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ABSTRACT

BI AND TRI DIMENSIONAL SCENE 
DESCRIPTION AND COMPOSITION IN 

TH E MPEG-4 STANDARD 

By Edward Cooke

MPEG-4 is a new ISO/IEC standard being developed by MPEG (Moving Picture Experts Group) 
The standard is to be released in November 1998 and version 1 will be an International Standard in 
January 1999 The MPEG-4 standard addresses the new demands that arise in a world in which 
more and more audio-visual material is exchanged m digital form MPEG-4 addresses the coding of 
objects of various types Not only traditional video and audio frames, but also natural video and 
audio objects as well as textures, text, 2- and 3-dimensional graphic primitives, and synthetic music 
and sound effects

Using MPEG-4 to reconstruct an audio-visual scene at a terminal, it is hence no longer sufficient to 
encode the raw audio-visual data and transmit it, as MPEG-2 does m order to synchronize video and 
audio In MPEG-4, all objects are multiplexed together at the encoder and transported to the 
terminal Once de-multiplexed, these objects are composed at the terminal to construct and present 
to the end user a meaningful audio-visual scene The placement of these elementary audio-visual 
objects in space and time is described in the scene description of a scene While the action of 
putting these objects together in the same representation space is the composition of audio-visual 
objects

My research was concerned with the scene description and composition of the audio-visual objects 
that are defined in an audio-visual scene Scene descriptions are coded independently irom sticams 
related to primitive audio-visual objects The set of parameters belonging to the scene description 
are differentiated from the parameters that are used to improve the coding efficiency of an object 
While the independent coding of different objects may achieve a higher compression rate, it also 
brings the ability to manipulate content at the terminal This allows the modification of the scene 
description parameters without having to decode the primitive audio-visual objects themselves This 
approach allows the development of a syntax that describes the spatio-temporal relationships of 
audio-visual scene objects The behaviours of objects and their response to user inputs can thus also 
be represented in the scene description, allowing richer audio-visual content to be delivered as an 
MPEG-4 stream
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C h a p t e r

1 INTRODUCTION

11 Introduction

After setting the MPEG-1 and MPEG-2 standards, M PEG (Moving Pictures Experts 

Group, ISO /IEC  Joint Technical Committee 1, Sub Committee 29, Work Group 11) is 

now working on a new audio-visual standard, called MPEG-4 While the initial objective 

of MPEG-4 was to achieve very low bit-rates, M PEG has adapted the work plan to 

changes in the audio-visual environment and modified its targets considerably [4] The 

M PEG standard under development now addresses the new demands that arise in a 

world in which more and more audio-visual matenal is exchanged in digital form

The first two sets o f M PEG standards (MPEG-1 and MPEG-2) are well known to 

people involved in digital communication They are widely adopted in commercial 

products, such as CD-interactive, digital audio broadcasting, digital television and many 

video-on-demand trials MPEG-1 and -2 deal with ‘frame-based video’ and audio 

Although these standards provide a large improvement, in randomly accessing content, 

over standards that existed before, the granularity o f the interaction is limited to the 

video frame, with its associated audio In this sense, the functionality could be 

compared with that o f audio and video cassette players, albeit with non-linear controls 

Their most important goal is to make storage and transmission more efficient, by 

compressing the matenal The new MPEG-4 standard does not only aim to achieve 

efficient storage and transmission, but also to satisfy other needs of future image 

communication users To reach this goal, MPEG-4 will be fundamentally different in 

nature from its predecessors, as it makes the move towards representing the scene as a 

composition of (potentially meaningful) objects, rather than ‘just’ the pixels
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The most important innovation that MPEG-4 brings is it defines an audio-visual scene 

as a coded representation o f ‘audio-visual objects’ that have certain relations in space 

and time, rather than Video frames with associated audio’ Depending on the 

application, the scene can be composed of 2D or 3D time varying objects 3D scenes 

may be composed of 3D, 2D, synthetic and natural objects Such an object could be a 

video object a car, a dog, or the complete background It could also be an audio object 

one instrument in an orchestra, the barking o f the dog, a voice When an audio and a 

video object are associated, audio-visual object results the image of a running dog 

together with the sound it makes This new approach to information representation 

allows for much more interactivity, for versatile re-use of data, and for intelligent 

schemes to manage bandwidth, processing resources (e g memory, computing power) 

and error protection It also eases the integration of natural and synthetic audio and 

video material, as well as other data types, such as text overlays and graphics

1 2 Research Objectives

The subject of my research was concerned with the scene description and composition 

o f the audio-visual objects that are defined in an audio-visual scene In MPEG-4, all 

audio-visual objects are multiplexed together at the encoder and transported to the 

terminal Once de-multiplexed, these objects are composed at the terminal to construct 

and present to the end user a meaningful audio-visual scene The placement of these 

elementary audio-visual objects in space and time is descnbed in the Scene Description 

The action o f putting these objects together in the same representation space is the 

Composition of audio-visual objects

Scene descriptions are coded mdependentiy from streams related to primitive audio­

visual objects Special care is devoted to the identification of the parameters belonging 

to the scene description This is done by differentiating parameters that are used to 

improve the coding efficiency of an object (eg motion vectors in video coding 

algorithm), from those used as modifiers of an object’s charactenstics within the scene

2
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(e g position of the object in the global scene) The idea was to standardise a syntax that 

describes the spatio-temporal relationships of the audio-visual scene objects

The compositor uses this spatio-temporal information to reconstruct the complete 

scene Composition information is thus used to synchronise different objects in time, 

and to give them the right position in space

During the course of my research I analysed the fundamental principles of bi and tri 

dimensional scene description and graphic composition with an interest m how these 

principles could be developed to aid m the creation of the MPEG-4 standard My 

research also involved the development of an MPEG-4 terminal, which would utilise 

the MPEG-4 scene description language and composite the audio-visual objects 

described in an audio-visual scene

13 Structure of Thesis

A general overview of the MPEG-4 standard is given in chapter 2 A brief introduction 

is given o f how the need to establish a universal, efficient coding standard for different 

forms of audio-visual data arose, and the scope and features the standard offers to 

authors, service providers and end users This is followed by a technical description of 

the various layers l e , Video, Audio, Systems etc, which combine to form M PEG -4 An 

overview of the new concepts that have been developed within these layers to create the 

standard is given This chapter is designed to give an explanation of how the final 

standard is designed to function

The fundamental principles o f bi and tri dimensional graphic composition and 

rendering are discussed in chapter 3 The chapter is designed to explain how geometrical 

transformations based on matrix mathematics can be used to simplify the composition 

of 2D and 3D scenes It is through these transformations that graphics applications can

3



create 2D renditions of 3D objects The chapter also introduces and explains the notion 

of an objects’ local co-ordinate system and how a global co-ordinate system, the scene, 

can be created by combining different objects co-ordinate systems together Finally 

viewing projections of 2D and 3D objects are explained

Chapter 4 introduces the notion of a scene description in the MPEG-4 standard Scene 

descriptions are coded independentiy from streams related to primitive audio-visual 

objects Special care is devoted to the identification of the parameters belonging to the 

scene description This is done by differentiating parameters that are used to improve 

the coding efficiency of an object from those used as modifiers of an object’s 

characteristics within the scene In keeping with MPEG-4’s objective to allow the 

modification of this latter set of parameters without having to decode the primitive 

audio-visual objects themselves, these parameters form part o f the scene descnption 

and are not part o f the pnmitive audio-visual objects The idea was to standardise a 

syntax that describes the spatio-temporal relationships of Scene Objects This chapter is 

a detailed analysis of how scene descnption languages function and how the 

functionality of the MPEG-4 scene description language has been developed since its 

conception We see how the JAVA language was initially used for a flexible form of 

scene description language and the development of this language This is followed by an 

explanation of the overheads involved in developing a real-time implementation of an 

MPEG-4 terminal and how the JAVA environment was too heavy for such 

development Finally VRML is introduced as a possible scene description language

The development of the MPEG-4 scene descnption language into a Binary Format for 

Scene Descnption (BIFS) and how bi and tn dimensional composition is achieved using 

this description is explained in chapter 5 We see the disadvantages of the VRML scene

4



description language for MPEG-4 as well as how VRML was used as a building block 

for BIFS The use of the OpenGL API for 2D and 3D composition is also described A 

detailed explanation of a developed MPEG-4 player is also given

Chapter 6 gives an account of how the upcoming MPEG-4 standard has been divided 

into two versions An overview of the currendy developing version, version 1 which 

went to a Committee Draft document in November 1997, is given as well as a timetable 

for the future development planned for MPEG-4 versions 1 and 2 A description is 

given of how the VRML and MPEG-4 consortiums are converging and the future 

prospects for BIFS An explanation of the new dynamic scene descnpdon language, 

Adaptive Audio-Visual Session format (AAVS), is also given The chapter finishes with 

an analysis of several different types o f applications that the MPEG-4 standard will 

enable developers to create
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C h a p t e r

2 OVERVIEW OF TH E MPEG-4 STANDARD 

2 1 Introduction

In this chapter the MPEG-4 standard is introduced The initial section explains how the 

demand for MPEG-4 arose, this is followed by an explanation o f what MPEG-4 offers 

as a new technology Then a technical description of the various layers l e ,  Video, 

Audio, Systems etc, which combine to form MPEG-4 are introduced and the new 

concepts that have been developed within these layers to create the standard are 

explained

As the MPEG-4 project description [4] states, a number o f concurrent evolution’s have 

created the need for new ways to represent, integrate, and exchange pieces o f audio­

visual information

• the deployment of diverse new two-way delivery systems such as fixed broadband 

and mobile narrowband,

• the progress of micro-electronic technology that is providing extremely powerful and 

programmable processors, and

• the change o f the audio-visual information production and consumption paradigm, 

because of the increased role of synthetic information and higher degrees of 

interactivity

The MPEG-4 project aims to establish universal, efficient coding of different forms of 

audio-visual data, called audio-visual objects These objects can be of natural or 

synthetic origin

6



2 2 Scope and features of the MPEG-4 standard

The MPEG-4 standard under development will provide a set of technologies to satisfy

the needs of authors, service providers and end users alike [21] [22]

• To authors, MPEG-4 will enable the production of content that is more reusable, has

greater flexibility, and can be better protected than possible today with individual 

technologies such as digital television, animated graphics, World Wide Web (WWW) 

pages and their extensions

•  To network service providers; MPEG-4 will offer content transportation mechanisms 

that match the Quality of Service (QoS) required by the individual media,

• To end users, MPEG-4 will allow higher levels of interaction with content, within the

limits set by the author, avoiding the risk of proprietary formats and players

MPEG-4 achieves these goals by providing standardised ways to

• Represent units of aural, visual or audio-visual content, called “audio-visual objects” 

or AVOs (The very basic unit is more precisely called a “primitive AVO”),

•  Compose these objects together, to create compound audio-visual objects (eg an 

audio-visual scene),

• Multiplex and synchronise the data associated with AVOs, so that they can be 

transported over networks providing a QoS appropriate for the nature of the specific 

AVOs,

•  Interact with the audio-visual scene generated at the receiver’s end

The next sections illustrate the described functionalities of MPEG-4, using the audio­

visual scene depicted in Figure 1
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2 3 Representation of primitive Audio-Visual Objects

This audio-visual scene is composed o f several AVOs, organised m a hierarchical 

fashion At the leaves of the hierarchy, we find pnmitive AVOs, such as

• a 2-dimensional fixed background,

• the picture of a talking person (without the background)

• the voice associated with that person,

MPEG-4 standardises a number of such primitive AVOs, capable of representing both 

natural and synthetic content types, which can be either 2- or 3-dimensiona 1 In addition 

to the AVOs mentioned above and shown in Figure 1, MPEG-4 defines the coded 

representation of objects like

• talking heads and associated text to be used at the receiver’s end to synthesise the 

speech and animate the head,

• animated human bodies,

• subtitles of a scene containing text and graphics

In their coded form, these objects are represented as efficiently as possible This means 

that not more information is spent on coding these objects than necessary for 

supporting the desired functionalities Such functionality may be error robustness, or 

allowing extraction and editing of the object, or having the object available in a scaleable 

form It is important to note that the coded representation is able to represent the 

object (aural or visual) independently, that is, without surroundings or background

8



2 4 Composition of Audio-Visual Objects

Figure 1 gives an example that highlights the way in which an audio-visual scene in 

MPEG-4 is composed o f individual objects The figure contains compound AVOs that 

group arbitrary AVOs together For example, the visual object corresponding to the 

talking person and the corresponding voice are tied together to form a new compound 

AVO Such grouping allows authors to construct complex scenes, and enables 

consumers to manipulate meaningful (sets of) objects [26]

audiovisual objects

hierarchically multiplexed 
downstream control /  data

hierarchically multiplexed 
upstream control/data

video
compositor
projection

plane

hypothetical viewer
speaker

user inpi

Figure 1 An example of an MPEG-4 audio-visual scene
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More generally, MPEG-4 provides a standardised way to compose a scene, allowing for 

example to

• place AVOs anywhere in a given co-ordinate system,

• group primitive AVOs in order to form compound AVOs,

• apply streamed data to AVOs, in order to modify their attributes (e g moving texture

belonging to an object, animating a moving head by sending animation parameters),

• change, interactively, the user’s viewing or hearing points anywhere in the scene

2 5 Multiplex and Synchronisation of Audio-Visual Objects

AVO data is conveyed in one or more Elementary Streams The streams are 

characterised by the QoS they request for transmission (e g , maximum bit rate, bit error 

rate, e tc ), as well as other parameters, including stream type information to determine 

the required decoder resources and the precision for encoding timing information How 

such streaming information is transported in a synchronised manner from source to 

destination, exploiting different QoS as available from the network, is specified in terms 

of an Access Unit Layer and a conceptual two-layer multiplexer, as depicted in Figure 2

The Access Unit Layer allows identification of Access Units (e g , video or audio frames, 

scene description commands) in Elementary Streams, recovery o f the AVO’s or scene 

descnption’s time base and enables synchronisation among them The Access Unit 

header can be configured in a large number o f ways, allowing use in a broad spectrum 

of systems

The “FlexMux” (Flexible Multiplexing) Layer is fully specified by M PEG It contains a 

multiplexing tool that allows grouping of Elementary Streams (ESs) with a low 

multiplexing overhead This may be used, for example, to group ES with similar QoS 

requirements

10



The “TransMux” (Transport Multiplexing) layer in Figure 2 models the layer that offers 

transport services matching the requested QoS Only the interface to this layer is 

specified by MPEG-4 Any suitable existing transport protocol stack such as 

(RTP)/U D P/IP, (AAL5)/ATM, or MPEG-2’s Transport Stream over a suitable link 

layer may become a specific TransMux instance The choice is left to the end 

user/service provider, and allows MPEG-4 to be used in a wide variety of operation 

environments

Use of the FlexMux multiplexing tool is optional and, as shown in Figure 2, this layer 

may be bypassed if the underlying TransMux instance provides equivalent functionality 

The Access Unit Layer, however, is always present

With regard to Figure 2, it will be possible to

• identify access units, transport timestamps and clock reference information and 

identify data loss

11



• optionally interleave data from different ESs into FlexMux Streams

• convey control information to

• indicate the required QoS for each Elementary Stream and FlexMux stream,

• translate such QoS requirements into actual network resources,

• convey the mapping of ESs, associated to AVOs, to FlexMux and TransMux 

channels

Part o f the control functionalities will be available only in conjunction with a transport 

control entity like the DM IF framework

2 6 Interaction with Audio-Visual Objects

In general, the user observes a scene composed following the design of some author 

Depending on the degree of freedom allowed by the author the user has the possibikty 

to interact with the scene Operations a user may be allowed to perform include

• changing the viewing/hearing point of the scene (e g by navigation through a scene),

• dragging objects in the scene to a different position, deleting objects from a scene,

• but also more complex kinds of behaviour can be triggered (eg a virtual phone 

rings, the user answers and a communication link is established)

2 7 Technical description of the MPEG-4 standard

The remaining sections in this chapter provide a technical description of the major 

components of the MPEG-4 standard A more detailed description can be found in [1] 

As shown in Figure 3, streams coming from the network (or a storage device) as 

TransMux Streams are demultiplexed into FlexMux Streams and passed to appropriate

12



FlexMux demultiplexers that retrieve Elementary Streams This is descnbed in Section 

2 9 The ESs are parsed and passed to the appropnate decoders Decoding recovers the 

data in an AVO from its encoded form and performs the necessary operations to 

reconstruct the original AVO ready for rendering on the appropnate device Audio and 

visual objects are represented in their coded form, which is descnbed m sections 2 11 

and 2 1 2  respectively The reconstructed AVO is made available to the composition 

layer for potential use during scene rendering Decoded AVOs, along with scene 

description information, are used to compose the scene as described by the author 

Scene description and Composition are explained in Section 213 The user can, to the 

extent allowed by the author, interact with the scene that is eventually rendered and 

presented Section 214 describes this interaction

13
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2 8 DMIF

The Delivery Multimedia Integration Framework (DMIF) addresses the operation of 

multimedia applications over interactive networks, in broadcast environments and from 

disks The DMIF architecture is such that applications, which rely on DMIF for 

communications, do not have to be concerned with the underlying communications 

method The implementation of DMIF takes care of the network details, presenting the 

application with a simple interface DMIF is located between the MPEG-4 application 

and the transport network as shown m Figure 4 below
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► = Not present in case of pure broadcast SRM= Session and Resource Management function 
 = invoked on demand

Note 1 Includes I/O bus and drivers for DVD in case of local terminal storage

Figure 4 The DMIF Architecture

To the application, DMIF presents a consistent interface irrespective of whether 

MPEG-4 streams are received by interacting with a remote interactive DMIF peer over 

networks and/or by interacting with broadcast or storage media An interactive DMIF 

peer as shown in Figure 4, is an end-system on a network that can originate a session 

with a target peer A target peer can be an interactive peer, a set of broadcast MPEG-4 

streams or a set of stored MPEG-4 files

An MPEG-4 application through the DMIF interface can establish a multiple peer 

application session Each peer is identified by a unique address A peer may be a remote 

interactive peer over a network or can be pre-cast (over broadcast or storage media) An 

interactive peer irrespective of whether it initiated the session can select a service, obtain 

a scene description and request specific streams for AVOs from the scene to be 

transmitted with the appropriate QoS

The MPEG-4 application can request from DMIF the establishment of channels with 

specific QoSs and bandwidths for each elementary stream DM IF ensures the timely

15



establishment of the channels with the specified bandwidths while preserving the QoSs 

over a variety of intervening networks between the interactive peers DM IF allows each 

peer to maintain its own view of the network, thus reducing the number of stacks 

supported at each terminal

Control of DMIF spans both the FlexMux and the TransMux layers shown in Figure 2 

In the case of FlexMux, DMIF provides 'control of the establishment of FlexMux 

channels In the case of TransMux, DMIF uses an open interface, which accommodates 

existing and future networks through templates called connection resource descriptors 

MPEG-4 will offer a transparent interface with signalling primitive semantics These 

MPEG-4 semantics at the interface to DMIF are interpreted and translated into the 

appropriate native signalling messages o f each network, with the help of relevant 

standards bodies having the appropriate jurisdiction In the area of QoS, MPEG-4 

provides a first step towards defining a generic QoS parameter set for media at the 

DMIF interface The exact mapping for these translations are beyond the scope of 

MPEG-4 and are left to be defined by network providers

The DM IF SRM functionality in Figure 4 encompasses the MPEG-2 DSM-CC SRM 

functionality However, unlike DSM-CC, DMIF allows the choice whether or not to 

invoke SRM DMIF provides a globally unique network session identifier, which can be 

used to tag the resources and log their usage for subsequent billing

In a typical operation an end-user may access AVOs distributed over a number of 

remote interactive peers, broadcast and storage systems The initial network connection 

to an interactive peer may consist of a best effort connection over a ubiquitous network 

If  the content warrants it, the end-user may seamlessly scale up the quality by adding 

enhanced AVO streams over connection resources with guaranteed QoS

i
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2 9 Demultiplexing, buffer management and time identification

Individual Elementary Streams have to be retrieved from incoming data from some 

network connection or a storage device Each network connection or file is 

homogeneously considered a TransMux Channel m the MPEG-4 system model The 

demultiplexing is partially or completely done by layers outside the scope of MPEG-4, 

depending on the application For the purpose of integrating MPEG-4 in system 

environments, the Stream Multiplex Interface (see Figure 2) is the reference point 

Adaptation Layer-packedzed Streams are delivered at this interface The FlexMux Layer 

specifies the optional FlexMux tool The TransMux Interface specifies how either AL- 

packetized Streams (no FlexMux used) or FlexMux Streams are to be retrieved from the 

TransMux Layer This is the interface to the transport functionalities not defined by 

M PEG The data part of the interfaces is considered here while the control part is dealt 

with by DMIF

In the same way that MPEG-1 and MPEG-2 described the behaviour o f an idealised 

decoding device along with the bitstream syntax and semantics, MPEG-4 defines a 

System Decoder Model This allows the precise definition of the terminal’s operation 

without making unnecessary assumptions about implementation details This is essential 

in order to give implementers the freedom to design real MPEG-4 terminals and 

decoding devices in a vanety of ways These devices range from television receivers, 

which have no ability to communicate with the sender, to computers, which are fully 

enabled with bi-directional communication Some devices will receive MPEG-4 streams 

over isochronous networks while others will use non-isochronous means (eg ,  the 

Internet) to exchange MPEG-4 information The System Decoder Model provides a 

common model on which all implementations of MPEG-4 terminals can be based

The specification of a buffer and timing models is essential to encoding devices which 

may not know ahead of time what the terminal device is or how it will receive the 

encoded stream Though the MPEG-4 specification will enable the encoding device to
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inform the decoding device of resource requirements, it may not be possible, as 

indicated earlier, for that device to respond to the sender It is also possible that an 

MPEG-4 session is received simultaneously by widely different devices, it will, however, 

be properly rendered according to the capability of each device

2 9 1 Demultiplexing

The retrieval of incoming data streams from network connections or storage media 

consists of two tasks First, the channels must be located and opened This requires a 

transport control entity, e g , DMIF Second, the incoming streams must be properly 

demultiplexed to recover the Elementary Streams from downstream channels (incoming 

at the receiving terminal) In interactive applications, a corresponding multiplexing stage 

will multiplex upstream data in upstream channels (outgoing from the receiving 

terminal) These elementary streams carry either AVO data, scene description 

information, or control information related to AVOs or to system management

The MPEG-4 demultiplexing stage is specified in terms of a conceptual two-layer 

multiplexer consisting of a TransMux Layer and a FlexMux Layer as well as an Access 

Unit Layer that conveys synchronisation information

The genenc term ‘TransMux Layer’ is used to abstract any underlying multiplex 

functionality -  existing or future -  that is suitable to transport MPEG-4 data streams 

Note that this layer is not defined in the context of MPEG-4 Examples are MPEG-2 

Transport Stream, H 223, ATM AAL 2, IP /U D P The TransMux Layer is modelled as 

consisting of a protection sublayer and a multiplexing sublayer indicating that this layer 

is responsible for offenng a specific QoS Protection sublayer functionality includes 

error protection and error detection tools suitable for the given network or storage 

medium In some TransMux instances, it may not be possible to separately identify 

these sublayers
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In any concrete application scenano one or more specific TransMux Instances will be 

used Each TransMux demultiplexer gives access to TransMux Channels The 

requirements on the data interface to access a TransMux Channel are the same for all 

TransMux Instances They include the need for reliable error detection, delivery, if 

possible, o f erroneous data with a suitable error indication and framing of the payload, 

which may consist of either AL-packetnzed streams or FlexMux streams These 

requirements are summarised in an informative way in [5]

The FlexMux layer, on the other hand, is completely specified by M PEG It provides a 

flexible, low overhead, low delay tool for interleaving data that may optionally be used 

and is especially useful when the packet size or overhead o f the underlying TransMux 

instance is large The FlexMux is not itself robust to errors and can either be used on 

TransMux Channels with a high QoS or to bundle Elementary Streams that are equally 

error tolerant The FlexMux requires reliable error detection and sufficient framing o f 

FlexMux packets (for random access and error recovery) from the underlying layer 

These requirements are summarised m the Stream Multiplex Interface, which defines 

the data access to individual transport channels The FlexMux demultiplexer retrieves 

AL-packetazed streams from FlexMux Streams

The Access Unit Layer has a minimum set of tools for consistency checking, and 

padding to convey time base information and to carry time stamped Access Units of an 

Elementary Stream Each packet consists of one Access Unit or a fragment o f an 

Access Unit These time stamped Access Units form the only semantic structure of 

Elementary Streams that is visible on this layer The AU Layer requires reliable error 

detection and framing of each individual packet from the underlying layer, which can be 

accomplished, e g , by using the FlexMux How the compression layer can access data is 

summarised in [5] The AU Layer retneves Elementary Streams from AL-packetized 

Streams
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To be able to relate Elementary Streams to AVOs within a scene, Object Descriptors 

and StreamMapTables are used Object Descriptors convey information about the 

number and properties o f Elementary Streams that are associated to particular AVOs 

The StreamMapTable links each stream to a ChannelAssociationTag that serves as a 

handle to the channel that carries this stream Resolving ChannelAssociationTags to the 

actual transport channel as well as the management of the sessions and channels is 

addressed by the DMIF part o f the MPEG-4 standard

2 9 2  Buffer Management

To predict how the decoder will behave when it decodes the various elementary data 

streams that form an MPEG-4 session, the Systems Decoder Model enables the 

encoder to specify and monitor the minimum buffer resources that are needed to 

decode a session The required buffer resources are conveyed to the decoder within 

Object Descnptors during the set-up of the MPEG-4 session, so that the decoder can 

decide whether it is capable of handling this session

AL A ttest Unit Layer EB Elementary Stream Buffer AVO Dec AVO Decoder 
CB Composition Buffer

Figure 5 Buffer architecture of the System Decoder Model

By managing the finite amount of buffer space the model allows a sender, for example, 

to transfer non real-time data ahead of time, if sufficient space is available at the receiver 

side to store it The pre-stored data can then be accessed when needed, allowing at that 

time real-time information to use a larger amount of the channel’s capacity if so desired
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2 9 3  Time Identification

For real time operation, a timing model is assumed in which the end-to-end delay from 

the signal output from an encoder to the signal input to a decoder is constant 

Furthermore, the transmitted data streams must contain implicit or explicit timing 

information There are two types of timing information The first is used to convey the 

speed of the encoder clock, or time base, to the decoder The second, consisting o f time 

stamps attached to portions of the encoded AV data, contains the desired decoding 

time for Access Units or composition and expiration time for Composition Units This 

information is conveyed in AL-PDU Headers generated in the Access Unit Layer With 

this timing information, the inter-picture interval and audio sample rate can be adjusted 

at the decoder to match the encoder’s inter-picture interval and audio sample rate for 

synchronised operation

Different AVOs may be encoded by encoders with different time bases, with the 

accompanying slighdy different speed It is always possible to map these time bases to 

the time base of the receiving terminal In this case, however, no real implementation of 

a receiving terminal can avoid the occasional repetition or drop of AV data, due to 

temporal aliasing (relative reduction or extension of their time scale)

Although systems operation without any timing information is allowed, defining a 

buffering model is not possible

2 10 Syntactic decoding

MPEG-4 defines a syntactic description danguage to describe the exact binary syntax of an 

AVO’s bitstream representation as well as that of the scene descnption information 

This language is an extension of C++, and is used to describe the syntactic representation 

o f objects and the overall AVO class definitions and scene description information in 

an integrated way A more detailed description can be found in [6]
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2 11 Coding of Audio Objects

MPEG-4 coding of audio objects provides tools for representing natural sounds (such 

as speech and music) and for synthesising sounds based on structured descriptions The 

representations provide compression and other functionalities, such as scalability or 

playing back at different speeds The representation for synthesised sound can be 

formed by text or instrument descriptions and by coding parameters to provide effects 

such as reverberation and spadalizadon [30]

2 111 'Natural Sound

MPEG-4 standardises natural audio coding at bit-rates ranging from 2 kbit/s up to 64 

kbit/s The presence of the MPEG-2 AAC standard within the MPEG-4 tool set will 

provide for general compression of audio in the upper bit rate range In order to 

achieve the highest audio quality within the full range of bit-rates and at the same time 

provide the extra functionalities, three types of coder have been defined The lowest bit- 

rate range is covered by parametnc coding techniques Speech coding uses Code 

Excited Linear Predictive (CELP) For bit-rates starting below 16 kbit/s, time to 

frequency (T/F) coding techniques, namely the TwinVQ and AAC codecs, are applied 

This is illustrated in Figure 6
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Scalable Coder

Parametric coder

CELP coder

T/F coder

4 kHz 8 kHz TvDtcal Audio bandwidth 20 kHz
Figure 6 General block diagram o f MPEG-4 Audio

2 112 Synthesised Sound

Decoders are also available for generating sound based on structured inputs Text input 

is converted to speech in the Text-To-Speech (ITS) decoder, while more general 

sounds including music may be normatively synthesised Synthetic music may be 

delivered at extremely low bit-rates while still describing an exact sound signal

Text To Speech TTS allows a text or a text with prosodic parameters (pitch contour, 

phoneme duration, and so on) as its inputs to generate intelligible synthetic speech

Score Driven Synthesis The Structured Audio Decoder decodes input data and 

produces output sounds This decoding is dnven by a special synthesis language called 

SAOL (Structured Audio Orchestra Language) standardised as part o f MPEG-4

ISDN

64
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MPEG-4 does not standardise “a method” of synthesis, but rather a method of 

describing synthesis A more detailed description of the coding of audio objects can be 

found in [7]

2 11 3 Effects

As well as being used for defining instruments, the SAOL language is used to describe 

special processing effects for use in the MPEG-4 Systems Binary Format for Scene 

Description The Audio BIFS system processes decoded audio data to provide an 

output data stream that has been manipulated for special effects with timing accuracy 

consistent with the effect and the audio sampling rate

212 Coding of Visual Objects

Visual objects can be either of natural or of synthetic ongin 

2 12 1 Natural Textures, Images and Video

The tools for representing natural video in the MPEG-4 visual standard aim at 

providing standardised core technologies allowing efficient storage, transmission and 

manipulation of textures, images and video data for multimedia environments These 

tools will allow the decoding and representation of atomic units of image and video 

content, called “video objects” (VOs) An example of a VO could be a talking person 

(without background) which can then be composed with other AVOs to create a scene 

Conventional rectangular imagery is handled as a special case of such objects [24] [25]

In order to achieve this broad goal the MPEG-4 standard provides solutions in the 

form of tools and algonthms for

• efficient compression o f images and video

• efficient compression of textures for texture mapping on 2D and 3D meshes

• efficient compression of implicit 2D meshes
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• efficient compression of time-varying geometry streams that animate meshes

• efficient random access to all types of visual objects

• extended manipulation functionality for images and video sequences

• content-based coding of images and video

• content-based scalability of textures, images and video

• spatial, temporal and quality scalability

• error robustness and resilience in error prone environments

v

The visual part of the MPEG-4 standard will provide a toolbox containing tools and 

algorithms bringing solutions to the above mentioned functionalities and more

2 12 2 Synthetic Objects

Synthetic objects form a subset of the larger class of computer graphics, as an initial 

focus the following visual synthetic objects will be described [23] [27]

• Parametric descriptions of

• a synthetic description of human face and body

• animation streams of the face and body

• Static and Dynamic Mesh Coding with texture mapping

• Texture Coding for View Dependent applications
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212  2 1 facial animation

The shape, texture and expressions o f the face are generally controlled by the bitstream 

containing instances of Facial Definition Parameter (FDP) sets and/or Facial Animation 

Parameter (FAP) sets Initially the Face object contains a generic face with a neutral 

expression If FDPs are received, they are used to transform the generic face into a 

particular face determined by its shape and (optionally) texture Optionally, a complete 

face model can be downloaded via the FDP set as a scene graph for insertion in the face 

node The Face object can also receive local controls that can be used to modify the 

look or behaviour of the face locally by a program or by the user

2 12 2 2  body animation

The Body object is capable o f producing virtual body models and animations in the 

form of a set of 3D polygon meshes ready for rendering Two sets of parameters are 

defined for the body Body Definition Parameter (BDP) set, and Body Animation 

Parameter (BAP) set The BDP set defines the set of parameters to transform the 

default body to a customised body with its body surface, body dimensions, and 

(optionally) texture The Body Animation Parameters (BAPs) will produce body posture 

and animation on different body models No assumption is made and no limitation is 

imposed on the range o f motion of joints

2 12 2 3  2D animated meshes

A 2D mesh is a tessellation (or partition) of a 2D planar region into polygonal patches 

The vertices of the polygonal patches are referred to as the node points o f the mesh 

M PEG4 considers only triangular meshes where the patches are triangles Triangular 

meshes have long been used for efficient 3D object shape (geometry) modelling and 

rendering in computer graphics 2D-mesh modelling may be considered as projection of 

such 3D tnangular meshes onto the image plane An example of a 2D mesh is depicted 

m Figure 7
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Figure 7 2D mesh modelling of the "Akiyo" video object

The attractiveness o f 2D mesh modelling is that it is able to model the shape (polygonal 

approximation of the object contour) and motion of a VOP in a unified framework, 

which is also extensible to the 3D object modelling when data to construct such models 

is available In particular, the 2D-mesh representation of video objects enables the 

following functionalities

•  Video Object Manipulation

•  Video Object Compression

• Content-Based Video Indexing 

2 1 224  Generic 3D meshes

The MPEG-4 visual standard will support generic meshes to represent synthetic 3D 

objects The toolbox will provide algorithms for

• Efficient compression of generic meshes

• (Level O f Detail) scalability of 3D meshes

• Spatial scalability
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2 1 2 2 5  mew dependent scalability

The view-dependent scalability enables scalability of stream texture maps that are used 

in realistic virtual environments It consists in taking into account the viewing position 

in the 3D virtual world in order to transmit only the most visible information

2 123 Structure of the tools for representing Natural Video

The MPEG-4 image and video coding algonthms will give an efficient representation of 

visual objects of arbitrary shape, with the goal to support so-called content-based 

functionalities It will also support MPEG-1 and MPEG-2

A basic classification of the bit rates and functionalities currently provided by the 

MPEG-4 visual standard for natural images and video is depicted in Figure 8 below, 

with the attempt to cluster bit-rate levels versus sets of functionalities

functionalities

Figure 8 Classification of the MPEG-4 Image and Video Coding 
Algonthms and Tools

At the bottom end a ‘VLBV Core” (VLBV Very Low Bit-rate Video) provides 

algorithms and tools for applications operating at bit-rates typically between 5 64 

kbits/s The basic applications specific functionalities supported by the VLBV Core 

include
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• VLBV coding of conventional rectangular size image sequences with high coding 

efficiency and high error robustness/resilience, low latency and low complexity for 

real-time multimedia communications applications, and

• provisions for “random access” and “fast forward” and “fast reverse” operations for 

VLB multimedia database storage and access applications

The same basic functionalities outlined above are also supported at higher bit-rates

Content-based functionalities support the separate encoding and decoding of content This 

provides the most elementary mechanism for interactivity, flexible representation and 

manipulation w ith /of VO content of images or video in the compressed domain, 

without the need for further segmentation or transcoding at the receiver

2 12 4 Support for Conventional and Content-Based Functionalities

The MPEG-4 Video standard will support the decoding o f conventional rectangular 

images and video as well as the decoding of images and video of arbitrary shape As in 

Figure 9 below

MPEG-4 VLBV Core Coder

bitstream
(Similar to H 263/MPEG 1)

Generic MPEG-4 Coder

bitstream

Figure 9 VLBV Core and the Generic MPEG-4 Coder

The coding of conventional images and video is achieved similar to conventional 

MPEG-1 /2  coding and involves motion prediction/compensation followed by texture
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coding For the content-based functionalities, where the image sequence input may be 

o f arbitrary shape and location, this approach is extended by also coding shape and 

transparency information

2 12 5 Robustness in Error Prone Environments

MPEG-4 provides error robustness and resilience to allow accessing image or video 

information over a wide range of storage and transmission media In particular, due to 

the rapid growth of mobile communications, it is extremely important that access is 

available to audio and video information via wireless networks This implies a need for 

the useful operation of audio and video compression algonthms in error-prone 

environments at low bit-rates (1 e , less than 64 Kbps)

A more detailed description of the coding of visual objects can be found in [8]

2 13 Scene description

In addition to providing support for coding individual objects, MPEG-4 also provides 

facilities to compose a set o f such objects into a scene The necessary composition 

information forms the scene description, which is coded and transmitted together with 

theAVOs

In order to facilitate the development of authoring, manipulation, and interaction tools, 

scene descriptions are coded independendy from streams related to pnmitive AVOs 

Special care is devoted to the identification of the parameters belonging to the scene 

descnption This is done by differentiating parameters that are used to improve the 

coding efficiency of an object (e g , motion vectors in video coding algonthms), and the 

ones that are used as modifiers of an object (eg , the position of the object in the 

scene) Since MPEG-4 should allow the modification of this latter set o f parameters 

without having to decode the pnmitive AVOs themselves, these parameters are placed 

in the scene description and not in primitive AVOs
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The following list gives some examples of the information described in a scene 

description

How objects are grouped together An MPEG-4 scene follows a hierarchical 

structure, which can be represented as a directed acyclic graph Each node of the graph 

is an AVO, as illustrated in Figure 10 (note that this tree refers back to Figure 1) The 

tree structure is not necessarily static, node attributes (e g , positioning parameters) can 

be changed while nodes can be added, replaced, or removed

Figure 10 Logical structure of a scene

How objects are positioned in space and time In the MPEG-4 model, audio-visual 

objects have both a spatial and a temporal extent Each AVO has a local co-ordinate 

system A local co-ordinate system for an object is one m which the object has a fixed 

spatio-temporal location and scale The local co-ordinate system serves as a handle for 

manipulating the AVO in space and time AVOs are positioned in a scene by specifying 

a co-ordinate transformation from the object’s local co-ordinate system into a global co­

ordinate system defined by one or more parent scene description nodes in the tree



Attribute Value Selection Individual AVOs and scene descnption nodes expose a set 

of parameters to the composition layer through which part o f their behaviour can be 

controlled Examples include the pitch o f a sound, the colour for a synthetic object, 

activation or deactivation of enhancement information for scaleable coding, etc

Other transforms on AVOs The scene descnption structure and node semantics are 

heavily influenced by VRML, including its event model This provides MPEG-4 with a 

very nch set o f scene construction operators, including graphics pnmitives that can be 

used to construct sophisticated 2D and 3D scenes

2 14 User interaction

MPEG-4 allows for user interaction with the presented content This interaction can be 

separated into two major categones client-side interaction and server-side interaction 

Client-side interaction involves content manipulation, which is handled locally at the 

end-user’s terminal, and can take several forms In particular, the modification of an 

attnbute o f a scene descnption node, e g , changing the position of an object, making it 

visible or invisible, changing the font size of a synthetic text node, e tc , can be 

implemented by translating user events (e g , mouse clicks or keyboard commands) to 

scene description updates The MPEG-4 terminal can process the commands in exacdy 

the same way as if they onginated from the original content source As a result, this type 

of interaction does not require standardisation

Other forms of client-side interaction require support from the scene descnption 

syntax, and are specified by the standard The use of the VRML event structure 

provides a rich model on which content developers can create compelling interactive 

content

Server-side interaction involves content manipulation that occurs at the transmitting 

end, initiated by a user action This, o f course, requires that a back channel is available
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C h a p t e r

3 COMPOSITION & RENDERIN G OF BI & TRI DIMENSIONAL OBJECTS 

3 1 Introduction

An MPEG-4 scene contains coded objects of a 2 and 3 dimensional nature In addition 

to providing support for the coding o f the individual objects, the composition o f such 

objects into a scene has been considered This scene description information has been 

coded mdependendy from the coding of the objects in order to allow the modification 

of this former set o f parameters without having to decode the primitive AVOs 

themselves

This chapter introduces the fundamental principles of bi and tri dimensional graphic 

composition and rendering The chapter is designed to explain how geometrical 

transformations based on matrix mathematics can be used to simplify the composition 

of 2D and 3D scenes It is through these transformations that graphics applications can 

create 2D renditions of 3D objects The chapter also introduces and explains the notion 

o f an objects’ local co-ordinate system and how a global co-ordinate system, the scene, 

can be created by combining different objects co-ordinate systems together Finally 

viewing projections o f 2D and 3D objects are explained

3 2 Geometrical Transformations

3 2 1 2D Transformations

We can translate points in the (x,y) plane to new positions by adding translation amounts 

to the co-ordinates of the points For each point P(x,y) to be moved by d̂  units parallel 

to the x axis and by d̂  units parallel to the y axis to the new point P '^ y ') ,  we can write

x ' =  x +  dx, / =  y +  d } (31)
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If we define the column vectors

X x' dx
,P '= J  =

X

_y_ _y'_
(3 2)

then (3 1) can be expressed more concisely as

f =  p + r (3 3)

We could translate an object by applying Eq (3 1) to every point of the object Because 

each line m an object is made up o f  an infinite number o f points, however, this process 

would take an infinitely long time Fortunately, we can translate all the points on a line 

by translating only the line’s endpoints and by drawing a new line between the translated 

endpoints, this is also true of scaling and rotation

Points can be scaled by sx along the x axis and by sy along the y axis into new points by 

the multiplications

J t = S r  j c , y  = sy y (3 4)

In matrix form, this is

V

i

o
i

X

_ y _ i
o y_

or P = S  P (3 5)

where S is the matrix in Eq (3 5)

Points can be rotated through an angle 0 about the ongin A rotation is defined 

mathematically by

x'=  x  cos6 -  y  sin0, y ' - x  sin0 + ;y cos0 (3 6)
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In matrix form, we have

' x ' ~

y _

cos 6  - s in  6  

sin# cos#
or P ' = R  P (3 7)

where R is the rotation matrix in Eq (3 7) Both the scaling and rotation matrices work 

about the origin Positive angles are measured counterclockwise from x toward y For 

negative (clockwise) angles, the identities cos(-0) = cos0 and sin(-0) = -sin0 can be used 

to modify Eqs (3 6) and (3 7)

Figure 11 Derivation of the rotation equation

Equation (3 5) is easily derived from Figure 11, in which a rotation by 0 transforms 

P(x,y) into P,(x,,y') Because the rotation is about the origin, the distances from the 

origin to P and to Pf, labelled r in Figure 11, are equal By simple trigonometry, we find 

that

x - r  cos 0, y  = r sin <j) (3 8)

and

x ' = r  cos(0 + 0) = r  cos0 cosQ - r  sin0  sin0,

y ' = r  sin(0 + 0 ) ~ r  cos 0 sin d + r sin (j) cos 0
(3 9)
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Substituting Eq (3 8) into Eq (3 9) yields Eq(3 6)

3 2 2 Homogeneous co-ordinates and matrix representation of 2D transformations 

Unfortunately, translation is treated differendy (as an addition) from scaling and rotation 

(as multiplications) If  points are expressed in homogeneous co-ordinates, all three 

transformations can be treated as multiplications In homogeneous co-ordinates, we add 

a third co-ordinate to a point Instead of being represented by a pair of numbers (x,y), 

each point is represented by a triple (x,y,W) At the same time, we say that two sets o f 

homogeneous co-ordinates (x,y,W) and (x^y^W) represent the same point if and only if 

one is a multiple of the other Thus (2,3,6) and (4,6,12) are the same points represented 

by different co-ordinate triples That is, each point has many different homogeneous co­

ordinates representations Also, at least one of the homogeneous co-ordinates must be 

nonzero (0,0,0) is not allowed If the W co-ordinate is nonzero, we can divide through 

by it (x,y,W) represents the same point as (x/W, y/W ,l) When W is nonzero, we 

normally do this division, and the numbers x /W  and y/W  are called the Cartesian co­

ordinates of the homogeneous point The points with W = 0 are called the points at 

infinity

Triples of co-ordinates typically represent points in 3-space, but here we use them to 

represent points in 2-space The connection is this If  we take all the tnples representing 

the same point - that is, all triples o f the form (tx, ty, tW), with t ^  0 - we get a line m 3- 

space Thus, each homogeneous point represents a line in 3-space If  we homogenise the 

point (divide by W), we get a point of the form (x,y,l) Thus, the homogenised points 

form the plane defined by the equation W =1 in (x,y,W) -space

Because points are now three-element row vectors, transformation matrices, which 

multiply a point vector to produce another vector, must be 3 X 3 In the 3 X 3  matrix' 

form for homogeneous co-ordinates, the translation equations Eq (31) are

36



X i 0 dx
\

y - 0 1 <
i _ 0 0 1

(310)

The scaling equations Eq (3 4) are represented in matrix form as

x' 0  o ’ X
y =

ocrTO
y

_ i _ i

oo1
(311)

The rotation equations Eq (3 6) can be represented as

x' cos# -  sin0 0

y = sin 6 COS0 0 y (312)
i 0 0 1 l

3 2 3 Composition of 2D transformations

The basic purpose of composing transformations is to gain efficiency by applying a 

single composed transformation to a point, rather than applying a senes of 

transformations, one after the other

Consider the rotation of an object about some arbitrary point Pt Because we know how 

to rotate only about the origin, we convert our original problem into three separate 

problems Thus, to rotate about Pl5 we need a sequence of three fundamental 

transformations

• Translate such that is at the ongin

•  Rotate

• Translate such that the point at the ongin returns to Pj
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The first translation is by (-xl, -yl), whereas the later translation is by the inverse (xl, 

yl) The net transformation is

T(X],y i ) R(0) T( - xx - y , )  =

1 0  

0  1 

0  0

sin# cos 6 
0  0

" l 0
~ x \

1 0 1

0 0 1

cos# -  sin 6 JCj (1—cosfl) + y l sm 6 

sin# cos# ^ ,(1-0 0 8 0 )-^  sin0 
0  0  1

A similar approach would be used to scale an object about an arbitrary point PI First, 

translate such that PI goes to the ongin, then scale, then translate back to PI

(313)

T(X\>y\) S (sx>sy) T{ - xx - y x)

1 0  Xj

0  1 *

0  0  1

Sx 0 0

0 0

0 0 1

1 0  -  X j

0  1 

0  0  1

î, o j c . a - s j
0  i ,  y i O - s , )

0  0

(314)

3 2 4  The mndow-to-mewport transformation

Some graphics packages allow the programmer to specify output primitive co-ordinates 

in a floating-point world co-ordinate system, using whatever units are meaningful to the 

application program The term world is used because the application program is 

lepresenting a world that is being interactively created or displayed to the user

Given that output primitives are specified in world co-ordinates, the graphics 

subroutine package must be told how to map world co-ordinates onto screen co­

ordinates This is done by specifying a rectangular region in world co-ordinates, called 

the world co-ordinate window, and a corresponding rectangular region in screen co­

ordinates, called the menport, into which the world co-ordinate window is to be mapped
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The transformation that maps the window into the viewport is applied to all of the 

output primitives in world co-ordinates, thus mapping them into screen co-ordinates If  

the window and viewport do not have the same height-to-width ratio, a non-uniform 

scaling occurs If  the application program changes the window or viewport, then new 

output primitives drawn onto the screen will be affected by the change

Given a window and a viewport the transformation matrix that maps the window from 

world co-ordinates into the viewport m screen co-ordinates is as follows The window, 

specified by its lower-left and upper-right corners, is first translated to the ongin o f 

world co-ordinates Next, the size of the window is scaled to be equal to the size of the 

viewport Finally, a translation is used to position the viewport The overall matrix 

is

1  0  U m

0  1

0  0  1

X  —  v  
max mm

^ r r n x  ^ m i n  ^ m a x  ^ m i n

V ^m ax ^m m  3* max 3  ̂mm /
T { - Xm n ~ y mn)

^ m a x  ^ m i n

0 

0

0

v  —  vmax mm 

y  max y  mm

o

v  —  Vmax min

y max 3  ̂nun 

0

.x  “ ■■HSi . - “ ™

■ ^ m a x  ^ r r a n

1 0 ~Xmn
0 1 ~y nun

0 0 1

- y
v  —  vmax Kmm

+  Vmm y max 3  ̂mm

1
(315)

Multiplying P —M^v[x y 1]T gives the expected result

P = ( x - x mn)
u  —  umax mn

(y-ym) v"" Vmn+v-mn ■> r mn
y nux y mn

(316)
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3 2 5 Matrix representation of 3D transformations

Just as 2D transformations can be represented by 3 X 3 matrices using homogeneous 

co-ordinates, so 3D transformations can be represented by 4 X 4 matrices, providing we 

use homogeneous co-ordinate representations of points in 3-space as well Thus, instead 

of representing a point as (x,y,z), we represent it as (x,y,z,W), where two of these 

quadruples represent the same point if one is a nonzero multiple of the other, the 

quadruple (0,0,0,0) is not allowed As in 2D, a standard representation of a point 

(x,y,z,W) with W ^  0 is given by (x/W ,y/W ,z/W ,l) Transforming the point to this 

form is called homogenising Also, points whose W co-ordinate is zero are called points 

at infinity There is a geometrical interpretation as well Each point in 3-space is being 

represented by a line through the origin in 4-space, and the homogenised 

representations o f these points form a 3D subspace of 4-space which is defined by the 

single equation W — 1 The 3D co-ordinate system is right-handed hence positive 

rotations are such that, when looking from a positive axis toward the origin, a 90° 

counterclockwise rotation will transform one positive axis into the other

Translation in 3D is a simple extension from that in 2D

T ( d „ d „ d z) =

1 0 0 d x

0 1 0 *>
0 0 1

0 0 0 1

(317)

Scaling is similarly extended

S ( s x ^ y9sz ) =

0 0 0

0 0 0

0 0 0

0 0 0 1

(318)
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Rotations for z,x, and y axis's are respectively

R M

cos6 - s in 6 0 0

sin0 cosG 0 0

0  0  1 0

0 0 0 1

cos0 0 sin# 0

0 1 0  0
-s in fl 0 cos6 0

0 0 0 1

R M  =

1 0 0 0
0 COS0 -s in 0 0
0 sin 0 cos# 0
0 0 0 1

(319)

3 2 6 Transformations as a change in co-ordinate system

When we have multiple objects, each defined in its own local co-ordinate system, and 

we want to combine them so as to express these objects' co-ordinates in a single, global 

co-ordinate system it is useful to think of transformations as changes in co-ordinate 

systems

If  we define as the transformation that converts the representation of a point in 

co-ordinate system j into its representation in co-ordinate system l We define P® as the 

representation of a point in co-ordinate system l, P® as the representation of a point in 

co-ordinate system j, and P ^  as the representation of a point in co-ordinate system k, 

then,

P 0) = P ( j ) and pM  = M ^ k P a) (3 20)

Substituting,

= M  P (J) = M  P (k) = M lt_k P w  (3 21)

So
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M Jt_k

So we can think of each object as being defined in its own co-ordinate system and then 

being scaled, rotated, and translated by redefinition of its co-ordinates in the new world- 

co-ordinate system
*

3 3 Viewing in 3D

The 3D viewing process is inherently more complex than the 2D viewing process In 

2D, we simply specify a window on the 2D world and a viewport on the 2D view 

surface Conceptually, objects in the world are clipped against the window and are then 

transformed into the viewport for display The extra complexity o f 3D viewing is caused 

in part by the added dimension and in part by the fact that display devices are only 2D 

The solution to the mismatch between 3D objects and 2D displays is accomplished by 

introducing projectionsy which transform 3D objects onto a 2D projection plane

In 3D viewing, we specify a view volume in the world, a projection onto a projection 

plane, and a viewport on the view surface Conceptually, objects in the 3D world are 

clipped against the 3D view volume and are then projected The contents of the 

projection of the view volume onto the projection plane, called the window, are then 

transformed into the viewport for display Figure 12 shows this conceptual model of the 

3D viewing process

3D world- Clipped 2D device
co-ordinate world co- output co
primitives ordinates ordinates

Figure 12 Conceptual model of the 3D viewing 
process
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3 3 1 Projections

In general, projections transform points in a co-ordinate system of dimension n into 

points m a co-ordinate system of dimension less than n The projection of a 3D object is 

defined by straight projection rays emanating from a centre of projection̂  passing through 

each point o f the object, and intersecting a projection plane to form the projection Figure 

13 shows two different projections of the same line

Projectors

rojection
plane

Centre of 
projection

(a)

projection 
at infinity

(b)

Figure 13 (a) Line AB and its perspective projection A’B5 (b) 
Line AB and its parallel projection A ’B’ Projectors AA’ and BB’

are parallel

Projections can be divided into two basic classes perspective and parallel The 

distinction is in the relation of the centre of projection to the projection plane If  the 

distance from one to the other is finite, then the projection is perspective if the distance 

is infinite, the projection is parallel

When defining a perspective projection, we explicitly specify its centre of projection, for a 

parallel projection, we give its direction of projection The centre of projection, being a
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point, has homogenous co-ordinates of the form (x,y,z,l) Since the direction of 

projection is a vector (1 e , a difference between points), it can be computed by 

subtracting two points d = (x,y,z,l) - (x’,y’,z’,l) = (a,b,c,0) Thus, directions Midpoints at 

infinity correspond in a natural way A perspective projection whose centre is a point at 

infinity becomes a parallel projection

The visual effect o f a perspective projection is similar to that o f photographic systems 

and of the human visual system, and is known as perspective foreshortening The size of the 

perspective projection of an object varies inversely with the distance of that object from 

the centre o f projection Thus, although the perspective projection of objects tend to 

look realistic, it is not particularly useful for recording the exact shape and 

measurements of the objects, distances cannot be taken from the projection, angles are 

preserved only on those faces of the object parallel to the projection plane, and parallel 

lines do not in general project as parallel lines

The parallel projection is a less realistic view because perspective foreshortening is 

lacking, although there can be different constant foreshortening along each axis The 

projection can be used for exact measurements and parallel lines do remain parallel As 

with the perspective projection, angles are preserved only on faces of the object parallel 

to the projection plane

3 3 2 Perspective Projections

The perspective projections of any set o f parallel lines that are not paiallel to the 

projection plane converge to a vanishing point In 3D, the parallel lines meet only at 

infinity, so the vanishing point can be thought of as the projection of a point at infinity 

There is o f course an infinity of vanishing points, one for each of the infinity of 

directions in which a line can be oriented

If the set o f lines is parallel to one of the three pnncipal axes, the vanishing point is 

called an axis vanishing point There are at most three such points, corresponding to the

44



number of principal axes cut by the projection plane Perspective projections are 

categorised by their number of principal vanishing points and therefore by the number 

o f axes the projection plane cuts

3 3 3 Parallel Projections

Parallel projections are categorised into two types, depending on the relation between 

the direction of projection and the normal to the projection plane In orthographic parallel 

projections, these directions are the same, so the direction of projection is normal to the 

projection plane

Axonometnc orthographic projections use projection planes that are not normal to the 

principal axis and therefore show several faces of an object at once They differ from 

perspective projections in that the foreshortening is uniform rather than being related to 

the distance from the centre of projection Parallelism of lines is preserved but angles 

are not Oblique projections, the second class of parallel projections, differ from 

orthographic projections in that the projection-plane normal and the direction o f 

projection differ The projection plane is normal to a principal axis, so the projection of 

the face of the object parallel to this plane allows measurement of angles and distances 

Other faces of the object project also, allowing distances along pnncipal axes, but not 

angles, to be measured

3 3 4 Specifying an arbitrary 3D view

3D viewing involve not just a projection but also a view volume against which the 3D 

world is clipped The projection and view volume together provide all the information 

needed to clip and project into 2D space Then, the 2D transformation into physical 

device co-ordinates is straightforward The projection plane or view plane is defined by a 

point on the plane called the mew reference point (VRP) and a normal to the plane called 

the mew-plane normal (VPN)
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Given the view plane, a window on the view plane is needed The window's role is 

similar to that of a 2D window its contents are mapped into the viewport, and any part 

of the 2D world that projects onto the view plane outside of the window is not 

displayed

v

VUP 

n

Figure 14 The view plane is defined by VPN and VRP, the v axis is defined 
by the projection of VUP along VPN onto the view plane The u axis forms 

the right-handed viewing reference-co-ordinate system with VPN and v

To define a window on the view plane, we need some means of specifying minimum 

and maximum window co-ordinates along two orthogonal axes These axes are part of 

the 3D viewing-reference co-ordinate (VRC) system The origin o f the VRC system is the 

VRP One axis of the VRC is VPN, this axis is called the n axis A second axis of the 

VRC is found from the mew up vector (VUP), which determines the ^-axis direction on the 

view plane The v-axis is defined such that the projection of VUP parallel to VPN onto 

the view plane is coincident with the v axis The u-axis direction is defined such that u, 

v, and n form a right-handed co-ordinate system, as in Figure 14 The VRP and the two 

direction vectors VPN and VUP are specified in the nght-handed world-co-ordinate 

system
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View 
plane

(Umin, Vmin)

Figure 15 The view reference-co-ordinate system (VRC) is a right- 
handed system made up of the u, v, and n axes The n axis is always 

the VPN CW is the centre o f the window

With the VRC system defined, the window's minimum and maximum u and v values 

can be defined as in Figure 15 The centre of projection and direction of projection 

(DOP) are defined by a projection reference point (PRP) plus an indicator of the projection 

type If  the projection type is perspective, then PRP is the centre of projection If the 

projection type is parallel, then the D O P is from the PRP to CW The CW is in general 

not the VRP, which need not even be within the window bounds

The PRP is specified in the VRC system, not in the world-co-ordinate system, thus, the 

position o f the PRP relative to the VRP does not change as VUP or VRP are moved 

The advantage of this is that the programmer can specify the direction of projection 

required and then change VPN and VUP (hence changing VRC), without having to 

recalculate the PRP needed to maintain the desired projection On the other hand, 

moving the PRP about to get different views of an object may be more difficult

The view volume bounds that portion of the world that is to be clipped out and 

projected onto the view plane For a perspective projection, the view volume is the 

semi-mfinite pyramid with apex at the PRP and edges passing through the corners of 

the window
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Figure 16 shows a perspective-projection view volume Positions behind the centre of 

projection are not included in the view volume and thus are not projected For parallel 

projections, the view volume is an infinite parallelepiped with sides parallel to the 

direction of projection, which is the direction from the PRP to the centre of the 

window

View 
plane

n

Centre of projection (PRP)

Figure 16 The semi-infinite pyramid view volume for perspective 
projection CW is the centre of the window

In order to limit the number of output pnmitives projected onto the view plane we 

need the view volume to be finite This is done with a front clipping plane and back 

clipping plane which are parallel to the view plane, their normal is the VPN The planes 

are specified by the signed quantities front distance (F) and back distance (B) relative to 

the view reference point and along the VPN, with positive distances in the direction of 

the VPN For the view volume to be positive, the front distance must be algerbraically 

greater than the back distance Dynamic modification of either the front or rear 

distances can give the viewer a good sense of the spatial relationships between different 

parts of the object as these appear and disappear from view
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View plane
Back Clipping plane

Front clipping 
plane

VPN

F B

Figure 17 Truncated view volume
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C h a p t e r

4 EVOLUTION OF TH E SCENE DESCRIPTION IN MPEG-4 

4 1 Introduction

MPEG-4 addresses the coding of objects of various types N ot only traditional video 

and audio frames, but also natural video and audio objects as well as textures, text, 2- 

and 3-dimensional graphic primitives, and synthetic music and sound effects To 

reconstruct a multimedia scene at the terminal, it is hence no longer sufficient to encode 

the raw audio-visual data and transmit it, as MPEG-2 does, in order to convey a video 

and a synchronised audio channel In MPEG-4, all objects are multiplexed together at 

the encoder and transported to the terminal Once de-multiplexed, these objects are 

composed at the terminal to construct and present to the end user a meaningful 

multimedia scene The placement of these elementary AVOs in space and time is 

described in what is called the Scene Description layer The action of putting these 

objects together in the same representation space is called the Composition of AVOs 

While the action of transforming these AVOs from a common representation space to 

a specific rendering device (speakers and a viewing window for instance) is called 

Rendering

The independent coding of different objects may achieve a higher compression rate, but 

also bnngs the ability to manipulate content at the terminal The behaviours of objects 

and their response to user inputs can thus also be represented in the Scene Description 

layer, allowing richer multimedia content to be delivered as an MPEG-4 stream This 

chapter is a detailed analysis o f how scene description languages function and how the 

functionality of the MPEG-4 scene description language has been developed since its 

conception
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4 2 Scene Description

In addition to providing support for coding individual objects, MPEG-4 also provides 

facilities to compose a set of such objects into a scene The scene description 

information is composed of the composition details o f the vanous AVOs in the scene 

Scene descriptions are coded independendy from streams related to pnmidve AVOs 

Special care is devoted to the identification of the parameters belonging to the scene 

description This is done by differentiating parameters that are used to improve the 

coding efficiency of an object (eg motion vectors in video coding algorithm), from 

those used as modifiers of an object’s characteristics within the scene (e g position o f 

the object in the global scene) In keeping with MPEG-4’s objective to allow the 

modification of this latter set o f parameters without having to decode the primitive 

AVOs themselves, these parameters form part o f the scene descnption and are not part 

of the primitive AVOs The idea was to standardise a syntax that descnbes the spatio- 

temporal relationships of Scene Objects

4 3 Initial 2D Scene Description

Initially two ways were identified to descnbe the composition for 2D scenes The first, 

fixed scene descnption was mainly aimed at descnbing the composition parameters for 

the 2D video objects described in the initial venfication model (VM) There was no 

notion of a hierarchical scene structure The AVOs were video object planes (VOPs) 

which were positioned with respect to the 2D frame in which they are composited The 

second case dealt with more complex 2D scene structures The two proposals are now 

described

4 3 1 2D Fixed Scene Descnption

At any given time, a scene is composed of a collection of objects By default, the 

objects are displayed as specified in the object stream (video object stream for instance) 

Additional warping transforms can be applied, by sending motion parameters in a 

composition stream These parameters are omestamped to indicate at what time the
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decoded object should be transformed and presented, they are also related to an object 

by the video object id According to the timestamp, objects are requested in order to be 

transformed according to the motion parameters sent in the composition stream

4 3 2 2D Flexible Scene Description
\

In this implementation the 2D scene structure was transmitted as a program Each 

AVO is sent as a class The methods of the class formed the scene descnption

In order for Fixed and Flexible scene descriptions to be implemented the notion of 

composition flexibility was developed

4 4 Composition Flexibility

In its previous standards, M PEG defined rigid a pnon known templates for transmitted 

information What composition flexibility was defined to do was create a representation 

of these templates that could be transmitted to configure the receiving system MPEG-4 

initially defined two types of profiles for receiver programmability the fixed profiles and 

the flexible profiles

4 4  1 Fixed Profiles

In the fixed profiles, programmability is achieved through the use o f switches or 

selectors in the binary stream The switches or selectors are n-ary elements that select 

which of n pre-defined templates will be used for the incoming information This 

allows, for example, the choice of a pre-defined standardised configuration This kind of 

programmability has the nice feature of being simple, practical and bit efficient which is 

a major requirement of prospective users of the MPEG-4 standard

4 4 2 Flexible Profiles

MPEG-4 defined enhanced profiles on receiver programmability, the flexible profiles 

These profiles allow the communication of information templates To represent these
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templates, a possibility is to rely on classes (in the object-oriented sense of the word) or 

to send scripts to reconfigure the application

The flexible profiles require

• a definition of a set o f standardised APIs (Application Program Interfaces),

• a definition of a standardised format to download templates If  this format is 

executable, it has to be processor independent,

• a standardised protocol for downloading and installing templates m the above format 

in the flexible terminal

CONTROL

D ow nstream

I I I I

] [
Upstieam

DATA 

Downstream

Upstream

i ¡ = ]  c O

Figure 18 Flexible Configuration

Í Configuration and
templates reguest )
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Dita Component 
(User Interaction.

User interaction

Jk

J
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The communication of AVOs within the context of flexible profiles is as follows 

Before the AVOs are transmitted, the sender and receiver exchange configuration 

information The sender determines which algorithms, tools, and other objects are 

needed by the receiver to process the AVOs The definitions of missing audio-visual 

information are downloaded to the receiver, where they supplement or override existing 

definitions, whether installed or pre-defined

As the receiver runs, new templates may be needed In such a case, the receiver can 

request the download of specific additional information templates The additional 

templates may be downloaded in parallel with the transmitted data The above aspects 

are illustrated m  Figure 18

4 5 Scene Descnption of the initial MPEG-4 Verification Model

The MPEG-4 Venfication Model was designed as a testbed for emerging ideas during 

the evolution and development of the MPEG-4 standard It is seen as an 

implementation o f the standard The idea being that several different implementations 

of functionalities can exist but they must comply with the standard, which is set about 

in the verification model [28]

During the development of the initial venfication model one of the major concerns was 

how we could implement the different levels o f composition flexibility What was 

íequired was not only a standardised format to download templates but also a 

standardised protocol for downloading and installing the templates If  this format was 

to be executable it had to be processor independent This seemed a huge task, but at the 

time we started to develop our venfication model a new programming language called 

JAVA from Sun Microsystems had just been launched which seemed to overcome the 

above problems

4 51  The J A V A  Development Environment 

In [9] Sun describes JAVA as follows
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JAVA A simple, object oriented, distributed, interpreted, robust, secure, architecture 

neutral, portable, high-performance, multithreaded, and dynamic language

What made JAVA interesting as a possible development environment for the 

verification model was the fact that it is distributed, interpreted, robust, secure, 

architecture neutral, portable, and dynamic

4 5 1 1  Distributed

JAVA has an extensive library of routines for coping easily with T C P/IP  protocols like 

HTTP and FTP This makes creating network connections much easier than in C or 

C++ JAVA applications can open and access objects across the net via URLs with the 

same ease that programmers are used to when accessing a local file system

4 5 12 Interpreted

The JAVA compiler generates byte-codes, rather than native machine code JAVA 

bytecodes provide an architecture neutral object file format, the code is designed to 

transport programs efficiently to multiple platforms

4 5 13 Robust

JAVA is intended for developing software that must be robust, highly reliable, and 

secure, in a variety of ways There's strong emphasis on early checking for possible 

problems, as well as later dynamic (run-time) checking, to eliminate error-prone 

situations

4 5 14 Architecture Neutral

The JAVA compiler doesn't generate "machine code" in the sense of native hardware 

instructions—rather, it generates bytecodes a high-level, machine-independent code for 

a hypothetical machine that is implemented by the JAVA interpreter and run-time 

system, the JAVA virtual machine Which means that if the JAVA run-time system is 

made available on a given hardware and software platform, an application written in
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JAVA can then execute on that platform without the need to perform any special 

porting work for that application

4 5 15  Secure

The JAVA language compiler and run-time system implement several layers of defence 

against potentially incorrect code The environment starts with the assumption that 

nothing is to be trusted, and proceeds accordingly

• Memory layout is deferred to run time, and will potentially differ depending on the 

characteristics of the hardware and software platforms on which the JAVA system 

executes

• Complied code references memory via symbolic "handles" that are resolved to real 

memory addresses at run time by the JAVA interpreter, hence programmers can't 

forge pointers to memory

• Very late binding of structures to memory means that programmers can’t infer the 

physical memory layout of a class by looking at its declaration

• The JAVA run-time system doesn't trust the incoming code, but subjects it to 

bytecode verification The bytecode verifier traverses the bytecodes, constructs the 

type state information, and verifies the types of the parameters to all the bytecode 

instructions

4 5 1 6  Portable

JAVA defines a standard behaviour that will apply to the data types across all platforms 

and specifies the sizes of all its primitive data types and the behaviour of arithmetic on 

them
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4 5 1 7  Dynamic

The JAVA language's portable and interpreted nature produces a highly dynamic and 

dynamically-extensible system The JAVA language was designed to adapt to evolving 

environments Classes are linked in as required and can be downloaded from across 

networks Incoming code is verified before being passed to the interpreter for 

execution

So our approach was to use JAVA to define templates for both the fixed and flexible 

profiles These templates are designed to be audio visual objects, which form the tree 

structure of the scene Since JAVA allows us to create classes, which can be run on any 

JAVA Virtual Machine, 1 e are processor independent, and can be easily downloaded 

across a number of network protocols, it was decided that the initial verification model 

would be developed using JAVA JAVA classes would be used to create the various 

MPEG-4 templates

4 6 Development of the MPEG-4 Class Library

Initially what was required was to identify the templates, l e classes, which were going 

to be needed to implement an MPEG-4 compositor within the verification model The 

following section is a description of the various JAVA classes that were implemented

4 61  Class Library

This section defines the set o f classes called the MPEG-4 Standard Class Library The 

Standard Class Library is the minimal set o f classes that an MPEG-4 terminal must 

implement in order to support every MPEG-4 applicanon that uses flexibility 

(Individual profiles may require implementation of only a subset of the Standard Class 

Library) Each class in the Standard Class Library corresponds to an MPEG-4 tool or 

algorithm, and has a specified interface through which commands and data are passed 

These interfaces collectively constitute an application program interface (API) for
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MPEG-4 The MPEG-4 Standard Class Library is defined in terms of this API, along 

with a description of the intended relationships between the MPEG-4 tools, algorithms, 

downloaded AVOs, and execution environment

The classes in the Standard Class Library naturally fall into categories according to layers 

in the MPEG-4 decoder architecture We are only concerned about the scene 

description and composition layers These are made up of the AVObject layer, the 

Composition layer, and the Presentation layer

4 6 2  AVObject Layer Classes

• AVObject

AVObject is a base class that inherits from the M PEG40b]ect class, the parent MPEG- 

4 class, and from which all audio and visual objects derive

• VideoObject (extends AVObject)

VideoObject is an AVO that uses one of the standard video decoding process objects 

to decode its input elementary stream A header in the elementary stream specifies 

which of the decoding process objects to use 1 e MPEG-4, MPEG-2, H263 etc

• Image (extends VideoObject)

An Image is a primitive AVO that represents a rectangular array of pixels In general, 

the image may have multiple colour components, multiple fields (eg , for interlaced 

displays), and multiple channels (eg , for stereo displays) The colour components, if 

any, may lie in various colour spaces, and may be subsampled with respect to each 

other Colour components that are not specified in the Image default to values in the 

current Properties sheet, Composition Layer class, in the Compositor when the Image 

is rendered
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• Compositor

A compositor is a tightly coupled video and audio compositor A compositor contains 

references to the following objects

• an output video frame,

•  an output audio frame,

• a viewpoint,

• a transform stack for co-ordinate transformations,

• a properties stack for object rendering properties,

• an input elementary stream,

• an output elementary stream

• an environment containing a list of (attribute, value) pairs for use in the passing of 

generic messages between AVOs

The primary functions of a compositor are methods for rendenng AVOs onto the 

current video and audio frames, using the current properties (as needed), the current 

transform, and the viewpoint Stream references exist in order to assist compound 

AVOs in passing sub-streams to sub-objects

•  Transform

4 6 3 Composition Layer Classes
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A Transform object is, semantically, a 5x5 homogeneous co-ordinate transformation 

matrix T

a b c 0 d

e f  g 0 h

i j  k 0 I

0 0 0 m n

0 0 0 0 1

It is used for performing geometrical transformations on AVOs

• Properties

A Properties sheet is primarily a list o f the current default properties for any primitive 

AVOs that are rendered If  a primitive AVO, when rendered through a compositor, 

does not specify a needed property, then that property will be taken from the current 

Properties sheet in the compositor

• Viewpoint

A Viewpoint is an object in a local co-ordinate system that can be rendered like any 

AVO, at a given location, orientation, and scale within a scene Rendering a viewpoint 

causes its scene-to-local co-ordinate transformation to be stored in the Compositor’s 

viewpoint object, for use in subsequent rendering

4 6 4 'Presentation Layer Classes

• Presenter

A presenter is the subsystem responsible for displaying the scene reconstructed by the 

Compositor It is also the subsystem responsible for handling events generated by the 

user interacting with the presentation
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4 7 Implementation of an initial MPEG-4 compliant viewer

When we started to build the MPEG-4 compliant viewer we did so in order to validate 

and test the standardised set of APIs and classes What we built was a JAVA based 

viewer, a primer on the viewer can be found in [10] This involved developing a viewer 

package Each package is a group of classes, which have some common functionality 

We developed an MPEG-4 package, which contained all the standardised classes, and a 

viewer package, which was not part of the MPEG standard but was developed as a 

verification model for the standard It consisted of the following classes

Viewer Simply wraps an interface around an Executive
/

Executive The Executive presents the frames to the user, and also periodically funnels 

user feedback to the Scene object

Presenter Subsystem responsible for presentation of video and audio frames to the 

user and for the collection of user input events

4 7 1  MoMuSys Viewer

The MoMuSys viewer was an MPEG-4 viewer that was developed under the auspices 

of the European ACTS Projects The following is a description of how the viewer 

functioned The Viewer class is the first instantiated class This class instantiates all the 

other needed objects for the interface of the application, and MPEG-4 audio-visual 

objects

4 7 11 Viewer

Viewer owns a Compositor, an Executive, a Presenter object, and the "main" AVO 

which is the top AVO of the scene All these objects are gathered in one class to be 

accessible everywhere in the viewer
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4 7 1 2  Presenter

The display and event handling of the scenes takes place in an X I1 window as the 

viewer was developed on an SGI machine using the X I1 windowing system The 

Presenter class is the link between the JAVA part of the viewer and native code for the 

X I1 window To handle an event, the Presenter passes an event object to the native 

code Events that occur in the X I1 window are converted and copied into the 

MPEG4Event object

4 7 1 3  Executive

The Executive object is a thread It can be seen as the operating system of the display 

o f a scene Its run method is an infinite loop and performs the following steps

• Initialisation of the inputstream and outputstream of the compositor, and

instantiation of the top AVO scene (the "main" AVO of the viewer)

• Beginning of the following infinite loop

• Clear the compositor's frame

• Rendering of the top AVO of the scene During this phase, all the objects o f the 

scenes are mapped onto the compositor's frame, according to the transformation 

matrix This frame is then ready to be displayed in the X I1 window

• Display of the frame of the compositor in the X I1 window During this phase, 

the X I1 window is refreshed with the new image of the scene It is a kind of 

double buffenng At the same time, the Presenter looks at the X I1 event stack 

and takes the oldest event according to the predefined X I1 event mask This 

event is converted and copied into the MPEG4Event object

• Handling of the Presenter's MPEG4Event object by the scene, by calling the 

handle method of the top AVO of the scene
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4 7 2  How the MoMuSys Viewerfunctions?

4 7 2 1 Overview of how the M PEGA Viewer displays audio-visual coded information 

The decoder receives a class definition for a main AVO, which is inherited from the 

MPEG-4 package class AVObject This class is instantiated as the root o f the 

hierarchical scene graph and its render method is called once for each audio-visual 

frame that the decoder wishes to present The root render method invokes othei 

methods and other objects, for example

• calls to render methods of related AVObjects,

• calls to methods of decoding process objects to recover image and audio objects 

from encoded data streams,

• calls to parsing or entropy decoding methods to extract syntactic decoded data 

streams from elementary streams,

•  calls to demultiplexing methods to extract elementary data streams from logical input 

channels
/

4 7 2 2 What a Compositor does and how it is instantiated?

The Compositor class composes, renders, and blends audio-visual objects onto output 

audio and video frames The compositor maintains one audio frame, a finite sequence 

of audio samples, or one video frame, a rectangular array of pixels, for each output 

channel Audio-visual effects are produced frame by frame The compositor controls 

the spatio-temporal mapping of the scene, the default audio-visual rendering properties, 

the projection and clipping planes, the acoustic sink points, the input data stream, the 

output data stream, and the passing of data between audio-visual objects
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4 7 2  3 How AVObjects are rendered?

The difficult work done by a Compositor is rendering audio-visual objects The 

purpose of an audio-visual object's render method is to render the object onto the 

specified compositor The compositor doesn't know intnnsically how to render 

encoder-defined audio-visual objects, but the objects know how to render themselves 

So when the render method of the compositor is called upon it calls the object's render 

method, with itself as the argument

4 72  4 How events are handled by AVObjects?

The handle method of an audio-visual object is designed to deal with synchronously 

generated script, or asynchronously generated user input In an encoder-defined audio­

visual object the body of the routine consists of a script that describes step by step how 

to handle events, which at the very least examines the event structure and passes the 

events to the objects sub-objects

4 7 2 5  How decoding of AVObjects works?

ProcessObjects are the decoding tools used by AVObjects to decode themselves In 

addition to the render and handle methods of AVObjects many may have a decode 

method The decode method of an AVObject decodes the attributes of the object 

itself It builds and instantiates from a coded representation all the attributes of the 

AVObject

4 72  6 Presenting the AVObject

The presenter class is the subsystem responsible for presentation of video and audio 

frames to the user, and for the collection of user input events
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4 8 Expanding the MPEG-4 Class Library to handle YOPs

4 8 1 1SOP Definition

As defined in [11] Video Objects (VOs) correspond to entities in the bitstream that the 

user can access and manipulate (cut, paste ) Instances of Video Object in given time 

are called Video Object Planes (VOPs) A VOP can be a semantic object in the scene it 

is made of Y, U, V components plus shape information The encoder sends together 

with the VOP, composition information (using the composition layer syntax) to indicate 

where and when each VOP is to be displayed At the decoder side the user may be 

allowed to change the composition of the scene displayed by interacting with the 

composition information

4 8 2 Creating a VOP Class

What was required was to create a class or template, which could be used to read in 

luminance and chorminance (YUV) VOPs and display them in the verification model

The VOP sequence was to be based on a QCIF sequence of frames In the QCIF file 

format each frame is 176 * 144 pixels, width * height The sequence was sampled at 

25Hz Each frame is made up of YUV values stored in the 4 2 2 format This implies 

that 4 bytes of luminance, Y, and 2 bytes each of chrominance, UV, go to make up each 

pixel displayed Each VOP frame is stored as a chain o f Y, U, V data without gaps The 

frame is stored from the 1st line, 1st pixel, from left to right, top to bottom, down to the 

last line, last pixel Associated with each YUV frame is an alpha plane This is a binary 

mask representing the shape of an object within the frame A value of 0 is used to 

indicate a pixel outside of the object and the value 255 is used to indicate a pixel inside 

the object The mask is used to composite the YUV pixel values of the object, while 

those pixels outside the object are not composited

So what was required for each frame was read in the YUV sequence and then decide 

using the alpha plane what the dimensions of the image to be displayed were A cut 

down version of the VM was developed as a test bed It consisted of a JAVA
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compositor, which was a scaled down version of the official M PEG one An interface

to read in both the YUV and segmentation mask files was developed The development

process was to create an extension of the MPEG-4 Image class to composite the YUV

VOP In order to composite the VOP conversion from YUV to an RGB format was
<

necessary

The process now involved reading in a YUV frame, mask out the unnecessary pixels 

and convert to RGB The first two stages were straight forward and a mathematical 

formula for conversion from YUV to RGB was easily developed When tested this 

conversion functioned correctly, however under time critical conditions 1 e running the 

sequence at 25Hz the process proved to be too slow The reason for this centred 

around a combination of the JAVA bytecode, this machine independent code must go 

through the process of conversion to machine code in order to run, and the JAVA 

pointer system, pointer manipulation in JAVA is very restrictive in order to ensure 

network security

The JAVA language provides for this restnctive nature by supplying both just-in-time 

compilers and native methods Native methods allow JAVA to call methods in other 

languages This allowed the implementation of a C++ DLL, which had a quicker 

implementation of the conversion In order to speed up the process even further the 

conversion process was enveloped into an independent thread running as a unique 

process

4 8 3 Integration of VOP class in MPEG-4 Verification Model

A YUV implementation of the MPEG4 Image class was developed This contained an 

implementation of a bounding box on the segmented image The bounding box 

information was used to allow user interaction Based on mouse clicks and returned 

pixel values in relation to bounding box values it was established whether a VOP had 

been selected If  so the user was allowed to change the composition of the scene by 

transforming the VOP to the position of the mouse release
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4 9 2D & 3D Scene Description and Composition in the Verification Model

At this stage in MPEG-4’s evolution it was clear from other MPEG-4 groups that both 

2D & 3D composition would be required in an MPEG-4 terminal There was, at this 

point in the development, no specification proposed for a complete 3D scene 

descnption, and the abilities o f JAVA to provide a complete overall 2D scene 

description were being questioned

There were two proposals for a 2D and 3D solution for scene descnption

• Use a fixed composition This means transmitting composition parameters with a 

fixed syntax These parameters include positioning, reference to the object, time 

stamp, and order of composition

The first scenario is already specified in [12] AVOs are decoded as specified in the 

object stream, for example the video object stream Sending parameters in the 

composition stream specifies the scene description information However, this implies a 

lot of restrictions The scene graph is flat, there is no way to describe complex 

trajectones without transmitting the positions at each frame, and there are no 

dependencies between objects This kind of composition is suited for broadcast 

applications with a low level of interactivity

A better approach would be to have a hierarchical type scene structure The reason for 

the hierarchical scene structure is to efficientiy allow property nodes to affect geometry 

nodes that are after them in the graph So the scene graph minimises the storage 

lequirements by having nodes share these state variables and as the application renders 

the scene it sets the current state and then draws all affected geometry This gives scene 

graph creators the ability to create very efficient scenes by organising similar geometry 

nodes in the graph to minimise state changes If  there is no hierarchical structure then
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all the information must be encapsulated within the node in order for it to be rendered 

properly, this would be rather inefficient

• Use a scene described with JAVA classes, as was currentiy done in the VM

The second scenario, the ‘flexible’ scene description based on JAVA classes, has been 

described in previous sections, a full descnpdon is available in [12] However there are 

also some limitations because of the structure of the scene graph that is hard coded in 

the AVOs, it is impossible to have this scene graph evolving in time It is also 

impossible for two AVOs to communicate and exchange information

4 10 Limitations imposed by the initial verification model

As described in the previous section the initial software implementation of the Systems 

VM [12], developed co-operatively by several institutions active m MPEG-4, was based 

on a mixed approach using JAVA code for the high level part o f the system (user 

interface, allocation of the components of the system, management of thread(s) 

associated to the application) and using C code for the low level and computation 

intensive parts of the system, namely the elementary decoders for video, composition of 

elementary video objects through geometric transformations and alpha blending, and 

presentation on the machine specific windowing system

However after a couple of months of development several issues arose about the 

development environment

• the effectiveness of the threads scheduling provided by the JAVA platform for an 

application where real-time performance of audio/video decoders is critical,

• the coherency o f the overall architecture to accommodate the fixed (parametric) and 

the flexible (bytecode description) of the Scene Graph,
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• the efficiency of the implementation, related to the speed of the JAVA code 

execution, and the communication between the JAVA code and the C code

The real problem was that 'JAVA', itself, was made up of several different components

• a programming language JAVA as a language is a “simplified” version of C++, with 

most of the features of the Object Oriented Paradigm, but with some restrictions to 

avoid typical sources of trouble within C++ programming

• a bytecode, l e an intermediate version of the code, produced by a compiler and used 

by an interpreter to run the application (the pro of this approach is platform 

independence, the con is lower efficiency than native executable code for a specific 

machine)

• a run-time system, l e a porting on a specific architecture (hardware plus operating 

system) of the execution environment

The programming language forces the use of strict programming rules The net result 

of the compiled code being less efficient than compiled C++ code, since some of the 

features provided by C++ for hand-made code optimisation (eg playing with pointer 

arithmetic) are forbidden by the JAVA compilers The trade-off here is less efficiency 

for more reliability

Bytecode (or intermediate object code) provides a level o f abstraction from the specific 

native executable code of a machine Introducing this level o f abstraction results m 

lower performance in executing an application (even when the intermediate code is re­

compiled to native code, e g  by means of a Just-In-Time (JIT) compiler translating to 

native code just before execution) Better performance can always be achieved mixing 

JAVA code and C code Using JIT compilers still preserves code portability (no need to 

change any part o f the source code), while mixing C code requires some extra work
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when porting to different platforms The trade-off is less efficiency for more 

portability

The run-time system provides the environment required to run a JAVA application on a 

specific hardware/OS platform This environment requires not only an interpreter for 

the bytecode but it must also support the Standard Class Library of the JAVA platform 

The standard library provides an abstraction for many OS services support for 

multithreading (a platform independent implementation o f Threads, Monitors, 

Scheduler), support for automatic garbage collection, support for a platform 

independent windowing system, for a platform independent networking system (TCP 

and UDP) Most of these abstractions simply imply a trade-off of lower performance 

for higher portability (seamless execution of the same application on different 

platforms) But the standardised support for multithreading and garbage collection 

cause significant troubles to developers working on applications that require 

deterministic control on execution of the individual threads, especially when meeting 

processing dead-lines is essential The main reason for this is that even for a single 

threaded application, the run-time system is running its own “system threads” (eg a 

thread for garbage collection, a thread for updating the screen ) on which the 

application developer has no control

More details on the problems to be solved to use the JAVA platform for real-time 

applications can be found at [13] So it was decided that while JAVA was a promising 

development environment, it was still a very immature one Development of the 

MPEG-4 verification model split into two parts, one continuing along the flexible scene 

description path using JAVA and another which focused on the fixed scene description 

and which will be described in the following sections

4 11 VRML and Scene Description in the Verification Model

The Virtual Reality Modelling Language (VRML) allows the descnption of 2D & 3D 

objects and to combine them into scenes and worlds, a detailed description can be
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found in [14] It’s a modelling language, which means it is used to describe 2D & 3D 

scenes It’s more complex than HTML, but less complex than a programming language

The scope of the standard incorporates the following

• a mechanism for storing and transporting two-dimensional and three-dimensional 

data

• elements for representing two-dimensional and three-dimensional primitive 

information

• elements for defining charactenstics of such primitives

• elements for viewing and modelling two-dimensional and three-dimensional 

information

• a container mechanism for incorporating data from other metafile formats

• mechanisms for defining new elements which extend the capabilities of the metafile 

to support additional types and forms of information

VRML gives a hierarchical description of a 3D scene as a tree o f “nodes” Nodes can 

represent geometrical objects, light or sound sources, objects appearance properties and 

so on Moreover VRML allows the programmer to put code in a scene description and 

to extend the standard set of nodes by means of the “PROTO” nodes

4 12 Analysis of an MPEG-4 & VRML Combined Browser

It was decided to develop an application that could test the validity o f an MPEG-4 

browser, which would use VRML as a scene description language The following 

sections develop the proposals of [15] and [16] on how 2D and 3D scenes could be 

described and composited within MPEG-4
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4 121 Proposed Architecture

The approach to integrating 3D and 2D rendered scenes was to develop an MPEG-4 

Browser based on existing VRML browsers Figure 19 shows the proposed system

Demultiplexer

Figure 19 Proposed 3D Architecture

The VRML 2 0 support can be provided using a VRML Browser API, that is the API 

on which the browser code is built (Open Inventor, Cosmo3D, ) This was deemed 

necessary for speedy development These APIs offer a very flexible environment for 

interactive 3D graphics New MPEG-4 nodes can be added and the browser designed 

with timing and synchronisation mechanisms at the core of it
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An MPEG-4 Extension Interface was to be specified to allow the AVOs from the 

existing 2D VM to be supported

4 12 2 Scene Composition with 2D and 3D Objects

Figure 20 shows a typical scene composition The MPEG-4 browser is displaying a 2D 

VOP on a 3D Billboard node, taken directly from VRML The latter is partially hidden 

by a 3D sphere and is hiding some o f a 3D cone As one moves through the scene 

going towards the VOP we pass by the sphere and the whole VOP will appear and as 

we continue on we will walk through the VOP to see the whole cone If  we change our 

viewpoint we can use the Billboard node to define what exacdy shall happen If we want 

we can ensure the view is consistent for all viewpoints or let the VOP be warped by our 

position It is up to us to define the behaviour

Figure 20 2D & 3D Composited Scene

An MPEG-4 Browser which combines the cornerstones of M PEG (decoding, 

synchronisation, demultiplexing, streaming data, ) with direct support for VRML 2 0 

can be used to implement a full 2D and 3D (fixed and flexible) compositor
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413 Implementation of a 3D Verification Model

It was generally accepted that the VRML 3D modelling language had a lot to offer 

MPEG-4 VRML offered ways of allowing AVOs to communicate via routes, to be 

extended via scripting, and to dynamically modify the scene graph While we had 

developed a verification model based on JAVA to handle 2D AVOs we had no 

concrete plans on how to integrate 3D AVOs into our verification model Moreover, a 

lot of 3D complete API's existed, so the need to create a completely new 3D API for 

our verification model was questionable It seemed the best scenario would be to use 

VRML as our 3D modelling language and encapsulate its nodes into the standard 

Where appropriate, they would be modified to better meet MPEG-4’s requirements 

Other nodes and concepts would be introduced to meet any remaining requirements 

that cannot be met by simple modifications to VRML 2 0

The implementation commenced using one of the existing 3D packages, Liquid Reality 

from DimensionX [17] The idea was to implement a 3D viewer which could also 

composite our existing 2D AVOs, a full explanation of the work earned out is described 

in [18], the following sections give an overview of the implementation

4 13 1 Analysis of a 3D verification model

A 3D MPEG-4 Viewer/Browser will be required to support 2D AV nodes in addition 

to the 3D nodes It is highly desirable that 2D nodes, AVOs, implemented in the 2D 

VM can be easily integrated into the 3D VM In the short term, during the development 

of the 3D VM, this is useful in order to re-use code from the 2D VM In the longer 

term, this will be a valuable feature to users who want to create a new 2D node They 

will be able to “plug-and-play” their 2D node into a 3D MPEG-4 Viewer/Browser
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2D BIFS Nodes 3D BIFS Nodes

2D VM I/F — • ) -

3D VM I/F -----»►>“

Figure 21 2D and 3D interfaces for AV nodes

Figure 21 shows a symbolic representation of a solution for the problem Each 3D node 

conforms to the 3D interface (currendy the interface to the Liquid Reality browser) A 

2D node conforms to the 2D interface (currently that of the 2D VM implementation) 

To allow itself to be used in 3D scenes, a 2D node also implements an output that 

conforms to the 3D interface Internally, the viewer/browser indicates to the node 

implementation which interface it should use This may require a small change in the 

2D VM nodes

4 13 2 Implementing a laquid Reality Extension Node from a 2D A  VO  

Liquid Reality (LR) implements the VRML 2 0 specification using a set o f JAVA classes 

VRML 2 can be extended by writing LR extension nodes, these are sub-classes of LR’s 

node classes This allows us to incorporate MPEG-4 specific nodes into VRML 2 

worlds The class’s location is descnbed by an EXTERNPROTO description m the 

VRML world file and will be automatically loaded by the JAVA interpreter when 

needed by LR

LR documentation is available at [19], while a detailed example of how to create an 

extension node is given at [20]
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4 133 Implementing a GifJpegDecoder Extension Node

A node that was implemented for the 2D VM, GifJpegDecoder, was taken as an 

example of a node that we would like to include in the 3D VM This node can take an 

image file, decide whether it is GIF or JPEG  and decode it

A VRML world containing a GifJpegDecoder was implemented This required taking 

the current scene class GifJpegSequence and turning it into an extension node In this 

class we override the createNodeDefinition and mitFields methods to define the 

GiiJpegSequence node Here the GifJpegDecoder is instantiated once a TimeSensor 

eventln is received from the VRML world The dnx lr Node method handleEvent is 

used to define what should happen on the eventln In this case after the TimeSensor 

has started it sends an eventln to the GifJpegSequence Node and this causes the 

GifJpegDecoder to decode a GIF file and display it on a cube To add the node 

definition to the VRML world file in a manner that will make it understandable to the 

Liquid Reality browser we use the EXTERNPROTO declaration This indicates to the 

browser where to go to find the created JAVA class and instantiate it

4 13 4 Implementing a Plug-and-Play Interface

A plug-and-play interface implies that a scene class can be seamlessly rendered on either 

a 2D VM or 3D VM This is now possible by implementing two render methods, one 

based on the 2D VM compositor and one on the 3D one Hence our GifJpegSequence 

can be rendered on either the 2D VM, Figure 22, or the implementation of a 3D VM, 

Figure 23
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Figure 22 GifJpegSequence rendered on 2D VM
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Figure 23 GifJpegSequence rendered on 3D VM
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C h a p t e r

5 BIFS AND BI & TRI DIMENSIONAL COMPOSITION 

5 1 Introduction

As described in the previous chapter, VRML seemed suitable for MPEG4 purposes, in 

fact, as was shown an MPEG4 scene can be well described with the VRML mechanism 

But, the use of a commercial VRML browser enhanced for managing streaming data is 

not very promising, in fact the mechanism for writing native PROTO nodes (l e , 

developed in languages such as JAVA, C, and C++) as needed for MPEG4 real-time 

constraints is not yet standardised and therefore these mechanisms are not yet (or only 

partially) supported by the available VRML browsers Additionally there is no chance to 

direcdy modify the embedded timing system and those available are very loose and not 

suited for the M PEG4 requirements

This highlighted the need for a “clean room” implementation of a VRML based 

MPEG-4 player which could be based on the basic, already standardised, VRML nodes 

and enhanced with the MPEG-4 peculianties such as audio, video, and graphics 

synchronisation, links with streaming data, a binary scene description format, and 

enhanced interactivity

It was decided that, while VRML was a useful scene descnption language, it was lacking 

qualities that were vital for use in MPEG-4 MPEG-4 would develop its own scene 

descnption language called BIFS
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5 2 Binary Format for Scene Description (BIFS)

BIFS scene description is the tool in MPEG-4 that enables us to describe interactive 2D 

and 3D scenes made up of several MPEG-4 so called Media Objects MPEG-4 has 

used as a basis for its scene description tool VRML 2 0, [14]

5 3 VRML/BIFS relationships

5 3 1  What V R M L  offers?

The Virtual Reality Modeling Language is basically a 3D interchange format aimed at 

including 3D objects and worlds in the World Wide Web VRML defines a set of nodes 

that describe the following elements

• The structure of the scene, so called Scene Graph The scene graph defines the 

spatial hierarchical relationships between VRML geometnc and media elements in 

the 3D space

• 3D geometric components, such as geometnc primitives, material and texture 

bindings, lighting effects, etc,

• VRML enables the use of media streams through the URL mechanism In particular, 

videos and audio streams can be pointed at by VRML descnptions However, 

VRML does not define any transport or global synchronization mechanism

• VRML defines behaviors of objets using routes and interpolators

• VRML defines the user interaction with the content using sensors and routes 

Additionally to these elements, VRML further defines

• Scnpts, which define an API which allows simple executable code to be inserted 

inside VRML scene descriptions
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• A way to create reusable components made of several existing components, known 

as PROTOs and EXTERNPROTOs

• An API (not yet included in [14]) known as the External Authoring Interface (EAI), 

which enables interaction with the VRML scene from outside the world

• A binary format (not yet included m [14]), essentially based on an IBM proposal on 

mesh coding with topological surgery

A VRML file is an ASCII file instantiating several of the above described nodes The 

typical model for using a VRML file is first to load the entire “world” and let the user 

interact with it The EAI enables interaction between a HTML file and or a JAVA 

Applet and a VRML browser

5 J 2  What is BIFS?

The Binary Format for Scenes tool is essentially a binary format for representing 2D 

and 3D scenes made up of several streaming objects defined by the vanous MPEG-4 

sub groups As with other MPEG-4 tools, BIFS can be used both in a pull and push 

scenario From the beginning, BIFS has adopted VRML as a basis and extended it in 

vanous ways

• BIFS has defined a set o f new nodes to accommodate MPEG-4 specific needs

• Definition of 2D nodes for representing 2D scenes, including images and videos 

as well as graphic and text primitives, and specific behaviors and interaction 

primitives

•  Definition of nodes to interface with Face and Body animation tools

• Definition of nodes to interface with new synthetic and natural sound mixing 

capabilities
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• Definition of nodes to mix 2D and 3D content in the same MPEG-4 

presentation

• BIFS has defined a complete compression scheme for all these nodes When using 

only VRML nodes without meshes, the first tests show 3 to 10 times better 

compression results When using 3D meshes, the result are roughly 10% better in 

BIFS encoding, using the current status of the 3D mesh encoding SNHC tool This 

tool will be released m  MPEG-4 version 2 (see chapter 6)

• BIFS has defined the BIFS Update protocol, which enables a command stream to 

continuously modify BIFS scenes Commands include the capabilities to add and 

remove objects, to modify scene properties, or to replace the whole scene

• BIFS has defined the BIFS-Amm protocol, which enables us to continuously 

animate some properties of the scene, such as faces, meshes, object positions or 

colors

There are still a few nodes and VRML concepts that have not been adopted in MPEG- 

4 In particular, the extension capabilities provided by Script, PROTOs and 

EXTERNPROTOs are not yet considered in the current BIFS specification, although 

many MPEG experts have recognized their usefulness

A very important point is that the BIFS tool is designed so that it works well with the 

rest of the MPEG-4 tools, the Multiplex, the System Decoder Model, the Object 

Descriptors, and all the streams defined in the Video, SNHC and Audio groups, as well 

as the control by DMIF of the Session

5 3  3 Using V R M L  content in the MPEG-4 context

With the current BIFS specification it is possible to use VRML content, compress it, 

and carry it over MPEG-4 streams If we look at a complete MPEG-4 scenario with a
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scene containing a 3D scene, 2D graphic components, an MPEG-4 video and audio, as 

well as update and animation streams, the following components would typically be 

used

B I F S  U p d a t e  ^  
d e c o d e r

B I F S  A n im ^  
d e c o d e r  ^

V i d e o  
d e c o d e r  ^
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A u d io V i su a I 
Presentation

Figure 24 A typical MPEG-4 terminal architecture

In this scenario, the output of the demultiplexer is 4 distinct elementary streams

• The BIFS Update stream, that carries a command and a set o f nodes, including 

VRML and new MPEG-4 nodes compressed with the BIFS algorithm

• The BIFS Amm Stream, that cames continuous changes o f a set o f properties o f the 

scene

• The Video Stream

• The Audio Stream

One of the key elements in the MPEG-4 Systems architecture is the respect of time 

events and the System Decoder Model, which ensures the synchronization of media 

streams In that case, changes represented in the BIFS-Update and BIFS-Amm streams 

must be synchronized with the audio and video streams
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5 3  4 Using BIFS content in the V R M L context

Some of the functionalities supported in BIFS can be represented in a standard VRML 

environment

• The BIFS-Udpate and BIFS-Amm decoders can use the EAI to modify the scene

• Script nodes can be used to instantiate Video and Audio decoders

• For non standard VRML nodes, a library of PROTOs and EXTERNPROTOs can 

be used

BIFS  Update 
decoder 3»

BIFS Amm 
decoder

Video 
decoder

Audio 
decode
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E
A
1 i=>

S V - 1
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R
ii
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M P E G -4

(E X T E R N )P R O T O

Library

Figure 25 BIFS capabilities in a standard VRML environment

However, there are several limitations and constraints imposed by this architecture

• Some of the nodes cannot be represented in standard VRML In particular, the 

MPEG-4 specific audio capabilities (mixing of natural and synthetic sources), and the 

mixing of 2D and 3D scenes is not achievable in a standard VRML browser
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• The fact that 2D scenes would have to be implemented as a special case of a 3D 

implementation imposes some constraints that are not acceptable to MPEG-4 

profiles that only need 2D primitives, and may not provide an optimal 

implementation for 2D In any case, in the MPEG-4 context, 2D interfaces should 

be offered to allow implementers to develop their terminal using specific 2D or 3D 

based implementations of 2D primitives

•  This architecture does not provide a precise enough control of time, which will lead 

to non synchronized media streams

• Since Scripts and PROTOs need to be used to represent additional MPEG-4 

functionalities, the content would be less compact than in the case of the MPEG-4 

termmal that considers these extensions as native extensions

• Scripts and the EAI impose more components to be included in any MPEG-4 

terminal than in the case of the MPEG-4 terminal o f Figure 24

5 4 Implementation of BIFS and 2D & 3D Composition

Currendy BIFS and 2 and 3 dimensional composition are being developed and 

implemented in a real-time MPEG-4 player through work with the adhoc group on 

Systems Software Implementation m MPEG-4 and work within the ACTS project 

MoMuSys The software is being developed using the C++ language and the OpenGL 

API for composition It is freeware and can be downloaded from

http / / televr fou telenot no/~karlo/com positor/

The idea is to produce a verification model for the functionalities being developed in 

MPEG-4 The following section is an overview of how 2 and 3 dimensional scenes are 

described using BIFS, it is not intended as a detailed explanation o f how the player
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functions, such information can be found in the documentation repository at the 

software site

5 4  1 The Components oj the MPEG-4 Player

Figure 26 associates each component with the class objects it consists of

Composition and 
Rendering

MediaObject

Presenter

VisualRenderer

AudioRenderer

Composition buffers (CBs) 
implemented by 
MediaStream

Figure 26 Implementation of major components of MPEG-4
Player

5 4 2 MediaObjects

Within the organisation of the classes that were created to implement an MPEG-4 

scene the MediaObject class is the most fundamental It is the base class for all nodes 

defined by BIFS

A media object is an object that exists in the 3D space defined by the compositor 

Media objects are arranged hierarchically in the scene graph, which is basically a media 

object tree The root object or node identifies the scene The nodes which media
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objects define are vaned, some nodes are objects like Box, Spotlight e tc , other nodes 

are used as containers to hold related nodes A shape node, for example, contains a 

geometry node and an appearance node A full list of the available BIFS nodes can be 

found in [5] These nodes can, in turn, contain other nodes In addition media objects 

that consume streams, like video and audio clips have been defined These are 

associated with media streams that are used to fetch stream units

MediaObjects have the following properties

•  A MediaObject has zero or more “fields”, each defined as either an object of a class 

derived from NodeField, or in the case o f eventln, as an event-handling member 

function

• A MediaObject can be a parent to zero or more other media objects All the child 

objects share the attributes of the parent object A position of a child object is 

relative to its parent object

5 4  3 MediaStreams

This is the object that handles the buffering and the transfer of data streams It consists 

of a memory buffer, and a FIFO mechanism to store/fetch access units in to/out of the 

buffer The object also incorporates timing control, 1 e , stored access units may have a 

time stamp attached to them, and the fetch procedure will fetch only matured units

Delivenng data over a MediaStream is performed as following'

• Before the originating object produces an access unit, it allocates space on the 

stream's buffer It asks for the amount of space it needs or, in cases when this size is 

not known before the data is actually produced, for the space it thinks would be 

usually sufficient Then it uses the allocated space to store the data it produces
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• In case it turns out that the allocated space was not enough the object expands the 

allocated block

• When done, the actual size o f the unit, as well as its presentation time is stored

• The receiving object then collects the unit at the correct time from the buffer 

5 4  4 Decoding

Each decoder runs in its own thread and is inherited from the base Decoder class A 

decoder is bound to two MediaStreams, the input stream and the output stream, see 

Figure 27 The task of fetching coded units from the input streams (EBs) and storing 

presentation units into the output stream (PBs) is earned out by the base object This is 

done as follows

• The decoder gets an AU from the input stream If  no data is available, the decoder’s 

thread is suspended till data is available

•  The decoder implements its specific decode functionality

• The output is stored in the output MediaStream This operation includes attaching a 

presentation time stamp to the unit

5 4 5 BIFS Decoder

The BIFS decoder reads in the encoded BIFS scene description file and performs the 

following

• Retrieves data from the input MediaStream

• Instantiates the root MediaObject, and calls it to parse itself and build the scene tree
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• Whenever a node update is detected it calls the appropriate node to parse and update 

itself

•  Whenever an ObjectDescriptor is detected it passes the information to the proper 

node so the node can create the necessary Decoder and MediaStreams

5 4  6 Flow of Information in the M PEGA Player

Figure 27 illustrates the flow o f information m the whole application It shows how die 

BIFS scene is decoded and presented and how the processes described in the previous 

sections exist in relation to the overall MPEG-4 application

Figure 27 Flow of information in the M PEG-4 Player
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5 4 7  2D &  3D Composition in the MPEG-4 Player

Composition is achieved via SGIs' OpenGL graphics library The OpenGL graphics 

system is a powerful software interface for graphics hardware that allows graphics 

programmers to produce high-quality colour images of 2D and 3D objects Silicon 

Graphics Inc developed the technology

OpenGL is designed as a streamlined, hardware-independent interface to be 

implemented on many different hardware platforms As such it provides a layer of 

abstraction between graphics hardware and an application program It is visible to the 

programmer as a set of routines consisting o f about 120 distinct commands Together 

these routines make up the OpenGL application programming interface (API) The 

routines allow graphics primitives (points, lines, polygons, bitmaps, and images) to be 

rendered as well as basic rendering operations such as affine and projective 

transformations and lighting calculations It also supports advanced rendering features 

such as texture mapping and antialiasing

N o commands for performing windowing tasks or obtaining user input are included in 

OpenGL, instead, you must work through whatever windowing system controls the 

particular hardware you're using Similarly, OpenGL doesn't provide high-level 

commands for describing models of three-dimensional objects Such commands might 

allow you to specify relatively complicated shapes such as automobiles, parts of the

body, aeroplanes, or molecules When you build a graphics program using OpenGL,
\

you start with a few simple primitives The sophistication comes from combining the 

primitives and using them in various modes
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5 4 7 1  OpenGL Rendering Pipeline

Figure 28 Schematic Diagram o f the Order o f Operations m
OpenGL

Figure 28 shows a schematic diagram o f OpenGL Commands enter OpenGL on the 

left Most commands may be accumulated in a display list for processing at a later time 

Otherwise, commands are effectively sent through a processing pipeline

The first stage provides an efficient means for approximating curve and surface 

geometry by evaluating polynomial functions of input values The next stage operates 

on geometric primitives descnbed by vertices points, line segments, and polygons In 

this stage vertices are transformed and lit, and pnmitives are clipped to a viewing 

volume in preparation for the next stage, rasterization The rastenzer produces a series 

of framebuffer addresses and values using a two-dimensional descnption of a point, line 

segment, or polygon Each fragment so produced represents a portion of a primitive 

that corresponds to a pixel in the framebuffer Then each fragment may be modified by 

texture mapping, after which it is fed to the next stage that performs operations on 

individual fragments before they finally alter the framebuffer These operations include 

conditional updates into the framebuffer based on incoming and previously stored 

depth values (to effect depth buffering), blending of incoming fragment colours with 

stored colours, as well as masking and other logical operations on fragment values

91



Finally, pixel rectangles and bitmaps (2D images) bypass the vertex processing portion 

of the pipeline to send a block of fragments direcdy through rasterization to the 

individual fragment operations, eventually causing a block of pixels to be written to the 

framebuffer A unique feature of OpenGL is that pixel rectangles and bitmaps (2D 

images) are also rasterized to produce fragments, fragments are treated the same no 

matter if they come from a geometric or image primitive Values may also be read back 

from the framebuffer or copied from one portion of the framebuffer to another These 

transfers may include some type of decoding or encoding

More generally, MPEG-4 uses the OpenGL API to compose a 2D and/or 3D scene, 

allowing for example to

• place AVOs anywhere in a given co-ordinate system,

• group primitive AVOs in order to form compound AVOs,

• modify AVOs attributes using streaming data (e g moving texture belonging to an 

object, animating a moving head by sending animation parameters),

• update the user's viewing point to enable interactivity anywhere in the scene 

5 4 8 A n  Example MPEG-4 i  cene

The following BIFS file is an example of how to describe a scene that contains a 

number of decoders and BIFS nodes The composited scene is displayed in Figure 29
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Group {
children [ 

Fog {

}

color 0 0 0 0 0 0 
vislbi11 tyRange 3 0 
fogType "LINEAR"

DirectionalLight { 
color 1 1 1

Viewpoint {
fieldOfView 0 785398

>
Transform {

translation -2 0 0 
rotation 1 1 0 45 
children [

Shape {
appearance Appearance {

texture ImageTexture { 
url 2
repeats FALSE 
repeatT FALSE

}
}
geometry Box {

size 2 2 2
}

]
}
Transform {

translation 
scale 0 07 0 
children [ 

FBA {

2 0 
07 07

face Face {
fdp FDP {

faceSceneGraph Group { 
}

}
fap FAP {

url 3

}
Sound {

sound AudioSource { 
url 4
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startTime O 
stopTime -1

SessionStreamAssociation { 
children [

Oho ectDescriptor {
ob}ectDescriptorlD 
decTypeStnng 
configParam 1

}
Ob]ectDescriptor {

ob}ectDescriptorID 
decTypeStnng 
configParam 1

>
Ob]ectDescriptor {

ob]ectDescriptorID 
decTypeStnng 
configParam 2

}

visual/H263
2

3
visual/FBA

4
audio/G723
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Figure 29 Composition of a BIFS scene in MPEG-4 Player

95



C h a p t e r

6 CONCLUSIONS AND FUTURE DIRECTIONS 

6 1 Introduction

MPEG-4 is the ISO /IEC  standard being developed by MPEG (Moving Picture 

Experts Group), the committee that also developed the Emmy Award winning 

standards known as MPEG-1 and MPEG-2 The MPEG-4 standard will be the result 

of an international effort involving hundreds of researchers and engineers from all over 

the world MPEG-4, whose formal ISO /IEC  designation will be ISO /IEC  14496, is to 

be released in November 1998 and will be an International Standard in January 1999 

This release will be known as Version 1 [29]

Work on MPEG-4 will continue after that date, for a Version 2 Version 2, work on 

which has already started, will add tools to the MPEG-4 Standard Existing tools and 

profiles from Version 1 will not be replaced in Version 2, technology will be added to 

MPEG-4 in the form of new profiles

In the previous chapters there has been a description of how the need for the 

development o f an MPEG-4 standard came about Initially an overview of MPEG-4 

was given in a layer by layer basis, and then focus was given to the process of 

developing an efficient method for 2D and 3D scene description and composition The 

mathematics of 2D and 3D composition and rendenng was analysed and developed 

The evolution of the scene descnpdon in MPEG-4 was then analysed It was shown 

what knowledge and standards currendy existed and how a new dynamic approach was 

developed from this knowledge

96

i



In this chapter the future development of the scene description language, the MPEG-4 

systems layer, and an overview of the types of applications the final MPEG-4 standard 

will help develop is presented

6 2 Future Developments Planned in the Scene Description of MPEG-4

Scene description in MPEG-4 will continue with the further development of BIFS, 

introducing new media objects and MPEG-4 nodes as well as converging with the 

VRML 2 0 standard, and the introduction of a new adaptive audio visual scene 

description

6 2  1 The Future of BIFS

Based on the analysis of VRML and BIFS in the previous chapters it is clear that the 

entire BIFS tool cannot be properly represented in a stncdy conformant VRML 2 0 

architecture However the interchange and creation of content can be eased, and both 

the VRML and MPEG-4 community would benefit from, and facilitate the 

development of, the future potential technology and applications that emerge from the 

mixing of the computer graphics technology of the VRML consortium, and the 

compression and streaming expertise of the M PEG group To this purpose the MPEG- 

4 and VRML consortiums are working towards the following

• MPEG-4 should use all VRML nodes following stricdy their semantics and design

• MPEG-4 and VRML should use the same binary encoding

• MPEG-4 shall design its nodes using the same design principles as VRML did In 

particular, the following rules must apply

• MPEG-4 should not design nodes that can be efficiendy represented by a small 

set o f other existing nodes
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• MPEG-4 should use names that are compatible with existing node names to 

facilitate mutual understanding and technical exchange

6 2  2 Adaptive Audio-Visual Session Format (A A  V S)

One of the mam disadvantages of BIFS is that the MPEG-4 receiving terminal must 

have all the media objects defined in the scene implemented in order for it to be 

rendered correctly This implies that if a scene is developed with a new improved video 

or audio decoder, or even a completely new decoder, and the receiving terminal doesn’t 

have this implementation we cannot display the scene on this terminal

The Adaptive Audio-Visual Session (AAVS) format specifies interfaces for the 

interoperation of MPEG-4 media with JAVA code By combining MPEG-4 media 

and safe executable code, content creators may imbed complex control mechanisms 

with their media data to intelligendy manage the operation of the audio-visual session

It is foreseen that AAVS will provide unique capabilities as a format for session 

representation

• AAVS will provide interfaces to MPEG-4 multimedia terminals, enabling advanced 

user interaction and device control

Interactive media applications require both interfaces to user I /O  devices as well as 

media I /O  devices The AAVS technology enables such a capability in MPEG-4 by 

having an adaptive session with downloadable applets An applet is a secure JAVA 

application that can run over the Internet

• AAVS will provide mechanisms for client-side progiammatic control o f the audio­

visual session
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For some types of content, a parametnc scene description is sufficient, but for other 

types o f content, a programmatic descnption may be most appropriate For example, a 

parametnc scene descnption may require frequent updates across the network, 

increasing the bandwidth of control information with higher vulnerability to errors In 

this case, it may be more robust and efficient to generate the scene updates with 

executable code running on the client side In addition, it may be easier to create a 

programmatic scene descnption, such as when a position or graphical parameter 

changes with time according to a mathematical formula Furthermore, programmatic 

content may be extended beyond the syntax of a parametnc scene descnption

• AAVS will provide mechanisms for programmatic adaptation of the session to 

client-side information, thus maximising media quality in the presence of static or 

dynamic terminal resources

MPEG-4 media is designed to be scalable so that, ideally, a content creator can reuse 

the same media on multiple MPEG-4 platforms, for example, in a set-top box, a web 

browser, and or a handheld device AAVS enables the content creator to specify client- 

side, programmatic control to tailor the media session to the static terminal resource 

constraints Furthermore, AAVS provides mechanisms for the content creator to 

specify adaptive session behaviour in the presence of dynamically changing resources

6 3 The Future development of the Systems Layer

As previously descnbed, the systems layer of MPEG-4 helps develop standards for the 

coding of the combination of, individually coded audio, moving images and related 

information so that the combination can be used by any application One of its major 

inputs to the standard has been the development of the scene description format

i

Systems will provide the following functionalities for the MPEG-4 standard in Version 

1
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• Scene description for composition (spatio-temporal synchronisation with time 

response behaviour) of multiple AVOs The scene descnption provides a rich set of 

nodes for 2D and 3D composition operators and graphics pnmitives

• Text with international language support, font and font style selection, timing and 

synchronisation

• Interactivity, including client and server-based interaction, a general event model 

for triggering events or routing user actions, general event handling and routing 

between objects in the scene, upon user or scene triggered events

•  The interleaving of multiple streams into a single stream, including timing 

information (multiplexing)

•  Transport layer independence Through the separation of the multiplexing 

operation into FlexMux and TransMux, support for a large variety of transport 

facilities is achieved

• The initialisation and continuous management of the receiving terminal’s buffers

• Timing identification, synchronisation and recovery mechanisms

• Datasets covenng identification of Intellectual Property Rights relating to Audio­

visual Objects

Most of these developments have been made and are functioning in the systems

software implementation described m chapter 5 Version 2 o f the MPEG-4 standard

will support, in addition to the tools in Version 1
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•  Scene description for composition of multiple AVOs This includes 2D /3D  objects 

grouping for ease in editing and composition, spatio-temporal 2D /3D  AVO 

positioning and transformation, and 2D /3D  AVO attribute value selection

• Specification of an API for description of AVOs behaviour,

•  Specification o f APIs for 2D composition,

•  Specification of API for 2D / 3D composition,

• Support o f downloadable executable code,

•  Server-side interaction via attribute value modification using standardised 

parametric descnption,

• AVOs with descriptors to carry MPEG-7 data (MPEG-7 will define a framework 

for identifying and describing what is ‘inside* the content)

• A number o f functionalities m the area o f IPR identification and protection are 

under study for support, and may be provided in MPEG-4 version 2, either by 

providing hooks or by defining the algonthms within M PEG for automated 

monitoring and tracking of creations, prevention of unauthonsed copying and 

manipulation, tracking object manipulation and modification history, and 

supporting transactions between Users, Media Distributors and Rights Holders

For more information on the planned future developments of the various MPEG-4

layers see [1] and [2]

6 4 Future MPEG-4 Applications

MPEG-4 has been developed in order to enable developers to create applications In

this section a number o f possible applications are listed which are enabled by the tools
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and methods currendy standardised within MPEG-4 The idea is to describe and 

highlight possible future usage o f MPEG-4 technology Further documentation on 

possible MPEG-4 applications can be found in [3]

6 4 1 Real Time Communications

Real-time Communications systems are targeted toward applications which encompass 

two-way human interaction, or one-way applications that impose strict one-way delay 

constraints A videophone system is a pnme example of a two-way real-time system An 

example of a one-way delay constrained system is a surveillance system

One key feature of real-time systems is that if there is both audio and video present, the 

audio and video are synchronised so that the viewer is given the impression o f lip 

synchronisation Interaction between the users of two-way systems requires that the 

overall end-to-end delay will be relatively small and fairly constant

The underlying transport system for real-time communications application is likely to 

encompass a broad cross section of technologies A key attribute of the real-time 

communications systems application is the ability to successfully operate over a wide 

variety of media including low and high mobility wireless, LAN transmission channels, 

PSTN and ISDN transmission channels Interworking between various media channels 

should be supported

It is expected that real-time communications systems will operate in a variety of 

different system configurations including those where the complexity of the 

encoding/decoding process constitutes a major design constraint Audio and/or visual 

quality maybe traded off against delay and complexity such that a balance is found 

between the desire for high quality audio/video and the need to provide low delay 

operation at a reasonable complexity
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64  2 Infotainment

As interaction with AVOs is considered as the most important aspect of MPEG-4, 

infotainment applications, containing a combination of entertainment and information 

are well within the scope Generally, the users of such systems have the means both to 

get information about specific subjects of interest and to configure and amuse 

themselves within a multimedia environment The interactivity aspect includes for 

example the requesting of additional objects and changing of the content of the existing 

scene nodes

A key feature of infotainment applications is the manifold of necessarily diversified 

features Typical infotainment applications will make heavy use of natural and synthetic 

audio and video in form of e g spoken text and music of all kinds with underlying visual 

animation For this kind of application it will be necessary to guarantee a high quality of 

presentation during the whole session if the user shall not become bored o f his/her 

pastime The quality aspects address both high AV quality and time constraints to end- 

to end latency

M PEG-4 provides an ideal framework for infotainment applications

• It will feature the means to support the utmost multifaceted set o f multimedia types 

to be combined within a presentation scenario in a standardised way

• The composition concepts, which will cover 2D as well as 3D, will be the base for 

mixing all kinds of data types within a consistent object handling and user 

interaction paradigm

• M PEG's tradition is to achieve the highest possible quality with existing techniques, 

which is only adequate for the demanding nature of infotainment applications
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6 4 3 Collaborative Scene Visualisation

Collaborative Scene Visualisation supports a class of Computer Supported Co-operative 

Work (CSCW) applications where groups of people typically working simultaneously in 

distributed locations leverage visualisation tools to accomplish a task by sharing a 

common visual information space [31]

A trend of these kind of applications is that they will provide Augmented Reality (AR) 

A particular feature of these applications is that they not only use dedicated audio-visual 

streams as usual tele-conferencing applications for interpersonal communication, but 

also use an additional video streams to achieve AR effects The objective of AR is to 

create an environment in which a user perceives both real and virtual/synthetic 

(generated with a computer) objects in a seamless way

From the viewpoint of communication, multiple audio-visual streams of natural and 

synthetic origins are transferred an audio-visual stream for conferencing, a video stream 

containing a video shot of the empty office, and a 3D synthetic object stream for the 

furniture, etc

Like any distributed multimedia system where partly bulk data (video, audio, high 

resolution image, animation sequence, etc) is transferred, appropriate data coding 

methods are needed For this end, MPEG-4 is very useful, because o f the following 

reasons

• It supports high performance data compression

• A trade-off between quality and performance can be made by scaling encode and 

decode complexity, spatial resolution, temporal resolution, and quality

•  Content-based coding enables interactivity with objects Real objects can be 

convemendy manipulated in the same way as virtual objects
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• The composition concept of MPEG-4 is very appropriate for organising a scene 

consisting of real and virtual objects to be transferred among dispersed participants

• Stereoscopic views help a user perceiving a scene

• Face Animation parameters can be used to replace the audio-visual streams used for 

interpersonal communication to achieve bandwidth reduction The saved 

bandwidth can be used to improve the quality of the video stream used for AR 

scenes

As can be deduced from the above examples the MPEG-4 standard will provide a

means o f creating new and exciting applications
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Annex A - Glossary and Acronyms

AAC Advanced Audio Coding
AAL ATM Adaptation Layer
A A VS Adaptive Audio-Visual Session
AL Adaptation Layer
Access Unit A logical sub-structure of an Elementary Stream to

facilitate random access or bitstream manipulation 
ADSL Asymmetrical Digital Subscriber Line
Alpha plane Image component providing transparency information

(Video)
API Application Programming Interface
ATM Asynchronous Transfer Mode
A VO Audiovisual Object
BAP Body Animation Parameters
BDP Body Definition Parameters
BIFS Binary Format for Scene description
BSAC Bit-Sliced Arithmetic Coding
CE Core Experiment
CELP Code Excited Linear Prediction
DAI DMIF-Apphcation Interface
DDI DMIF-DMIF Interface
DMIF Delivery Multimedia Integration Framework
DSM-CC Digital Storage Media - Command and Control
DSM-CC U-U DSM-CC User to User
DSM-CC U-N DSM-CC User to Network
ES Elementary Stream A sequence of data that originates

from a single producer in the transmitting MPEG-4 
Terminal and terminates at a single recipient, e g an 
AVObject or a Control Entity in the receiving MPEG-4 
Terminal It flows through one FlexMux Channel 

FAP Facial Animation Parameters
FBA Facial and Body Animation
FDP Facial Definition Parameters
FlexMux layer Flexible (Content) Multiplex A logical MPEG-4 Systems

layer between the Elementary Stream Layer and the 
TransMux Layer used to interleave one or more 
Elementary Streams, packetized in Adaptation Layer 
Protocol Data Units (AL-PDU), into one FlexMux stream 

FlexMux stream A sequence of FlexMux protocol data units originating
from one or more FlexMux Channels flowing through one 
TransMux Channel

FTTC Fiber To The Curb
GSTN General Switched Telephone Network
HFC Hybrid Fiber Coax
HILN Harmonic Individual Line and Noise
HTTP HyperText Transfer Protocol
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HVXC Harmonic Vector Excitation Coding
IP Internet Protocol
IPI Intellectual Property Identification
IPR Intellectual Property Rights
ISDN Integrated Service Digital Network
LAR Logarithmic Area Ratio
LC Low Complexity
LPC Linear Predictive Coding
LSP Line Spectral Pairs
LTP Long Term Prediction
mesh A graphical construct consisting of connected surface 

elements to describe the geometry/shape of a visual object
MCU Multipoint Control Unit
MIDI Musical Instrument Digital Interface
MPEG Moving Pictures Experts Group
PSNR Peak Signal to Noise Ratio
QoS Quality of Service
RTP Real Time Protocol
RTSP Real Time Streaming Protocol
Rendering The process of generating pixels for display
Sprite A static sprite is a - possibly large - still image, describing 

panoramic background
SRM Session and Resource Managers
TCP Transmission Control Protocol
T/F coder Time/Frequency Coder
TransMux Transport Multiplex
TTS Text-to-speech
UDP User Datagram Protocol
UMTS Universal Mobile Telecommunication System
Víseme Facial expression associated to a specific phoneme
VLBV Very Low Bit-rate Video
VRML Virtual Reality Modeling Language
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