clilen, rc, fd;
if (Registered{) FAILED)
return -1;
while (1)
!{oul.lvisec = 40; // times out after 40 aeccnds.

tout.tv_usec = 0;
bcopy((char *)&afds, (char *)trfds, sizeof (rfds));
rc = select(nfdai trfda, NULL, NULL, ttout);

| Make sure select returned OK

if (rc < 0)
(
syserr{'select error');
return rc;
}

“ Check if select timed out

if (rc == 0)
{ .
cout « *\nSelect timed outl!l\n* « flush;
return rc;
)

else
i We have activity on a socket.
it (rc > 0)

(
sock = slavesock;
return rc;

}
> 11 end while

return rc;

For the moment this is a serialised Slave. It probably
should fork a process to handle the incoming request.
The reasons for forking() a sub process to handle the

servers request are:
1. multiple DistProc Servers - several requests

3, DistProc message from server which effects either
the Slave process (ClientShutDown or ServerShutDown) or
a sub process it is executing on behalf of the DistProc

Server (e.g. KillProcess)

t DPSlave::DispatchRequest (int sock)

Service sv ; no_serviee;

Buffer b; I* pointer to message buffer
unsigned len; I* length of message */
BaseMsg mag; /* base message object */
int rc;

debug(‘DiapatchRequest() m);

if (Registered!)
return FAILED;

FAILED)

l" read the request from the pipe

if (ReadPipe(sock, (void **)fcb.data,
*)tb.length, 60) == FAILED)

(unsigned long

s{yeerr("couldn't read request from DistProc Server");

SlaveOK = FALSE; /1 assume that the Server is dead and
exit

return FAILED;

)
msg.load(b); I* recreate the message object
av = msg.getService<); I* what'B the request? *1

switchg (sv)

Il The following messages can only come from a DistProc

Server. //

case run_proc :rc = RunProcess(sock, b);



return FAILED;

case kill_proc rc = KillProcesa(sock, b);
break;
Iy see if the process actually existed.
case server__shutdown rc = ServerShutDown(sock, b);
break) if ({alus = -1)
case check_slave rc = Checkslave(sock, b); syswarn("process does not exist");
break; return(FAILED);

>

default syswarn("DistProc Slave: unknown message

received. *); return(GOOD);
break;

11 ClosePipe(sock); * The Server is closing down. The Slave must kill off *1

* it's child processes and exit No reply message. */
return GOOD;
> nt DPSIftv®::ServerShutDown(int s, const Buffer &b)
BaseMsg msg(b);

/* The following functions handle incoming requests from a Buffer reply;

/* DistProc Server. They take care of all Server -> Slave

I* requests. if (RegisteredO == FAILED)

return FAILED;

debug("DPSlave::ServerShtuDown");
w/* Handle a RUN_PROCESS request from a server.

/* Hava to pass along the output address and outsize also! msg.retcode - GOOD;
J* The actual size of the pointer to output must be passed msg.save(reply);
/* around as well as pointers will vary in size across if (FulfillRequest(s, reply) == FAILED)
/* various platforms and systems. I't's ok for the moment (
/* as UNIX is the only OS in use. syswarni"sending serverShutDown reply message to
server");
t DPSlave; jRunProcess(int b, const Buffer &b) return(FAILED);
>

RunProcessMsg msg(b);
Buffer request, response;

Char clientname[MAX_LEN_CLIENT_NftME], kill off all the children.
filenam e (MAX_LEN_IMAGENAME] ;
void * input; KillAlIC hildrenO ;
unsigned insize; SlaveOK = FALSE; Il set flag to show that slave must
int actual_pid = 0; shutdown!
int rc;
return GOOD;
if (Registered() == FAILED)
return FAILED;
debug("KunPEQoesa()m)) I* *)
,; check if connection was successful. *'/
1
11 Extract information from the RunProcessMsg message i{l DPSlave;:Registered ()
msg.pinfo.getClientName(clientname); return registered;

msg.pinfo.getFileName(filename);
msg.pinfo.getinput(input, insize); /* get the input for the
process */

/ 1
I* Protected member functions. */
I*= !

1
Il fork the given process under the original users account-

1
rc = spawnprocess(clientname, filenane,
input, insize, I* open a connection with the server, send the request message
msg.pinfo.getPID O , actual_pid) ; /* and then read the response from the server Finally close
/* the connection with the server
tt fill out the return fields in the message and irt DPSlave;:M akeRequest(const Buffer trequest, Buffer sresponse)
return it to the server {

int
msg.retcode = rc; 1* rc of SpawnProcess *1
msg.pinfo.setActualPID (actual_pid); /* return actual pid of debug(’DPSlave::MakeRequest ()");
new process */

msg.save(request); Il perform a request/response transaction, i*e. send the
request
if (FulfillRequest(s, request) == FAILED) Il to the server and then wait to read take the response back

Wy from the server

syswarn(msending RunProcesa reply message to server");

turn(FAILED); if ( TransactPipe(slavesock, request.data, request.length,

} (void **)tresponse.data,

(unsigned long *)“response.length, 180) 1=
delete [] input; GOOD )
syswarn("in pipe transaction");

return rc;

* *

Pchandle a KILL_PROCESS request from the Server. 91

return GOOD;

send back the filled in message to the server.

it DPSlave;:KillProcess(int s, const Buffer kb) The reason for the name change in the 2nd parameter
{ is that to fulfill a request from a server
KillProcessM sg msg(b) , msg; a slave must return a response - this is it
Buffer response;
int pid, status; nt DPSlave;sFulfillRequest(int sock, const Buffer &respon9e)
if (Registered() == FAILED) debug("DPSlave: jFulfillRequest()");

return FAILED;
debugCKill Process"); 1Wrile the message to the server.

1/
,,get pid of process to kill.

( WritePipe(sock, response.data, response.length) 1= GOOD
pid = msg.pinfo .getActualPIDO ; syswarn("writing to pipe");
rjlurn(FAlLED);

/1 delete the pid from the list of children and then
ﬁ kill of the child process. return(GOOD);

status = KillChild(pid);

‘send back the result of wait to the server. connect to the server to announce our engagement
msg.retcode = status; The following aren't used at the moment!
msg.save(response);
if ( FulfillRequest(s, response) == FAILED) 1. what must the slave send to the server?
requester type - slave
syawarn("couldn't Bend Kill reply message to server"); slave address, the server can get this itself!
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what must the server send back to the slave?
slave Id

nt DPSlave::ConnectToserver(char * srvname)

SlaveConnectMsg msg, rmsg;
Buffer request, response;

debug(*DPSlave: jConnectToServer0 ") ;
If (srvname == NULL)

{

syswarn("no hostname specified for DistProc Server*);
return FAILED;

)

DPServerHostName = new char[strlen(srvname)+1];
strcpy(DPServerHostName, srvname);

4 set the source address field of the message.

gethostname(SlaveHostName, MAXHOSTNAMELEN) ;
msg.sinfo.setHostName(SlaveHostName);
msg.sinfo.setPort (SLAVE_TCP_PORT) ;

Il Inform the server of our presence and that we are a slave
l" make the request to the server.

msg.save(request);
if (M{keRequesl(request, response) == FAILED)

syswarn("couldn't send Connect message to server");
return FAILED;

I reconstruct the response message into a message object

rmsg.load(response);
if ({sg.relcode == FAILED )

syswarn(‘DistProc Server wouldn't accept slaves
connection request”);
rjlurn(FAlLED):

extract Slave-id from the response message
SlavelD = rrasg.sinfo .getsiD O ;

return GOOD;

t* Disconnect from the server This will kill off any
/* child processes that are being executing on behalf
I* of the server

i{l DPSlaves:DisconnectFromServer()

SlaveDisconnectM sg msg, rmsg;
Buffer request, response;

if (Registered*) == FAILED)
return FAILED;

debug("DPSlave::DisconnectFromServer()*);

Iy set flag to show that Slave is closing down!

SlaveOK = FALSE;

/ let server know who we are

mag.setSystem ID (SlavelD) ;

It

If tell the server that we're closing down,
ft make the request to the server

11

msg.save(request);

if (MakeRequest(request, response) == FAILED)

{
syswarn("sending Disconnect message to server");
return FAILED;

)
kill off all the slaves children
KillAlIChildren{);
rmsg.load(response);

return rmsg.retcode;
Private member functions v

/* Create a process on behalf of the Server.

1 As well as forkingO the appropriate process other

/* information so that the new process can:

[ A 1. access it's input

[ R 2. communicate with it's parent (Slave) so that the

™ output of the process can be returned to the client
I* How is this info passed?
!

int DPSlave::SpawnProcess(char *clientname, char +filename,
void *input, unsigned int insize,
unsigned long pid, int &actual_pid)

int s, clilen;

struct sockaddr_in cli_addr;

int rc, childpid;

char accountfMAX_LEN_CLIENT_NAME+3] * 11 field for
clients name

if (Registered() =» FAILED)
return FAILED;

debug("DPSlave::SpawnProcess()*);

streat(account, clientname);

Ify try and create the new process.
if ( (childpid = forkO) == -1 )

{
syserr("cannot fork");
return(FAILED);

)
else if (childpid «* 0) I - Child Process »
( ) .
debug ("\tChild process - calling execlpO ...*);
cout « "\nln forked process; slave socket #" «

slavesock « endl;
ClosePipe(slavesock);
ClosePipe(SlaveRemProcSock);

Il This one uses security...
11

11 rc = execlp("rsh”, "rsh", SlaveHostName, *-1",
clientname, "nice", filename, NULL);

ﬂ This one doesn't use security
re

- exeelp(filename, filename, NULL);
syserr('\tcouldn't execlpO process]");

I* ClosePipe(paramsock); DO | NEED TO CLOSE THE PIPE IN
THE CHILD jg*1

Il Need to inform slave that process wasn’t executed

correctly
/1 before we exitl!
1
exit(rc)i
}
else 1 ---  Parent Process --

d(ebug("\tRemProc process spawned! This is the Slave
process.");

cout « "\n\tRemProc system pid is m« childpid « endl
« flush;

11
U SHOULD DO A TIMEOUT HERE IN CASE THE CHILD PROCESS
11 NEVER CONTACTS US, CAUSING A DEADLOCK IN THE DPSLAVE

/1 wait for the new process to contact us to look for
IIII its input and output parameters.

rc = WaitConnectPipa(SlaveRemProcSock, &s, tcli_addr,

if (rc != GOOD)
syserr("waiting for RemProc to connect to the

Il send the processes DistProc system PID.
Il send this Slaves id
" send the input parameters.

W ritePipe(s, (void *)tpid, sizeof(pid));
W ritePipe(s, (void *)&slavelD, sizeof(SlavelD));
W ritePipejs, (void *)DPServerHostName,
strlen(DPServerHostName)+1);
W ritePipe(s, input, insize);
)
ClosePipe(s);

actual_pid = childpid;
return rc?

)

1l something seriously wrong if we reach here!
If
syBerr("something seriously wrong with fork()!!");

return FAILED;

I* send a process termination signal to the specified
/* child process and then wait for the SIGCLD (Death of child)
/* signal to show that the process is terminated.

int DPSlave::KillChild(int pid)

L

int status;

debug("DPSlave::KillChild()m);

Il we don't want to the DOC handler to report to the DPServer

ft

signal(SIGCLD, SIQ_IGN);

status = kill(pid, SIGKILL); I* child can't catch SIGKILL
signal */



if t status =» 0 J
pid = waitUstatus) j ti -1 *> no more child

PR

syserr(*DPSlaves tKillChild:: c<mldn"t kill pronoun*Jj
cerr « 'Errori couldn't Kill process « « pid « *ndl

ff reestablish the DOC nignal handler for future children
gtismal (S1QCitD, DPiflavo! IDnathOfChlldHandlor) f
) rottirn status?
10
I+ kill off dlIl tho slavea childran. */
V(]id DPSInvotiK I11AliChildrcn (|
int status, grppidi
debug{‘DPSlave: :KIIIM IChildrOnO *) i

grp(>id * gotpgrpd j /* y«it thin process group» pid

if wo don't want to tho DOC handler to report to the DPServer
T
signal{51GCLD, S10s IGN>j

ft
it send n SIGTERH signal to each child

ft
status * kill (- (grppidl, SIOKIU.);
if ( status « 0 >
while (wrtic(tatatao> > 6) // -1
processo™*

no more child

t
reestablish the DOC signal handler lor future chlldrai

) signal (SIGCLD, DPSlavos iDeathOiChildH ftndUr) f

/* catches DOC signals. If tho child core duaped then wo must */
/* inform the BistProc Sorvur of tho Childs untimely demise.

void DPSIAve::DoothO£ChllctHandlor tint slg*
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int pid, childpidi
union wait status;
char top®S3Ji

debug (“tjPSlInvo ; ;DeathOfChlldKandler () *)?

if reestablish the DOC signal handler for future children
tT

pid =vmlIt({Int N ftstatuulj

cout «
status.w .statua « s\n- «

*\nRo«iProc ** « pid « =, exit status * «
flush;

cout « *\nwait{J returned with pid !* « pid
« *\nv_statue: * <* status.w _ataCus

« + \nw_retcode: * « status.w,retcodo
« * \nw_coredujnp; * « status,w_coredump
« * \Bw_Cortnsig: * « status .w_tetns»igr

tonly inform the OPSorver if a Child core dumped|
If |etntus.w_coredunip 1= 0)
if { (childpid + forkO) =« -1 )
synerr(*cennot fork in DeuthofChildHandlor'Jj
oluo it (childpid =m Q
ft

if child inform« Servor that a KemProc coro

\
DO£3isg JMigi
Buffet request, replya

msg.sld » Slave I Dj

isflg.roeipid = pid?

Bag.oiive (request) ;

debug (*DPSlaves iDOcMsndler;: making roquoot to

DPServar*)j

If (MakeRoquast(request, reply) *= FAILED)
sysorr(*aonding DOC message to aerver*);

debug<*DFSiavo: :DQCHandler: tequost con”ileted.

SIULRE

ft Parent continuas.

signal {SIGCLD, DPSlavo-. iDeathOIChildtéandlorJ ;



8.4 Message Classes

Buffer tmp;
messages.C tmp = BaaeMsg: :load(b); // b points to rest of object in
Brian Cox. buffer
August 1993, trap = LOAD(tn$j, sid) ;

tmp = LOAD{tmp, realpid);
All the system message class manipulator functions are in
this file. return bmp;

Sinclude "msgdefs.h”
Ainclude "messages.h”

#include 'saveobj.h" llyi
I* Server lhutDownMsg
/*s55==atM»*m tnnm *ael
[ Vv
fkcons!ruclor 97
I/l BaseMeg constructor ServerShu(DuwnMsg::ServerShulanMsg()
TSeMSg::BaseMsg()
{
length = 0; setService(server_shutdown);
retcode = GOOD; >
setService(no_service);
setSystem ID {0); I ./
} /* re-constructor. */
I/l BaseMag re-construetor ServerShutDownMsg: :ServerShutDownMsg (Buffer b)
TseMsg::BaseMsg{Buffer b) ; BaaeMsg()
{
load(b); load(b) ; // this will fill in BaseMsg by calling
> BaseMsg::load{)
)
/1 doesn't work if pointers are used - only arrays1
int BaaeMsg:;save(Buffer kb) 1* >/
( /* ServerShutDownMsg::save */
/1 first of all make sure b i9 empty 1* >/
b.empty{); ipt ServerShutDownMsg::save(Buffer kb)
U now copy each element of the class to the buffer BaseMsg::save(b); /1 call parent objects save()
SAVE(b, length); function
SAVE(b, retcode);
SAVE(b, systenuid); return b.length;
SAVE (b, sv) f >

return b.length;
/* ServerShutDownMsg::load */

ceaa Vv
?ffer BaseMsg:jload{const Bufferk b) Buffer ServerShutDownMsg::load(const Buffers b)
(
Buffer tmp; return BaseMsg::load(b) ; Il b points to rest of object
in buffer
if (b.length <= 0 || b.data == NULL)
{
syserr("BaseMsg::load () passed an empty message
buffer™);
tmp.empty(); ClientConnectMsg
return tmp;
>
I*
tmp = LOAD(b, length); /: constructor */
tmp = LOAD(tup, retcode); I* - e ]
tup = LOAD(tmp, system _id); ClientConnectM sg:iClientConnectM sg (>
tmp = LOAD(tmp, sv); : BaseMsg{)
return tmp; I/l points to rest of object in buffer - derived setService(client_connect);

/* re-constructor. */

I* ClientConnectM sg:iClientConnectM sg(Buffer b)
BaseMBg()
) o S —— vV load(b) ; // this will fill in BaseMsg by calling
llfk constructor W/ BaseMsg::load ()
3
DOCMsg:: DOCMag()
* */

/* ClientConnectM sg:jsave */
setService(death_of_child); /7* *l
int ClientConnectMsg;:save(Buffer kb)

BaseM sg:jsave(b); Il call parent objects save() member
function
cinfo.save(b);

—y
DOCMsg(Buffer b) return b.length;
: BaseMsg()
load(b) ;
/* ClientConnectM sg:jload */
./ Buffer ClientConnectM sg:jload(const Bufferk b)
/* DOCMsgr:save */
t DOCMsg::save(Buffer kb) tmp = BaseMsg: :load(b) ; // b points to rest of object in
{ buffer
BaseM sg::save(b); tup = cinfo.load(tmp);

SAVE(b, sid);
SAVE(b, realpid);

return b.length;
> tDisconnect]l

 —— [ —

/* DOCMsg: :Load */ /* constructor */
J% - —x]

ffer DOCMsg::load(const Bufferk b) ClientDisconnectMsg::CllentDiBConnectM ag{)
s BaseMsg0



setService (client_ahutdown) ;

> /* W aitProcessMsg::Load “/
1* o/ Buffer WaitProcesBMsg::load(const Buffers b)
I* re-conBtructor /
Buffer tmp;
CllontDiseonnectHjig: :ClientDisconnectM gg(Buffer b)
; BaseMsgO trap = BaseMsg;;load(b); // b points to rest of object in
buffer
load(b); tmp = pinfo.load(tmp);
3 tmp = rinfo.load (tup);
return tmp;
)
/* ClientDiseonnectM sg: saave */
int clientDisconnectM sg::save(Buffer fch)
{ /* KillProcoBflHOOQg
BaseM sg::save(b);
return b.length; I >/
3} /* constructor */
KillProcessMsg; jKillProcessMsgO
I* ./ BaseMsgO
A* ClisntDifIConnciCtMNg ; :Doad */
setService(kill_proc);
Buffer ClientDisconnectM sg::load(const Buffers b) }
{
raturn BaseMsg::load(b); Il b points to rest of object
in buffer
> /* re-constructor */
KillProcessM sg::KillProcessM sg(Buffer b)
7« B »» < EE e/ : BaseMsgO
/* Run on n ft«a */
load(b);
)
I*
/* constructor */
% _x ]
RunProcessMsg;:RunProcessMsg() /* KillProcessM sg::save */
setService(run_procJ j ipt KillProceBsM ag::save(Buffer sb)
>
/* ,7 BaseMsg::save(b);
/* re-conatruetor */ pinfo.save(b);
RunProcessMsg: :RunProcessMsg(Buffer b) return b.length;
{ : BaseMsgO >
) load(b); I~ x
/* KillProcessM sg::Load */
/* RunProcessMsg::save */ Buffer KillProcessM sg::load(const Buffers b)
t
i{\ RunProcessM sg:jsave(Buffer sb) Buffer tmp;
BaseMsg: :aave(b) trap = BaseMsg: :load(b) ; // b points to rest of object in
buffer
pinfo.save(b) ; tmp = pinfo.load(tmp);
return b .length; return tmp;
} >
/*_-_-_-_-_-_-_-_
/* RunProcesBMsg: : liwyj */
I ResultMsg
Buffer RunProcessMsg::load(const Buffers b) /* »<amwwwb
Buffer tmp; /* ’7
/* constructor */
tmp = BaseMsg::load(b); // b points to rest of object in
buffer ResultM sg::ResultM sg()
tmp - pinfo.load (tmp) ; BaseMsgO
<
} return tmp; setService(result);
)
Ie» »» . » >»mE ....o»»».».«»»»H l«.» LR /e — ./
/* Wfll tProcuseiKng \% J/* re-constructor */
Te il ®» »»» »>U»»«X»»U»»»»» | ooy e -
ResultMsg:jResultMsg(Buffer b)
I* e *! t BaseMsgO
/* constructor */
* load(b) ;
W aitProcessM sg aitProcessMsg() >
BaseMsgO
setService(wait_proc); ° .
> /* ResultMsg::save */
int ResultMsg:;save(Buffer sb)
{
I* re-constructor */ BaseMsg::save(b);
W aitProcessM sg::W aitProceaaM sg(Buffer b) rinfo.save(b);
BaseMsgO
return b.length;
load(b); >
>
/* ResultMsg::Load */
W aitProcessMsg::save V.
Buffer ResultMsg::load(const Buffers b)
it WaitProcessMsg::save(Buffer Sh) (
r Buffer tmp;
BaseMsg::save(b);
tmp = BaseMag::load(b);
pinfo.save(b); tnp =rinfo.load(tnp);
rinfo.save(b);
return tmp;
return b.lengthj )
)

123



: BaseMagO

feutM nnn<ii«s3i*uiiim « SR «H bbwtCT«asam i» M«ns8»» */ (

1* s lesvcConnacCMeg */ load(b) ;
)

Jo—

/+ conatruetor </
1* */ /* SlaveDisconnectMag;taave */
SlaveConnectMsg:s SlaveConnectMsg()

¢ BaseMsg() int SlaveDisconnectM ag::aave{Buffer tb>
( <
) setService(alave_connect); BaaeMag::save(b);

return b.length;

I* trtt"OociiCructoe V

SlaveConnectMsg: iSlavaConnoctMagiB4itC«r by SlaveDisconnectMagiiLoad */

1 BanaKegO
Buffer SlaveDisconnectMag::load(const Bufferfc b)
load(b); {
} return BaaeMag::load{b); /1 b pointB to
in buffer
}
1* *!
/+ SlaveConnectMsg:;save */
int SlaveConnectM sg:isave(Buffer &b) I R . QuerystatusMsg .
{ / leaaailEalilt;sxm ;:m;»iiiii.iicaiics==eearianw it;
BaaeM agiisave(b);
¢ ® /+ !
ainfo.save(b)j /* conatructor */
Y PR *f
return b,length; QuerystatusM sg: :QueryStatuaMag ()
) t BaaeMag()
(o}
/* */ setService(query_atatue);
J

/+ SlavoCennoctKftg::Load */

ffer SlaveConnectM sg:sload(conat Buffer* b]
I* re-conatructor «/

Buffer tmp;
QuerystatusM sg: jQuerystatusM sg(Buffer b)
tn®) = BaseM agstload(b); // b points to rest of object in : BaseMagO
buffer {
tmp = sinfo.load(tmp); load(b)j

} return tmp/

/* QueryStatuaM ag:jsave */
= 51nvoDi oConnoctMsy o/ int QueryStatuaM ag:csave(Buffer kb)
LK . . . . . X .

BaseMsg:;aave (b);

Vv

“Couatruetor */ return b.length;
>
SlaveDisconnectM ag::SlaveDisconnectM sg()
{ : BaseMagO /
) setService(slave_3hutdown); I* QuerystatusM sg:iLoad */
Buffer QuerystatusMsg::load!conat Buffert b)
* (
/* / return BaaeMag::load(b); Il b points
/* [ in buffer
. }

SlaveDisconnectM ag::SlaveDisconnectM ag (Buffer b>
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8.5 Info Classes

prcinfo.C
Remote Process Information class member functions
Brian Cox.

#include "prcinfo.h”

I* constructor */
P(fucesslnfozzPrucesslnfo o

setPID (0);

setCID (0);

setSID(Q);

setActualPID (0);

sets tatua(0);

setProcRetCode(0);

setClientName(‘m);

setFileName('m);

setOutputPtr{(Buffer *)NULL);
// result_ptr = NULL;

input_buff = NULL; /1 don't use setlnput(NULL,0)
insize = 0;

| —

P(rocesslnfo:iProcesslnfo (const ProcessInfo ¢source)
) *this = source;
gD estructor %

P{ocesslnfo..

if (input_buff != NULL ¢¢, insize > 0)
delete 1] input_buff;

~Processinfo ()

/* Assignment Operator V

P(focesslnfol Processinfo:joperator = (const Processinfo ¢source)

Il check if we are copying ourselves?
if (this -- ¢source)
return *this;

If (input_buff 1= NULL insize > 0)
delete {] input_buff;

setPID (source,pld);
setcID (source.cid);
setsiD (source.sid);
setActualPID (source.actual_pid);
setStatus(source.status);
setProcRetCode(source.procretcode);
setClientName((char *)source.clientname);
setFileName((char*)source.filename);
setinput(source.input_buff, source.insize);

size_of_output_ptr = source.size_of_output_ptr;
memcpy(output_ptr, source.output_ptr, MAX_PTR_SIZE);
11 result_ptr = source.result_ptr;

return *this;

/. i

I* Equality Operator */
imt ProcessInfo:joperator == (const Processinfo ¢source)

return (pid == source.pid)-

/* Save object */
{l Processinfo:jsave (Buffer ¢b)

Il now copy each element of the class to the buffer
SAVE(b, pid) ;

SAVE(b, cid);

SAVE(b, sid);

SAVE(b, actual_pid);

SAVE(b, status);

SAVE(b, procretcode);

SAVE(b, clientname, (size_ttMAX_LEN_CLIENT_NAME);
SAVE(b, filename, (size_tfMAX_LEN_IMAGENAME);

SAVE(b, size_of_output_ptr);
SAVE(b, output_ptr, (size_ttMAX_PTR_SIZE) ;
11 SAVE(b, (¢result_ptr), sizeof(Buffer *));
SAVE(b, insize);
if (insize > 0
SAVE(b, (char *)input_buff, (size_t)insize);

) return b.length;

—

B(uffer Processinfo:sload (const Bufferfc b)
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Buffer trop = b;

tmp = LOAD(tmp, pid);

tmp = LOAD(tmp, cid);

trap = LOAD(trop, sid);

tmp = LOAD(tmp, actual_pid) ;

tmp = LOAD(tmp, status);

tmp = LOAD(tmp, procretcode);

tmp = LOAD(tmp, (char *)clientname,
(size_t)MAX_LEN_CLIENT_NAME);

tmp = LOAD(tmp, (char *)filename, (size_ttMAX_LEN_IMAGENAME);

tmp = LOAD(tmp, size_of_output_ptr);

tmp = LOAD(trap, output_ptr, (size_t)fMAX_PTR_SIZE);
11 tmp = LOAD(tmp, (¢result_ptr), Bizeof(Buffer *));

tup = LOAD(tmp, Insize);

it (inpize > 0)
i{pu&_buff = (void *)new char[insize];
tng = LOAD(tmp, (char *)input_buff, (size

else
input_buff = NULL;

return tmp;

I* Processinfo::getPID */

unsigned long Processinfo::getPID ()

)
x

I* Processinfo:jgetCID */

unsigned long Processinfoj:getCID ()
(

>

return cid;

-

I* Processinfo::

unsigned long Processinfo:jgetsiD ()

return sid;

>
1* */
/* Processinfo::getClientName */

void Processinfo::getClientName (char
clnname[MAX_LEN_CLIENT_NAME])

_t)insize) ;

strncpy(clnname, clientname, MAX_LEN_CLIENT_NAME-1);

clnname[MAX_LEN_CLIENT_NAME-1] = "\ 0
)
1* */

I* Processinfo:jgetFileame */
1* */

void Processinfo::getFileName (char fname[MAX_LEN_IMAGENAME])

strncpy(fname, filename, MAX_LEN_IMAGENAME-1);
fname (MAX_LEN_IMAGENAME-1] = '\0"';

I* Processinfo:jgetActualPID */

I+ */

int Processinfo:jgetActualPID ()
return actual__pid;

* *i

/* Processinfo::getStatus */

I* */

int Processinfo:jgetstatua ()

return status;

r >/
;" Processinfo:jgetProcRetCode "//
int Processinfo:jgetProcRetCode ()
{

return procretcode;
>

I* Processinfo:jgetlnput */

I* *
void Processinfo::getinput (void 1 ¢input* unsigned ¢size)
{ ) o

size = insize;

input = (char *) new char [insize]

memcpy(input, input_buff, insize);

/* ProcessinfojjgetOutputPtr

/* Here, we want to get the saved pointers address
/* copy it to the address pointed to by outptr.

void Procesalnfo:jgetOutputPtr (Buffer * outptr)

{

and



) memcpy (outptr, outputjptr, sizaof(outptr))j
4
Proceealnfo:isetPID */
void Processinfo;jaetPID (unsigned long prooid)
pid = procid;
ProceaslInfo;jsetCID */
void Proceaalnfoi;setCID (unsigned long elientid)

cid = elientid/

* Proces9Info;:satSID */
void Processinfo ;jsetSID (unsigned long nlavoid)

aid = slaveid;

* Processinfo;;setClientName */
old proeetalaftfi xaatClientNomd (char * olmuimo)

strncpy (clientname, clnname, MAX_LEN_CLIENT_tRME) ;
clientname[MAX_LEN_CLIENT_NAME-1] = '\0 '/

ProcessiInfo;;setFileName */
void Proeeaalnfol!saetFileName (char * fimn«}

strncpy(filename, fname, MAX_LEN_IMAQENAME);
filenam e [MM_LEN_IMAGENAME-1] = '\0 'f

* Processinfoi :setActualPID */
void Proceasinfo;jsetActualPID (int real_pid)
actual_pid = real_pidj
processinCos ?sotstatuu *}
void ProcessIinfo::setStatus (int slavea_statu3)
status = alavea_status;
*1
ProceasiInfo:jsetProeRetCode “7
void Processinfo;isetProcRetCode (int rc)

procretcode = rc;

*1
Procesalnfo:isetinput */
void Processinfo:ssetlnput (void * input, unsigned size)
<
if (input_buff 1= NULL size > 0)
delete [] inputjsuff?

Insize = size;

if (input == NULL)
input_buff = NULL;

else
{ )
input_buff = (char *) new char[size];
memcpy(input_buff, input, size) ¢
>

Processinfo:saetO utputPtr */

/e

cutptr io the address of the pointer that we want

to 00vo- Sol, all we have to do is copy the contents
./ of (.outptr to get the address|

\{id Proconsinto:isetOutputPtr (Buffer + outptr)
if (({id *)outptr == NULL)

e,o!_OUtput_ptl =

0;
nieiM ot(OUt))U t_fftt. 0, MAX_PTR_SIZE) ;

else

(
size_of_output_ptr = sizeof(outptr);
memcpy (output_ptr, toutptr, sizeof(outptr))j

}

1 result_ptr = outptr»
>



I* Clientlnfo::getHostName */

clninfo.C
Client System Information class, void Clientinfo:jgetHostName (char hname[MAX_LEN_HOST_NAME])

Brian Ccx
) memcpy(hname. host_name, MAX_LEN_HOSTANAME);

einclude “clninfo.h"

———————————— k] /* Clientinfo:.-getPort */

/* Constructor */
i{l Clientinfo::getPort ()

(tlienllnfo::clienllnfo 0
return port;
setCID (0); )
setStatus(0);
setPort(0); e
setsocket(0); /* Clientinfo:ijgetSocket */
setHostName( H
setCllentName(mm); ipt Clientinfo::getSocket U

I return sock;

p/2— v

I* copy constructor */

(‘{{ien\lnfo::clientlnfo (const Clientlnfo tsource) * Clientinfo::eetCID */

+0tCID(0) » void Clientinfo::setCID (unsigned long id)
notStatuaf[0); . )
netPeet(0); cid = id;
flej 0 }
’
Botellen titanio <**> t I~ !
) «thill = nauree; /* Clientinfo::setStatus */
void Clientinfo::setStatus (int slaveB _status)
- {
IfgAssignment Operator */ status = slaves_status;
}
K‘(Iiennnfo& Clientinfo::operator = (const Clientinfo tsource)
*/
/1 check if we are copying ourselves? /* Clientlnfo::setClientNama */
if (this == fcsource) 1* */
return +this; void Clientinfo:jsetCllentName (char * clnname)
{
setCID (source.cid); strncpy(clientname, clnname, MAX_LEN_CLIENT_NAME);
setStatus(source.status); clientname[MAX_LEN_CLIENT_NAME-1] = "\0 ;
setClientName((char *)source.clientname); }
setHostName((char *)source.host_name);
setPort(source.port); 1. o/
setSocket(sock); f* Clientlnfo::setHostName */
* */
return *this; void Clientinfo:jsetHostName (char * hname)
{
) strncpy (host_name, hname, MAX_LEN_HOST_NAME);
* - hoat_name[MAX_LEN_HOST_NAME-I] = “\0';
/* Equality Operator */ }
it clientinfo::operator == (const Clientinfo tsource) /. -/
{ /* Clientinfo:jsetPort */
return (getCIDO == source.cid);
) vioid Clientinfo:jsetPort (int port_id)
port =port_id;
/* Save Object */ >

i(l Clientinfo::save (Buffer &b)

r Clientinfo::setsocket *//

/1 now copy each element of the class to the buffer

SAVE(b, cid); void Clientlnfo::setsocket (int a)
SAVE(b, status); C

SAVE (b, clientname, (aize_tyMAX_LEN__CLIENT_JNAME) ; sock = s;

SAVE (b, host_name, (size_t)MAX_LEN_HOST_NAME) ; >

SAVE(b, port);
SAVE(b, BOck);

} return b.length;

/* Load Object */

I* *,

?ffer clientinfosrload (const Bufferfc b)
Buffer tmp =b;

tmp = LOAD{tmp, cid);

tmp LOAD(tmp, status);

tmp LOAD(tmp, Clientname, (3ize_t)MAX_LEN_CLIENT_NAME);
trip LOAD (tnp, host_name, (size_t)MAX_LEN_HOST_JSAME) ;
tmp LOAD(tmp, port);

tup - LOAD{tup, sock);

return tmp;

1Clientinfo::getCID */

unsigned long Clientinfo:jgetCID

return cid;

Clientinfo:jgetStatus */
nt Clientinfo::getStatus ()
return status;
>
Clientinfo::getClientName */
void Clientinfo:jgetClientName (char clnname[MAX_LEN_CLIENT_NAME])

memcpy(cinname, clientname, MAX_LEN_CLIENT_NAME);
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resinfo.C
Result System Information class.
.}7 Brian Cox

«include ‘'resinfo.h’

few e V
proonstructor %

\{onul\inlos iRosultinffi [)

setPID(0) ;
result=NULL; Il setResult() would check for NULL
pointer 11

} resultsize=0;

/* Copy Constructor */

R(esultlnfot:Resulllnfo (const Resultinfo tsource)
flOCPID(0)i
roault*NULL;

reiultsltft>0t .
*thls m source; // use assignment operator to copy rest of

o

/* Destructor */j
o

if {result Is NULL itt- resultsire > Q)
doloto (] result)

D(onllllljlde s-'ROUUJCTNIO C)

t* Assignment Operator V

F\'ésulllnfot Resultinfojjoperator - (const Rimultinfo iaource)
Il check if we are copying ourselves?

if (this isource)
return *this;

if (result 1= NULL 6fc resultsize > 0)
delete [] result;

BetPID (source.pid) /
setReault(source»result, source.resultsize);

return *this;

N

/* Equality operator */
i{t Resultinfo::operator — (const Resultlnfo fcsource)
return (pid == source,pid);

I+ Sfivn Gbjoct V

t Resultinfo:;save (Buffer fch)

-~

/1 now copy each element of the class to the buffer
SAVE(b, pid);
SAVE(b, resultsize);
if (resultsize > 0)
SAVE(b, (char *)result, (size_t)resultsize);

) return b.length;

I -/

/* Load Object +/
Jx - *

Buffer Resultinfo:sload (const Buffers b)
Buffer tmp = bj
tmp = LOA!>(Urp4 pid};
tmp » LOADttmp, resultslr.o);
if (re&ul&iiiso > 0)

result = (void *)new char[resultsize];
trap = LOAD(tmp, (char *)result, (size_t)resultsize);

else
result = NULL;

return trap;

)

/- — =/

/" Resultinfo:sgetPID */

unsigned long Resultinfo:igetPID ()
return pid;

>

1* *1

/* Re«aultinierrgetftasuit «/

/lvoid Resultinfo« sgetResult (void »output)
void Resultinfo:sgetResult (Buffer ‘reebuf)

{
Buffer b;
b.data = new char[resultsize];
b.length = resultsize;

memcpy(b.data, result, resultsize);
*reabuf = b;
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)
Viad »/

/* Resultilnfo:;setPID */

void Resultinfo::setPID
<

} pid = id;

/* Resultinfo:ssetResult

void Resultinfo:iBetResu

(unsigned long id)

\%

It (void * res, int size)

if (result I= NULL && resultBize > 0)

delete [] resul

If (r(U" NI

rfenult = KULLj
C«UUIit»110 * 6 ;

g’

roaultsizo * ni

Reigy(resit,

t

se;

ww*i&iér(;six ajj



mlvinfoX
Romaic Sy*te Information claaa
Brian Cox

Kincludo 'olvinfo.h-
[ ,

/f eonatruetor */
-

EILisveInfc :tSlavelnfOo (>

aotei0OioOh
BOtNuraProcn{0}
ootStatua(0|*
aetSockct(0))
sotPort(0};

) nntKoutUniwM**) }

t™ Copy Conntruetor V
S<aveinfoi tSlavolnfo (conot Slavelnfo tnourcoj
) «this * «ource;

[o-- K=V

i* Assignment Op-erator */

lavelnfoir slaveinfoiloperator = (eonnt SlavolnEo tsouice)

/1 chock IE wo are copying eoraelvea?
if (thia «> jaourco)
rotucn *tW »j

BOtGUDfBQuree, sidj j

mfttitumProcs faourco.nunLprocn)j
Dotstatua fiource.ntatunj?

aetHoatiinfoo ((eimr *>source.hestnamo]i
notPort(sourcs-port);
aetSockot(nource.flock)/

roturn *thia.*

>

Tquuallty operator ;y

i(t Slawelnto:loperator «= (conat Slovelnfo fcaourcej

) return (aid ** aourco.oid) i

Imsay« object */
i(lt Slaveinfoijaava {Buffer fch)

/Il now copy each element of the class to the huffor
SAVE(b. sid)f

SAVE (b. nirai*proeBI :

SAVK(b, Jltatun) ;

SAVE (b, hemt”naroe, ta lte_tJHAX"-KKLMOST,NAHEJ t
SAVE(b, port]i

SAVE(b. aock};

return b.length;

/* Load Object */

/= .

Buffer Ginvelnfo:iload (conot Buffer* bj
Buffer top = bi

tisp = LoADitftp, aid);

tjinp « LOAD(tisp. mi»_j>roca)j
t(ig> = kOAD(tmp, tftatua);
rrrp =

ttiip m LOADttmPi port},!
tpjp m LOADLttifjj, stock) ;

1 return tmps

SinvelnfoitQ otsiD </

nsigneti long SlavolnfotsgetSiD {)

retumn aid;

* Slavolnfot jgetfiujRproCH -/.
nt Slavolnfo: :gecNuihProcs (>

return nurajptocsi
* slaveinfoi:gotStatua </
nt Slovw Info::getStatua (}

return Btatua;

/= Slovelnfo; igBtifoatliNim» 'V

\(oid Slavolnfo: .-gotHoatNaine (char hnarao(KAX LEH_HOS*T_NAME))

mowecpy (hnanvof hoat_nnjao, HAX LBN_HOST__NAHE) ;

LOADftwp. hoat,name, (al3e_trMAX_tHN_liOST_JIAHEI j

SlavolnfoisgotPort *f
ntslavalnfoisgatport ()

return portj

* slaveinfoitgoC Socket </
nt SlavolnfojtgetSockot ()

return aockj

* SiavelnfojjaetffiD */
old SlavolnfoilSotSID (unsigned long id)

* idf

SlavolnfotiseU”ntiProca «/

oid Sluvelnfoj laotiiumProca (int nuin_<njrr_procoMeai

Slaveinfoi:8«tStatus </
oid Slaveinfoi jaetstatua (int alai/ao_BCatua)

otatua c alaven_»tatu*i

SlavoInfo!EantHontKumi -('

old slQvolnfo.- jaetHeatiiflmo (char * hnjune)

atrncpy (hoat*naisu, hnaitu#, KiOi_LEN_HOS!I*_iiA«E);
host_iiamo [HAX_LE?5_HOST NAME-11 = m\0‘j

« Slnvelnfo:laetPort */
void slavolnfotiaotPart (int porttid)

port » port_id;

slavolnfot:«etsecket */
void Slaveinfoi:aetsbhcket (int a)

aock » a;



*

Wait System Information class.
.}7 Brian Cox

»include mwaitinfo.h'
i A |

/% Constructor
*------------"7
,

aitinfo::W aitinfo ()

aetPID (0);
} setSock(0);

I* Copy Constructor */
\{aillnfu:iw aitinfo {const W aitinfo ¢source)

) ‘this = source;

t* Attsigmitwnt O perator */
\I(aillnfolc W aitinfo::operator = (const W aitlnfo ¢source)
Il check if we are copying ourselvea?
if (this == ;source)
return *thisj
setPID (source.pidJ;

aatSock(source.socket);
) return *thiaj

I i
/m Equality Operator */

int Waitinfoitoperator == (const waitlnfo ;source)

<
>

return (pid == source.pid);

/* Save Object \I/

int W aitInfoi:save {Buffer ¢b)

130

<

H now copy each element of the class
SAVE(b, pid) }

SAVE(b, socket);

return b.lengthf

1

TS

le Object V

iuffev W aitinfo islead (const Butteri< b)
Buffer ttnp = bt
thg> = LOAD(tRp. pid);

trcp m DOADItr?), sockot) /7
> return tmpi

\
/= W aitinfo: rgotP 1D \Y
ulong W aitlnfoicgetPID ()

return pid;

*WKitJnfo:tgotWalfe of
nt W aitinfo:jgetsock O

return socketj

/* waitlnfo: :liatPIE> V

void Maltinto:metPID (unsigned long id)
pid = idj

I*-»-_ */

I+ waitinfo: jaecsock +/

void W ftitinto;jootsock {int neeki

mockot m itoek?

to

the buffer



8.6 Miscellaneous
r* _ _

General functions for reporting system errors.
Brian Cox.

,7 December 1993.

#include "syaerr.h"

void print_syserr(char * msg, unsigned short line, char * file)
eerr « "(E) m« fils « m« line « m m« msj« m m« flush;
perror(NULL) ;

void print_syswam (char * msg, unsigned short line, char * file)

cerr « mW) m« file « m« line « m m« mag« “.\n' « flush;

buffer.c
Brian Cox
August 2nd 1993.

’1 Buffer class member functions

tfinclude mbuffer.h1

Il Constructors

TfferliB uffer()

data = NULL;
) length = 0;

/1 Copy constructor
B<|ffer:iBuffer (const Buffer ¢source)
Il make sure that we're not copying ourself
if (thyis 1= ;source)
1
11 Make sure that object is in a clean state
/before going any further.
data = NULL;

length = 0;
‘)&his = source; I/ use assignment operator to copy elements)

Destructor
ffers «--Buffer ()

empty()>

AR

U Empty buffer
\{id Buffer*. :empty()

If ata 1= NULL)
) dnlota [] data;

Il Assignment operators
1uffer* Buffer:{operator = (const Buffer ¢source)

/Il check if we're copying ourself
If {this «* ¢fioureul
return *this;

if (data 1= NULL) // free old data
delete [] data;

length = source.length;
if (length 0
data NULL;

else{

data =new char[length];
r}emcpy{dala, source.data, length);

retur

} *this; // pass this object back for multiple assignments
Il Assignment operator
1uffed Buffer::operator = (const char * source)

iE (data 1= NULL} // freB old data
delete [] data;

I/ catch NULL assignment => empty buffer
if { (source == NULL) || (atrlen(source) -= 0) )

length = 0;

g(a = NULL;

else g
léngth = strlen (source)+1;
data = new char[length];
rgmcpy(dala, source, length);

} return *this; // pass this object back for multiple assignments
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8.7 Header Files

buffer.h
Brian Cox
August 2nd 1993,

Class wrappers for some coimon data structures.

ttifndef _BUFFER_H_
#define _BUFFER_H_

iinclude <string.h>
#include <ineinory.h>

C(AHSS Buffer
publics
int length;
char * data;

Il constructors

Buffer();

-Buffer();

Buffer(const Buffer ¢); Il copy constructor
Buffer(const char * ¢);

Il overloaded assignment operators
Buffer* operators(conBt Buffer t);
Buffer* operator® (const char *);

void empty(); 1l empty the bufferl

#endif

cliantrm .h
Client System Tables
Brian Cox

Only one instance of each resource manager is required
./ in a Server therefore all members can be static |

*ifndef _CLIENTRM_H_
ftdefine _CLIENTRM_H_

#include "distproe.h™
»include "clninfo.h"
Sinclude msystab.h*

({ass ClientResMgr
public:

Attach (Clientlnfo Rcinfo);
Detach (ulong cid);

: public SystemTable<Clientin£o>

Find (ulong cid, Clientinfo ¢cinfo);

protected:
} static unsigned long client_id;
hy

ilendif /* ifndef _CLIENTRM_H_ */

132

clnhndla.h
Brian Cox
September 1993

D istributed Processing client

#ifndef _CLNHNDLS_H_
#define _CLNHNDLS_H_

Binelude ‘'distproc.h™
linelude 'buffer.h"

typedef unsigned long ulong;
/* DistProc Client class. */

({Ass DPClient
public:

DPClient(char *servername);
-DPClient<};

client message handler
function headers.

ulong run (char ‘filename, Buffer sinbuf, Buffer *resbuf);

int kill (ulong pid);

int wait (ulong pid);
Ilint waitany (ulong ¢pid);
int Registered () ~

protected:

int MakeRequest (Buffer request, Buffer sresponse);
int ConnectToServer (char * dpsrvhostname)j

int DisconnectFromServer ();

private:
char * DPServerHostName; 1
ulong ClientID ; 11
int registered; 11
static char *ClientVer; Jl
number
int sock; 11

IfendiE /* ifndef _CLNHNDLS_H_ */

clninfo th
Client Information class.

,7 Brian Cox

tifndef _CLNINFO_H_
«define _CLNINFO_H_

linclude <stdio.h>
#include mdistproe.h*
#include msaveobj.h'
#include "buffer.h”

name of DistProc Server's host
id 1 for this client

did we register sucessfully?
client requester version

socket to DP Server

lfkrecurd structure of Client system table* ’97

cfss Clientlnfo
public:

Clientinfo ();

Clientinfo (const Clientinfo ¢source);
Clientinfo* operator = (const Clientinfo ¢source);

int operator

int save (Buffer ¢b)j
Buffer load (const Buffed b);

unsigned long getCID ();
int getstatus ();

(const Clientinfo ¢source);

void getClientName (char clnname[MAX_LEN_CLIENT_NAME]);
Void getHostName (char clnname[MAX_LEN_HOST_NAME]);

int getPort ();
int getSocket (j;

void setCID (unsigned long id);

void setstatus (int slaves_status);
void setClientName (char * clnname);
void setHostName (char * hname);

void setPort (int port);
void setSocket (int s);

protected:

unsigned long cid; /* Clients system id */

int status; /* current status of the Client: WAITING
etc .*/

char clienthame[MAX_LEN_CLIENT_NAME];

/* network dependent bit */

int port; /* port on which to contact the Client */
char host_name[MAX_LEN_HOST_NAME]; /* Clients internet

address */

} int sock; /* socket on which client is attached */

ftendif /* ifndef _CLNINFO_H_ */



/*

diatproc.h
Brian Cox

9th

Distributed Processing System - various definBB used

September 1993

throughout

the
\

system .

#indef _DISTPROC_H_
«define _DISTPROC_H_

iinclude <limits.h>

«include <sys/param.h>
"syserr.h"

«Include

*fy maximum size of various syste

m names.

«define MAX_LEN_CLIENT_NAME _POSIX_NAME_MAX

«define MAX_r.EN_HOST_NAME
«define MAX_LEN_IMAGENAME

Ifffdefine MAX_LEN_CLIENT_NAMS
e MAX_LEN_HOSTJHAME 128
e MAX_LEN_IMAGENAME 128

Il«defin
Il«defin

g network specific

«define
idaClno
Idofl»«

SERVER_TCP_PORT
sIiIAVE_tcp_port

constants-

SLAVE_REMPROC_TCP_PORT
ftdnf.lno SLAVE_REMPROC_TCP_PORT_STRING ' 6545"

MAXHOSTOAMELEN
MAXPATHLEN

128

6543
6544
6545

** client should figure out its own port number.
edefin» CLIENT_TCP_PORT 6546
mdefine SEfivVER_HOST,ivDDR ‘popeyel

g Various type of requesters.

«define SLnVE_REQUEaTER 1
«define CLIENT_REQUESTER 2
»doftno SEftVER_REIIUESref! 3
/e
«* Bynturn IUtUD vitrlablIni,

£ine 100
HduCltio REC_PEAD 101
IdefIne REO_RUIiHIii3 102
«deilno StIAVE_UIiIAVAILABLE RS§_tmAVAILABLE
«dijfin* SLAVK,DEAD RECLDKAD
Mdafin* 8fiAVE_RUfitlIHG REQ_RUKNII'KL
«define CLIENT_UNAVAXLABLE REQ_UNAVAILABLE
«define CLIENT_DEAD &ECL.DEAD
«define CLIENT_RUNNINQ REQ_RUNNING
«define PROCESS_ALLOCATED 200
«define PROCESS_RUNNING 201
«define PROCESS_FINISHED 202
«define PROCESS_ABorted 203
/*
** jf a diBtproc pid is zero then it's bad
*/
«define INVALID_DPID 0

dpclient.h

Brian Cox

Sep

tember 1993

,7 Distributed Processing Client header file.

«ifndef _DPCLIENT_H_

Ifdefine
«include
«include
«include
«include
typedef

«endif

“DPCLIENT_H_

mdiatproc.h”
“clnhndla.h"
‘buffer-h
*saveobj.h"

unsigned long DPID;

/* «ifndef _DPCLIENT_H_

/%

general purpose defines.

*/

*/
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[o
linklist.h
A template for a linked list.
#B.Cox, 12/1994

flifndef _LINKLIST_H
(fdefine _LINKLIST_H

11 e
/1 the linked list entry

template <claae T>
class ListEntry {
T thisentry;
ListEntry<T> ‘nextentry;
ListEntry<T> ‘preventry;
LiBtEntry{T& entry);
} friend class LinkedList<T>;
y

I e construct a linked list entry
template <class T>
L(ilenlry<T>:iLilenIry(T fcentry)

thisentry entry;
nextentry NULL;
) preventry = NULL;

/-

/1 the linked list
n -

template «jclass T>
class LinkedList {
11 the listhead
LiatEntry<T> ‘firstentry;
ListEntry<T> ‘lastentry;
ListEntry«T> ‘iterator;
void RemoveEntry(ListEntry<T> ‘lentry);
void InsertEntry(T& entry, LiatEntry<T> *lentry);
public:
LinkedList();
-LinkedList();
void AppendEntry(T& entry);
void RemoveEntry(int pos » -1)j
void InsertEntry(T&entry, int pos = -1);
T ‘FindEntry(int pos);
T ‘CurrentEntryOj
T “FirstEntryO i
T ‘LastEntryO;
T “‘NextEntryO?
} T “PrevEntryO |

1 = construct a linked list
template <clasg T>
I{nkedLIS!<T>!ILinkedLIS!()

Iterator - NULL;
firstentry = NULL;
lastentry = NULL;

>

1 — destroy a linked list
template cclass T>
I{nkedList<T>J c-LinkedList ()

while (firstentry)
} RemoveEntry (firstentry)

1 append an entry to the linked list
template <elass T>
V{Id LinkedList<T>jjAppendEntry(T& entry)

ListEntry<T> ‘newentry = new ListEntry<T>(entry)i
neW Bntry->preventry = lastentry;
i£ (lastentry)
lastentry->nextentry = newentry;
if (firstentry == NULL)
firstentry = newentry;
> lastentry = newentry;

11 remove an entry from the linked list
template <class T>
d LinkedList<T

RemoveEntry(ListEntry<T> *lentry)

if (lentry == NULL)
return
if (lentry == iterator)
iterator = lentry->preventryj
ll - repairany break made by this removal
if (lentry->nextentry)

lentry->nextentry->preventry = lentry->preventry;
if (lentry->preventry)
lentry->preventry->nextentry = lentry->nextentry;
1 maintain listhead if this is last and/or first
if (lentry == lastentry)
lastentry = lentry->preventry/
if (lentry == firstentry)
firstentry = lentry->nextentry?
} delete lentry;
1 — insert an entry into the linked list

template cclass T>

\{Id LinkedList<T>:slnsertEntry(Tt entry, ListEntry<T> *lentry)

ListEntry<T> ‘newentry = new ListEntry<T>(entry);
newentry->nextentry = lentry;

if (lentry)
newentry->preventry = lentry->preventry;
lentry->preventry = newentry;

)
if (newentry->preventry)
newentry->preventry->nextentry = newentry;

if (lentry == firstentry)
firstentry = newentry;
)
I remove an entry from the linked list

template <class T>
void LinkedList<T>::RemoveEntry(int pos)

{
FindEntry(poB);
RemoveEntry (iterator);
)
I - insert an entry into the linked list

template <class T>
void LinkedList<T>::InsertEntry(T& entry, int pos)

(
>

FindEntry(pos);
InsertEntry(entry, iterator);

11 return the current linked list entry
template <class T>
T ‘LinkedList<T>:sCurrentEntry ()

return iterator ? &(iterator->thisentry) : NULL;

11 - return a specific linked list entry
template -cclass T>
T ‘LinkedList<T>s:FindEntry(int pos)

{ )
if (pos != -1)
iterator = firstentry;
if (iterator) {
while (pos—)
iterator = iterator->nextentry;
)
>
return CurrentEntryO ;
>
11 return the first entry in the linked list

template <class T>
T{‘LinkedLis(<T>::FiretE ntry ()

iterator = firstentry;
) return CurrentEntryO ;
Il --——- return the last entry in the linked list

template -cclass T>
T{*LinkedLiB[<T>{iLas(Enlry0

iterator = lastentry;
> return CurrentEntryO 1

Il -——-- return the next entry in the linked list
template <class T>
T(*LinkedLis[<T>::NexlEntry()

if (iterator == NULL)
iterator = firstentry;
else

iterator iterator->nextentry;
return CurrentEntryO ;

>

1 return the previous entry in the linked list
template -cclass T>
T(‘LinkedLiat<T>::PrevEnlry()

if (iterator == NULL)
iterator = lastentry;
else
iterator = iterator->preventry;
return CurrentEntryO;
)
flendif



Brian Cox.
August 1st 1993,

All the system message manipulator classes are in this file.

ttifndef _MESSAGES_H_
«define _MESSAGES_H_

»include "prcinfo.h”
#include “resinfo.h”
#include "slvinfo.h*
finclude "clninfo.h"
#include "buffer.h’
flinclude "msgdefa,h”
/IHinclude <mem.h>

rBaSeMsg y
c{ss BaseMsg
public:

BaseMsg (); H constructor
BaseMsg {Buffer b)j Il re-conatruetor
unsigned long getSystemID () { return system _id; };
Service getService {) ( return sv; H
void setSystemID (unsigned long id) { aystenuid
i<3; )i
f* persistance member functions */
int save (Buffer Sib); Il save this message to a
buffer

Buffer load (const Buffer* b); // create a new message Erom a
buffer

int retcode;

protected:
int length; Il size of message, not really
used
Service sV; Il type of service
unsigned long system _id; Il client or slave id #
int req_type; U requester type

- server, slave or client.

void aetService (Service service) ( sv = service; };

o

I* ServerShutDownMsg : virtual public BaaeMsg

({ass ServerShutDownMsg ; virtual public BaseMsg

blic:
ServerShutDownMsg ();
ServerShutDownMsg (Buffer b);

P

int save (Buffer sb);
Buffer load (const Buffers b);

lkaOCMsg :virtual public BaseMsg \//

c<‘ass DOCMsg : virtual public BaseMsg

blic:
DOCMsg ();
DOCMsg (Buffer b);

P

int save (Buffer tb);
Buffer load (const Buffers b);

unsigned long sid;
int realpid;

1* */
/* ClientConnectMsg : virtual public BaseMsg */
1* *!

c{ass ClientConnectMsg : virtual public BaseMsg
public:

ClientConnectMsg () i

ClientConnectMsg (Buffer b);

int save (Buffer tb);
Buffer load (const Buffers b);

Clientlnfo cinfo? U client information block

/PcclienlDiaconneclM sg : virtual public BaseMsg */{

({ass ClientDiaconnectMsg : virtual public BaseMsg

public:
ClientDiaconnectMsg ();
ClientDiaconnectM ag (Buffer b);

int save (Buffer &b|;
Buffer load (const Buffers b);

ki

lfkRunProceasMsg cvirtual public BaseMsg ;y

({ss RunProceasMsg : virtual public BaseMsg

blic:
RunProcessMsg ();
RunProcessMag (Buffer b);

p

int save (Buffer sb);
Buffer load (const Buffers b);

),) Proceasinfo pinfo;

/kaailPrccessMsg :virtual public BaseMsg %

c(ass W aitProcessMsg : virtual public BaseMsg
P

blics
W aitProcessMsg ();
W aitProcessMsg (Buffer b);

int save (Buffer fib);

Buffer load (const Buffers b);

Processinfo pinfo; /* various process information *1
b Resultinfo rinfo; I* result information */

I* KillProceesMsg : virtual public BaseMsg */
I* -
class KillProcessMsg : virtual public BaseMsg
£
public:

KillProcessMsg ();

KillProcessMsg (Buffer b);

int save (Buffer Sh);
Buffer load (const Buffers b);

Processinfo pinfo;

I+ U
I ResultMsg : virtual public BaseMsg */
c{ass ResultMsg : virtual public BaseMsg
blic:

ResultMsg();
ResultM sg(Buffer b);

P

int save (Buffer sb);
Buffer load (const Buffers b);

Resultinfo rinfo;

5* SlaveConnectMsg : virtual public BaseMsg */
* v

class SlaveConnectMsg : virtual public BaseMsg
{
public:

SlaveConnectMsg();

SlaveConnectMsg(Buffer b);

int save (Buffer tb);
Buffer load (const Buffers b);

Slavelnfo sinfo;

3

\
71 SlaveDisconnectMsg : virtual public BaseMsg yy

c<‘ass SlaveDisconnectMsg : virtual public BaseMsg

blic:
SlaveDisconnectMsg();
SlaveDisconnectMsg(Buffer b);

P

int aave (Buffer Sb);
Buffer load (const Buffers b);

/* QueryStatUBMsg : virtual public BaseMsg */
\%

c<‘ass QueryStatusMsg : virtual public BaseMsg
public:

QueryStatusM sg();

QueryStatusM sg(Buffer b) ;

int save (Buffer £b);
Buffer load (const Buffers b);



Bagdofa .ft
Brian Cox.
August lot 1993.

./ All the systejn message data types are defined here.

~ifndftt _M&3DEFS_H_
define _HSQDE?k_H_

typudef int HotAddrj
typedef, int KifgIDf

9(|um _oorvice

no_servieo = D,
as»@c_prac.
run.jproc,
vait_proc(
wnit_any_proc,
)cill_proc,
cli«nt_connect.
cliontushutdown.
nerves,,shutdown,
niave_cennest,
alave.shutdewn,
result,
quory_Btatufl,
doAth,of_chlld

typedaf enusi _3ervico service;

Int conet Ham_phamj-: = 20?
int conflt HAK_FIWIE_LE3i * 12S;

iypndaf char PrccStolHAX_piiAME_LEN h
typodof char FiloJitnfHAX_Ff?AHS_tJ2{I

condif

136
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sifnd
Idafi

»incl
Nincl

«itlC 1udi

prcinfo.h
Remote Procean Information ciane,
Brian Cox.

ef _PSCIMFO_H_
ne _PiCIHFO_H_

ude *distproc.h*
ud oaveobj,b*
‘bueter.IV

Ileinclude <iinsw,h>

edefi

I* re

c<Jass
publi

no KAX_PTH_SXZE 10

cord structure for Process nyutwm table- */

Processinto

c:

{'rocassinfo ();

Proeoasinfo (const Proeenalnfo taourceij
-Processinfo (li

Prncossinfoi. operator * (const Proeesalnfo (.source}?
int operator «* (count processinfo ®source) j

int save {Buffer Vbjj
Buffer lead tconnt Buffer*. bjj

unsigned long getPID {)?

unsigned long gefcCID U j

unsigned long getsID Cii

void gotCljenCHntne (char cInnnnie [ha.x,LEh_CLIEfir_KW1EI) :
void getrlloHame (char i

int getACCUAIPID (}i

int gotSCntus ([j

Int getprocRetCode

void gotlnput (void * j.input, unsigned tniie) j

void getOutpUtPtr (Buffer* outptr!i

void setPlO (unaigned long procld};

void aeteiD (unsigned long clSentid] j

void aetfilQ (unsigned long siaveid)i

void setciluntHame (char * clnnan->|j

void setPileKaino (char * fnnmo);

void setActualPID (int real_pid);

void setStatua (int siavoe_status)i

void aetProcRotcodo (int rc)i

void setlnput (void * input, unsigned size)}
void eotQutputPtr (Buffer * outptr};

protected;

unaigned long pld; /1 id for this process

unsigned long cidj /1 id of Client which started
thin process

unsigned long aid* it Id of slave which is running
tho process

int actual_pidf Il actual pld of process on slave

Int statusj Il status of process; running#
finished ffltc.

Int ptocrefceoda; Il return code from
siove/Process

char Cliontnaine [MAX_I.KI*,CL1S?T MAKEJJ

char filename[KAX_LEN_IMAGKNA>IE| ;

Int slzc_ot,Qutput_ptr;

char output_ptrlIK AX _PTftjeI7E|ili buffer to held the
output .pointer
1 Buffer* roault_ptr;

unsigned insize; It size of the input

void * input_buff; it pointer to the input
sendif £ |Ilfndef _PRCIKFO_fi, */



ptoecm .il
Process Resource Hanag«musnt.
Brian Cox.

Only on« Inntanca of «aeh resource tannage? la required
in a server therefore oil nmfl»» can bo ntnticl

\Y

lifndef _PROCRM_>I_
edotine _PHOCRH_H_

«1lnelurte *diatproc.h*
mincludo ‘ptcinfa.h*
mincludo *aystob-h'

c(ass ProceasRosMgr i public sysccmTabi«x<ProceBHInCo>

public:
‘proceajkRouMgr () *

Alloc tProeoaalnfo spinto!t
DeaHoe {unsigned long pidt;

Find (ulong pld, ProcoudUifo trpinfol!
unsigned int WiiPiProcoBonoii
protoctods

I/l public dotn nfliter#. notKled by arvhndLo
‘B static unsigned long proccss_idi

tondi f /* wmifjidoC _PRefESE H_ V
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Brian Cox.
August 1993

Cruouo tamplato class and mumbar iunctlono .

Motot

If chic ciano is used in o multi-threaded operating systoa

thon the Queue primitivos got and put emint be protected

against deadlock ate, This is best dono by dotining a now
wrapper class which controls access to tho base Queue class.

mifndof _QUEUE_H_
mdotino _QVBU8_I{_

int const ERR_QUEUK_KULL = 1;
int const ERR_QUEUE EKS>TY « 2§
9dotino DEPAULT_Q_SIZE 500

lQm plate «ciana T> class Qwwio

bilct
QUIHI0O0 <
-QueueOi

P

getltonCountO

protected :
int

SOj
int itoracoimt.

// number of olwnant® in the queue

Qfront, Il the olontane at the front of

tho quelle
gend; tt tho back of tho tfuoue
)] T q (DEFAULT,Q_51ZEJ ;

ft conatructor

template iclass 1>
cuo<T>tiQueueO

QSiZB - IEFAULT_QL.fil&EJ
Qlront m 0]
Qend = 0]
IteroCount * O;
1
tt Destroy items on queue,

template <clas9 T>
0UO<T>ts —QUOUO(J

template «class T>
((uouo<T>|?pul(T item j

lit < Qsfiso) /" check it the cpjouo is full?
<
q]lQondJ m itemi if ndd item Co gtouo
item Count*** tt increment it«ss count
if (*»Qond s* QSizo) ft aru wo at the end of tho
array?
Qend » 0/ ft wrap oround to start of

array again
rgturn 0;

also
return ERR,QUEUE_FULL]j
) It queue 1» full

tampint# «class T>
Qilsuo0O'13got (T fcitern]

(
if {ggtltiurCounto > 0)

item = gqlQ front];

itomtTount— j

if (>*Qfront == QSiso]
Qfront * Or

array again

return 0; tt everything's OK

alee
return E55R_SIfEUE_EHPTY]
)

t«opiate <claso T>
QUOKJo<ff>i 3peek(T fclttaq)

(
if lgotltomdountij > 0)
(
item i qlQ frontJi
return 0;
else
I return ERR_QUEUEMEKPTY;

topnplate <clana T>
uoue«T>izgolltom Countfi

return ItatoCount;

)
cendIf It ,OUEHE_H_

7/ wrap around to start of



resinfo.h

Result System information class. resultnn.h
Brian cox Result Syatem Tables
Brian Cox

#ifndef _RESINFO_H_

#define _RESINFO_H_ «ifndPf _RESULTKH_H_
edefine _RKSULTRM_H_

sInclude *diatproc,h’

eInclude «buffer.h* sInclude *distprac-h"

*lnelud» ‘savoobj.b* sinclude -<rosinto.h*
eInclude 'ayatnb.h*

/F record structure of Result Bystem table. c<‘ass ResultReaMgr : public System TablecResultinfo
nS'fl Resultinfo public:
Add (Resultinfo rinfo);
public: Delate (ulong pid)j
Reauitinfo C)j
Resultinfo (const Rosultinfo tsource)j Find (ulong pid, Resultinfo trinfo);

-Rosultinfo {)|

RosuUlhfo*. operator = Iconet: Nasoltinto titource); lend11 t* Hifndef _RSS5ULTS_H_
Int operator w= (connt RsgulClInfo «source)j
inf Sitaso  (Acftor th) j

Huffier load (const Buffett b)j

unsignod long getPID (ij

void getResult (void 'output);
void gotRosult (Buffer *reabuf)i

void potPID (unsigned long td>;
void aotReault (void * top, int Hire)j

protected»

unaigonftd long pid? /1 id of ienLproci that gan.arated
the result

Int roaultsiiej /i alze of the result

void * result; // the result

11

cendif /e« iifndef ,RESIIFtIIL </

I il

resfngr.h rpargio.h
Brian Cox Brian cox
March 1894 Remote Process ARGument Input/Output«
o %
«ifndef _RE3SMCR_H, #ifndef __RPARG10_H_
«define _RESMQR_H_ #define _RPARQIO_H_
linclude *di«tpreKj. h* (include ‘'eyoorr.h*
I.Include ‘«ystab.b* sinclude *buffer.h*

*IneHid* *aaveobj,h*
totalste <claas |.MPO>
fl66 ReaourceManager
E(‘ Vsldbal variable»<

blics
ReaourceManager<)i extern char « MoatKaaeForSlave;
~ResourceMonnger() i extern unsigned long RfiaiProclD;

extern unsigned long siavelDj
Find (un*ipod long Id, JMFO blinfo)]
findFlret (INFO tinfolj

FIndMoxt U»FO tinfoii \*/Remote Process ARGu&ent Ibpwt/owtput functions
protected! extern int CetlnputFaramotoca (Buffer tinbufjj
virtual SystomTablecuDoigned long:» oyatob; extern int Returoflesults (Buffer tresbufjj
candif

«endif /e »ifndef V
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aaveobj.h

Brian Cox.

August 2nd 1993.

A template based approach to
with this header - only templates
The following data types can be saved:

(1) all fundamental
(2) arrays and memory blocks

(3) the Buffer class

data
and LOAD() functions.

To handle additional
the SAVE()

tifndef _SAVEOBJ_H_
define _SAVEOBJ_H_

#include "buffer,h*
ftinclude <string.h>
flinclude <stdlib.h>

saving objects. No

data types in
of any fundamental

types/structures

.cpp file

defined here |

C++
data

simply over-ride

Il Integral data types - int, char, double, float etc.
l{m plate <claas T> void SAVE (Buffer kb, T elem)

eize_t elemsize;

elemsize = sizeof(T);

if (el{msize > 0)

11 fixup
buffer size
b.data = (char *)realloc((void *)b.data,

b-length+elemsize)j

memcpy(b.data+b.length, fcelem, elemsize); U copy
element to buffer
b.length += elemsize; Il update
buffer siz)
I/l Pointer to block of memory - Array or pointer. Won't take ‘'void
template <claas T> void SAVE(Buffer fcb, T * elem, size_t
n{mielems)
size_t elemsize = 0, total_size = 0;
if ( (elem 1= NULL) £& (num_elems > 0) )
elemsize = sizeof(T);
total_size = elemsize * nunuelems;
b.data = (char *)realloc((void *)b.data,
b.length+total_size);
memcpy(b.data+b.length, elem, total_size); // copy
element to buffer
b.length += total_size,- Il update
buffer siz}
/1 Buffer object
sl{lic void SAVE(Buffer 6b, Buffer elem)
SAVE(b, elem .length);
) SAVE(b, elem.data, (size_t)elem .length);
Vel Load template functions - reconstruct an object >/
I/l Integral data types - int, char, double, float etc.
&(mplale <class T> Buffer LOAD (const Buffer &b, T telem)
Buffer tmp;
size_t elemsize;
elemsize = sizeof(T);
if (b.length < elemsize)
return b;
else{
mcpy(fcelem, b.data, elemsize);
tmp.length = b.length - elemsize; Il size
of buffer left
if (!v{).lenglh > 0)
titp.data = new char[tmp.length]; Il next
element in buffer
rgmcpy(tmp data, b.data+elemsize, tmp.length);
Il Pointer to block of memory - Array or pointer. Won't take 'void

Il elem is referenced only to allow elem =
i 0

is 0.
Il 1 had to remove 'T * telem

r{m_elems)

Buffer tmp;
size_t elemsize, total_size;
elemsize =
total_size

sizeof(T);
= elemsize

/1 make sure there's enough data

NULL in

left to

kb, T * elem,

copy

to

case num_elems

as it wouldn't work with pointers,

template cclass T> Buffer LOAD (const Buffer size_t
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if

((num_elems ==0) ||

return b;

else{
mcpy(eleni, b.data, total_size) ;

to elem

buffer

element

tmp.length =

left

b.length - total_size;

if (lr{p.length > 0)
thp.data = new char[tmp.length];

in buffer

¥

rgmcpy(lmp data, b.data+total_size,

(b.length < total_size))

Il copy data

Il size of

ft next

tmp. length);



slaverm .h lendif
Slave Resource Management class.

V Brian Cox.

Sifndef _SLAVERM_H_
«define _SIAVERM_H_

#Include "distproc.h’

finclude ’Blvinfo.h"

ftinclude “systab.h*

c{ass SlaveReaMgr : public SystemJ'able<Slavelnfo>

blic:
SlaveReaMgr() |

Attach (fllavoInfo fcolnfo):
Dotach (ulong aid)j

P

Alloc (ulong tsldh
Dm lloc (uli-ng aid) i

Find (ulong aid, Slavelnfo ERinfo);
unsigned int NuroSlaves;

protected:
static ulong slave_id;

i ulong curr_slave;

ifendif /* ttifndef */

Blvhndls.h
Brian Cox

’7 Slave Message Handler functions declared in slhndlrs.C,

#ifndef _SLVHNDLS_ Ji_
#define _SLVHNDLS_H_

lluciudo <ays/typns.h>
lincluflo «ays/tima.b>
sinclude <»ya/*eloct
mincludo e+diatproe.h’
mincludo *buffoc.h*
»includo *tcp.h*

/* DistProc Slave claaa
I
c{ass DPSlave
publict
DPSlave (char *servername) ;
~DPSlave Qi

W aitRequest(int tsock)i
DispatchHeqUest(int sock);

int Registered();

static const char * const Version; Il slave versitn number
int SlaveOK;
protected:

/I server -> slave messages
int RunProcess (int s, const Buffer &b);
int KillProcess (int s, const Buffer 6b)j
int ServerShutDown (int s, const Buffer &b);
int CheckSlave (int s, const Buffer &b);

Il public data members

static unsigned long SlavelD; Il slaves system id

int SlaveRemProcSock; // Slaves RemProc socket
static int slavesock;

int nfds;
fd_set afda, rfds;
struct timeval tout;

private:
static void DeathOfChildHandler (int sig)j

static int MakeRequest (const Buffer “request, Buffer
Aresponse);
int FulfillRequest (int b, const Buffer ~response);

int ConnectToServer (char * srvname);
int DieconnectFromServer ();

int SpawnProcess (char *clientname, char *filename,
void ‘input, unsigned int insizo,
unsigned long pid, int &actual_pid);

int KillChild (int pid);

void KillAlIChildren ()]

static char * DPServerHostName; /1l name of DistProc

Server's host
char SlaveHoatNametMAXHOSTNAMELEN];

} int registered;
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alvinfo.h
Slavs Information class.
,1 Brian cox.

fifndef _SLVINFO_H_
~define _SLVINFO_H_

linclude mdlstproc.h”
«include "aaveobj.h*
#include <buffer.h”

o

y;record structure for the Slave aystem table. «/
class SlavelnCo

public:
Slavelnfo
Slavelnfo (const Slavelnfo “source);
siavelnfo6 operator = (const Slavelnfo 6aource);
int operator = (const Slavelnfo 6source) ;

int save (Buffer 6b);
Buffer load (const Buffer6 b);

unsigned long getSID ();

int getNuraProcs (};

int getStatus ();

void getHoatName (char hname[MAX_LEN_HOST_IJNAMEJ) ;
int getPort {)j

int getSocket (j;

void setsID (unsigned long id) ;

void setNumProcs (int num _curr_proceBses);
void setStatus (int slaves_status);

void setHoatName (char * hname);

void setPort (int port);

void setSocket (int a);

protected:

unsigned long sid; /* id of a Slave */

int nunuprocs; /* number of processes running on Che
Slave */

int status; /* current status of the Slave *f

/* network dependent bit */

char host_name [MAX_LEN_HOST_NAME] /* Slaves internet
name */

int port;

/* Slaves contact port */

int sock; /* Socket on which slave

')9I attached */

dendif /> #ifndef */

»rvhndlii.li
Brian Cox
SeptcsnboiC 1393

D istributed Proceaaing Server class.

\%
lfndcf _SRVHNDIis_H_
«defili» _SRVHNDLS_H_

#include <stdio.h>
#include msrvprira.h®

c{i;aa DPServer : public DPServerPrimitives
p

c:
DPServer<);
-DPServer () *

W aitRequest(int tsock);
DlIspatChRequast(int sock);

protectedi
ClientAttachtend t sock, Buffer 6b);
ClientDetachHnd (int sock, Buffer 6b);

RunProcessHnd (int Bock, Buffer 6b);
W aitProceaaHnd (int sock,Buffer 6b);
KIlIRemProcHnd (int Bock,B uffer 6b);

siaveattachHnd (intsock,Buffer 6b)>
slaveDetachHnd (int sock,Buffer 6b);
ResultFromRemProcHnd (int aock, Buffer 6b);
)_ DeathOfChildHnd (Int sock. Buffer 6b);
]

flendif /* #ifndef _SRVHNDLS_H_ */



/* «define GOOD 0

arvprim .h «define WARNING 1
Brian Cox
March 1994 extern void print_syswam (char * msg, unsigned short line, char *
file):
’7 Distributed Processing Server primitives class. extern void print_syserr {char * msg, unsigned short line, char *
file):
Sifndef _SRVPRIM_H_ /* macro to display debugging info */
§define _SRVPRIM_H_ «ifdef debug_on
«define debug(str) cerr « endl « str
sinclude <stdio.h> celse
sinclude <ayn/'typoc.h> edefine debug(str)
sinclude <ay*/titac.h> cendif
sinclude <ayo/select.h>
sinclude *dlatpEoe.h* edefine syawarn (msg) print_syswarn (msg, LINE_, FILE_)
»include *rooiiragBa.h* odefine syserr(msg) print_syserr (msg, LINE , __FILE )
»include *tcp,h* .
einclude *eHa«ntri|.H* cendif

einclude eniavoriB, h*
sinclude eprocfm.h*
einclude *rcaultnr..b’
sinclude ’voitrifh h*
sinclude *queue.h*

c(j\jss Errinfo

public:
int nock;
unsigned Jon” idj

),) int rogtyi>*j

c<‘ass DPsftrvorPrimitlvofl

publlc!
DPServorPrimitives\)t
-DPSorvarPtiftil11vwn (} 3

static const char * const Version;
int ServerOK;

protected:
int serversock;
int nfda;
fdrset afds, rfda, wfds;
struct timeval tout; //

Communications methods..
MakeRequest (unsigned long sid, Buffer request, Buffer

fcreply);
PulfillReqgaest (int sock, Buffer response);

1
client prim itives...
ClientAttach (ClientConnectMsg tmsg);
ClientDetach (ClientDisconnectMsg 6msg);
1
slave primitives...
SlaveAttach (SlaveConnectMsg £mag);
SlavaDetach (SlaveDisconnectMsg &msg);
RemProcReturningResult (ResultMsg 6msg); //

process primitives..
RunProcess (RunProceasMsg ttnsg);
KillProcess (unsigned long pid);
W aitProceaa (W aitProcessMsg fecmsg, int sock);

DeathOfChildRemProc (DOCMsg &mag);

Error handling stuff.

Queue<Errinfo> ErrQ;

int ErrorOnSocket (int sock)j

void ErrorOnSocket(int sock, unsigned long id, int reqtype);
void ClearUpErrors{)j

private:
Il Resource manager

objects...

ResultResMgr resrm/

SlaveRasMgr alaverm;

ProcesaResMgr procrm;

ClientReaMgr clientrm ;

W aitResHgr waitrm ;

void InformClientsOfShutdownO ;
} int InformSlaveaOfShutdown();
y

cendif /* Sifndef _SRVPRIM_H_ */

System error reporting functions.

’1 Brian Cox

lifndoC _sysEitft w,
Idelilto _SVStmR_H_

Kinclude <atdlo.h>
sinclude <iostreasn.h>

extern int orimo;

I+ true I> false, */
Ilfndef PALSE

IfloCino FALSE 0
IsndIf

sifndef TRUE

«define TRUE (IFALSE)
cendif

/* some constants and flags used in the program.*/
edefine FAILED -1
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aystab .h
Basic System Table class.

77 Brian Cox.

#ifndef _SYSTAB_H_
ftdefine _SYSTAB_H_

Sinclude wmlinklist.h*
#include 'distproc.h™
tfinclade esyserr-h*

Sdefine ulong unsigned long
template <class T>

c{ss SystemTable
puUblic:

int Insert iT Gitas»}»
Ant Update (T ¢it«m I3
Int Beletc (T titeni};
int Find |T (.itorri) s
int FIndFirst <T 6itoBl) ;
int FindNoxt (T fcttem)1

protected:

)- LinkedList<T> list;

ten© late <claes T>

i(‘ SybtemTablecT:»:: Insert (T titem )
liBt.AppendEntry(item)j

return GOOD;

>

template <class T>
i(t SystemTable<T>::Update (T fcitem)

if (Delete(item) == FAILED) /1 remove aid item from list
ByswarnC Update(), non-existant item");

) return Insert(item); /1 add again
template <class T>
int SyateraTable<T>:1Delete (T fcitem)

T *cur;

77 go through list looking for id

cur = list.FirstEntry();
while (cur 1= NULL)

if (*{r == item)
IlBt.RemoveEntryO;
j\urn GOOD;

else
cur - list.NextEntry ();

return FAILED;

template <class T>

i{t SystemTable<T>:: Find (T fcitem)
T *cur;
cur = list.FirstEntryO ;

while (cur 1= NULL)
if {*iur item)

itoca = -crari
7lurn GOOD:

else
cur = list.NextEntry();

return FAILED;

ten®)late cclass T>
i{t System Table<T>::FindFirst(T titem)

T *eur;
our = list.FirstEntryO ;
if (cur == NULL)

return FAILED;

item = *cur;
J return GOOD;

P

1 on entry, item ia the current item in the table.
; On exit, item is the next item in the table.

template <class T>
int SystemTable<T>!:FindNext (T fcitem)

T *cur;

if (Find(item) == FAILED) // set position at current entry
return FAILED;

if ((cur=list.NextEntry()) == NULL) H go to next entry

return FAILED;
item = *cur;

) return GOOD;

Sendif  /* fifndef _SYSTAB_H_ */
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10
tabi*»,h
Brian Cox.

Oepfcawixsr 19S3

V ineludo filo for tabloa.cpp

1ttndtif _'TABtES_H_
«defini» _TABLES_H_

+d& fina HSOOB
lifdof _cplu*plu*
ftXtVRI "C t
infidi £

sIncludo ‘gdbnuh*

cincluda <ptdio.h>

extern gdbm _arror gdtimjBrrnoi

oxtnrn char * gcixn_vorBlon;

10

Tho fellowing typodof 1® only uaod for DOS.3
.( podof yilbnufile,in('o* ODKHFILE;

Mofino C&UMFILE CUBM_PILE

/= function doclaratlone

InC tbloponTable [ODBKFILE "
(*faCal_runc|C), int block_n

*
Int  tbICronCOTablo IQDBMFILE *dbf, char »narao. void
{*£atai_funcj 1)* Int blocKAM*«» s

ine tblCloaoTablo (GDBHP2LE dbf);
int tblinHercEntry (CDBMFILE
Int tbltipdatoEntry (CDBMFILE
int thiDolatoEntry (gE®HFILE
datum CbIFIndEntry (GDEMFILE dbi, datura
datum tbIFIndFirsfc j«jtaaMFILE dbt) i

datuis CbIFindNoxt (CDBMFII>E dbf,

Jo

dbf, dat
dbf, dat
dbf, dat

datum

** tho following iunctiono aco usad to
*gto a cablo Mot implemented y#t - ubo sorraphoroft.
L ]

int tblLOcfcTablofaDBHPJLK dbfl;
I'n/! tblUnlockTahlsiGDBMFILE dbfjf

2i(}10& cpJumplus

undif

condil /* »1CmlOi _TABLES_H_ */

tep.ll

Srian Cox.

Auguat 1593.
Revia&d; Sopt. 1993

elindol _TCP_H,
edofino _TCP_H_

10
VTCP/IP includa filua

lincluda «uni»tdt.b>
sincludo «aya/typos ,h>
sinclude <ayfl/param.h>
sincluda <sya/KoekQt.h>
sincluda <Byal/a*ilaet*h>
»includa <ayB/timii-li>
mincludo «netitt'ot/iii.h>
eIncluda <nrpal/inot.h>
»includa <n«tdb.h>

linducz B li*

nmo, void

um koy, datum data)
um key, datumdata)j
ura koy}

koy l'i

Kay) j

norialion accnao

eleanod up function».
Cliont/Sorver Programming with OS/2, chapter 16* pag»

P QBDH
Io HRKCIMEEK/

/* itolactO </
/* tiinoval for tout </

/. gothOBtnara&0 */

e+ Forward doclaraCion* of communication functiona.

-/

extern int XnitPipa ()*
oxtorn Int MakoPipo (int
oxtorn int HaltCermaeCPip

)i

%
e

shore. int]f

(int*

oxtem Int DlscotineetPipodnt) j
oxtorn int OponPlpofint *,

oxtorn int W ritoPlpo(int,
oxtem int R«adPipo(Lnt,

int *,

struct nockaddr,In

short,char *};
*. unsignodshort};

void
void

oxtorn' int 'TranoaetPip«(int, vo
unalgnad long *, int tout})

oxtorn int cio&oPipoUnC)

?

eendlf /e lifndof _TCP_H_ m/

** wnwlgned long *,inttout);
o+x

id *, unoiynod ihort,void

361.

%

int
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ormation class.

,7 Brian Cox

#ifndef _WAITINFO_H_
«define _WAITINFO_H_

eInclude *dintproc.h* /*
«include “buffer.h* wjiltm .h
«include ‘BavKobj.Ji' Hrinn COX.
System tables for both W aitProcess and WaitAnyProcess
«define .ttloitt! unBignM long requests
I* -
/* record structure of wait system table. </ fifndef _WAITRM_H__
. . «define _WFITRM_H_
cgass W aitinfo
«include "distproe.h™
p «include "waitinfo.h*
itinfo (); «include msystab.h”
fo (const Waitinfo tsource)j
W aitinfok operator = (const W aitinfo ksource); cgass WaitResMgr ipublic SystemTable<W aitinfo>-
int operator == (const W aitinfo ¢¢source);
publi
int save (Buffer kb)j
Buffer load (const Buffers b); W aitProcess requests.
ulong getPID {3 int Add (ulong pid, int sock)j
int getSock Qi )_ int Get (ulong pid, int fcsock);
h
void setPID (ulong id)>
void aetSock (int sock); /*
protected: ﬁWaitAnyProceBs requests...
ulong pid; 11id of RemProc to wait for
int socket/ // socket on which reguest was received. /lint AddWaitAnyRemProc (char pname[MAX_LEN_PNAME], int sock);
>r Ilint GetWaitAnyRemProc (char pname[MAX_LEN_PNAME], int ksock);
#endif /* fifndef _WAITINFO_H_ */ «endif /* «ifndef _WAITRM_H_ */
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8.8 Example

; DPLenstra: Main DietProc Process

H Program Lenstraa elliptic curve
method.
Works when for some prime divisor p of n, p+I+d has only

H small factors, where d depends on the particular curve used.

to factor big numbers using

<io9tream.h>
<fstream,h>
<iomanip.h>
<time.h>
"number.h"
"big.h"
“dpclient-h"

(include
(include
#include
(include

A

// Qn =
Il divideby is

(107nJ+1

used to get rid of small factors

Il(define n
/l(define divideby

wyqn
(1)
Il(define n "1

/1 fldefine divideby 1 11
909090909090909091

factors are: 11

Il(define n
Il(define divideby

g
17)

Il(define n
Il(define divideby

v37
(11*725

m41’
(11)

ll«define n
Il«define divideby

"SS*
(11*1689)

(define n
(define divideby

2000 11 and > MULT/2

100000L 1

must be
may be

Lim iti
Lirait2

ll«define
I1»define

int,
long

210 !

«define MULT must be int,
primea 2.3 ...
«define NCURVES

»define LOGb2E

product of small

5000 !
1.442695041

number of curves to try

miraci precision (50, maxbase); I/l number of ints per ZZn

Limitl, limits for the curves
long p;

ulong rpid(NCURVES]j 11
Buffer resbuf(NCURVES]; 11
stored here
int NumSlaves,
RemProc9

DPClient *dp;

Limit2; 1

ulong
static
of RemProc ids

for each RemProc are

list
results

MaxRemProcs; Il # of DPSlavea and max # of

If DPClient requester object

c{ss Timings
pUblic:
time_t stm, etm,

setupruntm, waittm;

Timings tm[NCURVES];

ofstream logfile; Il create & open log file

/1 Pack the parameters and run the rplenstra process
if -

fcnum, Buffer *result)

LInsigned long RunRPLenatra (int curve,

unsigned long
Buffer inbuf;

rpid;

save(inbuf, curve);

cotstr(num .fn, (char *)MR_IOBUFF);
SAVElinbuf, (char *)MR_IOBUFF, (size_t)yMR_IOBSIZ);
rpid = dp->run(“rplenstra”, inbuE, result);
if (rpid -= INVALID_DPID)
ICgfile « “SnCouldn't run rplenstra process\n\n" «
flush;

?u! « "\nCouldn't run rplenstra process\n\n" « flush;

return rpid;

/1 Wait for one of the rplenstra processes to finish.

i(ll W aitRPLenstra(int p, int feretcode, Big &t)

int rc;

if ((ge =dp->wait(rpid[p])) == GOOD)
resbuf[p] = LOADfresbuf[p], retcode);
resbuf[pj = LOADfresbuf[p], {char *)MR_IOBUFF,

(size_t)YMR_IOBSIZ);

cinstr(t.fn, (char *)MR_IOBUFF);

logfile « "\nReceived result from RPLenstra I* « p «

mn"

cout « "NnReceived

*\n" )

result from RPLenstra #" « p «

logfile «

cout « *\n+++ Error waiting for RPLenstra #m «

(int argc, char *argv[])

\{Id InitDP Client
I

"\n+++ Error waiting for RPLenstra #m « p

p o«

Initialise the DistProc Client requester
if (argc != 3)
cerr « ‘usage: progname DPServer NumSlaves.\n*;
exit(-1);
>
dp = new DPClient(argv[Il]);
if (dp->Regietered() == FAILED}
exit(-1);
NumSlaves = atoi(argv([2])
MaxRemProcs - NumSlaves; /1 One RemProc per DPSlavel !'!
)
/1 main{)
X -

main(int argc, char *argv[])

int r, w, curve, rc,
Big num, t;

time_t tl, t2, st,
char logname[20]j

power;

et;

strcpy (logname, mipl_");
streat(logname, n);
streat(logname, '.log*);
logfile.open(logname, ios::app);

«

tim e (fctl); /Il Get start time,

logfile « ‘Start Time:* « ctime(&tl) « flush;

InitDP C lient(argc, argv);

power = atoi(n);

num = 10;

num = (pow(num, power) + 1) / divideby;

logfile « "\n\nTrying to factor ({10A" « pcwer « ")+I)\n"
« flush;

U calculate limits, check if num is prime

7’ and do all arithmetic mod num

Limiti {unsigned long)(pow (bits(num)/LOGb2E, 2.65)/10.0);

Limit2 = 40 * Limiti;

gprime(Limiti) ;

if (p{“e(num))
log file « “"This number is primel\n" «

logfile,close();

flush;

cout « ‘This number is prime!\n";
}<il(0):
modulfo(num); /ldo all arithmetic mod n
1
11 Now distribute the curves using the distproc library
1
for ({“0, curve=3; r<NCURVES && i<MaxRemProcs; r++, curve++)
tim e (&[tm [r].stm) );
rpid[r] = RunRPLenatra(curve, num, & resbuf[r]);
time(&et);
T[r].setuprunlm = difftime(et# tmfr).stm);
cout « "\nWaiting for the processes to finish...\n" «

I/ Now wait for each remote process to finish.
Il Check each result as it comes in
Il The remproc returns a number "t ’ which is a factor

I/(/ If 't' is 0 [zero] then no factor was found

for ({Oj W<NCURVES; W++)
e(&st);
rc = WaitRPLenstra(w,

re,

)

tim e (t(tm[w].etm));

tm[w].waittm = difftime(tm [w).etm, st);
if (rc 1= FAILED)
if (ty==0) // || rc 1= 0)
logfile « "Curve m « w+3 « * failed\n" «
flush;
cout « "Curve m« w+3 « m failed\n" «
flush; }
break; 11— —--Factor found, exit
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loop



////Try and start another RemProc running.

if (r<{cURVES)
tiTne(& {tin[r] .etro))j

rpid[r] = RunRPLenstra(curve, nim, kresbuf[r]);

tirae (tet);
tm [r] .aetupruntm = difftime(et, tm [r).stm);

curve++;
+2

>

‘tyclone che DP Client object

delete dp;

I
U

rint out the tnctoru

t 1= 0)

legClio « “"\n\nFactora of * << num. « = (lo*" «
power « ")+I"

« mn\nfound with curve #' « w+3 « endl

« "Limitl = m« Limitl « " and Limits = m «

Limit2 « onilj

« |1+||| coue «

« ’\n\nfound with curve #’ « w+3 « endl
« "Limitl = * « Limitl « " and Limit2 = " «
Limit2 « endl;

*\n\nF«ctorB og # « num « " « (10%- « power

if ( 1rim e(t) )

logfile « wm\nprime factore m« t « flush;
gui « *\nprime factors m « t;

else

logfile « "\ncomposite factor 1« t « flush;
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)out « m\ncomposite factor m « t;

num /= tj

if ({ima(num) )
1&g file « “\nprime factor (num = num/t) =« num;
out « “\nprime factor (num = num/t) ® « num;

At

ol»o

gfile « "Vncomposite factor (num = nuro/t) ® «
nun « Cluehj

)oul « mincon”oBite factor (num = num/t) m « num;

// Print out the timings

time(&t2);
logfile « "\n\nStart Times m « ctim e(ttl)
« "Finish Time; m « ctime(6t2)

« "Running Time: * « difftime(t2, fei/GO « *
minutes.\n*

« "There were * « MaxRemProcs « * DPSIftvoa
used.\n"
« flush;
cout « m\n\nStart Timet * « ctime(atl)
« "Finish Time: " « ctime(fct2)
« "Running Timei " « difftime(t2, tI)/60 « "

minutes.\n-

« "There were m « MaxRemProcs « DPSlaves used.\ri"

« flush;
logfile « “"curve (Start Time) (Knd Time) (Run Setup Time)
(Wait Time)\n\n";
for(int i = 0; i <= w; i++)
1 1 logfile « i+3 « "\t* « tm{i]l.stm « "Nt" « tm[i].etm
« '\t
« tm[i] .setupruntm « "\t* « tm[i] .waittra «

gdl;



< Lenatra Remote DiatProc Process

>

; Program to factor big numbers using Lenstras elliptic curve
method.

H Works when for some prime divisor p of n, p+l+d has only

H small factors, wbere d depends on the particular curve used.
H See 'Speeding the Pollard and E lliptic curve Methods'

H by Peter Montgomery, Math. Comp. Vol. 4B Jan. 1987 pp243-264
#include <iostream.h>

#include <lomanlp.h>

#include "number.h"

#include 'big.h"

flinclude mrpargio.h’ /1 Remote Process ARGument 1/0
header file

II»define LIMITI 2000 /Il must be int, and > MULT/2
/lidefine LIMIT2 10000000L Il may be long

«define MULT 210 /1 must be int, product of small

primes 2.3 ...

#define NCURVES 20 Il number of curves to try
»define LOGh2E 1.442695041

miraci precision (50 ,6MAXBASE);, // number of ints per ZZn
long LIMITI, LIMIT2;

static long p;

static int iv;

static ZZn ak,q,x,z,X0,zI,x2,z2 ,xt,zt, fvw fu[l+MULT/2];
static bool cp[I+MULT/2];

ouble a point on the curve P(x,z)=2.P(xl,zl)

\{id duplication(ZzZn sum,zZzZn diff,ZZnt x,ZZnt z)

ZZn t;

I* x =sumA2 .diffA */
I+ t«sumA2-diffA2 m/,
I* zaak*t +diffA2 */

add two points on the curve P(x,z)=P(xl,zI)+P(x2,22)
iven their difference P(xd,zd)

void addition(ZZn xd,ZZn zd,ZZn sml,ZZn dfl,zzn sm2,Z2Zn df2,ZZnfe

X,ZZn& z)
{ Zzn t;
x=df2*sml;
Z=dfl*sm2;
t=z+X;
z-=X;
I* x = zd.(dfl.sm2+sml.df2JA2 */
I/* z = xd.[dfl.sm2-Bml.df2]A2 */

alculate point r.P(x,z) on curve

V(lid ellipse(ZZn x.ZZn z,int r,ZZnt x.ZZnt z1,ZZn& x2,ZZnt z2)

int k,rr;
k=1;
rr=r;
x1=x;
zl=z;
duplication(xI+zl,xl-zI,x2,z2); [/* generate 2.P */
while ((rr/=2)>1) k*=2;
while (k>0)
( /* use binary method */
it ((r&k)==0)
{ /* double P(x1l,z1) mP to 2mP */

addition(xrz , xl+zl,xl-z1,x2+22,x2-22,x2,22);
? duplication(xl+zl,x1-z1,x1,z1);
Ise

{ /* double P(x2,22) (m+1)P to (2m+2)P */
addition(x,z,xI+zl,xl-z1,x2+22,x2-2z2,x1,z1);

duplication(x2+2z2,x2-22,x2,22);

>
k/=2 5

1%
now change gear

*/

void next_phase()

{
ZZn s1,d1,s2,d2;

+Z;

-z; I* P = (s2,d2) */
duplication(s2,d2,x,z);
31=X+Z{
dl=x-z; /%2 = (sldl) */
full)=x1/zl;
addition (x1, zi,al,dl,s2,cL2,x2,z2); /* 3.P = (x2,z2) */
for (int m=5;m<=MULT/2;m+=2)
( /* calculate m.P = (x,z) and store fu[m] = x/z */

addition(x1,z1,x2+22,x2-22,B1,d1,x,z);
xl=x2;
z1=22;
X2=X;
22=7*
if (lep[m])
fu[lm]=x2/z2;

continue;
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>

ellipse(xt,ztt MULT,X ,z,x2,22);

XE=X+Z;
Zt=x-z; /* MULTP = (xt,zt)
=p/MULT;

(P%MULT>MULT/2) iv++,p=2*(long)iv*MULT-p;
ellipse(x,z,iv,xl,zI,x2,z22); ™ (x1,z1) =
fvw=xl/zl;

q=fvw-f U[p%MULT] ;

increment giant step
giant_step()

ive+
p={long)iv*MULT+I;

fvw=x2/z2;

additional,zl,x2+22,x2-z2 ,xt,zt,x, z);
x1=x2;

z1=22;

X2=X;

z2=17j

return 1;

i{\ lenstra(Big &n, int k, Bigfe t)
int phase, m, nc, poa, btch;
long i,pa;

ZZn tt;
Big x;

1

// calculate lim its...
LIMITI = ((long)pow (bits(n)/LOGb2E, 2.65)) / 10.0;
LIMIT2 = 40 * LIMITI;

if (LIMITI <= MULT/2)

*/

iv.MULT.P */

LIMITI = (long)(MULT/2) +1;
cout « \nLimitl = * « LIMITI
« \nLimit2 = « « LIMIT2 « endl « flush;
gprime(LIMITI);
for (m=I;m<=MULT/2;m+=2)
if (iged(MULT(m)==1)
cp[m] =TRUE;
else
cp[m] =FALSE;
modulo(n); /* do all arithmetic mod n */
a new curve */
/* generating an elliptic curve */
nc++ ;
tt=4-k*k;
tt/= (2% (k*k-1));
tt+ = (1/tt);
ak=(tt+2)/ (ZZn)4;
phaee=1;
p=0;
i=0;
btch=50;
cout « “phase 1 - trying all primes lesa than ' « LIMITI;
cout « mnprime= m « setw(8) « p;
/* main loop */
fore\{r
f hase==1)
p=PRIMES[i];
if (PRIMES[i+l]==0)
{ /* now change gear */
phase=2;
cout « *\nphase 2 - trying last prime less
than */
cout « LIMIT2 « m\nprime= * « setw(8) « p;
next_phase();
btch*=10;
i++;
ontinue;
pa=p;
while ((LIMITI/p) > pa) pa*=p;
ellipse(x,z,(int)pa.xl,z1,x2,22);
{ /* looking for laBt large prime factor of (p+I+d)

p+=2;
pos=p%MULT;
if (pos>MULT/2) pos=giant_step();

if (lcptpoal) continue;
S:(fvw-fu[pos]); 1*

if (i+{%btch::0)
I* try for a solution */

batch gcds */

cout « «\b\b\b\b\b\b\b\b" « aetw(8) «
flush;
t=ged(q,n);
if (t==1)
if (p>LIMIT2) break;
else continue;
if (t=n)
c{ut « m\ndegenerate case*;

)reak:

P



fac

¥

if (prime(t)) cout « '\nprimo factor et

else cout « "Nnconiposite factor m« t;
n/=t>
if (prime(n)) cout « *\nprime factor *« n;
else cout « mXncomposite factor *« n;
r}lurn GOOD;

t = 0j I'1to signify that vie didn't find a

tor!
return FAILED;

factoring program using Lenetras E lliptic Curve method

:/t
{

roainC)

Buffer inbuf, outbuf;
Big num, factor;
int curve, rc;

Ify get input pararnetare from the main distproc process

GetlnputParameters(inbuf);

inbuf = LOAD(inbuf, curve); Il load curve

inbuf = LQAD{inbuf, (char *)MR_IOBUFFf (size_t)MH_IOBSIZ);
cinstr (num.fn, (char *)MR_IOBUFF) ;

ft call our worker functicxi to factor 'n' using curve 'k’
and put the result into 'factor'.

rc = lenstra(num, curve, factor);

/

// send result back to the main distproc process

SAVE(outbuf, re);

cotatr(factor.fn, (char *)MR_IOBUFF);

SAVE (outbuf, (char *)MR_IOBUFF, (size_t)yMR_IOBSIZ) ;
Retum Results (outbuf);

cout « mn\nReturned the following results iVnl

« *\n\trc = m« rc
« m\n\tfactor = m « factor « *Sn\n*;
return 0;
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