
BI & TRI DIMENSIONAL
SCENE DESCRIPTION AND

COMPOSITION IN THE
MPEG-4 STANDARD

By

Edward Cooke, BSc

A thesis submitted for the degree of

Masters in Electronic Engineering

Dublin City University

Supervisor Dr Thomas Curran

School of Electronic Engineenng

March 1998

I hereby certify th a t this m aterial, which I now subm it for assessm ent on the program m e of
study leading to the aw ard of M asters in Electronic Engineering is entirely my own w ork and
has not been taken from the w ork of others save and to the extent th a t such w ork has been
cited and acknowledged w ithin the text of my w ork

Signed /J iJ fJ (J t z ._________ ID No 9 ^ 9 ? IZS I
Candidate

u

TA BLE O F C O N T E N T S

1 IN TRO D U CTIO N 1

1 l Introduction 1
1 2 Research Objectives 2
1 3 Structure of Thesis 3

2 O V ERV IEW O F TH E M PEG-4 STANDARD 6

21 Introduction 6
2 2 Scope a n d f e a tu r e s o f th e MPEG-4 s t a n d a r d 7
2 3 Representation of primitive Audio-V isual Objects 8
2 4 Com position o f A ud io -V isual O b jec ts 9
2 5 M ultiplex and Synchronisation of Audio-V isual Objects 10
2 6 Interaction with Audio-V isual Objects 12
2 7 T e c h n ic a l d e sc rip tio n o f th e MPEG-4 s ta n d a r d 12
2 8 DM IF 14

2 9 Demultiplexing, buffer management and time identification 17
2 9 7 Demultiplexing 18
2 9 2 Buffer Management 20
2 9 3 Time Identification 2Î

2 10 S y n t a c t ic d e c o d in g 21
2 11 C o d i n g o f A u d i o O b j e c t s 22

2 I I Î Natural Sound 22
2 112 Synthesised Sound 23
2 113 Effects 24

2 12 C o d i n g o f V i s u a l O b j e c t s 24
2 12 J Natural Textures, Images and Video 24
2 1 2 2 Synthetic Objects ‘ 25
2 12 3 Structure o f the tools fo r representing Natural Video 28
2 12 4 Support fo r Conventional and Content-Based Functionalities 29
2 12 5 Robustness in Error Prone Environments 30

2 13 Scene description 30
2 14 User interaction 32

3 CO M PO SITIO N & RENDERING O F BI & TR I DIM ENSIONAL OBJECTS 33

3 1 I n t r o d u c t i o n 33
3 2 G e o m e t r i c a l T r a n s f o r m a t i o n s 33

3 2 1 2D Transformations 33
3 2 2 Homogeneous co-ordinates and matrix representation o f 2D transformations 36
3 2 3 Composition o f 2D transformations 37
3 2 4 The window-to viewport transformation 38
3 2 5 Matrix representation o f 3D transformations 40
3 2 6 Transformations as a change in co ordinate system 41

3 3 V iewing in 3D 42
3 3 1 Projections 43
3 3 2 Perspective Projections 44
3 3 3 Parallel Projections 45

m

3 3 4 Specifying an arbitrary 3D view 45

4 EVOLUTION O F TH E SCENE D ESCRIPTIO N IN M PEG-4 50

4 1 Introduction 50
4 2 Scene Description 5 1
4 3 Initial 2D Scene Description 5 1

4 3 1 2D Fixed Scene Description 51
4 3 2 2D Flexible Scene Description 52

4 4 Composition Flexibility 52
4 4 1 Fixed Profiles 52
4 4 2 Flexible Profiles 52

4 5 Scene D esc rip tio n o f th e in i t ia l MPEG-4 V e r if ic a tio n M o d e l 54
4 5 1 The JAVA Development Environment 54

4 6 D evelopm en t o f th e MPEG-4 C la s s L ib ra ry 57
4 6 1 Class Library 57
4 6 2 AVObject Layer Classes 58
4 6 3 Composition Layer Classes 59
4 6 4 Presentation Layer Classes 60

4 7 Implementation of an initial MPEG-4 compliant viewer 61
4 7 1 MoMuSys Viewer 61
4 7 2 How the MoMuSys Viewer junctions9 63

4 8 E xpanding th e MPEG-4 C la ss L ib ra ry t o h a n d le VOPs 65
4 8 1 VOP Definition 65
4 8 2 Creating a VOP Class 65
4 8 3 Integration o f VOP class in MPEG 4 Verification Model 66

4 9 2D & 3D Scene Description and Composition in the Verification Model 67
4 10 L imitations imposed by the initial verification model 68
4 11 VRML and Scene Description in the Verification M odel 70
4 12 Analysis of an MPEG-4 & VRML Combined Browser 71

4 12 1 Proposed Architecture 72
4 12 2 Scene Composition with 2D and 3D Objects 73

4 13 Implementation of a 3D Verification M odel 74
4 13 1 Analysis o f a 3D verification model 74
4 13 2 Implementing a Liquid Reality Extension Node from a 2D AVO 75
4 1 3 3 Implementing a GifJpeg Decoder Extension Node 76
4 13 4 Implementing a Plug-and-Play Interface 76

5 BIFS AND BI & T R I DIM ENSIONAL CO M PO SITIO N 79

5 1 Introduction 79
5 2 B inary Format for Scene Description (BIFS) 80
5 3 VRML/BIFS RELATIONSHIPS 80

5 3 I What VRML offers9 80
5 3 2 What is BIFS9 81
5 3 3 Using VRML content in the MPEG-4 context 82
5 3 4 Using BIFS content in the VRML context 84

5 4 Implementation of BIFS and 2D & 3D Composition 85
5 4 1 The Components o f the MPEG-4 Player 86
5 4 2 MediaObjects 86
5 4 3 MediaStreams 87
5 4 4 Decoding 88
5 4 5 BIFS Decoder 88

IV

5 4 6 Flow o f Information in the MPEG-4 Player 89
5 4 7 2D & 3D Composition in the MPEG-4 Player 90
5 4 8 An Example MPEG-4 Scene 92

6 CONCLUSIONS AND FUTURE DIRECTIONS 96

61 Introduction 96
6 2 Future Developments P lanned in the Scene Description of MPEG-4 97

6 2 J The Future o f BIFS 97
6 2 2 Adaptive Audio-Visual Session Format (AAVS) 98

6 3 The Future development of the Systems Layer 99
6 4 Future MPEG-4 Applications 101

6 4 1 Real Time Communications 102
6 4 2 Infotainment 103
6 4 3 Collaborative Scene Visualisation 104

v

ABSTRACT

BI AND TRI DIMENSIONAL SCENE
DESCRIPTION AND COMPOSITION IN

TH E MPEG-4 STANDARD

By Edward Cooke

MPEG-4 is a new ISO/IEC standard being developed by MPEG (Moving Picture Experts Group)
The standard is to be released in November 1998 and version 1 will be an International Standard in
January 1999 The MPEG-4 standard addresses the new demands that arise in a world in which
more and more audio-visual material is exchanged m digital form MPEG-4 addresses the coding of
objects of various types Not only traditional video and audio frames, but also natural video and
audio objects as well as textures, text, 2- and 3-dimensional graphic primitives, and synthetic music
and sound effects

Using MPEG-4 to reconstruct an audio-visual scene at a terminal, it is hence no longer sufficient to
encode the raw audio-visual data and transmit it, as MPEG-2 does m order to synchronize video and
audio In MPEG-4, all objects are multiplexed together at the encoder and transported to the
terminal Once de-multiplexed, these objects are composed at the terminal to construct and present
to the end user a meaningful audio-visual scene The placement of these elementary audio-visual
objects in space and time is described in the scene description of a scene While the action of
putting these objects together in the same representation space is the composition of audio-visual
objects

My research was concerned with the scene description and composition of the audio-visual objects
that are defined in an audio-visual scene Scene descriptions are coded independently irom sticams
related to primitive audio-visual objects The set of parameters belonging to the scene description
are differentiated from the parameters that are used to improve the coding efficiency of an object
While the independent coding of different objects may achieve a higher compression rate, it also
brings the ability to manipulate content at the terminal This allows the modification of the scene
description parameters without having to decode the primitive audio-visual objects themselves This
approach allows the development of a syntax that describes the spatio-temporal relationships of
audio-visual scene objects The behaviours of objects and their response to user inputs can thus also
be represented in the scene description, allowing richer audio-visual content to be delivered as an
MPEG-4 stream

V I

LIST O F FIG U RES

Figure 1 An example of an MPEG-4 audio-visual scene 9
Figure 2 The MPEG-4 System Layer Model 11
Figure 3 Major components of an MPEG-4 terminal (receiver side) 14
Figure 4 The DMIF Architecture 15
Figure 5 Buffer architecture of the System Decoder Model 20
Figure 6 General block diagram of MPEG-4 Audio 23
Figure 7 2D mesh modelling of the "Akiyo" video object 27
Figure 8 Classification of the MPEG-4 Image and Video Coding Algorithms and Tools 28
Figure 9 VLBV Core and the Generic MPEG-4 Coder 29
Figure 10 Logical structure of a scene 31
Figure 11 Derivation of the rotation equation 35
Figure 12 Conceptual model of the 3D viewing process 42
Figure 13 (a) Line AB and its perspective projection A ’B ’ (b) Line AB and its parallel projection

A ’B ’ Projectors AA’ and BB’ are parallel 43
Figure 14 The view plane is defined by VPN and VRP, the v axis is defined by the projection of

VUP along VPN onto the view plane The u axis forms the right-handed viewing reference-co­
ordinate system with VPN and v 46

Figure 15 The view reference-co-ordinate system (VRC) is a right-handed system made up of the u,
v, and n axes The n axis is always the VPN CW is the centre of the window 47

Figure 16 The semi-infinite pyramid view volume for perspective projection CW is the centre of
the window 48

Figure 17 Truncated view volume 49
Figure 18 Flexible Configuration 53
Figuie 19 Proposed 3D Architecture 72
Figure 20 2D & 3D Composited Scene 73
Figure 21 2D and 3D interfaces for AV nodes 75
Figure 22 GifJpegSequence rendered on 2D VM 77
Figure 23 GifJpegSequence rendered on 3D VM 78
Figure 24 A typical MPEG-4 terminal architecture 83
Figure 25 BIFS capabilities in a standard VRML environment 84
Figure 26 Implementation of major components of MPEG-4 Player 86
Figure 27 Flow of information in the MPEG-4 Player 89
Figure 28 Schematic Diagram of the Order of Operations in OpenGL 91
Figure 29 Composition of a BIFS scene in MPEG-4 Player 95

vil

A C K N O W LED G M E N T S

I would like to thank my supervisor, D r Thomas Curran, and all my colleagues in the

Video Coding Group as well as the MoMuSys and MPEG-4 consortiums for their

continued support and technical help dunng the last two years

I also want to thank the people who have helped me morally dunng my research, these

are the group of people who would stoop low enough to call themselves my friends,

and of course my family who, unfortunately for them, had no real say in their

relationship to me

Thanks

Vili

C h a p t e r

1 INTRODUCTION

11 Introduction

After setting the MPEG-1 and MPEG-2 standards, M PEG (Moving Pictures Experts

Group, ISO /IEC Joint Technical Committee 1, Sub Committee 29, Work Group 11) is

now working on a new audio-visual standard, called MPEG-4 While the initial objective

of MPEG-4 was to achieve very low bit-rates, M PEG has adapted the work plan to

changes in the audio-visual environment and modified its targets considerably [4] The

M PEG standard under development now addresses the new demands that arise in a

world in which more and more audio-visual matenal is exchanged in digital form

The first two sets o f M PEG standards (MPEG-1 and MPEG-2) are well known to

people involved in digital communication They are widely adopted in commercial

products, such as CD-interactive, digital audio broadcasting, digital television and many

video-on-demand trials MPEG-1 and -2 deal with ‘frame-based video’ and audio

Although these standards provide a large improvement, in randomly accessing content,

over standards that existed before, the granularity o f the interaction is limited to the

video frame, with its associated audio In this sense, the functionality could be

compared with that o f audio and video cassette players, albeit with non-linear controls

Their most important goal is to make storage and transmission more efficient, by

compressing the matenal The new MPEG-4 standard does not only aim to achieve

efficient storage and transmission, but also to satisfy other needs of future image

communication users To reach this goal, MPEG-4 will be fundamentally different in

nature from its predecessors, as it makes the move towards representing the scene as a

composition of (potentially meaningful) objects, rather than ‘just’ the pixels

j

The most important innovation that MPEG-4 brings is it defines an audio-visual scene

as a coded representation o f ‘audio-visual objects’ that have certain relations in space

and time, rather than Video frames with associated audio’ Depending on the

application, the scene can be composed of 2D or 3D time varying objects 3D scenes

may be composed of 3D, 2D, synthetic and natural objects Such an object could be a

video object a car, a dog, or the complete background It could also be an audio object

one instrument in an orchestra, the barking o f the dog, a voice When an audio and a

video object are associated, audio-visual object results the image of a running dog

together with the sound it makes This new approach to information representation

allows for much more interactivity, for versatile re-use of data, and for intelligent

schemes to manage bandwidth, processing resources (e g memory, computing power)

and error protection It also eases the integration of natural and synthetic audio and

video material, as well as other data types, such as text overlays and graphics

1 2 Research Objectives

The subject of my research was concerned with the scene description and composition

o f the audio-visual objects that are defined in an audio-visual scene In MPEG-4, all

audio-visual objects are multiplexed together at the encoder and transported to the

terminal Once de-multiplexed, these objects are composed at the terminal to construct

and present to the end user a meaningful audio-visual scene The placement of these

elementary audio-visual objects in space and time is descnbed in the Scene Description

The action o f putting these objects together in the same representation space is the

Composition of audio-visual objects

Scene descriptions are coded mdependentiy from streams related to primitive audio­

visual objects Special care is devoted to the identification of the parameters belonging

to the scene description This is done by differentiating parameters that are used to

improve the coding efficiency of an object (eg motion vectors in video coding

algorithm), from those used as modifiers of an object’s charactenstics within the scene

2

r

(e g position of the object in the global scene) The idea was to standardise a syntax that

describes the spatio-temporal relationships of the audio-visual scene objects

The compositor uses this spatio-temporal information to reconstruct the complete

scene Composition information is thus used to synchronise different objects in time,

and to give them the right position in space

During the course of my research I analysed the fundamental principles of bi and tri

dimensional scene description and graphic composition with an interest m how these

principles could be developed to aid m the creation of the MPEG-4 standard My

research also involved the development of an MPEG-4 terminal, which would utilise

the MPEG-4 scene description language and composite the audio-visual objects

described in an audio-visual scene

13 Structure of Thesis

A general overview of the MPEG-4 standard is given in chapter 2 A brief introduction

is given o f how the need to establish a universal, efficient coding standard for different

forms of audio-visual data arose, and the scope and features the standard offers to

authors, service providers and end users This is followed by a technical description of

the various layers l e , Video, Audio, Systems etc, which combine to form M PEG -4 An

overview of the new concepts that have been developed within these layers to create the

standard is given This chapter is designed to give an explanation of how the final

standard is designed to function

The fundamental principles o f bi and tri dimensional graphic composition and

rendering are discussed in chapter 3 The chapter is designed to explain how geometrical

transformations based on matrix mathematics can be used to simplify the composition

of 2D and 3D scenes It is through these transformations that graphics applications can

3

create 2D renditions of 3D objects The chapter also introduces and explains the notion

of an objects’ local co-ordinate system and how a global co-ordinate system, the scene,

can be created by combining different objects co-ordinate systems together Finally

viewing projections of 2D and 3D objects are explained

Chapter 4 introduces the notion of a scene description in the MPEG-4 standard Scene

descriptions are coded independentiy from streams related to primitive audio-visual

objects Special care is devoted to the identification of the parameters belonging to the

scene description This is done by differentiating parameters that are used to improve

the coding efficiency of an object from those used as modifiers of an object’s

characteristics within the scene In keeping with MPEG-4’s objective to allow the

modification of this latter set of parameters without having to decode the primitive

audio-visual objects themselves, these parameters form part o f the scene descnption

and are not part o f the pnmitive audio-visual objects The idea was to standardise a

syntax that describes the spatio-temporal relationships of Scene Objects This chapter is

a detailed analysis of how scene descnption languages function and how the

functionality of the MPEG-4 scene description language has been developed since its

conception We see how the JAVA language was initially used for a flexible form of

scene description language and the development of this language This is followed by an

explanation of the overheads involved in developing a real-time implementation of an

MPEG-4 terminal and how the JAVA environment was too heavy for such

development Finally VRML is introduced as a possible scene description language

The development of the MPEG-4 scene descnption language into a Binary Format for

Scene Descnption (BIFS) and how bi and tn dimensional composition is achieved using

this description is explained in chapter 5 We see the disadvantages of the VRML scene

4

description language for MPEG-4 as well as how VRML was used as a building block

for BIFS The use of the OpenGL API for 2D and 3D composition is also described A

detailed explanation of a developed MPEG-4 player is also given

Chapter 6 gives an account of how the upcoming MPEG-4 standard has been divided

into two versions An overview of the currendy developing version, version 1 which

went to a Committee Draft document in November 1997, is given as well as a timetable

for the future development planned for MPEG-4 versions 1 and 2 A description is

given of how the VRML and MPEG-4 consortiums are converging and the future

prospects for BIFS An explanation of the new dynamic scene descnpdon language,

Adaptive Audio-Visual Session format (AAVS), is also given The chapter finishes with

an analysis of several different types o f applications that the MPEG-4 standard will

enable developers to create

5

C h a p t e r

2 OVERVIEW OF TH E MPEG-4 STANDARD

2 1 Introduction

In this chapter the MPEG-4 standard is introduced The initial section explains how the

demand for MPEG-4 arose, this is followed by an explanation o f what MPEG-4 offers

as a new technology Then a technical description of the various layers l e , Video,

Audio, Systems etc, which combine to form MPEG-4 are introduced and the new

concepts that have been developed within these layers to create the standard are

explained

As the MPEG-4 project description [4] states, a number o f concurrent evolution’s have

created the need for new ways to represent, integrate, and exchange pieces o f audio­

visual information

• the deployment of diverse new two-way delivery systems such as fixed broadband

and mobile narrowband,

• the progress of micro-electronic technology that is providing extremely powerful and

programmable processors, and

• the change o f the audio-visual information production and consumption paradigm,

because of the increased role of synthetic information and higher degrees of

interactivity

The MPEG-4 project aims to establish universal, efficient coding of different forms of

audio-visual data, called audio-visual objects These objects can be of natural or

synthetic origin

6

2 2 Scope and features of the MPEG-4 standard

The MPEG-4 standard under development will provide a set of technologies to satisfy

the needs of authors, service providers and end users alike [21] [22]

• To authors, MPEG-4 will enable the production of content that is more reusable, has

greater flexibility, and can be better protected than possible today with individual

technologies such as digital television, animated graphics, World Wide Web (WWW)

pages and their extensions

• To network service providers; MPEG-4 will offer content transportation mechanisms

that match the Quality of Service (QoS) required by the individual media,

• To end users, MPEG-4 will allow higher levels of interaction with content, within the

limits set by the author, avoiding the risk of proprietary formats and players

MPEG-4 achieves these goals by providing standardised ways to

• Represent units of aural, visual or audio-visual content, called “audio-visual objects”

or AVOs (The very basic unit is more precisely called a “primitive AVO”),

• Compose these objects together, to create compound audio-visual objects (eg an

audio-visual scene),

• Multiplex and synchronise the data associated with AVOs, so that they can be

transported over networks providing a QoS appropriate for the nature of the specific

AVOs,

• Interact with the audio-visual scene generated at the receiver’s end

The next sections illustrate the described functionalities of MPEG-4, using the audio­

visual scene depicted in Figure 1

7

2 3 Representation of primitive Audio-Visual Objects

This audio-visual scene is composed o f several AVOs, organised m a hierarchical

fashion At the leaves of the hierarchy, we find pnmitive AVOs, such as

• a 2-dimensional fixed background,

• the picture of a talking person (without the background)

• the voice associated with that person,

MPEG-4 standardises a number of such primitive AVOs, capable of representing both

natural and synthetic content types, which can be either 2- or 3-dimensiona 1 In addition

to the AVOs mentioned above and shown in Figure 1, MPEG-4 defines the coded

representation of objects like

• talking heads and associated text to be used at the receiver’s end to synthesise the

speech and animate the head,

• animated human bodies,

• subtitles of a scene containing text and graphics

In their coded form, these objects are represented as efficiently as possible This means

that not more information is spent on coding these objects than necessary for

supporting the desired functionalities Such functionality may be error robustness, or

allowing extraction and editing of the object, or having the object available in a scaleable

form It is important to note that the coded representation is able to represent the

object (aural or visual) independently, that is, without surroundings or background

8

2 4 Composition of Audio-Visual Objects

Figure 1 gives an example that highlights the way in which an audio-visual scene in

MPEG-4 is composed o f individual objects The figure contains compound AVOs that

group arbitrary AVOs together For example, the visual object corresponding to the

talking person and the corresponding voice are tied together to form a new compound

AVO Such grouping allows authors to construct complex scenes, and enables

consumers to manipulate meaningful (sets of) objects [26]

audiovisual objects

hierarchically multiplexed
downstream control / data

hierarchically multiplexed
upstream control/data

video
compositor
projection

plane

hypothetical viewer
speaker

user inpi

Figure 1 An example of an MPEG-4 audio-visual scene

9

More generally, MPEG-4 provides a standardised way to compose a scene, allowing for

example to

• place AVOs anywhere in a given co-ordinate system,

• group primitive AVOs in order to form compound AVOs,

• apply streamed data to AVOs, in order to modify their attributes (e g moving texture

belonging to an object, animating a moving head by sending animation parameters),

• change, interactively, the user’s viewing or hearing points anywhere in the scene

2 5 Multiplex and Synchronisation of Audio-Visual Objects

AVO data is conveyed in one or more Elementary Streams The streams are

characterised by the QoS they request for transmission (e g , maximum bit rate, bit error

rate, e tc), as well as other parameters, including stream type information to determine

the required decoder resources and the precision for encoding timing information How

such streaming information is transported in a synchronised manner from source to

destination, exploiting different QoS as available from the network, is specified in terms

of an Access Unit Layer and a conceptual two-layer multiplexer, as depicted in Figure 2

The Access Unit Layer allows identification of Access Units (e g , video or audio frames,

scene description commands) in Elementary Streams, recovery o f the AVO’s or scene

descnption’s time base and enables synchronisation among them The Access Unit

header can be configured in a large number o f ways, allowing use in a broad spectrum

of systems

The “FlexMux” (Flexible Multiplexing) Layer is fully specified by M PEG It contains a

multiplexing tool that allows grouping of Elementary Streams (ESs) with a low

multiplexing overhead This may be used, for example, to group ES with similar QoS

requirements

10

The “TransMux” (Transport Multiplexing) layer in Figure 2 models the layer that offers

transport services matching the requested QoS Only the interface to this layer is

specified by MPEG-4 Any suitable existing transport protocol stack such as

(RTP)/U D P/IP, (AAL5)/ATM, or MPEG-2’s Transport Stream over a suitable link

layer may become a specific TransMux instance The choice is left to the end

user/service provider, and allows MPEG-4 to be used in a wide variety of operation

environments

Use of the FlexMux multiplexing tool is optional and, as shown in Figure 2, this layer

may be bypassed if the underlying TransMux instance provides equivalent functionality

The Access Unit Layer, however, is always present

With regard to Figure 2, it will be possible to

• identify access units, transport timestamps and clock reference information and

identify data loss

11

• optionally interleave data from different ESs into FlexMux Streams

• convey control information to

• indicate the required QoS for each Elementary Stream and FlexMux stream,

• translate such QoS requirements into actual network resources,

• convey the mapping of ESs, associated to AVOs, to FlexMux and TransMux

channels

Part o f the control functionalities will be available only in conjunction with a transport

control entity like the DM IF framework

2 6 Interaction with Audio-Visual Objects

In general, the user observes a scene composed following the design of some author

Depending on the degree of freedom allowed by the author the user has the possibikty

to interact with the scene Operations a user may be allowed to perform include

• changing the viewing/hearing point of the scene (e g by navigation through a scene),

• dragging objects in the scene to a different position, deleting objects from a scene,

• but also more complex kinds of behaviour can be triggered (eg a virtual phone

rings, the user answers and a communication link is established)

2 7 Technical description of the MPEG-4 standard

The remaining sections in this chapter provide a technical description of the major

components of the MPEG-4 standard A more detailed description can be found in [1]

As shown in Figure 3, streams coming from the network (or a storage device) as

TransMux Streams are demultiplexed into FlexMux Streams and passed to appropriate

12

FlexMux demultiplexers that retrieve Elementary Streams This is descnbed in Section

2 9 The ESs are parsed and passed to the appropnate decoders Decoding recovers the

data in an AVO from its encoded form and performs the necessary operations to

reconstruct the original AVO ready for rendering on the appropnate device Audio and

visual objects are represented in their coded form, which is descnbed m sections 2 11

and 2 1 2 respectively The reconstructed AVO is made available to the composition

layer for potential use during scene rendering Decoded AVOs, along with scene

description information, are used to compose the scene as described by the author

Scene description and Composition are explained in Section 213 The user can, to the

extent allowed by the author, interact with the scene that is eventually rendered and

presented Section 214 describes this interaction

13

..............A
N

...........................

e
t
w
0

r
k

L
a
V
e
r

A

■*

V »»Mi»«

Derrultiplex Syntactic
Decoding

/ 0 omBngmBt)
/ » X D os a m a o m o a t }

0\ 0 D B8B0DO0̂

1
a, a* mm nimaHÌ»

Elementary Syntactically
Streams Decoded Streams

Decompression

Rnmtive
AV Objects

Scene Description
(Scnpt or Classes)

Composition
Information

Upstream Data
(User Events Qass Request,)

Conpostion and
Rendering

Hierarchical, Interactive,
Audiovisual Scene

Figure 3 Major components of an MPEG-4 terminal (receiver
side)

2 8 DMIF

The Delivery Multimedia Integration Framework (DMIF) addresses the operation of

multimedia applications over interactive networks, in broadcast environments and from

disks The DMIF architecture is such that applications, which rely on DMIF for

communications, do not have to be concerned with the underlying communications

method The implementation of DMIF takes care of the network details, presenting the

application with a simple interface DMIF is located between the MPEG-4 application

and the transport network as shown m Figure 4 below

14

► = Not present in case of pure broadcast SRM= Session and Resource Management function
 = invoked on demand

Note 1 Includes I/O bus and drivers for DVD in case of local terminal storage

Figure 4 The DMIF Architecture

To the application, DMIF presents a consistent interface irrespective of whether

MPEG-4 streams are received by interacting with a remote interactive DMIF peer over

networks and/or by interacting with broadcast or storage media An interactive DMIF

peer as shown in Figure 4, is an end-system on a network that can originate a session

with a target peer A target peer can be an interactive peer, a set of broadcast MPEG-4

streams or a set of stored MPEG-4 files

An MPEG-4 application through the DMIF interface can establish a multiple peer

application session Each peer is identified by a unique address A peer may be a remote

interactive peer over a network or can be pre-cast (over broadcast or storage media) An

interactive peer irrespective of whether it initiated the session can select a service, obtain

a scene description and request specific streams for AVOs from the scene to be

transmitted with the appropriate QoS

The MPEG-4 application can request from DMIF the establishment of channels with

specific QoSs and bandwidths for each elementary stream DM IF ensures the timely

15

establishment of the channels with the specified bandwidths while preserving the QoSs

over a variety of intervening networks between the interactive peers DM IF allows each

peer to maintain its own view of the network, thus reducing the number of stacks

supported at each terminal

Control of DMIF spans both the FlexMux and the TransMux layers shown in Figure 2

In the case of FlexMux, DMIF provides 'control of the establishment of FlexMux

channels In the case of TransMux, DMIF uses an open interface, which accommodates

existing and future networks through templates called connection resource descriptors

MPEG-4 will offer a transparent interface with signalling primitive semantics These

MPEG-4 semantics at the interface to DMIF are interpreted and translated into the

appropriate native signalling messages o f each network, with the help of relevant

standards bodies having the appropriate jurisdiction In the area of QoS, MPEG-4

provides a first step towards defining a generic QoS parameter set for media at the

DMIF interface The exact mapping for these translations are beyond the scope of

MPEG-4 and are left to be defined by network providers

The DM IF SRM functionality in Figure 4 encompasses the MPEG-2 DSM-CC SRM

functionality However, unlike DSM-CC, DMIF allows the choice whether or not to

invoke SRM DMIF provides a globally unique network session identifier, which can be

used to tag the resources and log their usage for subsequent billing

In a typical operation an end-user may access AVOs distributed over a number of

remote interactive peers, broadcast and storage systems The initial network connection

to an interactive peer may consist of a best effort connection over a ubiquitous network

If the content warrants it, the end-user may seamlessly scale up the quality by adding

enhanced AVO streams over connection resources with guaranteed QoS

i

16

2 9 Demultiplexing, buffer management and time identification

Individual Elementary Streams have to be retrieved from incoming data from some

network connection or a storage device Each network connection or file is

homogeneously considered a TransMux Channel m the MPEG-4 system model The

demultiplexing is partially or completely done by layers outside the scope of MPEG-4,

depending on the application For the purpose of integrating MPEG-4 in system

environments, the Stream Multiplex Interface (see Figure 2) is the reference point

Adaptation Layer-packedzed Streams are delivered at this interface The FlexMux Layer

specifies the optional FlexMux tool The TransMux Interface specifies how either AL-

packetized Streams (no FlexMux used) or FlexMux Streams are to be retrieved from the

TransMux Layer This is the interface to the transport functionalities not defined by

M PEG The data part of the interfaces is considered here while the control part is dealt

with by DMIF

In the same way that MPEG-1 and MPEG-2 described the behaviour o f an idealised

decoding device along with the bitstream syntax and semantics, MPEG-4 defines a

System Decoder Model This allows the precise definition of the terminal’s operation

without making unnecessary assumptions about implementation details This is essential

in order to give implementers the freedom to design real MPEG-4 terminals and

decoding devices in a vanety of ways These devices range from television receivers,

which have no ability to communicate with the sender, to computers, which are fully

enabled with bi-directional communication Some devices will receive MPEG-4 streams

over isochronous networks while others will use non-isochronous means (eg , the

Internet) to exchange MPEG-4 information The System Decoder Model provides a

common model on which all implementations of MPEG-4 terminals can be based

The specification of a buffer and timing models is essential to encoding devices which

may not know ahead of time what the terminal device is or how it will receive the

encoded stream Though the MPEG-4 specification will enable the encoding device to

17

inform the decoding device of resource requirements, it may not be possible, as

indicated earlier, for that device to respond to the sender It is also possible that an

MPEG-4 session is received simultaneously by widely different devices, it will, however,

be properly rendered according to the capability of each device

2 9 1 Demultiplexing

The retrieval of incoming data streams from network connections or storage media

consists of two tasks First, the channels must be located and opened This requires a

transport control entity, e g , DMIF Second, the incoming streams must be properly

demultiplexed to recover the Elementary Streams from downstream channels (incoming

at the receiving terminal) In interactive applications, a corresponding multiplexing stage

will multiplex upstream data in upstream channels (outgoing from the receiving

terminal) These elementary streams carry either AVO data, scene description

information, or control information related to AVOs or to system management

The MPEG-4 demultiplexing stage is specified in terms of a conceptual two-layer

multiplexer consisting of a TransMux Layer and a FlexMux Layer as well as an Access

Unit Layer that conveys synchronisation information

The genenc term ‘TransMux Layer’ is used to abstract any underlying multiplex

functionality - existing or future - that is suitable to transport MPEG-4 data streams

Note that this layer is not defined in the context of MPEG-4 Examples are MPEG-2

Transport Stream, H 223, ATM AAL 2, IP /U D P The TransMux Layer is modelled as

consisting of a protection sublayer and a multiplexing sublayer indicating that this layer

is responsible for offenng a specific QoS Protection sublayer functionality includes

error protection and error detection tools suitable for the given network or storage

medium In some TransMux instances, it may not be possible to separately identify

these sublayers

18

In any concrete application scenano one or more specific TransMux Instances will be

used Each TransMux demultiplexer gives access to TransMux Channels The

requirements on the data interface to access a TransMux Channel are the same for all

TransMux Instances They include the need for reliable error detection, delivery, if

possible, o f erroneous data with a suitable error indication and framing of the payload,

which may consist of either AL-packetnzed streams or FlexMux streams These

requirements are summarised in an informative way in [5]

The FlexMux layer, on the other hand, is completely specified by M PEG It provides a

flexible, low overhead, low delay tool for interleaving data that may optionally be used

and is especially useful when the packet size or overhead o f the underlying TransMux

instance is large The FlexMux is not itself robust to errors and can either be used on

TransMux Channels with a high QoS or to bundle Elementary Streams that are equally

error tolerant The FlexMux requires reliable error detection and sufficient framing o f

FlexMux packets (for random access and error recovery) from the underlying layer

These requirements are summarised m the Stream Multiplex Interface, which defines

the data access to individual transport channels The FlexMux demultiplexer retrieves

AL-packetazed streams from FlexMux Streams

The Access Unit Layer has a minimum set of tools for consistency checking, and

padding to convey time base information and to carry time stamped Access Units of an

Elementary Stream Each packet consists of one Access Unit or a fragment o f an

Access Unit These time stamped Access Units form the only semantic structure of

Elementary Streams that is visible on this layer The AU Layer requires reliable error

detection and framing of each individual packet from the underlying layer, which can be

accomplished, e g , by using the FlexMux How the compression layer can access data is

summarised in [5] The AU Layer retneves Elementary Streams from AL-packetized

Streams

19

To be able to relate Elementary Streams to AVOs within a scene, Object Descriptors

and StreamMapTables are used Object Descriptors convey information about the

number and properties o f Elementary Streams that are associated to particular AVOs

The StreamMapTable links each stream to a ChannelAssociationTag that serves as a

handle to the channel that carries this stream Resolving ChannelAssociationTags to the

actual transport channel as well as the management of the sessions and channels is

addressed by the DMIF part o f the MPEG-4 standard

2 9 2 Buffer Management

To predict how the decoder will behave when it decodes the various elementary data

streams that form an MPEG-4 session, the Systems Decoder Model enables the

encoder to specify and monitor the minimum buffer resources that are needed to

decode a session The required buffer resources are conveyed to the decoder within

Object Descnptors during the set-up of the MPEG-4 session, so that the decoder can

decide whether it is capable of handling this session

AL A ttest Unit Layer EB Elementary Stream Buffer AVO Dec AVO Decoder
CB Composition Buffer

Figure 5 Buffer architecture of the System Decoder Model

By managing the finite amount of buffer space the model allows a sender, for example,

to transfer non real-time data ahead of time, if sufficient space is available at the receiver

side to store it The pre-stored data can then be accessed when needed, allowing at that

time real-time information to use a larger amount of the channel’s capacity if so desired

20

V

2 9 3 Time Identification

For real time operation, a timing model is assumed in which the end-to-end delay from

the signal output from an encoder to the signal input to a decoder is constant

Furthermore, the transmitted data streams must contain implicit or explicit timing

information There are two types of timing information The first is used to convey the

speed of the encoder clock, or time base, to the decoder The second, consisting o f time

stamps attached to portions of the encoded AV data, contains the desired decoding

time for Access Units or composition and expiration time for Composition Units This

information is conveyed in AL-PDU Headers generated in the Access Unit Layer With

this timing information, the inter-picture interval and audio sample rate can be adjusted

at the decoder to match the encoder’s inter-picture interval and audio sample rate for

synchronised operation

Different AVOs may be encoded by encoders with different time bases, with the

accompanying slighdy different speed It is always possible to map these time bases to

the time base of the receiving terminal In this case, however, no real implementation of

a receiving terminal can avoid the occasional repetition or drop of AV data, due to

temporal aliasing (relative reduction or extension of their time scale)

Although systems operation without any timing information is allowed, defining a

buffering model is not possible

2 10 Syntactic decoding

MPEG-4 defines a syntactic description danguage to describe the exact binary syntax of an

AVO’s bitstream representation as well as that of the scene descnption information

This language is an extension of C++, and is used to describe the syntactic representation

o f objects and the overall AVO class definitions and scene description information in

an integrated way A more detailed description can be found in [6]

21

I

2 11 Coding of Audio Objects

MPEG-4 coding of audio objects provides tools for representing natural sounds (such

as speech and music) and for synthesising sounds based on structured descriptions The

representations provide compression and other functionalities, such as scalability or

playing back at different speeds The representation for synthesised sound can be

formed by text or instrument descriptions and by coding parameters to provide effects

such as reverberation and spadalizadon [30]

2 111 'Natural Sound

MPEG-4 standardises natural audio coding at bit-rates ranging from 2 kbit/s up to 64

kbit/s The presence of the MPEG-2 AAC standard within the MPEG-4 tool set will

provide for general compression of audio in the upper bit rate range In order to

achieve the highest audio quality within the full range of bit-rates and at the same time

provide the extra functionalities, three types of coder have been defined The lowest bit-

rate range is covered by parametnc coding techniques Speech coding uses Code

Excited Linear Predictive (CELP) For bit-rates starting below 16 kbit/s, time to

frequency (T/F) coding techniques, namely the TwinVQ and AAC codecs, are applied

This is illustrated in Figure 6

22

Satellite Cellular phone Internet
Secure com
4 ------------------- M ---►

2 4 6 8 10 12 14 16 24 Bit-rate (kbes) 32 48

Scalable Coder

Parametric coder

CELP coder

T/F coder

4 kHz 8 kHz TvDtcal Audio bandwidth 20 kHz
Figure 6 General block diagram o f MPEG-4 Audio

2 112 Synthesised Sound

Decoders are also available for generating sound based on structured inputs Text input

is converted to speech in the Text-To-Speech (ITS) decoder, while more general

sounds including music may be normatively synthesised Synthetic music may be

delivered at extremely low bit-rates while still describing an exact sound signal

Text To Speech TTS allows a text or a text with prosodic parameters (pitch contour,

phoneme duration, and so on) as its inputs to generate intelligible synthetic speech

Score Driven Synthesis The Structured Audio Decoder decodes input data and

produces output sounds This decoding is dnven by a special synthesis language called

SAOL (Structured Audio Orchestra Language) standardised as part o f MPEG-4

ISDN

64

23

MPEG-4 does not standardise “a method” of synthesis, but rather a method of

describing synthesis A more detailed description of the coding of audio objects can be

found in [7]

2 11 3 Effects

As well as being used for defining instruments, the SAOL language is used to describe

special processing effects for use in the MPEG-4 Systems Binary Format for Scene

Description The Audio BIFS system processes decoded audio data to provide an

output data stream that has been manipulated for special effects with timing accuracy

consistent with the effect and the audio sampling rate

212 Coding of Visual Objects

Visual objects can be either of natural or of synthetic ongin

2 12 1 Natural Textures, Images and Video

The tools for representing natural video in the MPEG-4 visual standard aim at

providing standardised core technologies allowing efficient storage, transmission and

manipulation of textures, images and video data for multimedia environments These

tools will allow the decoding and representation of atomic units of image and video

content, called “video objects” (VOs) An example of a VO could be a talking person

(without background) which can then be composed with other AVOs to create a scene

Conventional rectangular imagery is handled as a special case of such objects [24] [25]

In order to achieve this broad goal the MPEG-4 standard provides solutions in the

form of tools and algonthms for

• efficient compression o f images and video

• efficient compression of textures for texture mapping on 2D and 3D meshes

• efficient compression of implicit 2D meshes

24

• efficient compression of time-varying geometry streams that animate meshes

• efficient random access to all types of visual objects

• extended manipulation functionality for images and video sequences

• content-based coding of images and video

• content-based scalability of textures, images and video

• spatial, temporal and quality scalability

• error robustness and resilience in error prone environments

v

The visual part of the MPEG-4 standard will provide a toolbox containing tools and

algorithms bringing solutions to the above mentioned functionalities and more

2 12 2 Synthetic Objects

Synthetic objects form a subset of the larger class of computer graphics, as an initial

focus the following visual synthetic objects will be described [23] [27]

• Parametric descriptions of

• a synthetic description of human face and body

• animation streams of the face and body

• Static and Dynamic Mesh Coding with texture mapping

• Texture Coding for View Dependent applications

25

212 2 1 facial animation

The shape, texture and expressions o f the face are generally controlled by the bitstream

containing instances of Facial Definition Parameter (FDP) sets and/or Facial Animation

Parameter (FAP) sets Initially the Face object contains a generic face with a neutral

expression If FDPs are received, they are used to transform the generic face into a

particular face determined by its shape and (optionally) texture Optionally, a complete

face model can be downloaded via the FDP set as a scene graph for insertion in the face

node The Face object can also receive local controls that can be used to modify the

look or behaviour of the face locally by a program or by the user

2 12 2 2 body animation

The Body object is capable o f producing virtual body models and animations in the

form of a set of 3D polygon meshes ready for rendering Two sets of parameters are

defined for the body Body Definition Parameter (BDP) set, and Body Animation

Parameter (BAP) set The BDP set defines the set of parameters to transform the

default body to a customised body with its body surface, body dimensions, and

(optionally) texture The Body Animation Parameters (BAPs) will produce body posture

and animation on different body models No assumption is made and no limitation is

imposed on the range o f motion of joints

2 12 2 3 2D animated meshes

A 2D mesh is a tessellation (or partition) of a 2D planar region into polygonal patches

The vertices of the polygonal patches are referred to as the node points o f the mesh

M PEG4 considers only triangular meshes where the patches are triangles Triangular

meshes have long been used for efficient 3D object shape (geometry) modelling and

rendering in computer graphics 2D-mesh modelling may be considered as projection of

such 3D tnangular meshes onto the image plane An example of a 2D mesh is depicted

m Figure 7

26

Figure 7 2D mesh modelling of the "Akiyo" video object

The attractiveness o f 2D mesh modelling is that it is able to model the shape (polygonal

approximation of the object contour) and motion of a VOP in a unified framework,

which is also extensible to the 3D object modelling when data to construct such models

is available In particular, the 2D-mesh representation of video objects enables the

following functionalities

• Video Object Manipulation

• Video Object Compression

• Content-Based Video Indexing

2 1 224 Generic 3D meshes

The MPEG-4 visual standard will support generic meshes to represent synthetic 3D

objects The toolbox will provide algorithms for

• Efficient compression of generic meshes

• (Level O f Detail) scalability of 3D meshes

• Spatial scalability

27

2 1 2 2 5 mew dependent scalability

The view-dependent scalability enables scalability of stream texture maps that are used

in realistic virtual environments It consists in taking into account the viewing position

in the 3D virtual world in order to transmit only the most visible information

2 123 Structure of the tools for representing Natural Video

The MPEG-4 image and video coding algonthms will give an efficient representation of

visual objects of arbitrary shape, with the goal to support so-called content-based

functionalities It will also support MPEG-1 and MPEG-2

A basic classification of the bit rates and functionalities currently provided by the

MPEG-4 visual standard for natural images and video is depicted in Figure 8 below,

with the attempt to cluster bit-rate levels versus sets of functionalities

functionalities

Figure 8 Classification of the MPEG-4 Image and Video Coding
Algonthms and Tools

At the bottom end a ‘VLBV Core” (VLBV Very Low Bit-rate Video) provides

algorithms and tools for applications operating at bit-rates typically between 5 64

kbits/s The basic applications specific functionalities supported by the VLBV Core

include

28

• VLBV coding of conventional rectangular size image sequences with high coding

efficiency and high error robustness/resilience, low latency and low complexity for

real-time multimedia communications applications, and

• provisions for “random access” and “fast forward” and “fast reverse” operations for

VLB multimedia database storage and access applications

The same basic functionalities outlined above are also supported at higher bit-rates

Content-based functionalities support the separate encoding and decoding of content This

provides the most elementary mechanism for interactivity, flexible representation and

manipulation w ith /of VO content of images or video in the compressed domain,

without the need for further segmentation or transcoding at the receiver

2 12 4 Support for Conventional and Content-Based Functionalities

The MPEG-4 Video standard will support the decoding o f conventional rectangular

images and video as well as the decoding of images and video of arbitrary shape As in

Figure 9 below

MPEG-4 VLBV Core Coder

bitstream
(Similar to H 263/MPEG 1)

Generic MPEG-4 Coder

bitstream

Figure 9 VLBV Core and the Generic MPEG-4 Coder

The coding of conventional images and video is achieved similar to conventional

MPEG-1 /2 coding and involves motion prediction/compensation followed by texture

29

coding For the content-based functionalities, where the image sequence input may be

o f arbitrary shape and location, this approach is extended by also coding shape and

transparency information

2 12 5 Robustness in Error Prone Environments

MPEG-4 provides error robustness and resilience to allow accessing image or video

information over a wide range of storage and transmission media In particular, due to

the rapid growth of mobile communications, it is extremely important that access is

available to audio and video information via wireless networks This implies a need for

the useful operation of audio and video compression algonthms in error-prone

environments at low bit-rates (1 e , less than 64 Kbps)

A more detailed description of the coding of visual objects can be found in [8]

2 13 Scene description

In addition to providing support for coding individual objects, MPEG-4 also provides

facilities to compose a set o f such objects into a scene The necessary composition

information forms the scene description, which is coded and transmitted together with

theAVOs

In order to facilitate the development of authoring, manipulation, and interaction tools,

scene descriptions are coded independendy from streams related to pnmitive AVOs

Special care is devoted to the identification of the parameters belonging to the scene

descnption This is done by differentiating parameters that are used to improve the

coding efficiency of an object (e g , motion vectors in video coding algonthms), and the

ones that are used as modifiers of an object (eg , the position of the object in the

scene) Since MPEG-4 should allow the modification of this latter set o f parameters

without having to decode the pnmitive AVOs themselves, these parameters are placed

in the scene description and not in primitive AVOs

30

The following list gives some examples of the information described in a scene

description

How objects are grouped together An MPEG-4 scene follows a hierarchical

structure, which can be represented as a directed acyclic graph Each node of the graph

is an AVO, as illustrated in Figure 10 (note that this tree refers back to Figure 1) The

tree structure is not necessarily static, node attributes (e g , positioning parameters) can

be changed while nodes can be added, replaced, or removed

Figure 10 Logical structure of a scene

How objects are positioned in space and time In the MPEG-4 model, audio-visual

objects have both a spatial and a temporal extent Each AVO has a local co-ordinate

system A local co-ordinate system for an object is one m which the object has a fixed

spatio-temporal location and scale The local co-ordinate system serves as a handle for

manipulating the AVO in space and time AVOs are positioned in a scene by specifying

a co-ordinate transformation from the object’s local co-ordinate system into a global co­

ordinate system defined by one or more parent scene description nodes in the tree

Attribute Value Selection Individual AVOs and scene descnption nodes expose a set

of parameters to the composition layer through which part o f their behaviour can be

controlled Examples include the pitch o f a sound, the colour for a synthetic object,

activation or deactivation of enhancement information for scaleable coding, etc

Other transforms on AVOs The scene descnption structure and node semantics are

heavily influenced by VRML, including its event model This provides MPEG-4 with a

very nch set o f scene construction operators, including graphics pnmitives that can be

used to construct sophisticated 2D and 3D scenes

2 14 User interaction

MPEG-4 allows for user interaction with the presented content This interaction can be

separated into two major categones client-side interaction and server-side interaction

Client-side interaction involves content manipulation, which is handled locally at the

end-user’s terminal, and can take several forms In particular, the modification of an

attnbute o f a scene descnption node, e g , changing the position of an object, making it

visible or invisible, changing the font size of a synthetic text node, e tc , can be

implemented by translating user events (e g , mouse clicks or keyboard commands) to

scene description updates The MPEG-4 terminal can process the commands in exacdy

the same way as if they onginated from the original content source As a result, this type

of interaction does not require standardisation

Other forms of client-side interaction require support from the scene descnption

syntax, and are specified by the standard The use of the VRML event structure

provides a rich model on which content developers can create compelling interactive

content

Server-side interaction involves content manipulation that occurs at the transmitting

end, initiated by a user action This, o f course, requires that a back channel is available

32

C h a p t e r

3 COMPOSITION & RENDERIN G OF BI & TRI DIMENSIONAL OBJECTS

3 1 Introduction

An MPEG-4 scene contains coded objects of a 2 and 3 dimensional nature In addition

to providing support for the coding o f the individual objects, the composition o f such

objects into a scene has been considered This scene description information has been

coded mdependendy from the coding of the objects in order to allow the modification

of this former set o f parameters without having to decode the primitive AVOs

themselves

This chapter introduces the fundamental principles of bi and tri dimensional graphic

composition and rendering The chapter is designed to explain how geometrical

transformations based on matrix mathematics can be used to simplify the composition

of 2D and 3D scenes It is through these transformations that graphics applications can

create 2D renditions of 3D objects The chapter also introduces and explains the notion

o f an objects’ local co-ordinate system and how a global co-ordinate system, the scene,

can be created by combining different objects co-ordinate systems together Finally

viewing projections o f 2D and 3D objects are explained

3 2 Geometrical Transformations

3 2 1 2D Transformations

We can translate points in the (x,y) plane to new positions by adding translation amounts

to the co-ordinates of the points For each point P(x,y) to be moved by d̂ units parallel

to the x axis and by d̂ units parallel to the y axis to the new point P '^ y ') , we can write

x ' = x + dx, / = y + d } (31)

33

If we define the column vectors

X x' dx
,P '= J =

X

y _y'_
(3 2)

then (3 1) can be expressed more concisely as

f = p + r (3 3)

We could translate an object by applying Eq (3 1) to every point of the object Because

each line m an object is made up o f an infinite number o f points, however, this process

would take an infinitely long time Fortunately, we can translate all the points on a line

by translating only the line’s endpoints and by drawing a new line between the translated

endpoints, this is also true of scaling and rotation

Points can be scaled by sx along the x axis and by sy along the y axis into new points by

the multiplications

J t = S r j c , y = sy y (3 4)

In matrix form, this is

V

i

o
i

X

_ y _ i
o y_

or P = S P (3 5)

where S is the matrix in Eq (3 5)

Points can be rotated through an angle 0 about the ongin A rotation is defined

mathematically by

x'= x cos6 - y sin0, y ' - x sin0 + ;y cos0 (3 6)

34

In matrix form, we have

' x ' ~

y _

cos 6 - s in 6

sin# cos#
or P ' = R P (3 7)

where R is the rotation matrix in Eq (3 7) Both the scaling and rotation matrices work

about the origin Positive angles are measured counterclockwise from x toward y For

negative (clockwise) angles, the identities cos(-0) = cos0 and sin(-0) = -sin0 can be used

to modify Eqs (3 6) and (3 7)

Figure 11 Derivation of the rotation equation

Equation (3 5) is easily derived from Figure 11, in which a rotation by 0 transforms

P(x,y) into P,(x,,y') Because the rotation is about the origin, the distances from the

origin to P and to Pf, labelled r in Figure 11, are equal By simple trigonometry, we find

that

x - r cos 0, y = r sin <j) (3 8)

and

x ' = r cos(0 + 0) = r cos0 cosQ - r sin0 sin0,

y ' = r sin(0 + 0) ~ r cos 0 sin d + r sin (j) cos 0
(3 9)

35

/

Substituting Eq (3 8) into Eq (3 9) yields Eq(3 6)

3 2 2 Homogeneous co-ordinates and matrix representation of 2D transformations

Unfortunately, translation is treated differendy (as an addition) from scaling and rotation

(as multiplications) If points are expressed in homogeneous co-ordinates, all three

transformations can be treated as multiplications In homogeneous co-ordinates, we add

a third co-ordinate to a point Instead of being represented by a pair of numbers (x,y),

each point is represented by a triple (x,y,W) At the same time, we say that two sets o f

homogeneous co-ordinates (x,y,W) and (x^y^W) represent the same point if and only if

one is a multiple of the other Thus (2,3,6) and (4,6,12) are the same points represented

by different co-ordinate triples That is, each point has many different homogeneous co­

ordinates representations Also, at least one of the homogeneous co-ordinates must be

nonzero (0,0,0) is not allowed If the W co-ordinate is nonzero, we can divide through

by it (x,y,W) represents the same point as (x/W, y/W ,l) When W is nonzero, we

normally do this division, and the numbers x /W and y/W are called the Cartesian co­

ordinates of the homogeneous point The points with W = 0 are called the points at

infinity

Triples of co-ordinates typically represent points in 3-space, but here we use them to

represent points in 2-space The connection is this If we take all the tnples representing

the same point - that is, all triples o f the form (tx, ty, tW), with t ^ 0 - we get a line m 3-

space Thus, each homogeneous point represents a line in 3-space If we homogenise the

point (divide by W), we get a point of the form (x,y,l) Thus, the homogenised points

form the plane defined by the equation W =1 in (x,y,W) -space

Because points are now three-element row vectors, transformation matrices, which

multiply a point vector to produce another vector, must be 3 X 3 In the 3 X 3 matrix'

form for homogeneous co-ordinates, the translation equations Eq (31) are

36

X i 0 dx
\

y - 0 1 <
i _ 0 0 1

(310)

The scaling equations Eq (3 4) are represented in matrix form as

x' 0 o ’ X
y =

ocrTO
y

_ i _ i

oo1
(311)

The rotation equations Eq (3 6) can be represented as

x' cos# - sin0 0

y = sin 6 COS0 0 y (312)
i 0 0 1 l

3 2 3 Composition of 2D transformations

The basic purpose of composing transformations is to gain efficiency by applying a

single composed transformation to a point, rather than applying a senes of

transformations, one after the other

Consider the rotation of an object about some arbitrary point Pt Because we know how

to rotate only about the origin, we convert our original problem into three separate

problems Thus, to rotate about Pl5 we need a sequence of three fundamental

transformations

• Translate such that is at the ongin

• Rotate

• Translate such that the point at the ongin returns to Pj

37

The first translation is by (-xl, -yl), whereas the later translation is by the inverse (xl,

yl) The net transformation is

T(X],y i) R(0) T(- xx - y ,) =

1 0

0 1

0 0

sin# cos 6
0 0

" l 0
~ x \

1 0 1

0 0 1

cos# - sin 6 JCj (1—cosfl) + y l sm 6

sin# cos# ^ ,(1-0 0 8 0)-^ sin0
0 0 1

A similar approach would be used to scale an object about an arbitrary point PI First,

translate such that PI goes to the ongin, then scale, then translate back to PI

(313)

T(X\>y\) S (sx>sy) T{ - xx - y x)

1 0 Xj

0 1 *

0 0 1

Sx 0 0

0 0

0 0 1

1 0 - X j

0 1

0 0 1

î, o j c . a - s j
0 i , y i O - s ,)

0 0

(314)

3 2 4 The mndow-to-mewport transformation

Some graphics packages allow the programmer to specify output primitive co-ordinates

in a floating-point world co-ordinate system, using whatever units are meaningful to the

application program The term world is used because the application program is

lepresenting a world that is being interactively created or displayed to the user

Given that output primitives are specified in world co-ordinates, the graphics

subroutine package must be told how to map world co-ordinates onto screen co­

ordinates This is done by specifying a rectangular region in world co-ordinates, called

the world co-ordinate window, and a corresponding rectangular region in screen co­

ordinates, called the menport, into which the world co-ordinate window is to be mapped

38

The transformation that maps the window into the viewport is applied to all of the

output primitives in world co-ordinates, thus mapping them into screen co-ordinates If

the window and viewport do not have the same height-to-width ratio, a non-uniform

scaling occurs If the application program changes the window or viewport, then new

output primitives drawn onto the screen will be affected by the change

Given a window and a viewport the transformation matrix that maps the window from

world co-ordinates into the viewport m screen co-ordinates is as follows The window,

specified by its lower-left and upper-right corners, is first translated to the ongin o f

world co-ordinates Next, the size of the window is scaled to be equal to the size of the

viewport Finally, a translation is used to position the viewport The overall matrix

is

1 0 U m

0 1

0 0 1

X — v
max mm

^ r r n x ^ m i n ^ m a x ^ m i n

V ^m ax ^m m 3* max 3 ̂mm /
T { - Xm n ~ y mn)

^ m a x ^ m i n

0

0

0

v — vmax mm

y max y mm

o

v — Vmax min

y max 3 ̂nun

0

.x “ ■■HSi . - “ ™

■ ^ m a x ^ r r a n

1 0 ~Xmn
0 1 ~y nun

0 0 1

- y
v — vmax Kmm

+ Vmm y max 3 ̂mm

1
(315)

Multiplying P —M^v[x y 1]T gives the expected result

P = (x - x mn)
u — umax mn

(y-ym) v"" Vmn+v-mn ■> r mn
y nux y mn

(316)

39

3 2 5 Matrix representation of 3D transformations

Just as 2D transformations can be represented by 3 X 3 matrices using homogeneous

co-ordinates, so 3D transformations can be represented by 4 X 4 matrices, providing we

use homogeneous co-ordinate representations of points in 3-space as well Thus, instead

of representing a point as (x,y,z), we represent it as (x,y,z,W), where two of these

quadruples represent the same point if one is a nonzero multiple of the other, the

quadruple (0,0,0,0) is not allowed As in 2D, a standard representation of a point

(x,y,z,W) with W ^ 0 is given by (x/W ,y/W ,z/W ,l) Transforming the point to this

form is called homogenising Also, points whose W co-ordinate is zero are called points

at infinity There is a geometrical interpretation as well Each point in 3-space is being

represented by a line through the origin in 4-space, and the homogenised

representations o f these points form a 3D subspace of 4-space which is defined by the

single equation W — 1 The 3D co-ordinate system is right-handed hence positive

rotations are such that, when looking from a positive axis toward the origin, a 90°

counterclockwise rotation will transform one positive axis into the other

Translation in 3D is a simple extension from that in 2D

T (d „ d „ d z) =

1 0 0 d x

0 1 0 *>
0 0 1

0 0 0 1

(317)

Scaling is similarly extended

S (s x ^ y9sz) =

0 0 0

0 0 0

0 0 0

0 0 0 1

(318)

40

Rotations for z,x, and y axis's are respectively

R M

cos6 - s in 6 0 0

sin0 cosG 0 0

0 0 1 0

0 0 0 1

cos0 0 sin# 0

0 1 0 0
-s in fl 0 cos6 0

0 0 0 1

R M =

1 0 0 0
0 COS0 -s in 0 0
0 sin 0 cos# 0
0 0 0 1

(319)

3 2 6 Transformations as a change in co-ordinate system

When we have multiple objects, each defined in its own local co-ordinate system, and

we want to combine them so as to express these objects' co-ordinates in a single, global

co-ordinate system it is useful to think of transformations as changes in co-ordinate

systems

If we define as the transformation that converts the representation of a point in

co-ordinate system j into its representation in co-ordinate system l We define P® as the

representation of a point in co-ordinate system l, P® as the representation of a point in

co-ordinate system j, and P ^ as the representation of a point in co-ordinate system k,

then,

P 0) = P (j) and pM = M ^ k P a) (3 20)

Substituting,

= M P (J) = M P (k) = M lt_k P w (3 21)

So

41

M Jt_k

So we can think of each object as being defined in its own co-ordinate system and then

being scaled, rotated, and translated by redefinition of its co-ordinates in the new world-

co-ordinate system
*

3 3 Viewing in 3D

The 3D viewing process is inherently more complex than the 2D viewing process In

2D, we simply specify a window on the 2D world and a viewport on the 2D view

surface Conceptually, objects in the world are clipped against the window and are then

transformed into the viewport for display The extra complexity o f 3D viewing is caused

in part by the added dimension and in part by the fact that display devices are only 2D

The solution to the mismatch between 3D objects and 2D displays is accomplished by

introducing projectionsy which transform 3D objects onto a 2D projection plane

In 3D viewing, we specify a view volume in the world, a projection onto a projection

plane, and a viewport on the view surface Conceptually, objects in the 3D world are

clipped against the 3D view volume and are then projected The contents of the

projection of the view volume onto the projection plane, called the window, are then

transformed into the viewport for display Figure 12 shows this conceptual model of the

3D viewing process

3D world- Clipped 2D device
co-ordinate world co- output co
primitives ordinates ordinates

Figure 12 Conceptual model of the 3D viewing
process

42

3 3 1 Projections

In general, projections transform points in a co-ordinate system of dimension n into

points m a co-ordinate system of dimension less than n The projection of a 3D object is

defined by straight projection rays emanating from a centre of projection̂ passing through

each point o f the object, and intersecting a projection plane to form the projection Figure

13 shows two different projections of the same line

Projectors

rojection
plane

Centre of
projection

(a)

projection
at infinity

(b)

Figure 13 (a) Line AB and its perspective projection A’B5 (b)
Line AB and its parallel projection A ’B’ Projectors AA’ and BB’

are parallel

Projections can be divided into two basic classes perspective and parallel The

distinction is in the relation of the centre of projection to the projection plane If the

distance from one to the other is finite, then the projection is perspective if the distance

is infinite, the projection is parallel

When defining a perspective projection, we explicitly specify its centre of projection, for a

parallel projection, we give its direction of projection The centre of projection, being a

43

point, has homogenous co-ordinates of the form (x,y,z,l) Since the direction of

projection is a vector (1 e , a difference between points), it can be computed by

subtracting two points d = (x,y,z,l) - (x’,y’,z’,l) = (a,b,c,0) Thus, directions Midpoints at

infinity correspond in a natural way A perspective projection whose centre is a point at

infinity becomes a parallel projection

The visual effect o f a perspective projection is similar to that o f photographic systems

and of the human visual system, and is known as perspective foreshortening The size of the

perspective projection of an object varies inversely with the distance of that object from

the centre o f projection Thus, although the perspective projection of objects tend to

look realistic, it is not particularly useful for recording the exact shape and

measurements of the objects, distances cannot be taken from the projection, angles are

preserved only on those faces of the object parallel to the projection plane, and parallel

lines do not in general project as parallel lines

The parallel projection is a less realistic view because perspective foreshortening is

lacking, although there can be different constant foreshortening along each axis The

projection can be used for exact measurements and parallel lines do remain parallel As

with the perspective projection, angles are preserved only on faces of the object parallel

to the projection plane

3 3 2 Perspective Projections

The perspective projections of any set o f parallel lines that are not paiallel to the

projection plane converge to a vanishing point In 3D, the parallel lines meet only at

infinity, so the vanishing point can be thought of as the projection of a point at infinity

There is o f course an infinity of vanishing points, one for each of the infinity of

directions in which a line can be oriented

If the set o f lines is parallel to one of the three pnncipal axes, the vanishing point is

called an axis vanishing point There are at most three such points, corresponding to the

44

number of principal axes cut by the projection plane Perspective projections are

categorised by their number of principal vanishing points and therefore by the number

o f axes the projection plane cuts

3 3 3 Parallel Projections

Parallel projections are categorised into two types, depending on the relation between

the direction of projection and the normal to the projection plane In orthographic parallel

projections, these directions are the same, so the direction of projection is normal to the

projection plane

Axonometnc orthographic projections use projection planes that are not normal to the

principal axis and therefore show several faces of an object at once They differ from

perspective projections in that the foreshortening is uniform rather than being related to

the distance from the centre of projection Parallelism of lines is preserved but angles

are not Oblique projections, the second class of parallel projections, differ from

orthographic projections in that the projection-plane normal and the direction o f

projection differ The projection plane is normal to a principal axis, so the projection of

the face of the object parallel to this plane allows measurement of angles and distances

Other faces of the object project also, allowing distances along pnncipal axes, but not

angles, to be measured

3 3 4 Specifying an arbitrary 3D view

3D viewing involve not just a projection but also a view volume against which the 3D

world is clipped The projection and view volume together provide all the information

needed to clip and project into 2D space Then, the 2D transformation into physical

device co-ordinates is straightforward The projection plane or view plane is defined by a

point on the plane called the mew reference point (VRP) and a normal to the plane called

the mew-plane normal (VPN)

45

Given the view plane, a window on the view plane is needed The window's role is

similar to that of a 2D window its contents are mapped into the viewport, and any part

of the 2D world that projects onto the view plane outside of the window is not

displayed

v

VUP

n

Figure 14 The view plane is defined by VPN and VRP, the v axis is defined
by the projection of VUP along VPN onto the view plane The u axis forms

the right-handed viewing reference-co-ordinate system with VPN and v

To define a window on the view plane, we need some means of specifying minimum

and maximum window co-ordinates along two orthogonal axes These axes are part of

the 3D viewing-reference co-ordinate (VRC) system The origin o f the VRC system is the

VRP One axis of the VRC is VPN, this axis is called the n axis A second axis of the

VRC is found from the mew up vector (VUP), which determines the ^-axis direction on the

view plane The v-axis is defined such that the projection of VUP parallel to VPN onto

the view plane is coincident with the v axis The u-axis direction is defined such that u,

v, and n form a right-handed co-ordinate system, as in Figure 14 The VRP and the two

direction vectors VPN and VUP are specified in the nght-handed world-co-ordinate

system

46

View
plane

(Umin, Vmin)

Figure 15 The view reference-co-ordinate system (VRC) is a right-
handed system made up of the u, v, and n axes The n axis is always

the VPN CW is the centre o f the window

With the VRC system defined, the window's minimum and maximum u and v values

can be defined as in Figure 15 The centre of projection and direction of projection

(DOP) are defined by a projection reference point (PRP) plus an indicator of the projection

type If the projection type is perspective, then PRP is the centre of projection If the

projection type is parallel, then the D O P is from the PRP to CW The CW is in general

not the VRP, which need not even be within the window bounds

The PRP is specified in the VRC system, not in the world-co-ordinate system, thus, the

position o f the PRP relative to the VRP does not change as VUP or VRP are moved

The advantage of this is that the programmer can specify the direction of projection

required and then change VPN and VUP (hence changing VRC), without having to

recalculate the PRP needed to maintain the desired projection On the other hand,

moving the PRP about to get different views of an object may be more difficult

The view volume bounds that portion of the world that is to be clipped out and

projected onto the view plane For a perspective projection, the view volume is the

semi-mfinite pyramid with apex at the PRP and edges passing through the corners of

the window

47

Figure 16 shows a perspective-projection view volume Positions behind the centre of

projection are not included in the view volume and thus are not projected For parallel

projections, the view volume is an infinite parallelepiped with sides parallel to the

direction of projection, which is the direction from the PRP to the centre of the

window

View
plane

n

Centre of projection (PRP)

Figure 16 The semi-infinite pyramid view volume for perspective
projection CW is the centre of the window

In order to limit the number of output pnmitives projected onto the view plane we

need the view volume to be finite This is done with a front clipping plane and back

clipping plane which are parallel to the view plane, their normal is the VPN The planes

are specified by the signed quantities front distance (F) and back distance (B) relative to

the view reference point and along the VPN, with positive distances in the direction of

the VPN For the view volume to be positive, the front distance must be algerbraically

greater than the back distance Dynamic modification of either the front or rear

distances can give the viewer a good sense of the spatial relationships between different

parts of the object as these appear and disappear from view

48

View plane
Back Clipping plane

Front clipping
plane

VPN

F B

Figure 17 Truncated view volume

49

C h a p t e r

4 EVOLUTION OF TH E SCENE DESCRIPTION IN MPEG-4

4 1 Introduction

MPEG-4 addresses the coding of objects of various types N ot only traditional video

and audio frames, but also natural video and audio objects as well as textures, text, 2-

and 3-dimensional graphic primitives, and synthetic music and sound effects To

reconstruct a multimedia scene at the terminal, it is hence no longer sufficient to encode

the raw audio-visual data and transmit it, as MPEG-2 does, in order to convey a video

and a synchronised audio channel In MPEG-4, all objects are multiplexed together at

the encoder and transported to the terminal Once de-multiplexed, these objects are

composed at the terminal to construct and present to the end user a meaningful

multimedia scene The placement of these elementary AVOs in space and time is

described in what is called the Scene Description layer The action of putting these

objects together in the same representation space is called the Composition of AVOs

While the action of transforming these AVOs from a common representation space to

a specific rendering device (speakers and a viewing window for instance) is called

Rendering

The independent coding of different objects may achieve a higher compression rate, but

also bnngs the ability to manipulate content at the terminal The behaviours of objects

and their response to user inputs can thus also be represented in the Scene Description

layer, allowing richer multimedia content to be delivered as an MPEG-4 stream This

chapter is a detailed analysis o f how scene description languages function and how the

functionality of the MPEG-4 scene description language has been developed since its

conception

50

4 2 Scene Description

In addition to providing support for coding individual objects, MPEG-4 also provides

facilities to compose a set of such objects into a scene The scene description

information is composed of the composition details o f the vanous AVOs in the scene

Scene descriptions are coded independendy from streams related to pnmidve AVOs

Special care is devoted to the identification of the parameters belonging to the scene

description This is done by differentiating parameters that are used to improve the

coding efficiency of an object (eg motion vectors in video coding algorithm), from

those used as modifiers of an object’s characteristics within the scene (e g position o f

the object in the global scene) In keeping with MPEG-4’s objective to allow the

modification of this latter set o f parameters without having to decode the primitive

AVOs themselves, these parameters form part o f the scene descnption and are not part

of the primitive AVOs The idea was to standardise a syntax that descnbes the spatio-

temporal relationships of Scene Objects

4 3 Initial 2D Scene Description

Initially two ways were identified to descnbe the composition for 2D scenes The first,

fixed scene descnption was mainly aimed at descnbing the composition parameters for

the 2D video objects described in the initial venfication model (VM) There was no

notion of a hierarchical scene structure The AVOs were video object planes (VOPs)

which were positioned with respect to the 2D frame in which they are composited The

second case dealt with more complex 2D scene structures The two proposals are now

described

4 3 1 2D Fixed Scene Descnption

At any given time, a scene is composed of a collection of objects By default, the

objects are displayed as specified in the object stream (video object stream for instance)

Additional warping transforms can be applied, by sending motion parameters in a

composition stream These parameters are omestamped to indicate at what time the

51

decoded object should be transformed and presented, they are also related to an object

by the video object id According to the timestamp, objects are requested in order to be

transformed according to the motion parameters sent in the composition stream

4 3 2 2D Flexible Scene Description
\

In this implementation the 2D scene structure was transmitted as a program Each

AVO is sent as a class The methods of the class formed the scene descnption

In order for Fixed and Flexible scene descriptions to be implemented the notion of

composition flexibility was developed

4 4 Composition Flexibility

In its previous standards, M PEG defined rigid a pnon known templates for transmitted

information What composition flexibility was defined to do was create a representation

of these templates that could be transmitted to configure the receiving system MPEG-4

initially defined two types of profiles for receiver programmability the fixed profiles and

the flexible profiles

4 4 1 Fixed Profiles

In the fixed profiles, programmability is achieved through the use o f switches or

selectors in the binary stream The switches or selectors are n-ary elements that select

which of n pre-defined templates will be used for the incoming information This

allows, for example, the choice of a pre-defined standardised configuration This kind of

programmability has the nice feature of being simple, practical and bit efficient which is

a major requirement of prospective users of the MPEG-4 standard

4 4 2 Flexible Profiles

MPEG-4 defined enhanced profiles on receiver programmability, the flexible profiles

These profiles allow the communication of information templates To represent these

52

templates, a possibility is to rely on classes (in the object-oriented sense of the word) or

to send scripts to reconfigure the application

The flexible profiles require

• a definition of a set o f standardised APIs (Application Program Interfaces),

• a definition of a standardised format to download templates If this format is

executable, it has to be processor independent,

• a standardised protocol for downloading and installing templates m the above format

in the flexible terminal

CONTROL

D ow nstream

I I I I

] [
Upstieam

DATA

Downstream

Upstream

i ¡ =] c O

Figure 18 Flexible Configuration

Í Configuration and
templates reguest)

R eceiver

Dita Component
(User Interaction.

User interaction

Jk

J

53

The communication of AVOs within the context of flexible profiles is as follows

Before the AVOs are transmitted, the sender and receiver exchange configuration

information The sender determines which algorithms, tools, and other objects are

needed by the receiver to process the AVOs The definitions of missing audio-visual

information are downloaded to the receiver, where they supplement or override existing

definitions, whether installed or pre-defined

As the receiver runs, new templates may be needed In such a case, the receiver can

request the download of specific additional information templates The additional

templates may be downloaded in parallel with the transmitted data The above aspects

are illustrated m Figure 18

4 5 Scene Descnption of the initial MPEG-4 Verification Model

The MPEG-4 Venfication Model was designed as a testbed for emerging ideas during

the evolution and development of the MPEG-4 standard It is seen as an

implementation o f the standard The idea being that several different implementations

of functionalities can exist but they must comply with the standard, which is set about

in the verification model [28]

During the development of the initial venfication model one of the major concerns was

how we could implement the different levels o f composition flexibility What was

íequired was not only a standardised format to download templates but also a

standardised protocol for downloading and installing the templates If this format was

to be executable it had to be processor independent This seemed a huge task, but at the

time we started to develop our venfication model a new programming language called

JAVA from Sun Microsystems had just been launched which seemed to overcome the

above problems

4 51 The J A V A Development Environment

In [9] Sun describes JAVA as follows

54

JAVA A simple, object oriented, distributed, interpreted, robust, secure, architecture

neutral, portable, high-performance, multithreaded, and dynamic language

What made JAVA interesting as a possible development environment for the

verification model was the fact that it is distributed, interpreted, robust, secure,

architecture neutral, portable, and dynamic

4 5 1 1 Distributed

JAVA has an extensive library of routines for coping easily with T C P/IP protocols like

HTTP and FTP This makes creating network connections much easier than in C or

C++ JAVA applications can open and access objects across the net via URLs with the

same ease that programmers are used to when accessing a local file system

4 5 12 Interpreted

The JAVA compiler generates byte-codes, rather than native machine code JAVA

bytecodes provide an architecture neutral object file format, the code is designed to

transport programs efficiently to multiple platforms

4 5 13 Robust

JAVA is intended for developing software that must be robust, highly reliable, and

secure, in a variety of ways There's strong emphasis on early checking for possible

problems, as well as later dynamic (run-time) checking, to eliminate error-prone

situations

4 5 14 Architecture Neutral

The JAVA compiler doesn't generate "machine code" in the sense of native hardware

instructions—rather, it generates bytecodes a high-level, machine-independent code for

a hypothetical machine that is implemented by the JAVA interpreter and run-time

system, the JAVA virtual machine Which means that if the JAVA run-time system is

made available on a given hardware and software platform, an application written in

55

JAVA can then execute on that platform without the need to perform any special

porting work for that application

4 5 15 Secure

The JAVA language compiler and run-time system implement several layers of defence

against potentially incorrect code The environment starts with the assumption that

nothing is to be trusted, and proceeds accordingly

• Memory layout is deferred to run time, and will potentially differ depending on the

characteristics of the hardware and software platforms on which the JAVA system

executes

• Complied code references memory via symbolic "handles" that are resolved to real

memory addresses at run time by the JAVA interpreter, hence programmers can't

forge pointers to memory

• Very late binding of structures to memory means that programmers can’t infer the

physical memory layout of a class by looking at its declaration

• The JAVA run-time system doesn't trust the incoming code, but subjects it to

bytecode verification The bytecode verifier traverses the bytecodes, constructs the

type state information, and verifies the types of the parameters to all the bytecode

instructions

4 5 1 6 Portable

JAVA defines a standard behaviour that will apply to the data types across all platforms

and specifies the sizes of all its primitive data types and the behaviour of arithmetic on

them

56

4 5 1 7 Dynamic

The JAVA language's portable and interpreted nature produces a highly dynamic and

dynamically-extensible system The JAVA language was designed to adapt to evolving

environments Classes are linked in as required and can be downloaded from across

networks Incoming code is verified before being passed to the interpreter for

execution

So our approach was to use JAVA to define templates for both the fixed and flexible

profiles These templates are designed to be audio visual objects, which form the tree

structure of the scene Since JAVA allows us to create classes, which can be run on any

JAVA Virtual Machine, 1 e are processor independent, and can be easily downloaded

across a number of network protocols, it was decided that the initial verification model

would be developed using JAVA JAVA classes would be used to create the various

MPEG-4 templates

4 6 Development of the MPEG-4 Class Library

Initially what was required was to identify the templates, l e classes, which were going

to be needed to implement an MPEG-4 compositor within the verification model The

following section is a description of the various JAVA classes that were implemented

4 61 Class Library

This section defines the set o f classes called the MPEG-4 Standard Class Library The

Standard Class Library is the minimal set o f classes that an MPEG-4 terminal must

implement in order to support every MPEG-4 applicanon that uses flexibility

(Individual profiles may require implementation of only a subset of the Standard Class

Library) Each class in the Standard Class Library corresponds to an MPEG-4 tool or

algorithm, and has a specified interface through which commands and data are passed

These interfaces collectively constitute an application program interface (API) for

57

MPEG-4 The MPEG-4 Standard Class Library is defined in terms of this API, along

with a description of the intended relationships between the MPEG-4 tools, algorithms,

downloaded AVOs, and execution environment

The classes in the Standard Class Library naturally fall into categories according to layers

in the MPEG-4 decoder architecture We are only concerned about the scene

description and composition layers These are made up of the AVObject layer, the

Composition layer, and the Presentation layer

4 6 2 AVObject Layer Classes

• AVObject

AVObject is a base class that inherits from the M PEG40b]ect class, the parent MPEG-

4 class, and from which all audio and visual objects derive

• VideoObject (extends AVObject)

VideoObject is an AVO that uses one of the standard video decoding process objects

to decode its input elementary stream A header in the elementary stream specifies

which of the decoding process objects to use 1 e MPEG-4, MPEG-2, H263 etc

• Image (extends VideoObject)

An Image is a primitive AVO that represents a rectangular array of pixels In general,

the image may have multiple colour components, multiple fields (eg , for interlaced

displays), and multiple channels (eg , for stereo displays) The colour components, if

any, may lie in various colour spaces, and may be subsampled with respect to each

other Colour components that are not specified in the Image default to values in the

current Properties sheet, Composition Layer class, in the Compositor when the Image

is rendered

58

• Compositor

A compositor is a tightly coupled video and audio compositor A compositor contains

references to the following objects

• an output video frame,

• an output audio frame,

• a viewpoint,

• a transform stack for co-ordinate transformations,

• a properties stack for object rendering properties,

• an input elementary stream,

• an output elementary stream

• an environment containing a list of (attribute, value) pairs for use in the passing of

generic messages between AVOs

The primary functions of a compositor are methods for rendenng AVOs onto the

current video and audio frames, using the current properties (as needed), the current

transform, and the viewpoint Stream references exist in order to assist compound

AVOs in passing sub-streams to sub-objects

• Transform

4 6 3 Composition Layer Classes

59

A Transform object is, semantically, a 5x5 homogeneous co-ordinate transformation

matrix T

a b c 0 d

e f g 0 h

i j k 0 I

0 0 0 m n

0 0 0 0 1

It is used for performing geometrical transformations on AVOs

• Properties

A Properties sheet is primarily a list o f the current default properties for any primitive

AVOs that are rendered If a primitive AVO, when rendered through a compositor,

does not specify a needed property, then that property will be taken from the current

Properties sheet in the compositor

• Viewpoint

A Viewpoint is an object in a local co-ordinate system that can be rendered like any

AVO, at a given location, orientation, and scale within a scene Rendering a viewpoint

causes its scene-to-local co-ordinate transformation to be stored in the Compositor’s

viewpoint object, for use in subsequent rendering

4 6 4 'Presentation Layer Classes

• Presenter

A presenter is the subsystem responsible for displaying the scene reconstructed by the

Compositor It is also the subsystem responsible for handling events generated by the

user interacting with the presentation

60

4 7 Implementation of an initial MPEG-4 compliant viewer

When we started to build the MPEG-4 compliant viewer we did so in order to validate

and test the standardised set of APIs and classes What we built was a JAVA based

viewer, a primer on the viewer can be found in [10] This involved developing a viewer

package Each package is a group of classes, which have some common functionality

We developed an MPEG-4 package, which contained all the standardised classes, and a

viewer package, which was not part of the MPEG standard but was developed as a

verification model for the standard It consisted of the following classes

Viewer Simply wraps an interface around an Executive
/

Executive The Executive presents the frames to the user, and also periodically funnels

user feedback to the Scene object

Presenter Subsystem responsible for presentation of video and audio frames to the

user and for the collection of user input events

4 7 1 MoMuSys Viewer

The MoMuSys viewer was an MPEG-4 viewer that was developed under the auspices

of the European ACTS Projects The following is a description of how the viewer

functioned The Viewer class is the first instantiated class This class instantiates all the

other needed objects for the interface of the application, and MPEG-4 audio-visual

objects

4 7 11 Viewer

Viewer owns a Compositor, an Executive, a Presenter object, and the "main" AVO

which is the top AVO of the scene All these objects are gathered in one class to be

accessible everywhere in the viewer

61

4 7 1 2 Presenter

The display and event handling of the scenes takes place in an X I1 window as the

viewer was developed on an SGI machine using the X I1 windowing system The

Presenter class is the link between the JAVA part of the viewer and native code for the

X I1 window To handle an event, the Presenter passes an event object to the native

code Events that occur in the X I1 window are converted and copied into the

MPEG4Event object

4 7 1 3 Executive

The Executive object is a thread It can be seen as the operating system of the display

o f a scene Its run method is an infinite loop and performs the following steps

• Initialisation of the inputstream and outputstream of the compositor, and

instantiation of the top AVO scene (the "main" AVO of the viewer)

• Beginning of the following infinite loop

• Clear the compositor's frame

• Rendering of the top AVO of the scene During this phase, all the objects o f the

scenes are mapped onto the compositor's frame, according to the transformation

matrix This frame is then ready to be displayed in the X I1 window

• Display of the frame of the compositor in the X I1 window During this phase,

the X I1 window is refreshed with the new image of the scene It is a kind of

double buffenng At the same time, the Presenter looks at the X I1 event stack

and takes the oldest event according to the predefined X I1 event mask This

event is converted and copied into the MPEG4Event object

• Handling of the Presenter's MPEG4Event object by the scene, by calling the

handle method of the top AVO of the scene

62

4 7 2 How the MoMuSys Viewerfunctions?

4 7 2 1 Overview of how the M PEGA Viewer displays audio-visual coded information

The decoder receives a class definition for a main AVO, which is inherited from the

MPEG-4 package class AVObject This class is instantiated as the root o f the

hierarchical scene graph and its render method is called once for each audio-visual

frame that the decoder wishes to present The root render method invokes othei

methods and other objects, for example

• calls to render methods of related AVObjects,

• calls to methods of decoding process objects to recover image and audio objects

from encoded data streams,

• calls to parsing or entropy decoding methods to extract syntactic decoded data

streams from elementary streams,

• calls to demultiplexing methods to extract elementary data streams from logical input

channels
/

4 7 2 2 What a Compositor does and how it is instantiated?

The Compositor class composes, renders, and blends audio-visual objects onto output

audio and video frames The compositor maintains one audio frame, a finite sequence

of audio samples, or one video frame, a rectangular array of pixels, for each output

channel Audio-visual effects are produced frame by frame The compositor controls

the spatio-temporal mapping of the scene, the default audio-visual rendering properties,

the projection and clipping planes, the acoustic sink points, the input data stream, the

output data stream, and the passing of data between audio-visual objects

63

4 7 2 3 How AVObjects are rendered?

The difficult work done by a Compositor is rendering audio-visual objects The

purpose of an audio-visual object's render method is to render the object onto the

specified compositor The compositor doesn't know intnnsically how to render

encoder-defined audio-visual objects, but the objects know how to render themselves

So when the render method of the compositor is called upon it calls the object's render

method, with itself as the argument

4 72 4 How events are handled by AVObjects?

The handle method of an audio-visual object is designed to deal with synchronously

generated script, or asynchronously generated user input In an encoder-defined audio­

visual object the body of the routine consists of a script that describes step by step how

to handle events, which at the very least examines the event structure and passes the

events to the objects sub-objects

4 7 2 5 How decoding of AVObjects works?

ProcessObjects are the decoding tools used by AVObjects to decode themselves In

addition to the render and handle methods of AVObjects many may have a decode

method The decode method of an AVObject decodes the attributes of the object

itself It builds and instantiates from a coded representation all the attributes of the

AVObject

4 72 6 Presenting the AVObject

The presenter class is the subsystem responsible for presentation of video and audio

frames to the user, and for the collection of user input events

64

4 8 Expanding the MPEG-4 Class Library to handle YOPs

4 8 1 1SOP Definition

As defined in [11] Video Objects (VOs) correspond to entities in the bitstream that the

user can access and manipulate (cut, paste) Instances of Video Object in given time

are called Video Object Planes (VOPs) A VOP can be a semantic object in the scene it

is made of Y, U, V components plus shape information The encoder sends together

with the VOP, composition information (using the composition layer syntax) to indicate

where and when each VOP is to be displayed At the decoder side the user may be

allowed to change the composition of the scene displayed by interacting with the

composition information

4 8 2 Creating a VOP Class

What was required was to create a class or template, which could be used to read in

luminance and chorminance (YUV) VOPs and display them in the verification model

The VOP sequence was to be based on a QCIF sequence of frames In the QCIF file

format each frame is 176 * 144 pixels, width * height The sequence was sampled at

25Hz Each frame is made up of YUV values stored in the 4 2 2 format This implies

that 4 bytes of luminance, Y, and 2 bytes each of chrominance, UV, go to make up each

pixel displayed Each VOP frame is stored as a chain o f Y, U, V data without gaps The

frame is stored from the 1st line, 1st pixel, from left to right, top to bottom, down to the

last line, last pixel Associated with each YUV frame is an alpha plane This is a binary

mask representing the shape of an object within the frame A value of 0 is used to

indicate a pixel outside of the object and the value 255 is used to indicate a pixel inside

the object The mask is used to composite the YUV pixel values of the object, while

those pixels outside the object are not composited

So what was required for each frame was read in the YUV sequence and then decide

using the alpha plane what the dimensions of the image to be displayed were A cut

down version of the VM was developed as a test bed It consisted of a JAVA

65

compositor, which was a scaled down version of the official M PEG one An interface

to read in both the YUV and segmentation mask files was developed The development

process was to create an extension of the MPEG-4 Image class to composite the YUV

VOP In order to composite the VOP conversion from YUV to an RGB format was
<

necessary

The process now involved reading in a YUV frame, mask out the unnecessary pixels

and convert to RGB The first two stages were straight forward and a mathematical

formula for conversion from YUV to RGB was easily developed When tested this

conversion functioned correctly, however under time critical conditions 1 e running the

sequence at 25Hz the process proved to be too slow The reason for this centred

around a combination of the JAVA bytecode, this machine independent code must go

through the process of conversion to machine code in order to run, and the JAVA

pointer system, pointer manipulation in JAVA is very restrictive in order to ensure

network security

The JAVA language provides for this restnctive nature by supplying both just-in-time

compilers and native methods Native methods allow JAVA to call methods in other

languages This allowed the implementation of a C++ DLL, which had a quicker

implementation of the conversion In order to speed up the process even further the

conversion process was enveloped into an independent thread running as a unique

process

4 8 3 Integration of VOP class in MPEG-4 Verification Model

A YUV implementation of the MPEG4 Image class was developed This contained an

implementation of a bounding box on the segmented image The bounding box

information was used to allow user interaction Based on mouse clicks and returned

pixel values in relation to bounding box values it was established whether a VOP had

been selected If so the user was allowed to change the composition of the scene by

transforming the VOP to the position of the mouse release

66

4 9 2D & 3D Scene Description and Composition in the Verification Model

At this stage in MPEG-4’s evolution it was clear from other MPEG-4 groups that both

2D & 3D composition would be required in an MPEG-4 terminal There was, at this

point in the development, no specification proposed for a complete 3D scene

descnption, and the abilities o f JAVA to provide a complete overall 2D scene

description were being questioned

There were two proposals for a 2D and 3D solution for scene descnption

• Use a fixed composition This means transmitting composition parameters with a

fixed syntax These parameters include positioning, reference to the object, time

stamp, and order of composition

The first scenario is already specified in [12] AVOs are decoded as specified in the

object stream, for example the video object stream Sending parameters in the

composition stream specifies the scene description information However, this implies a

lot of restrictions The scene graph is flat, there is no way to describe complex

trajectones without transmitting the positions at each frame, and there are no

dependencies between objects This kind of composition is suited for broadcast

applications with a low level of interactivity

A better approach would be to have a hierarchical type scene structure The reason for

the hierarchical scene structure is to efficientiy allow property nodes to affect geometry

nodes that are after them in the graph So the scene graph minimises the storage

lequirements by having nodes share these state variables and as the application renders

the scene it sets the current state and then draws all affected geometry This gives scene

graph creators the ability to create very efficient scenes by organising similar geometry

nodes in the graph to minimise state changes If there is no hierarchical structure then

67

all the information must be encapsulated within the node in order for it to be rendered

properly, this would be rather inefficient

• Use a scene described with JAVA classes, as was currentiy done in the VM

The second scenario, the ‘flexible’ scene description based on JAVA classes, has been

described in previous sections, a full descnpdon is available in [12] However there are

also some limitations because of the structure of the scene graph that is hard coded in

the AVOs, it is impossible to have this scene graph evolving in time It is also

impossible for two AVOs to communicate and exchange information

4 10 Limitations imposed by the initial verification model

As described in the previous section the initial software implementation of the Systems

VM [12], developed co-operatively by several institutions active m MPEG-4, was based

on a mixed approach using JAVA code for the high level part o f the system (user

interface, allocation of the components of the system, management of thread(s)

associated to the application) and using C code for the low level and computation

intensive parts of the system, namely the elementary decoders for video, composition of

elementary video objects through geometric transformations and alpha blending, and

presentation on the machine specific windowing system

However after a couple of months of development several issues arose about the

development environment

• the effectiveness of the threads scheduling provided by the JAVA platform for an

application where real-time performance of audio/video decoders is critical,

• the coherency o f the overall architecture to accommodate the fixed (parametric) and

the flexible (bytecode description) of the Scene Graph,

68

• the efficiency of the implementation, related to the speed of the JAVA code

execution, and the communication between the JAVA code and the C code

The real problem was that 'JAVA', itself, was made up of several different components

• a programming language JAVA as a language is a “simplified” version of C++, with

most of the features of the Object Oriented Paradigm, but with some restrictions to

avoid typical sources of trouble within C++ programming

• a bytecode, l e an intermediate version of the code, produced by a compiler and used

by an interpreter to run the application (the pro of this approach is platform

independence, the con is lower efficiency than native executable code for a specific

machine)

• a run-time system, l e a porting on a specific architecture (hardware plus operating

system) of the execution environment

The programming language forces the use of strict programming rules The net result

of the compiled code being less efficient than compiled C++ code, since some of the

features provided by C++ for hand-made code optimisation (eg playing with pointer

arithmetic) are forbidden by the JAVA compilers The trade-off here is less efficiency

for more reliability

Bytecode (or intermediate object code) provides a level o f abstraction from the specific

native executable code of a machine Introducing this level o f abstraction results m

lower performance in executing an application (even when the intermediate code is re­

compiled to native code, e g by means of a Just-In-Time (JIT) compiler translating to

native code just before execution) Better performance can always be achieved mixing

JAVA code and C code Using JIT compilers still preserves code portability (no need to

change any part o f the source code), while mixing C code requires some extra work

69

when porting to different platforms The trade-off is less efficiency for more

portability

The run-time system provides the environment required to run a JAVA application on a

specific hardware/OS platform This environment requires not only an interpreter for

the bytecode but it must also support the Standard Class Library of the JAVA platform

The standard library provides an abstraction for many OS services support for

multithreading (a platform independent implementation o f Threads, Monitors,

Scheduler), support for automatic garbage collection, support for a platform

independent windowing system, for a platform independent networking system (TCP

and UDP) Most of these abstractions simply imply a trade-off of lower performance

for higher portability (seamless execution of the same application on different

platforms) But the standardised support for multithreading and garbage collection

cause significant troubles to developers working on applications that require

deterministic control on execution of the individual threads, especially when meeting

processing dead-lines is essential The main reason for this is that even for a single

threaded application, the run-time system is running its own “system threads” (eg a

thread for garbage collection, a thread for updating the screen) on which the

application developer has no control

More details on the problems to be solved to use the JAVA platform for real-time

applications can be found at [13] So it was decided that while JAVA was a promising

development environment, it was still a very immature one Development of the

MPEG-4 verification model split into two parts, one continuing along the flexible scene

description path using JAVA and another which focused on the fixed scene description

and which will be described in the following sections

4 11 VRML and Scene Description in the Verification Model

The Virtual Reality Modelling Language (VRML) allows the descnption of 2D & 3D

objects and to combine them into scenes and worlds, a detailed description can be

70

found in [14] It’s a modelling language, which means it is used to describe 2D & 3D

scenes It’s more complex than HTML, but less complex than a programming language

The scope of the standard incorporates the following

• a mechanism for storing and transporting two-dimensional and three-dimensional

data

• elements for representing two-dimensional and three-dimensional primitive

information

• elements for defining charactenstics of such primitives

• elements for viewing and modelling two-dimensional and three-dimensional

information

• a container mechanism for incorporating data from other metafile formats

• mechanisms for defining new elements which extend the capabilities of the metafile

to support additional types and forms of information

VRML gives a hierarchical description of a 3D scene as a tree o f “nodes” Nodes can

represent geometrical objects, light or sound sources, objects appearance properties and

so on Moreover VRML allows the programmer to put code in a scene description and

to extend the standard set of nodes by means of the “PROTO” nodes

4 12 Analysis of an MPEG-4 & VRML Combined Browser

It was decided to develop an application that could test the validity o f an MPEG-4

browser, which would use VRML as a scene description language The following

sections develop the proposals of [15] and [16] on how 2D and 3D scenes could be

described and composited within MPEG-4

71

4 121 Proposed Architecture

The approach to integrating 3D and 2D rendered scenes was to develop an MPEG-4

Browser based on existing VRML browsers Figure 19 shows the proposed system

Demultiplexer

Figure 19 Proposed 3D Architecture

The VRML 2 0 support can be provided using a VRML Browser API, that is the API

on which the browser code is built (Open Inventor, Cosmo3D,) This was deemed

necessary for speedy development These APIs offer a very flexible environment for

interactive 3D graphics New MPEG-4 nodes can be added and the browser designed

with timing and synchronisation mechanisms at the core of it

72

An MPEG-4 Extension Interface was to be specified to allow the AVOs from the

existing 2D VM to be supported

4 12 2 Scene Composition with 2D and 3D Objects

Figure 20 shows a typical scene composition The MPEG-4 browser is displaying a 2D

VOP on a 3D Billboard node, taken directly from VRML The latter is partially hidden

by a 3D sphere and is hiding some o f a 3D cone As one moves through the scene

going towards the VOP we pass by the sphere and the whole VOP will appear and as

we continue on we will walk through the VOP to see the whole cone If we change our

viewpoint we can use the Billboard node to define what exacdy shall happen If we want

we can ensure the view is consistent for all viewpoints or let the VOP be warped by our

position It is up to us to define the behaviour

Figure 20 2D & 3D Composited Scene

An MPEG-4 Browser which combines the cornerstones of M PEG (decoding,

synchronisation, demultiplexing, streaming data,) with direct support for VRML 2 0

can be used to implement a full 2D and 3D (fixed and flexible) compositor

73

413 Implementation of a 3D Verification Model

It was generally accepted that the VRML 3D modelling language had a lot to offer

MPEG-4 VRML offered ways of allowing AVOs to communicate via routes, to be

extended via scripting, and to dynamically modify the scene graph While we had

developed a verification model based on JAVA to handle 2D AVOs we had no

concrete plans on how to integrate 3D AVOs into our verification model Moreover, a

lot of 3D complete API's existed, so the need to create a completely new 3D API for

our verification model was questionable It seemed the best scenario would be to use

VRML as our 3D modelling language and encapsulate its nodes into the standard

Where appropriate, they would be modified to better meet MPEG-4’s requirements

Other nodes and concepts would be introduced to meet any remaining requirements

that cannot be met by simple modifications to VRML 2 0

The implementation commenced using one of the existing 3D packages, Liquid Reality

from DimensionX [17] The idea was to implement a 3D viewer which could also

composite our existing 2D AVOs, a full explanation of the work earned out is described

in [18], the following sections give an overview of the implementation

4 13 1 Analysis of a 3D verification model

A 3D MPEG-4 Viewer/Browser will be required to support 2D AV nodes in addition

to the 3D nodes It is highly desirable that 2D nodes, AVOs, implemented in the 2D

VM can be easily integrated into the 3D VM In the short term, during the development

of the 3D VM, this is useful in order to re-use code from the 2D VM In the longer

term, this will be a valuable feature to users who want to create a new 2D node They

will be able to “plug-and-play” their 2D node into a 3D MPEG-4 Viewer/Browser

74

2D BIFS Nodes 3D BIFS Nodes

2D VM I/F — •) -

3D VM I/F -----»►>“

Figure 21 2D and 3D interfaces for AV nodes

Figure 21 shows a symbolic representation of a solution for the problem Each 3D node

conforms to the 3D interface (currendy the interface to the Liquid Reality browser) A

2D node conforms to the 2D interface (currently that of the 2D VM implementation)

To allow itself to be used in 3D scenes, a 2D node also implements an output that

conforms to the 3D interface Internally, the viewer/browser indicates to the node

implementation which interface it should use This may require a small change in the

2D VM nodes

4 13 2 Implementing a laquid Reality Extension Node from a 2D A VO

Liquid Reality (LR) implements the VRML 2 0 specification using a set o f JAVA classes

VRML 2 can be extended by writing LR extension nodes, these are sub-classes of LR’s

node classes This allows us to incorporate MPEG-4 specific nodes into VRML 2

worlds The class’s location is descnbed by an EXTERNPROTO description m the

VRML world file and will be automatically loaded by the JAVA interpreter when

needed by LR

LR documentation is available at [19], while a detailed example of how to create an

extension node is given at [20]

75

4 133 Implementing a GifJpegDecoder Extension Node

A node that was implemented for the 2D VM, GifJpegDecoder, was taken as an

example of a node that we would like to include in the 3D VM This node can take an

image file, decide whether it is GIF or JPEG and decode it

A VRML world containing a GifJpegDecoder was implemented This required taking

the current scene class GifJpegSequence and turning it into an extension node In this

class we override the createNodeDefinition and mitFields methods to define the

GiiJpegSequence node Here the GifJpegDecoder is instantiated once a TimeSensor

eventln is received from the VRML world The dnx lr Node method handleEvent is

used to define what should happen on the eventln In this case after the TimeSensor

has started it sends an eventln to the GifJpegSequence Node and this causes the

GifJpegDecoder to decode a GIF file and display it on a cube To add the node

definition to the VRML world file in a manner that will make it understandable to the

Liquid Reality browser we use the EXTERNPROTO declaration This indicates to the

browser where to go to find the created JAVA class and instantiate it

4 13 4 Implementing a Plug-and-Play Interface

A plug-and-play interface implies that a scene class can be seamlessly rendered on either

a 2D VM or 3D VM This is now possible by implementing two render methods, one

based on the 2D VM compositor and one on the 3D one Hence our GifJpegSequence

can be rendered on either the 2D VM, Figure 22, or the implementation of a 3D VM,

Figure 23

76

Figure 22 GifJpegSequence rendered on 2D VM

77

Figure 23 GifJpegSequence rendered on 3D VM

78

C h a p t e r

5 BIFS AND BI & TRI DIMENSIONAL COMPOSITION

5 1 Introduction

As described in the previous chapter, VRML seemed suitable for MPEG4 purposes, in

fact, as was shown an MPEG4 scene can be well described with the VRML mechanism

But, the use of a commercial VRML browser enhanced for managing streaming data is

not very promising, in fact the mechanism for writing native PROTO nodes (l e ,

developed in languages such as JAVA, C, and C++) as needed for MPEG4 real-time

constraints is not yet standardised and therefore these mechanisms are not yet (or only

partially) supported by the available VRML browsers Additionally there is no chance to

direcdy modify the embedded timing system and those available are very loose and not

suited for the M PEG4 requirements

This highlighted the need for a “clean room” implementation of a VRML based

MPEG-4 player which could be based on the basic, already standardised, VRML nodes

and enhanced with the MPEG-4 peculianties such as audio, video, and graphics

synchronisation, links with streaming data, a binary scene description format, and

enhanced interactivity

It was decided that, while VRML was a useful scene descnption language, it was lacking

qualities that were vital for use in MPEG-4 MPEG-4 would develop its own scene

descnption language called BIFS

79

5 2 Binary Format for Scene Description (BIFS)

BIFS scene description is the tool in MPEG-4 that enables us to describe interactive 2D

and 3D scenes made up of several MPEG-4 so called Media Objects MPEG-4 has

used as a basis for its scene description tool VRML 2 0, [14]

5 3 VRML/BIFS relationships

5 3 1 What V R M L offers?

The Virtual Reality Modeling Language is basically a 3D interchange format aimed at

including 3D objects and worlds in the World Wide Web VRML defines a set of nodes

that describe the following elements

• The structure of the scene, so called Scene Graph The scene graph defines the

spatial hierarchical relationships between VRML geometnc and media elements in

the 3D space

• 3D geometric components, such as geometnc primitives, material and texture

bindings, lighting effects, etc,

• VRML enables the use of media streams through the URL mechanism In particular,

videos and audio streams can be pointed at by VRML descnptions However,

VRML does not define any transport or global synchronization mechanism

• VRML defines behaviors of objets using routes and interpolators

• VRML defines the user interaction with the content using sensors and routes

Additionally to these elements, VRML further defines

• Scnpts, which define an API which allows simple executable code to be inserted

inside VRML scene descriptions

80

• A way to create reusable components made of several existing components, known

as PROTOs and EXTERNPROTOs

• An API (not yet included in [14]) known as the External Authoring Interface (EAI),

which enables interaction with the VRML scene from outside the world

• A binary format (not yet included m [14]), essentially based on an IBM proposal on

mesh coding with topological surgery

A VRML file is an ASCII file instantiating several of the above described nodes The

typical model for using a VRML file is first to load the entire “world” and let the user

interact with it The EAI enables interaction between a HTML file and or a JAVA

Applet and a VRML browser

5 J 2 What is BIFS?

The Binary Format for Scenes tool is essentially a binary format for representing 2D

and 3D scenes made up of several streaming objects defined by the vanous MPEG-4

sub groups As with other MPEG-4 tools, BIFS can be used both in a pull and push

scenario From the beginning, BIFS has adopted VRML as a basis and extended it in

vanous ways

• BIFS has defined a set o f new nodes to accommodate MPEG-4 specific needs

• Definition of 2D nodes for representing 2D scenes, including images and videos

as well as graphic and text primitives, and specific behaviors and interaction

primitives

• Definition of nodes to interface with Face and Body animation tools

• Definition of nodes to interface with new synthetic and natural sound mixing

capabilities

81

• Definition of nodes to mix 2D and 3D content in the same MPEG-4

presentation

• BIFS has defined a complete compression scheme for all these nodes When using

only VRML nodes without meshes, the first tests show 3 to 10 times better

compression results When using 3D meshes, the result are roughly 10% better in

BIFS encoding, using the current status of the 3D mesh encoding SNHC tool This

tool will be released m MPEG-4 version 2 (see chapter 6)

• BIFS has defined the BIFS Update protocol, which enables a command stream to

continuously modify BIFS scenes Commands include the capabilities to add and

remove objects, to modify scene properties, or to replace the whole scene

• BIFS has defined the BIFS-Amm protocol, which enables us to continuously

animate some properties of the scene, such as faces, meshes, object positions or

colors

There are still a few nodes and VRML concepts that have not been adopted in MPEG-

4 In particular, the extension capabilities provided by Script, PROTOs and

EXTERNPROTOs are not yet considered in the current BIFS specification, although

many MPEG experts have recognized their usefulness

A very important point is that the BIFS tool is designed so that it works well with the

rest of the MPEG-4 tools, the Multiplex, the System Decoder Model, the Object

Descriptors, and all the streams defined in the Video, SNHC and Audio groups, as well

as the control by DMIF of the Session

5 3 3 Using V R M L content in the MPEG-4 context

With the current BIFS specification it is possible to use VRML content, compress it,

and carry it over MPEG-4 streams If we look at a complete MPEG-4 scenario with a

82

scene containing a 3D scene, 2D graphic components, an MPEG-4 video and audio, as

well as update and animation streams, the following components would typically be

used

B I F S U p d a t e ^
d e c o d e r

B I F S A n im ^
d e c o d e r ^

V i d e o
d e c o d e r ^

A u d 10
d e c o d e r

C
0

M

P

0

S

I
T
0

R

A u d io V i su a I
Presentation

Figure 24 A typical MPEG-4 terminal architecture

In this scenario, the output of the demultiplexer is 4 distinct elementary streams

• The BIFS Update stream, that carries a command and a set o f nodes, including

VRML and new MPEG-4 nodes compressed with the BIFS algorithm

• The BIFS Amm Stream, that cames continuous changes o f a set o f properties o f the

scene

• The Video Stream

• The Audio Stream

One of the key elements in the MPEG-4 Systems architecture is the respect of time

events and the System Decoder Model, which ensures the synchronization of media

streams In that case, changes represented in the BIFS-Update and BIFS-Amm streams

must be synchronized with the audio and video streams

83

5 3 4 Using BIFS content in the V R M L context

Some of the functionalities supported in BIFS can be represented in a standard VRML

environment

• The BIFS-Udpate and BIFS-Amm decoders can use the EAI to modify the scene

• Script nodes can be used to instantiate Video and Audio decoders

• For non standard VRML nodes, a library of PROTOs and EXTERNPROTOs can

be used

BIFS Update
decoder 3»

BIFS Amm
decoder

Video
decoder

Audio
decode

o

<=>

E
A
1 i=>

S V - 1
C
R
ii
P
T

V R M L
Browser

&
M P E G -4

(E X T E R N)P R O T O

Library

Figure 25 BIFS capabilities in a standard VRML environment

However, there are several limitations and constraints imposed by this architecture

• Some of the nodes cannot be represented in standard VRML In particular, the

MPEG-4 specific audio capabilities (mixing of natural and synthetic sources), and the

mixing of 2D and 3D scenes is not achievable in a standard VRML browser

84

• The fact that 2D scenes would have to be implemented as a special case of a 3D

implementation imposes some constraints that are not acceptable to MPEG-4

profiles that only need 2D primitives, and may not provide an optimal

implementation for 2D In any case, in the MPEG-4 context, 2D interfaces should

be offered to allow implementers to develop their terminal using specific 2D or 3D

based implementations of 2D primitives

• This architecture does not provide a precise enough control of time, which will lead

to non synchronized media streams

• Since Scripts and PROTOs need to be used to represent additional MPEG-4

functionalities, the content would be less compact than in the case of the MPEG-4

termmal that considers these extensions as native extensions

• Scripts and the EAI impose more components to be included in any MPEG-4

terminal than in the case of the MPEG-4 terminal o f Figure 24

5 4 Implementation of BIFS and 2D & 3D Composition

Currendy BIFS and 2 and 3 dimensional composition are being developed and

implemented in a real-time MPEG-4 player through work with the adhoc group on

Systems Software Implementation m MPEG-4 and work within the ACTS project

MoMuSys The software is being developed using the C++ language and the OpenGL

API for composition It is freeware and can be downloaded from

http / / televr fou telenot no/~karlo/com positor/

The idea is to produce a verification model for the functionalities being developed in

MPEG-4 The following section is an overview of how 2 and 3 dimensional scenes are

described using BIFS, it is not intended as a detailed explanation o f how the player

85

functions, such information can be found in the documentation repository at the

software site

5 4 1 The Components oj the MPEG-4 Player

Figure 26 associates each component with the class objects it consists of

Composition and
Rendering

MediaObject

Presenter

VisualRenderer

AudioRenderer

Composition buffers (CBs)
implemented by
MediaStream

Figure 26 Implementation of major components of MPEG-4
Player

5 4 2 MediaObjects

Within the organisation of the classes that were created to implement an MPEG-4

scene the MediaObject class is the most fundamental It is the base class for all nodes

defined by BIFS

A media object is an object that exists in the 3D space defined by the compositor

Media objects are arranged hierarchically in the scene graph, which is basically a media

object tree The root object or node identifies the scene The nodes which media

86

objects define are vaned, some nodes are objects like Box, Spotlight e tc , other nodes

are used as containers to hold related nodes A shape node, for example, contains a

geometry node and an appearance node A full list of the available BIFS nodes can be

found in [5] These nodes can, in turn, contain other nodes In addition media objects

that consume streams, like video and audio clips have been defined These are

associated with media streams that are used to fetch stream units

MediaObjects have the following properties

• A MediaObject has zero or more “fields”, each defined as either an object of a class

derived from NodeField, or in the case o f eventln, as an event-handling member

function

• A MediaObject can be a parent to zero or more other media objects All the child

objects share the attributes of the parent object A position of a child object is

relative to its parent object

5 4 3 MediaStreams

This is the object that handles the buffering and the transfer of data streams It consists

of a memory buffer, and a FIFO mechanism to store/fetch access units in to/out of the

buffer The object also incorporates timing control, 1 e , stored access units may have a

time stamp attached to them, and the fetch procedure will fetch only matured units

Delivenng data over a MediaStream is performed as following'

• Before the originating object produces an access unit, it allocates space on the

stream's buffer It asks for the amount of space it needs or, in cases when this size is

not known before the data is actually produced, for the space it thinks would be

usually sufficient Then it uses the allocated space to store the data it produces

87

• In case it turns out that the allocated space was not enough the object expands the

allocated block

• When done, the actual size o f the unit, as well as its presentation time is stored

• The receiving object then collects the unit at the correct time from the buffer

5 4 4 Decoding

Each decoder runs in its own thread and is inherited from the base Decoder class A

decoder is bound to two MediaStreams, the input stream and the output stream, see

Figure 27 The task of fetching coded units from the input streams (EBs) and storing

presentation units into the output stream (PBs) is earned out by the base object This is

done as follows

• The decoder gets an AU from the input stream If no data is available, the decoder’s

thread is suspended till data is available

• The decoder implements its specific decode functionality

• The output is stored in the output MediaStream This operation includes attaching a

presentation time stamp to the unit

5 4 5 BIFS Decoder

The BIFS decoder reads in the encoded BIFS scene description file and performs the

following

• Retrieves data from the input MediaStream

• Instantiates the root MediaObject, and calls it to parse itself and build the scene tree

88

• Whenever a node update is detected it calls the appropriate node to parse and update

itself

• Whenever an ObjectDescriptor is detected it passes the information to the proper

node so the node can create the necessary Decoder and MediaStreams

5 4 6 Flow of Information in the M PEGA Player

Figure 27 illustrates the flow o f information m the whole application It shows how die

BIFS scene is decoded and presented and how the processes described in the previous

sections exist in relation to the overall MPEG-4 application

Figure 27 Flow of information in the M PEG-4 Player

89

5 4 7 2D & 3D Composition in the MPEG-4 Player

Composition is achieved via SGIs' OpenGL graphics library The OpenGL graphics

system is a powerful software interface for graphics hardware that allows graphics

programmers to produce high-quality colour images of 2D and 3D objects Silicon

Graphics Inc developed the technology

OpenGL is designed as a streamlined, hardware-independent interface to be

implemented on many different hardware platforms As such it provides a layer of

abstraction between graphics hardware and an application program It is visible to the

programmer as a set of routines consisting o f about 120 distinct commands Together

these routines make up the OpenGL application programming interface (API) The

routines allow graphics primitives (points, lines, polygons, bitmaps, and images) to be

rendered as well as basic rendering operations such as affine and projective

transformations and lighting calculations It also supports advanced rendering features

such as texture mapping and antialiasing

N o commands for performing windowing tasks or obtaining user input are included in

OpenGL, instead, you must work through whatever windowing system controls the

particular hardware you're using Similarly, OpenGL doesn't provide high-level

commands for describing models of three-dimensional objects Such commands might

allow you to specify relatively complicated shapes such as automobiles, parts of the

body, aeroplanes, or molecules When you build a graphics program using OpenGL,
\

you start with a few simple primitives The sophistication comes from combining the

primitives and using them in various modes

90

5 4 7 1 OpenGL Rendering Pipeline

Figure 28 Schematic Diagram o f the Order o f Operations m
OpenGL

Figure 28 shows a schematic diagram o f OpenGL Commands enter OpenGL on the

left Most commands may be accumulated in a display list for processing at a later time

Otherwise, commands are effectively sent through a processing pipeline

The first stage provides an efficient means for approximating curve and surface

geometry by evaluating polynomial functions of input values The next stage operates

on geometric primitives descnbed by vertices points, line segments, and polygons In

this stage vertices are transformed and lit, and pnmitives are clipped to a viewing

volume in preparation for the next stage, rasterization The rastenzer produces a series

of framebuffer addresses and values using a two-dimensional descnption of a point, line

segment, or polygon Each fragment so produced represents a portion of a primitive

that corresponds to a pixel in the framebuffer Then each fragment may be modified by

texture mapping, after which it is fed to the next stage that performs operations on

individual fragments before they finally alter the framebuffer These operations include

conditional updates into the framebuffer based on incoming and previously stored

depth values (to effect depth buffering), blending of incoming fragment colours with

stored colours, as well as masking and other logical operations on fragment values

91

Finally, pixel rectangles and bitmaps (2D images) bypass the vertex processing portion

of the pipeline to send a block of fragments direcdy through rasterization to the

individual fragment operations, eventually causing a block of pixels to be written to the

framebuffer A unique feature of OpenGL is that pixel rectangles and bitmaps (2D

images) are also rasterized to produce fragments, fragments are treated the same no

matter if they come from a geometric or image primitive Values may also be read back

from the framebuffer or copied from one portion of the framebuffer to another These

transfers may include some type of decoding or encoding

More generally, MPEG-4 uses the OpenGL API to compose a 2D and/or 3D scene,

allowing for example to

• place AVOs anywhere in a given co-ordinate system,

• group primitive AVOs in order to form compound AVOs,

• modify AVOs attributes using streaming data (e g moving texture belonging to an

object, animating a moving head by sending animation parameters),

• update the user's viewing point to enable interactivity anywhere in the scene

5 4 8 A n Example MPEG-4 i cene

The following BIFS file is an example of how to describe a scene that contains a

number of decoders and BIFS nodes The composited scene is displayed in Figure 29

92

Group {
children [

Fog {

}

color 0 0 0 0 0 0
vislbi11 tyRange 3 0
fogType "LINEAR"

DirectionalLight {
color 1 1 1

Viewpoint {
fieldOfView 0 785398

>
Transform {

translation -2 0 0
rotation 1 1 0 45
children [

Shape {
appearance Appearance {

texture ImageTexture {
url 2
repeats FALSE
repeatT FALSE

}
}
geometry Box {

size 2 2 2
}

]
}
Transform {

translation
scale 0 07 0
children [

FBA {

2 0
07 07

face Face {
fdp FDP {

faceSceneGraph Group {
}

}
fap FAP {

url 3

}
Sound {

sound AudioSource {
url 4

93

i

startTime O
stopTime -1

SessionStreamAssociation {
children [

Oho ectDescriptor {
ob}ectDescriptorlD
decTypeStnng
configParam 1

}
Ob]ectDescriptor {

ob}ectDescriptorID
decTypeStnng
configParam 1

>
Ob]ectDescriptor {

ob]ectDescriptorID
decTypeStnng
configParam 2

}

visual/H263
2

3
visual/FBA

4
audio/G723

94

Figure 29 Composition of a BIFS scene in MPEG-4 Player

95

C h a p t e r

6 CONCLUSIONS AND FUTURE DIRECTIONS

6 1 Introduction

MPEG-4 is the ISO /IEC standard being developed by MPEG (Moving Picture

Experts Group), the committee that also developed the Emmy Award winning

standards known as MPEG-1 and MPEG-2 The MPEG-4 standard will be the result

of an international effort involving hundreds of researchers and engineers from all over

the world MPEG-4, whose formal ISO /IEC designation will be ISO /IEC 14496, is to

be released in November 1998 and will be an International Standard in January 1999

This release will be known as Version 1 [29]

Work on MPEG-4 will continue after that date, for a Version 2 Version 2, work on

which has already started, will add tools to the MPEG-4 Standard Existing tools and

profiles from Version 1 will not be replaced in Version 2, technology will be added to

MPEG-4 in the form of new profiles

In the previous chapters there has been a description of how the need for the

development o f an MPEG-4 standard came about Initially an overview of MPEG-4

was given in a layer by layer basis, and then focus was given to the process of

developing an efficient method for 2D and 3D scene description and composition The

mathematics of 2D and 3D composition and rendenng was analysed and developed

The evolution of the scene descnpdon in MPEG-4 was then analysed It was shown

what knowledge and standards currendy existed and how a new dynamic approach was

developed from this knowledge

96

i

In this chapter the future development of the scene description language, the MPEG-4

systems layer, and an overview of the types of applications the final MPEG-4 standard

will help develop is presented

6 2 Future Developments Planned in the Scene Description of MPEG-4

Scene description in MPEG-4 will continue with the further development of BIFS,

introducing new media objects and MPEG-4 nodes as well as converging with the

VRML 2 0 standard, and the introduction of a new adaptive audio visual scene

description

6 2 1 The Future of BIFS

Based on the analysis of VRML and BIFS in the previous chapters it is clear that the

entire BIFS tool cannot be properly represented in a stncdy conformant VRML 2 0

architecture However the interchange and creation of content can be eased, and both

the VRML and MPEG-4 community would benefit from, and facilitate the

development of, the future potential technology and applications that emerge from the

mixing of the computer graphics technology of the VRML consortium, and the

compression and streaming expertise of the M PEG group To this purpose the MPEG-

4 and VRML consortiums are working towards the following

• MPEG-4 should use all VRML nodes following stricdy their semantics and design

• MPEG-4 and VRML should use the same binary encoding

• MPEG-4 shall design its nodes using the same design principles as VRML did In

particular, the following rules must apply

• MPEG-4 should not design nodes that can be efficiendy represented by a small

set o f other existing nodes

97

• MPEG-4 should use names that are compatible with existing node names to

facilitate mutual understanding and technical exchange

6 2 2 Adaptive Audio-Visual Session Format (A A V S)

One of the mam disadvantages of BIFS is that the MPEG-4 receiving terminal must

have all the media objects defined in the scene implemented in order for it to be

rendered correctly This implies that if a scene is developed with a new improved video

or audio decoder, or even a completely new decoder, and the receiving terminal doesn’t

have this implementation we cannot display the scene on this terminal

The Adaptive Audio-Visual Session (AAVS) format specifies interfaces for the

interoperation of MPEG-4 media with JAVA code By combining MPEG-4 media

and safe executable code, content creators may imbed complex control mechanisms

with their media data to intelligendy manage the operation of the audio-visual session

It is foreseen that AAVS will provide unique capabilities as a format for session

representation

• AAVS will provide interfaces to MPEG-4 multimedia terminals, enabling advanced

user interaction and device control

Interactive media applications require both interfaces to user I /O devices as well as

media I /O devices The AAVS technology enables such a capability in MPEG-4 by

having an adaptive session with downloadable applets An applet is a secure JAVA

application that can run over the Internet

• AAVS will provide mechanisms for client-side progiammatic control o f the audio­

visual session

98

For some types of content, a parametnc scene description is sufficient, but for other

types o f content, a programmatic descnption may be most appropriate For example, a

parametnc scene descnption may require frequent updates across the network,

increasing the bandwidth of control information with higher vulnerability to errors In

this case, it may be more robust and efficient to generate the scene updates with

executable code running on the client side In addition, it may be easier to create a

programmatic scene descnption, such as when a position or graphical parameter

changes with time according to a mathematical formula Furthermore, programmatic

content may be extended beyond the syntax of a parametnc scene descnption

• AAVS will provide mechanisms for programmatic adaptation of the session to

client-side information, thus maximising media quality in the presence of static or

dynamic terminal resources

MPEG-4 media is designed to be scalable so that, ideally, a content creator can reuse

the same media on multiple MPEG-4 platforms, for example, in a set-top box, a web

browser, and or a handheld device AAVS enables the content creator to specify client-

side, programmatic control to tailor the media session to the static terminal resource

constraints Furthermore, AAVS provides mechanisms for the content creator to

specify adaptive session behaviour in the presence of dynamically changing resources

6 3 The Future development of the Systems Layer

As previously descnbed, the systems layer of MPEG-4 helps develop standards for the

coding of the combination of, individually coded audio, moving images and related

information so that the combination can be used by any application One of its major

inputs to the standard has been the development of the scene description format

i

Systems will provide the following functionalities for the MPEG-4 standard in Version

1

99

• Scene description for composition (spatio-temporal synchronisation with time

response behaviour) of multiple AVOs The scene descnption provides a rich set of

nodes for 2D and 3D composition operators and graphics pnmitives

• Text with international language support, font and font style selection, timing and

synchronisation

• Interactivity, including client and server-based interaction, a general event model

for triggering events or routing user actions, general event handling and routing

between objects in the scene, upon user or scene triggered events

• The interleaving of multiple streams into a single stream, including timing

information (multiplexing)

• Transport layer independence Through the separation of the multiplexing

operation into FlexMux and TransMux, support for a large variety of transport

facilities is achieved

• The initialisation and continuous management of the receiving terminal’s buffers

• Timing identification, synchronisation and recovery mechanisms

• Datasets covenng identification of Intellectual Property Rights relating to Audio­

visual Objects

Most of these developments have been made and are functioning in the systems

software implementation described m chapter 5 Version 2 o f the MPEG-4 standard

will support, in addition to the tools in Version 1

100

• Scene description for composition of multiple AVOs This includes 2D /3D objects

grouping for ease in editing and composition, spatio-temporal 2D /3D AVO

positioning and transformation, and 2D /3D AVO attribute value selection

• Specification of an API for description of AVOs behaviour,

• Specification o f APIs for 2D composition,

• Specification of API for 2D / 3D composition,

• Support o f downloadable executable code,

• Server-side interaction via attribute value modification using standardised

parametric descnption,

• AVOs with descriptors to carry MPEG-7 data (MPEG-7 will define a framework

for identifying and describing what is ‘inside* the content)

• A number o f functionalities m the area o f IPR identification and protection are

under study for support, and may be provided in MPEG-4 version 2, either by

providing hooks or by defining the algonthms within M PEG for automated

monitoring and tracking of creations, prevention of unauthonsed copying and

manipulation, tracking object manipulation and modification history, and

supporting transactions between Users, Media Distributors and Rights Holders

For more information on the planned future developments of the various MPEG-4

layers see [1] and [2]

6 4 Future MPEG-4 Applications

MPEG-4 has been developed in order to enable developers to create applications In

this section a number o f possible applications are listed which are enabled by the tools

101

and methods currendy standardised within MPEG-4 The idea is to describe and

highlight possible future usage o f MPEG-4 technology Further documentation on

possible MPEG-4 applications can be found in [3]

6 4 1 Real Time Communications

Real-time Communications systems are targeted toward applications which encompass

two-way human interaction, or one-way applications that impose strict one-way delay

constraints A videophone system is a pnme example of a two-way real-time system An

example of a one-way delay constrained system is a surveillance system

One key feature of real-time systems is that if there is both audio and video present, the

audio and video are synchronised so that the viewer is given the impression o f lip

synchronisation Interaction between the users of two-way systems requires that the

overall end-to-end delay will be relatively small and fairly constant

The underlying transport system for real-time communications application is likely to

encompass a broad cross section of technologies A key attribute of the real-time

communications systems application is the ability to successfully operate over a wide

variety of media including low and high mobility wireless, LAN transmission channels,

PSTN and ISDN transmission channels Interworking between various media channels

should be supported

It is expected that real-time communications systems will operate in a variety of

different system configurations including those where the complexity of the

encoding/decoding process constitutes a major design constraint Audio and/or visual

quality maybe traded off against delay and complexity such that a balance is found

between the desire for high quality audio/video and the need to provide low delay

operation at a reasonable complexity

102

64 2 Infotainment

As interaction with AVOs is considered as the most important aspect of MPEG-4,

infotainment applications, containing a combination of entertainment and information

are well within the scope Generally, the users of such systems have the means both to

get information about specific subjects of interest and to configure and amuse

themselves within a multimedia environment The interactivity aspect includes for

example the requesting of additional objects and changing of the content of the existing

scene nodes

A key feature of infotainment applications is the manifold of necessarily diversified

features Typical infotainment applications will make heavy use of natural and synthetic

audio and video in form of e g spoken text and music of all kinds with underlying visual

animation For this kind of application it will be necessary to guarantee a high quality of

presentation during the whole session if the user shall not become bored o f his/her

pastime The quality aspects address both high AV quality and time constraints to end-

to end latency

M PEG-4 provides an ideal framework for infotainment applications

• It will feature the means to support the utmost multifaceted set o f multimedia types

to be combined within a presentation scenario in a standardised way

• The composition concepts, which will cover 2D as well as 3D, will be the base for

mixing all kinds of data types within a consistent object handling and user

interaction paradigm

• M PEG's tradition is to achieve the highest possible quality with existing techniques,

which is only adequate for the demanding nature of infotainment applications

103

6 4 3 Collaborative Scene Visualisation

Collaborative Scene Visualisation supports a class of Computer Supported Co-operative

Work (CSCW) applications where groups of people typically working simultaneously in

distributed locations leverage visualisation tools to accomplish a task by sharing a

common visual information space [31]

A trend of these kind of applications is that they will provide Augmented Reality (AR)

A particular feature of these applications is that they not only use dedicated audio-visual

streams as usual tele-conferencing applications for interpersonal communication, but

also use an additional video streams to achieve AR effects The objective of AR is to

create an environment in which a user perceives both real and virtual/synthetic

(generated with a computer) objects in a seamless way

From the viewpoint of communication, multiple audio-visual streams of natural and

synthetic origins are transferred an audio-visual stream for conferencing, a video stream

containing a video shot of the empty office, and a 3D synthetic object stream for the

furniture, etc

Like any distributed multimedia system where partly bulk data (video, audio, high

resolution image, animation sequence, etc) is transferred, appropriate data coding

methods are needed For this end, MPEG-4 is very useful, because o f the following

reasons

• It supports high performance data compression

• A trade-off between quality and performance can be made by scaling encode and

decode complexity, spatial resolution, temporal resolution, and quality

• Content-based coding enables interactivity with objects Real objects can be

convemendy manipulated in the same way as virtual objects

104

• The composition concept of MPEG-4 is very appropriate for organising a scene

consisting of real and virtual objects to be transferred among dispersed participants

• Stereoscopic views help a user perceiving a scene

• Face Animation parameters can be used to replace the audio-visual streams used for

interpersonal communication to achieve bandwidth reduction The saved

bandwidth can be used to improve the quality of the video stream used for AR

scenes

As can be deduced from the above examples the MPEG-4 standard will provide a

means o f creating new and exciting applications

105

References

[1] MPEG Requirements, Audio, DMIF, SNHC, Systems, Video, “MPEG-4 Overview”,
Document ISO/IEC JTC1/SC29AVG11 N1909, Fribourg MPEG meeting, October 1997

[2] MPEG Requirements, Audio, DMIF, SNHC, Systems, Video, “Overview of MPEG-4
functionalities supported in MPEG-4 Version 2”, Document ISO/IEC JTC1/SC29AVG11 N1914,
Fribourg MPEG meeting, October 1997

[3] MPEG Requirements, “MPEG-4 Applications V 2 0”, Document ISO/IEC JTC1/SC29/WG11
N1907, Fribourg MPEG meeting, October 1997

[4] MPEG-4 Convenor, “MPEG-4 project description”, Document ISO/IEC JTC1/SC29/WG11
N i l 77, Munich MPEG meeting, January 1996

[5] MPEG-4 Systems, “Text for CD 14496-1 Systems”, Document ISO/IEC JTC1/SC29AVG11
N1901, Fribourg MPEG meeting, October 1997

[6] MPEG-4 Systems, “Proposed revision for the MPEG-4 Syntactic Description Language (Rev
2 1)”, Document ISO/IEC JTC1/SC29/WG11 N2902, Fribourg MPEG meeting, October 1997

[7] MPEG-4 Audio, “Text for CD 14496-3 Audio”, Document ISO/IEC JTC1/SC29/WG11
N1903, Fribourg MPEG meeting, October 1997

[8] MPEG-4 Video, “Text for CD 14496-2 Video”, Document ISO/IEC JTC1/SC29/WG11
N1902, Fribourg MPEG meeting, October 1997

[9] Sun Microsystems, The Java Language A White Paper

[10] MPEG-4 Systems, E Cooke, S Lecercle, O Avaro, “MSDL VM A Primer”, Document
ISO/IEC JTC1/SC29/WG11 N1575, Maceio MPEG meeting, November 1996

[11] MPEG-4 Video Group, “Text of ISO/IEC 14496-2 video verification model V 8 0”,
Document ISO/IEC JTC1/SC29/WG11 N1796, Stockholm MPEG meeting, July 1997

[12] MPEG-4 Systems, “Systems Working Draft version 2 0”, ISO/IEC JTC1/SC29/WG11
N1483, Maceio MPEG meeting, November 1996

[13] Embedded Real Time Development in the Java Language http //www newmomcs com

[14] VRML community, “The Virtual Reality Modeling Language Specification “,Version
2 0,August 4, 1996

[15] MPEG-4 Systems, E Cooke, C Bouville, “Proposal tor 2D & 3D Composition”, ISO/IEC
JTC1/SC29AVG11 N1776, Sevilla MPEG meeting, February 1997

[16] MPEG-4 Systems, E Cooke, L Ward, “Proposal for 3D Scene Description and Composition”,
ISO/IEC JTC1/SC29/WG11 N1777, Sevilla MPEG meeting, February 1997

[17] Cosmo Software, http //cosmo sgi com/, Cosmo Software Homepage

[18] MPEG-4 Systems, E Cooke, L Ward, “3D VM Plug-n-Play Interface for 2D AV objects ’ ,
ISO/IEC JTC1/SC29/WG11 N1999, Bristol MPEG meeting, April 1997

[19] Microsoft,http //www dimensionx com/products/lr/docs/index html, LR Documentation

1

[20] Microsoft,http //www dimensionx com/products/lr/docs/tutorial html, LR Tutorial

[21] MPEG-4 Context and Objectives, R Koenen, F Pereira, L Chianghone, Special Issue of
Image Communication on MPEG-4, Volume 9, Issue 4, May 1997

[22] Introduction to MPEG-4, C Reader, Journal of Video Coding, February, 1997

[23] MPEG-4 Audio/Video & Synthetic Graphics/Audio for Mixed Media, PK Doenges,
T K Capin, F Lavagetto, J Ostermann, I S Pandzic, Image Communication Journal, Volume 5, No
4, May 1997

[24] MPEG-4 Editorial, Y Q Zhang, FPenera, T Sikora, C Reader, CirSysVideo Journal, No 1,
February 1997

[25] The MPEG-4 Video Standard Verification Model, Y Q Zhang, F Periera, T Sikora, C Reader,
CirSysVideo Journal, No 1, February 1997

[26] The MPEG-4 Systems and Description Languages A Way Ahead in Audio Visual
Information Representation, O Avaro, P Chou, A Elefthenadis, C Herpel, C Reader, J Signes,
Special Issue of Image Communication on MPEG-4, Volume 9, Issue 4, May 1997

[27] Dcad-Reckoning Algorithms for Synthetic Objects in MPEG-4 SNHC, T K Capin,
I S Pandzic, N Magnenat Thalmann, D Thalmann, Workshop on Synthetic - Natural Hybrid Coding
and Three Dimensional Imaging, Rhodes, 1997

[28] MPEG-4 Video Venfication Model A Video Encoding/Decoding Algorithm Based on
Content Representation, T Ebrahimi, Image Communication Journal, Volume 5, No 4, May 1997

[29] ISO MPEG-4 - An Emerging Standard for Mobile Multimedia Communications, A Puri,
A Elefthenadis, Special Issue of Mobile Networking and Applications Journal on Mobile
Multimedia Communications, June 1997

[30] Tests on MPEG-4 Audio Codec Proposals, L Contin, B Edler, D Meares, P Schreiner, Special
Issue of Image Communication on MPEG-4, Volume 9, Issue 4, May 1997

[31] MPEG-4 for Networked Collaborative Virtual Environments, T K Capin, IS Pandzic,
N Magnenat Thalmann, D Thalmann, IEEE Computer Society Press, 1997

2

Annex A - Glossary and Acronyms

AAC Advanced Audio Coding
AAL ATM Adaptation Layer
A A VS Adaptive Audio-Visual Session
AL Adaptation Layer
Access Unit A logical sub-structure of an Elementary Stream to

facilitate random access or bitstream manipulation
ADSL Asymmetrical Digital Subscriber Line
Alpha plane Image component providing transparency information

(Video)
API Application Programming Interface
ATM Asynchronous Transfer Mode
A VO Audiovisual Object
BAP Body Animation Parameters
BDP Body Definition Parameters
BIFS Binary Format for Scene description
BSAC Bit-Sliced Arithmetic Coding
CE Core Experiment
CELP Code Excited Linear Prediction
DAI DMIF-Apphcation Interface
DDI DMIF-DMIF Interface
DMIF Delivery Multimedia Integration Framework
DSM-CC Digital Storage Media - Command and Control
DSM-CC U-U DSM-CC User to User
DSM-CC U-N DSM-CC User to Network
ES Elementary Stream A sequence of data that originates

from a single producer in the transmitting MPEG-4
Terminal and terminates at a single recipient, e g an
AVObject or a Control Entity in the receiving MPEG-4
Terminal It flows through one FlexMux Channel

FAP Facial Animation Parameters
FBA Facial and Body Animation
FDP Facial Definition Parameters
FlexMux layer Flexible (Content) Multiplex A logical MPEG-4 Systems

layer between the Elementary Stream Layer and the
TransMux Layer used to interleave one or more
Elementary Streams, packetized in Adaptation Layer
Protocol Data Units (AL-PDU), into one FlexMux stream

FlexMux stream A sequence of FlexMux protocol data units originating
from one or more FlexMux Channels flowing through one
TransMux Channel

FTTC Fiber To The Curb
GSTN General Switched Telephone Network
HFC Hybrid Fiber Coax
HILN Harmonic Individual Line and Noise
HTTP HyperText Transfer Protocol

1

HVXC Harmonic Vector Excitation Coding
IP Internet Protocol
IPI Intellectual Property Identification
IPR Intellectual Property Rights
ISDN Integrated Service Digital Network
LAR Logarithmic Area Ratio
LC Low Complexity
LPC Linear Predictive Coding
LSP Line Spectral Pairs
LTP Long Term Prediction
mesh A graphical construct consisting of connected surface

elements to describe the geometry/shape of a visual object
MCU Multipoint Control Unit
MIDI Musical Instrument Digital Interface
MPEG Moving Pictures Experts Group
PSNR Peak Signal to Noise Ratio
QoS Quality of Service
RTP Real Time Protocol
RTSP Real Time Streaming Protocol
Rendering The process of generating pixels for display
Sprite A static sprite is a - possibly large - still image, describing

panoramic background
SRM Session and Resource Managers
TCP Transmission Control Protocol
T/F coder Time/Frequency Coder
TransMux Transport Multiplex
TTS Text-to-speech
UDP User Datagram Protocol
UMTS Universal Mobile Telecommunication System
Víseme Facial expression associated to a specific phoneme
VLBV Very Low Bit-rate Video
VRML Virtual Reality Modeling Language

2

