BI & TRI DIMENSIONAL
SCENE DESCRIPTION AND
COMPOSITION IN THE
MPEG-4 STANDARD

By
Edward Cooke, BSc

A thesis submutted for the degree of

Masters in Electronic Engineering

Dublin City University

Supervisor Dr Thomas Curran
School of Electronic Engineerning

Masch 1998

I hereby certify that this material, which I now submut for assessment on the programme of
study leading to the award of Masters in Electronic Engineermng 1s entirely my own work and
has not been taken from the work of others save and to the extent that such work has been
ated and acknowledged within the text of my work

Signed Z/w/ (& IDNo 9592135 |

Candidate

Date < ?/ ﬁ;/ %

1

TABLE OF CONTENTS

INTRODUCTION

11 INTRODUCTION
12 RESEARCH OBJECTIVES
13 STRUCTURE OF THESIS

OVERVIEW OF THE MPEG-4 STANDARD

21 INTRODUCTION
22 SCOPE AND FEATURES OF THE MPEG-4 STANDARD
23 REPRESENTATION OF PRIMITIVE AUDIO-VISUAL OBJECTS
24 COMPOSITION OF AUDIO-VISUAL OBJECTS
25 MULTIPLEX AND SYNCHRONISATION OF AUDIO-VISUAL OBJECTS
26 INTERACTION WITH AUDIO-VISUAL OBJECTS
27 TECHNICAL DESCRIPTION OF THE MPEG-4 STANDARD
28 DMIF
29 DEMULTIPLEXING, BUFFER MANAGEMENT AND TIME IDENTIFICATION
291 Demultiplexing
292 Buffer Management
293 Time Identtfication
210 SYNTACTIC DECODING
211 CoODING OF AUDIO OBJECTS
2111 Natural Sound
2112 Synthesised Sound
2113 Effects
212 CODING OF VISUAL OBJECTS
2121 Natural Textures, Images and Video
2122 Synthetic Objects
2123 Structure of the tools for representing Natural Video
2124 Support for Conventional and Content-Based Functionalities
2125 Robustness in Error Prone Environments
213 SCENE DESCRIPTION
2 14 USER INTERACTION

COMPOSITION & RENDERING OF BI & TRI DIMENSIONAL OBJECTS

31 INTRODUCTION
32 GEOMETRICAL TRANSFORMATIONS
321 2D Transformations

322 Homogeneous co-ordinates and matrix representation of 2D transformations
323 Composition of 2D transformations

324 The window-to viewport transformation

325 Matrix representation of 3D transformations

326 Transformations as a change n co ordinate system

33 VIEWINGIN3D
331! Projections
332 Perspective Projections
333 Parallel Projections

—

SO o0 - O

12
12
14
17
18
20
21
21
22
22
23
24
24
24
25
28
29
30
30
32

33

33
33
33
36
37
38
40
4]
42
43
44
45

334 Specifying an arbitrary 3D view
EVOLUTION OF THE SCENE DESCRIPTION IN MPEG-4

41 INTRODUCTION
42 SCENE DESCRIPTION
43 INITIAL 2D SCENE DESCRIPTION
431 2D Fixed Scene Description
432 2D Flexible Scene Description
44 COMPOSITION FLEXIBILITY
441 Fixed Profiles
442 Flexible Profiles
45 SCENE DESCRIPTION OF THE INITIAL MPEG-4 VERIFICATION MODEL
451 The JAVA Development Environment
46 DEVELOPMENT OF THE MPEG-4 CLASS LIBRARY
461 Class Library
462 AVObject Layer Classes
463 Composition Layer Classes
464 Presentation Layer Classes
47 IMPLEMENTATION OF AN INITIAL MPEG-4 COMPLIANT VIEWER
471 MoMuSys Viewer
472 How the MoMuSys Viewer functions?
48 EXPANDING THE MPEG-4 CLASS LIBRARY TO HANDLE VOPS
48] VOP Definition
482 Creating a VOP Class
483 Integration of VOP class in MPEG 4 Verification Model
49 2D & 3D SCENE DESCRIPTION AND COMPOSITION IN THE VERIFICATION MODEL
410 LIMITATIONS IMPOSED BY THE INITIAL VERIFICATION MODEL
411 VRML AND SCENE DESCRIPTION IN THE VERIFICATION MODEL
412 ANALYSIS OF AN MPEG-4 & VRML COMBINED BROWSER
4121 Proposed Architecture
4122 Scene Composttion with 2D and 3D Objects
413 IMPLEMENTATION OF A 3D VERIFICATION MODEL
4131 Analysis of a 3D verification model
4132 Implementing a Liquid Reality Extension Node from a 2D AVO
4133 Implementing a GiflpegDecoder Extension Node
4134 Implementing a Plug-and-Play Interface

BIFS AND BI & TRI DIMENSIONAL COMPOSITION

51 INTRODUCTION
52 BiINARY FORMAT FOR SCENE DESCRIPTION (BIES)
53 VRML/BIFS RELATIONSHIPS
531 What VRML offers?
532 What 1s BIFS?
533 Using VRML content in the MPEG-4 context
534 Using BIFS content in the VRML context
54 IMPLEMENTATION OF BIFS AND 2D & 3D COMPOSITION
541 The Components of the MPEG-4 Player
542 MediaObjects
543 MedwaStreams
544 Decoding
545 BIFS Decoder

v

45
50

50
51
51
51
52
52
52
52
54
54
57
57
58
59
60
61
61
63
65
65
65
66
67
68
70
71
72
73
74
74
75
76
76

79

79
80
80
80
81
82
84
&5
86
86
87
88
88

546 Flow of Information in the MPEG-4 Player
547 2D & 3D Composttion in the MPEG-4 Player
548 An Example MPEG-4 Scene

CONCLUSIONS AND FUTURE DIRECTIONS

61 INTRODUCTION

62 FUTURE DEVELOPMENTS PLANNED IN THE SCENE DESCRIPTION OF MPEG-4
621 The Future of BIFS
622 Adaptwve Audio-Visual Session Format (AAVS)

63 THE FUTURE DEVELOPMENT OF THE SYSTEMS LAYER

64 FUTURE MPEG-4 APPLICATIONS

641 Real Time Communications
642 Infotainment
643 Collaborative Scene Visualisation

89
90
92

96

96
97
97
98
99
101
102
103
104

ABSTRACT

BI AND TRI DIMENSIONAL SCENE
DESCRIPTION AND COMPOSITION IN
THE MPEG-4 STANDARD

By Edward Cooke

MPEG-4 1s a new ISO/IEC standard being developed by MPEG (Moving Picture Experts Group)
The standard 1s to be released in November 1998 and version 1 will be an International Standard 1n
January 1999 The MPEG-4 standard addresses the new demands that arise 1n a world in which
more and more audio-visual material 1s exchanged in digital form MPEG-4 addresses the coding of
objects of various types Not only traditional video and audio frames, but also natural video and
audio objects as well as textures, text, 2- and 3-dimensional graphic primitives, and synthetic music
and sound effects

Using MPEG-4 to reconstruct an audio-visual scene at a terminal, 1t 1s hence no longer sufficient to
encode the raw audio-visual data and transmit 1t, as MPEG-2 does mn order to synchronize video and
audio In MPEG-4, all objects are multiplexed together at the encoder and transported to the
terminal Once de-multiplexed, these objects are composed at the terminal to construct and present
to the end user a meaningful audio-visual scene The placement of these elementary audio-visual
objects 1n space and time 1s described 1n the scene description of a scene While the action of
putting these objects together in the same representation space 1s the composition of audio-visual
objects

My research was concerned with the scene description and composition of the audio-visual objects
that are defined 1n an audio-visual scene Scene descriptions are coded independently {rom sticams
related to primuttve audio-visual objects The set of parameters belonging to the scene description
are differentiated from the parameters that are used to improve the coding efficiency of an object
While the independent coding of different objects may achieve a higher compression rate, 1t also
brings the ability to manipulate content at the terminal This allows the modification of the scene
description parameters without having to decode the pnmitive audio-visual objects themselves This
approach allows the development of a syntax that describes the spatio-temporal relationships of
audio-visual scene objects The behaviours of objects and their response to user inputs can thus also
be represented 1n the scene description, allowing richer audio-visual content to be delivered as an
MPEG-4 stream

\%!

LIST OF FIGURES

Figure I An example of an MPEG-4 audio-visual scene 9
Figure 2 The MPEG-4 System Layer Model 11
Figure 3 Major components of an MPEG-4 terminal (recerver side) 14
Figure 4 The DMIF Architecture 5
Figure 5 Buffer architecture of the System Decoder Model 20
Figure 6 General block diagram of MPEG-4 Audio 23
Figure 7 2D mesh modelling of the "Akiyo" video object 27
Figure 8 Classification of the MPEG-4 Image and Video Coding Algorithms and Tools 28
Figure 9 VLBV Core and the Generic MPEG-4 Coder 29
Figure 10 Logical structure of a scene 31
Figure {1 Derivation of the rotation equation 35
Figure 12 Conceptual model of the 3D viewing process 42
Figure 13 (a) Line AB and 1ts perspective projection A’B’ (b) Line AB and its parallel projection
A’B’ Projectors AA’ and BB’ are parallel 43

Figure 14 The view plane 1s defined by VPN and VRP, the v axis 1s defined by the projection of
VUP along VPN onto the view plane The u axis forms the right-handed viewing reference-co-

ordinate system with VPN and v 46
Figure 15 The view reference-co-ordmate system (VRC) 1s a right-handed system made up of the u,

v, and n axes The n axis 1s always the VPN CW 1s the centre of the window 47
Figure 16 The semi-infinite pyramid view volume for perspective projection CW 1s the centre of

the window 48
Figure 17 Truncated view volume 49
Figure 18 Flexible Configuration 53
Figuie 19 Proposed 3D Architecture 72
Figure 20 2D & 3D Composited Scene 73
Figure 21 2D and 3D interfaces for AV nodes 75
Figure 22 GiflpegSequence rendered on 2D VM 77
Figure 23 GiflpegSequence rendered on 3D VM 78
Figure 24 A typical MPEG-4 terminal architecture 83
Figure 25 BIFS capabilities 1n a standard VRML environment 84
Figure 26 Implementation of major components of MPEG-4 Player 86
Figure 27 Flow of information in the MPEG-4 Player 89
Figure 28 Schematic Diagram of the Order of Operations in OpenGL 9l
Figure 29 Composition of a BIFS scene in MPEG-4 Player 95

vil

ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr Thomas Curran, and all my colleagues 1n the
Video Coding Group as well as the MoMuSys and MPEG-4 consortiums for their

continued support and technical help during the last two years

I also want to thank the people who have helped me morally during my research, these
are the group of people who would stoop low enough to call themselves my friends,
and of course my family who, unfortunately for them, had no real say in therr

relationshup to me

Thanks

vii

Chapter

1 INTRODUCTION

11 Introduction

After setting the MPEG-1 and MPEG-2 standards, MPEG (Moving Pictures Experts
Group, ISO/IEC Joint Technical Commuttee 1, Sub Comtmuttee 29, Wotk Group 11) 1s
now working on a new audio-visual standard, called MPEG-4 While the inital objective
of MPEG-4 was to achieve very low bit-rates, MPEG has adapted the wotk plan to
changes 1n the audio-visual environment and modified 1ts targets considerably [4] The
MPEG standard under development now addresses the new demands that arise 1 a

wortld in which more and more audio-visual material 1s exchanged 1n digital form

The first two sets of MPEG standards (MPEG-1 and MPEG-2) are well known to
people mvolved 1n digital communication They are widely adopted 1n commercial
products, such as CD-mnteractive, digital audio broadcasting, digital television and many
video-on-demand trials MPEG-1 and -2 deal with ‘frame-based video’ and audio
Although these standards provide a large improvement, in randomly accessing content,
over standards that existed before, the granulanty of the interaction 1s hmited to the
video frame, with its associated audio In thus sense, the funcuonality could be
compared with that of audio and video cassette playets, albeit with non-linear controls
Their most important goal 1s to make storage and transmussion more effictent, by
compressing the matenial The new MPEG-4 standard does not only aim to achieve
efficient storage and transmussion, but also to satisfy other needs of future tmage
communication users To reach thus goal, MPEG-4 will be fundamentally different in
nature from its predecessors, as 1t makes the move towards representing the scene as a

composition of (potentially meaningful) objects, rather than ‘just’ the pixels

‘The most important mnovatton that MPEG-4 brings 1s 1t defines an audio-visual scene
as a coded representation of ‘audio-visual objects’ that have certain relations 1n space
and ume, rather than ‘video frames with associated audio’ Depending on the
application, the scene can be composed of 2D or 3D tme varying objects 3D scenes
may be composed of 3D, 2D, synthetic and natural objects Such an object could be a
video object a car, a dog, or the complete background It could also be an audio object
one instrument in an orchestra, the barking of the dog, a voice When an audio and a
video object are associated, audio-visual object results the image of a running dog
together with the sound 1t makes Thus new approach to information representation
allows for much more interactivity, for versatile re-use of data, and for intelligent
schemes to manage bandwidth, processing resources (e g memoty, computing power)
and error protection It also eases the integration of natural and synthetic audio and

video matenal, as well as other data types, such as text overlays and graphics

12 Research Objectives

The subject of my research was concerned with the scene description and composition
of the audio-visual objects that are defined 1n an audio-visual scene In MPEG-4, all
audio-visual objects are multplexed together at the encoder and transported to the
termuinal Once de-multiplexed, these objects are composed at the terminal to construct
and present to the end user a meanungful audio-visual scene The placement of these
elementary audio-visual objects 1n space and time 1s described 1n the Scene Description
The action of putting these objects together 1n the same representation space s the

Compositton of audio-visual objects

Scene descriptions are coded independently from streams related to prmutve audio-
visual objects Special care 1s devoted to the identification of the parameters belonging
to the scene descaption This 1s done by differentiating parameters that are used to
improve the coding efficiency of an object (eg motion vectors n video coding

algonthm), from those used as modifiers of an object’s characteristics withun the scene

(e g position of the object in the global scene) The 1dea was to standardise a syntax that

describes the spatio-temporal relatnonships of the audio-visual scene objects

The compositor uses this spatio-temporal information to reconstruct the complete
scene Composition mnformation 1s thus used to synchromse different objects in ume,

and to give them the night position 1n space

During the course of my research I analysed the fundamental principles of bt and tmn
dimenstonal scene description and graphic composttion with an interest 1n how these
principles could be developed to aid 1n the creation of the MPEG-4 standard My
research also involved the development of an MPEG-4 terminal, which would utlise
the MPEG-4 scene description language and compostte the audio-visual objects

described 1n an audio-visual scene

13 Structure of Thesis

A general overview of the MPEG-4 standard 1s given 1n chapter 2 A brief introduction
1s given of how the need to establish a universal, efficient coding standard for different
forms of audio-visual data arose, and the scope and features the standard offers to
authors, service providers and end users This 1s followed by a technical description of
the vartous layers 1 e, Video, Audio, Systems etc, which combine to form MPEG-4 An
overview of the new concepts that have been developed within these layers to create the
standard 1s given This chapter 1s designed to give an explanation of how the final

standard 1s designed to function

The fundamental principles of bi and tn dimensional graphic composition and
rendering are discussed 1n chapter 3 The chapter 1s designed to explain how geometrical
transformations based on matrix mathematics can be used to sumplify the composition

of 2D and 3D scenes It 1s through these transformations that graphics applications can

create 2D renditions of 3D objects The chapter also introduces and explains the notion
of an objects’ local co-ordinate system and how a global co-ordinate system, the scene,
can be created by combinng different objects co-ordinate systems together Finally

viewing projections of 2D and 3D objects are explained

Chapter 4 introduces the notion of a scene description 1n the MPEG-4 standard Scene
descripuons ate coded independently from streams related to primutive audio-visual
objects Special care 1s devoted to the 1denufication of the parameters belonging to the
scene description This 1s done by differentiating parameters that are used to improve
the coding efficiency of an object from those used as modifiers of an object’s
charactenistics within the scene In keeping with MPEG-4’s objective to allow the
modification of this latter set of parameters without having to decode the primutive
audio-visual objects themselves, these parameters form part of the scene description
and are not part of the pnmitive audio-visual objects The 1dea was to standardise a
syntax that describes the spatio-temporal relationships of Scene Objects Thus chapter 1s
a detaled analysis of how scene description languages function and how the
functionality of the MPEG-4 scene description language has been developed since 1ts
conception We see how the JAVA language was 1utially used for a flexible form of
scene description language and the development of this language Thus 1s followed by an
explanation of the overheads involved 1n developing a real-ime implementation of an
MPEG-4 terminal and how the JAVA environment was too heavy for such

development Finally VRML 1s introduced as a possible scene description language

The development of the MPEG-4 scene desctiption language into a Binary Format for
Scene Description (BIFS) and how b and tr1 dimensional composition 1s achieved using

this description 1s explained in chapter 5 We see the disadvantages of the VRML scene

description language for MPEG-4 as well as how VRML was used as a budding block
for BIFS The use of the OpenGL API for 2D and 3D composition 1s also described A
detailed explanation of a developed MPEG-4 player 1s also given

Chapter 6 gives an account of how the upcoming MPEG-4 standatd has been divided
into two versions An overview of the currently developing version, version 1 which
went to a Commuttee Draft document n November 1997, 1s given as well as a timetable
for the future development planned for MPEG-4 versions 1 and 2 A description 1s
given of how the VRML and MPEG-4 consortiums are converging and the future
prospects for BIFS An explanation of the new dynamic scene description language,
Adaptive Audio-Visual Session format (AAVS), 1s also gtven The chapter finishes with
an analysis of several different types of applications that the MPEG-4 standard will

enable developers to create

Chapter

2 OVERVIEW OF THE MPEG-4 STANDARD

21 Introduction

In this chapter the MPEG-4 standard 1s introduced The mmitial sectuon explains how the
demand for MPEG-4 arose, this 1s followed by an explanation of what MPEG-4 offers
as a new technology Then a technical description of the various layers 1e, Video,
Audio, Systems etc, which combine to form MPEG-4 are introduced and the new
concepts that have been developed within these layers to create the standard are

explained

As the MPEG-4 project description [4] states, a number of concurrent evolution’s have
created the need for new ways to represent, integrate, and exchange pieces of audio-

visual information

e the deployment of diverse new two-way delivery systems such as fixed broadband

and mobile nartowband,

® the progress of micro-electronic technology that 1s providing extremely powerful and

programmable processors, and

® the change of the audio-visual nformation production and consumption paracdigm,
because of the increased role of synthetic information and higher degrees of

interactivity

The MPEG-4 project ammns to establish universal, efficient coding of different forms of
audio-visual data, called audio-visual objects These objects can be of natural or

synthetic origin

22 Scope and features of the MPEG-4 standard

The MPEG-4 standard under development will provide a set of technologes to sausfy

the needs of authors, service providers and end users alike [21] [22]

To authors, MPEG-4 will enable the production of content that 1s more reusable, has
greater flexibility, and can be better protected than possible today with individual
technologies such as digital television, animated graphics, World Wide Web (WW/W)

pages and their extensions

To network service providers, MPEG-4 will offer content transpottaion mechanisms

that match the Quality of Service (QoS) required by the indvidual media,

To end users, MPEG-4 will allow higher levels of interaction with content, within the

lirnuts set by the author, avoiding the nisk of proprietaty formats and players

MPEG-4 achieves these goals by providing standardised ways to

Represent units of aural, visual or audio-visual content, called “audio-visual objects”

or AVOs (The very basic unut 1s more precisely called a “primitive AVO?”),

Compose these objects together, to create compound audio-visual objects (e g an

audio-visual scene),

Multiplex and synchronise the data associated with AVOs, so that they can be

transported over networks providing a QoS appropriate for the nature of the specific

AVOs,

Interact with the audio-visual scene generated at the recever’s end

The next sections illustrate the described functionalities of MPEG-4, using the audio-

visual scene depicted 1n Figure 1

2 3 Reptresentation of primitive Audio-Visual Objects
This audio-visual scene 1s composed of several AVOs, orgamsed 1n a hierarchical

fashion At the leaves of the hierarchy, we find panmtive AVOs, such as
® a 2-dimensional fixed background,

e the picture of a talking person (without the background)

e the voice associated with that person,

MPEG-4 standardises a number of such pnimitive AVOs, capable of representing both
natural and synthetic content types, which can be either 2- or 3-dimensional In addition
to the AVOs mentioned above and shown 1n Figure 1, MPEG-4 defines the coded

representation of objects like

e talking heads and associated text to be used at the recever’s end to synthesise the

speech and ammate the head,
® animated human bodies,
e subtitles of a scene containing text and graphics

In their coded form, these objects are represented as efficiently as possible This means
that not more information 1s spent on coding these objects than necessary for
supporting the desired functionalities Such funcuonality may be error robustness, or
allowing extraction and editing of the object, or having the object available 1n a scaleable
form It 1s important to note that the coded representation 1s able to represent the

object (aural or visual) independently, that 1s, without surroundings or background

2 4 Composition of Audio-Visual Objects

Figure 1 gives an example that highlights the way 1n which an audio-visual scene 1n
MPEG-4 1s composed of individual objects The figure contains compound AVOs that
group arbitrary AVOs together For example, the visual object corresponding to the
talking person and the corresponding voice are tied together to form a new compound

AVO Such grouping allows authors to construct complex scenes, and enables

consumers to mampulate meaningful (sets of) objects [26]

hierarchically multiplexed
downstream control / data

hierarchically multiplexed

upstream control / data
< &

video
compositor
projection
plane

2

hypothetical viewer

scene
coordinate
system

speaker

| ittt |

e ———-

audiovisual objects

user events

3D objects

O

O

display

Figure 1 An example of an MPEG-4 audio-visual scene

user inpu

—————————

audio
composttor|

K- - —mm e

OO

More generally, MPEG-4 provides a standardised way to compose a scene, allowing fot

example to

¢ place AVOs anywhere 1n a given co-ordinate system,

e group primutive AVOs 1n order to form compound AVOs,

e apply streamed data to AVOs, 1n order to modify their attributes (e g moving texture

belonging to an object, ammating a moving head by sending animation parameters),

o change, interactively, the user’s viewing or hearing points anywhere in the scene

25 Multiplex and Synchronisation of Audio-Visual Objects

AVO data 1s conveyed mn one or more Elementary Streams The streams ate
characterised by the QoS they request for transmission (e g, maximum bit rate, bit error
rate, etc), as well as other parameters, including stream type information to determune
the required decoder resources and the precision for encoding immg information How
such streaming information 1s transported 1n a synchronised manner from source to
destunation, explorting different QoS as available from the network, 1s specified 1n terms

of an Access Unit Layer and a conceptual two-layer muluplexer, as depicted 1 Figure 2

The Access Ut Layer allows idennficaton of Access Uruts (e g, video or audio frames,
scene description commands) 1n Elementary Streams, recovery of the AVO’s or scene
description’s ame base and enables synchromsaton among them The Access Unit
header can be configured 1n a large number of ways, allowing use 1n a broad spectrum

of systems

The “FlexMux” (Flexible Multiplexing) Layer 1s fully specified by MPEG It contans a
multplexing tool that allows grouping of Elementary Streams (ESs) with a low
multiplexing overhead This may be used, for example, to group ES with similar QoS

requirements

10

The “TransMux” (Transport Multiplexing) layer 1n Figure 2 models the layer that offers
transport services matching the requested QoS Only the interface to thss layer 1s
spectfied by MPEG-4 Any swtable exisung transport protocol stack such as
(RTP)/UDP/IP, (AAL5)/ATM, ot MPEG-2’s Transport Stream over a suitable link
layer may become a specafic TransMux instance The choice 1s left to the end
user/service provider, and allows MPEG-4 to be used 1n a wide varety of operaton

environments

Use of the FlexMux multiplexing tool 1s optional and, as shown 1n Figure 2, this layer
may be bypassed if the undetlying TransMux instance provides equivalent functionality

The Access Unit Layer, however, 1s always present

Elementary Stream Interface

AccessUnit [aver

FlexMux Channel

Stream Mulaplex Interface

L
FlexMux Taver { 7 e
a
TransMux Channel FlexMux Streams ‘ TransMux Interface nog4
- n A DA T i PR 0 S ORT 01 RN 057 XA DS S G 1IN s A | mw t
P ¢
Protectton sLI Protection sL. I‘ (RTP)|| (PES) ||, 1l el pas 0 4
UDP | MPEG:
4 Y TS & ATM{IPSTN{| mux TransMux T aver ¢ r
L[Musx subLayer |

\Defined outside MPEG
] t t t t : lincluded m MPEG vy stend
el for conventence only!

TransMux Streams

Figure 2 The MPEG-4 System Layer Model

With regard to Figure 2, 1t will be possible to

¢ identify access umits, transport timestamps and clock reference information and

identify data loss

11

e optionally interleave data from different ESs into FlexMux Streams

® convey control information to
e 1ndicate the required QoS for each Elementary Stream and FlexMux stream,
e translate such QoS requirements 1nto actual network resoutces,

e convey the mapping of ESs, associated to AVOs, to FlexMux and TransMux

channels

Part of the control functionalittes will be available only 1n conjunction with a transport

control entity ike the DMIF framework

2 6 Interaction with Audio-Visual Objects
In general, the user observes a scene composed following the design of some author
Depending on the degree of freedom allowed by the author the user has the possibility

to interact with the scene Operations a user may be allowed to perform include
» changing the viewing/hearing point of the scene (e g by navigation through a scene),
® dragging objects 1n the scene to a different position, deleting objects from a scene,

® but also more complex kinds of behaviour can be tuggered (e g a wirtual phone

1ings, the user answers and a communication link 1s established)

27 Technical description of the MPEG-4 standard

The remaining sections 1n this chapter provide a techrucal description of the major
components of the MPEG-4 standard A more detailed description can be found 1n [1]
As shown i Figure 3, streams coming from the network (or a storage device) as

TransMux Streams are demuluplexed into FlexMux Streams and passed to appropriate

12

FlexMux demuluplexers that retrieve Elementary Streams Thus 1s described in Section
29 The ESs are parsed and passed to the appropriate decoders Decoding recovers the
data 1n an AVO from 1ts encoded form and performs the necessary operations to
reconstruct the onginal AVO ready for rendering on the appropriate device Audio and
visual objects are represented 1n their coded form, which 1s described 1n sections 211
and 2 12 respectively The reconstructed AVO 1s made available to the composition
layer for potential use dunng scene rendering Decoded AVOs, along with scene
description 1nformation, are used to compose the scene as desctibed by the author
Scene description and Composition are explained 1n Secaon 2 13 The user can, to the
extent allowed by the author, interact with the scene that 1s eventually rendered and

presented Section 2 14 describes thus interaction

13

Syntachic Composttion and
Decoding Rendenng
0 o £ 0 o)
ounEmRom oag)
o & o en an a7y
5 o v o e)
Syntactically Primitive
Decoded Streans AV Objects
Scene Description
| (Serpt or (lasses) Hierarchucal, Interacttve,
Audiovisual Scene
Composition
Information
Upstream Data
(User Events Class Request,)

Figure 3 Major components of an MPEG-4 termunal (receiver
side)

28 DMIF

The Delivery Multimedia Integration Framework (DMIF) addresses the operation of
multimedia applications over interactive networks, 1n broadcast environments and from
disks The DMIF architecture 1s such that applcations, which rely on DMIF for
communications, do not have to be concerned with the undetlying communications
method The implementation of DMIF takes care of the network details, presenting the
application with a simple interface DMIF 1s located between the MPEG-4 application

and the transport network as shown in Figure 4 below

14

DSM CC 18
Denved N
K SRM ‘\\
II’ ‘\‘

a N DMIF Producer Peer role

DMIF Peer role (Clhiefit v

Consumer Peer fole llle) *\(Server Broadcast Local Storage)
‘ \
Applcation DMIF < DMIF

(MPEG 4) TRANSPORT Applicauon
K— NETWORKS > (MPEG-4)

(Note 1)

» = Not present 1n case of pure broadcast ~ SRM= Session and Resource Management function
""" = Invoked on demand

Note 1 Includes I/O bus and drivers for DVD 1n case of local terminal storage

Figure 4 The DMIF Architecture

To the application, DMIF presents a consistent interface irrespective of whether
MPEG-4 streams are receved by interacting with a remote interactive DMIF peer over
networks and/or by interacting with broadcast or storage media An 1nteractve DMIF
peer as shown 1 Figure 4, 1s an end-system on a network that can onginate a session
with a target peer A target peer can be an mnteractive peet, a set of broadcast MPEG-4
streams or a set of stored MPEG-4 files

An MPEG-4 application through the DMIF interface can establish a muluple peer
application sesston Each peer 1s identfied by a unique address A peer may be a remote
interactive peer over a network or can be pre-cast (over broadcast or storage media) An
interactive peer irrespective of whether 1t 1nitiated the session can select a setvice, obtain
a scene description and request specific streams for AVOs from the scene to be

transmitted with the appropnate QoS

The MPEG-4 application can request from DMIF the establishment of channels with

specific QoSs and bandwidths for each elementaty stream DMIF ensures the tmely

15

establishment of the channels with the specified bandwidths while preserving the QoSs
over a vartety of intervening networks between the interactive peers DMIF allows each
peer to maintain 1ts own view of the netwotk, thus reducing the number of stacks

supported at each termunal

Control of DMIF spans both the FlexMux and the TransMux layers shown in Figure 2
In the case of FlexMux, DMIF provides “control of the establishment of FlexMux
channels In the case of TransMux, DMIF uses an open mnterface, which accommodates
existing and future netwotks through templates called connection resource descriptors
MPEG-4 will offer a transparent interface with signalling primutive semantics These
MPEG-4 semantics at the interface to DMIF are interpreted and translated into the
appropriate nattve signalling messages of each network, with the help of relevant
standards bodies having the appropnate jusisdiction In the area of QoS, MPEG-4
provides a first step towards defimng a generic QoS parameter set for media at the
DMIF interface The exact mapping for these translations are beyond the scope of

MPEG-4 and are left to be defined by network providers

The DMIF SRM functionality 1n Figure 4 encompasses the MPEG-2 DSM-CC SRM
functionality However, unlike DSM-CC, DMIF allows the choice whether or not to
invoke SRM DMIF provides a globally unique network session idenufier, which can be

used to tag the resources and log their usage for subsequent billing

In a typical operation an end-user may access AVOs distabuted over a number of
remote 1nteractive peers, broadcast and storage systems The 1nitial network connection
to an nteractive peer may consist of a best effort connecnon over a ubiquitous network
If the content warrants 1t, the end-user may seamlessly scale up the quality by adding

enhanced AVO streams over connection resoutces with guaranteed QoS

16

29 Demuluplexing, buffer management and time 1dentification

Individual Elementary Streams have to be retrieved from incoming data from some
network connection or a storage device FEach network connection or file 1s
homogeneously considered a TransMux Channel in the MPEG-4 system model The
demuluplexing 1s partially or completely done by layers outside the scope of MPEG-4,
depending on the applcation For the purpose of integrating MPEG-4 in system
environments, the Stream Multiplex Interface (see Figure 2) 1s the reference point
Adaptation Layer-packetized Streams are delivered at thus interface The FlexMux Layer
spectfies the optional FlexMux tool The TransMux Interface specifies how either AL-
packetized Streams (no FlexMux used) or FlexMux Streams are to be retrieved from the
TransMux Layer This 1s the interface to the transport functionaliies not defined by
MPEG The data part of the intetfaces 1s considered here while the control part 1s dealt

with by DMIF

In the same way that MPEG-1 and MPEG-2 described the behaviour of an idealised
decoding device along with the bitstream syntax and semantics, MPEG-4 defines a
System Decoder Model This allows the precise defimtion of the termunal’s operation
without making unnecessary assumptions about implementation details Thus 1s essential
in order to gwve implementers the freedom to design real MPEG-4 termunals and
decoding devices 1n a vanety of ways These devices range from television recervers,
which have no ability to communicate with the sender, to computers, which are fully
enabled with bi-directional communication Some devices will recetve MPEG-4 streams
over 1sochronous networks while others will use non-isochronous means (eg, the
Internet) to exchange MPEG-4 information The System Decoder Model provides a

common model on which all implementatons of MPEG-4 terminals can be based

The specification of a buffer and aming models 1s essential to encoding devices which
may not know ahead of titme what the termmal device 1s or how 1t will receve the

encoded stream Though the MPEG-4 specification will enable the encoding device to

17

inform the decoding device of resource requrements, 1t may not be possible, as
indicated earlier, for that device to respond to the sender It i1s also possible that an
MPEG-4 sesston 1s received simultaneously by widely different devices, 1t will, however,

be propetly rendered according to the capability of each device

291 Demultyplexing

The retrieval of incomuing data streams from network connections or storage media
consists of two tasks First, the channels must be located and opened This requires a
transport control enuty, e g, DMIF Second, the mncomung streams must be propetly
demultplexed to recover the Elementary Streams from downstream channels (incoming
at the recerving terminal) In interactive applications, a corresponding multiplexing stage
will multiplex upstream data 1n upstream channels {outgoing from the recetving
termunal) These elementaty streams catry either AVO data, scene description

information, or control information related to AVOs or to system management

The MPEG-4 demultiplexing stage 1s specified 1n terms of a conceptual two-layer
muluplexer consisting of a TransMux Layer and a FlexMux Layer as well as an Access

Unut Layer that conveys synchronisation information

The genenc term ‘TransMux Layer’ 1s used to abstract any undetlying muluplex
functionality — existing or future — that 1s suitable to transport MPEG-4 data streams
Note that this layer 1s not defined in the context of MPEG-4 Examples are MPEG-2
Transport Stream, H 223, ATM AAL 2, IP/UDP The TransMux Layer 1s modelled as
consisting of a protection sublayer and a multiplexing sublayer indicatung that this layer
1s responsible for offenng a specific QoS Protection sublayer functionality includes
error protection and error detection tools suitable for the given network or storage
medium In some TransMux mstances, 1t may not be possible to separately 1denufy

these sublayers

18

In any concrete apphcation scenario one or more specific TransMux Instances will be
used FEach TransMux demultiplexer gives access to TransMux Channels The
requirements on the data interface to access a TransMux Channel are the same for all
TransMux Instances They include the need for rehiable etror detection, delwery, if
possible, of erroneous data with a switable error indication and framing of the payload,
which may consist of either Al-packetized streams or FlexMux streams These

requirements are summarised 1n an informative way 1n {5]

The FlexMux layer, on the other hand, 1s completely specified by MPEG It provides a
flexible, low overhead, low delay tool for 1nterleaving data that may optionally be used
and 15 especially useful when the packet size or overhead of the underlying TransMux
instance 1s large The FlexMux 15 not itself robust to errors and can erther be used on
TransMux Channels with a high QoS or to bundle Elementary Streams that are equally
error tolerant The FlexMux requres rehable error detection and sufficient framing of
FlexMux packets (for random access and etror recovery) from the underlying layer
These requirements are summarised 1n the Stream Muluplex Interface, which defines
the data access to indvidual transport channels The FlexMux demultiplexer tetrieves

AL-packetized streams from FlexMux Streams

The Access Unit Layer has a munimum set of tools for consistency checking, and
padding to convey time base mnformatton and to carry time stamped Access Urnuts of an
Elementary Stream FEach packet consists of one Access Unit or a fragment of an
Access Unit These time stamped Access Units form the only semantic structure of
Elementary Streams that 1s visible on thus layer The AU Layer requures reliable error
detection and framing of each individual packet from the underlymng layer, which can be
accomphlished, e g, by using the FlexMux How the compression layer can access data 1s
summansed 1n {5] The AU Layer retrieves Elementary Streams from AL-packetized

Streams

19

To be able to relate Elementary Streams to AVOs within a scene, Object Descriptors
and StreamMapTables are used Object Descuptors convey information about the
number and properties of Elementary Streams that are associated to particular AVOs
The StreamMapTable links each stream to a ChannelAssociationTag that serves as a
handle to the channel that carnies this stream Resolving ChannelAssociationTags to the

actual transport channel as well as the management of the sessions and channels 1s

addressed by the DMIF part of the MPEG-4 standard

292 Buffer Management

To predict how the decoder will behave when 1t decodes the various elementary data
streams that form an MPEG-4 session, the Systems Decoder Model enables the
encoder to specify and monitor the mimumum buffer resources that are needed to
decode a session The required buffer resoutces are conveyed to the decoder within
Object Descriptors during the set-up of the MPEG-4 sesston, so that the decoder can

decide whether 1t 1s capable of handling this session

/.\-T)—‘f EB, |'—" AVO Dec]—’l cB [

N v AL EB I——’IAVO bec—{ B |—*

M e ~=uwow3CN

Demuluiplex AL M EB, I—_’I AVO Dec ’_.I CB. '_.

AL Access Unit Layer EB Elementary Stream Buffer AVO Dec AVO Decoder
CB Composition Buffer

Figure 5 Buffer architecture of the System Decoder Model

By managing the fimite amount of buffer space the model allows a sender, for example,
to transfer non real-ume data ahead of tme, 1f suffictent space 1s available at the recetver
side to store 1t The pre-stored data can then be accessed when needed, allowing at that

time real-time information to use a larger amount of the channel’s capacity if so desired

20

293 Time ldentsfication

For teal tme operation, a ttming model 1s assumed 1n which the end-to-end delay from
the signal output from an encoder to the signal input to a decoder 1s constant
Furthermore, the transmitted data streams must contain implicit or explicit timing
information There ate two types of uming information The first 1s used to convey the
speed of the encoder clock, or ime base, to the decoder The second, consisting of time
stamps attached to portions of the encoded AV data, contains the desired decoding
ume for Access Unts or composition and expiration tme for Composition Unuts Thus
information 1s conveyed 1n AL-PDU Headers generated in the Access Urut Layer With
this tmuing information, the inter-picture interval and audio sample rate can be adjusted
at the decoder to match the encodet’s inter-picture interval and audio sample rate for

synchronised operation

Different AVOs may be encoded by encoders with different time bases, with the
accompanying shightly different speed It 1s always possible to map these ume bases to
the time base of the recewving termimnal In this case, however, no real implementation of
a receving terminal can avold the occastonal repeation or drop of AV data, due to

temporal aliasing (relative reduction or extenston of their ume scale)

Although systems operation without any timing information s allowed, defining a

buffering model s not possible

210 Syntactic decoding

MPEG-4 defines a syntactic descraption language to describe the exact binary syntax of an
AVO’s bitstream representation as well as that of the scene description information
This language 1s an extenston of C™, and 1s used to desctibe the syntactic representation
of objects and the overall AVO class defimutions and scene description information n

an integrated way A more detailed description can be found 1n [6]

21

211 Coding of Audio Objects

MPEG-4 coding of audio objects provides tools for representing natural sounds (such
as speech and music) and for synthesising sounds based on structured descriptions The
representations provide compression and other functionalities, such as scalability or
playing back at different speeds The representation for synthesised sound can be
formed by text or instrument descriptions and by coding parameters to provide effects

such as reverberaton and spatialization [30]

2111 Natural Sound

MPEG-4 standardises natural audio coding at bit-rates ranging from 2 kbit/s up to 64
kbit/s The presence of the MPEG-2 AAC standard within the MPEG-4 tool set will
provide for general compression of audio 1 the upper bit rate range In order to
achieve the highest audio quality within the full range of bit-rates and at the same tiume
provide the extra functionalities, three types of coder have been defined The lowest bit-
rate range 1s covered by parametnic coding techmques Speech coding uses Code
Exated Linear Predictive (CELP) For bit-rates starting below 16 kbit/s, ume to
frequency (T/F) coding technuques, namely the TwinVQ and AAC codecs, are applied
Thus 1s dlustrated 1n Figure 6

22

Satellite Cellular phone Internet
Secure com

& > >
o < nd

ISDN

2 4 6 810121416 24 bitrate (kbps) 32 48 64
| | S 1N S I I | | | | |
I LR | | | |
Scalable Coder 2

Parametric coder

CELP coder

T/F coder 2
4 kHz 8 kHz Cvpical Audio bandwidth 20 kHz

Figure 6 General block diagram of MPEG-4 Audio

2112 Synthesised Sonnd

Decoders are also available for generating sound based on structured mnputs Text input
15 converted to speech in the Text-To-Speech (TTS) decoder, while more general

sounds 1ncluding music may be normatively synthesised Synthetic music may be

delivered at extremely low bit-rates while sull describing an exact sound signal

Text To Speech TTS allows a text or a text with prosodic parameters (pitch contour,

phoneme duration, and so on) as 1ts inputs to generate intelligible synthetic speech

Score Driven Synthests The Structured Audio Decoder decodes mput data and
produces output sounds This decoding 1s driven by a special synthesis language called

SAOL (Structured Audio Orchestra Language) standardised as part of MPEG-4

23

MPEG-4 does not standardise “a method” of synthesis, but rather a method of
describing synthests A more detaled description of the coding of audio objects can be

found 1n [7]

2113 Effects

As well as being used for defining instruments, the SAOL language 1s used to descabe
special processing effects for use in the MPEG-4 Systems Binary Format for Scene
Description The Audio BIFS system processes decoded audio data to provide an
output data stream that has been mampulated for special effects with tming accuracy

consistent with the effect and the audio sampling rate

212 Coding of Visual Objects

Visual objects can be erther of natural or of synthetic ongin

2121 Natural Textures, Images and V'ideo

The tools for representing natural video in the MPEG-4 visual standard aim at
providing standardised cote technologies allowing efficient storage, transmussion and
manipulation of textures, images and video data for multimedia environments These
tools will allow the decoding and representation of atomuc umits of image and video
content, called “video objects” (VOs) An example of a VO could be a talking person
{(without background) which can then be composed with other AVOs to create a scene

Conventional rectangular imagery 1s handled as a special case of such objects [24] [25]

In order to achieve this broad goal the MPEG-4 standard provides solutions in the

form of tools and algonthms for
e cfficient compression of 1mages and video
e efficient compresston of textures for texture mapping on 2D and 3D meshes

¢ cffictent compression of implicit 2D meshes

24

/3

e cfficient compression of time-varying geometry streams that animate meshes

o cfficient random access to all types of visual objects

o extended mampulation functionality for images and video sequences

¢ content-based coding of 1mages and video

¢ content-based scalability of textures, 1mages and video

® spatal, temporal and quality scalability

® error robustness and resilience 1n error prone environments

v

The visual part of the MPEG-4 standard will provide a toolbox contaming tools and

algorithms bringing solutions to the above mentioned functionalittes and more

2122 Synthetic Obypects
Synthetic objects form a subset of the larger class of computer graphics, as an 1mitial

focus the following visual synthetic objects will be described [23] [27]

® Parametric descripuions of

® a synthetic description of human face and body

e animation streams of the face and body

¢ Static and Dynamic Mesh Coding with texture mapping

o Texture Coding for View Dependent applications

25

21221 facal ammation

The shape, texture and expressions of the face are generally controlled by the bitstream
containing instances of Facial Definiuon Parameter (FDP) sets and/or Facial Aumation
Parameter (FAP) sets Imually the Face object contains a generic face with a neutral
expression If FDPs are received, they are used to transform the generic face into a
particular face determined by its shape and (optionally) texture Optionally, a complete
face model can be downloaded via the FDP set as a scene graph for msertion in the face
node The Face object can also receive local controls that can be used to modify the

look or behaviour of the face locally by a program or by the user

21222 body ammation

The Body object 1s capable of producing virtual body models and animauons 1n the
form of a set of 3D polygon meshes ready for rendering Two sets of parameters are
defined for the body Body Definition Parameter (BDP) set, and Body Amimation
Parameter (BAP) set The BDP set defines the set of parameters to transform the
default body to a customised body with its body sutface, body dimensions, and
(optionally) texture The Body Amimatton Parameters (BAPs) will produce body postute
and anumation on different body models No assumption 1s made and no hmitation 1s

imposed on the range of motion of joints

21223 2D ammated meshes

A 2D mesh 1s a tessellation (or parttion) of a 2D planar region into polygonal patches
The vertices of the polygonal patches are referred to as the node pomis of the mesh
MPEGH4 considers only tnangular meshes where the patches ate triangles Trnangular
meshes have long been used for efficient 3D object shape (geometry) modelling and
rendering 1n computer graphics 2D-mesh modelling may be constdered as projection of
such 3D tniangular meshes onto the 1mage plane An example of a 2D mesh 1s depicted

in Figure 7

26

hal e

Figure 7 2D mesh modelling of the Akiyo" video object

The attractiveness of 2D mesh modelling 1s that 1t 1s able to model the shape (polygonal
approximation of the object contour) and motion of a VOP 1 a umnufied framework,
which 15 also extensible to the 3D object modelling when data to construct such models
1s avaiable In particular, the 2D-mesh representation of video objects enables the

followng functionalities
¢ Video Object Manipulation
e Video Object Compression

¢ Content-Based Video Indexing

21224 Generic 3D meshes
The MPEG-4 wvisual standard will support generic meshes to represent synthetc 3D
objects The toolbox will provide algorthms for

e Efficient compression of generic meshes
e (Level Of Detail) scalability of 3D meshes

¢ Spatial scalability

27

21225 wew dependent scalability
The view-dependent scalabiity enables scalabihty of stream texture maps that are used
in realistic virtual environments It consists 1n taking into account the viewing position

in the 3D virtual world 1n order to transmut only the most visible information

212 3 Structure of the tools for representing Natural V'deo
The MPEG-4 1image and video coding algonithms will give an efficient representation of
visual objects of agbitrary shape, with the goal to support so-called content-based

functionalities It will also support MPEG-1 and MPEG-2

A basic classification of the bit rates and functionalities currently provided by the
MPEG-4 visual standard for natural images and video 1s depicted 1n Figure 8 below,

with the attempt to cluster bit-rate levels versus sets of functionalities

bitrate

functionalities

Figure 8 Classificatton of the MPEG-4 Image and Video Coding
Algonthms and Tools

At the bottom end a “VLBV Core” (VLBV Very Low Bit-rate Video) provides
algonthms and tools for apphications operating at bit-rates typically between 5 64
kbits/s The basic applicatons specific funcuonahities supported by the VLBV Core

include

28

e VLBV coding of conventional rectangular size image sequences with high coding
efficiency and high error robustness/restlience, low latency and low complexity for

real-time multtimedia communucations applications, and

» provisions for “random access” and “fast forward” and “fast reverse” operations for

VLB multimedia database storage and access applications
The same basic functionalities outlined above are also supported at higher bit-rates

Content-based functionabities support the separate encoding and decoding of content This
provides the most elementary mechamsm for interactivity, flexible representation and
mantpulation with/of VO content of images or video mn the compressed domarn,

without the need for further segmentation or transcoding at the recetver

2124 Support for Conventronal and Content-Based Functionalties
The MPEG-4 Video standard will support the decoding of conventional rectangular
images and video as well as the decoding of 1mages and video of arbitrary shape As in

Figure 9 below

MPEG-4 VLBV Core Coder
Video
Object bitstream
Plane (Similar to H 263/MPEG 1)
Genenic MPEG-4 Coder
Video
Object bitstream
Plane

Figure 9 VLBV Core and the Genenc MPEG-4 Codet

The coding of conventional images and video 1s achieved simular to conventional

MPEG-1/2 coding and 1nvolves motion prediction/compensation followed by texture

29

coding For the content-based functionalities, where the 1mage sequence 1nput may be
of arbitrary shape and location, thus approach 1s extended by also coding shape and

transparency information

2125 Robustness m Error Prone Environments

MPEG-4 provides error robustness and resihence to allow accessing image or video
information over a wide range of storage and transmussion media In particular, due to
the rapid growth of mobile communications, 1t 1s extremely important that access is
available to audio and video information via wireless networks This implies a need for
the useful operation of audio and video compression algonthms n etror-prone

environments at low bit-rates (1 e, less than 64 ICbps)
A more detailed description of the coding of visual objects can be found 1n (8]

213 Scene description

In addition to providing support for coding individual objects, MPEG-4 also provides
facilites to compose a set of such objects mnto a scene The necessary composition
information forms the scene description, which 1s coded and transmutted together with

the AVOs

In order to facilitate the development of authoring, manipulaton, and interaction tools,
scene descriptions are coded independendy from streams related to primiive AVOs
Special care 1s devoted to the 1dentification of the parameters belonging to the scene
description This 1s done by differentiating parameters that are used to improve the
coding efficiency of an object (e g, motion vectors i video coding algorithms), and the
ones that are used as modifiers of an object (e g, the posiion of the object in the
scene) Since MPEG-4 should allow the modification of thus latter set of parameters
without having to decode the pnmitive AVOs themselves, these parameters are placed

1n the scene description and not in primitive AVOs

30

The following list gives some examples of the information described 1n a scene

description

How objects are grouped together An MPEG-4 scene follows a hierarchical
structure, which can be represented as a directed acychic graph Each node of the graph
1s an AVO, as illustrated 1n Figure 10 (note that this tree refers back to Figure 1) The
tree structure 1s not necessarly static, node attributes (e g, posittoning parametets) can

be changed while nodes can be added, replaced, or removed

scene
person 2D background furniture audiovisual
\ / \ presentation

voice spnte globe desk \

AVAURVAVA)

Figure 10 Logical structure of a scene

How objects are positioned 1n space and time In the MPEG-4 model, audio-visual
objects have both a spatial and a temporal extent Each AVO has a local co-ordinate
system A focal co-ordinate system for an object 1s one in which the object has a fixed
spatio-temporal location and scale The local co-ordinate system serves as a handle for
marupulating the AVO 1n space and tme AVOs are positioned 1n a scene by specifying
a co-ordinate transformation from the object’s local co-ordinate system mto a global co-

ordinate system defined by one or more parent scene description nodes 1n the tree

31

Attribute Value Selection Individual AVOs and scene description nodes expose a set
of parameters to the composition layer through which part of their behaviour can be
controlled Examples include the pitch of a sound, the colour for a synthetic object,

activation ot deactivation of enhancement information for scaleable coding, etc

Other transforms on AVOs The scene description structure and node semantics are
heavily influenced by VRML, mncluding 1ts event model This provides MPEG-4 with a
very rich set of scene construction operators, including graphics pnmitives that can be

used to construct sophisticated 2D and 3D scenes

214 Userinteraction

MPEG-4 allows for user interaction with the presented content This interaction can be
separated 1nto two major categones chent-side interaction and server-side interaction
Clent-side 1nteraction mvolves content mantpulation, which 1s handled locally at the
end-user’s terminal, and can take several forms In particular, the modificanon of an
attribute of a scene description node, e g, changing the position of an object, making 1t
visible or invisible, changing the font size of a synthetic text node, etc, can be
implemented by translating user events (e g, mouse clicks or keyboard commands) to
scene description updates The MPEG-4 terminal can process the commands 1n exactly
the same way as 1f they onginated from the original content source As a result, thus type

of interaction does not require standardisation

Other forms of client-side interaction requite support from the scene description
syntax, and are specified by the standard The use of the VRML event structure
provides a nch model on which content developers can create compelling interactive

content

Server-side interaction involves content mantpulation that occurs at the transmitting

end, titiated by a user action Thus, of course, requires that a back channel 1s available

32

Chapter

3 COMPOSITION & RENDERING OF BI & TRI DIMENSIONAL OBJECTS

31 Introduction

An MPEG-4 scene contains coded objects of a 2 and 3 dimenstonal nature In addition
to providing support for the coding of the individual objects, the composiion of such
objects 1nto a scene has been considered This scene description information has been
coded independendy from the coding of the objects 1n order to allow the modificaton
of this former set of parameters without having to decode the primitve AVOs

themselves

This chapter introduces the fundamental principles of b1 and tri dimensional graphic
composiion and rendering The chapter 15 designed to explan how geometrical
transformations based on matrix mathematics can be used to simplify the composition
of 2D and 3D scenes It 1s through these transformations that graphics applications can
create 2D renditions of 3D objects The chapter also introduces and explains the notion
of an objects’ local co-ordinate system and how a global co-ordmnate system, the scene,
can be created by combining different objects co-ordinate systems together Finally

viewng projections of 2D and 3D objects are explained

3 2 Geometrical Transformations

321 2D Transformations

We can #ranslate points 1n the (x,y) plane to new positions by adding translation amounts
to the co-ordinates of the points For each point P(x,y) to be moved by d, units paralle]

to the x axis and by d, units parallel to the y axis to the new point P'(x'y'), we can write

xX=x+d_, y'=y+d, €N))

33

If we define the column vectors

NigMiEi
p=|"{pP=|" |T= (32)
y y d,

then (3 1) can be expressed more concisely as
P=P+T (33)

We could translate an object by applying Eq (3 1) to every point of the object Because
each line 1n an object 1s made up of an infinite number of pomnts, however, thus process
would take an infinitely long ime Fortunately, we can translate all the points on a line
by translating only the line’s endpoints and by drawing a new line between the translated

endpoints, this 1s also true of scaling and rotation

Points can be saaled by s, along the x axis and by s, along the y axus mnto new points by

the multiplications
x'=s. x, y=s 'y 349

In matrix form, this 1s

x| s, O[x
[y}={0 S}[}’] or P=§S P (35

where S 1s the matrix 1n Eq (3 5)

Points can be rotated through an angle 6 about the ongin A rotatuon 1s defined

mathematically by

x'=x cos@-y s, y'=x smnf@+y cosf (3 6)

34

In matnx form, we have

x' cos@ —-smB||x PoRr P .
y'| [sm@ cosf ||y or - G7
where R 15 the rotation matrix n Eq (37) Both the scaling and rotation matrices work

about the ongin Positive angles are measured counterclockwise from x toward y For

negative (clockwise) angles, the idenuties cos(-8) = cos0 and sin(-8) = -s1nf can be used

to modify Eqs (36) and (37)

r /PEY)

G /‘ Pxy)
® X

Figure 11 Denvation of the rotation equation

Equation (3 5) 1s easily derved from Figure 11, in which a rotation by 8 transforms
P(xy) into P'(xy) Because the rotaton 1s about the origin, the distances from the

ongn to P and to P', labelled r 1n Figure 11, are equal By simple trigonometry, we find
that

X=r CcosQ, y=r sin¢ (38
and

x'=r cos(0+¢)=r cosd cos@—r sing sinb,

y'=r sm@+¢)=r cos¢ smO+r sin¢g cosb G2

35

Substituting Eq (3 8) 1nto Eq (3 9) yields Eq(3 6)

322 Homogeneous co-ordnates and matrix representation of 2D transformations

Unfortunately, translation 1s treated differently (as an addition) from scaling and rotation
(as multiphcations) If points are expressed in homogeneons co-ordinates, all three
transformations can be treated as mulaplications In homogeneous co-ordinates, we add
a thurd co-ordmate to a pomnt Instead of being represented by a pair of numbers (x,y),
each point 1s represented by a trple (x,y,W) At the same time, we say that two sets of
homogeneous co-ordimates (x,y,W) and (x'y',W') represent the same point if and only if
one 1s 2 multiple of the other Thus (2,3,6) and (4,6,12) are the same points represented
by different co-ordinate triples That 1s, each point has many different homogeneous co-
ordinates representations Also, at least one of the homogeneous co-ordinates must be
nonzero (0,0,0) 1s not allowed If the W co-ordmate 1s nonzero, we can divide through
by 1t (x,y,W) represents the same pomnt as (x/W, y/W,1) When W 1s nonzero, we
normally do ths division, and the numbers x/W and y/W are called the Cartesian co-
ordinates of the homogeneous point The points with W = 0 are called the points at

infinity

Triples of co-ordinates typically represent points 1n 3-space, but here we use them to
represent pomnts 1n 2-space The connection 1s this If we take all the tuples representing
the same point - that 1s, all triples of the form (tx, ty, W), with t # 0 - we get a line 1n 3-
space Thus, each homogeneous point represents a line n 3-space If we homogenise the
point (divide by W), we get a pont of the form (x,y,1) Thus, the homogenised points
form the plane defined by the equation W =1 n (x,y,W) -space

Because points are now three-clement row vectors, transformation matrices, which
mulaply a point vector to produce another vector, must be 3 X 3 In the 3 X 3 matnx.

form for homogeneous co-ordinates, the translation equations Eq (3 1) are

36

VY (310)

—_ e
I
e
o — o

—_

The scaling equations Eq (3 4) are represented 1n matrix form as

x| |s, 0 Offx
yI|={0 s 0]y (311)
1 0 1)t

The rotation equations Eq (3 6) can be represented as

x cos@ —sm@ 0O |=x
y'|=|sm@ cos@ Of|y (312)
1 0 0 111

323 Compositon of 2D transformations
'The basic putpose of composing transformations 1s to gain efficiency by applying a
single composed transformation to a pomt, rather than applyng a semes of

transformations, one after the other

Consider the rotation of an object about some arbitrary point P; Because we know how
to rotate only about the origin, we convert our original problem mto three separate
problems Thus, to rotate about P,, we need a sequence of three fundamental

transformations
e Translate such that P, 1s at the ongmn
e Rotate

e Translate such that the pont at the ongin returns to P,

37

The first translation 1s by (-x1, -y1), whereas the later translation 1s by the mnverse (x1,

y1) The net transformation 1s

1 0 x;||cos@ —-smf O]|1 0 -—x
T(x,3) RO) T(=x,,~»)=|0 1 y | smB cosf 0|0 1 -y

0 0 1 0 ¢ 1]/00 1
3 13)
cos@ —smn@ x (1-cos@)+y smb

=|smf cos@ y,(1-cosf)—x, sinb
0 0 1

A similar approach would be used to scale an object about an arbitrary point P1 Furst,

translate such that P1 goes to the ongin, then scale, then translate back to P1

1 0 x||s, O Of{1 O —x
T(xl,y1) S(SX,S)) T(—Xl,—y1)= 01 Y 0 S‘ 0 0 1 2
00 1|0 O 1{|0 0 1
(314
s, 0 x(I-s5)
=10 s yU-5)
0 0 1

324 The window-to-veewport transformation

Some graphics packages allow the programmer to specify output primitive co-ordinates
1n a floating-point world co-ordinate system, using whatever units are meaningful to the
apphcation program The term wor/d 1s used because the applicaton program is

tepresenting a world that 1s being interactively created or displayed to the user

Given that output priminves are specified mn world co-ordinates, the graphics
subroutine package must be told how to map world co-ordinates onto screen co-
ordmates This 1s done by specifying a rectangular region 1n wotld co-ordinates, called
the world co-ordinate window, and a corresponding rectangular region in screen co-

ordinates, called the mewpors, into which the wotld co-ordinate window 1s to be mapped

38

The transformation that maps the window mnto the viewport 1s applied to all of the
output primutives 1n world co-ordinates, thus mapping them into screen co-ordinates If
the window and viewport do not have the same height-to-width ratio, a non-umuform
scaling occurs If the application program changes the window or viewport, then new

output primitives drawn onto the screen will be affected by the change

Given a window and a viewport the transformation matrix that maps the window from
world co-ordinates 1nto the viewport 1n screen co-ordinates 1s as follows The window,
specified by 1ts lower-left and upper-tight corners, 1s first translated to the ougin of
world co-ordinates Next, the size of the window 1s scaled to be equal to the size of the
viewport Finally, a translation 1s used to position the viewport The overall matrix M,

18

MW‘J _ T(umm ’vmm) S(umax - um_m Vmax - len] T(_xmm _ ymm)

2
max — Fan Yax ™ Ve

(u_ —u
umax nin 0 0
1 0 u,, || Xmx ™ Xoun 1 0 —x_,
=0 1 v_ 0 Yoa =m0 1 -y,
- _ y
Uy Uyun 0 —x mix ~ Ymn + u.. W
‘xnmx nuon 'xlTL'IX - xrmn
—_— V p—
— 0 vmnx mn _y vmax vmm + vnun
yn\ﬂx - ymm ymnx - yn““
0 0 1 (315)
! 1
Multplying P=M,, fx y 1]" gives the expected result
U — U Vo —V
P:{(x—xmn) _mx—m+umn (y_ymn) M+vmn I:l (316)
Xoax ~ X Yoax ~ Yo

39

325 Matrix representation of 3D transformations

Just as 2D transformations can be represented by 3 X 3 matrices using homogeneous
co-ordinates, so 3D transformations can be represented by 4 X 4 matrices, providing we
use homogeneous co-ordinate representations of pomts 1n 3-space as well Thus, instead
of representing a point as (x,y,z), we represent 1t as (x,y,z,W), where two of these
quadruples represent the same point 1f one 1s a nonzero muluple of the other, the
quadruple (0,0,0,0) 1s not allowed As i 2D, a standard representation of a pont
(x,y,z,W) with W # 0 1s given by (x/W,y/W,2/W,1) Transforming the point to this
form 1s called homogenising Also, points whose W co-ordmate 1s zero are called points
at nfinity There 1s a geometrncal interpretation as well Each point in 3-space 1s being
represented by a line through the ongin mn 4-space, and the homogemnsed
representations of these points form a 3D subspace of 4-space which 1s defined by the
single equaton W = 1 The 3D co-ordinate system 1s right-handed hence positive
rotations are such that, when looking from a positive axis toward the ongmn, a 90°

counterclockwise rotation will transform one positive axis into the other

Translation 1n 3D 1s a simple extension from that 1n 2D

1 0 0 d,
Td,.d ,d,)= 0 104, 317
E2 A At S 0 0 1 dz ()
0 00 1
Scahing 1s similarly extended
s, 0 00
S(y=| 2% 00 318
5.,5,,8,)=
e 0 0 s, O G19)
0 0 0 1

40

Rotations for z,%, and y axus's are respectively

[cos@ —smf O O] 1 0 0 0
sn@ cos§ 0 O 0 cos@ —-smb O
R(O)= R (0)=
0 0 1 0 0 sm@ cos@ O
0 0 01 0 0 0 1
- - (319)
cos@ O snf@ O
R (@) 0 1 0 O
T ZsmO 0 cos@ 0
| 0 0 0 1

326 Transformations as a change in co-ordinate system

When we have multiple objects, each defined 1n 1ts own local co-ordinate system, and
we want to combine them so as to express these objects’ co-ordinates 1n a single, global
co-ordmnate system 1t 15 useful to think of transformations as changes i co-ordnate

systems

If we define M, as the transformation that converts the representation of a point in
co-ordinate system | 1nto 1ts tepresentation in co-ordinate system 1 We define P9 as the
representation of a point in co-ordinate system 1, PY as the representation of a point 1n

co-ordinate system §, and PY as the representation of a pomt mn co-ordinate system k,

then,

PY=M,_ PV and PP=M_, PV (3 20)
Substituting,

pO=M_ PP=M_ M, PY=M_ PY (321
So

41

Mt(—-k = Mx(—~] Mj(—k <3 22)

So we can think of each object as being defined 1n 1ts own co-ordinate system and then
being scaled, rotated, and translated by redefirution of its co-ordinates in the new wotld-

co-ordinate system

33 Viewingn 3D

The 3D wviewing process 1s inherently more complex than the 2D viewing process In
2D, we simply specify a window on the 2D world and a viewport on the 2D view
surface Conceptually, objects in the wotld are clipped agamnst the window and are then
transformed mto the viewport for display The extra complexity of 3D viewing 1s caused
in patt by the added dimension and 1n part by the fact that display devices ate only 2D
The solution to the mismatch between 3D objects and 2D displays 1s accomplished by

introducing proections, which transform 3D objects onto a 2D projection plane

In 3D viewing, we specify a wew wolume 1n the world, a projection onto a projection
plane, and a viewport on the view surface Conceptually, objects 1n the 3D world are
clipped aganst the 3D view volume and are then projected The contents of the
projection of the view volume onto the projection plane, called the window, are then
transformed into the viewport for display Figure 12 shows this conceptual model of the

3D viewing process

3D world- Clipped 2D device
co-ordinate world co- output co
primitives ordinates ordinates
Chp against Project onto Transform 1nto
view volume projection viewport in 2D device

plane _bco ordinates for display]

Figure 12 Conceptual model of the 3D viewing
process

42

331 Propections

In general, projections transform points 1n a co-ordinate system of dimension # into
points 1n a co-ordinate system of dimension less than # The projection of a 3D object 1s
defined by straight projection rays emanating from a centre of projection, passing through
each point of the object, and intersecting a projection plane to form the projection Figure

13 shows two different projections of the same line

Projectors Projectors

Projection F o +4-Projection

plane
Centre of
Centre of projection
projection at infinity
(@ (b)

Figure 13 (a) Line AB and its petspectve projection A’B’ (b)
Line AB and 1ts parallel projection A’B’ Projectors AA’ and BB’
are parallel

Projections can be divided mnto two basic classes perspecuve and parallel The
distinction 1s 1 the relation of the centre of projection to the projection plane If the
distance from one to the other 1s finute, then the projection 1s perspective 1f the distance

1s infinite, the projection 1s parallel

When defining a perspectve projection, we explcitly specify its centre of projectson, for a

parallel projection, we give 1its directzon of projecon The centre of projection, being a

43

point, has homogenous co-ordinates of the form (xy,2,1) Since the direction of
projection 1s a vector (1e, a difference between points), 1t can be computed by
subtracting two points d = (x,y,2,1) - X,y,2,1) = (a,b,c,0) Thus, directrons and pomts at
mfimty correspond 1n a natural way A perspective projection whose centre 1s a pont at

infinuty becomes a parallel projection

The visual effect of a perspective projection 1s sumilar to that of photographic systems
and of the human visual system, and 1s known as perspective foreshortening The size of the
perspective projection of an object vanes mnversely with the distance of that object from
the centre of projection Thus, although the perspective projection of objects tend to
look realstuc, it 1s not particularly useful for recording the exact shape and
measurements of the objects, distances cannot be taken from the projection, angles are
preserved only on those faces of the object parallel to the projection plane, and parallel

Iines do not 1n general project as parallel hnes

The parallel projection 1s a less realistic view because perspective foreshortening s
lacking, although there can be different constant foreshortening along each axis The
projection can be used for exact measurements and parallel lines do remain parallel As
with the perspective projection, angles are preserved only on faces of the object parallel

to the projection plane

3 32 Perspective Projections

The perspective projections of any set of parallel lines that are not paiallel to the
projection plane converge to a wamshing pomt In 3D, the parallel lines meet only at
infinity, so the vanushing point can be thought of as the projection of a pomt at infinuty
There 1s of course an infinity of varmushing ponts, one for each of the infinuty of

directions 1n which a line can be onented

If the set of lines 1s parallel to one of the three pnncipal axes, the vanishing point 1s

called an axzs vanishing point There are at most three such points, corresponding to the

44

number of principal axes cut by the projection plane Perspective projections ate
categonised by their number of principal vanishing points and therefore by the number

of axes the projection plane cuts

3 33 Parallel Projectrons

Parallel projections are categorsed 1nto two types, depending on the relation between
the direction of projection and the normal to the projection plane In orthographuc parallel
projections, these directions are the same, so the direction of projection 1s normal to the

projection plane

Axonometric orthographec projechons use projecton planes that are not normal to the
prncipal axis and therefore show several faces of an object at once They differ from
perspective projections 1n that the foreshortening 1s uniform rather than being related to
the distance from the centre of projection Parallelism of lines 1s preserved but angles
ate not Oblhgue projectons, the second class of parallel projections, differ from
orthographic projections in that the projection-plane normal and the direction of
projection differ The projection plane 1s normal to a princtpal axis, so the projecuon of
the face of the object parallel to this plane allows measurement of angles and distances
Other faces of the object project also, allowing distances along principal axes, but not

angles, to be measured

334 Speafyng an arbitrary 3D wew

3D wiewing mnvolve not just a projection but also a view volume against whuch the 3D
world 1s clipped The projection and view volume together provide all the mformaton
needed to chip and project into 2D space Then, the 2D transformation into physical
device co-ordinates s straightforward The projection plane ot wew plane 1s defined by a
pomt on the plane called the wew reference posnt (VRP) and a normal to the plane called
the wew-plane normal (VPN)

45

Given the view plane, a window on the view plane 1s needed The window's role 1s
similar to that of a 2D window 1ts contents are mapped into the viewport, and any part
of the 2D wortld that projects onto the view plane outside of the window 1s not

displayed

VUP

Figure 14 The view plane 15 defined by VPN and VRP, the v axis 1s defined
by the projection of VUP along VPN onto the view plane The u axis forms
the right-handed viewing reference-co-ordinate system with VPN and v

To define a window on the view plane, we need some means of specifying mummum
and maximum window co-ordinates along two orthogonal axes These axes ate patt of
the 3D wewing-reference co-ordinate (VRC) system The ongin of the VRC system i1s the
VRP One axis of the VRC 1s VPN, this axis 1s called the » axis A second axis of the
VRC 1s found from the wew #p vector (VUP), which determines the s-axis direction on the
view plane The v-axis 1s defined such that the projection of VUP parallel to VPN onto
the view plane 1s coincident with the v axis The #-axus direction 1s defined such that u,
v, and n form a nght-handed co-ordinate system, as 1n Figure 14 The VRP and the two
direcnon vectors VPN and VUP ate specified in the nght-handed wotld-co-ordinate

system

46

View
plane

(Umax, Vmax)

VRP
(Umin, Vmin)

Figure 15 The view reference-co-ordinate system (VRC) 1s a nght-
handed system made up of the u, v, and n axes The n ax1s 1s always
the VPN CW 1s the centre of the window

With the VRC system defined, the window's mummum and maximum u and v values
can be defined as m Figure 15 The centre of projection and direction of projection
(DOP) are defined by a projection reference pornt (PRP) plus an indicator of the projection
type If the projection type 1s perspective, then PRP 1s the centre of projection If the
projection type 1s parallel, then the DOP 1s from the PRP to CW The CW 1s 1n general

not the VRP, which need not even be within the window bounds

The PRP 1s specified in the VRC system, not in the wotld-co-ordinate system, thus, the
position of the PRP relative to the VRP does not change as VUP or VRP are moved
The advantage of this 1s that the programmer can specify the direction of projection
required and then change VPN and VUP (hence changing VRC), without having to
recalculate the PRP needed to maintain the desired projection On the other hand,

moving the PRP about to get different views of an object may be more difficult

The view volume bounds that porton of the wortld that 1s to be clipped out and
projected onto the view plane For a perspective projection, the view volume 1s the
semi-infimte pyramud with apex at the PRP and edges passing through the corners of

the window

47

Figure 16 shows a perspective-projection view volume Positions behind the centre of
projection are not included n the view volume and thus are not projected For parallel
projections, the view volume 1s an infimte parallelepiped with sides parallel to the
direction of projecuon, which 1s the direction from the PRP to the centre of the

window

Centre of projectron (PRP)

Fagure 16 The semu-infinite pyramid view volume for perspective
projection CW is the centre of the window

In order to limit the number of output priminves projected onto the view plane we
need the view volume to be finite This 1s done with a front clipping plane and back
clipping plane which are parallel to the view plane, their normal 1s the VPN The planes
are specified by the signed quantities front distance (F) and back distance (B) relatve to
the view reference point and along the VPN, with positive distances in the direcaon of
the VPN For the view volume to be positive, the front distance must be algetrbraically
greater than the back distance Dynamic modification of either the front or rear
distances can give the viewer a good sense of the spatia] relationships between different

parts of the object as these appeat and disappear from view

48

Back Clipping plane

View plane

VRP
Front clipping
plane

Figure 17 Truncated view volume

49

Chapter

4 EVOLUTION OF THE SCENE DESCRIPTION IN MPEG-4

41 Introduction

MPEG-4 addresses the coding of objects of various types Not only traditional video
and audio frames, but also natural video and audio objects as well as textures, text, 2-
and 3-dimenstonal graphic primitives, and synthetic music and sound effects To
reconstruct a multamedia scene at the termunal, 1t 1s hence no longer sufficient to encode
the raw audio-visual data and transmut 1t, as MPEG-2 does, 1n order to convey a video
and a synchronised audio channel In MPEG-4, all objects are multiplexed together at
the encoder and transported to the termmnal Once de-multiplexed, these objects ate
composed at the termunal to construct and present to the end user a meaningful
multimedia scene The placement of these elementary AVOs in space and time s
described 1n what 1s called the Scene Description layer The action of putung these
objects together 1n the same representation space 1s called the Composition of AVOs
While the action of transforming these AVOs from a common representation space to
a specific rendening device (speakers and a viewing window for instance) 1s called

Rendering

The independent coding of different objects may achieve a higher compression rate, but
also brings the ability to manitpulate content at the terminal The behaviours of objects
and their response to user mnputs can thus also be represented 1n the Scene Description
layer, allowing richer multimedia content to be delivered as an MPEG-4 stream Thus
chapter 1s a detailed analysis of how scene description languages function and how the
funchonality of the MPEG-4 scene description language has been developed since its

COHCCpUOI’l

50

42 Scene Description

In addition to providing support for coding mdividual objects, MPEG-4 also provides
faciities to compose a set of such objects into a scene The scene descrption
information 1s composed of the composition detais of the various AVOs in the scene
Scene descriptions are coded independently from streams related to primitive AVOs
Special cate 1s devoted to the identification of the parameters belonging to the scene
description This 1s done by differentiating parameters that are used to improve the
coding efficiency of an object (¢ g motion vectors 1n video coding algonthm), from
those used as modifiers of an object’s characteristics within the scene (e g positon of
the object 1 the global scene) In keeping with MPEG-4’s objectve to allow the
modification of ths latter set of parameters without having to decode the primtive
AVOs themselves, these parameters form part of the scene descrtption and ate not part
of the pnmitive AVOs The 1dea was to standardise a syntax that describes the spatto-

temporal telationshups of Scene Objects

4 3 Imtial 2D Scene Description

Imtially two ways were 1dentified to desctibe the composition for 2D scenes The first,
fixed scene description was mainly aimed at describing the composition parameters for
the 2D video objects described in the mitial venficaton model (VM) Thete was no
notion of a hierarchical scene structure The AVOs were video object planes (VOPs)
which were posittoned with respect to the 2D frame 11 which they are composited The

second case dealt with more complex 2D scene structures The two proposals are now

desctibed

4 31 2D Fixed Scene Description

At any given time, a scene 1s composed of a collecton of objects By default, the
objects are displayed as specified 1n the object stream (video object stream for instance)
Additional warping transforms can be appled, by sending motion parameters 1n a

composition stream These parameters are tmestamped to indicate at what ime the

51

decoded object should be transformed and presented, they are also related to an object
by the video objectid According to the timestamp, objects are requested 1n order to be

transformed according to the motion parameters sent 1n the composition stream

432 2D Flexable Scene Descraption
In this implementation the 2D scene structure was transmutted as a program Each

AVO 1s sent as a class The methods of the class formed the scene description

In order for Fixed and Flexible scene descriptions to be implemented the notion of

composition flexibility was developed

44 Composition Flexibulity

In 1ts previous standards, MPEG defined ngid a prior1 known templates for transmutted
information What composition flexibility was defined to do was create a representation
of these templates that could be transmitted to configure the recerving system MPEG-4
1imually defined two types of profiles for recerver programmability the fixed profiles and
the flexible profiles

441 Fixed Profiles '

In the fixed profiles, programmability 1s achieved through the use of switches ot
selectors 1n the binary stteam The switches or selectors ate #-ary elements that select
which of # pre-defined templates will be used for the incoming information This
allows, for example, the choice of a pre-defined standardised configuration This kind of
progtammability has the nice feature of being simple, practical and bit efficient which 1s

a major requirement of prospective users of the MPEG-4 standard

44 2 Flexible Profiles
MPEG-4 defined enhanced profiles on recewver programmability, the flexible profiles

These profiles allow the communication of information templates To represent these

52

templates, a possibility 1s to rely on classes (in the object-onented sense of the word) or

to send scripts to reconfigure the application
The flexible profiles require
e adefimition of a set of standardised APIs (Application Program Interfaces),

e a defimuon of a standardised format to download templates If this format 1s

executable, 1t has to be processor independent,

e astandardised protocol for downloading and installing templates 1n the above format

in the flexible terminal

CONTROL
Downstream
Configuration Info ::
and templates :l D [:>
<oOoar———
<D - EALUE
Upstieam

AV
Information

AV Sender Recerver

Information

DATA

Downstream

— o
] s | | —

Upstream

AV Obiects.
User (nteraction

Data Component | |2
User Interaction

gﬁgggmgx Ty
fQDgwnmﬁahixcv;
8 ¢ 1abrany
g@%}?wé’,‘?

Figure 18 Flexible Configuration

53

The communication of AVOs within the context of flexible profiles 1s as follows
Before the AVOs are transmutted, the sender and receiver exchange configuration
information The sender determunes which algorithms, tools, and other objects are
needed by the recever to process the AVOs The defimtions of missing audio-visual
information are downloaded to the receiver, where they supplement or overtide existing

definittons, whether 1nstalled or pre-defined

As the recetver runs, new templates may be needed In such a case, the receiver can
request the download of specific additional information templates The addiional
templates may be downloaded 1n parallel with the transmitted data The above aspects

are llustrated 1n Tigure 18

45 Scene Description of the mitial MPEG-4 Venfication Model

The MPEG-4 Verification Model was designed as a testbed for emerging 1deas during
the evolution and development of the MPEG-4 standard It is seen as an
implementatton of the standard The idea being that several different implementations
of functionalities can exust but they must comply with the standard, which 1s set about

in the verificanon model [28]

During the development of the 1rutial venfication model one of the major concerns was
how we could mmplement the different levels of composition flexibihty What was
tequired was not only a standardised format to download templates but also a
standardised protocol for downloading and installing the templates If this format was
to be executable 1t had to be processor independent This seemed a huge task, but at the
tume we started to develop our venfication model a new programming language called
JAVA from Sun Microsystems had just been launched which seemed to overcome the

above problems

451 The JAV.A Development Environment
In [9] Sun describes JAVA as follows

54

JAVA A simple, object otiented, distrbuted, interpreted, robust, secure, architecture

neutral, portable, high-performance, multthreaded, and dynamic language

What made JAVA interesing as a possible development environment for the
verficaton model was the fact that 1t 1s distributed, interpreted, robust, secure,

architecture neutral, portable, and dynamuc

4511 Daustributed

JAVA has an extensive hibrary of routines for coping easily with TCP/IP protocols like
HTTP and FTP This makes creating network connections much easter than in C ot
C"™ JAVA applications can open and access objects actoss the net via URLs with the

same ease that programmers are used to when accessing a local file system

4512 Interpreted
The JAVA compiler generates byte-codes, rather than native machine code JAVA
bytecodes provide an architecture neutral object file format, the code 1s designed to

transport programs efficiently to multiple platforms

4513 Robust

JAVA 1s intended for developing software that must be robust, highly rehable, and
secure, 1n a vatiety of ways There's strong emphasis on early checking for possible
problems, as well as later dynamic (run-time) checking, to elimwate error-prone

situatons

4514 Architecture Neutral

The JAVA compiler doesn't generate "machine code" 1n the sense of native hardware
instructions—rather, 1t generates bytecodes a high-level, machine-independent code for
a hypothetical machine that 1s implemented by the JAVA intetpreter and run-time
system, the JAVA wirtual machine Which means that if the JAVA run-ume system 1s

made available on a given hardware and software platform, an application wrtten 1n

55

JAVA can then execute on that platform without the need to petform any special

porting work for that application

4515 Secure
The JAVA language compiler and run-time system implement several layets of defence
against potentally incorrect code The environment starts with the assumpuon that

nothing 1s to be trusted, and proceeds accordingly

e Memoty layout 1s deferred to run time, and will potenually differ depending on the
characteristics of the hardware and software platforms on which the JAVA system

executes

e Compiled code references memory via symbolic "handles" that ate resolved to real
memory addresses at run time by the JAVA interpreter, hence programmers can't

forge pointers to memory

e Very late binding of structures to memory means that programmers can't infer the

physical memory layout of a class by looking at its declaration

® The JAVA run-time system doesn't trust the mncoming code, but subjects 1t to
bytecode verficatton The bytecode verifier traverses the bytecodes, constructs the
type state information, and venfies the types of the parameters to all the bytecode

instructons

4516 Portable
JAVA defines a standard behaviour that will apply to the data types across all platforms
and specifies the sizes of all its primutive data types and the behaviour of anthmetic on

them

56

4517 Dynanmu

The JAVA language's portable and interpreted nature produces a highly dynamic and
dynamucally-extensible system The JAVA language was designed to adapt to evolving
environments Classes are linked 1n as required and can be downloaded from across
netwotks Incoming code 1s venfied before being passed to the interpreter for

execution

So our approach was to use JAVA to define templates for both the fixed and flexible
profiles These templates are designed to be audio visual objects, which form the tree
structure of the scene Since JAVA allows us to create classes, which can be run on any
JAVA Virtual Machine, 1e are processor independent, and can be easily downloaded
across a number of network protocols, it was decided that the 1mutial venficaion model
would be developed using JAVA JAVA classes would be used to create the vatious
MPEG-4 templates

4 6 Development of the MPEG-4 Class Library
Irutally what was required was to 1dentfy the templates, 1e classes, which were going
to be needed to implement an MPEG-4 compositor within the venfication model The

following section 1s a description of the vanous JAVA classes that were implemented

461 Class Library

This section defines the set of classes called the MPEG-4 Standard Class Library The
Standard Class Library 1s the mumimal set of classes that an MPEG-4 terminal must
implement 1n order to support every MPEG-4 applicaton that uses flexibihty
(Individual profiles may require implementation of only a subset of the Standard Class
Library) Each class in the Standard Class Libraty corresponds to an MPEG-4 tool or
algonithm, and has a speaified interface through which commands and data are passed

These 1nterfaces collectvely constitute an application program interface (API) for

57

MPEG-4 The MPEG-4 Standard Class Library 1s defined in terms of thus API, along
with a description of the intended relationships between the MPEG-4 tools, algonthms,

downloaded AVOs, and execution environment

The classes 1n the Standard Class Library naturally fall into categories according to layers
in the MPEG-4 decoder architecture We are only concerned about the scene
description and composition layers These are made up of the AVObject layer, the

Composition layer, and the Presentation layer

462 AV Object Layer Classes
e AVObject

AVObject 15 a base class that inhents from the MPEG4Object class, the parent MPEG-

4 class, and from which all audio and visual objects denive

¢ VideoObject (extends AVObject)

VideoObject 1s an AVO that uses one of the standard video decoding process objects
to decode its mnput elementary stream A header in the elementary stream specifies

which of the decoding process objects to use 1 ¢ MPEG-4, MPEG-2, H263 etc
® Image (extends VideoObject)

An Image 1s a2 pnmutive AVO that represents a rectangular array of pixels In general,
the 1mage may have multiple colour components, multiple fields (e g, for interlaced
displays), and multiple channels (e g, for stereo displays) The colour components, 1f
any, may lie 1n vanous colour spaces, and may be subsampled with respect to each
other Colour components that are not specified 1n the Image default to values 1 the
current Properties sheet , Composition Layer class, in the Compositor when the Image

1s rendered

58

463 Composttron Layer Classes

o Compositor

A compositor is a tightly coupled video and audio compositor A compositor contains

references to the following objects
® an output video frame,
® an output audio frame,
* aviewpont,
e 2 transform stack for co-ordinate transformations,
* a properties stack for object rendering properties, -
e annput elementary stream,
® an output elementary stream

® an environment containing a list of (attribute, value) pairs for use in the passing of

generic messages between AVOs

The primary functions of a compositor are methods for rendenng AVOs onto the
current video and audio frames, using the cutrent properties (as needed), the current
transform, and the viewpoint Stream references exist mn order to assist compound

AVOs 1n passing sub-streams to sub-objects

& Transform

59

A Transform object 1s, semantically, a 5x5 homogeneous co-ordinate transformation

matrix T

0

[S e T~

S x &

0

3 S o &

0

l
n

!

It 15 used for petforming geometncal transformations on AVOs

* Properties

A Properties sheet 1s primarnly a list of the current default properties for any primitive

AVOs that are rendered If a pnmitive AVO, when rendered through a compositor,

does not speafy a needed property, then that property will be taken from the current

Properties sheet in the compositor

* Viewpoint

A Viewpomt 15 an object 1n a local co-ordinate system that can be rendered like any

AVO, at a given location, ontentation, and scale within a scene Rendering a viewpoint

causes 1ts scene-to-local co-ordinate transformation to be stored i the Compositor’s

viewpoint object, for use in subsequent rendering

464 Presentation Layer Classes

o Presenter

A presenter 1s the subsystem responsible for displaying the scene reconstructed by the

Compositor It 1s also the subsystem responsible for handling events generated by the

user interacting with the presentation

60

47 Implementation of an imtial MPEG-4 compliant viewer

When we started to bulld the MPEG-4 compliant viewer we did so 1n order to validate
and test the standardised set of APIs and classes What we built was a JAVA based
viewer, a primer on the viewer can be found in [10] Thus involved developing a viewer
package Each package 1s a group of classes, which have some common funcuonality
We developed an MPEG-4 package, which contamed all the standardised classes, and a
viewer package, which was not part of the MPEG standard but was developed as a

verification model for the standard It consisted of the following classes

Viewer Simply wraps an interface around an Executive

s

Executive The Executive presents the frames to the user, and also periodically funnels

user feedback to the Scene object

Presenter Subsystem responsible for presentation of video and audio frames to the

user and for the collection of user input events

471 MoMnSys Viewer

The MoMuSys viewer was an MPEG-4 viewer that was developed undet the auspices
of the European ACTS Projects The following 1s a descripuon of how the viewer
functioned The Viewer class 1s the first nstantiated class This class mnstantiates all the
other needed objects for the interface of the applicaton, and MPEG-4 audio-visual

objects ‘

4711 Viewer
Viewer owns a Composttor, an Executive, a Presenter object, and the "main" AVO
which 1s the top AVO of the scene All these objects are gathered 1n one class to be

accessible everywhere 1n the viewer

01

4712 Presenter

The display and event handling of the scenes takes place mn an X11 window as the
viewer was developed on an SGI machine using the X11 windowing system The
Presenter class 1s the ink between the JAVA part of the viewer and native code for the
X11 window To handle an event, the Presenter passes an event object to the native

code Events that occur 1 the X11 window are converted and copied into the

MPEG4Event object

4713 Execntive
The Executive object 1s a thread It can be seen as the operating system of the display

of a scene Its run method 1s an infinite loop and performs the following steps

e Imnalisation of the inputstream and outputstream of the composttor, and

instantiation of the top AVO scene (the "main" AVO of the viewer)
¢ Beginning of the following mnfinite loop
o Clear the composttor's frame

* Rendenng of the top AVO of the scene Duning thus phase, all the objects of the
scenes are mapped onto the compositor's frame, according to the transformation

matrix This frame 1s then ready to be displayed in the X11 window

e Display of the frame of the compositor 1n the X11 window Durnng this phase,
the X11 window 1s refreshed with the new 1mage of the scene It s a kind of
double buffering At the same time, the Presenter looks at the X11 event stack
and takes the oldest event according to the predefined X11 event mask This

event 1s converted and copied mnto the MPEG4Event object

* Handhng of the Presenter's MPEG4Event object by the scene, by calling the
handle method of the top AVO of the scene

62

472 How the MoMuSys Viewer functionsé

4721 Overview of bow the MPEG-4 Viewer displays andio-visaal coded information

The decoder recewves a class definition for a main AVO, which 1s inherited from the
MPEG-4 package class AVObject This class 1s instanuated as the root of the
hierarchical scene graph and 1ts render method 1s called once for each audio-visual
frame that the decoder wishes to present The root render method invokes othet

methods and other objects, for example

e calls to render methods of related AVObjects,

e calls to methods of decoding process objects to recover image and audio objects

from encoded data streams,

e calls to parsing or entropy decoding methods to extract syntactic decoded data

streams from elementary streams,

e calls to demultuplexing methods to extract elementary data streams from logical mput

channels

4722 What a Compositor does and how it is instantrated?

The Compositor class composes, renders, and blends audio-visual objects onto output
audio and video frames The compositor maintains one audio frame, a finite sequence
of audio samples, or one video frame, a rectangular array of pixels, for each output
channel Audio-visual effects are produced frame by frame The compositor controls
the spatio-temporal mapping of the scene, the default audio-visual rendeting properties,
the projection and clipping planes, the acoustic sink points, the input data stream, the

output data stream, and the passing of data between audio-visual objects

63

4723 How AV Objects are rendered?

The difficult wotk done by a Composttor 1s rendering audio-visual objects The
putpose of an audio-visual object's render method 1s to render the object onto the
specified compositor The compositor doesn't know mtnnsically how to render
encoder-defined audio-visual objects, but the objects know how to render themselves
So when the render method of the compositor 1s called upon 1t calls the object's render

method, with itself as the argument

4724 How events are handled by AV Obyects?

The handle method of an audio-visual object 1s designed to deal with synchronously
generated sctipt, or asynchronously generated user mput In an encoder-defined audio-
visual object the body of the routine consists of a script that describes step by step how
to handle events, which at the very least examimes the event structure and passes the

events to the objects sub-objects

4725 How decoding of AV Obyects works?

ProcessObypects are the decoding tools used by AVObjects to decode themselves In
addition to the render and handle methods of AVObjects many may have a decode
method The decode method of an AVObject decodes the attributes of the object
itself 1t builds and mnstantiates from a coded representation all the attributes of the

AVObyject

4726 Presenting the AV Obyect
The presenter class 1s the subsystem responsible for presentation of video and audio

frames to the user, and for the collection of user 1nput events

64

4 8 Expanding the MPEG-4 Class Library to handle VOPs

481 VOP Definstron

As defined 1n [11] Video Objects (VOs) correspond to entitzes 1n the bitstream that the
user can access and mantpulate (cut, paste) Instances of Video Object 1n given tume
are called Video Object Planes (VOPs) A VOP can be a semantic object 1n the scene 1t
1s made of Y, U, V components plus shape information The encoder sends together
with the VOP, composition information (using the composttion layer syntax) to indicate
where and when each VOP 1s to be displayed At the decoder side the user may be
allowed to change the composition of the scene displayed by interactung with the

COl’IlpOSlUOI’l information

482 Creating a VOP Class
What was required was to create a class or template, which could be used to read n

luminance and chorminance (YUV) VOPs and display them 1n the verification model

The VOP sequence was to be based on a QCIF sequence of frames In the QCIF file
format each frame 1s 176 * 144 pixels, width * height The sequence was sampled at
25Hz Each frame 1s made up of YUV values stored in the 422 format This imples
that 4 bytes of luminance, Y, and 2 bytes each of chrominance, UV, go to make up each
pixel displayed Each VOP frame 1s stored as a chan of Y, U, V data without gaps The
frame 1s stored from the 1* line, 1" pixel, from left to right, top to bottom, down to the
last line, last pixel Associated with each YUV frame 1s an alpha plane This 1s a binary
mask representing the shape of an object within the frame A value of O 1s used to
indicate a pixel outside of the object and the value 255 1s used to 1ndicate a pixel inside
the object The mask 1s used to composite the YUV pixel values of the object, while

those pixels outside the object are not composited

So what was required for each frame was read in the YUV sequence and then decide
using the alpha plane what the dimensions of the image to be displayed were A cut

down version of the VM was developed as a test bed It consisted of a JAVA

65

composttor, which was a scaled down version of the offictal MPEG one An interface
to read 1n both the YUV and segmentation mask files was developed The development
process was to create an extension of the MPEG-4 Image class to composite the YUV
VOP In order to composite the VOP conversion from YUV to an RGB format was

necessary

The process now involved reading n a YUV frame, mask out the unnecessary pixels
and convert to RGB The first two stages were straight forward and a mathematical
formula for convetsion from YUV to RGB was casily developed When tested this
conversion functioned correctly, however under ttime cutical conditions 1e running the
sequence at 25Hz the process proved to be too slow The teason for this centred
around a combination of the JAVA bytecode, this machine independent code must go
through the process of conversion to machine code 1n order to tun, and the JAVA
pomnter system, pointer manipulation 1n JAVA 1s very restrictive 1n order to ensute

network secunty

The JAVA language provides for this restrictive nature by supplying both just-in-time
compilers and native methods Natve methods allow JAVA to call methods in other
languages This allowed the implementation of a C™* DLL, which had a quicker
implementation of the conversion In order to speed up the process even further the
conversion process was enveloped into an independent thread running as a umique

process

483 Integration of VOP class in MPEGA Venfication Model

A YUV mplementation of the MPEG4 Image class was developed This contamned an
implementation of a bounding box on the segmented image The bounding box
information was used to allow user interaction Based on mouse clicks and returned
pixel values in relation to bounding box values 1t was established whether a VOP had
been selected If so the user was allowed to change the composition of the scene by

transforming the VOP to the position of the mouse release

66

49 2D & 3D Scene Description and Composition i the Verification Model

At this stage i1n MPEG-4’s evolution 1t was clear from other MPEG-4 groups that both
2D & 3D composition would be required 1n an MPEG-4 termunal There was, at this
point in the development, no specification proposed for a complete 3D scene
description, and the abilittes of JAVA to provide a complete overall 2D scene

description were being questioned

There were two proposals for a 2D and 3D solution for scene description

e Use a fixed composition This means transmitting composition parameters with a
fixed syntax These parameters include positoning, reference to the object, time

stamp, and order of composition

The first scenario 1s already specified 1n [12] AVOs are decoded as specified 1n the
object stream, for example the video object stream Sending parameters in the
composition stream specifies the scene description information However, this implies a
lot of restrictons The scene graph 1s flat, there 1s no way to describe complex
trajectories without transmutting the positons at each frame, and there are no
dependencies between objects This kind of composition 1s sutted for broadcast

applications with a low level of interactivity

A better approach would be to have a hierarchical type scene structure The reason for
the hierarchical scene structure 1s to efficiently allow property nodes to affect geometry
nodes that are after them 1n the graph So the scene graph mimmuses the storage
1equrements by having nodes share these state varables and as the application renders
the scene 1t sets the current state and then draws all affected geometry Thus gives scene
graph creators the ability to create very efficient scenes by organising similar geometry

nodes 1n the graph to mummuse state changes If there 1s no hierarchical structure then

67

all the information must be encapsulated within the node 1n order for 1t to be rendered

properly, this would be rather mnefficient
e Usc a scene described with JAVA classes, as was cutrently done in the VM

The second scenario, the ‘flexible’ scene description based on JAVA classes, has been
desctibed 1n previous sections, a tull description 1s available 1n {12] However there ate
also some Iimitations because of the structure of the scene graph that 1s hard coded 1n
the AVOs, 1t 1s impossible to have this scene graph evolving mn ume It 1s also

impossible for two AVOs to communicate and exchange information

410 Limutations imposed by the mutial venfication model

As described 1n the previous section the 1ntal software implementation of the Systems
VM [12], developed co-operatively by several institutions acuve 1n MPEG-4, was based
on a mixed approach using JAVA code for the high level part of the system (user
nterface, allocation of the components of the system, management of thread(s)
assoctated to the applicaton) and using C code for the low level and computauon
intensive parts of the system, namely the elementary decoders for video, composition of
elementary video objects through geometric transformations and alpha blending, and

presentation on the machine specific windowing system

However after a couple of months of development several i1ssues arose about the

development environment

» the effectiveness of the threads scheduling provided by the JAVA platform for an

application where real-time performance of audio/video decoders 1s critical,

e the coherency of the overall archutecture to accommodate the fixed (parametric) and

the flexible (bytecode description) of the Scene Graph,

68

e the efficiency of the implementation, related to the speed of the JAVA code

execution, and the communication between the JAVA code and the C code

The real problem was that 'JAVA', itself, was made up of several different components

* 2 programming language JAVA as a language 1s a “simplified” version of C™, with
most of the features of the Object Ornented Paradigm, but with some restrictions to

avoid typical sources of trouble within C™* programmung

® abytecode, 1¢e an intermediate version of the code, produced by a compiler and used
by an imntetpreter to run the application (the pro of this approach 1s platform
independence, the con 1s lower efficiency than native executable code for a specific

machine)

® a run-time system, 1€ a porting on a specific architecture (hardware plus operatung

system) of the execution environment

The programming language forces the use of strict programming rules The net result
of the compiled code being less efficient than compiled C** code, since some of the
features provided by C™ for hand-made code optmusation (eg playing with pointer
anthmetic) are forbidden by the JAVA compilers The trade-off here 1s less efficiency

for more reliability

Bytecode (or intermedsate object code) provides a level of abstraction from the specific
native executable code of a machine Introducing this level of abstraction results in
lower performance in executing an application {even when the intermediate code 1s re-
compiled to nattve code, e g by means of a Just-In-Time (JIT) compiler translating to
native code just before execution) Better performance can always be achieved mixing
JAVA code and C code Using JIT compilers stll preserves code portability (no need to

change any part of the source code), while mixing C code requires some extra work

69

when porting to different platforms The trade-off 1s less efficiency for more

portability

The run-tume system provides the environment required to run a JAVA application on a
specific hardware/OS platform This environment requires not only an interpreter for
the bytecode but 1t must also support the Standard Class Library of the JAVA platform
The standard lbrary provides an abstraction for many OS services support for
multithreading (a platform independent implementation of Threads, Momnitors,
Scheduler), support for automatic garbage collection, support for a platform
independent windowing system, for a platform independent networking system (TCP
and UDP) Most of these abstractions simply 1mply a trade-off of lower performance
for higher portability (seamless execution of the same application on different
platforms) But the standardised support for muluthreading and garbage collection
cause significant troubles to developers working on applicatons that require
determinustic control on execution of the mdividual threads, especially when meetng
processing dead-hines 1s essential The main reason for this 1s that even for a single
threaded application, the run-time system 1s runmng its own “system threads” (eg a
thread for garbage collection, a thread for updating the screen) on which the

applicatton developer has no control

Mote detatls on the problems to be solved to use the JAVA platform for real-ume
applications can be found at [13] So 1t was decided that while JAVA was a promusing
development environment, 1t was sull a very immature one Development of the
MPEG-4 venfication model split into two parts, one continuing along the flexible scene
description path using JAVA and another which focused on the fixed scene description

and which will be described 1n the following sections

411 VRML and Scene Description 1n the Verfication Model
The Virtual Reality Modelling Language (VRML) allows the description of 2D & 3D

objects and to combine them into scenes and wotlds, a detailed description can be

70

found mn [14] It’s a modelling language, which means 1t 1s used to descrbe 2D & 3D

scenes It’s more complex than HTML, but less complex than a programming language
The scope of the standard incorporates the following

e 2 mechamusm for stonng and transporting two-dimensional and three-dimensional

data

o clements for representing two-dimensional and three-dimensional primitive
p g p

information
e clements for defining characteristics of such primitives

¢ clements for wviewmng and modeling two-dimensional and three-dimensional

information
¢ a contamner mechanism for ncorporating data from other metafile formats

® mechamsms for defining new elements which extend the capabilities of the metafile

to support additional types and forms of information

VRML gives a hierarchical description of a 3D scene as a wee of “nodes” Nodes can
represent geometrical objects, hight or sound sources, objects appearance properties and
so on Moreover VRML aliows the programmer to put code 1n a scene description and

to extend the standard set of nodes by means of the “PROTO” nodes

412 Analysis of an MPEG-4 & VRMIL. Combined Browser

[t was decided to develop an application that could test the validity of an MPEG-4
browser, which would use VRML as a scene description language The following
sections develop the proposals of [15] and [16] on how 2D and 3D scenes could be
described and composited within MPEG-4

!

4121 Proposed Architecture
The approach to integrating 3D and 2D rendered scenes was to develop an MPEG-4

Browser based on existing VRML browsers Figure 19 shows the proposed system

MPEG-4
MPEG-4 Extension Interface Browser
2 3
MPEG4
r Sync Node n—l
MPEG-4
AVObject | | Audio Node || yyomores MPEG4 Native
MovieTexture ImageTexture VRML Node
Node Node
MPEG-4 Decoder Image
Node Decoder
Stream
Node
[
° Stream
Node
@-—»
*—>
Scene Description
®
Demultiplexer

Figure 19 Proposed 3D Architecture

'The VRML 2 0 support can be provided using a VRML Browser AP, that 1s the API
on which the browser code 1s built (Open Inventor, Cosmo3D,) This was deemed
necessary for speedy development These APIs offer a very flexible environment for

mteracttve 3D graphics New MPEG-4 nodes can be added and the browser designed

with tming and synchronisation mechanusms at the core of 1t

72

An MPEG-4 Extension Interface was to be specified to allow the AVOs from the
exising 2D VM to be supported

4122 Scene Composttzon with 2D and 3D Obpects

Figure 20 shows a typical scene composition The MPEG-4 browser 1s displaying a 2D
VOP on a 3D Billboard node, taken directly from VRML The latter 1s partially ludden
by a 3D sphete and 1s hiding some of a 3D cone As one moves through the scene
going towards the VOP we pass by the sphere and the whole VOP will appear and as
we continue on we will walk through the VOP to see the whole cone If we change our
viewpoint we can use the Billboard node to define what exactly shall happen If we want
we can ensure the view 15 consistent for all viewpoints or let the VOP be watped by our

position It1s up to us to define the behaviour

3D sphere hiding VOP 2D 1mage on a biilboard

(eg a VO‘PV

4_/3
Other 3D 1mages

Figure 20 2D & 3D Composited Scene

An MPEG-4 Browser which combines the comerstones of MPEG (decoding,
synchrontsation, demultiplexing, streamung data,) with direct support for VRML 20

can be used to implement a full 2D and 3D (fixed and flexible) compositor

73

413 Implementation of a 3D Venfication Model

It was generally accepted that the VRML 3D modelling language had a lot to offer
MPEG-4 VRML offered ways of allowing AVOs to communicate via routes, to be
extended via scrpting, and to dynamucally modify the scene graph While we had
developed a venficaton model based on JAVA to handle 2D AVOs we had no
concrete plans on how to mtegrate 3D AVOs 1nto our vertficaton model Moreovet, a
lot of 3D complete APT’s existed, so the need to create a completely new 3D API for
our verificanon model was questionable It seemed the best scenario would be to use
VRML as our 3D modelling language and encapsulate its nodes mnto the standard
Where approprate, they would be modified to better meet MPEG-4’s requirements
Other nodes and concepts would be mtroduced to meet any remaining requirements

that cannot be met by simple modifications to VRML 2 0

The 1mplementation commenced using one of the exising 3D packages, Liquid Reality
from DmmensionX [17] The i1dea was to mmplement a 3D wviewer which could also
composite our extstng 21D AVOs, a full explanation of the work carried out 1s described

1n [18], the following sections give an overview of the implementation

4131 Analysis of a 3D versfication model

A 3D MPEG-4 Viewer/Browser will be required to support 2D AV nodes in addition
to the 3D nodes It 1s hughly desirable that 2D nodes, AVOs, implemented i the 2D
VM can be easily integrated into the 3D VM In the short term, during the development
of the 3D VM, this 1s useful 1n order to re-use code from the 2D VM In the longer
term, this will be a valuable feature to users who want to create a new 2D node They

will be able to “plug-and-play” their 2D node 1nto a 3D MPEG-4 Viewer/Browser

74

2D BIFS Nodes 2D BIFS Nodes 3D BIFS Nades

IDVMIF —e— IDVMIF —e—

IDVMIF —®H—

Figure 21 2D and 3D mnterfaces for AV nodes

Figure 21 shows a symbolic representation of a solution for the problem Each 3D node
conforms to the 3D nterface (currendy the interface to the Liquid Reality browser) A
2D node conforms to the 2D interface (currently that of the 2D VM implementation)
To allow itself to be used 1n 3D scenes, a 2D node also implements an output that
conforms to the 3D interface Internally, the viewer/browser indicates to the node
implementation which interface it should use This may require a small change 1 the

2D VM nodes

4132 Implementing a Liguid Reality Exctension Node from a 2D AV'O

Liquid Reality (LR) implements the VRML 2 0 specification using a set of JAVA classes
VRML 2 can be extended by wnting LR extension nodes, these are sub-classes of LR’s
node classes This allows us to incorporate MPEG-4 specific nodes mto VRML 2
wotlds The class’s location 1s described by an EXTERNPROTO description in the
VRML world file and will be automatically loaded by the JAVA interpreter when
needed by LR

LR documentation 1s available at [19], while a detalled example of how to create an

extenston node 1s given at [20]

75

4 133 Implementing a GiffpegDecoder Exctension Node

A node that was implemented for the 2D VM, GiffpegDecoder, was taken as an
example of a node that we would like to include 1n the 3D VM This node can take an
image file, decide whether 1t 1s GIF or JPEG and decode 1t

A VRML wortld containing a GiffpegDecoder was implemented This required taking
the current scene class GifJpegSequence and turning 1t into an extension node In this
class we overnde the createNodeDefimition and 1nitFields methods to define the
GifpegSequence node Here the GifJpegDecoder 1s instantiated once a TimeSensor
eventln 1s recetved from the VRML wotld The dnx lr Node method handleEvent 1s
used to define what should happen on the eventIn In this case after the TimeSensor
has started 1t sends an eventln to the GiflpegSequence Node and this causes the
GifJpegDecoder to decode a GIF file and display 1t on a cube To add the node
defiution to the VRML world file 1n 2 manner that will make 1t understandable to the
Liquid Reality browser we use the EXTERNPROTO declaration This indicates to the

browser where to go to find the created JAVA class and instantiate 1t

4134 Implementing a Plug-and-Play Interface

A plug-and-play intetface implies that a scene class can be seamlessly rendered on either
a 2D VM or 3D VM Thus 1s now possible by implementing two render methods, one
based on the 2D VM compositor and one on the 3D one Hence our GifjpegSequence
can be rendered on erther the 2D VM, Figure 22, or the implementation of a 3D VM,
Figure 23

76

Figure 22 GifJpegSequence rendered on 2D VM

77

Locatan ;ﬁie /C Viewar/Gildpeg wil

Figure 23 GifJpegSequence rendered on 3D VM

78

Chapter

5 BIFS AND BI & TRI DIMENSIONAL COMPOSITION

51 Introduction

As described 1n the previous chapter, VRML seemed suitable for MPEG4 purposes, in
fact, as was shown an MPEG4 scene can be well described with the VRML mechanism
But, the use of a commercial VRML browser enhanced for managing streamung data 1s
not very promusing, in fact the mechamsm for wnting native PROTO nodes (1e,
developed 1n languages such as JAVA, C, and C*) as needed for MPEG4 real-time
constraints 1s not yet standardised and therefore these mechausms are not yet (or only
partally) supported by the available VRML browsers Additionally there 1s no chance to
directly modify the embedded timing system and those available ate very loose and not

sutted for the MPEG4 requirements

This highlhghted the need for a “clean room” implementation of a VRML based
MPEG-4 player which could be based on the basic, already standardised, VRML nodes
and enhanced with the MPEG-4 peculianities such as audio, video, and graphics
synchronisation, links with streaming data, a bimary scene description format, and

enhanced mnteractivity

It was decided that, while VRML was a useful scene description language, 1t was lacking
qualities that were vital for use in MPEG-4 MPEG-4 would develop 1ts own scene
description language called BIFS

79

52 Binary Format for Scene Descniption (BIFS)

BIFS scene description 1s the tool in MPEG-4 that enables us to describe interactive 2D
and 3D scenes made up of several MPEG-4 so called Media Objects MPEG-4 has
used as a basts for 1ts scene description tool VRML 2 0, {14]

53 VRML/BIFS relationships

531 What VRML offers?

The Virtual Reality Modeling Language 1s basically a 3D wnterchange format aimed at
including 3D objects and worlds in the World Wide Web VRML defines a set of nodes

that describe the following elements

® The structure of the scene, so called Scene Graph The scene graph defines the
spatial hierarchucal relationshups between VRML geometric and media elements in
the 3D space

e 3D geometric components, such as geometric primitives, material and texture

bindings, ighting effects, etc,

® VRML enables the use of media streams through the URL mechamusm In paruculat,
videos and audio streams can be pomted at by VRML descriptions However,

VRML does not define any transport or global synchronizaton mechanism
e VRML defines behaviors of objets using routes and interpolators

o VRML defines the user interaction with the content using sensors and routes

Additionally to these elements, VRML further defines

® Scrpts, which define an API which allows simple executable code to be mserted

inside VRML scene descriptions

80

e A way to create reusable components made of several existing components, known

as PROTOs and EXTERNPROTOs

e An API (not yet included 1n [14]) known as the External Authoring Interface (EAT),

which enables interaction with the VRML scene from outside the world

¢ A bmary format (not yet included 1n [14]), essentially based on an IBM proposal on
mesh coding with topological surgery

A VRML file 1s an ASCII file instantiating several of the above described nodes The
typical model for using a VRML file 1s first to load the entire “world” and let the user
interact with it The EAIT enables interaction between a HTML file and or a JAVA
Applet and a VRML browser

532 What s BIFS?

The Binary Format for Scenes tool 1s essentially a binary format for representing 2D
and 3D scenes made up of several streaming objects defined by the various MPEG-4
sub groups As with other MPEG-4 tools, BIFS can be used both 1n a pull and push
scenarto From the beginning, BIFS has adopted VRML as a basis and extended it in

various ways

e BIFS has defined a set of new nodes to accommodate MPEG-4 specific needs

® Definiion of 2D nodes for representing 2D scenes, ncluding images and videos
as well as graphic and text primitives, and specific behaviors and interaction

primitives
® Defimtion of nodes to interface with Face and Body animation tools

¢ Definution of nodes to imnterface with new synthetic and natural sound mixing

capabilities

81

¢ Definition of nodes to mux 2D and 3D content in the same MPEG-4

presentation

e BIFS has defined a complete compression scheme for all these nodes When using
only VRML nodes without meshes, the first tests show 3 to 10 times better
compresston results When using 3D meshes, the result are roughly 10% better 1n
BIFS encoding, using the current status of the 3D mesh encoding SNHC tool Thus
tool will be released 1n MPEG-4 version 2 (see chapter 6)

e BIFS has defined the BIFS Update protocol, which enables a command stream to
continuously modify BIFS scenes Commands include the capabilities to add and

remove objects, to modify scene properties, or to replace the whole scene

e BIFS has defined the BIFS-Amm protocol, which enables us to contnuously
ammate some properties of the scene, such as faces, meshes, object positions or

colors

There are sull a few nodes and VRML concepts that have not been adopted in MPEG-
4 In particular, the extension capabiities provided by Scopt, PROTOs and
EXTERNPROTOs are not yet considered 1n the current BIFS specification, although
many MPEG experts have recognized their usefulness

A very important point 1s that the BIFS tool 1s designed so that 1t works well with the
rest of the MPEG-4 tools, the Multiplex, the System Decoder Model, the Object
Descriptors, and all the streams defined 1n the Video, SNHC and Audio groups, as well
as the control by DMIF of the Session

533 Usng VRML content in the MPEG4 context
With the current BIFS speaficaton 1t 1s possible to use VRML content, compress it,

and carry 1t over MPEG-4 streams If we look at a complete MPEG-4 scenario with a

82

scene containing a 3D scene, 2D graphic components, an MPEG-4 video and audio, as
well as update and animation streams, the following components would typically be

used

["p o
BIFS Update C
decoder = 0
—_—
D M
E BIFS Animm = P
decoder 0 Audio Visual
— D> = Presentation
M S
Video
U decoder = |
| :
Audio 0
decoder = R

Figure 24 A typical MPEG-4 terminal archutecture

In this scenario, the output of the demultiplexer 1s 4 distinct elementary streams

e The BIFS Update stream, that carries a command and a set of nodes, including

VRML and new MPEG-4 nodes compressed with the BIFS algonthm

e The BIFS Anim Stream, that carttes continuous changes of a set of properties of the

scene
e The Video Stream

o The Audio Stream

One of the key elements 1n the MPEG-4 Systems architecture 1s the respect of time
events and the System Decoder Model, which ensures the synchronization of media
streams In that case, changes represented in the BIFS-Update and BIFS-Amm streams

must be synchronized with the audio and video streams

83

534 Usng BIES content in the VRML context
Some of the functionahties supported in BIFS can be represented mn a standard VRML

environment

e The BIFS-Udpate and BIFS-Anim decoders can use the EAI to modify the scene

e Script nodes can be used to mnstantiate Video and Audio decodets

e For non standard VRML nodes, a libraty of PROTOs and EXTERNPROTOs can
be used

BIFS Update
decoder E
A VRML
BIFS Anim ||| = Browser
decoder
Video
SE (=
decoder) ° o
R
Audio | MPEG-4
decode | = || p (EXTERN)PROTO
I Library

Figure 25 BIFS capabihities 1n a standard VRML environment

However, there are several limitations and constramnts imposed by thus architecture

¢ Some of the nodes cannot be represented 1n standard VRML In particular, the
MPEG-4 specific audio capabilities (muxing of natural and synthetic sources), and the

muxing of 2D and 3D scenes 1s not achievable 1n a standard VRML browser

84

e The fact that 2D scenes would have to be implemented as a special case of a 3D
implementation 1mposes some constraints that are not acceptable to MPEG-4
profiles that only need 2D prmutives, and may not provide an optmal
implementaton for 2D In any case, in the MPEG-4 context, 2D interfaces should
be offered to allow implementers to develop their terminal using specific 2D or 3D

based implementations of 2D primitives

® This architecture does not provide a precise enough control of tme, which will lead

to non synchronized media streams

e Since Scripts and PROTOs need to be used to represent additonal MPEG-4
functionalities, the content would be less compact than 1n the case of the MPEG-4

terminal that considers these extensions as native extensions

e Scrpts and the EAI impose more components to be included in any MPEG-4

terminal than in the case of the MPEG-4 terminal of Figure 24

54 Implementation of BIFS and 2D & 3D Composition

Currently BIFS and 2 and 3 dimensional composition are bemng developed and
implemented 1n a real-tume MPEG-4 player through work with the adhoc group on
Systems Software Implementation n MPEG-4 and work within the ACTS project
MoMuSys The software 1s being developed using the C'" language and the OpenGL

API for composition It 1s freeware and can be downloaded from
ht televr fou telenotr no/~katlo/compositor

The 1dea 1s to produce a venfication model for the functionaliies being developed in
MPEG-4 The following section 1s an overview of how 2 and 3 dimensional scenes are

described using BIES, 1t 15 not 1ntended as a detatled explanation of how the player

85

functions, such informaton can be found in the documentation repository at the

software site

541 The Components of the MPEG-4 Player

Figure 26 associates each component with the class objects 1t consists of

DMIF AL Layer Decompression Composition and
Rendering
Service 4 AlManager
H263Decoder
FileService DataChannel
G723Decoder MediaObject
RemoteService /
i | JPEGDecoder Presenter
FlexDermuux /
1 VisualRenderer
J
i
] Scene Description AudioRenderer
————— (BIFS Decoder)
} !
E ,f BIFSDecoder {
vy
Elementary stream MediaObject v
buffers (EBs) NodeField Composition buffers (CBs)
implemented by mmplemented by
MedaStream MedraStream

Figure 26 Implementation of major components of MPEG-4
Player

542 MedaObyects
Within the organisation of the classes that were created to implement an MPEG-4

scene the MediaObject class 1s the most fundamental It is the base class for all nodes

defined by BIFS

A media object 1s an object that exists n the 3D space defined by the compositor
Media objects are arranged hierarchically 1n the scene graph, which 1s basically a media

object tree The root object or node identifies the scene The nodes which media

86

objects define are varied, some nodes are objects like Box, Spotlight etc, other nodes
are used as contamners to hold related nodes A shape node, for example, contains a
geometry node and an appearance node A full list of the available BIFS nodes can be
found 1n [5] These nodes can, i turn, contain other nodes In additon media objects
that consume streams, hke video and audio chps have been defined These are

assoctated with media streams that are used to fetch stteam units

MediaObjects have the following properties

e A MediaObject has zero or more “fields”, each defined as either an object of a class
denved from NodeField, or in the case of eventln, as an event-handiing member

function

e A MediaObject can be a parent to zero or more other media objects All the chuld
objects share the attributes of the parent object A position of a child object 1s

relative to 1ts parent object

543 MedaStreams

This 1s the object that handles the buffering and the transfer of data streams It consists
of a2 memory buffer, and 2 FIFO mechanism to store/fetch access units into/out of the
buffer The object also incorporates iming control, 1 ¢, stored access units may have a

time stamp attached to them, and the fetch procedure will fetch only matured unts

Delvering data over a MediaStream 1s performed as following:

* Before the onginating object produces an access umit, 1t allocates space on the
stream’s buffer It asks for the amount of space 1t needs of, 1n cases when this size 1s
not known before the data 1s actually produced, for the space 1t thinks would be

usually sufficient Then 1t uses the allocated space to store the data 1t produces

87

e In case 1t turns out that the allocated space was not enough the object expands the

allocated block

e When done, the actual size of the unit, as well as its presentaton time 1s stored

e The receving object then collects the unit at the correct ime from the buffer

544 Decoding

Each decoder runs 1n its own thread and 1s mherited from the base Decoder class A
decoder 1s bound to two MediaStreams, the mput stream and the output stream, see
Figure 27 The task of fetching coded units from the mput streams (EBs) and storing
presentation units nto the output stream (PBs) 1s carried out by the base object Thus 1s

done as follows

® The decoder gets an AU from the mput stream If no data is available, the decoder’s

thread 1s suspended till data 1s available
¢ The decoder implements 1ts specific decode functionahty

e The output 1s stored 1n the output MediaStream This operation includes attaching a

presentation time stamp to the unit

545 BIFS Decoder
The BIFS decoder reads in the encoded BIFS scene description file and performs the

following
e Retrieves data from the input MediaStream

¢ Instantiates the root MediaObject, and calls 1t to parse itself and build the scene tree

88

® Whenever a node update s detected 1t calls the appropriate node to parse and update

itself

¢ Whenever an ObjectDescriptor 1s detected 1t passes the information to the proper

node so the node can create the necessary Decoder and MediaStreams

546 Flow of Information in the MPEG-4 Player
Figure 27 illustrates the flow of information in the whole application It shows how the
BIFS scene 1s decoded and presented and how the processes desctibed i the previous

sections extst 1n relation to the overall MPEG-4 application

DMIF Systerrs Application
'
Executive
< <
Service | +| AlManager V ~J] Presenter T
- - >
Flex Data Media Root Scene
Demux Channel Stream B Cbyject

T came N é_,,_,_.»/—f-f/’" Mo

" Dua Media ' Media T)_y| Obiect
He Decoder |
i Channel_ Stream Stream
Data

Channel | Only one decoder and assocuated MediaStreams and MediaObyect ts shown.

T Represents acomponent which uses a Represents a component running
clock to contral its operation. as a separate thread.
= Pomts fromthe object which instannates Represents a component which 1s
the object pomted to —— a shared data structure
——>> Shows the direction of data moverment.

Figure 27 Flow of information 1n the MPEG-4 Player

89

547 2D & 3D Composition in the MPEG-4 Player

Composition 1s achieved via SGIs’ OpenGL graphics library The OpenGL graphics
system 1s a powerful software interface for graphics hardware that allows graphics
programmers to produce high-quality colour mmages of 2D and 3D objects Silicon
Graphics Inc developed the technology

OpenGL 1s designed as a streamlined, hardware-independent interface to be
implemented on many different hardware platforms As such 1t provides a layer of
abstraction between graphics hardware and an application program It 1s visible to the
programmer as a set of routines consisting of about 120 distunct commands Together
these routines make up the OpenGL application programming interface (API) The
routines allow graphics primitives (points, hines, polygons, bitmaps, and images) to be
rendered as well as basic rendenng operations such as affine and projective
transformations and lighting calculations It also supposts advanced renderng features

such as texture mapping and antiahiasing

No commands for performing windowing tasks or obtamning user nput are included 1
OpenGL, 1nstead, you must work through whatever windowing system controls the
particular hardware youre using Simiarly, OpenGL doesn’t provide hugh-level
commands for describing models of three-dimensional objects Such commands mught
allow you to specify relatively complicated shapes such as automobiles, parts of the
body, aeroplanes, or molecules When you buld a graphics program using OpenGL,
you start with a few simple primitives The sophistication comes from combinng the

prmrtives and using them in various modes

90

54771 OpenGL Renderng Pipeline

Per-Vertex

Per-
Vertex Operations Fragr:]ent
Data Evaluator| ! Rastenzation | g Operations P FrameButfer

> Primutive
Assembly
Display
’_’ Last _$
Prxel > Pixel Texture

Operations < 7| Memory

Data -

Figure 28 Schematic Diagram of the Order of Operations 1n
OpenGL

Figure 28 shows a schematic diagram of OpenGL Commands enter OpenGL on the
left Most commands may be accumulated 1n a display list for processing at a later ime

Otherwise, commands are effectively sent through a processing pipeline

The first stage provides an effictent means for approximating curve and surface
geometry by evaluating polynomial functions of input values The next stage operates
on geometric prmitives described by vertices ponts, line segments, and polygons In
this stage vertices are transformed and lit, and primitives are clipped to a viewing
volume 1n preparation for the next stage, rasterization The rastenzer produces a settes
of framebuffer addresses and values using a two-dimensional description of a point, line
segment, or polygon Each fragment so produced represents a pordon of a primitive
that corresponds to a pixel in the framebuffer Then each fragment may be modified by
texture mapping, after which 1t 1s fed to the next stage that performs operations on
individual fragments before they finally alter the framebuffer These operations include
condittonal updates into the framebuffer based on incoming and previously stored
depth values (to effect depth buffering), blending of incoming fragment colours with

stored colours, as well as masking and other logical operations on fragment values

91

Finally, pixel rectangles and bitmaps (2D 1mages) bypass the vertex processing portion
of the pipeline to send a block of fragments directly through rastetization to the
individual fragment operations, eventually causing a block of pixels to be written to the
framebuffer A umque feature of OpenGL 1s that pixel rectangles and bitmaps (2D
images) are also rasternized to produce fragments, fragments are treated the same no
matter 1f they come from a geometric or image primitive Values may also be read back
from the framebuffer or copied from one portion of the framebuffer to another These

transfers may include some type of decoding or encoding

More generally, MPEG-4 uses the OpenGL API to compose a 2D and/or 3D scene,

allowing for example to

® place AVOs anywhere 1n a given co-ordinate system,

e group primutive AVOs 1n order to form compound AVOs,

e modify AVOs attributes using streaming data (e g moving texture belonging to an

object, animating a moving head by sending amimation parameters),

e update the uset’s viewing point to enable interactivity anywhere in the scene

548 An Example MPEG-4 Scene
The following BIFS file 1s an example of how to desctibe a scene that contains a

number of decoders and BIFS nodes The composited scene 1s displayed in Figure 29

92

Group {
children [
Fog {
color 0 00000
visibilityRange 30 0
fogType "LINEAR"
}
DirectionallLight
color 1 1 1
}
Viewpoint f{
f1eldOfView 0 785398
}
Transform {
translation -2 0 0
rotation 1 1 0 45
children [
Shape {
appearance Appearance {
texture ImageTexture ({
url 2
repeatS FALSE
repeatT FALSE
}
}
geometry Box {
size 2 2 2
}

]

}

Transform {
translation 2 0 0
scale 0 07 0 07 O 07

children [
FBA (
face Face {
fdp FDP {
faceSceneGraph Group {
}
}
fap FAP {
url 3
)
}
}
]
}
Sound
sound AudioSource {
url 4

93

startTime 0
stopTime -1

}

SessionStreamAssociation

chaildren [
ObjectDescriptor (
objectDescriptorID 2
decTypeString visual/H263
configParam 1

}
ObjectDescraiptor

objectDescriptorID 3
decTypeString visual/FBA
configbParam 1

}
ObjectDescriptor {

objectDescriptorlD 4
decTypeString audio/G723
configParam 2

94

Figure 29 Composition of a BIFS scene in MPEG-4 Player

95

Chapter

6 CONCLUSIONS AND FUTURE DIRECTIONS

61 Introduction

MPEG-4 1s the ISO/IEC standard being developed by MPEG (Moving Picture
Experts Group), the commuttee that also developed the Emmy Award winmng
standards known as MPEG-1 and MPEG-2 The MPEG-4 standard will be the result
of an international effort involving hundreds of researchers and engineers from all over
the world MPEG-4, whose formal ISO/IEC designation will be ISO/IEC 14496, ss to
be released in November 1998 and will be an International Standard in January 1999
This release will be known as Version 1 [29]

Work on MPEG-4 will continue after that date, for a Version 2 Version 2, work on
which has already started, will add tools to the MPEG-4 Standard Existing tools and
profiles from Version 1 will not be replaced 1n Version 2, technology will be added to
MPEG-4 1n the form of new profiles

In the previous chapters there has been a description of how the need for the
development of an MPEG-4 standard came about Initially an overview of MPEG-4
was given 1n a layer by layer basis, and then focus was given to the process of
developing an efficient method for 2D and 3D scene desctiption and composition The
mathematics of 2D and 3D composittion and rendening was analysed and developed
The evolution of the scene description in MPEG-4 was then analysed It was shown
what knowledge and standards currently existed and how a new dynamic approach was

developed from this knowledge

96

In this chapter the future development of the scene description language, the MPEG-4
systems layet, and an overview of the types of applcations the final MPEG-4 standard

will help develop 1s presented

6 2 Future Developments Planned in the Scene Description of MPEG-4

Scene description in MPEG-4 will continue with the further development of BIFS,
introducing new media objects and MPEG-4 nodes as well as converging with the
VRML 20 standard, and the introduction of a new adaptive audio visual scene

description

621 The Future of BIFS

Based on the analysis of VRML and BIFS 1n the previous chapters 1t 1s clear that the
entire BIFS tool cannot be propetly represented 1n a strctly conformant VRML 20
architecture However the mterchange and creation of content can be eased, and both
the VRML and MPEG-4 community would benefit from, and facilitate the
development of, the future potential technology and applications that emerge from the
mixing of the computer graphics technology of the VRML consortium, and the
compression and streaming expertise of the MPEG group To thus purpose the MPEG-

4 and VRML consorttums are working towards the following

* MPEG-4 should use all VRML nodes following strictly their semantics and design

¢ MPEG-4 and VRML should use the same binary encoding

¢ MPEG-4 shall design 1ts nodes using the same design principles as VRML did In
particular, the following rules must apply

* MPEG-4 should not desigh nodes that can be efficiently represented by a small

set of other existing nodes

97

¢ MPEG-4 should use names that are compatble with existing node names to

facilitate mutual understanding and technical exchange

622 Adaptiwe Andio-Visual Sesson Format (AAVS)

One of the mamn disadvantages of BIFS 1s that the MPEG-4 recerving termmunal must
have all the media objects defined 1n the scene implemented 1n order for 1t to be
rendered cotrectly This implies that 1f a scene 1s developed with a new improved video
or audio decodet, or even a completely new decoder, and the recetving terminal doesn’t

have this implementation we cannot display the scene on this terminal

The Adaptuve Audio-Visual Session (AAVS) format spectfies interfaces for the
interoperation of MPEG-4 media with JAVA code By combining MPEG-4 media
and safe executable code, content creators may imbed complex control mechanisms

with their media data to intelligently manage the operation of the audio-visual session

It 1s foreseen that AAVS will provide unique capabilites as a format for session

repre sentation

e AAVS will provide interfaces to MPEG-4 multimedia terminals, enabling advanced

user interaction and device control

Interactive media applications require both interfaces to user I/O devices as well as
media I/O devices The AAVS technology enables such a capability in MPEG-4 by
having an adaptive session with downloadable applets An applet 1s a secure JAVA

apphication that can run over the Internet

* AAVS will provide mechanisms for client-side programmatic control of the audto-

visual session

98

For some types of content, a parametric scene description 1s sufficient, but for other
types of content, a programmatic description may be most appropriate For example, a
parametric scene description may require frequent updates across the network,
increasing the bandwidth of control information with higher vulnerability to etrors In
this case, 1t may be more robust and efficient to generate the scene updates with
executable code running on the client side In addition, 1t may be easier to create a
programmatic scene description, such as when a position or graphical parameter
changes with time according to a mathematical formula Furthermore, programmatic

content may be extended beyond the syntax of a parametric scene description

* AAVS will provide mechanisms for programmatc adaptation of the session to
client-side information, thus maximising media quality 1n the presence of static or

dynamic termunal resources

MPEG-4 media 1s designed to be scalable so that, ideally, a content creator can reuse
the same media on multiple MPEG-4 platforms, for example, 1n a set-top box, a web
browser, and or a handheld device AAVS enables the content creator to specify client-
side, programmatic control to tatlor the media session to the static terminal resource
constraints Furthermore, AAVS provides mechanusms for the content creator to

specify adapuve session behaviour 1n the presence of dynamucally changing resources

6 3 The Future development of the Systems Layer

As previously described, the systems layer of MPEG-4 helps develop standards for the
coding of the combination of, individually coded audio, moving 1mages and related
information so that the combination can be used by any application One of 1ts major
inputs to the standard has been the development of the scene description format

!

Systems will provide the following functionalines for the MPEG-4 standard in Version
1

99

Scene descripton for composition (spatio-temporal synchronisation with time
response behaviout) of multiple AVOs The scene description provides a tich set of

nodes for 2D and 3D composition operators and graphics primtives

Text with international language support, font and font style selection, aming and

synchronisation

Interacuvity, including client and server-based interaction, a general event model
for triggering events or routing user actions, general event handling and routing

between objects 111 the scene, upon user ot scene triggered events

The interleaving of muluple streams into a single stream, including timing

information (multiplexing)

Transport layer independence Through the separation of the multiplexing
operation into FlexMux and TransMux, support for a large variety of transport

facilities 1s achueved

The mitialisation and continuous management of the recerving termnal’s buffers

Timing 1dentification, synchromisation and recovery mechanisms

Datasets covenng identification of Intellectual Property Rights relating to Audio-

visual Objects

Most of these developments have been made and are functioning in the systems

software implementation described 1n chapter 5 Version 2 of the MPEG-4 standard

will support, 1n addition to the tools 1 Version 1

100

e Scene description for composition of multiple AVOs This includes 2D /3D objects
grouping for ease 1n ediing and composttion, spatto-temporal 2D/3D AVO

posttaoning and transformaton, and 2D/3D AVO attribute value selection

e Speatfication of an API for description of AVOs behaviour,

® Specificatton of APIs for 2D composition,

e Specification of API for 2D /3D composition,

¢ Support of downloadable executable code,

e Server-side interacton wvia attnbute value modificaton using standardised

parametsic description,

e AVOs with descriptors to carty MPEG-7 data (MPEG-7 will define a framework

for identifying and describing what 1s ‘inside’ the content)

* A number of functionahties in the area of IPR 1denuficatton and protecuon are
under study for support, and may be provided 11 MPEG-4 version 2, either by
providing hooks or by defining the algonthms within MPEG for automated
monittoring and tracking of creattons, prevention of unauthonsed copymg and
manipulation, tracking object mampulaton and modificaton history, and

supporting transactions between Users, Media Distributors and Rights Holders

For more information on the planned future developments of the vanous MPEG-4

layets see [1] and [2]

6 4 Future MPEG-4 Applications
MPEG-4 has been developed 1n otder to enable developers to create applicatons In

this section a number of possible applications are listed which are enabled by the tools

101

and methods currently standardised within MPEG-4 The tdeca 1s to describe and
highlhght possible future usage of MPEG-4 technology Further documentation on
possible MPEG-4 applications can be found 1n [3]

6 41 Real Time Communications

Real-ime Communications systems are targeted toward applications which encompass
two-way human mnteraction, or one-way apphcanons that impose strict one-way delay
constraints A videophone system 1s a prime example of a two-way real-time system An

example of a one-way delay constrained system 1s a surveillance system

One key feature of real-ime systems 1s that if there 1s both audio and video present, the
audio and video are synchromsed so that the viewer 1s given the impression of lip
synchromusation Interaction between the users of two-way systems requires that the

overall end-to-end delay will be relatively small and fairly constant

The underlying transport system for real-uime communications application 1s likely to
encompass a broad cross section of technologies A key attnibute of the real-ume
communications systems application 1s the ability to successfully operate over a wide
variety of media including low and high mobility wireless, LAN transmussion channels,
PSTN and ISDN transmussion channels Interworking between various media channels

should be supported

It 1s expected that real-ume communications systems will operate 1 a vamety of
different system configurations including those where the complexity of the
encoding/decoding process constitutes a major design constraint Audio and/or visual
quahty maybe traded off against delay and complexity such that a balance 1s found
between the desire for high quality audio/video and the need to provide low delay

operation at a reasonable complexity

102

642 Infotanment

As interaction with AVOs 1s considered as the most important aspect of MPEG-4,
infotainment applications, containing a combination of entertainment and nformation
are well within the scope Generally, the users of such systems have the means both to
get informatton about specific subjects of interest and to configure and amuse
themselves within a mulumedia environment The interactivity aspect includes for
example the requesting of additional objects and changing of the content of the existing

scene nodes

A key feature of infotanment applications 1s the manifold of necessanly diversified
features Typical infotanment applications will make heavy use of natural and syntheuc
audio and video 1n form of e g spoken text and music of all kinds with underlying visual
animation For this kind of application 1t will be necessary to guarantee a hugh quality of
presentaton during the whole session if the user shall not become bored of his/her
pastme The quality aspects address both high AV quality and time constraints to end-

to end latency

MPEG-4 provides an 1deal framework for infotainment applications

o It will feature the means to support the utmost multifaceted set of multimedia types

to be combined within a presentation scenario 1n a standardised way

¢ The composition concepts, which will cover 2D as well as 3D, will be the base for
muxing all kinds of data types within a consistent object handling and user

interaction paradigm

e MPEG’s tradition 1s to achieve the highest possible quality with existing techniques,

which 1s only adequate for the demanding nature of infotamnment applicatons

103

643 Collaborative Scene Visualisation

Collaborative Scene Visualisation supports a class of Computer Supported Co-operative
Work (CSCW) applications where groups of people typically working simultaneously 1n
distributed locations leverage visualisaton tools to accomplish a task by shanng a

common visual information space [31]

A trend of these kind of applications s that they will provide Augmented Reality (AR)
A particular feature of these applications 1s that they not only use dedicated audio-visual
streams as usual tele-conferencing applications for interpersonal communication, but
also use an additional video streams to achieve AR effects The objective of AR 1s to
create an environment in which a user perceives both real and virtual/synthetc

(generated with a computer) objects 1n a seamless way

From the viewpoint of communication, multiple audio-visual streams of natural and
synthetic origins are transferred an audio-visual stteam for conferencing, a video stream
containing a video shot of the empty office, and a 3D synthetic object stream for the

furniture, etc

Like any distnbuted mulumedia system where pardy bulk data (video, audio, high
resolution 1mage, amimation sequence, etc) is transferred, approprate data coding
methods are needed For this end, MPEG-4 1s very useful, because of the following

reasons
e It supports high performance data compression

* A trade-off between quality and performance can be made by scaling encode and

decode complexity, spatial resolution, temporal resolution, and quality

¢ Content-based coding enables interactivity with objects Real objects can be

1
convenienty mantpulated 1n the same way as virtual objects

104

® The composizon concept of MPEG-4 1s very appropriate for organising a scene

conststing of real and virtual objects to be transferred among dispersed participants
¢ Stereoscopic views help a user perceiving a scene

e Face Animation parameters can be used to replace the audio-visual streams used for
mnterpersonal communication to achieve bandwidth reduction The saved
bandwidth can be used to improve the quality of the video stream used for AR

scenes

As can be deduced from the above examples the MPEG-4 standard will provide a

means of creating new and exciting applications

105

References

[1] MPEG Requirements, Audio, DMIF, SNHC, Systems, Video, “MPEG-4 Overview”,
Document ISO/IEC JTC1/SC29/WG11 N1909, Fribourg MPEG meeting, Cctober 1997

[2] MPEG Requirements, Audio, DMIF, SNHC, Systems, Video, “Overview of MPEG-4
functionalities supported in MPEG-4 Version 27, Document ISO/IEC JTC1/SC29/WGI11 N1914,
Fribourg MPEG meeting, October 1997

[31 MPEG Requirements, “MPEG-4 Applications V 2 0”, Document ISO/IEC JTC1/SC29/WG11
N1907, Fribourg MPEG meeting, October 1997

[4] MPEG-4 Convenor, “MPEG-4 project description”, Document ISO/IEC JTC1/SC29/WG11
N1177, Munich MPEG meeting, January 1996 R

[5] MPEG-4 Systems, “Text for CD 14496-1 Systems”, Document ISO/IEC JTC1/SC29/WG11
N1901, Fribourg MPEG meeting, October 1997

[6] MPEG-4 Systems, “Proposed revision for the MPEG-4 Syntactic Description Language (Rev
2 1)”, Document ISO/IEC JTC1/SC29/WG11 N2902, Fribourg MPEG meeting, October 1997

[71 MPEG-4 Audio, “Text for CD 14496-3 Audio”, Document ISO/IEC ITC1/SC29/WGl1
N1903, Fribourg MPEG meeting, October 1997

[8] MPEG-4 Video, “Text for CD 14496-2 Video”, Document ISO/IEC JTC1/SC29/WG11
N1902, Fribourg MPEG meeting, October 1997

[9] Sun Microsystems, The Java Language A White Paper

[10] MPEG-4 Systems, E Cooke, S Lecercle, O Avaro, “MSDL VM A Primer”, Document
ISO/IEC JTC1/SC29/WG11 N1575, Maceio MPEG meeting, November 1996

[11] MPEG-4 Video Group, “Text of ISO/IEC 14496-2 wvideo verification model V 80",
Document ISO/IEC JTC1/SC29/WG11 N1796, Stockholm MPEG meeting, July 1997

[12] MPEG-4 Systems, “Systems Working Draft version 20”7, ISO/IEC JTC1/SC29/WGl1
N1483, Maceio MPEG meeting, November 1996

{13] Embedded Real Time Development in the Java Language hitp //www newmonics com

[14] VRML commumty, “The Virtual Reality Modeling Language Specification “,Version
2 0,August 4, 1996

[15] MPEG-4 Systems, E Cooke, C Bouville, “Proposal for 2D & 3D Composition”, ISO/IEC
JTC1/SC29/WG11 N1776, Sevilla MPEG meeting, February 1997

[16] MPEG-4 Systems, E Cooke, L Ward, “Proposal for 3D Scene Description and Composition”,
ISCG/IEC JITC1/SC29/WG11 N1777, Sevilia MPEG meeting, February 1997

[17] Cosmo Software, http //cosmo sg1 com/, Cosmo Software Homepage

[18] MPEG-4 Systems, E Cooke, L Ward, “3D VM Plug-n-Play Interface for 2D AV objects’,
ISO/IEC JTC1/SC29/WG11 N1999, Bristol MPEG meeting, April 1997

[19] MicroSoft,http //www dimensionx com/products/Ir/docs/index html, LR Documentation

[20] MicroSoft,http //www dimenstonx com/products/Ir/docs/tutorial html, LR Tutoral

(21] MPEG-4 Context and Objectives, R Koenen, F Pereira, L Chiarighone, Special Issue of
Image Communication on MPEG-4, Volume 9, Issue 4, May 1997

[22] Introduction to MPEG-4, C Reader, Journal of Video Coding, February, 1997

[23] MPEG-4 Audio/Video & Synthetic Graphics/Audio for Mixed Media, P K Doenges,
T K Capin, F Lavagetto, J Ostermann, 1 S Pandzic, Image Communication Journal, Volume 5, No
4, May 1997

[24] MPEG-4 Editonial, Y Q Zhang, F Periera, T Sikora, C Reader, CirSysVideo Journal, No |,
February 1997

(25] The MPEG-4 Video Standard Verification Model, Y Q Zhang, F Periera, T Sikora, C Reader,
CirSysVideo Journal, No 1, February 1997

[26] The MPEG-4 Systems and Description Languages A Way Ahead in Audio Visual
Intormation Representation, O Avaro, P Chou, A Eleftheriadis, C Herpel, C Reader, J Signes,
Special Issue of Image Communication on MPEG-4, Volume 9, Issue 4, May 1997

[27] Decad-Reckoning Algonthms for Synthetic Objects in MPEG-4 SNHC, T K Capin,
[S Pandzic, N Magnenat Thalmann, D Thalmann, Workshop on Synthetic - Natural Hybrid Coding
and Three Dimensional Imaging, Rhodes, 1997

[28] MPEG-4 Video Venfication Model A Video Encoding/Decoding Algorithm Based on
Content Representation, T Ebrahimi, Image Communication Journal, Volume 5, No 4, May 1997

[29] ISO MPEG-4 - An Emerging Standard for Mobile Multimedia Communications, A Pur,
A Elettheriadis, Special Issue of Mobile Networking and Applications Journal on Mobile
Multimedia Communications, June 1997

{30] Tests on MPEG-4 Audio Codec Proposals, L Contin, B Edler, D Meares, P Schreiner, Special
Issue of Image Communication on MPEG-4, Volume 9, Issue 4, May 1997

[31] MPEG-4 for Networked Collaborative Virtual Environments, T K Capin, IS Pandzic,
N Magnenat Thalmann, D Thalmann, IEEE Computer Society Press, 1997

AAC

AAL
AAVS

AL

Access Unt

ADSL
Alpha plane

API

ATM

AVO

BAP

BDP

BIFS

BSAC

CE

CELP

DAI

DDI

DMIF
DSM-CC
DSM-CCU-U
DSM-CC U-N
ES

FAP
FBA
FDP
FlexMux layer

FlexMux stream

FTTC
GSTN
HFC

HILN
HTTP

Annex A - Glossary and Acronyms

Advanced Audio Coding

ATM Adaptation Layer

Adaptive Audio-Visual Session

Adaptation Layer

A logical sub-structure of an Elementary Stream to
facilitate random access or bitstream manipulation
Asymmetrical Digital Subscriber Line

Image component providing transparency information
(Video)

Application Programming Interface

Asynchronous Transfer Mode

Audiovisual Object

Body Anmimation Parameters

Body Definition Parameters

Binary Format for Scene description

Bit-Shiced Anthmetic Coding

Core Experiment

Code Excited Linear Prediction

DMIF-Application Interface

DMIF-DMIF Interface

Delivery Multimedia Integration Framework

Digital Storage Media - Command and Control
DSM-CC User to User

DSM-CC User to Network

Elementary Stream A sequence of data that originates
from a single producer 1n the transmitting MPEG-4
Terminal and terminates at a single recipient, e g an
AVObject or a Control Entity 1n the receiving MPEG-4
Terminal It flows through one FlexMux Channel
Facial Animation Parameters

Facial and Body Animation

Facial Definition Parameters

Flexible (Content) Muluplex A logical MPEG-4 Systems
layer between the Elementary Stream Layer and the
TransMux Layer used to interleave one or more
Elementary Streams, packetized in Adaptation Layer
Protocol Data Units (AL-PDU), into one FlexMux stream
A sequence of FlexMux protocol data units originating
from one or more FlexMux Channels flowtng through one
TransMux Channel

Fiber To The Curb

General Switched Telephone Network

Hybrid Fiber Coax

Harmonic Individual Line and Noise

HyperText Transfer Protocol

1

HVXC
1P

1PI
IPR
ISDN
LAR
LC
LPC
LSP
LTP
mesh

MCU
MIDI
MPEG
PSNR
QoS

RTP
RTSP
Rendering
Sprite

SRM
TCP

T/F coder
TransMux
TTS

UDP
UMTS
Viseme
VLBV
VRML

Harmonic Vector Excitation Coding

Internet Protocol

Intellectual Property Identification

Intellectual Property Rights

Integrated Service Digital Network

Loganthmic Area Ratio

Low Complexity

Linear Predictive Coding

Line Spectral Pairs

Long Term Prediction

A graphical construct consisting of connected surface
elements to describe the geometry/shape of a visual object
Multipoint Control Unat

Musical Instrument Digital Interface

Moving Pictures Experts Group

Peak Signal to Noise Ratio

Quality of Service

Real Time Protocol

Real Time Streaming Protocol

The process of generating pixels for display

A static sprite 1s a - possibly large - still tmage, describing
panoramic background

Session and Resource Managers

Transmission Control Protocol

Time/Frequency Coder

Transport Multiplex

Text-to-speech

User Datagram Protocol

Universal Mobile Telecommunication System
Facial expression associated to a specific phoneme
Very Low Bit-rate Video

Virtual Reality Modehng Language

