
SWTTCHEP-CAPACTTQR FILTERS AND THEIR  ̂APPLICATIQN 
IN DATA COMMUNICATIONS

Author : Martin Collier, B. Eng.

Submitted for the award of:
Master of Engineering

Supervisor:
Thomas Curran, PhD.

School of Electronic Engineering, 
National Institute for Higher Education, Dublin.

September 1988

I hereby declare that the contents of this thesis are based 
on my own research.

Signed,
¡¿J~

Martin Collier.



ABSTRACT

There have been considerable developments in the field of switched-capacitor 
filter design over the past decade. Those developments which allow the operating 
frequency range of switched-capacitor filters to be extended are considered.

The solution to the approximation and synthesis problems for l.d.i.-based 
switched-capacitor ladder filters discovered by Scanlan is explained. Computer 
software which implements his technique for low-pass filters is presented. A 
number of techniques for synthesising the network are investigated. It is shown that 
numerical difficulties limit the order of filter which can be synthesised. The 
sensitivity properties of switched-capacitor ladder filters are explored. A technique, 
which has been implemented in software, for evaluating the amplitude sensitivity of 
such filters is described. This program is used to demonstrate that the frequency 
variable terminations in the equivalent circuit of the switched-capacitor ladder filter 
adversely affect its sensitivity properties.

Grcuit topologies which result in improved high frequency performance are 
considered, and a fully differential filter structure for high frequency operation is 
proposed. Circuits are presented for a digitally programmable switched-capacitor line 
equaliser and optimisation techniques for its design are investigated. The extension 
of the design to incorporate adaptive operation is discussed, and circuits based on 
the above designs which have been fabricated at the National Micro-electronics 
Research Centre (N.M.R.C.) in Cork are described.



a c k n o w le d g e m e n ts

The assistance of the following people is greatly appreciated:
Tommy Curran, my supervisor, for his constant advice and encouragement, Neil
McCarthy, my counterpart at the National Micro-electronics Research Centre, for
our many productive discussions on practical SC filter designs, and for fabricating
the filters, and Denis Curran, for his comments on line equalisation.



CONTENTS

Chapter One: Introduction. 1

Chapter Two: SC Filters - A Review.

2.1: Basic Concepts. 4
2.2: Analysis Techniques. 8
2.3: Synthesis Techniques. 11
2.4: Technological Considerations

for SC Filters, 16
2.5: Applications of SC Filters. 17

Chapter Three: The Synthesis of L.D.I.-Based
SC Filters.

3.1: Basic Concepts. 22
3.2: An Exact Design Procedure. 35
3.3: Practical Implementation of the

Design Technique. 43
3.4: Variations on the Method of Synthesis. 48
3.5: Other Techniques for Synthesis of

L.D.I.-Based Ladders. 56
3.6: Results Obtained. 60
3.7: Conclusions. 69

Chapter Four: Sensitivity Analysis of SC Filters.

4.1: Structures for Low Sensitivity Filters. 71
4.2: Techniques for Sensitivity Analysis. 75
4.3: Evaluation of the Amplitude Sensitivity. 78
4.4: Sensitivity Properties of

SC Ladder Filters. 83
4.5: A Filter Response Featuring Equiripple 

Transducer Power Gain in the
Passband. 85

4.6: Results Obtained. 88



Considering first the eighth-order filter, the expected passband response, 
as determined using (3.35), is shown in Fig. 3.11. The plot obtained is based on 
the response calculated at sixty four evenly spaced frequencies in the passband. 
The response obtained at each point is marked by a cross in Fig. 3.11, and the 
plotting routine joins the points by straight lines to approximate a continuous curve. 
The points plotted are, to a very high accuracy, in the positions expected from 
(3.16), indicating that S11 (A,) has been obtained correctly. (The apparent droop in 
the passband response around f/fg = 0.06 occurs because only a few points are 
plotted there - there are numerical difficulties associated with calculating (3.35) at 
closer frequency intervals in this region.)

Table 3.5 shows the element values obtained for the equivalent circuit 
of Fig. 3.9(a) for the three synthesis methods considered. The pass-band response 
obtained by simulating the three filters in Table 3.5 are shown in Figs. 3.12, 3.13 
and 3.14 for the first, second and third methods. Clearly the passband responses
for the first and second methods are not equiripple, that in Fig. 3.12 deviating 
most from that intended (i.e. Fig. 3.11). In contrast, the correspondence between 
Figs. 3.11 and 3.14 is excellent.

The corresponding element values for a ninth-order filter are shown in 
Table 3.6. Again, S , ,  (X,) has been obtained accurately, as demonstrated by Fig. 
3.15. The value of the last inductor for the first two methods is negative, 
indicating that these methods have failed to synthesise the filter correctly. In fact, 
the element values for the second method result in an unstable filter, so no plot of 
passband response can be obtained. The time domain simulation of the filter 
synthesised using the second method, when transformed into the frequency domain 
using the FFT, results in the pass-band response of Fig. 3.16. The test of [87]
shows this to be an unstable filter. Once again, the results obtained by the third 
method are excellent, as shown in Fig. 3.17.

The superiority of the method of [87] is thus demonstrated. Using the 
values obtained by this method as a reference, it can be seen that, for the other 
two methods, the values of the extracted elements diverge appreciably from the 
correct values after five elements have been extracted. Improvements in the
numerical techniques used might improve this figure (e.g. both methods return an 
incorrect value for the load termination, which can be calculated before
commencing the synthesis as Zjn(X=0), and this error might be corrected for).
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Chapter One: INTRODUCTION

The field of switched-capacitor filters has attracted considerable attention over 
the past decade. This interest stems from the suitability of such filters for 
integration using the MOS processes which have been developed for the integration 
of increasingly sophisticated digital circuitry. Recent developments in 
switched-capacitor filter technology and in the theory of operation of such circuits 
allows their usable frequency range to be extended beyond the voice-band. This 
work investigates some of these developments, and their application in the field of 
digital data communications. The topics discussed will now be briefly outlined.

Chapter Two:

The basic concepts of switched-capacitor filters are introduced. There 
follows a discussion of developments in the field concentrating on those areas of 
most relevance to subsequent chapters. Techniques which have been developed for 
the analysis of switched- capacitor filters are listed. Synthesis techniques are then 
discussed, in particular those which have been developed for the so-called switched- 
capacitor ladder filters. Circuit techniques for overcoming the limitations of 
practically implemented filters are briefly considered. The chapter concludes by 
mentioning some practical applications of switched- capacitor filters, focussing on 
applications in telecommunications.

Chapter Three:

Exact design techniques for the class of switched- capacitor filters 
usually referred to as Ld.i. ladder filters are considered, concentrating on the 
low-pass case. These filters are derived from the signal flowgraph of passive ladder 
prototypes. Exact design techniques are a pre-requisite for high-frequency operation 
of these filters. The original stray-sensitive designs for switched- capacitor ladder 
filters are briefly described. The stray-insensitive integrators used in modem filter 
designs are presented, and clock phasing schemes which result in their 
implementing lossless discrete integration when incorporated in ladder filter 
topologies are discussed. The exact design procedure introduced by Scanlan for this 
class of filter is outlined. The algorithms used in implementing the design 
procedure on computer are described. Various techniques which have been proposed 
for the synthesis of these filters, given the input impedance as calculated using the
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method of Scanlan, are presented, along with details of their computer
implementation. Alternative design techniques introduced by other authors are briefly 
discussed. Results obtained from sample runs of the synthesis program are 
presented for various algorithms, and the chapter concludes with a brief discussion 
of the numerical difficulties associated with the design technique.

Chapter Four

The concept of sensitivity is introduced, and the argument propounded 
by Orchard explaining the low passband sensitivities of doubly-terminated reactance 
two-ports is presented. A number of techniques for the evaluation of filter
sensitivities are described. A formula for calculating the sensitivity of the squared 
amplitude to element value variations for switched- capacitor ladder filters is
developed. The reasons for expecting the passband sensitivity of a switched-
capacitor ladder filter to be inferior to that of a passive LC ladder filter designed 
to the same specifications are explained. A filter response which is expected to 
feature minimal passband sensitivity is proposed. This is not an approximation to 
the ideal low-pass response, but is instead intended to demonstate the sensitivity 
properties of switched- capacitor ladder filters. The passband sensitivities, as 
calculated by computer, for high-order switched- capacitor ladder filters are 
presented, as a practical example of sensitivity evluation.

Chapter Five:

Topologies which limit the high frequency performance of switched- 
capacitor filters are discussed. Circuit techniques which result in improved filter 
response at high frequencies are investigated. The transfer functions for fully 
differential switched- capacitor integrators are derived. The advantages of such 
circuits for high frequency operation are described. A list of requirements for a 
filter structure for high frequency operation is presented. The limitations which are 
consequently imposed on filter topology are explored. In particular, it is shown that 
a filter with a second order (z-plane) numerator (as do standard biquad structures) 
requiresthree op-amps and thus can possess a third-order denominator. A 
single-ended filter satisfying the above constraints is presented, and an expression 
for its transfer function is obtained Hence a fully-differential filter structure is 
found. It is shown that this structure can incorporate a cosine-filtering action, and 
that, by means of a simple topological transformation, any z-domain transfer 
function with two zeros and three poles can be implemented. Finally, an algorithm
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is presented for obtaining capacitor values for the new filter structure.

Chapter Six:

The options available for bidirectional baseband digital communications 
are briefly discussed. The potential of switched- capacitor filters for application in 
this area is assessed. The components required of a switched- capacitor line 
equaliser are listed. Circuitry for the implementation of such an equaliser is 
presented. Design techniques for the filter sections are introduced, and the resulting 
element values are tabulated. Optimisation techniques for the equaliser design are 
presented, for use in both the time domain and the frequency domain, and practical 
details of their implementation are discussed. The results obtained from the 
optimisation process are presented, and the limitations of the methods used are 
discussed. The extension of the equaliser design to incorporate adaptive operation is 
investigated. Previous techniques used to achieve this are explored, and circuitry is 
proposed to perform the adaptation. Finally, details are presented of some filter 
sections which have been integrated at the National Micro-electronics Research 
Centre to test the equaliser design.

The broad conclusions to be drawn from the work presented above are 
listed in Chapter Seven, as well as some suggestions for further research.

3



Chapter. J a p ;  SWITCHED CAPACTTQR FILTERS - A REYIEW

2.1 Basic Concepts.

The concept of using switches and capacitors to effect frequency 
selective electrical netwoiics is of comparatively recent origin. Fettweis, in a review 
of early work [1] points out that the term switched- capacitor filter was used (in 
[2]) as early as 1971, and the concept had been mooted in an English-language
journal in 1972 [3] by Fried. However, it was not until 1977 [4,5] that the
significance of the concept was widely appreciated, in that it made the integration
of precise analog filters using a standard MOS process feasible.

Analog filters had proved difficult to integrate using conventional means. 
Filters using inductors were obviously impossible to integrate. RC-active filters, 
however, although they could be integrated, presented two major problems. The 
absolute value of integrated resistors and capacitors cannot be precisely controlled, 
and hence the filter parameters, which are dependent on RC products, are
imprecise. Resistors of high value and acceptable linearity, of the type typically 
required for RC-active filters, require large die areas [6].

An alternative technique for monolithic analog filtering is to use 
transversal filters based on the CCD principle [7]. However, the superiority of the 
switched- capacitor technique for most applications was readily apparent [8]. In 
recent years, new techniques for monolithic analog filtering have been developed 
which, unlike the above techniques, operate in continuous time. However, this has 
not led to any decline in the popularity of switched- capacitor filtering as a
research topic, as demonstrated, for example, by the number of sessions held on
the subject at the International Symposium for Circuits and Systems at Helsinki in
June ’88.

The earliest switched- capacitor filters were based on replacing the 
resistors in a conventional active-RC design by nominally equivalent switched- 
capacitors [4]. The equivalence is only valid for signal frequencies much lower 
than the sampling rate, in which case the filter can be approximately regarded as 
operating in continuous time. A switched- capacitor equivalent of the conventional
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active-RC integrator proved to be a versatile building block for switched- capacitor 
filters [5] but suffered from stray- sensitivity. This means that the stray 
capacitances which are inevitably present between each capacitor plate and the
substrate in an integrated filter affect the transfer of charge through the filter.
However, stray- insensitive circuits for performing the same operation have been 
developed [5,9] for both inverting and non-inverting integration, and have become 
standard elements of switched- capacitor filters. These filter sections are shown in 
Fig. 2.1.

It was recognised that, when these integrators were analysed rigorously 
as sampled-data systems, the difference equations describing their operation
corresponded to the linear discrete integrator (l.d.i.) [10], first proposed by Bruton 
as a numerical approximation to integration for use in digital filters, and the 
damped discrete integrator (d.d.i.), which performs the l.d.i. operation with the
addition of negative feedback from the output to the input. Hence these terms are 
often used to refer to the integrator circuits shown.

Other first order sections have been proposed, such as those in [11], 
which realise integrators based upon the bilinear transform. Many of these building 
blocks are stray- sensitive, although stray- insensitive equivalents can often be 
found [12-14], There are also quite different techniques of performing switched- 
capacitor filtering, such as using voltage inverting switches [15,16], or other 
techniques of simulating wave digital filters [e.g. 17]. However none of the rival 
techniques currently feature the combination of simple circuitry and stray- 
insensitive operation provided by the circuits of Fig. 2.1, which are the compelling 
reasons for their adoption as the basis of most integrated systems featuring 
switched- capacitor filtering [18].

The difference equations describing the operation of the d.d.i. circuits of 
Fig. 2.1 are

V0 (n) = C2/(C 2+C3) V0 (n -1) + C ,/(C 2+C3) V ,(n -J)

and

VQ(n) = C2/ (C 2+C3) V0 ( n - 1) - C ,/(C 2+C3) V ,(n)
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By the addition of an unswitched capacitor from the virtual earth terminal to 
a second input V2, a simple gain term is added to the expression for the output. 
Coupling two integrators, one inverting and the other non-inverting, and thereby 
providing negative feedback, results in a biquadratic transfer function in the
z-domain. A number of structures for such biquads have been proposed [9,19-23]
of which that in [23] (which is reproduced in Fig. 2.2) has been particularly
popular. The design considerations for these biquad structures have been further 
investigated in [24-26] and Bermudez has presented an optimisation approach which 
selects the most appropriate from the wide range of possible biquads for a 
particular application [27]. Huang and Sansen have suggested the use of a ’split
integrating capacitor’ to reduce the capacitance ratio spread in biquads [28],

High order filters can readily be synthesised using cascaded biquads 
[21], However, for low sensitivity, a design based on the simulation of a doubly 
terminated passive lossless ladder should be used. Orchard demonstrated [29] that 
such passive filters, when designed so that maximum power transfer is achieved at 
some frequencies in the passband, can be expected to feature low sensitivity in the
passband, by appealing to simple arguments of power transfer. It follows that any
active filter based on the simulation of such passive prototypes should feature low 
sensitivity in the passband. Since ladder filters also feature low stopband sensitivity 
( all circuit elements contribute to the stopband loss ) such filters are usually 
chosen as the prototype for the active filter design.

In the case of switched- capacitor filters, simulations based upon the 
’leapfrog ladder’ or signal flowgraph technique for simulating passive LC ladder
filters have proved most effective, since they can be implemented with the 
stray-insensitive circuits of Fig. 2.1 [30,31].

2.2 Analysis Techniques.

As the complexity of switched- capacitor circuits continued to increase,
a need for advanced techniques for the analysis of such circuits arose. A variety 
of methods has been proposed for performing such an analysis. These range from 
techniques for manually determining a switched- capacitor filter transfer function by 
inspection or hand calculation [32-38] to techniques rigorously developed from
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circuit theory [39-44] which allow computer-aided analysis or simulation of 
complex circuits [e.g. 45,46]. These techniques are based on a few fundamental 
approaches to the analysis problem [47]. These include the charge formulation 
approach, based on the principle of conservation of charge [34,48], the use of
nodal analysis [49] and modified nodal analysis [44], and on the use of the
indefinite admittance matrix [41]. Another approach is to use equivalent circuits 
where, for example, two-phase switched- capacitor elements or subcircuits are 
replaced by equivalent four-port networks [40,50].

A number of computer programs have been written to analyse switched- 
capacitor networks using these techniques, such as those listed in [51], Most of 
these programs assume ideal circuit elements - for example SWITCAP [52,53] 
assumes the network consists only of ideal capacitors switches and voltage sources. 
Resistors can be simulated approximately by using the resistor-switched capacitor 
equivalence of [4] and a high sampling rate. More rigorous analysis of resistive
switched- capacitor circuits requires the solution of differential difference equations 
[47], Solutions to this problem were formulated specifically for the analysis of
switched- capacitor networks in [54,55]. Other solutions to this problem have 
recently been proposed [56-58], The latter approach allows matrix expressions for 
the frequency response of a general linear resistive switched- capacitor network to 
be obtained. Thus recently available analysis programs, for example the N1SCAP 
program used in [59], and SWAP (marketed by Silvar-Lisco Inc. ) can accurately 
analyse such effects as the finite bandwidth of real op-amps and non-zero 
on-resistance of switches.

As the performance of switched- capacitor filters has increased, further 
specialised analysis tools for investigating non-ideal operation have been developed. 
The effect of finite gain-bandwidth on switched- capacitor filters has been 
analytically investigated [60-62] and analysis procedures which allow for op-amps, 
in an otherwise ideal switched- capacitor network, which have finite gain and 
bandwidth have been developed [63,64]. Other more subtle non-idealities of 
switched- capacitor networks have been investigated, such as errors in charge 
transfer [65], the effects of the resulting residual charge [66], and the transient 
response of practical switched- capacitor netwoiks [67]. Such non-idealities give rise 
to frequency domain distortion, which is analysed in [68], These non-ideal factors 
limit the performance of switched- capacitor filters as the clock rate is increased, 
and such frequency limitations are discussed in [69], Another major difficulty with 
practical switched- capacitor filters has been the noise generated [6] and this has
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been analysed in [70-73].

2.3 Synthesis Techniques.

Advances in the analysis of switched- capacitor filters have been
matched by developments in the area of circuit synthesis. The earliest synthesis
techniques were simply those already available for active filters, but which are only 
approximately valid for switched- capacitor filters [30]. The resulting switched - 
capacitor filter reproduces the response of the corresponding active-RC filter only
for signal frequencies much less than the filter sampling rate. Accurate techniques 
must account for the sampled-data nature of the filters. This can readily be done 
for filter designs based on cascaded biquads [20]. For example, the discrete-time 
transfer function to be implemented can be derived from a continuous-time function 
obtained using traditional methods, via a suitable transformation, typically the 
bilinear transformation [74], The z-domain poles and zeros are then allocated to the 
biquad sections (using, for example, the technique of [75]). Each biquad is then 
synthesised by matching co-efficients with its discrete-time transfer function and 
scaling for maximum dynamic range [23]. No major innovations are required in 
this design procedure which parallels existing techniques for the synthesis of 
cascaded biquads.

The exact synthesis of switched- capacitor filters based on the 
simulation of doubly-terminated passive LC ladders represented a new problem in
circuit theory. One of the simplest such filters is the all-pole lowpass ladder. The
difficulty in synthesis arises because the variable used to simulate integration in 
filters based on the circuits in Fig. 2.1 is the variable '/y  where

y = sinh(sT/2) = K z 1/ 2 - z~ ' /2 )

and where T is the filter clock period, 1/s is the Laplace Transform of the
integration operator, and z- 1 = e‘s^  is the Laplace Transform of the delay
operator, for a delay of T [10,76]. If a filter is realised which implements the 
signal flowgraph of an all-pole ladder exactly but with the variable s replaced by 
y, it will be unconditionally unstable. This is because, if the filter has a z-domain 
pole at z, = e 's iT, it will also have a pole at z 2 = -z ,‘ \  since the value of y 
is same at z = z, and z = z 2. Thus it is impossible for all the poles to be
inside the unit circle in the z-plane, or to be on the right hand side of the
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s-plane, as is required for a stable filter. Stable filters can be realised by 
modifying the filter operation so that it is not described simply by a function of y. 
In fact the terminations of the y-mapped filter corresponding to the all-pole ladder 
cannot be realised using the circuits of Fig. 2.1 [77,78], Consequently, terminations 
realisable using the damped discrete integrator of Fig. 2.1 are employed, resulting 
in an equivalent circuit, in ladder form, of the type shown in Fig. 2.3.

The approximate design technique first employed [31] ignored the 
frequency variation of the terminations in Fig. 2.3, thereby allowing the classical 
results for the synthesis of LC ladder circuits to be applied. Consequently the 
frequency response obtained matched the designed-for response only for frequencies 
f where 27cfT<< 1, in which situation the approximation Rz' 1̂ 2 -  R is valid. In 
practice, this means that the filter sampling rate must be much greater than the 
filter cutoff frequency if the filter is to operate satisfactorily.

Fig, 2,3: E q u i v a l e n t  C i r c u i t  o f  F i f  t h  O r d e r  

l.d.i, b a s e d  low p a s s  f i l t e r ,

12



A new synthesis technique was required for the accurate synthesis of 
signal-flowgraph based switched- capacitor ladder filters, which simulate networks of 
the type shown in Fig. 2.3. Lee and Chang bypassed this problem by performing a 
topological modification on the prototype filter which allowed the bilinear transform 
instead of the l.d.i. transfomi to be used in the synthesis [79]. The resulting filter 
contains unswitched capacitors connected in a manner used, in approximate 
techniques, to introduce transmission zeros, such as are required in elliptic filters
[31]. Hokenek and Moschytz used a similar technique, using the bilinear transform 
to derive a filter structure, which, following admittance scaling, could be realised 
using circuits similar to those of Fig. 2.1. (together with unswitched capacitors) but 
with clock phases such that integration of the l.d.i. type was not performed [80]. 
Another suggestion, by Choi and Broderson [78], was to change the damped 
discrete integrators which simulate the ladder terminations so as to simulate
conjugate terminations. This reduced, but did not eliminate, the high frequency 
error. Davis and Trick used what might be termed a ’brute force’ method to 
perform the synthesis, which required the solution of a set of nonlinear equations 
[81]. This technique obviously becomes unwieldy for filter orders higher than three.

An exact solution to the synthesis problem for this class of filter was 
presented by Scanlan [76]. The power of the technique proposed by Scanlan stems 
from the equivalence established between switched- capacitor filters based upon the 
l.d.i. variable, and a class of distributed- parameter filters. This allows 
approximation and synthesis techniques for switched- capacitor filters to be 
developed by analogy with the existing wealth of techniques available for the 
design of filters employing unit elements [82,83].

In fact, an exact synthesis procedure for l.d.i.- based low pass filters
had already been published as early as 1977 [84] by Vaughan-Pope and Bruton. 
Their paper, however, does not provide a general solution to the approximation 
problem for this class of filters. Also, their method, which involves the use of 
mirror-image and antimirror-image z-domain polynomials, does not relate the
synthesis problem for the l.d.i.- based filter to that for a classical filter type, as 
that of Scanlan elegantly does. This solution to the synthesis problem does not 
appear to have come to the attention of the switched- capacitor filter research 
community until its relevance was described by Yassine [85], and was not extended 
to high pass filters until 1984 [86].
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The range of application of the circuits of Fig. 2.1 was soon extended 
to include other filter types. Transmission zeros could be easily added to a low 
pass filter by adding unswitched capacitors to provide simple gain terms, as shown 
in [31]. By substituting two- integrator loops (to form simple biquads) for the 
integrators of the low pass filter, bandpass filters could be designed [11].

The technique of [76] was soon developed to encompass these filter 
types. In [87] Baher and Scanlan presented a simple test for the stability of the 
l.d.i.- based low pass ladder which follows direcdy from the work of [76] (a more 
complicated test is given in [88]) and a new synthesis algorithm based on the 
derivation of the transmission matrix for the ladder. Taylor [89] showed that the 
method could be applied to the synthesis of low pass filters with finite 
transmission zeros by considering the example of a third order elliptic filter. 
Tawfik et al. [90] extended the technique to bandpass designs using a lowpass to 
bandpass transformation, and presented an equation for the required form of the 
transducer power gain for a bandpass l.d.i. ladder-based switched- capacitor filter 
obtained by replacing each inductor or capacitor by a series or parallel resonant 
LC section. A more powerful solution to this problem was presented by Baher and 
Scanlan [91], Their technique did not require the passband to feature geometric 
symmetry.

Datar and Sedra also published their method for the exact synthesis of 
switched- capacitor ladder filters [92], Lowpass filters with and without transmission 
zeros were considered in detail and a fourth order bandpass example was given. 
The method used was essentially equivalent to that proposed by Scanlan, with the 
exception that a second switched capacitor had been added to the input stage of 
the switched- capacitor ladder, as shown in Fig. 2.4, which resulted in a factor 
¿(1+z*1) appearing in the filter transfer function. Thus the approximation problem 
differed slightly from that considered by Scanlan. Subsequently Datar and Sedra 
extended their results to the highpass case [93]. Previous exact synthesis methods 
based on bandpass ladder simulation had used the bilinear transform [94] or a 
variant thereon [80,95]. Baher also extended the method of [76,87] to the highpass 
case [96], allowing the number of transmission zeros at the origin to be specified.

The approximations used for the various ladder structures have been 
summarised by Baher in [97]. All of these approximations were amplitude 
approximations only, but were extended to cover linear phase responses in [98,99].
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An alternative approach to the design of linear phase switched- capacitor filters 
was presented by Lish [100].

Other authors presented variations on the theme introduced by Scanlan. 
Yassine [85] presented a method similar to Scanlan’s, but which was claimed to 
offer the advantage over the earlier method of not being limited to the use of the 
l.d.i. transformation from continuous time to discrete time. His method does not 
include a solution of the approximation problem. Instead, a continuous-time transfer 
function is selected, and converted into discrete-time using any suitable 
transformation [101]. The characteristic function is then obtained in a manner 
equivalent to that proposed by Scanlan, and the method of [87] for finding the 
transmission matrix parameters of the filter is applied. Another approach to l.d.i. 
based design has been that of Taylor and Mavor for the case of highpass and 
lowpass filters. Their technique reduces the signal flowgraph of a cascade of unit 
elements to a form suitable for implementation using damped differential integrator 
circuits, so that no new synthesis technique is required [102-104],

NC e
V x

v out

Fig 2,4: F e e d - i n  b r a n c h  r e a l i s i n g

t r a n s m i t t a n c e  o f  f o r m  ( l  + z ~ l )
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The maturity of this area of switched- capacitor filter investigation in 
only a few years is indicated by the existence of CAD software which incorporates 
the Scanlan/Baher technique [105].

For complex prototype filters, many choices of state variable or signal 
flowgraph representation are possible, making the ’leapfrog’ simulation technique 
more difficult to apply. To avoid this difficulty, new techniques can be used for 
deriving the switched- capacitor filter from the passive prototype, such as the use 
of intermediate transfer functions [106] or LU decomposition [107],

2.4 Technological Considerations for SC Filters.

As experience has been gained in the practical realisation of switched-
capacitor filters on MOS integrated circuits, new techniques have been proposed for
overcoming difficulties in their implementation. Hasler [108] has stated conditions 
for a switched- capacitor network to be stray-insensitive, and has presented an 
algorithm for obtaining a stray-insensitve implementation from one that is sensitive 
to stray capacitance [109]. Numerous authors have proposed techniques for the 
reduction of the effect of finite op-amp gain on the performance of switched-
capacitor integrators [110-115]. With many of these techniques, the feedback path 
around the op-amp is broken during the transitions between phases. Matsumoto 
[116] has proposed an interesting variant on the technique, which features
continuous feedback around the op-amp, producing a ’spike-free’ output. These 
techniques would seem to be most applicable to GaAs processes, where the 
obtainable op-amp gain is low [117]. Similar techniques have been used to cancel 
or reduce the op-amp output offset voltage [118-121], clock feedthrough [121,122], 
and low frequency noise [123-125], all of which have presented problems in
practice. Fully differential circuit topologies, which feature op-amps with differential
outputs, have been shown to have advantages in noise performance, particularly in 
respect of power supply rejection, and high frequency performance [59,126,127]. In 
practical systems, the complexity of the pre-filtering and post-filtering requirements 
is such that decimation and interpolation techniques respectively [128] are often
used to reduce the stringency of the continuous-time filtering requirement. Switched- 
capacitor circuits to achieve these functions have been proposed in [18,129-134].

In spite of all the progress that has been made in recent years, an
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analysis by Gray and Castello of the theoretical limitations of switched- capacitor 
filters [135] shows that the current technology falls far short of reaching these 
limits. Thus there remains considerable scope for improvement in the performance 
of switched- capacitor filters.

2.5 Applications of SC Filters.

2.5.1 General Applications.

Switched-capacitor techniques have been employed in many applications. 
Programmable filters can be implemented using programmable capacitor arrays
[136]. Early switched- capacitor filters had an indifferent noise performance, but 
excellent results were obtained by applying the technique of chopper stabilisation
[137] to a fully differential design allowing a dynamic range in excess of lOOdB 
to be achieved. This level of performance allows switched- capacitor filters to be 
used in pre-filter applications for the most demanding PCM specifications. 
Switched- capacitor filters have been used in PCM codecs [138,139] where they 
are used for anti-aliasing, post-filtering and hum rejection. The range of operating 
frequencies for switched- capacitor filters has been extended well beyond the 
voice-band range. Choi et al. presented a ladder-based elliptic bandpass filter with 
a clock frequency of 4 MHz and a centre frequency of 260 kHz, intended for AM 
IF applications [140], Their results are particularly impressive in that a process 
with the conservative feature size of 4 |xm was used to fabricate the filter. Matsui 
et al. [141] have constructed transversal switched- capacitor filters with a sampling 
rate of 14 MHz and 4 Mhz bandwidths for video applications. Tawfik and Senn 
have implemented lowpass switched- capacitor filters with 18 MHz sampling rates 
and a cutoff of 3.6 MHz using conventional ladder-based structures [142]. The 
same design team, with Assael, has also presented a silicon compiler for switched- 
capacitor filters [143].

2.5.2 Adaptive Filters and Equalisers

Another application in which switched- capacitor filtering technology has 
been used is line equalisation, i.e. compensating for the frequency characteristics of, 
typically, a telephone line. As early as 1981, Martin [144] had proposed circuits 
suitable for adaptive applications using switched- capacitor technology. However, the
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earliest proposal for a line equaliser, by Suzuki et al. [145], used a different 
approach. A third order switched- capacitor filter was used, based on the biquad of 
[23], and clocked at four times the bit rate, to compensate for the line loss, and 
to bandlimit the signal so as to minimise inter-symbol interference. (Other circuitry 
was also proposed, not using the switched- capacitor technique, but required for the 
integration of this application, such as a digital PLL to synchronously lock the
switched- capacitor filter operation to the incoming bit rate, and a decision
feedback equaliser , to compensate for the effect of bridge taps (i.e. stubs) on
Japanese and American telephone lines).

A crude form of adaptation was proposed, based on the level of the 
equaliser output signal. The switched- capacitor filter used contained programmable 
capacitor arrays and could be programmed to equalise various line lengths, the 
switched- capacitor filter setting being dictated by the equaliser output level. The 
switched- capacitor filter clock rate was 800 kHz, allowing an effective 
bidirectional data rate of 80 kb/s, at a line bit rate of 200 kb/s, using time
compression multiplexing.

A more conventional adaptive equaliser based on the LMS algorithm 
was fabricated by NEC [146]. Standard switched- capacitor filter blocks of the type 
shown in Fig. 2.1 were not used. Instead, a four-quadrant analog multiplier formed
the basis of the design. A cursory examination of the circuit for this multiplier
indicates that its output voltage is grossly distorted, making the filtering technique 
used difficult to apply. Another adaptive finite impulse response filter was
integratedby Fellman and Broderson [147]. However, it was intended for 
applications in speech processing rather than telecommunications.

Further circuits for performing arithmetic operations were proposed in
[148]. The op-amps in these circuits are open-loop during transitions of the three 
phase clock, which obviously limits their operating speed.

The equaliser proposed by Suzuki in [145] was integrated on a 2.5 |xm 
process in 1983 [149,150], Interestingly, not all the capacitors in the switched- 
capacitor filter used are programmable, the fixed capacitors being such that,
although the switched- capacitor filter transfer function is of third order, two of the 
filter poles are fixed, and cannot be programmed.
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A similar but slightly more complex equaliser was designed by 
Nakayama et al. [151] at NEC on a 3 fim CMOS process. In the NEC design, 
the equaliser output is post-filtered so as to obtain a continuous-time waveform. 
This means that the switched- capacitor filter need not operate synchronously with 
the bit rate. A switched- capacitor filter called a roll-off filter is interposed 
between the equaliser output and the post-filter. No details of its design are given, 
although the stated purpose is to shape the equaliser output so as to minimise 
inter-symbol interference. The design is intended for the same application as in 
[145], i.e. digital data communication at a bit rate of 200 kb/s using time 
compression multiplexing, but contains no decision feedback equaliser. A similar 
equaliser, from the same design team, for four-wire full-duplex communication is 
described in [152],

The most complex of these early designs for line equalisers is that of 
Ishikawa et al [153], a block diagram of which is shown in Fig. 2.5. It is similar 
to that of [151], featuring non-synchronous operation, but includes a third order 
lowpass switched- capacitor filter clocked at twice the rate of the main equaliser 
section (i.e. at 1.6 MHz) in the prefilter, whose purpose is to act as a decimation 
stage. The roll-off filter is a fourth-order switched- capacitor low pass filter,
clocked at the same higher rate, and thus acts as an interpolation stage. This
simplifies the design of the continuous-time filters in the pre-filter and post-filter 
respectively. A decision feedback equaliser is also included. The programmable 
capacitor arrays are binary weighted and controlled by a ROM. Thus only integer
values for the programmable capacitors are allowed. The bit rate is, as with the 
other designs, 200 kb/s and the equaliser is fabricated on a 2 pm process. Unlike 
the other authors, Ishikawa presents a flow-chart describing the adaptation 
algorithm. Another refinement in this design is the presence of an offset-cancelling 
stage at the equaliser output.

An equaliser using a fully differential architecture was described in [154], It is
intended for amplitude equalisation of voice signals and, although digitally 
programmable, is not in itself adaptive.

The operating frequency range of switched- capacitor line equalisers has 
recently been extended to allow operation at bit rates compatible with ISDN
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requirements. Such an equaliser has been designed by Siemens for digital PABX 
applications [155]. The bit rate is 384 kb/s. The design is similar to that in [149] 
and operates synchronously, but is without a decision feedback equaliser, and 
features a decimating low pass filter at the equaliser input, like that of [153], of 
which, incidentally, no details are given. It is suitable for use only with short line 
lengths, presumably because longer line lengths require a higher bit rate to achieve 
a given bidirectional data rate using time compression multiplexing, due to the 
increased cable group delay. An adaptation algorithm is presented for the system 
which is more sophisticated than those for earlier designs, in that the gain and 
frequency response of the equaliser are adjusted separately. Thus the equaliser can 
be used with more than one line type. The equaliser is fabricated on a 2 |im 
CMOS process, and the highest switched- capacitor filter clock rate is 3.072 MHz 
(for the pre-filter).

Fig, 2,5i B lo c k  Diagram o f  A d a p t i v e  

Line E q u a l i s e r
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The NEC design of [151] has been further improved to achieve 
compatibility with ISDN requirements [156]. The resulting system resembles that of 
[153] closely, but achieves a bit rate of 320 kb/s using a 3 |im process. To 
achieve this rate, the capacitance ratio spread had to be minimised by using a 
fourth order switched- capacitor filter to implement a third order transfer function, 
the redundant pole and zero cancelling, and being chosen so as to minimise the 
capacitance ratio spread.

The success of the approach described above to integrating a line 
equaliser may be judged by its adoption in some designs based on digital signal 
processing technology, even though fully adaptive digital filters can be readily 
designed [157-159].
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Chapter Three: THE SYNTHESIS OF LPI-BASEP SC FILTERS

3.1: Basic Concepts.

3.1.1: Stray-sensitive Circuits.

The first low pass switched- capacitor filters based on passive LC 
prototypes were of the type shown in Fig. 3.1 for the case of a third order filter. 
Using the principle of charge conservation [48], the difference equations describing 
the filter can readily be derived as

V ,(n+ i) = ( l-C 31/C 21)V ,(n -* ) + CM/C 21( Vin (n)-V 2(n) )

V2(n) = V2(n -1) + C12/C 22 ( V ,(n -J )  - V3(n-*> )

V3(n+i)  = ( l -C 33/C 28)V3(n -*) + C13/C 23 V2(n)
(3.1)

where V(n) means the value of the voltage V(t) on the ’even’ phase <p2 i.e. 
from t = (n-0T to t = nT, and where V(n-f) means the value of V(t) on the 
’odd’ phase cp n, i.e. from t = (n-l)T to t = (n-f)T, T being the clock period.

The difference equations can be transformed into the frequency domain 
to obtain (where z = es^)

V ,(z) = T ,(z )  ( Vin (z) - V2(z) )
V2(z) = T 2(z) ( V ,(z) - V ,(z) )
V3(z) = T 3 ( z )  V2(z) (3.2)

where

T , ( z )  = C21/ C , , ( z 1 / 2  - z - i / 2 )  + C 3 , / C , , z - i h

= 2 C a i / C „  Y + C 31/ C t l  z - i / >

T 2 ( z )  = C22/C 12 ( z ' / a  - z - i / 2 )

= 2 C22/C , 2 y
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T 3(Z) = C23/C, 3  (2 1 / 2  - z-i/2) + C33 /C13 z-1 / 2

= 2 C23/C13 Y + C33/C13 z-i/> (3.3)

and where y is the linear discrete integration variable [10,76]

Y = 4 (z1/2 - z-’/2)
= sinh( (3.4)

This filter can be represented by the same signal flowgraph as the 
hypothetical passive ladder network shown in Fig. 3.2 where the equivalent element 
values are Rs = C 31/C 11, = C 33/C13, L, = 2 C21/C1lf C 2 = 2 C 22/C12,
and L 3 = 2 C 23/C 13, and where the inductor currents and capacitor voltages are 
used as the state variables.

Fig. 3,2:  E q u i v a l e n t  c i r c u i t  o f  t h i r d  o r d e r
s w i t c h e d - c a p a c i t o r  l o w p a s s  l a d d e r ,
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It is to be noted that standard techniques for the synthesis of ladder 
circuits, such as those due to Darlington, are not applicable to the synthesis of this 
network, because they apply to doubly-terminated ladders with frequency-
independent terminations, whereas the terminations of this filter introduce a phase 
shift which varies with frequency.

The filter of Fig. 3.1 is often referred to as a switched-capacitor ladder,
or l.d.i. ladder filter. This title is descriptive and convenient, although it is more
accurate to call it a state-variable filter, or a switched- capacitor ’leapfrog’ filter
[76,160].

3.1.2: Stray-insensitive Grcuits.

3.1.2.1: Integrator Circuits.

The integrator circuits of Fig. 3.1 are not used in modem filters 
because they are stray-sensitive [9]. Instead they have been replaced by the circuits 
of Fig. 2.1. Use of stray-insensitive building blocks is essential for practical 
switched capacitor filters. This is because such sections are designed so that stray 
capacitances between the capacitor plates and the substrate do not affect the charge 
transfer through the filter section. Filter sections without this property require a
prohibitive area when integrated, since the capacitors must be large enough to 
minimise the effects of these stray capacitances, which are inevitably present when 
a filter is integrated. The success of the integrators of Fig. 2.1 in practice stems 
from their property of stray-insensitivity. However, the inverting circuit in Fig. 2.1 
does not in fact implement the linear discrete integration correctly. A true l.d.i. 
based inverting integrator should implement the z-transform (in the sense that z = 
esT) equation

V0(z) = - k Vin(z)/(z>/2 - z- 1/ 2) (3.5)

which, written in the form of a difference equation, is

V0(n) = V0(n-1) - k Vin(n-0 (3.6)

whereas the actual difference equation describing the operation of the
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integrator is

Thus, the problem is that the integrator does not introduce a delay of T/ 2 in 
the signal path from the input to the output of the integrator, as is required for 
correct operation. This difficulty can be overcome by phasing the switches in a 
switched-capacitor simulation of a low-pass ladder in such a way that the required 
delay of T/ 2 js introduced in the signal path. (For convenience, the undamped 
integrators of Fig. 2.1 shall be referred to as non-inverting and inverting LDIs, and 
the damped integrators as non-inverting and inverting DDIs, even though the 
operation of linear discrete integration may not in fact be performed exactly.)

3.1.2.2: Clock Phasing of Stray-insensitive Filters.

A number of topologies are possible for achieving the correct phasing, 
and these differ in the number of switches and capacitors required. However, if 
all components are ideal, it is found that all of these topologies yield the same 
transfer function as the basic stray-sensitive ladder. If it can be assumed that all 
circuit elements are ideal, then the only basis we have for selecting between these 
topologies is the number of switches and capacitors used. However, an analysis 
which takes account of non-ideal factors, such as finite op-amp gain and bandwidth 
and non-zero switch on-resistances, will generally reveal one of the topologies as 
being superior in a particular application.

Fig. 3.3 shows the first topology to be considered. This uses the 
building blocks of Fig. 2.1. Where two switches in the resulting filter perform the 
same function, only one switch need be used, a technique known as switch 
sharing. Thus S3a, S 3̂ , and S 3C can be replaced by a single switch S3. This
circuit differs from the standard leapfrog topology of Fig. 3.1 in that it uses
sections whose output is related to the sum of their inputs, rather than to the 
difference. Thus they do not directly simulate the voltages or currents in an LC 
ladder. Instead the approach taken is to alternate sections with inverting and 
non-inverting outputs. It can be shown, for example by using flowgraphs, that this
results in the output of every second filter stage differing from the corresponding

V0(n) = V0(n-1) - k Vin(n) (3.7)
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LC ladder current or voltage, which it is supposed to be simulating, by a factor 
of - 1, with all other outputs unchanged. Thus the form of the filter transfer
function is directly analogous to that of an LC ladder for even order filters and
differs only in being inverted in an odd order filter. The manner in which the
effect of the delay-free operation of an inverting LDI is compensated for in the
operation of this circuit will now be described.

The circuit of Fig. 3.3 contains a non-inverting DDI as the first section, 
then an inverting LDI, and the last section is again a non- inverting DDI. The 
DDIs introduce a delay of ^ /2 seconds, in that the output is not affected by the 
input until T/ 2 seconds after the input is sampled. However the topology, and
switch phasing, is such that the outputs of all the sections are updated
simultaneously. Thus the DDI inputs are updated T/ 2 seconds before they are
sampled, and so the effective delay through these sections is T seconds, ” / 2 
seconds more than for a standard stray-sensitive DDI. In contrast, the second
section contains a delay of zero, i.e. T/ 2 seconds less than for the standard type.
If we model the filter as a ladder, then it is equivalent to impedance scaling an 
exact LDI type ladder by z1/ 2. Thus, we would expect the output to be delayed, 
with respect to that which would obtain for a standard LDI filter, by T/ 2 seconds, 
whilst the amplitude response would be identical. In fact, the correspondence
between this filter and the original is exact, since the above discussion has 
assumed that there is a delay of ^ / 2 seconds between the time at which the inputs
to the first stage are updated, and the time at which they are sampled, whereas in
fact one of those inputs, the input signal, is (assumed to be) continuous. Thus 
there is no additional delay of T/ 2 seconds. The delays through the filter are 
shown in Table 3.1, where time t = nT represents the even phase cp2, and where t 
= (n-f)T co-incides with the odd phase cp,.

S ta g e : 0 /p  a t: I /p s  read: I/p s  updated: O verall de lay :

1 (n+i)T nT (n-J)T  (V2 only) T (T/ 2 fo r Vin)
2 (n+i)T (n+i)T (n+i)T 0
3 (n+i)T nT (n -i)T  T

Table 3.1 : F i l t e r  sec tio n  delays for F ig . 3 .3 .

After sharing S 3a, S 3b, and S 3C as S3, sharing S 7a, S 7b, and S 7C as
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S 7, and sharing Sga, S9b, and SgC as Sg> the filter in Fig. 3.3 requires ten 
capacitors and ten switches, i.e. two more switches, and two more capacitors, than 
required by the stray-sensitive filter. However, considering the first filter stage, the 
equivalent inductance in Fig. 3.2 is L = 2(C2 ,+C3, VC,,,  compared with L =
2C21/C 31 for the corresponding stage in Fig. 3.1, while the resistance Rg =
C31/C 11 is unchanged. Thus the value of C21 (and by an identical argument, of 
C23 ) required is less for this type of filter (and similarly for all filters based on 
the circuits of Fig. 2.1 ) than for the stray-sensitive type, for a given value of 
C1n (C13). One disadvantage of this filter is that each section, except the final 
one, requires two capacitors of equal value at the input, and any mismatch would 
presumably affect performance, since it would introduce an additional sensitivity
term not present in the original prototype ladder. A second disadvantage is that, on 
<p2, the three op-amps are interconnected. This results in a network that takes 
longer to settle than alternative structures, resulting in inferior high frequency 
performance [59].

The number of switches used by this filter can be further reduced by 
noting that some are redundant. For example, S2 switches between V2 and ground, 
as does S8. Thus Se can be eliminated, and the input to the third section can be 
taken from S2. Similarly S 5 and S, 0 can be eliminated, as being equivalent to S4 
and S 6 respectively. Thus the number of switches required can be reduced to
seven.

If the phases on the switches in the second section are reversed, then we get the 
filter shown in Fig. 3.4. Again we get the same transfer function, but this time 
each filter section has a delay of T/2, so that each section implements an exact 
LDI or DDI. This is shown in Table 3.2.

S ta g e : 0 /p  a t : I /p s  read: I/p s  updated: Over a

1 (n+4)T nT nT T/
2 nT nT (n-*)T T/
3 (n+*)T nT nT T/

Table 3 .2 . F il te r  se c tio n  delays fo r F ig , 3 .4 .
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The disadvantage of this topology is that now, apart from S3, S 7 and Sg,
only S 2 and S 8 can be shared, so that a minimum of nine switches and ten
capacitors are required.

A number of variations in the switching schemes for the above filters
are possible. For example, by reversing the phases on S, in Fig. 3.3, we ensure
that V jn is sampled during the same phase at which V 2 is updated, and so there 
will be an extra delay of ^ / 2 seconds through the filter. Also the resulting input 
section will have a differential input, and so Vin will be inverted by it Another
variation is to use an inverting DDI as the first section, and then to alternate
inverting and non-inverting sections as before. It is evident that, assuming ideal
components, there will be no variation in the amplitude of the frequency response 
among these filter types.

It is also possible to use sections with differential inputs to implement
a stray-insensitive LDI ladder. However, because it is not possible to design an 
inverting stray-insensitive LDI section which includes a delay using circuits of the 
type in Fig. 2.1, such differential input sections will not sample their two inputs 
simultaneously. Hence, it is necessary to ensure that the two inputs are updated 
simultaneously in order to implement LDI- type integration correctly. Fig. 3.5 
shows one possible arrangement. The operation of this filter is clarified in Table 
3.3.

Stage 1 2 3

Output a v a ila b le : (n+i)T nT (n+i)T
(+) i /p  sampled: nT (n+i)T nT
(+) i /p  a v a i la b le : con tinuously (n+i)T nT
( - )  i /p  sampled: (n+J)T nT --
( - )  i /p  a v a ila b le : nT (n+i)T
O verall de lay : T/ 2 T/ 2 T/ 2

Table 3 .3  : Delays in  the c i r c u i t  of F ig . 3 .5 .
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Apart from the usual S3, S 7, and Sg, only S4 and S5 can be shared for this 
topology, so that again nine switches and ten capacitors are required.

The topology requiring the minimum number of switches and capacitors 
is probably that shown in Fig. 3.6. This again uses a differential structure, but 
exploits the fact that the inputs are read alternately in order to eliminate one of 
the two input capacitors for each section, as well as one of the corresponding 
switches. The delays for this topology are shown in Table 3.4.

Stage 1 2 3
0 /p  a v a ila b le : (n+i)T nT (n+*)T
(+) i /p  sampled: nT (n-J)T nT
(+) i /p  a v a ila b le : c o n t. (n - i)T nT
( - )  i /p  sampled: (n+i)T nT --
( - )  i / p  a v a ila b le : nT (n -i)T --
O verall delay: T/' 2 T/ 2 T/ 2

Table 3.4 : Delays in the c i r c u i t  o f F ig . 3 .6 .

In this topology no switches other than the pair of C3 capacitors and 
of C 9 capacitors can be shared. However only eight switches and eight capacitors 
are required. Therefore there is no penalty in terms of the number of such 
components for using this structure in preference to the stray-sensitive circuit of 
Fig. 3.1.

Various types of stray-insensitive topology for an LDI ladder filter have 
been discussed above. Assuming ideal components, the type shown in Fig. 3.6 is 
obviously to be preferred. However, a simulation which allowed for non-ideal 
components might reveal the performance of one of the other types to be superior.
For example, it might reveal that the fact that the two inputs to each integrator
are sampled at different times results in a high-frequency response that deteriorates 
more rapidly than for some of the other topologies, or that the sharing of switches 
results in excessive charging times for the associated capacitors. Considerations of 
such non-ideal operation must be investigated, where possible, for any particular 
application, by using simulations with parameters relevant to the fabrication
process
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being employed, and the topology which is most robust in the face of the 
non-idealities of the process being used should be selected.

3.2: An Exact Design Procedure.

3.2.1: Stability

The analysis above, which can be repeated with similar results for a
filter of arbitrary order, indicates that the so-called switched-capacitor ladder filters
accurately simulate a passive LC lowpass ladder, except that the variable ’s’ is
mapped to the variable Y< ^ d  the terminations, which have constant resistances 
Rs and Rj in the prototype ladder, vary with frequency as RgZf ’/ 2 ( for even and 
odd order filters) and Rjz" ' / 2 (for odd order filters) in the equivalent circuit of the 
switched-capacitor ladder. For even order filters, the equivalent circuit of the final 
filter stage (whose output voltage represents a current in the prototype filter) is an 
admittance, rather than an impedance, and so the conductance of the output
termination varies with frequency as Gjz"1/ 2.

If the terminations did not vary with frequency, the resulting filter
would be unconditionally unstable [10,76] since, for every pole of the filter 
response in the y- plane, there would be two poles in the z-plane, one inside and 
one outside the unit circle, because the value of y (as a function of z) is
unaffected if -z*1 is substituted for z. Thus, if the reactances in the circuit vary
with y instead of with the Laplace variable s, then frequency variable terminations
are necessary (although ip t sufficient) for a stable filter realisation. A new 
synthesis technique is required for these filters, because the standard techniques for 
the design of LC ladder filters assume frequency independent terminations. The 
solution to this problem presented by Scanlan [76] will now briefly be described.

3.2.2: Exact Analysis.

The first step in the design of such filters is to choose an 
approximation to the ideal lowpass filter to be realised. However, this assumes a 
knowledge of the general form of the filter transfer function which can be realised 
by the SC ladder topology. Thus an expression is necessary for the transfer 
function of the SC ladder.
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To facilitate the analysis Scanlan considered the frequency variation of 
the terminations to be of the form R|i rather than Rz'1/ 2, where (X = 
¿(z’/s+z*1/ 2) = cosh (sT/ 2). This is more appropriate as a choice of variable to 
represent the frequency variation of the terminations since (X is real for imaginary s 
(so the impedance of the terminations is purely resistive) unlike the earlier case. 
Making this change to the equivalent circuit of the SC filter results in only two 
changes in the equivalent circuit element values, namely the values of the 
reactances in the termination branches. Thus, for example, it iis easy to show that 
the impedance RgZ' 1/ 2 + is equal to RgjJ. + L ,y  where L, = L^Rg.

Consider the equivalent circuit of the odd order SC filter. This is 
shown in Fig. 3.7(a). The transfer function of the filter is H21 = i]/vs since the 
final SC stage simulates an impedance. Impedance scaling by 1/^ eliminates the 
frequency variation of the terminations. The resulting network, named by Scanlan 
the auxiliary network, is shown in Fig. 3.7(b). The voltage transfer function vj/vs 
is unaffected by the impedance scaling [74] so (representing variables associated 
with the auxiliary network in italics)

V1 V1

vs vs

but

V1 = Î Rl i l i vj = R i i i

and so

v1/ vs = M*lH21 , v i/vg  = Ri fl2, 

so
H 2 1 = H 21

= (1 - X2) 1/ 2 H 2, (3.8)

where X, = Y/(j, = tanh(?T/ 2) is the bilinear variable [10,161]. The impedance
of the’inductors’ of Fig. 3.7(b) varies with frequency as Z = LA.. This
impedance
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is equivalent to that of a short/circuit stub in a distributed network, in which 
context X is known as Richard’s variable [82]. The admittance of the ’capacitors’ 
varies as Y = CA/( 1 - X2) since Yp. = Xj( 1-A.2).

Scanlan has pointed out that the networks in Fig. 3.8(a) are equivalent,
where Z, and Z 2 are unit elements [76]. Thus the circuit of Fig. 3.7(c) is exactly
equivalent to that of Fig. 3.7(b). Fig. 3.7(c) represents a cascade of n-1 unit
elements followed by a series s/c stub, which is known [74,82] to have a transfer 
function of the form :

so

H 2 1
(1 - X2) ( n - 1) / a

on a )
(3.9)

(1 - X 2) n / 2

Dn t t )
(3.10)

(a)

(to)

LjQ l3c

= F c2°

L jX

X2 1

Fig, 3,8: C i r c u i t  e q u i v a l e n c e s  u s e d .
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with Dn(A) an n-th order polynomial in X. It follows from the properties of 
unit element filters [74] that if all the elements in Fig. 3.7(c) have positive values, 
the auxiliary network will be stable. Thus the original equivalent circuit, and
consequently the switched- capacitor filter itself, will be stable, since the factor 1/jx 
does not introduce instability.

Next the equivalent circuit of the even order filter, shown in Fig.
3.9(a), is considered. Again impedance scaling by 1/|X results in the auxiliary 
network of Fig. 3.9(b). In the absence of the transformer at the output side of the 
network, and with a load of admittance G^ 2 as would then be required, the 
transfer functions of the equivalent circuit and the auxiliary network would be the 
same. The introduction of the transformer, to allow a frequency independent
termination, results in

H 2 1 =  | i H 21

The identity of Fig. 3.8(a) is used to replace all but the last
inductor-capacitor combination, and the output transformer by unit elements. The
remaining components, shown in Fig. 3.8(b), are equivalent to a unit element
followed by a shunt o/c stub, as proved by Scanlan. Thus Fig. 3.9(b) is equivalent 
to Fig. 3.9(c) which is known to have a transfer function of the form of (3.9), 
and thus the original switched- capacitor circuit has a transfer function of the same 
form as (3.10).

3.2.3: Low-pass Approximation Functions.

Having analysed the filter, the form required of the low-pass filter
approximation can now be derived. Clearly

(1 - X2)n
H2 i a ) H 21(-X) =   (3.11)

Dn (X)Dn (-A.)

To find the response at physical frequencies, this is evaluated at X = j£2,
where Í2 = tan(0) , 0 = jcf/fs, and fs = 1/T is the sampling rate. So
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(1 + fl2) n

ih21(0)i2 = ------------
Dn (jQ ) Dn ( - jQ)

(3.12)

The denominator of (3.12) is of the form Fn(i22) where Fn(x) is an n-th 
order polynomial in x. The substitution i22 -> sin2(0) /(I - sin2(0) ) can now be 
made, to obtain

|H21 (0) 12 = 1 /Fn( s i n 2(0) ) (3.13)

where Fn(x) is an n-th order polynomial in x. One transfer function of this 
form is

IH 21 (0) i 2 = K/(l + Gn 2(sin(0) ) (3.14)

where Gn(x) is an n-th order polynomial in x which is even or odd.

For a passband which is maximally flat at the origin, Gn is given by

°n( s i "<e > > = <3-15>

and for an equiripple passband, is given by 

0n c Since) ) = €Tn [ |j£ < -» -} | (3.16)

where Tn(x) is the n-th order Chebyshev polynomial of the first kind and 0O 
= TCfo/fg, f0 being the desired filter cutoff frequency. The approximation functions 
are thus the same as those used for an LC low-pass passive ladder, but with the 
argument (w/co0) replaced by sin(0)/sin(0o).

3.2.4: Synthesis.

The filter can now be designed by synthesising the auxiliary network. 
Since the terminations, for that network, are frequency-independent, the classical 
Darlington synthesis algorithm can be applied. The element values in the equivalent
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circuit of the switched- capacitor filter are identical to those of the auxiliary 
network, and the capacitor ratios for the switched- capacitor realisation of the filter 
can thus be readily obtained from the auxiliary network element values.

The required form of iH 21(sin(0))i2 is chosen. So

IH 2: i 2 = (1 + Q 2) ' 1 |H 21 i 2 (3.17)

It can be shown that the transducer power gain for the equivalent circuits in
Fig. 3.7(a) and Fig. 3.9(a) are given by

IS 2, 1 2 = 4 Rs(Rj)k I / /  2, 12 (3.18)

where k = 1 for odd order filters, and k = -1 for even order filters. This is
expressed as a rational function of Q 2 and by analytic continuation (Q2 -> -A.2)
the function S 2, (X)S 2, (-X) is obtained. Hence S, ,  (X)S, ,  (-X) is calculated as

S, . ( ^ S ,  ,(-X ) = 1 - S 21t t ) S 21(-X) (3.19)

The poles and zeros of S , , (X)S,, (-X) are obtained. The left-half plane poles
are appropriated to S, ,  (X) since stability requires that all the poles in the X-plane
occur where KeX < 0 [74,76]. For a minimum phase realisation, the left-half plane 
zeros are also assigned to S, ,  (X). There is a sign ambiguity in the value of
S , ,  (X), since the value of S, ,  (A,)S, ,  (-X) is independent of the sign of S , 1 (X), 
corresponding to dual ladder realisations. To comply with the form of the
equivalent networks chosen to represent the switched -capacitor filters in [76], the 
sign of S , , (X) is chosen to result in a pole at infinity in the input impedance.

The auxiliary network input impedance is formed as 

1 - S M (X)
Z[n{X) = -----------------  (3.20)

1 + S ,,(X )

Richard’s Theorem [82] is applied n-1 times to extract n-1 unit elements. The 
remaining stub is then extracted. Hence values are obtained for the elements of the 
auxiliary network, and so for the equivalent circuit of the switched- capacitor filter. 
The required capacitance ratios can then be obtained.
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3.3: Practical Implementation of the Design Technique.

Software has been written to automate the above design procedure. 
Details of the algorithms used are given below.

3.3.1: Obtaining the input impedance.

The filter order n, sampling frequency fs, cutoff frequency f0, 
approximation type, and passband ripple (if required) are entered interactively. The 
co-efficients of the numerator and denominator X-plane polynomials describing 
S , 1 (X)S, ,  (-X) are then evaluated as follows :

For the maximally flat approximation:

- ^ ( l - X 2)0 ' 1 + s i n ' 2n0o (-X 2)
S n W S , ^ ^ )  = -------------------------------------------  (3.21)

( 1-X2)n + s i n ' 2ne0 (-A,2)n

where 0O = 7cfo/fs. The co-efficients of terms like (l-X2)11 are evaluated using 
the binomial theorem. The above expression follows directly from (3.15) and (3.19), 
upon using the substitution

sin20 -> -X2/(UX2).

For the equiripple passband approximation:

First an expression is obtained for a polynomial which is denoted by Gn(A2), 
and which is the numerator of Tn 2(sin0/sin0o), when expressed as a rational 
function of X2, using the above substitution. This is obtained as follows:

Calculate the co-efficients of Tn(x), the Chebyshev polynomial of the first 
kind of order n, using the appropriate recursive definitions [162].

Hence obtain
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a; x 21 (3.22)
Then

0n(|2) = I ik >-2k (3.23)

where
gk = ( - O k . I  a, s in - 21 (0 )

1=0 I1_JL
(3.24)

The expression for S, ^A^S, ,(-A,) is then

-A2(l-A2)n '1 + e 2 Gn (A,2)

S,,(X)S,,(-X) = (3.25)
(l-A 2)"  + e 2 Gn (A2)

where e is related to the ripple specification by 

lQ-r/10 _ i/d + e 2)

The poles and zeros of S , ,  (X)S, ,  (-X) are then obtained using a 
rootfinding routine for polynomials available in the FORTRAN IMSL library of 
mathematical routines [163]. The co-efficients of S , ,  (X.) are then found by the 
following method:

real components) are discarded. If imaginary axis roots are found, then these 
should be of second order, allowing one to be discarded, and should occur in 
complex conjugates, otherwise S, ,  (A) will not have real co-efficients. This check 
for imaginary axis poles and zeros is included for generality only, since no such 
roots occur when using the approximations of (3.15) and (3.16).

A.2 - 2Re[a] + i a i 2. Real roots are assembled into first order factors of the form 
A-a. The product of all the second-order and first-order terms is obtained for both 
the numerator and denominator of S, 1 (A) to obtain polynomials N , , (A) and 
D , ,  (A) respectively where

All the poles and zeros in the right-half A,-plane (i.e. those with positive

Conjugate roots are assembled into second-order expressions, of the form
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s ,  ,(X) = ± N, ,(*)£>, ,(*,).

The input impedance of the auxiliary network is then calculated as 

D „ a )  + Nn W
Zin (X) = ---------------------------  (3.26)

D, ,  (X.) - N , , ( X )

This corresponds to (3.20), with the sign of S,,(X.) chosen such that the 
numerator polynomial of Z[n(k) is one degree higher in order than the denominator 
polynomial.

3.3.2: Synthesis of the Auxiliary Network.

Richard’s Theorem [82] is applied n-1 times to Zjn to extract n-1 unit 
elements, using the technique described below:

Evaluate Z, = Zjn(A=l). This is the value of the extracted unit element. 
Calculate the input impedance of the network obtained after extracting the unit 

element as

NZ(X) - XZ,Dz t t )
Zi'n (X) = Z, ------------------------------  (3.27)

Z,Dz (A) - ANZ(A)

where Z^A.) = NZ(A,)/DZ(A).

The order of Z[n(A,) should be one less than that of Z¡n(X). However, as 
calculated in (3.27), it is in fact one degree higher than Zjn(X), due to a common 
factor 1 - A,2 in the numerator and denominator, which is divided out.

After the n-1 unit elements have been extracted, the input impedance of 
the remaining network is of the form
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Zin(A) = [ Lt X + R j, n odd.
I (Ct X + G i ) '1, n even.

(3.28)

Because of the choice of the gain factor K in (3.14) implicit in the form of 
(3.21) and (3.25), % = 1.0 for all odd order filters using these approximations, 
and G] = 1.0 for even-order filters designed to implement (3.15). This is because, 
for filters of these types, maximum power transfer occurs in the equivalent ladder 
structure at zero frequency. This implies that Rj = Rg, and Rg has already been 
implicitly set equal to unity in (3.20). For even-order filters designed to realise the 
transfer function of (3.15), the value of Gj should be [74]

Gj = (e + (1 + e z) ' / 2 )-2 (3.29)

Thus the synthesis has realised a cascade of n-1 unit elements Z1 to 
Zjj.,, followed by a stub and a resistance. The values of the inductances and 
capacitances of the equivalent circuit of the switched- capacitor filter are

Li = Z,
C2 = 1/Z, + 1 /Z 2
^3 = ^2 + ^3

: (3.30)

^n = Zn _, + Lt ( for odd n)
or Cn = 1 /Z n., + Ct ( for even n)

3.3.3: Obtaining Capacitor Values.

The value of the termination is identical to that calculated above for the 
auxiliary network. The above expressions for the ladder element values are based 
on the equivalences established by Scanlan [76] although, for the terminating 
branch of an even-order filter, the technique used to calculate Ĉ , is marginally 
simpler to program than that implied in [76].

The final step in the design procedure is to obtain values for the 
capacitance ratios in the switched- capacitor circuit which realises the filter. This is 
done by comparing co-efficients between the filter sections (i.e. the damped discrete 
integrators and the lossless discrete integrators) and the corresponding immittances
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in the equivalent ladder network.

The transfer function of the non-inverting damped integrator of Fig. 2.1 
(assuming L<Li. phasing) can be easily shown (using the principle of conservation 
of charge) to be:

V0 (z) C ,/(C 2 + C3) z - 1/2
H(z) =   =   (3.31)

Vin (z) 1 - C2/ (C 2 + C8) z -i

where C, is the input capacitor,
C2 is the feedback capacitor, 

and C3 is the damping capacitor.

Dividing the right-hand side of (3.31) by z-1/ 2 in numerator and
denominator, and using the identities

Y = i ( z 1 / 2 - z ’ 1/ 2) (3.32)
^ J (Z1 / 2 + Z- 1/ 2)

it follows that

1
H(z) =   (3.33)

L y + RH

where, arbitrarily setting C, = 1.0,

L = 2 C2 + C3 (3.34)
R = C3

The same equivalence is also found for the inverting damped integrator, and 
for the lossless integrators, where R = C3 = 0.

Thus each branch in the equivalent circuit can be replaced by a 
switched-capacitor filter section, with the capacitor ratios chosen to satisfy (3.34) 
(where L is the value of the inductor in a series branch, or the value of a
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capacitor in a shunt branch, and where R = Rg for the input branch, R = 0 for 
the internal branches, and R = Rj (Gj) for then output branch of an odd (even) 
order ladder). The resulting switched- capacitor filter will then have the desired 
frequencyresponse, provided that the clock phases for each integrator are 
appropriately chosen so that lossless discrete operation is performed, as discussed 
earlier.

3.3.4: Verification of the Design.

To verify the design, the design software allows plots of the following 
features to be obtained.

1) Having obtained S,,(X.) by factorising (3.25) or (3.21), the program 
calculates the expected response of the filter by evaluating iS , , (j£2) 12, where Q = 
tan (jif/fg), in the passband. Hence, a plot of the passband response (to within a 
constant representing the filter gain) is obtained using the formula

lH21 ( f / f s ) | 2 = (1 + ft2) ( 1 - IS11 (jfl) I 2) (3.35)

The plot obtained can then be assessed to ascertain the accuracy with which
S,,(X,) has been obtained from S , , (X)S,, (-X).

2) To assess the accuracy of the realised switched- capacitor filter, it is 
simulated in the time domain. This is done by implementing the difference 
equations describing the filter operation, for an impulse input. The resulting time 
domain output is transformed into the frequency domain using Fast Fourier 
Transform techniques, and its amplitude spectrum is then plotted. The plot 
produced obviously allows a qualitative assessment of the success of the synthesis
procedure to be obtained.

3.4: Variations on the Method of Synthesis.

Alternative algorithms are possible in the synthesis of this class of 
filters. Most alternatives suggested to date have focussed on methods to synthesise 
the network, given that an expression for the input impedance of the auxiliary
network has been obtained as in (3.26).
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3.4.1: Ladder Decompositioa
3.4.1.1: Theoretical Considerations.

Scanlan has suggested unit element extraction as a means of 
synthesising the network, based on the equivalence established by him between 
element values in the auxiliary network, and a cascade of unit elements with one 
stub. A more direct approach has been suggested [164],

Consider a network of the form shown in Fig. 3.10. Zjn(A) is assumed 
to be realisable as a ladder structure of the same form as the auxiliary networks 
of Fig. 3.7(b) and Fig. 3.9(b). The values of L and C are required, such that the 
impedance Z(K) can be further decomposed, so as to obtain the required ladder 
structure.

L X

Fig, 3,10: I n t e r m e d i a t e  s t e p s  in t h e  s y n t h e s i s ,
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A value for L can be obtained by extracting the pole at infinity of Zjn(X).

L = Zin (X)/X (3.36)
resulting in

Zin a >  = Zin (X) - L X (3.37)

Then the value of C is calculated as

C = lim?ui Yi'n(X) (l-X*)/X  (3.38)

This technique assumes the presence of a term 1-X2 in the denominator 
of Yjn(A.), since otherwise C -» 0. In fact, the required root at X = 1 does not
exist. This problem arises because of the complete extraction of the pole at «  in
(3.36). Instead, only a partial extraction of the pole at infinity should be attempted. 
The value of L should be chosen so as to ensure that Ẑ n(A) has a pole at X = 
1. Evidently, the required value of L is given by

L = Um^ i  Zin(X)A (3.39)

Now (3.38) will produce a non-zero result After extracting the capacitor C,
the value of the remaining impedance 7XX) is given by 1/Y(X), where

Y(X) = Yj'n (A,) - C X / ( l - \ 2) (3.40)

This process is repeated until the remaining impedance (admittance) for an
odd (even) order filter is of first order. This occurs after n-1 unit elements are
extracted. For the odd order case, the impedance is then simply

Z(X) = LX +Rj (3.41)

For the even order case, the remaining admittance is

Y(X) = (CX + G1) / ( l  - X2) (3.42)

which is the impedance of the parallel connection of a capacitor C, and, via 
a transformer of turns ratio 1:|W 2, a conductance Ĝ , as required at the output of 
Fig. 3.9(b). In both cases, the value of the load and the previous element can thus 
be easily obtained.
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3.4.1.2: Practical Implementatioa

The above extraction procedure has been incorporated into the synthesis 
program. In implementing the algorithm, care must be taken to eliminate all 
common factors of the form 1+X or 1-A from the numerator and denominator of 
the impedance function, so that the order of the impedance, as represented in 
computer memory, reflects the order of the corresponding circuit This is done as 
follows, considering, for the purpose of exposition, a fifth order filter.

For such a filter, the input impedance will initially be of the form

Z^X) = N S(A)/D A(X) (3.43)

where the subscripts indicate the polynomial order. After partially extracting 
the pole at infinity, the impedance order is unaffected, since no degree reduction
can result. However, a zero exists at A=l, which has been deliberately introduced 
by the partial extraction process of (3.39), and a corresponding zero also exists at 
X = -1, due to the nature of Z^A). Factoring out the resulting term of 1-A.2 
yields

Yin(A) = (l-X2)-’ N 4(X)/D3(X) (3.44)

Thus the value of C can be simply evaluated as

C = N 4(l)/D3(l) (3.45)

After extracting C, Y(X) is, from (3.40), of the form

Y(X) = (1-X2)’1( N4(X)/D3(X) - CX )
= (1-X2)-' N'4(X)/D3(X) (3.46)

The numerator of Y(X) contains a term 1-A2, which is factored out. Hence,
the impedance, Z(X), remaining after the extraction of an inductor and a capacitor,
is of the form

Z(X) = NJX)/DJX) (3-47)
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Thus both numerator and denominator of the impedance have been reduced in
degree by two. Clearly, degree reductions only occur after every second element
has been extracted in this way.

The above description of the extraction process can be readily
generalised for any order filter. After successively extracting an inductor followed 
by a capacitor, the impedance is finally reduced to the form N 1 (A.)/D0(A) for an
odd-order filter, or N^A^/D^A,) for an even-order filter. Equations (3.41) and
(3.42) respectively can then be used to complete the synthesis.

The parallels between the synthesis method described above and the
technique of unit element extraction are evident. Both require impedances to be 
evaluated at A = 1, and both feature factors of the form 1-A2 (i.e. the terms 
realising the zeros in equation (3.9) ). Thus, it is to be expected, a priori, that the 
numerical difficulties associated with both techniques are equivalent, and that no 
accuracy advantage will be present in one method over the other, making it more 
suitable for the synthesis of high order filters.

3.4.2: Use of General Synthesis Programs.

The above procedures for synthesis of the network require special
programs for their implementation. An alternative procedure is suggested by the 
equivalent circuit used by Datar and Sedra [92] for the admittance Y(A) =
CA/(1-A,2). They regard this as consisting of a capacitor of value C in series with 
an inductor of value -1/C, both of which vary with A, rather than the usual 
frequency variable ’s’. Thus the admittance is Y(A) = 1/[(CA,)~1-C"1 A] which is of 
the required form.

It follows that, if a sufficiently general synthesis program is available, 
i.e. one that allows negative element values and real-axis transmission zeros, it can 
be applied to the synthesis of the network. A potential problem with this approach 
occurs with the load termination of even order filters, which will be resolved into 
a conductance G] in series with an admittance -Gj/A.2. This admittance is not in 
the form of any standard element (although it can be regarded as the dual of the 
frequency dependent negative resistor sometimes used in the design of active-RC 
filters). Thus, a general synthesis program may not be successfully applied to the
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even order case.

3.4.3: Synthesis using the Transmission Matrix.

3.4.3.1: A formula for the Input Impedance.

The two techniques described above for obtaining a network realisation 
from the input impedance of the auxiliary network are general methods, applied to 
a specific synthesis problem. However, in [87], a new technique was presented, 
expressly for the synthesis of switched- capacitor ladder filters. The basis of this 
method is outlined below.

The input impedance of the auxiliary network, Zjn, is obtained as 
before. Since the auxiliary network is obtained by impedance scaling the equivalent
circuit of the switched- capacitor filter by 1/jx, it follows that the input impedance
of the equivalent circuit is _ |iZjn. Note that this expression does not contain 
the input termination |xRg. It is the input impedance of an all-pole LC ladder (with 
frequency variable y insteads of ’s’) terminated in a frequency variable resistor of
value |iRi (for an odd order filter) or l/(|J.Gi) (for an even order filter).

The form of the transmission matrix for such a ladder structure may 
readily be determined, by, for example, finding the product of the transmission 
matrices of the ladder branches. For a filter of order n, it is of the form

An - i ( Y )
C n - a ( Y)

Bn  ( Y)  
D n - , ( Y ) (n odd)

An  ( Y)  
Cn - , ( Y )

B n - , ( Y )  
Dn-2^Y) (n even)

where the matrix entries are polynomials in y whose order is indicated by the 
corresponding subscripts. The polynomials of odd order are odd functions of y. 
Similarly, the even polynomials are even functions of y, and equal unity when 
evaluated at y = 0 .

Thus the input impedance of the equivalent circuit is of the following
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form:

^ 1  An - i ( Y )  +  Bn ( Y )
Z i n ( Y )  = (n odd)

^ 1  c n- 2(Y )  + Dn - i ( Y )

(3.48)

An ( Y)  +  M^l  Bn - , ( Y )
(n even)

c n - i ( Y )  +  MOl Dn - 2 ( Y)

If the expression for Zjn(y) can be put into the above form, then it 
immediately follows that the transmission matrix parameters are known. Since these 
are purely a function of y, the ladder can readily be synthesised.

In [87], formulae are presented for the co-efficients of the transmission 
matrix parameters in (3.48) as a function of the co-efficients qj, pj of the auxiliary 
network input impedance,

In the expression for (3.48) presented there, the values of Rj and have 
been absorbed as scaling constants in A(y), C(y) (for odd-order filters) and in B(y), 
D(y) (for even orders). The values of Rj and can be recovered easily from the 
formulae in [87] as Rj = An, , (0) for n odd, and G] = Dn-2(0) f°r n even> since, 
in (3.48), the corresponding polynomials evaluate to unity at zero frequency.

The method used to obtain the transmission matrix parameters was not 
presented in detail in [87], An outline of the method used for the odd case is 
presented below.

3.4.3.2: Evaluating the Transmission Matrix.

Z in(X) (3.49)
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and

\i2 = 1 + y2 (3.51)

are used.

First the input impedance of the auxiliary network is written in the form

E n a 2) + X 0n(X2)
Zin (X) = -----------------------------  (3.52)

Ed (X2) + X 0d ( \ 2)

where E^x), Ed(x) and On(x) are polynomials in x of order (n-l)/2, and 
Od(x) is a polynomial of order (n-3)/2. Making the substitution

X2 -» y2/(1 + Y2)

and multiplying the numerator and denominator of (3.52) by (i+Y2)(n_1) /2 
results in the expression

En(Y2) + 'X 0n (Y2)
Zi n (X) = --------------------------------------  (3.53)

Ed(Y2) + X (l+Y2)0d(Y2)

where En(Y2) is an n-th order polynomial in y2 whose co-efficients are those 
of the numerator of En(X,2) when expressed as a function of y2, and where the 
other entries in (3.53) are similarly obtained.

The identities

X|x = y (3.50)

Zjn(A) is now multiplied by pi to obtain Z^O), the input impedance of 
the equivalent circuit. It is observed that the resulting factor fiX in front of 0^(y2) 
equals y, and that the factor X (1+Y2)  in (3.53) can be written

( 1 + Y 2) X = (X2 X = pi(piX) = M-Y-
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Comparing terms between the resulting expression for Z^(y) and that given in
(3.48) yields the result

An - i ( Y 2) R 1 = E n ( Y 2 )
B n (Y2) = Y 0n (Y2) (3.54)
Cn - 2(Y2) Rl = Y Od(Y2)
Dn - i ( Y 2) = E ^ ( y 2)

Expanding out these expressions using the binomial theorem produces the 
expressions listed in [87]. A similar procedure produces the expression for the
input impedance of the even order filter.

3.4.3.3: Synthesis.

The filter can now be synthesised as follows. Terminating the filter in a
resistor of value Rj instead of (iRj results in an expression for Zjn(y) given by
(3.48), but with |i set to unity. The ladder can then be synthesised using a
continued fraction expansion around y = °°, and the resulting inductor and capacitor
values are the same as those in the equivalent circuit of the switched- capacitor
filter, which has the same transmission matrix parameters as the filter synthesised, 
although it is terminated in a frequency variable resistance, rather than a constant 
load. Hence the capacitance ratios required inthe switched- capacitor filter 
implementation can be obtained, using (3.34).

The above technique has been incorporated into the synthesis package,
allowing its accuracy to be compared to that obtainable with the methods described 
earlier.

3.5: Other Techniques for Synthesis of Ld.i.-based Ladders.

Alternative solutions to the synthesis problem for l.d.i. ladders have
been discussed in Chapter Two. Here further details will be briefly given on two 
of them.
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3.5.1: The Datar-Sedra Approach [92]:

To differentiate their results from those of Scanlan [76], Datar and 
Sedra have applied his technique to a modified switched- capacitor ladder structure. 
The modification consists of including both an inverting and a non-inverting input 
(with nominally equal gains) in the first integrator of the circuit, for reading the 
filter input signal. Provided that the input signal is held on the appropriate phase 
(which may require the addition of another op-amp) this results in a filter transfer 
function (for odd-order filters) of |J.H21, where H21 is the transfer function 
obtained using the same circuit, but with a conventional input stage, as treated by 
Scanlan. It follows that the resulting filter implements the same transfer function as 
the auxiliary network in [76] and so the approximation problem to be solved 
differs slightly from that discussed earlier. No formal solution to the approximation 
problem is presented, but a A,-plane function is given as an example for the 
maximally flat approximation. This corresponds to an amplitude response of

|H 21(0)i 2 = K/(l + Gn 2(sin(0) ) (3.55)

where Gn(x) is given by

n , / c\\ \ s in (  0 ) in - l f t a n (  0 )i
n s in (e )  > = s in (  60 ) 1 tan( 8 „ ) 1 (3'56)

where 0O = jrfç/fg, f0 being the desired filter (3-dB) cutoff frequency, and fs 
the sampling rate, although the constant given in (3.56) for specifying the required 
cutoff is not given in [92]. This approximation is known to be that required to 
achieve a maximally flat response around X. = 0 for a commensurate distributed 
filter consisting of n-1 unit elements and a stub [74]. The implication in [92] is 
that a new approximation problem is being solved, whereas solutions are already 
available to this problem.

The filter topology investigated in [92] has improved stopband selectivity 
compared with the conventional ladder because of the presence of a transmission 
zero at A, = °o (i.e. at f = fg/2). However, it can only be applied to the design of 
odd order filters.

Datar and Sedra have also considered the case of the conventional 
switched- capacitor ladder, where their results, although couched in different
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notation, are identical to those obtained earlier [76],

3.5.2: The Vaughan-Pope/Bruton Method [84]:

The technique proposed by the above authors was originally intended for 
use with digital filters, and their presentation uses the z-transform variable 
exclusively to represent signals in the frequency domain. However, when their 
results are transformed into the notation of [76], the similarity between the results 
of [76] and [84] become apparent The technique in [84] was intended to be quite
general, and used the concept of the two-pair network. Thus, in comparing the
results of [84] and [76], the chain matrix of the appropriate two-port network must 
be derived from that of the two-pair network presented in [84], The technique was 
applied to l.d.i.-based filters as an example. The method, when applied to such 
filters, may be described as follows, for odd-order filters, where R§ = R̂ :

The transfer function to be implemented is of the form -H"1 (z), which
is equivalent to H21(y).

The expression

K(z)K(z*1) = H(z)H(z"1) - 4  \i* (3.57)

is evaluated, and the zeros inside the unit circle in the z-domain are assigned
to K(z). The network is regarded as having terminations of the form z' 1/ 2 in
which case the transmission matrix parameters A, B, C and D are related to H(z) 
and F(z) by

H(z) = E (z ) - z - ’ / 2 F (z) (3.58)
K(z) = E(z)+z ’ / 2 F(z)

where

E(z) = -B(z) - z - ’ / 2 A(z) (3.59)
F (z) = D(z) + z - ’ / 2 C (z ) .

Hence the transmission matrix parameters can be obtained, and are found to 
be polynomials in y.
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The network is then synthesised by forming the input impedance with 
the output port open-circuited (thereby bypassing the problem of the frequency 
variable termination) and employing a continued fraction expansion about y = °°.

Manipulation of the formulae presented in [84] indicates that K(z) is, at
least to within a scaling constant, equivalent to the expression S, ,/H 2, as those 
parameters are defined in [76,84], i.e.

where iki = 1. It is thus equivalent to the so-called characteristic function 
used by some authors in the synthesis of doubly-terminated reactance two-ports 
[165] and so (3.57) can be regarded as a generalisation of Feldtkeller’s equation:

Thus the method of obtaining K(z) in [84] is essentially equivalent to that 
used in [76] to obtain S , , (X). It is thus expected that the numerical problems 
encountered with both will be similar, although it is anticipated, a priori, that 
operating in the z-plane increases the severity of the numerical problems 
encountered.

K(z) = k S ,, /H 21 (3.60)

IH i 2 = IK | 2 + 1 (3.61)

which, in s-parameter notation, is usually written

(3.62)

In the Scanlan method, |S 21 i 2 = 4 | p. H 21 i 2. From (3.60)

l S , , i 2 = k " 2 |K H21i 2 = iKi 2 |H21 i 2 (3.63)

so (3.62) becomes

lKI 2 + 4|x2 = |H21 i - 2 (3.64)

or

K(z)K(z'1) = H(z)H(z*1) - 4 pi2 (3.65)
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The technique of [84] has been redescribed recently in [86], There a 
method of approximation which achieves an equiripple pass-band is described. The 
method used is lengthy and involved, and results in a cumbersome expression for 
iH 21 i 2. This derivation is in fact unnecessary, since the optimal solution to this 
approximation problem has long been available [76,82].

3.6: Results Obtained.

The synthesis program developed can synthesise all-pole filters of the 
type considered in [76] and incorporates the following features:

The low-pass filter approximation features either an equiripple passband, or a 
maximally flat response at d.c. Three of the synthesis methods described earlier are 
supported, namely:

1) The original technique of [76], using unit element extraction 
(described in (3.3.2) ).

2) The technique of [76], modified to perform a ladder decomposition on the 
auxiliary network (described in (3.4.1) ).

3) The synthesis technique of [87] (described in (3.4.3) ).

It has been found that all the techniques work well for filters up to 
about sixth order. Thereafter, the third technique proves to be superior, producing 
accurate results for filter orders up to 12-16, the exact order achievable depending 
on the cutoff frequency and (for equiripple pass-band filters) ripple specifications 
chosen, while the other techniques invariably fail for filter orders higher than eight.

As an example, a filter with the following specifications is considered:

Approximation type: e q u irip p le  pass-band.
Passband R ipp le: 0 .5 dB.
C uto ff Frequency: f s /16.
F i l t e r  Order : 8 ,9 ,12 .
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Considering first the eighth-order filter, the expected passband response, 
as determined using (3.35), is shown in Fig. 3.11. The plot obtained is based on 
the response calculated at sixty four evenly spaced frequencies in the passband. 
The response obtained at each point is marked by a cross in Fig. 3.11, and the 
plotting routine joins the points by straight lines to approximate a continuous curve. 
The points plotted are, to a very high accuracy, in the positions expected from
(3.16), indicating that S , , (X) has been obtained correctly. (The apparent droop in 
the passband response around f/fj = 0.06 occurs because only a few points are
plotted there - there are numerical difficulties associated with calculating (3.35) at 
closer frequency intervals in this regioa)

Table 3.5 shows the element values obtained for the equivalent circuit 
of Fig. 3.9(a) for the three synthesis methods considered. The pass-band response 
obtained by simulating the three filters in Table 3.5 are shown in Figs. 3.12, 3.13 
and 3.14 for the first, second and third methods. Clearly the passband responses 
for the first and second methods are not equiripple, that in Fig. 3.12 deviating
most from that intended (i.e. Fig. 3.11). In contrast, the correspondence between
Figs. 3.11 and 3.14 is excellent.

The corresponding element values for a ninth-order filter are shown in 
Table 3.6. Again, S , ,  (A,) has been obtained accurately, as demonstrated by Fig.
3.15. The value of the last inductor for the first two methods is negative,
indicating that these methods have failed to synthesise the filter correctly. In fact, 
the element values for the second method result in an unstable filter, so no plot of 
passband response can be obtained. The time domain simulation of the filter
synthesised using the second method, when transformed into the frequency domain 
using the FFT, results in the pass-band response of Fig. 3.16, which is clearly 
incorrect Once again, the results obtained by the third method are excellent, as 
shown in Fig. 3.17.

The superiority of the method of [87] is thus demonstrated. Using the 
values obtained by this method as a reference, it can be seen that, for the other 
two methods, the values of the extracted elements diverge appreciably from the
correct values after five elements have been extracted. Improvements in the 
numerical techniques used might improve this figure (e.g. both methods return an 
incorrect value for the load termination, which can be calculated before 
commencing the synthesis as Zjn(A=0), and this error might be corrected for).
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However, the third method is far superior, as demonstrated by its success in 
synthesising a twelfth order filter, whose element values are listed in Table 3.7.
The response required of this filter, as determined from (3.35), is shown in Fig.
3.18, and the response obtained, shown in Fig. 3.19, is in excellent agreement.

Fig. 3.18 , bearing in mind the resolution limitations of the obtained
plot, can be shown to be the required equiripple-passband amplitude response, 
indicating that S , ,  (A) has been obtained accurately for the twelfth-order design.

Element values 
Method 1 Method 2 Method 3

Rs 1.000 1.000 1.000
L, 10.56 10.56 10.56
c 2 6.315 6.315 6.315
La 14.06 14.06 14.05

6.798 6.798 6.798
Ls 14.14 14.14 14.14
C6 6.593 6.593 6.591
l 7 13.11 13.11 13.25
c 8 4.460 3.954 3.896
Gl 0.578 0.522 0.504

Table 3 .5 : Element values for the e ig h th -o rd e r f i l t e r .

62



Method 1
Element values 

Method 2 Metho«

Rs 1.000 1.000 1.000
L, 10.53 10.53 10.53
c 2 6.398 6.398 6.398
l 3 13.93 13.93 13.93
c 4 6.990 6.990 6.990
Ls 13.90 13.90 13.90
C6 6.969 6.967 7.060
L 7 61.88 66.35 13.25
C8 0.01659 .01038 6.661
L9 -418.8 -48.79 7.788
R1 1.000 1.000 1.000

Table 3 .6 : Element values for the n in th -o rd e r  f i l t e r ,

Element values 
Method 1 Method 2 Method 3

'1 o

'1 2
Ol

1.000
10.63
6.397
14.19
6.954
14.38 
7.021
14.38 
6.966 
14.26 
6.670 
13.33 
3.931 
0.504

Table 3 .7 : Element values for the tw e lf th -o rd e r  f i l t e r .

The synthesis technique of [84] has not been programmed. The
analysis
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given earlier indicates that the results obtained are expected to be broadly similar 
to those obtainable with the Scanlan technique, although finding the characteristic 
equation in the z-plane may produce less accurate results than performing the 
synthesis in the A-plane. A FORTRAN program has already been published which
implements the Vaughan-Pope/Bruton algorithm [86], Satisfactory results are not
obtained for filter orders greater than ten, in spite of the use of special 
root-finding techniques for factoring K(z)K(r1), which the authors consider to be
the main source of error. A constraint, based on some elementary numerical 
analysis, is presented which must be satisfied if the FORTRAN program is to
synthesise an equiripple passband filter successfully, which is, for the particular 
implementation,

e 2( 4 / (7cf /  f s ) ) 2n < 101 2, n<10.

3.7: Conclusions.

The main sources of inaccuracy in the design algorithm used to obtain 
the results presented above are:

1) The formulation of S , ,  (X) from S , , (X,)S, : (-A.).
2) The technique used to extract element values from the calculated expression

for Zjn.

The results obtained indicate that the second factor is most significant 
in limiting the order of filter which can be synthesised. In fact, analytical
expressions can be obtained for the S , , (A.) pole locations for the approximations 
used in (3.12)- (3.14). This is because the y-plane poles of S, , (A,)S,, (-A,) can be 
found from the pole locations for the corresponding LC ladder in the s-plane. For 
example, for an LC low-pass ladder, designed to provide an equiripple passband,
and with the passband edge at to = 1, the poles occur at [74]

Sj = ±(T| s in  otj - j  / ( 1 +ti2) cos c t j ) ,  i = l , . . , n
(3.66)

where 04 = in (2i-l)/n and ri = sinh( n-1 sinh_1(e ‘1) ). Suppose
one such pole occurs at s = S j , with Sj=r+jx, n>0, and x>0. Then, from (3.66), it 
follows that three other poles occur at s = -Sj, and s = ±Sj*.
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The corresponding 7-plane poles of S1, (X)S, ,  (-A) occur at

Y, = sin 60 s¡
(3.67)

This corresponds to a fourth order term in S , , (X)S,, (-X) of the form 
Y4+by2+c. Substituting

Y2 = -A2/ ( l - A 2)
(3.68)

it follows that the corresponding X-plane poles of S, ,  (A.) are at

Xj = ±(2+2c) ’/ 2 [2c+b±j(4c+4b-b2) 1 / 2] 1 /2
(3.69)

The two poles in the right-half A-plane are assigned to S1, (A). For filters of
odd order, one of the poles of S , , (A,) is purely real. The procedure described
above is appropriately modified to evaluate this pole.

The problem still remains of analytically determining the zeros of
S , ,  (A.)S 1, (-X), which are the solutions of the equation

N(X)N(-A) - 1 + X2 = 0
(3.70)

where N(A) is the denominator of S, ,  (X.). Thus, the accuracy with which the
roots of (3.70) can be determined limits the achievable filter order. However, the
results presented here indicate that, when performing the synthesis in the A-plane, it 
is in the extraction of element values, after evaluating S , , (X), that appreciable 
error is introduced. This limitation may be overcome by the use of new or 
improved synthesis techniques.
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Chapter Four : SENSITIVITY ANALYSIS OF SC FILTERS

4.1: Structures for Low Sensitivity Filters.

The switched- capacitor filters of the previous chapter feature a circuit 
operation which simulates that of a passive doubly-terminated lossless ladder. The
motivation behind such a design is to reproduce the low passband sensitivity 
achievable by the passive filter.

A description of how a doubly terminated passive lossless ladder can 
feature low passband sensitivity was first given by Orchard [29]. His argument was 
based on the power transfer limitations of such a filter, and can be applied to any 
passive lossless structure, i.e. any filter which can be regarded as a reactance
two-port between resistive terminations. Since such a filter is doubly terminated, 
there is a limit to the amount of power that can be supplied by the source. Since 
it is passive, the power delivered to the load cannot exceed that supplied by the 
source, and since it is lossless, the power in the load equals that supplied. The 
power flow is often regarded, by analogy with the physics of transmission-line 
systems, as follows.

The source is regarded as always supplying its maximum power Pmax 
to the input port of the two-port. Part of that power is regarded as being reflected 
at the input port due to a mismatch (the input impedance of the two-port does not 
match the source resistance). Only the remaining power P0 is transmitted through 
the two-port to be developed across the load termination. Using the notation of
scattering parameters, it follows that P0/Pmax equals |S 21 I 2, where S21 is the 
forward transmission co-efficient o f . the two-port, and IS 2, i 2 is the transducer 
power gain [74], It follows that the transducer power gain for such a filter 
satisfies the constraint

lS 211 2 ^ 1. (4.1)

Suppose that the filter is designed so as to attain maximum power 
transfer at some frequencies in the passband. For the typical case of an equiripple 
passband, these frequencies correspond to the ripple maxima. At such a frequency, 
say f = fj,
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| S211 2 = 1 (4.2)

If any of the element values for the filter are now perturbed from their ideal 
values, the frequency response will change. The upper bound in (4.1) cannot be 
exceeded and so it follows that, if a graph is plotted of the transducer power gain 
at frequency f, against x, where x is the value of an element in the filter 
(typically an inductor or capacitor) whose value is Xjdea] for the ideal filter, then 
the graph will have a maximum at xjdeai (assuming all other elements to have 
their ideal values) as shown in Fig. 4.1, In other words

a /3x( lS 2112 ) = 0 (4.3)

when evaluated at f = f, for x = x ^ ^ .

2
S.21

1

x
x  , I Iidea l

Fig, 4,1: T r a n s d u c e r  p o w e r  gain,
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This means that the first order sensitivity of the filter amplitude
response to variations in the value of x about its nominal value is zero at 
frequency f, (and at any other frequency where |S 21 I2 = 1 ).

Such a feature is very attractive in practical filters, since absolute
precision is not available in realising the filter. Thus, in practice, where a filter is
designed to have a transducer power gain of

F(co,x) = |S 21 l 2 (4.4)

at frequency to, where x is the vector of ideal element values, in fact the 
realised response is F(co,x+Ax) where Ax is the error in the realised element
values. (To be completely general, some of the entries in x can have a nominal 
value of zero, the corresponding entries in Ax being the values of parasitics in the 
fabricated filter.)

Expanding the function F in a Taylor Series, and retaining only the 
first derivatives, results in the following approximation for the filter error

E(t»,Ax) = A*■ [^/¿)X F] = Fico.x+Ax) - F(co,x) (4.5)

The first order sensitivity of a filter response F to variations in a
parameter x is frequently defined as [166]

SFX = (X/F) a/0x(F) (4.6)

When F is the amplitude-squared response lH21 i 2 of the filter, then 
this sensitivity expression is zero when maximum power transfer occurs, for the 
elements in the reactance two-port (which for an LC filter are the inductors and 
capacitors) although not for the terminations, because IH2, 12 is a function of the 
terminations, as well as of the transducer power gain |S 21 I 2. Thus the first order 
error defined in (4.5) is at a minimum at any point in the pass-band where 
maximum power transfer occurs.
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Because of this property of doubly terminated passive lossless filters, 
they are often used as prototypes or models when active or digital filters are being 
designed, with the goal of retaining the property of low passband sensitivity. There 
is no guarantee that this property will be retained, since the operation of the new 
filter may not be directly analogous to that of the prototype [167], new sensitivities 
being introduced not present in the prototype.

It follows that, when a filter has been designed whose operation in 
some way simulates that of a passive filter with low passband sensitivity, the 
sensitivity of the new filter must be evaluated to see if this property has been 
preserved.

The argument above applies only to the passband sensitivity. Ladder 
filters are also known to possess good stopband sensitivity [165,168] unlike, for 
example, lattice filters, where the stopband loss is dependent on the balancing of 
impedances in the lattice arms, and which, in consequence, feature poor sensitivity 
in the stopband [165,168].

Consequently, doubly terminated passive ladder filters are frequently 
chosen as the prototype for active-RC, digital or switched- capacitor filter designs. 
A number of methods can be used to derive the new filter structure. The most 
direct, applicable to analog filters, is to replace the inductors in the prototype by 
op-amp sections which feature the same relationship between voltage and current, a 
technique known as inductor simulation. Another is to model the flow of wave 
signals through the prototype, and to use building blocks which reproduce that 
wave flow [168], One of the most popular techniques is to regard the currents and 
voltages in the prototype as state variables, and to construct a filter whose state 
variables are governed by the same equations or, equivalently, which features the 
same signal flowgraph. Such a filter design is the ’leapfrog ladder’ of Girling and 
Good [160]. The switched- capacitor filters of Chapter Three have been based on 
such a simulation of the low-pass ladder, and their sensitivities are now 
investigated.
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4.2: Techniques for Sensitivity Analysis.

4.2.1: A Formula for Lossless Two-ports.

No simple analytical expressions are available for the sensitivity of 
ladder filters. Orchard, Temes and Cataltepe have recently obtained the following 
expression for the sensitivity of a doubly-tenninated lossless two-port to variations 
in the value of an internal impedance zj,

de(jw) 11i I 2 + S , ,* (jto)I i 2(jto)
  =   (4.7)
d z j 2P0

where P0 is the power delivered to the load termination, Ij is the current
flowing through impedance zj, and 0 = -In S21(ja>) [169,170].

Using this formula, a single analysis of the network suffices at a given
frequency for the sensitivities of the filter response to be evaluated. This analysis 
must determine the values of Ig (to find S1, and S21), Ij (to find P0 and S21) 
and 1̂ , the current flowing through z^. A dual version of (4.7) can be applied to 
evaluating the sensitivity to an admittance.

4.2.2: A Formula for Signal Flowgraphs.

Another technique for analytically determining the filter sensitivity can 
be applied to the signal flowgraph of the filter. Assume that the signal flowgraph 
is such that only one path from the signal flowgraph input node to the output 
node exists for which each branch in the path is traversed once only. The signal 
flowgraph of a filter of the type currently being discussed will be of this form. 
This path is known as the forward path. Denote the transmission of the i-th branch 
in the forward path by Tj. Then the gain in the forward path is T = II  Tj. All 
other branches of the signal flowgraph are assumed to start and end at nodes on
the forward path. Define the expression D as

D = T/F (4.8)

where F is the overall transfer function for the signal flowgraph. Then it can
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be shown that the sensitivity ( as defined by (4.6) ) of the filter transfer function 
to variations in the value of a branch transmittance is

SFX = D'/D - e (4.9)

where d " equals the expression for D evaluated for x = 0, and where e = 0
if the branch is on the forward path, and e = 1 if the branch is a feedback
branch [171].

This result can be easily verified. Using Mason’s rule for the transfer
function of a signal fiowgraph, it can be shown that the function D is a linear
function of the branch transmissions x, i.e.

d 2 D
  = 0 (4.10)
d X 2

It follows that D can be expressed as

D = D ,(x) + D2 (4.11)

where the function D2 is independent of x, and D1 is a linear function of x
(and of the other transmissions) which is zero for x = 0. Thus

d / dx(D) = D, (x ) /x  = ( D - D(x=0) ) /x  (4.12)

since D 2 = D(x=0). Noting that /̂<5X(T) = T/x for a branch on the forward
path, and equals zero for a feedback branch, the result follows by a straightforward
application of the quotient rule for partial derivatives.

This sensitivity formula is simple, and is easy to apply when an 
analytical expression is required. When numerical results are required however, it 
poses difficulties, since the values of D and D' are not easily evaluated by 
computer.
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4.2.3: A Formula which Employs Transposed Signal 
Flowgraphs.

An alternative technique for sensitivity analysis is the use of the adjoint 
network, in an application of Tellegen’s Theorem [165]. This technique has been
generalised to cover any network described by a signal flowgraph [172]. (Tellegen’s 
theorem, in the original form, is derived from Kirchoffs laws and so is not
directly applicable to, for example, sampled-data filters.) This latter technique is 
most appropriate for calculating the sensitivities of switched- capacitor filters of the 
type in the previous chapter, which are based on the signal flowgraph simulation
of ladder filters, and potentially offers more flexibility than, for example, the 
technique suggested by (4.7), in that the filter signal flowgraph is not constrained 
to be equivalent to that of a passive structure, so that departures from exact ladder 
simulation in the realised filter can be taken into account.

The sensitivity formula used is presented below. Suppose the signal
flowgraph of the filter has an input node a and an output node b. The sensitivity 
of the filter transfer function Ta^ to variations in a branch transmittance Fnm 
(where the branch leaves node n of the graph and enters node m) is

^Tab
  = TanTbm (4-13)
^Fnm

where TiU1 is the system function from node a to node n, and T^m is the 
system function from node b to node m in the transposed signal flowgraph (i.e. a 
new signal flowgraph obtained simply by reversing the direction of each branch. 
This result can be obtained using the generalisation of Tellegen’s theorem presented 
in [172],

The transposed network corresponds to a new switched- capacitor filter 
with the input connected to earth, and with the input capacitor on the final filter 
section switched between the output of the penultimate stage and the new input, 
instead of between the penultimate stage output and earth. The equivalent circuit of 
this filter corresponds to that of the original, but with the input voltage (current)
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applied in series with the load termination instead of in series with the source 
termination, and with the output being the current through (voltage across) the 
source termination for an odd (even) order filter. The equivalent circuit is 
illustrated for the odd order case in Fig. 4.2. For the original circuit, the transfer 
function is H = ii/vs with v̂  set to zero, and for the circuit corresponding to the 
transposed signal fiowgraph of the filter, the transfer function is H = ^/v} with vs 
set to zero.

Fig. 4.2: Equivalent circuits for original and transposed filters 
- odd order case,

Thus, in order to evaluate the sensitivity of the filter transfer function 
to variations in any element value, only two circuit analyses are required at a 
given frequency. The analysis must nevertheless be performed efficiently if 
computation time is not to be excessive, in which case another technique for 
evaluating filter sensitivity would be preferred.

4.3: Evaluation of the Amplitude Sensitivity.

4.3.1: Frequency Domain Analysis of the SC Filter.

The technique used in analysing the circuit is as follows:

The output voltages of the filter sections are chosen as state variables, 
and a state-space description of the filter is obtained of the form
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A X = B v in (4.14)

where
z, 1 0 0
-1 z 2 1
0 -1 z.

0
1

0 0

0
0

-1 zn - i 1.0 -1 zn

(4.15)

Y = [v, v. vn]

B = [1 0 0 0 ]

(4.16)

(4.17)

where Zj corresponds to the impedance or admittance in the corresponding 
branch of the equivalent circuit, i.e.

z, = L,y + Rspi 
zj=LjY ,1 < i < n, i odd
Zj = CjY ,1 < i < n, i even
zn = LnY + Ri^i, n odd
zn = CnY + Gjii., n even.

(4.18)

At any given normalised frequency 0 = Tcf/fj, the state variable vector y. 
can be evaluated for a unit input at that frequency as described below.

Evaluate the zj s at frequency 0, using (i -> cos0, y -> jsin0. 
Arbitrarily assume that the output vn = 1.
Hence vn_, can be calculated using

-vn -i + zn vn = 0 (4.19)

Similarly, for i = n-2 down to i = 1, V} can be found as

vi ~ zi+1 vi+ 1 + Vi+2
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The input required to produce a unit output is thus

v in  = z i v i + v 2 (4-21)

It follows that the state variable vector for a unit input has the value Y/vjn, where
the values of y and vjn are calculated as above.

The response for the transposed signal flowgraph can be found using 
(4.14) by modifying A and B in (4.15) and (4.17) as follows:

A -> k
B 4 [0 0 ......... 0 1 ] '

4.3.2: Calculating Sensitivity from the Frequency Domain
Analysis.

The transmissions of the branches which have Vj as output are of the
form z f 1. Suppose one such branch leaves node n and enters node m. Then, using
(4.13),

3Tab
  = TanTbm (4-22)
3 ( z i '1)

where a,b are the input and output nodes respectively, Tan is the systen 
function from the input to node n, and T^m is the system function (for the 
transposed signal flowgraph) from the output (which becomes the new input in the 
transposed graph) to node m.

Evidently, the system responses with output Vj (i.e. those actually 
calculated using (4.14) ) in the original and transposed flowgraphs are T ^  and 
T^n respectively, since the branch of transmission z f 1 enters node n in the 
original network, and node m in the transposed network.

However
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dTab 3 (z j ’ )

9 (z j)  3 ( z j - 1) 3 ( z j )

1 3Tab

z j 2 3 ( z i ' 1)

~ " z i ' 2 ^an ^bm (4.23)

but, evidently, by inspecting the signal flowgraph for filters of the type being
discussed, since the only branch entering node m (node n) in the original
(transposed) signal flowgraph is that with transmission z f 1, then

Tam = z i ’ 1 Tan (4.24)
^bn = z i " 1 Tbm

so

^Tab
= 1'am^bn = * v i v i (4.25)

3 (z j)

where Vj and vj are calculated as described earlier for the original and
transposed signal flowgraphs respectively.

4.3.3: Amplitude Sensitivity to Element Values.

The technique described above is completely general, and can be applied
to any network whose signal flowgraph can be described by (4.14)-(4.17). For the
present application, the required sensitivities are /̂J)x( lT i2) and ^/gr( lT i2) where
T = Tab and the zjs are of the form

Zj = r cos0 + j x sin9 (4.26)

which is equivalent to (4.18) evaluated at physical frequencies.
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Thus a formula is required relating /̂¿)U( |T  i 2) and ^/¿Z(T), where z is 
a function of u, with u real.

The system response T can be written in terms of its (real) amplitude
and phase responses as T = A e)^ where A and <1> are real functions of u, so

d /a u (T) = e j*  [ a / 3u(A) + j a 3 /a u (<j>) ] (4 .27)

or

e - J 0 a /0 u (T) = t 5 /3u(A) + j A d/ du(<I>) ] (4.28)

Now, since A,$> and u are all real, it follows that

d /8u(A) = Re[ e-J® a /a u (T) ]
= A -’ Re[ T* a /a u (T) ] (4.29)

Also, given that /̂¿)u( IT i2) = 2 ITi 3 / ^ |T i), and that lTi = A, then

a /a U( |T> 2) = 2 Ret T* 3/3u(T) ] (4.30)

Further noting that ^ U(T) = ^ Z(T) ^/¿^(z), then

d /a u ( ITI 2) = 2 Re [T* a / 0z (T) d/du(z)] (4.31)

If u = r then ^/^(z) = cos0 so

a / 9 r ( l T l 2) = 2 cos 0 Re [T* 3 /a z (T)] (4.32)

If u = x then ^/¿u(z) = j sin0 so

5/ a x ( ' T i z) = -2 sin0 Im tT* 3/3 z (T) ]  (4'33>

Thus the sensitivities of the squared-amplitude response to the
terminations are



s 1 r 12 = - cose Ret T* v i  vj ] (4.34)

s'rJ2 = - -tit* cos0 Re[ T* Vn Vn ] (435)

Rj is replaced by Gj in (4.35) for even-order filters. The sensitivities to 
variations in the inductor and capacitor values are

s 1l | 2 = 4 r r ^  sinG Im[ T* vi vi ] (4-36)

s !c | 2 = sin0 Im[ T* Vi vi ] (4.37)

Evidently, the sensitivities to the actual capacitor ratios in the 
implemetation are easily obtained, since R -> C3/C, and L -» (2C2 + C3)/C1( so, 
setting C, = 1 results in

a it i2 a it i2 a it i2
  = -------- +   (4.38)
9C3 3R 0L

a i t i 2 a i t  12
  = 2 --------  (4.39)

dC2 3L

Equivalent formulae obviously hold for capacitance ratios derived from 
capacitor and conductance values.

4.4: Sensitivity Properties of SC Ladder Filters.

The synthesis program of Chapter Three has been extended to include 
the above technique for sensitivity evaluation.

Considering the case of an equiripple passband approximation, it is
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expected that the passband sensitivity of the switched- capacitor filters are inferior 
to those of the equivalent passive filters. The reasoning behind this expectation is 
given below.

The squared-amplitude response of the filter is denoted by |H 21 i 2. For 
conventional passive ladder filters, the transducer power gain is related to i H2, i 2 
by

|S 211 2 = 4 ( r s / r i ) [H21 i 2 (4.40)

Thus the maxima of i S21 i 2 and lH21 i 2 co-incide. However, for switched- 
capacitor filters of the type in [76], because of the frequency variation of the 
terminations, (4.40) becomes

IS2, I 2 = 4 ( r sk !) l ^ 21 l 2 (4.41)

where kj = q for an odd order filter, and kj = g] for even orders. This is 
the same expression as obtained for the transducer power gain of the auxiliary 
network in [76]. It follows that, if the filter is designed for an equiripple passband, 
then maximum power transfer will occur only at d.c. for an odd order filter, and 
at no frequency for an even order filter, because the factor i (i i 2 = cos20 
decreases monotonically from 0 = 0 to 0 = -n.il. Since the argument for low 
passband sensitivity is based on the assumption that the transducer power gain is 
unity at some frequencies in the passband, it is not valid for filters of the type in 
[76],

The filters in [92], on the other hand, which use the special input stage 
of Fig. 2.4, have a transfer function of the form |J.H21, where H21 is the transfer 
function of the corresponding filters discussed in [76] (i.e. where C, = 0 in Fig. 
2.4, so that the input stage is a conventional d.d.i.), and so can be designed to 
have a unity transducer power gain where the peaks in the amplitude response 
occur. However, the factor p. is realised by the special feed-in branch at the filter 
input, the amplitude sensitivity of which is estimated below. The filter effectively 
consists of the cascade of two filters, with amplitude responses |T , i 2 and iT2 i 2, 
where T 2 is the transfer function of the ladder, and T 1 is the transfer function of 
the feed-in branch which, to within a constant delay, is of the form

T , ( z )  = 1 + C , z * 1 (4.42)
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with C, (nominal) = 1. This means that the two capacitors used to implement 
the feed-in branch are nominally equal in value. Clearly

a it1 2 ait2 1 2 a it,1 2
  = |T, l 2 -------- + IT21 2 -------  (4.43)

3C, 5C, 3C,

Assuming that the filter is designed with R§ = Rj = 1, assuming that
the first term on the right-hand side of (4.43) is zero, observing that i T 2 1 2 =  

(cos~20)/4 at a point of maximum power gain, and evaluating the second term for 
C, = 1 yields the result

a i t  i 2
  = 1 (4.44)

3C,

at a point of maximum power transfer. Thus the filters of [92] achieve a low 
sensitivity to the other capacitance ratios in the passband, at the expense of a high 
sensitivity to the capacitance ratio in the feed-in branch.

4.5: A Filter Response Featuring Equiripple Transducer Power
Gain in the Passband.

To numerically verify that the filters of [76] do not achieve the
minimum possible sensitivity when designed to achieve a transfer function with an 
equiripple passband, it is necessary to calculate their sensitivities for such a transfer 
function, and for a transfer function which results in an equiripple transducer power 
gain in the equivalent circuit ( or equivalently in the auxiliary network ) of the 
filter, since such a response is expected, a priori, to feature the lowest sensitivity.

The auxiliary network described in Chapter Three is equivalent, for an
n-th order filter, to n-1 unit elements followed by a series short-circuited stub. The 
amplitude response which results in an equiripple passband for such a network is 
known to be given by [74,82]

|S 21(0) r 2 = 1 + e 2Fn 2(0) (4.45)
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where

Fn (0) = cosh((n-l)<J> + T | )

= cosh(n-l)<J>coshri + s inh (n -l)O sin hn  (4.46)

with

cosh <J> = s in 0 /s in 0 o (4.47)
cosh t\ = tan0 / ta n 0o = ii/Q0

To synthesise a filter with this magnitude response, a rational expression in X 
for S 11 (A)S, ,  (-X) is required. It is first noted that

cosh (n-l)<J> = Tn _, ( s in 0 /s in 0 o ) (4.48)

and

sinh  (n-l)<D = s inQ 
s in 0r -1 ln- 2 s i n0

siinÖf (4.49)

where Tn(x) is the Qiebyshev polynomial of the first kind of order n in x, 
and fn-2(x) *s a polynomial in x which is constructed using the same recursive 
formula as Tn(x), but with the initial conditions fg(x) = 1, f, (x) = 2x.

The following identities are also noted

sinh  71 = ( (ß /ß0 ) 2 -1 ) 1 / 2 (4.50)

and

( s in 0 /s in 0 o ) 2 - 1 = ( l+ n 2) ’ H (il/il0 ) 2 - 1) i / 2 (4.51)

where Q = tan 0. Using (4.48)-(4.51), the expression for Fn(0) may be 
written

Fn (0) = (fl/f t^ T n .^ s in O /s in O o )
+ (il2-ii0 2)/i20 ( l+ ii2) " 1 /  2 fn . 2( s in 0 /s in 0 o ) (4.52)

or, writing Q = sin0 (1+Ì22) 1/ 2
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Fn (0) = (1+Q2)1/2 /0  [ sin0  Tn . , ( s i n 0 / s in 0 o )
+ (ß 2-ß0 2) (1+ß2) ’ 1 fn . 2( s in 0 /s in 0 o) ] (4.53)

For n even, , (sin0/sin0o) may be written in the form

T n ./s in O /s in O o )  = sin0  ( 1+ß2) (n - 2) / 2 Te (ß 2) (4.54)

where Te(£22) is a polynomial in Q 2 of order (n-2)/2. Similarly,
fn_ 2(sin0/sin0o) may be written as

fn _ 2( s in 0 /s in 0 o ) = (l+ fl2) ( n ' 2) / 2 fe (ß 2) (4.55)

where fe(Q2) is also a polynomial in i22 of order (n-2)/2. Hence Fn(0) may
be written, for even n, as

ß 2Te (ß 2) + (ß 2 - ß0 2) fe (ß 2)
Fn (0) = ------------------------------------------------  (4.56)

ß0 ( l  + ß 2) ( n_0 / 2

For n odd, Tn_, (sin0/sin0o) may be written in the form

Tn . , ( s in 0 /s in 0 o) = ( 1+ß2) (n ’ ’ ) /  2 T0 (ß 2) (4.57)

where T0(Q2) is a polynomial in f t2 of order (n-l)/2. Similarly,
fn. jisinO/sinOo) may be written as

fn _ 2( s in 0 /s in 0 o ) = sin0  (1+ß2) (n ’ s) / 2 f0 (ß 2) (4.58)

where f0(Q2) is also a polynomial in Q 2, of order (n-3)/2. Hence Fn(0) may
be written, for odd n, as

ß i 0 (ß 2) + m 2 - V )  fo (fl2>
Fn (0) = ------------------------------------------------  (4.59)

ß0 (1 + ß 2) (n_ i ) / 2

Having obtained Fn(0) as a quasi-rational function of Q, it follows that
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6 2 g(X)
S , , (X.)S, ,(-A.) = -----------------------------------

(1 . ^ n - i  + 6 2 g (X)
(4.60)

where g(A) is given by 

g(A) = il0 ' 2[-A 2Te (-A 2) - (A2+Q0 2) f e (-A,2) ] , n even
(4.61)

g(A) = -A.2ii0 '  2[T0 (-A,2) - a 2+fl0 2) f 0 (-A 2) ] ,  n odd

Having obtained S , , (A,)S,, (-A,) in this fonn, as a rational function of 
A2, the filter may then be synthesised using the techniques of Chapter Three. This 
approximation type has been implemented in the synthesis software described in the 
last chapter. Because it features an equiripple transducer power gain, its passband 
sensitivity is expected to be lower than that of the standard equiripple response.

4.6: Results Obtained.

The sensitivities of filters of the type in [76] have been evaluated for
an equiripple passband response, and an equiripple passband transducer gain. The 
seasitivity plots obtained are now compared for a ninth-order filter, with the same 
filter specifications as chosen in Chapter Three for evaluating the synthesis 
technique.

The response of the filter designed for an equiripple amplitude response in the 
passband is thus that shown in Fig. 3.17. The required passband response for the 
filter with an equiripple transducer power gain in the passband, as determined using 
(3.35), is shown in Fig. 4.3. The peaks in this response correspond to points of 
maximum power transfer, and occur at, approximately, f/fs = 0.00, 0.20, 0.39, 0.54, 
and 0.60 respectively. The actual passband response of the synthesised filter is 
shown in Fig. 4.4. Qearly the two responses are in excellent agreement. This filter 
exhibits an amplitude response which closely resembles that of an 
equiripple-passband filter, but where the gain increases with frequency in the
passband, compared with that obtained, for example in Fig. 3.17, because the 
squared- amplitude response equals the equiripple transducer power gain multiplied 
by a factor cos'20.
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The sensitivity of the squared-amplitude response in the passband to
variations in the value of L ,, the first inductor in the equivalent circuit of Fig.
3.7(a), is shown in Fig. 4.5 for an equiripple passband transfer function, and in
Fig. 4.6 for an equiripple passband transducer power gain. The sensitivity in Fig. 
4.5 is zero at the origin, and at frequencies of approximately 0.12fs and 0.2fg.
Thereafter in the passband, the sensitivity is non-zero and positive. In contrast, the 
sensitivity in Fig. 4.6 is zero at seven points in the passband, five of these
corresponding to points of maximum transducer power gain, and two at
approximately f = 0.12f$ and f = 0.35fs. Also the variation in the sensitivity
appears less pronounced.

The corresponding sensitivities for the first capacitor, C2, are shown in 
Figs. 4.7 and 4.8. Here the improved sensitivity performance for the filter with
equiripple passband transducer power gain , shown in Fig. 4.8, is less dramatic,
since the sensitivity passes through zero five times for the filter with equiripple
passband amplitude response, as shown in Fig. 4.7. However, the variation in
sensitivity with frequency is again lower for Fig. 4.8 than for Fig. 4.7. Note that
the expected sensitivity zero at a frequency of approximately 0 .6fs appears to be 
absent from Fig. 4.8. This is simply a consequence of the limited plotting
resolution available in plotting Fig. 4.8.

Similar results are obtained for the other elements in the equivalent 
circuit, with the exception of the terminations, which, for example, have a
sensitivity of unity at d.c. It can be seen that, as expected, the switched- capacitor
ladder features low sensitivity, but that, as a consequence of the frequency 
variation in the value of the terminations in the equivalent circuit, this sensitivity is 
not as low as might be expected from an analysis which makes the approximation 
that the terminations are frequency-independent. As demonstrated by the results
presented here, this effect is not of major consequence for low pass filters, where, 
in the passband, cos0 = 1.0 , but it may seriously degrade the sensitivity properties 
of other filter types, notably high-pass filters.
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Chapter Five; SCF STRUCTURES FOR EXTENDED FREQUENCY RANGE
OPERATION

5.1: Introduction.

The frequency range over which a practical switched- capacitor filter 
can operate is limited. These limitations arise because the op-amps, switches,
capacitors and interconnections used are not ideal. The magnitude of the
non-idealities are dependent on the process used to fabricate the switched- capacitor 
filter. Thus, for instance, it would be expected that the gain-bandwidth product of 
an op-amp implemented using a 1.5 pm process (i.e. a process where the minimum 
feature size is 1.5 pm ) would be higher than that of an op-amp implemented
with a 5 pm process. The effect of many of these non-ideal factors is reduced as 
the feature size of the process is reduced. The values of parasitic resistances and 
capacitances would be reduced, for example, so that, for a given unit capacitor
size, their influence on charge transfer through the filter is reduced as their values 
are scaled downwards. However, the current state of the an in MOS technology is 
a feature size of 1-2 pm, and considerations of cost or availability may dictate the
use of a process with a more conservative feature size. Thus it is often necessary,
when designing a switched- capacitor filter for high frequency operation, to choose 
a filter topology which is more robust with respect to process limitations than the 
traditional structures used for voice-band applications. In this context no absolute
frequency range is implied by the term ’high frequency operation’. Rather the term
is used to denote the frequency range beyond which the approximations usually 
used in the design procedure (e.g. that the op-amp gain is independent of 
frequency) can no longer be regarded as valid for a switched- capacitor filter 
fabricated on the MOS process being considered.

52: Technological Considerations for High Frequency SCFs.

Formulae for the effect of finite gain-bandwidth on the performance of 
the conventional types of LDI-based integrators are given in [60], One of the 
principal factors limiting the performance of a switched- capacitor filter at high 
frequencies is the op-amp settling time [59,69]. The settling time of an op-amp, in 
the context of a switched - capacitor system, is the time taken for the op-amp 
output to settle (i.e. for the output voltage to attain, to within a specified tolerance 
dictated by permissible distortion levels, the value towards which it is 
asymptotically converging during the current clock phase, assuming constant system
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inputs ). The settling time is dependent on the slew-rate and gain-bandwidth of the 
op-amps, and on the topology of the circuit in which they are connected. Improved 
op-amp design, optimised for high-speed operation, can increase slew-rate and 
gain-bandwidth up to a point Further improvements where possible can be made 
by circuit modifications which reduce the extent to which signals propagate through 
the filter on each phase.

For example, consider the circuit shown in Fig. 5.1. This is the general 
SC biquad introduced by Fleischer and Laker [23], which is based on the lossless 
discrete integrator as a substructure and which has seen extensive use wherever a 
switched-capacitor biquad is required [e.g. 149,155,173]. Similar biquad structures 
have been proposed by other authors [e.g. 9,19,20]. However circuits of this type 
are not optimal with regard to settling time requirements for three reasons :

1) Unswitched capacitors such as ’E ’ in Fig. 5.1 are used. The use of 
such capacitors, which in theory add a simple gain term to the expression for the 
integrator output, will, in general, result in lengthened settling times because they 
provide a permanent path for the transfer of charge from one node of the network 
to another. Thus , in Fig. 5.1 OAj and OA2 are always interconnected via 
capacitor ’E’, so that the dynamics governing the settling time are more complex 
than would otherwise be the case.

2) Where the output of one op-amp is applied as an input for another, the
outputs of both op-amps are updated on the same phase. In Fig. 5.1 settling time
would be reduced if the output of OA2 was held during the phase when OAj 
reads the OA2 output via switched capacitor ’C ’, since the two op-amp outputs 
would then settle alternately rather than simultaneously.

3) The standard inverting integrator of [9], which features a delay-free path
from input to output, is used. Capacitors ’G’ , T  and ’C’ in Fig. 5.1 provide
signal inversion, essential so as to provide negative feedback, in this way, but 
require, for example, the OA, output to settle to the required value while ’G’, ’I’, 
and ’C’ are being charged, rather than after the charge on these capacitors has 
stabilised.

The presence of the above three conditions indicates a network which
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on either or both phases (assuming a standard two-phase clock) retains a complex
topology, which, it is apparent from a consideration of charge flow, will result in
a lengthy response time to transients in the practical situation where circuit 
elements are non-ideal. Conversely, if, during each phase, the network would be so 
disconnected that no path for charge flow would exist from one op-amp to any 
other, then the settling times for each op-amp output would be independent.

It can parenthetically be noted that the circuit of Fig. 5.1 will often 
require three op-amps, since it requires the input to be sampled and held over one 
full clock period, which may require additional circuitry.

5.3: Techniques for Extending SCF Frequency Range.

Several approaches are possible in reducing settling time requirements.

5.3.1: Compensation.

The equivalent problem for RC-active filters can be solved by analysing the 
effects of non-ideal circuit operation, and adjusting the element values to account 
for these non-idealities, i.e. the filter design is ’pre-warped’ to account for finite
gain-bandwidth effects. The performance of such filters deteriorates progressively 
with increasing frequency. However, SC filters do not feature such ’graceful 
degradation ’. The step responses for the op-amp outputs in a switched- capacitor 
filter can, to a first order, be approximated as exponential curves, equivalent to the 
voltage across a capacitor being charged by a resistive voltage source. The fraction 
of the required charge which is actually transferred to such a capacitor obviously 
falls rapidly as the charge time is reduced through the value of the time constant 
for the circuit. In fact, as the clock rate is increased , switched- capacitor filter 
performance degrades rapidly over a short frequency range, and high-Q bandpass 
filters can , for example, become unstable [62], Because of this sensitivity, this 
approach is not feasible when applied to SC filters.

An alternative approach is to physically compensate for the errors in
charge transfer within an integrator at high frequencies by the introduction of 
additional compensation circuitry [174]. Since this approach requires several 
additional op-amps per integrator, it represents a considerable increase in circuit 
complexity.
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5.3J2: Double-Sampling.

One approach which has been successful for some circuit topologies is 
the use of a double-sampling scheme [78]. Fig. 5.2 shows a damped discrete
integrator modified so as to incorporate double sampling. The double sampling 
approach involves replicating the switched-capacitor circuitry but connecting it to 
the opposite phase. Then the even and odd circuits ( i.e. the circuits as connected 
during cp2 and cpj respectively ) are identical. Obviously, for example, this 
technique cannot be applied to the circuit in Fig. 5.1, where signals are sampled
on both clock phases. This replication means that the sampling rate of the system
is twice the clock frequency. Hence, for operation in a given frequency range, the
clock frequency using double-sampling is one half of that for a conventionally 
designed filter. Thus the upper limit on operating frequency has been extended 
without significantly increasing the stringency of the op-amp settling time 
requirement. This benefit has been obtained , however , at the price of doubling
the number of switched capacitors and switches in the circuit, thus considerably
increasing the chip area occupied by the filter.

5.3.3: Fully Differential Operation.

Other approaches to improving the frequency response of the switched- 
capacitor filter involve the use of a fully differential filter structure 
[59,126,140,141]. A fully differential architecture also brings other benefits [137] 
such as increasing the dynamic range by increasing the voltage capability and 
(when used with chopper-stabilised op-amps) reducing 1/f noise. A fully differential 
structure will also reduce the effects of clock feedthrough and increase power 
supply rejection, since, to a first order, these noise signals represent a 
common-mode input to the differential filter and will be suppressed. Thus there are 
considerable benefits to be obtained from the choice of a fully differential structure. 
It has been shown [59] that this structure also leads to improved high frequency 
performance. The penalty paid for this is an increase of close to one hundred per 
cent in die area required, since all capacitors and switches must be duplicated, and
a fully differential op-amp requires almost as much area as two conventional
op-amps. However the presence of complementary outputs in the fully differential 
op-amp allows circuit topologies which would otherwise require additional inverting 
stages to be used. This circuit flexibility can make the fully differential structure 
more economical than the double-sampling scheme in some applications. In
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particular, such a structure allows circuits which avoid the three conditions which 
degrade settling time to be designed. For this reason the differential structure will 
be examined in further detail.

Fig. 5.3a shows the structure of a conventional (or single-ended) 
non-inverting lossless discrete integrator. Fig. 5.3b shows the corresponding circuit 
for a fully differential ( or double-ended ) integrator. The values for Cj and C2 
are identical in both circuits. A more complex single-ended circuit, such as a 
biquad, can readily be converted to a fully differential structure by replacing the 
single-ended integrator sections with double-ended equivalents, using the approach 
shown in Fig. 5.3. This results in a double-ended filter with the same transfer 
function as the prototype, since the transfer functions of the integrator sections 
remain unchanged. This identity of transfer functions is widely assumed in the 
literature, but a formal proof does not appear to have been published to date. Such 
a proof is given in Appendix A which considers non-inverting and inverting 
integrators for both the damped and lossless cases. In addition, the transfer function 
of the differencing-input integrator [59,126] of Fig. 5.4 is derived. It is shown that 
the differencing-input integrator requires input capacitors of half the value for the 
corresponding single-ended type.

The advantages of fully differential circuitry for high frequency 
operation of switched-capacitor filters will now be summarised [59,140] :

1) Because the signal paths are fully differential, the 
differential-to-single-ended conversion required within single-ended op-amps is 
avoided. This simplification means that the op-amp bandwidth will exceed that of 
the corresponding single-ended design.

2) For high frequency operation, the charging time constants for the 
capacitors must be minimised, to ensure that charge is properly transferred through 
the circuit. Therefore the on-resistance of the switching transistors must be reduced, 
compared with the values for voice-band filters. This is achieved by increasing the 
transistor size. Unfortunately this increases the amount of clock feedthrough present 
in the signal path. Thus a filter structure which suppresses clock feedthrough is 
required. Also, the sizes of capacitors are reduced. This increases the effect of 
stray capacitances and thus reduces power supply rejection. The differential structure 
features improved power supply rejection, as already stated.
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3) The filter sampling rate must be as low as possible, since this will 
reduce op-amp settling time and will also in general result in a design with
reduced capacitance ratio spread , thereby reducing charging time constants. A low 
sampling rate however means that the filter passband occupies a greater proportion 
of the frequency range from zero to the Nyquist rate than would otherwise occur. 
It follows that the amount of noise aliased into the passband will be increased for 
such filters. This is another reason for preferring a filter structure which suppresses 
noise.

5.3.4: Use of Differencing-Input Integrators.

In addition to the above advantages it has been shown by Ribner and 
Copeland [59] using simulations of non-ideal filters, confirmed by measurement of 
fabricated filters, that fully differential integrators, when coupled together to form
biquadratic sections, diverge less rapidly from ideal performance as signal frequency 
increases than do single-ended designs. The differencing-input integrator of Fig. 5.4
is particularly suitable, since the input capacitors are halved in value compared 
with the other integrator types. This reduction in input capacitance brings a number 
of benefits [59] :

1) The charging time constant for the input capacitors is reduced.

2) The amount of feedback from the op-amp output to its input is
reduced. A large feedback loop gain causes longer settling times, and also increases 
the effect of the finite op-amp gain.

3) The capacitative load presented to each op-amp output in a switched- 
capacitor filter is reduced. Typically, the designs of op-amp favoured for high
frequency switched-capacitor applications, such as the folded cascode [175], feature 
a high output impedance. For such op-amps, both slew rate and bandwidth improve 
as the capacitative load is reduced, thereby reducing the settling time.

The results obtained by Ribner and Copeland indicate that, although the 
use of differencing-input integrators results in the presence of (delay-free) inverting 
integrator inputs, which, as has been stated earlier, can, in general, be expected to 
lead to lengthened settling times, the net effect of the use of differencing inputs 
is to reduce settling times, for the reasons stated above.

98



5.4: A Switched-Capacitor Filter Structure for High Frequency 
Applications.

5.4.1: Limitations cm the Filter Topology.

For high frequency applications, it is desirable to have a filter structure 
which offers the versatility of the biquad of Fleischer and Laker, but which is
optimally suited for use at higher frequencies. Because of the considerations
mentioned above, such a design should fulfil the following requirements :

1) The filter structure should be fully differential.

2) Where possible, differencing-input integrators should be used.

3) The switch phasing should be arranged so that interconnected op-amps
do not have outputs which update simultaneously.

4) No unswitched capacitors should be used.

Note that, because of considerations 3) and 4) such a structure could
not implement a z-domain transfer function with a second-order numerator using
only two op-amps, as does that of Fig. 5.1. This is because there is no delay-free
path permissible from the input to the output of the filter, and therefore, writing
the numerator of the transfer function as :

N(z) = n 2 z' 2 + n, z"1 + n 0

it follows that n 0 = 0 , as the impulse response will be zero at time t = 0.
Thus, the numerator can be, at most, first order, with a delay of one sample
period before the filter responds to an input

To ensure that the transfer function has a second order numerator, it is 
necessary for three op-amps to be used, if the above constraints are to hold. Thus 
the Fleischer-Laker biquad cannot simply be modified for double-ended operation to 
obtain a filter of the required form.
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Another difficulty with the circuit of Fig. 5.1 is that it cannot readily 
be adapted to use differencing-input integrators. To see why this is so, consider the 
operation of the integrator based around OA2 , with the input from OAj removed. 
This circuit is shown in Fig. 5.5. The difference equation describing the operation 
of the integrator is :

V0 (n )=(F + B )‘ 1(B V0 ( n - 1) - I Vin (n) + J Vin (n-*) )
(5.1)

Assuming that ^in is held during <p, then :

V in (n -i)  = Vin (n-1) (5.2)

Thus, in the z-domain, the transfer function becomes:

I - J Z ' 1

V0 (z) = - --------------------- Vin (z) (5.3)
F + B - B z~ 1

This transfer function has a zero at z = J/I. However, if Fig. 5.5 is modified 
to a fully differential structure with differencing inputs, the zero will always occur 
at z = 1. This is because the operation of the circuit in Fig 5.5 depends on 
reading the input on both phases, but with different gains. With differencing inputs, 
the gains on both phases are identical.

5.4.2: Operation of Single-Ended Version of Proposed 
Filter.

For the above reasons, it is not possible to arrive at a satisfactory filter 
design by simply modifying Fig. 5.1. Instead, a new topology is required. The 
single-ended version of this topology is shown in Fig 5.6.

In this design, the first two stages form a standard damped discrete
integrator loop, such as might be used in simulating a second order low pass
ladder filter. The feedback in the loop is negative as required, because the input 
from V2 in the first damped discrete integrator is inverting. The transfer functions
from the inputs to V] and V2 have second order denominators, but lower order
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numerators, since the technique of Fig. 5.5 has necessarily been avoided. To obtain 
a second order numerator, the input and the two integrator outputs must be 
summed. This is done in the third damped discrete integrator, which introduces an 
additional pole in the transfer function Thus the transfer function has a second 
order numerator and a third order denominator. Note that ^in is sampled on the 
same phase by the first and third integrators, so that no sample/hold stage is 
required at the input Also, as will subsequently be shown, one of the damping 
capacitors C 31 or C 32 could be removed without lowering the filter order or 
affecting the range of transfer functions which can be realised. In practice, such an 
omission generally leads to an increased capacitance ratio spread and total 
capacitance for the filter.

The transfer function for the filter of Fig 5.6 is derived in Appendix B 
and is found to be :

V0 (z) z-o-5 (a 0+ a ,z ' 1 + a 2z ' 2)
---------  = --------------------------------------------------  (5.4)
Vin (z) (1 - b 0z*1) (b, + b 2z ~1 + b 3z ‘ 2)

where :

a 0 = k a 3 ;
a , = - k a 3(kd1+kd2) + k a 3k a 2kb1

+ kb3ka, + k c 3k a ,k a 2 ;
a 2 = k a 3kd ,kd 2 - kb3k a ,k d 2 ;
b 0 = kd3 ; (5.5)
b, = 1.0  ;
b 2 = k b ,k a 2 - kd, - kd2 ;
b 3 = k d ,k d 2 ;

The k co-efficients are defined in Appendix B. They are all ratios of
capacitances, and are thus all positive.

5.4.3: Description of Double-Ended Version of Filter.

Modifying the filter for fully differential operation yields the circuit of
Fig. 5.7. Note that, with the exception of that associated with Clb3, all integrator
inputs have been replaced by differencing inputs as in Fig. 5.4. An inspection of
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Fig. 5.7 indicates that each integrator input (with the possible exception of Vin) is 
always held during the phase when the integrator output is updated. In Appendix 
A it is shown that this is the condition which must be satisfied for a 
differencing-input integrator to be equivalent to a single-ended integrator. This 
means that equations (5.4), (5.5) are valid for the transfer function of the new 
circuit, with the proviso that the input capacitors (except Clb3) are divided in 
value by two.

The input to the third integrator associated with C , b3 is the exception 
to the above. Since both Vj and V3 change on (p,, if this input is changed to a 
differencing input, a term (1 -z"1) will be introduced in the expression for Vgiz) .
While this will result in a perfectly satisfactory filter, its coefficients will no
longer be described by (5.5) and it may be more sensitive to op-amp settling times 
than that in Fig. 5.7.

It has tacitly been assumed in the above discussion that Vin changes 
only on (p2. If this is not the case, then the transfer function of the filter, 
H(z)=V0(z)/Vjn(z), must be modified to :

0 .5  (1 + z-P) ( a 0 + a ,z " 1 + a 2z " 2)
H(z) = -------------------------------------------------------  (5.6)

(1 - b 0z _1) (b , + b 2z ' 1 + b 3z ' 2)

where p = 0 if changes only on <p2
where p = 1 if Vin changes only on 9 ,
where p = £ if V jn changes both on <p2 and cpr

These three values of p correspond to the three cases given in Appendix A 
for the output of a differencing-input integrator.

It follows that, if Vin is a continuous-time waveform, or changes at 
twice the sampling rate of the filter of Fig. 5.7, a cosine filtering/decimation 
operation is performed on the input. This is implemented in a stray-insensitive 
circuit, unlike the techniques proposed in [175],
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5.4.4: Synthesis.

5.4.4.1: Constraints on Transfer Function 
Co-efficients.

The filter design has six parameters (three poles, two zeros and a gain 
factor) whereas there are twelve capacitor values (nine capacitance ratios). Hence 
there is some freedom in the choice of capacitor values for implementing a 
particular transfer function. This freedom can be exploited to maximise the voltage 
swings at the op-amp outputs or to minimise the total capacitance. For high 
frequency applications, the most important additional criterion to specify may often 
be the spread of capacitance ratios.

The equations for the filter coefficients may be rewritten as :

a 0 = 2k a 3 ;
a , = a 0b 2 - 2ka1(kb3 + 4kc3k a 2) ;
a 2  = a 0b 3 - 2kb 3k a ,k d 2 ;
b 0 = kd3 ; (5.7)
b, = 1.0  ;
b 2  = 4 (C ,b i/C 21)(C 12/C 22)b 3 - kd, - kd2 ;
b 3 = k d ,k d 2 ;

These equations have been derived from (5.5) but allow for the changes in 
input capacitor values required for the differencing -inputs. They illustrate how one 
capacitor value can affect the values of several filter coefficients. Hence it appears 
that not all possible transfer functions of the form of (5.6) can be implemented. 
This is because negative capacitors cannot be realised. Thus the pole at z = b0 is 
coastrained to be positive. Also b, is unity and b3 is positive, thereby constraining 
the remaining two poles to be either both positive, or both negative. The zeros 
which can be implemented appear to be similarly limited.

Such a conclusion is valid for a single-ended filter design, but a simple 
topology change allows the double-ended filter to implement a transfer function 
which, for the original circuit of Fig. 5.7, requires some of the capacitor values to 
be negative and thus unrealisable. As an example, suppose that the synthesis
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yielded negative values for C23, Cia3, and Clb3, using (5.7). Then the circuit of 
Fig. 5.7 could be used to implement the required transfer function, but with the 
third integrator modified as shown in Fig. 5.8.

The modification that has been made to this circuit is that, where 
’negative’ capacitors are required, realisable (i.e. positive ) capacitors have been 
used, but they have been connected to the opposite polarity of input signal. This 
simple transformation of the circuit topology allows any transfer function of the 
form of (5.6) to be realised. Thus, for example, the capacitor i Clb a i (where 
C lbs has been calculated from the required transfer function co-efficients using
(5.7), and transpires to be a negative value) in the upper signal path is switched 
between -Vj and earth, instead of between +Vj and earth as before, and the upper 
(lower) damping capacitor iC33i is connected to -V3 (+V3) on (p, , instead of 
+V3 (-V3) as before.

The difference equation for Fig. 5.8 is :

V 3(n+i) (5.8)

C 23V 3(n-*) -2iC,a3iVin(n) -iClb3iV,(n) +2ClC3V 2(n)

C23V3(n - i )  +2 Cia3  Vin (n) + Clb3 V ,(n) +2ClC3V2(n)

C  2 3 +  C 3 3

This difference equation is thus identical to that of the corresponding
stage in Fig. 5.7. It follows that where, in the synthesis of the circuit of Fig. 5.7, 
negative values are obtained for capacitors, these can be replaced by the 
corresponding positive values, using circuit modifications which introduce signal 
inversions, (and thus inversions of charge transfers) such as those in Fig. 5.8.

This obviously cannot be done should any of C21, C22 or C23 be
negative, since positive feedback around the associated op-amp would result.
However, this situation can always be avoided by, for example, using an algorithm
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for selecting the capacitor values which, a priori, chooses positive values for the 
feedback capacitors. Thus any stable transfer function of the form of (5.6) can be 
realised with the circuit of Fig. 5.7, allowing for the possibility of slight 
topological changes, such as those in Fig. 5.8. Unfortunately, it does not follow 
that the resulting circuit will feature a low capacitance ratio spread, such as is 
required for good high frequency performance.

5.4.4.2: Selection of Capacitance Values

A number of approaches could be considered in selecting the capacitor
values. One such will now be described. It is assumed that the transfer function
coefficients have been obtained in the form of (5.6). Scale the numerator by a 
factor k = b 0/a0 so that the new a0 coefficient is equal to b0. This temporarily 
reduces the number of degrees of freedom required in the design of the filter to 
five. Because the number of capacitor values (twelve) exceeds the number of 
degrees of freedom required, as many as seven of these capacitor values can be 
arbitrarily chosen. Arbitrarily select Cia , = C , a3 = Clbl = C21 = C22 = C23 
= 1.0. This determines the required values of C33 and C lb3 in conjunction with
(5.7). Now arbitrarily choose a value for C31 (or C32). This determines the value
of C 32( C 31) and could be chosen as zero. The values for C, 2 and C lC3 are
now fixed by (5.7).

Where the resulting capacitor values are negative, they can be replaced 
by positive capacitors using the topological modifications described earlier. The 
resulting filter produces an output of kV0 where V0 is the desired output. To 
produce the desired output level, the values of C23 and C33 are multiplied by k.

The filter can also be scaled for maximum dynamic range as follows
[18,23]. To increase the voltage V, by k without affecting the other circuit nodes, 
divide the values of C21, C31, and C12 by k. Similarly, to increase the voltage 
V 2 by k, divide the values of C22, C32 and ClC3 by k. As a final step, the
capacitors for each integrator are scaled so that the smallest is a unit capacitor.

The filter design is now complete. However, in order to achieve the
minimum total capacitance, or minimum capacitance ratio spread, the design

113



procedure should be repeated iteratively for various values of C31 (C32) and the 
realisation which achieves the minimum should be chosea

5.5 Concluding Remarks.

Some of the limitations of existing SC filter designs when operated 
over an extended frequency range have been outlined. A new switched- capacitor 
filter structure featuring fully differential signal paths has been proposed, and has 
been shown to be capable of implementing any stable function in the z-domain, 
which has three poles and two zeros, and which features the possibility of cosine 
filtering and decimation at its input. It remains to investigate practical applications 
of this new filter structure. This is the subject of the next chapter.
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Chapter Six : DESIGN OF A LINE EQUALISER USING SC FILTERING TECHNIQUES

6.1: Techniques for Bidirectional Baseband Digital 
Communications.

In the previous chapter, a new filter structure for use over an extended 
frequency range has been proposed. A practical application of this circuit will now 
be investigated. The intention is that the filter design will be suitable for
integration on the 5 (im CMOS process available at the National Micro-electronics 
Research Centre (the NMRQ in Code. The chosen application is line equalisation 
for a digital subscriber (or PABX) loop.

The purpose of such an equalisation system will now very briefly be 
reviewed. The equaliser is intended for use in a system which allows bidirectional 
baseband digital communication over two-wire loops, specifically existing subsciber 
lines (or twisted-pair PABX lines) which are more suited to existing analog
telephony signals. Two approaches can be used to this problem,

1) Data can be transmitted in both directions simultaneously. Since both
signals occupy the same two-wire loop, inevitably the received signal will be 
severely contaminated by the locally transmitted signal (i.e. by the so-called echo). 
A sophisticated adaptive filter, an ’echo canceller ’, is used to suppress the
unwanted component in the received signal.

2) A half-duplex mode is used, whereby data are transmitted alternately by
terminal and exchange, in short bursts, as shown in Fig. 6.1(a). This technique is 
known variously as burst mode transmission, time compression multiplexing (TCM) 
or, more colourfully, as ’ping-pong’, in honour of the way in which signals
periodically alternate in direction.

The second method is technically simpler, at the expense of requiring a 
channel bandwidth slightly greater than twice that of the first approach. Echo 
cancellers, with few exceptions [175], are implemented in digital form [e.g.
177-179]. Analog sampled-data forms of implementation are rarely justified, since 
complex digital control circuitry is required, resulting in an overall circuit
complexity approaching that of a wholly digital (i.e. with the exception of an

115



Exchange
T ra n s n it

Term inal
Receive

Term inal
T ra n s m it

Exchange
Receive

/1 \

A\

/N

/K

38 bits

38 bits

38 b its

38 b its

250 uS

§

>

time

Fig,  6 .1 (a ) :  I l l u s t r a t i o n  o f  TCM,

line
o / p

\ 1 1 0 1

\
time

F i g . 6 . 1 ( b ) !  An e x a m p l e  o f  AMI,

Dtgrfcal C o n t r o l  r p u t s

ig, 6 .1 (c ) :  SC E q u a l i s e r  B l o c k
D i a g r a m ,

116



ADC) implementatioa Switched-capacitor technology is, in any case, inappropriate 
for this application, since it requires a high signal-to-noise ratio, which is difficult 
to achieve in switched-capacitor filters [137], and it typically assumes a transversal 
filter topology, which, while feasible [147], is less suited to switched- capacitor 
technology than recursive designs based on integrators.

For these reasons, switched- capacitor techniques are best applied to the 
TCM approach. The principle of TCM is that, whereas the transmit and receive 
paths are physically the same, they are separated in time. For example, in [155] 
researchers for Siemens have described how a user bit rate of 144 kb/s, compatible 
with the requirements for ISDN, could be achieved. Bits are actually transmitted at 
a rate of 384 kb/s, but are sent in frames of 250 |xS duration as follows :

The exchange transmits a burst of thirty eight bits (time taken -  99 jxS).
The last such bit is received by the terminal T j seconds later, where T^ is 
the group delay of the cable. The Siemens group allowed for T<j(max) -  21 
US.
The terminal then waits for a guard time of two bits duration (- 2 ¡iS) 
before switching from receive to transmit.
The above procedure (time taken = 125 fxS ) is then repeated in the opposite 
direction.

Thus the cycle repeats every 250 |iS, with thirty eight data bits sent and 
received in each 250 |xS frame, as shown in Fig. 6.1(a). This represents an 
effective bit rate of 152 kb/s. Eight kb/s are used by the system, leaving a user 
bit rate of 144 kb/s.

The above discussion illustrates the main disadvantage of TCM. In order 
that an effective bit rate of 144 kb/s be achieved, the channel is required to have 
sufficient bandwidth to support a bit rate of 384 kb/s. However, the telephone 
cables used to effect the channel have a frequency response which falls off with 
increasing frequency. Thus, at the receive end of the channel, a filter is required 
which will compensate for the frequency distortion introduced by the line, as well 
as providing Nyquist filtering, to minimise inter-symbol interference [180], Such a 
filter is known as a line equaliser.
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6.2: A Switched-Capacitor Line Equaliser.

6.2.1: Components of an SC Line Equaliser.

Such an application for SC technology has previously been investigated 
[149-153,155-157]. The resulting systems can equalise various different line lengths 
(by implementing various appropriate transfer functions) because programmable 
capacitor arrays (PCAs) [136] have been substituted for some of the capacitors. 
Thus they can be digitally programmed. The best choice of the available equaliser 
transfer functions can be selected, on the basis of the equaliser output, for a 
particular application. This choice can be made dynamically by adding digital 
control circuitry which automatically programs the PCAs. This represents a crude 
form of adaptation, whereby the appropriate equaliser setting is determined by an 
algorithm implemented by the control circuit. A number of existing designs feature 
such adaptive algorithms.

The equalisers described above have without exception used a line code 
of 50% AMI (Alternate Mark Inversion). Thus the symbol ’0’ is represented by a 
zero voltage, and the symbol ’ 1 ’ is represented alternately by a positive or 
negative pulse, whose duration is 50% of the bit interval. This line code, an 
example of which is shown in Fig. 6.1(b), is simple to implement, but allows the 
clock signal to be recovered from the received pulses, and has a low d.c. content. 
These equalisers have been implemented on CMOS processes with feature sizes of 
2-3 |im, and use largely standard SC filter circuits, such as the biquad family of 
Fleischer and Laker [23], and the integrator circuits of [9]. The possibility of using 
a more conservative process, in conjunction with the newly proposed filter 
topology, will now be examined.

The minimum requirements of such an equaliser system, as shown in 
Fig. 6.1(c), are as follows :

1) Programmable gain control.
2) An anti-aliasing filter, to suppress noise and unwanted high frequency 

components of the signal which would otherwise be aliased into the equaliser 
passband, because of its sampled-data nature.

3) The equaliser section proper, which can implement a number of transfer 
functions, as determined by the digital control inputs to the appropriate PCAs. Note
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that a distinction is being made between the equaliser section, which performs the 
equalisation, and the equaliser system, which includes all the ancillary circuitry 
necessary for a practical implementation.

4) A decision circuit, which samples the equaliser output at a rate equal to 
the bit rate, and thereby recovers the data transmitted.

5) Clock extraction circuitry, which provides the clock signals required by the 
decision circuit and, (assuming synchronous operation of the equaliser, as in [145]) 
by the switched -capacitor circuitry.

The problem of clock extraction can be a difficult one. However, a 
digital phase-locked loop has been used for this purpose in [149] and has been
successfully integrated. Since such a PLL is not implemented using switched- 
capacitor technology, its design will not be further discussed here. Similarly, the 
decision circuit, which can be as simple as a comparator (with a zero voltage
reference for the AMI line code) synchronously latched at the bit rate, will receive 
no further attention. The first three components will now be considered in further 
detail.

6.2.2: Requirements for the Filtering Stages.

The programmable gain stage could be implemented with either a 
switched- capacitor gain stage [18] using PCAs or, more conventionally, by a 
continuous -time amplifier with a tapped resistive divider. The latter approach has 
been taken for two reasons. A large gain variation in a programmable switched- 
capacitor gain stage implies a large capacitance ratio spread, which is to be 
avoided in designs for extended frequency operation. Also, a continuous-time
divider can be incorporated in the anti-aliasing filter, reducing op-amp count.

The complexity of the anti-aliasing filter required depends primarily on 
two factors, the ratio of the equaliser section passband edge (assuming a quasi- 
lowpass response) to the sampling rate, and the minimum attenuation of aliased
signals which will be tolerated in the system. An attenuation of 34-40 dB would 
ensure that aliased noise would have an amplitude of about 1-2% of its original 
level, which should be adequate for this application. It remains to determine the 
system sampling rate.
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For this comparatively high frequency application, it is obviously 
essential that the equaliser sampling rate be as low as possible, since this will
reduce the performance requirements for the op-amps and switches, and will result 
in a reduced capacitance ratio spread. The required sampling rate depends on the 
equaliser bandwidth. Unfortunately the equaliser section cannot be designed in 
advance of the anti-aliasing filter, since the effect of the anti- aliasing filter on the 
equaliser section input signal must be accounted for. Therefore, it is necessary, at 
this point, to estimate the likely bandwidth of the equaliser section, and to proceed 
on the basis of that estimate.

The purpose of the equaliser is to minimise inter-symbol interference
(ISI). Inter-symbol interference arises due to the dispersal which occurs to a train
of pulses as it is passed through a finite-bandwidth channel. At the receiver, the 
pulse train is sampled at the bit rate. Only one pulse should be present in the 
received signal when sampling occurs. However, the pulse spreading means that the 
leading edges of some subsequently transmitted pulses, as well as the trailing edges 
(typically of much longer duration) of earlier transmitted pulses, contribute to the 
sampled signal. This can result in the decision circuit producing an erroneous
result

The famous result that the theoretical minimum bandwidth which results 
in zero ISI is one half of the bit rate is due to Nyquist [180]. For this reason, 
filters which limit bandwidth while minimising ISI are known as Nyquist filters 
1181-183]. One transfer function which is frequently used for Nyquist filters is an 
approximation to the so-called full cosine roll-off ( or one hundred per cent raised 
cosine roll-off) function [184] which ideally blocks all frequencies beyond the bit 
rate. The equalisers designed in [149-151] all have an amplitude response which 
rolls off steeply as the bit rate frequency is approached. Consequently, it seems 
reasonableto assume ,a priori, that the eventual equaliser bandwidth will
approximately equal the bit rate.

In the light of this estimated bandwidth requirement, the sampling rate must
now be decided. If the equaliser operation is to be synchronised to the bit rate,
then this must be an integer multiple of the bit rate. If this synchronism is not 
incorporated in the system, then the times at which received bits should be
sampled by the decision device in Fig. 6.1(c) will not correspond to sampling 
instants in the equaliser. This means that the equaliser output must be reconstructed
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in continuous-time before being applied to the decision device so that it can be 
sampled at the correct times. The disadvantage of this technique is that it 
necessitates the use of an additional continuous-time low pass filter ( probably in 
conjunction with a switched-capacitor interpolation filter) which is redundant in a 
synchronous system, although it does have the advantage that the clock rate for the 
switched- capacitor filter sections does not track any jitter present in the timing 
signal extracted from the received pulses, as happens in a synchronous system.

As the sampling rate is lowered, the complexity required of the 
anti-aliasing filter increases, while the performance required of the op-amps 
decreases. A sampling rate of four times the bit rate has been adopted in other 
designs [149-151], and will be similarly adopted here, as it is the lowest practical 
sampling rate. This means that, since, denoting the bit rate by fg, the sampling 
rate fg is 4 fg, then the passband of the equaliser will be from approximately 
zero frequency to 0.25 fg. Thus the anti-aliasing filter must strongly attenuate any 
frequency which would be aliased into this frequency range. Since the foldover 
frequency is at V2fs. it follows that the anti-aliasing filter must attenuate 
frequencies in excess of 0.75 f§ by at least 34 dB, the chosen specification.

Whereas the equaliser section itself can be adapted to different bit rates 
by changing its clock rate, the continuous-time anti-aliasing filter must be designed 
for a particular cutoff frequency. This necessitates a decision about the required bit

Most of the existing designs assume that the bit rate during the bursts 
is 200 kb/s [149,150,153]. However, a bit rate of 384 kb/s will be assumed for 
this design, so as to comply with the standards proposed in [155] for ISDN 
compatibility. Allowing a passband gain variation of 3dB results in the following 
specification for the anti-aliasing filter :
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Passband
Lower edge zero
Upper edge 384 kHz
Maximum a tte n u a tio n  3 dB

Stopband
Lower edge 1.152 MHz
Upper edge in f in i ty
minimum a tte n u a tio n  34 dB

This tight specification would require a high order filter to implement 
directly, which, when integrated, is wasteful of die area. One solution to this 
problem would be to increase the sampling rate, resulting in a corresponding 
increase in the transition region, and so in a reduction of the required filter order. 
Instead an equivalent result can be achieved by preceding the equaliser section 
(with clock rate f§ = 4fg) by another filter with a clock rate of nf§ (n an 
integer). The continuous- time anti-aliasing filter need now only suppress aliasing 
associated with the higher sampling rate, and so can be of lower order, while the 
new filter must suppress frequencies which would otherwise be aliased into the 
equaliser section passband following the reduction in sampling rate from nf§ to f§. 
Such a sampled-data filter is known as a decimator [128].The task of anti-aliasing 
can thus be shared between the continuous-time section and the decimator.

6.2.3: Filter Circuitry.

6.2.3.1: The SC Low-Pass Filter.

A number of designs have been proposed for SC decimators using polyphase 
circuits [131,133-134], However, as well as requiring multiple clock phases, they 
also pose stringent requirements on op-amp settling time. Thus a conventional l.d.i. 
based low pass filter structure has been chosen for the decimator, with the 
exception that it features a fully differential structure, with differencing-input 
integrators, the benefits of which were described in Chapter Five. The topology of 
this circuit, which will subsequently be referred to as the SC LPF, and which 
operates at a clock rate of 2fg, is shown in Fig. 6.2(b).
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The decimator simulates a simple second order lowpass LC section 
between resistive terminations [76]. A more selective filter would require either 
extra op-amps, or additional unswitched capacitors, which would degrade settling 
times. The low figure for stopband attenuation for this simple circuit is improved 
somewhat by a feature which is not readily apparent from Fig. 6.2(b). The
differential decimator output, which changes at a rate of 2f§, will be connected to 
a differencing-input of the equaliser section, thus providing a cosine filtering action, 
as explained in Appendix A. Also, because the decimator also features a
differencing -input, the continuous-time input signal is effectively sampled at 4f§, 
and is cosine-filtered before a reduction in sampling rate to 2f§. The filtering 
requirements for the continuous-time section can thus be relaxed considerably.

6.2.3.2: Continuous-time Section.

The continuous-time section is shown in Fig. 6.2(a). It must perform the 
following functions. It must introduce the gain required for the system, since this 
cannot be done by the SC sections if capacitance ratios are to be kept low. The 
gain must be programmable. To ease the task of setting the gain, the gain control 
must consist of a coarse gain and a fine gain adjustment. The continuous-time
section must perform an anti-aliasing function, and must convert the single-ended 
input signal to differential form for the subsequent differential SC sections. Three
op-amps are the minimum required to perform these functions. Note that, unlike
the corresponding circuit in [155], the filtering action performed is independent of
the gain setting (assuming ideal op-amps). The combination of the continuous-time 
section of Fig. 6.2(a) and the SC LPF of Fig. 6.2(b) is sufficient to meet the 
required specification for alias rejection.

6.2.3.3: Equaliser Sectioa

The filter structure proposed in Chapter Five, which is shown in Fig. 
6.3, is employed as the basis for the equaliser section. To make the transfer
function it implements digitally programmable, a number of the capacitors (the
capacitors to be variable to be determined during the design process) must be 
replaced by programmable capacitor arrays (PCAs). Because PCAs require 
considerable die area, the minimum number of capacitors possible should be 
programmable. Fig 6.4 shows how the PCAs are implemented, for the hypothetical
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Fig, 6 .2(a) :  C o n t i n u o u s - t i n e  S e c t i o n
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Fig, 6.2(b): SC Low -P ass  F i l t e r .
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situation where C22 and C, 2 must be programmable. For any of the PCA settings, 
only one of the switches shown will be closed. Thus the total capacitance available 
in the PCA is distributed between the capacitance present in the circuit (between 
nodes A and B) and the excess capacitance, which is connected (from node A) to 
earth. Note that this capacitance always appears on the side of the PCA which is 
(or will be, on the appropriate phase) connected to an op-amp output This ensures 
that all the capacitors in the array are precharged to the same voltage as those 
which are currently in circuit. This reduces the size of the transient which occurs 
when the effective capacitance is increased by switching in an additional capacitor 
from the array. Also, connecting the PCA in this sense ensures that the excess 
capacitance does not appear in parallel with the stray capacitance at the virtual 
earth point, which would have obvious detrimental effects on circuit performance, 
even with a nominally stray-insensitive topology.

6.3: Element Values for Pre-filter Sections.

The above description gave in qualitative terms the requirements of the 
equaliser system, and the circuits which have been proposed for implementing these 
requirements. Quantitative results for the filter transfer function and circuit element 
values will now be given.

6.3.1: Programmable Gain Stage.

For simplicity in operation, the gain control provided must be
monotonic. Thus, for example, the gain with the coarse gain control set to 7 (the 
maximum gain setting) and the fine gain set to zero ( the minimum gain setting) 
should exceed that with the coarse gain set to six (the second highest gain setting)
and the fine gain set to fifteen (the maximum gain setting). To achieve this, the
gain variation from one extreme setting to the other of the fine gain control should 
always be less than the gain variation from one coarse gain control setting to the 
next. This suggests that, in order to avoid large jumps in gain for low values of 
the coarse gain, the coarse gain control should follow a power law. Denoting the 
i-th setting of the coarse gain as CGQ, this means that

CGCi = ki CGC0, i = 0,1,...,7 (6-1)
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where k is the gain variation from one coarse gain setting to the next 
However, the coarse gain is obviously given by

i 6
CGCj = a  RAj) / ( X  RAj) i = 0 ,1 .........7 (6.2)

0 0

Hence

CGC0 = RAo/ ( I  RAj ) (6.3)

So

CGCj = (XRAj )  CGC0/Ra o , i = 0 ,1 ..........7 (6.4)

I t  follow s th a t 

i
k i RAo = X RAj . i = 0 ,1 . . . . 7  (6.5)

o
Thus a recursive formula is obtained for R ^ :

RAi = rAo '  X RAj . i = 0 , l .........7
o

= ( ki - k i-1  ) RAo
= k i- ’(k-l) RAo (6-6)

The value of k determines the gain variation of the coarse gain control. The 
maximum variation is equal to

CGC7/CGC0 = k? (6.7)
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The maximum required gain variation depends on the range of line 
lengths and types to be catered for by the equaliser system. The achievable gain 
variation depends on the characteristics of the op-amps used in the implementation, 
and, in particular, on the unity gain bandwidth, since the op-amps will be required 
to amplify the signal so as to compensate for the attenuation caused by the 
resistive voltage dividers. A value of thirty for the gain variation, for typical line 
types such as 0.4 mm dia. PE or PVC, allows the attenuation of lines up to 
1.5-2.0 km in length to be compensated for [155]. For longer line lengths the 
group delay through the line increases to the point where the guard time between 
the transmitted and received bursts must be increased, lowering the effective bit 
rate achievable.

With a maximum gain variation of thirty, the value of k is 

k = 30’ /7  = 1.6256

R/sk0 is now arbitrarily set to unity. With this value for k, and using (6.6), 
the resistor values for the coarse gain control shown in Table 6.1 are obtained. 
These values must be scaled because the input impedance of the continuous- time 
section is otherwise very low. The input resistance should preferably be about 10 
k£2, so that the input can be (nominally) matched to a particular line simply by 
placing an appropriately valued resistor (assuming a purely resistive characteristic 
impedance for the line) from the equaliser system input ( which is the input to the 
coarse gain control stage) to earth. This resistor might typically have a value in 
the range 100-300 ft, which would be loaded negligibly by a 10 k£i input 
impedance.

The scaled values for the resistors in Table 6.1 result in a sufficiently 
high input impedance. The value of RAe does not affect the gain variation. The 
chosen value ensures that the attenuation at setting CGC7 is low. The coarse gain 
control, as designed, has the following specification :
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input re s is ta n c e  
maximum gain  
minimum gain  
gain  steps

-  10.1 k£i 
-0.174 dB 
-29.72 dB 

4.22 dB

R e s is to r  Value
Normalised Denormalised (Q)

r A o 1.00 330
R A i 0.63 206
R A z 1.02 336
RA s 1.65 546
RA 4 2.69 887
RAs 4.37 1440
RA 6 7.10 2340
R A  7 11.5 3810
RAe - 200

Table 6.1 : Coarse gain  con tro l 
r e s is to r  values

The above procedure can be repeated for the fine gain control, with the 
exception that for this stage there are sixteen gain levels and the maximum gain 
variation is 1.6256, i.e. the value of the incremental gain for the coarse gain 
control. The resulting resistor values are shown in Table 6.2. In this case, the 
motivation for scaling is to make the smallest resistor value of sufficient magnitude 
to be realised with low tolerance on silicon. The values for the fine gain control 
are not critical, since the main requirement is that the maximum gain variation for 
the fine gain control should be less than the minimum gain variation for the 
coarse gain control. This requirement is satisfied if the following constraint holds :

I  RBi < 1.6256 RBo

Thus, although process tolerances may result in the realised values for Rg



differing considerably from those in the above table, the monotonicity of the gain 
control is guaranteed if the above criterion is satisfied.

R e s is to r  Value

Normalised Denormalised (Q)

rBo 10.00 5000
RBi 0.329 165
r b 2 0.340 170
r b 3 0.351 176
rB4 0.363 181
RB 5 0.375 187
RB e 0.387 194
RB 7 0.400 200

£ CO 0.413 207
r B9 0.427 213
RB i o 0.441 220
r B i 1 0.455 228
RB 1 2 0.470 235
r B 13 0.486 243
RB14 0.502 251
RB 1 5 0.518 259
RB i e - 200

Table 6.2 : Fine Gain Control 
r e s i s to r  values

If the values in Table 6.2 are implemented exactly, then the fine gain 
control features the following :

maximum gain : -0.21 dB 
minimum gain : -4 .43 dB 
gain  s tep s : 0.28 dB

132



6.3.2: Continuous-time Pre-filter.

The output from the coarse gain control is connected to the first
op-amp in Fig. 6.2(a) which is configured as a non-inverting amplifier with a gain
of thirty. This also provides the low-impedance input required by the filter built
around the second op-amp. The filter circuit is a standard design frequently used
for anti-aliasing applications [175]. After some alternative topologies were 
considered, this structure was chosen for the reasons which undoubtedly account for 
its popularity, specifically relatively low (i.e. when compared to other active-RC 
biquad designs) sensitivity, low element value spread, and element values conducive 
to integration.

The filter circuit can implement a two-pole filter, which, because of the 
limited selectivity of the SC LPF of Fig. 6.2(b), does not provide sufficient 
attenuation. To improve the selectivity, the capacitor C, has been added in the 
feedback path of the first op-amp. It can be easily shown that the resulting 
transfer function from the input of the first op-amp to its output (assuming ideal 
elements) is

Vb R-t + R 2 ( 1 + sC 1R 1R 2/(R1 + R 2)
—  =   (6 .8)

Va R, ( 1 + sC,R2 )

The second order filter circuit has the transfer function

Vc K ©0 2

- = --------------------------------  (6.9)
Vb s2 + (o0/Q) s + co0 2

The minimum sensitivity is obtained with K = 1, which corresponds to R3 = 
R 4 = R [185]. In this case the design equations are

fflo = l/( R ✓(C1C 2) ) (6-10)

Q = V 2 / (C,/C2)
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The requirements for the continuous-time filter are:

f i l t e r  type : lowpass
approxim ation used : th ird -o rd e r  Chebyshev

( i . e .  e q u ir ip p le  passband) 
passband r ip p le  ’ r ’ : 0 .2  dB
c u to ff  frequency : 384 kHz

The filter should pass all frequencies up to the bit rate. Its transfer 
(normalised for a cutoff frequency at (% = 1, for p = j(%) should be [186]

K T1 (Tl2 + 3/4)

H(p) = -------------------------------------------------------
( p + r\) (p 2 + tip + T]2 + 3 /4)

where p is the normalised frequency variable, 
r\ = sinh( 1/ 3 sinh ’ 1 (1 /e>) ,
e = 10 r/ ’ » - 1,

and K = 30.

The function H(p) can be written as the product of two functions H, 
H 2(p) where

Kt] 30

H , ( p )  =   = -------------

p + T| 1 + p/0 .815

tl2 + 3/ 4 1.414
H 2 (p)  = ----------------------------------  = ----------------------------------------

p 2 + T)p + t i2 + 3/ 4 p 2 + 0.815 p + 1.414

H^p) is implemented by the first filter stage. So 

(R1 + R2) /R 1 = 30

C,R2 = 1/0.815

function

(6.11)

(p) and 

(6.12)

(6.13)

(6.14)

(6.15)
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r ,r 2
C, -----------  = 0 (6.16)

R1 + R 2

The third equality (6.16) obviously cannot be satisfied simultaneously 
with (6.14) and (6.15). Arbitrarily setting C, = 1.0, from (6.14), (6.15) it follows 
that

R 2 = 1.227 
R 3 = 0.0423

Thus an unwanted zero is introduced at p = 24.45 instead of the zero at 
infinity. The effect of this is to disimprove the filter selectivity in the frequency 
range above approximately twenty times the cutoff frequency. Since this does not 
affect the monotonicity of the stop-band attenuation, its effect on filter performance 
can be neglected.

After frequency scaling for the actual cutoff frequency of 384 kHz, and 
impedance scaling to obtain element values suitable for integration, the element 
values are :

C, = 20.0 pF 
R : = 877 f t

R 2 = 25.4 kft

H 2(p) is implemented by the second stage. This requires

(Dq = 1.189 
Q = 1.459

The value of R is arbitrarily set to unity, so

C 2 = 0.288 
C 3 = 2.454

135



After frequency and impedance scaling, the values are

R a = R 4 = 14.9 kft 
C2 = 8.0 pF 
C3 = 68.1 pF

The final stage in the continuous-time section is the single-ended to 
differential conversion. This is simply a fully differential op-amp configured as a 
voltage follower. Performing this conversion in continuous-time rather than in 
discrete-time allows the effective sampling rate at the SC LPF input to be doubled.

6.3.3: The SC Low-Pass Filter.

The SC LPF of Fig. 6.2(b) simulates a low-pass ladder in the manner 
described in [76]. To design this, a single-ended equivalent was first synthesised, 
using the techniques of Chapter Three, to the following specification:

Filter type 
Filter approximation

Passband ripple 
Clock rate 
Cutoff frequency

: low pass 
: second-order, 

equi ripple passband 
: 0.2 dB 
: 3.072 MHz 
: 384 kHz

The values for the double-ended version of this circuit are identical, except 
that the input capacitor values are divided by two. After scaling the capacitors so 
that the smallest capacitor is a unit capacitor, the following values are obtained :

C\ai = 1.0

c ib 1 = 1.0

c 21 = 3.52
c 31 = 2.0
c 12 = 1.63
C 22 = 1.0

^3 2 = 2.16

Because it is simulating a doubly terminated passive filter, the SC LPF 
introduces a net loss to the equaliser system. The filter output can be increased in
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amplitude by a factor of k by dividing the values of C22, C32 and Clbl by k. 
Since two of these are unit capacitors however, it is in practice necessary to 
increase the values of Cia i , C21, C31 and C, 2 by k instead. This would 
increase the capacitance ratio for the circuit from 3.52 to 3.52 x k. At the 
comparatively high operating frequency of this filter, however, a low capacitance 
ratio spread is paramount in maintaining the filter performance. Thus the signal 
attenuation introduced by the SC LPF is accepted as the penalty to be paid for 
achieving the minimum capacitance ratio spread.

Theattenuation of the double-ended SC LPF of Fig. 6.2(b) at 
frequencies approaching the Nyquist limit is actually greater than that of the 
single-ended prototype because the SC LPF reads its continuous-time input twice in 
every sampling period i.e. on both the even and the odd phase. Thus it 
incorporates a cosine filter at its input. The equaliser section also features such a 
cosine filter, since its input comes from the SC LPF which operates at twice the 
sampling frequency. Thus the anti-aliasing function is implemented by four stages 
of filtering :

1) the third order continuous-time section;
2) the cosine filter at the SC LPF input;
3) the SC LPF itself;
4) the cosine filter at the equaliser section

input.

The amplitude response of this combination of filter sections to 
frequencies in the range 0-16 fg is shown in Fig. 6.5. This plot has been obtained 
using the switched- capacitor circuit simulation program SWITCAP [52,53], and can 
be seen to meet the specification presented earlier for alias rejection, which
assumed that the equaliser section rejected signals in the range 384-768 kHz.. The
plot shows that signals at frequencies close to the Nyquist limit for the equaliser 
section, namely 768 kHz, are attenuated by about 20 dB. Thus the equaliser 
section itself must introduce an attenuation of about 13 dB at 768 kHz, relative to
its passband gain, if the specification for alias rejection is to be met by the
equaliser system.
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6.4: Equaliser Section Design Techniques.

For the design of the equaliser section proper, the signal at the 
equaliser input must be known. A computer simulation of the response of a
transmission line is available at the NIHE, and this is used to generate frequency 
domain and time domain information about the line response for various line
lengths.

Because simple analytical expressions are not available for the line 
response, it follows that analytical approaches cannot be used for the equaliser 
section design. An optimisation technique must be used instead, where the function 
to be minimised (the objective function) in some way measures the departure from 
ideal operation of the equaliser system. The traditional objective function used in 
optimising equaliser performance is the intersymbol interference.

The intersymbol interference is defined in the time domain. However,
the extended Nyquist criterion [184] provides a frequency domain criterion which
results in zero intersymbol interference. Thus the equaliser optimisation can be done 
in either the time or frequency domains. Both of these distinct approaches are now 
considered.

6.4.1: Time Domain Optimisation.

6.4.1.1: The Optimisation Method.

The response of the overall system to an isolated pulse of width T/2
(where T is the interval between pulses = 1/fjj) is considered. The equalised signal
g(t) is sampled at the bit rate fg as shown in Fig. 6.6. The condition for zero 
intersymbol interference is

gOd) = A
g(nT + td) = 0 n = ±1,±2.....  (6.17)

where g(t) is at a maximum at time t = t̂ j. Thus the following might be
used as an objective function :
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I g(nT + t d ) I 
e = I ------------------

R r 0"  1 '
(6.18)

Obviously minimising e will reduce the effect of pulse dispersal and so will 
reduce the bit error rate. This expression must, of course, be modified for use in 
practice. Thus, in a realisable, causal system, g(t) will be zero for t < 0. Also, if 
the system is stable, linear and time-invariant, and the output possesses no ’d.c. 
offset’, then, for n sufficiently large, g(nT + t^) will be zero, i.e. the pulse will 
not be dispersed over an infinite duration Thus, in practice, the summation need 
not be done over all possible values of a  To reduce computation time, the value 
of e can be approximated as

where the choice of the values of n, and n 2 dictates the amount of 
computing time required.

A n 2 I g(nT + td ) I
e I ----------

R ío"1i eCtd )
(6.19)

g(-t)  g(nT + t d )

pCt )   c h a n n e l - — e q u a l i s e r  — >

pCt)

0 T / 2

Fig,  6.6:  I s o l a t e d  p u l s e  r e s p o n s e ,
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This approach has been used ,for example, in [151]. One difficulty in 
the calculation of (6.19) is that the output g(t) must be calculated from t = 0 to 
t = t^+ n 2T. Since the cable group delay increases with increasing line length, the 
value of t(j increases correspondingly. Thus for different line lengths, g(t) must be 
calculated for different durations. In practice, this means that g(t) is calculated for 
a fixed duration or ’window’, but for short line lengths the unwanted values of 
output towards the end of that window are discarded, whilst for long lengths the 
values for the start of the window are not used. To simplify the calculation of 
g(t), and to ensure that all calculated values of g(t) are used in (16.9), the
expression for intersymbol interference is instead calculated over a fixed window,
regardless of line length, from t = 0 to t = Tyy, where T\y = 65 |iS is
equivalent to the duration of twenty five bits. This is equivalent to n, being the
lowest integer such that n,T  + tj > 0, and n2 being the highest integer such that 
n 2T + t(j < Tw.

6.4.1.2: Practical Considerations.

Thedetails of the algorithm used to perform the time domain
optimisation are as follows:

The line simulator is set up to simulate a line type which might typically be 
met in practice, namely where the line consists of a copper wire pair of diameter
0.4mm, with polyethylene insulation, the line length being selected anew for each 
optimisation run. The simulator produces an output equivalent to the response of 
such a line to a pulse of unit amplitude, and of 1.302 |xS duration, which is the 
duration of the pulse representing a mark using the 50% AMI line code, for a bit 
rate of 384 kHz. The simulation program output represents a sampled-data 
approximation to the continuous-time output of an actual line. The effective 
sampling rate is chosen to match the rate at which the SC LPF samples its input, 
namely 16 x fg, where fg is the bit rate 384 kHz. The output consists of 500 
samples, representing a duration of 81.4 |iS.

The continuous-time filter must be simulated in discrete-time to 
approximate its response to the line output. A high order rational z-domain transfer 
function could be used to accurately reproduce the continuous- time response in 
discrete time. However, because of its simplicity, the bilinear transformation has
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been used to map the normalised frequency variable p of (6.11) into the z-domain 
as follows :

p X/ tan 0 O

where X = (1 - z"1)/^ + z '1) is the bilinear variable, and 0 O = Ttfp/fs =
jt/16 is the sampled-data cutoff frequency corresponding to the actual
continuous-time filter cutoff frequency f0 = fg, for a sampling frequency of f§ = 
16 fg. The resulting z-domain transfer function is a close approximation of the 
original continuous-time function only for frequencies where

tan( 7i f/%) = Ji(f/fs)

Consequently it is a good approximation of the continuous-time filter in the 
passband, although it exaggerates the filter rolloff in the stopband. Also the 
unwanted zero at p = 24.45 cannot be mapped accurately into discrete-time by the 
bilinear transform at the chosen sampling rate, and so it is ignored in the 
construction of the z-domain transfer function, which is consequently of second
order.

The discrete-time transfer function so obtained is implemented in
canonical foim, its input being the line simulator output. The SC LPF is easily 
simulated, simply by reproducing in software the difference equations which 
describe its operation. The SC LPF output in the simulation now contains only 250 
samples, because of the decimation introduced by the cosine filter. The signal up 
to this point is unaffected by the equaliser settings, except for the gain control 
settings, which do not influence the value for inter-symbol interference, and so can 
be ignored in the simulation.

After the fixed cosine filter at the equaliser section input has been 
simulated, the window of calculated signal values contains only 125 sample points. 
This array of time domain information forms the input for the equaliser 
optimisation routine. The output of this routine, the objective function to be 
minimised, is defined by (6.19). The final requirement for the optimisation is a 
decision as to the parameters to be optimised. Obviously the transfer function 
must vary with the parameters chosen but a number of possible approaches can be
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considered. These include

1) The capacitor values for the equaliser section can be varied directly.
2) The coefficients of the equaliser section transfer function can be varied, 

capacitor values which realise this transfer function being selected after the 
optimisation is concluded.

3) The transfer function poles and zeros for the equaliser section can be 
varied, capacitor values again being subsequently selected.

Each approach has its own advantages and disadvantages. The first technique 
allows the capacitors to be determined directly, and so is the most direct. The 
capacitances can be constrained to ensure a low capacitance ratio spread using 
constrained optimisation. However the optimisation will terminate prematurely if the 
capacitor values are such that the equaliser is unstable. Because of the complex 
relationship between pole locations and capacitor values, the optimisation cannot 
readily be constrained to keep the transfer function poles inside the unit circle, as 
required. Also, the equaliser section features twelve capacitor values. Since it 
features three op-amps, this means that effectively nine capacitance ratios can be 
varied. To allow all nine ratios to vary would result in an implementation where 
almost all the capacitors in Fig. 6.3 must be replaced by programmable capacitor 
arrays. This would require a considerable area on an integrated circuit. Unless the 
area occupied by the circuit on silicon is not a major consideration (as it must be 
in any complex integrated system ), then it is preferable to fix the values of some 
of the capacitors. The optimum choices are not immediately apparent, making this 
approach difficult to apply.

The second approach requires the capacitor values to be determined after 
optimisation. However, because the co-efficients can be readily expressed in terms 
of the capacitor ratios and vice versa, this is not a major difficulty. For example, 
the approach to selecting the capacitor values suggested in Chapter Five can be 
used. Only five parameters need to be used in the optimisation, since the overall 
gain does not affect the result of the optimisation. Stability is still not inherently 
guaranteed, although simple constraints on the transfer function denominator 
co-efficients [23] will guarantee stability.

The third technique guarantees stability since the poles can simply be 
constrained to occupy the unit circle. However, a slight loss in flexibility is 
suffered, in that, for a smooth optimisation to occur, the two zeros and two of the
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poles must be restricted to be either complex conjugate, or distinct but real, since 
the transfer function co-efficients are constrained to be real. This difficulty is not 
encountered for the second approach, which can smoothly break away from the real 
axis.

Combinations of the above techniques can also be considered, for 
example representing the transfer function denominator by its zeros and its 
numerator by its co-efficients. The pole-zero approach has been adopted for 
optimising the equaliser design, because of the ease with which stability is assured, 
and because of the intuitive appeal of the pole-zero approach in designing filters.

One of the optimisation routines available in the IMSL library of 
mathematical software is used to perform the optimisation [163]. This routine 
employs a quasi-Newton method to find the local minimum of the (user-written) 
objective function. It generates its own estimates of the gradient vector and the 
Hessian matrix. For this application, the objective function perfonns the following 
functions:

It calculates the equaliser section transfer function co-efficients from the pole 
and zero values.
It simulates the equaliser section in software, using a canonical structure, the 
equaliser input being the time-domain array of samples for the SC LPF 
output.
It determines the peak sample in the equaliser output. This corresponds to 
finding the value of 1̂  in (16.9).
Hence it determines the resulting value of the inter-symbol interference, using 
(6.19). Because the equaliser section operates at a clock rate equal to four 
times the bit rate, only every fourth sample of the equaliser output is added 
to the value for ISI i.e. the value of T in (16.9) corresponds to four samples 
of the equaliser output
The value of ISI is returned to the minimisation routine, as the parameter to 
be optimised.

The optimisation requires an initial guess as to the pole and zero 
locations. To obtain the global optimum, the optimisation algorithm must be 
repeatedly applied to a sufficiently wide range of initial sets of poles and zeros to 
ensure that the global optimum will be recovered. In fact, it is apparent that a
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number of different transfer functions could produce the same value for the 
inter-symbol interference, since the measure of inter-symbol interference is not 
affected by all the samples of the equaliser output response, but only by one in 
every four of the samples.

6.4.2: Frequency Domain Optimisation.

6.4.2.1: The Optimisation Method.

The possibility of optimising for minimum inter-symbol interference in
the frequency domain arises from the extended Nyquist criterion, which provides a 
condition on the Fourier Transform of a band-limited pulse waveform which, if 
satisfied, ensures zero inter-symbol interference for the pulse in the time domain 
[184],

If p(t) is the time-domain representation of the pulse, and P(f) = A(f) 
is its Fourier Transform (with A(f),<D(f) both real), then, for a bit rate of 

fg, zero inter-symbol interference occurs when :

AGfg + f) + AGfg - f) = A(0),
I fl < ifg

A(f) = 0 I fl > fg
(6.20)

with the phase response O(f) varying linearly with frequency. This corresponds
to a constant group delay, which will not affect the value of inter-symbol
interference. It is evident that an equivalent definition is valid in discrete-time.

The optimisation routine must perform the following tasks :

1) Calculate the system pulse response up to the equaliser section input in the 
frequency domain.
2) Calculate the equaliser section transfer function, and hence the equaliser
output, in the frequency range 0 to ¿f§.
3) Determine the magnitude and phase of the equaliser output signal.
4) Measure the extent to which the amplitude response deviates from the
criterion in (6.20).
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5) Measure the extent to which the phase response departs from linearity.
6) Minimise the departure from the criterion at the equaliser output by using 
a weighted sum of the above error quantities as the objective function in a 
minimisation routine.

6.42.2: Practical Considerations.

The frequency domain optimisation has much in common with the time 
domain approach, since the same system is being simulated. Those features which 
differ from the time-domain method are considered below.

The routines for calculating the outputs of the continuous-time section 
and the SC LPF must be rewritten so as to produce frequency domain results. One 
approach is to simply use the FFT algorithm to transform the time domain output 
of the SC LPF simulation into the frequency domain. Transitions from one domain 
to the other in this way are likely to cause errors to accumulate, and so are 
avoided. Instead all calculations are performed in the frequency domain.

This means that a frequency domain output is now required from the 
line simulation program. The program available could produce only the impulse 
response ( i.e. the transfer function of the line) in the frequency domain, rather 
than the pulse response required. This must therefore be multiplied by a frequency 
domain representation of the pulse waveform. The pulse waveform, p(t), in time is 
shown in Fig. 6.7. The Fourier Transform of p(t) is

sin(îc /2  f / f B) - j( jc /2  f / f B)
P (f)  = ---------------------  x e (6.21)

n f

After sampling at the simulator sampling rate of 16 x fg, the z-transfoim of 
p(t) is

P (z ) = 1 + Z~1 + ........+  Z" 7

= (1 - z-8)/(l - z '1) (6.22)
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Thus the discrete-time spectrum of the pulse is

p 'f  j (  27if/fS) 1 = s in (7l /2  f / f R) - j C5/ , G f / fB>
I J s in  (Jt/ 16 f / f s )

(6.23)

The phase responses in discrete- and continuous- time do not match, but this 
is not of concern, since both responses vary linearly with frequency. More 
importantly, the amplitude spectra agree quite closely, as shown in Fig. 6.8. Thus
the frequency domain representation of the line pulse response can be found quite
accurately by multiplying the frequency response by (6.22).

Another detail which must be considered in the optimisation is the 
necessity of ’unwrapping’ the phase response of the overall system before assessing 
the phase linearity. The phase of the transfer function, as calculated by the 
simulation program, will be in the range -n to n. Thus, even a transfer function 
featuring exact phase linearity will appear to be only piecewise linear, because of 
the effect of the modulo arithmetic used. Unwrapping the phase is achieved by
detecting a jump in phase from -tc to ji or vice versa as frequency increases, and 
by adding the value of 2nrc to the phase at each frequency, where n is the 
number of complete revolutions from -n to n which the phase has traversed from 
d.c. to the current frequency, as determined by the number of phase discontinuities 
detected.

After unwrapping the phase response in this way, the departure from 
phase linearity is determined as follows:

For each frequency, the group delay is estimated as:

TG(f) = <D(f)/f (6.24)

where <t>(f) is the phase response at frequency f (the calculated value is in
fact the phase delay, which equals the group delay for a linear-phase response).

The variance of the set of TQ(f) values is determined. For a linear phase 
response this should be zero. Thus the variance provides a measure of the 
departure from phase linearity.
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One possible error function for use in optimising the amplitude 
response A(f) is

error =
I  ( A (ifB - iAf) + A (JfB + iA f) -A(0) )* 

i iAfi <

+ 1 A2(f)
fB < f < jf s (6.25)

This error function is zero for a response which exactly satisfies the criterion.

This approach offers no exact control over the frequency response of 
the system, since various pulses can reduce (6.25) to zero, apart from ensuring that 
the high frequency gain is minimised. To ensure that the amplitude response is 
similar in each case when the equaliser is adjusted for various line lengths, which 
eases the task of selecting an appropriate equaliser setting when it is attached to a 
line whose length falls between two length settings of the equaliser, a particular 
amplitude response must be selected which satisfies (6.20) and the equaliser system 
must be optimised so that the amplitude spectrum of the output pulse approaches 
that desired.

One family of responses frequently used for this purpose are the raised-cosine
responses, first proposed by Nyquist in a classic paper [187], which have the
amplitude spectrum (normalised for unity peak gain)

1 . I fl < ( l - p ) f B/2
A (f) = ¿[ 1 + c o s( * /(2p ) ( 2 1f / fBI + p-1) ) ] ,

( l - p ) f B/2  < i f l  < ( 1+p)fB/2
0, Ifl > ( l+ p )fB/2

(6.26)

Here, fg is the bit rate and p is a constant between 0 and 1. With p = 1,
the so-called 100% rolloff raised cosine response is obtained. This has a bandwidth
of fg, and the time-domain response is:
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sin ( 2k  f g t ) 1
p ( t )  = ----------------------  x -----------------------

2« fBt 1 - 4 ( f Bt ) 2
(6.27)

This response is strictly non-causal, but is negligibly close to zero for iti > 
3/fjj. It is thus the easiest of the raised cosine responses to approximate with a 
low-order filter, featuring as it does the most gradual transition region. 
Consequently, the 100% raised-cosine response is used in the frequency domain 
optimisation, as the amplitude response which the overall system should display 
when a pulse is applied.

The objective function for the optimisation routine must return a 
weighted sum of the amplitude error and the phase error. The weights are
necessary to ensure that the contributions of both amplitude and phase to the 
objective function result are equivalent, so that the amplitude response is not 
optimised at the expense of the phase response or vice versa.

As a final check, after the optimisation has been completed, on the 
validity of the obtained results for the equaliser section transfer function, the pulse 
response is transformed into the time domain, and the resulting value for
inter-symbol interference can be calculated using (6.19).

6.5: Optimisation Results for the Equaliser Section Design.

The results obtained using the two techniques described above are given
below.

6.5.1: Time Domain Results.

Results have been obtained using the time domain optimisation technique 
for four line lengths, 200m, 400m, 600m, and 800m. A line 200m in length
displays an acceptably low level of inter-symbol inteference, as determined using
the line simulation program, without equalisation, because, even at the proposed bit
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rate of 384 kHz, the line is still electrically short Consequently, applying an 
optimisation algorithm to a line of 200m length serves to test the validity of that 
algorithm, since, if it is to produce good results for the longer line lengths which 
are required in a practical equaliser design, a very low value for inter-symbol 
interference should be obtained when it is applied to a short line.

The spacing between the lines for which the equaliser optimisation is
performed is only 200m. This allows the tradeoff between the range of line lengths 
catered for in the equaliser design, and the value of inter-symbol interference
obtained, to be evaluated. For example, the ISI value obtained when the equaliser
is set for a 400m line, while the line length is actually 600m, can be compared to
that obtained when the equaliser setting co-incides with the line length of 600m.

As expected from theoretical considerations, a number of local minima 
are obtained for each line length. A number of observations can be made about 
the optimisation:

1) In general, convergence is very slow. Typically 250-300 iterations of the 
optimisation are required before convergence is achieved. The optimisation 
routine is considered to have converged to a solution when the poles and
zeros remain unchanged within a tolerance of 0.1%, this tolerance being less 
than that likely to prevail on-chip, due to fabrication tolerances on the
capacitors.
2) The local minima correspond to a wide range of values for ISI, from very 
poor figures ( = 40% ) to very good ones (ISI < 2%).
3) For most initial trial values for the poles and zeros, the value of each 
pole and zero changes by less than 10%. Thus the choice of initial values is 
critical in obtaining minima featuring good values for inter-symbol interference.
4) Most of the pole-zero sets which yield good ISI result in unacceptably 
large capacitor ratios when the equaliser section is synthesised to realise the 
corresponding transfer function

It is thus apparent particularly because of the fourth consideration 
above, that the necessary approach in designing the equaliser section is not to
repeatedly run the optimisation for each line length until the global optimum is 
found, and then to select capacitor values which will realise the required transfer
function. Instead, a number of local minima which result in adequate values for
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ISI ( the chosen specification being a value for ISI of less than 3% - this is a 
tighter specification than that chosen by Suzuki et al. [149] when allowance is 
made for the window duration) are listed for each line length. The approach 
described in Chapter Five for obtaining the capacitor values is applied for each 
pole-zero set. Many of the sets of poles and zeros prove to result in excessively 
large capacitance ratio spread, when realised in the form of Fig. 6.3. Many of the 
remaining sets of poles and zeros, while suitable in themselves for implementation, 
using the structure of the equaliser section, result in capacitance values which differ 
substantially for the various equaliser settings. This means that each capacitor in 
Fig. 6.3 must be replaced by a programmable capacitor array. Since there are 
twenty four capacitors in all in the equaliser section, the die area required to 
implement the equaliser section with all capacitor values programmable is 
prohibitive. Instead the choice of transfer functions must be limited to those which 
allow common values for some of the capacitors.

This constraint means that deciding upon the transfer functions to be 
implemented involves choosing, from the lists of poles and zeros for each line 
length, sets of transfer functions, one for each line length, and, after selecting
some of the capacitor values, determining the remaining values for each transfer 
function using a version of the algorithm suggested in Chapter Five for selecting
capacitor values, modified to account for the fixed values of some of the
capacitors.

This procedure is repeated until a satisfactory set of equaliser poles and 
zeros is found. Such a set is shown in Table 6.4, where the equaliser transfer
function, neglecting the cosine filter at the input, is:

K (1 - a 0 z ” 1) (1 - a, z ' 1)
H(z) = ------------------------------------------------------------------------------------------- (6.28)

(1 - b 0 z - i )  (1 - b , z ' 1) (1 - b 2 z - ’ )

The value of K is chosen so that the peak magnitude of the equaliser section
output pulse is three times that at the equaliser section input This is sufficient to
make up for the losses in the gain control stages at the maximum gain settings, 
and for the loss of the SC LPF in the passband.

152



Line leng th  t r a n s fe r  fu n c tio n  c o -e f f ic ie n ts

K b 0 b , b 2 a 0 a , ISI

200m 1.470 0.624 -0.409 -0.229 3.21 0.960 2 .40  x 10' 2
400m 0.953 0.578 -0.168 -0.361 4.73 0.875 2.51 x 10‘2
600m 1.131 0.552 -0.179 -0.347 0.808 4.750 2.67 x 10‘ 2
800m 3.578 0.500 -0.309 -0.362 0.778 1.922 2.86 x 10' 2

Table 6 .3 : T ransfer function  
c o -e f f ic ie n ts  

for various e q u a lise r  
se tt in g s

Note that b0 has been constrained to be greater than 0.5. For the pole-zero 
settings of Table 6.3, it is found that fixing the following capacitor values results 
in reasonable values for all other capacitors, for all equaliser settings :

C21 = 1.0
C12 = 1.5
C2 2 = 2.0
^ 3  2 = 4.0
C3 3 = 1.0

Then the remaining capacitor values are as shown in Table 6.4.
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Capaci to r Line len g th
200m 400m 600m 800m

Ci ai 9.79 11.0 10.7 7.72
C-ibi 4.46 5.74 5.61 4.06
C31 2.56 4.50 4.37 2.09
C ia 3 1.95 1.13 1.26 3.58
^iba -6.37 -6.91 -7.14 -5.90
^1 C 3 2.95 3.45 3.31 1.12
^23 1.66 1.37 1.23 1.00

Table 6 .4  : E q u a lise r  se c tio n  
capaci to r 
v a lu e s .

The values obtained for Clbs are negative. Thus, the circuit of Fig. 6.3 
must be transformed as explained in Chapter Five, by modifying the third stage so 
that the inputs from ±V1 connected to the capacitors listed as C lb3 have the 
opposite polarity to that shown in Fig. 6.3. Then, for example, the value of Clb3 
used for the 200m line setting will be 6.37. Note the low capacitance spread of 
the filter, 12:1. This is a result of the rejection of transfer functions which resulted 
in low values for ISI, but a large capacitance ratio spread, and an optimisation of 
the circuit for mimimum capacitance ratio spread, using the single degree of 
freedom available, given that the values of five of the capacitors are fixed.

Fig. 6.9 shows the pulse response at the line output for each line length. Fig. 
6.10 shows the response at the equaliser section output, for each line length, with 
the equaliser at the setting appropriate to that line length. Fig. 6.11 shows the 
amplitude frequency response of the equaliser section alone, for each setting, as 
determined using the switched-capacitor simulation program SWITCAP.
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Fig. 6.11 indicates that, although the equaliser is successful in reducing 
inter-symbol interference, this has not been achieved in a finite bandwidth. Thus 
the equaliser section output contains noise terms which must be filtered out if they 
are not to degrade the equaliser performance. In [153] a fourth order switched- 
capacitor filter is used for this purpose. No details are given, but it is presumed
that two biquads of the type in [23] are used. The fourth order filter is used to
approximate a frequency response given by the 100% raised cosine response of
(6.26) and (6.27). Following the equaliser section by such a filter does not result 
in a significant deterioration of the ISI value, because its impulse response is 
ideally zero at every second sampling instant away from the response peak, and is
low elsewhere. Alternatively, the optimisation can be modified to take account of
the presence of the roll-off filter by regarding it as being incorporated in the SC 
LPF. In this case, the input to the equaliser section in the optimisation software is 
equivalent to the overall equaliser system output with the equaliser section
(excepting the cosine filter at its input) bypassed.

In this way, the poles and zeros can be fine-tuned to take into account
the effect of the roll-off filter. A fourth order filter allows a close approximation 
to (6.26) with a phase response that approximates to linearity. However, this is 
achieved at the expense of a considerable increase in circuit complexity. A minimal 
approach to implementing the roll-off filter is to use a damped discrete integrator
for the purpose, such as shown in Fig. 6.12. The transfer function of the damped 
discrete integrator is chosen to give unity gain at d.c. and a gain of 0.5 at a
frequency of 0.5 f3 , thereby matching the desired amplitude response at these two
points in frequency. Thus the transfer function is

F(z) = (l-k)/(l -k z’1) (6.29)

with k chosen such that lF(z)i = 0.5 when z = exp(j 2tc %/%) = (1 -
j)//2. Thus k = 0.645. This corresponds to the capacitor values :

C, = 1.00
C 2 = 3.63
C 3 = 2.00

in Fig. 6.12. The resulting inter-symbol interference, listed in Table 6.5, is 
still quite acceptable for the four equaliser settings. Unfortunately, the high
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frequency attenuation of the equaliser section is still insufficient to meet the chosen 
specification for alias rejection. Increasing the value of k in (6.29) to 0.95 results 
in the second set of ISI values shown in Table 6.5. The resulting equaliser
section response for the 600m setting is shown in Fig. 6.13. It can be seen that 
the addition of the damped discrete integrator is sufficient to reduce the gain of 
the equaliser section in the frequency range from 0.25 fs to 0.5^. However, the 
average attenuation in this frequency range is about 5 dB, 8 dB short of that 
required to achieve the specified level for alias rejection, in conjunction with the 
anti-aliasing stages, which have the response shown in Fig. 6.5.

e e
-o o-

o C 3 O

Fig, 6,12: A f i r s t - o r d e r  r o l l - o f f  f i l t e r ,
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ISI values

lin e  leng th  k = 0.645 k = 0.950

200m 12.5 x 1 0 ' 2 9.42 x 10- 2

400m 11.2 x 1 0 ' 2 6.71 x 10- 2

600m 7.24 x 1 0 ' 2 4.40 x 1 0 ' 2
800m 9.76 x 10- 2 3.09 x 10- 2

6 .5 : ISI values a f te r low-pass f i 1 11

The inter-symbol interference can be reduced for the above technique by 
taking account of the effect of the damped discrete integrator on the pulse 
waveform at the optimisation stage. However, since the line attenuation increases as 
frequency increases, the optimisation in general then tends to increase the gain of 
the equaliser section at high frequencies so as to compensate for the roll-off of the 
damped discrete integrator. This obviously counters the usefulness of the integrator 
as a roll-off filter.

A solution to the above problem is to modify the objective function 
used for time domain optimisation so as to include a frequency domain 
measurement as well as the time domain measurement of the inter-symbol 
interference. Specifically, the optimisation could be modified so as to minimise the 
inter-symbol interference of the system whilst also minimising the equaliser section 
gain for frequencies beyond fg. A similar hybrid criterion is used in [181] for the 
design of digital FIR Nyquist filters.

6.5.2: Frequency Domain Results.

In order to compare the frequency domain technique to that already 
considered for the time domain, it has been applied to the case of an 800m line 
length. The amplitude (both on a linear scale, and in dB) of the transfer function

163



164



of a line of this length, as calculated by the simulation program, is shown in Fig. 
6.14.

The results obtained using this method depend on the weights used in 
calculating the objective function to be minimised, as a linear function of the 
phase error and magnitude error in the equaliser output. It has not been possible to 
reduce both phase and magnitude errors to low values simultaneously. Two sets of 
results are presented, based on different weightings. These are shown in Table 6.6.

Set 1 Set 2

K 1.91 0.34
&o 0.51 0.54
bi 0.52 0.41
b 2 -0.89 0.24
ao -2.01 -6.14
a . 0.76 0.77
ISI 12.7 x 10 ' 2 11.9 x 10‘ 2

^ i a 1 -4 .02 5.08
c i b i 1.00 - 1.00
c 21 2.17 4.00
C3, -3.78 9.56
C, 2 1.50 1.00
^ 2 2 2 .00 4.56
^ 3  2 4.00 9.12
Cias 1.90 1.00
^ibs 2.39 9.65
C - 1 C 3 -1.75 -19.3
C 2 3 1.02 3.25
^ 3 3 1.00 2.78

Table 6 .6  : R esu lts  fo r the frequency domain o p tim isa tio n
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The pole locations in the above table differ substantially from those in 
Table 6.3, due to the necessity of introducing high frequency attenuation using the 
frequency domain technique. As a consequence, the results obtained for ISI are 
inferior, and the capacitance spread is higher than that obtained using the time
domain method, even though every capacitor value has been allowed to vary, so as 
to minimise the spread. Thus a price has been paid for the frequency selectivity of 
the resulting equaliser section.

The equaliser output for a pulse applied at the line input is shown in 
Fig. 6.15(a) and Fig. 6.150?) for the first and second sets of results in Table 6.6
respectively. It can be seen that the responses are only approximately in the form
of a raised- cosine pulse. However, they do result in low values for ISI. For
example, the time domain pulse response corresponding to Fig. 6.15(b) is shown in 
Fig. 6.16. Also the equaliser section response rolls off up to the Nyquist 
frequency, as shown by the amplitude response plot of Fig. 6.17 , for the second 
set of poles and zeros in Table 6.6.

6.5.3: Conclusions

The experience obtained in applying the time domain and frequency 
domain optimisation techniques suggests that a hybrid technique, as earlier 
suggested, may be the easiest to apply. This avoids the chief difficulty of the time 
domain method (the absence of control over the frequency response) and also of 
the frequency domain method (weightings must be assigned to the phase and 
amplitude errors). The use of an equaliser section with an additional z-plane pole 
in the transfer function should make it easier to satisfy the conflicting requirements 
of finite equaliser section bandwidth, low capacitance ratio spread, and low ISI.

6.6: Adaptation of the Equaliser.

6.6.1: Previous Algorithms.

As discussed in Chapter Two, a number of line equaliser techniques 
have been developed, based upon switched- capacitor filtering techniques, which 
feature adaptive operation.
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The majority of these equalisers operate simply by using automatic gain 
control to regulate the level of the equaliser output The gain setting required is 
obviously proportional to the attenuation introduced by the line, which increases as 
the line length increases. Thus the required gain setting indicates approximately the 
length of the line. By incoiporating a change in the equaliser transfer function 
appropriate to that line length with that gain setting, the automatic gain control 
also causes the equaliser response to adapt for minimum inter-symbol interference.

The descriptions of the algorithms used given in the literature have been 
lacking in specifics. In [145] the adaptation is said to be done as follows :

Adaptation is performed by adjusting the settings for gain and 
equalisation so that the average level of output matches a desired reference value. 
The settings are controlled by the "accumulated sgn^)" (which equals unity if the 
output exceeds the reference level, and equals minus one if the output is below 
the required level). This accumulated signal "organizes 9 bits of digital data" (in 
an unspecified manner). Six of the bits control the gain, and three control the 
equalisation. This ’organisation’ is presumably implemented using counters.

The counters can be regarded as introducing inertia or damping into the 
control algorithm, preventing the equaliser from ’hunting’ from one setting to 
another in a spurious fashion. A possible way to achieve this is as follows :

The gain control is split into a fine gain control and a coarse gain 
control. The counter is similarly divided into two 2’s complement counters, which 
shall be referred to as the upper counter and the lower counter. Both counters are 
initially reset to zero. The lower counter is incremented or decremented every time 
a mark is received ( that is, when the magnitude of the equaliser output exceeds 
half the reference level for a mark - iVgQi > £ Vrf .f )- If the equaliser output 
is too high ( i Ve q  I > Vr e f ) the count is incremented, otherwise it is 
decremented. Consequently, if the equaliser is correctly set, there are on average an 
equal number of received pulses above and below the reference level and the count 
will remain close to zero. If, however, the equaliser gain is incorrectly set, then 
the count will either persistently increment or persistently decrement Thus, an 
overflow or underflow of the lower counter is indicative of the equaliser gain
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being too high or too low respectively.

When this occurs, it precipitates the following actions. The lower
counter is reset to zero, the fine gain is increased to its next increment (for an
underflow) or decreased (for an overflow) and the upper counter is incremented
(decremented) for an overflow (underflow). The coarse gain is similarly controlled 
by the upper counter, which will overflow or underflow if the equaliser gain is far 
from the correct level. The use of counters in this way ensures that the gain
control does not respond instantaneously to changes in the received level of pulses, 
but rather responds to trends in the received level. Obviously the counter lengths
must be determined as a compromise between the time taken to converge to the
correct gain, and immunity to transients caused by noise or by changes in the 
equaliser settings.

A second algorithm for automatic gain control is that used in [153] to 
control an equaliser of the type in Fig. 2.5. This can be described by the 
flowchart of Fig. 6.18.

In this algorithm, the ’time constant’ or damping is provided more
simply, by simply requiring that a gain error persist for the duration of half a 
burst before it is acted upon.

The above algorithms are limited by their lack of flexibility. They
assume a frequency response for the line based on a single measurement i.e. the 
height of the output pulse from the line. This limits their application to lines of a 
particular type - for example, the equaliser in [145] is designed for 0.4 mm 
diameter lines with polyethylene insulation.

An algorithm which, at least in principle, is more capable of operating 
with various line types is that described in [155]. The approach here is to separate 
the automatic gain control function and the frequency response adaptation. The 
automatic gain control performs similarly to the techniques described earlier. When 
the gain of the equaliser is correctly set, the equaliser output at a high frequency 
is estimated by applying it to a band pass filter, and measuring the resulting
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output. From this level, the slope of the frequency rolloff of the channel is
estimated, and the equaliser transfer dunction is switched to the most suitable 
response. This is similar to the technique used in [154] where a filter referred to 
as a slope equaliser is used to compensate for the high frequency response of the 
channel.

6.62: Proposed Algorithm.

The details of an algorithm based on the principle described in [155] 
will now be given. The structure of the bandpass filter to be used is shown in
Fig. 6.19. A flowchart of the proposed algorithm is shown in Fig. 6.20. A brief
description of the algorithm will now be given. CGC is the coarse gain setting, 
variable from 0 (minimum gain) to 7 (maximum gain). FGC is the fine gain
adjustment, adjustable from 0 to 15. EQ is the setting of the equaliser section. 
There are n such settings, the number n depending on the range of line lengths to 
which the equaliser is to be capable of adapting, and the maximum value of 
inter-symbol interference tolerated. In the situation where it is desired to integrate 
the equaliser system on one chip, the value of n will also be technology
dependent, since increasing n increases the die area occupied by programmable
capacitor arrays significantly, the amount of increase depending on the size of unit 
capacitor used in the particular technology. The EQ setting can be varied from 0 
(for short lines) to n-1 (for longer lines).

The value of CGC is initially set to its maximum. This ensures that, if 
a signal is present on the line, it will produce a saturated output at the equaliser 
output Veq- If the output is at a low level, no signal is assumed to be present 
(only noise) and so the adaptation algorithm is suspended. This is done by 
comparing the level of V^q to a value, V j r s j j ld ,  chosen to be midway between 
the optimal value of V q u t 0 -e- VREF) ^  the value obtained due to noise, with 
the input earthed. If the level of Vj?q is too low, adaptation does not proceed.
Otherwise, Vjtq is checked to see if it is in a window of acceptable levels, i.e.
to see if

VREFMIN < ' VEQl < VREFMAX
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where V refm iN ’ VrefM AX are chosen to be equal to V reF  * 311
acceptable tolerance. If the output level is too high, it is reduced by lowering the 
coarse gain setting CGC. If it is too low, it is increased by increasing the fine 
gain setting FGC. If Ve q  is within the acceptable limits, then the gain control is 
at the correct setting.

To check for the correct EQ setting, the equaliser output is applied to 
the band pass filter, whose output Vgp is compared to a window of acceptable 
levels i.e. the control algorithm checks if

VBPMIN < IVBP1 < VBPMAX

If the equaliser is correctly set, then the system (pulse + channel + equaliser) 
frequency response should be flat up to half the bit rate , and should roll off 
thereafter (assuming a frequency domain optimisation based on the 100% raised
cosine response). However, if the equaliser is incorrectly set, then the response up 
to £fg will not be flat. Instead it will rise with frequency up to ¿fg
(over-equalisation - the equaliser is adjusted for a line which is longer than that 
actually present) or will fall with frequency up to ¿fg (under-equalisation). Thus 
in the case of under-equalisation (overequalisation) .the band pass filter output will 
be at too low (high) a level, and the next higher (lower) equaliser setting must be
selected. In this way, the equaliser section will adapt to its correct setting.

In the algorithm of Fig. 6.20 no provision has been made for a ’time
constant’. This feature can readily be incorporated using counters to ensure that the
outputs of the equaliser section and the bandpass filter must be outside their 
windows of correct values for a duration corresponding to a number of bit
intervals, before the equaliser control algorithm is affected by them. Fig. 6.21 
shows a possible circuit for the implementation of the algorithm of Fig. 6.20.
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6.7: Filter Sections Fabricated.

The motivation for using switched- capacitor techniques when designing
a filter is that the resulting circuit can be integrated on a MOS process. Thus the
goal in designing the circuits in this chapter has been to produce filter sections 
which are suitable for integration on the CMOS process available at the National 
Micro-electronics Research Centre (N.M.R.C.) in Cork. Thus this work has been 
carried out in conjunction with the N.M.R.C.

The CMOS process used at the N.M.R.C. features a 5 |im feature size,
self-aligned polysilicon gate and a p-type substrate. Prior to the present work, it
had not been used for the fabrication of switched- capacitor circuits. Two new 
processing steps have been introduced to facilitate the integration of switched-
capacitor filters, specifically the addition of a second polysilicon layer, thereby 
allowing ’poly-poly’ capacitors to be fabricated, and an n+ implant, also used for 
fabricating capacitors.

The results of the equaliser design have been made available to the
N.M.R.C., to allow test circuits to be integrated, thus allowing the equaliser system 
to be evaluated. To allow the capabilities of switched- capacitor filters fabricated
using the N.M.R.C.’s CMOS process to be determined, the following mask sets 
have been integrated at the N.M.R.C.:

1) A mask set containing arrays of capacitors and several op-amps. This has
been implemented using a single layer of polysilicon, and has allowed 
measurements to be made of the properties of the various capacitor types, in
particular the variation in capacitance with applied voltage, and the precision of the 
capacitor ratios attainable. For example, it has been found that an accuracy within
0.26 % can be maintained, for a capacitance ratio spread of 16:1, if all the 
capacitor values are integer multiples of a unit capacitor value of 0.8 pF.

2) A mask set featuring a number of low-pass filter circuits. The capacitor
ratios for these filters, which are stray-sensitive switched- capacitor ladder filters of 
the type shown in Fig. 3.1, have been obtained using the synthesis program
developed in Chapter Three. Third, fourth, and fifth order filters have been 
integrated, featuring both maximally-flat and equiripple passband responses. Also, a
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first order filter stage, featuring a programmable capacitor array of the type in 
[136] has been incorporated in the mask set

The sequence in which these mask sets have been prepared reflects the 
historical development of switched- capacitor filters, described briefly in Chapter 
Two. Thus, precision ratioed capacitors and integrable MOS op-amps are a 
pre-requisite for the fabrication of switched- capacitor filters, and these have been 
tested on the first mask set The earliest designs for switched- capacitor filters 
were stray-sensitive, and filters of this type have been integrated on the second 
mask set.

The experience gained at the N.M.R.C. with the above mask sets has
been applied to the integration of a number of the circuits presented in this
chapter. These are:

1) The continuous-time section of Fig. 6.2(a). Where resistor and capacitor
values have been scaled in Section 6.3, this has been done in accordance with 
recommendations from the N.M.R.C. so as to produce values suitable for 
integration. In order to simplify the amount of digital circuitry required, every 
second switch in the tapped resistor chains for the coarse-gain and fine-gain
adjustment has been left out of the circuit to be fabricated, so that the range of 
gain variation possible is reduced. However, the available level of programmability 
is sufficient to test the gain control technique used.

2) The switched-capacitor low-pass filter of Fig. 6.2(b). This has been 
implemented as designed earlier.

3) The equaliser section of Fig. 6.3. This has been designed to implement the
transfer functions listed in Table 6.7, which represent a provisional set of results
obtained using the time-domain optimisation technique of Section 6.6 at the time 
when element values for the circuits in the third mask set were being finalised. 
Because the zeros occur at different regions of the z-plane for the 200m and 600m 
settings, as compared with the 400m and 800m settings, two different circuit
topologies are required, using the circuit transformations described in Chapter Five.
The programmability must thus extend to the control of the polarity of the inputs
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from the first and second stages of the equaliser section to capacitors C ,b 3 and 
C 1C3 respectively. This is achieved using MOS switches with appropriate control 
logic. The capacitance ratio spread for the equaliser section, when designed to 
implement the set of transfer functions in Table 6,7 is 15.3:1.

lin e  length K bo b, ao a ,

200m 2.45 0.231 -0.210 -0.790 0.303 -1 .72
400m 0.883 0.231 -0.241 -0 .200 0.499 7.10
600m 0.718 0.646 -0.818 -0.075 0.809 -8.85
800m 1.52 0.601 -0.182 -0.360 3.21 0.829

Table 6 .7 : T ran sfer Functions for F ab rica ted  
Equali ser Sect ion

4) The bandpass filter of Fig. 6.19. This has been designed to the same 
specification as that for the corresponding filter in [155], i.e. it has a centre 
frequency of 240 kHz and a Q of 2.45, and features a unity passband gain. It can 
readily shown that, for a sampling rate of 1.536 MHz, the filter should have the 
transfer function

1 - z " 2
H(z) = ---------------------------------------------  (6.30)

7.01 - 6.68  z *1 + 5.01 z ' 2

The resulting filter has a capacitance ratio spread of 10.02:1. The circuit in 
Fig. 6.19 is identical to the bandpass filter investigated in [59], which has a 
transfer function numerator of the form 1- z b u t  with the use of a
differencing-input for Vin> which introduces a factor 1+z"1 in the numerator of the 
transfer function, when the equaliser section output in Fig. 6.3 is applied to the 
bandpass filter input This follows from the property of differencing-input
integrators described by equation (A.46) in Appendix A.

The four test circuits described above allow the potential of the
circuitry proposed in this chapter for a switched- capacitor line equaliser to be 
evaluated. At the time of writing, no results are available for the performance of
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these filters, because of the time interval between completion of a mask set and 
fabrication of the circuit on the N.M.R.C. CMOS process.
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Chapter Seven; CONCLUSIONS

A number of issues relevant to the operation of switched- capacitor 
filters at high frequencies have been considered, covering both the theory of 
operation of such filters, and practical considerations of the limitations of integrated 
designs.

Software has been developed for the exact synthesis of low-pass
switched- capacitor ladder filters. Excellent results have been obtained for low-order 
filters, where there is negligible error between the amplitude response of the 
synthesised filter in the passband, and the low-pass approximation it is intended to 
implement, assuming that the capacitor ratios obtained using the synthesis program 
can be realised precisely. Thus, the program represents a powerful design tool, 
since filters with equiripple or maximally flat passband responses can be designed 
in seconds. However, unlike the case for LC lowpass ladder filters, where the 
maturity of the relevant circuit theory is such that explicit formulae are available
for the ladder elements [162], the capacitor ratios for switched- capacitor ladder
filters must be obtained using formal synthesis procedures, involving the successive 
extraction of elements from the input impedance of the ladder circuit. Inevitably, 
numerical errors accumulate to the point where, for a filter of sufficiently high
order, the element values obtained by synthesis are not such as to realise the 
intended transfer function.

It has been shown that the method of synthesis proposed in [87] has
been less sensitive to numerical problems of this kind than its predecessors. 
Whereas other synthesis techniques fail for filter orders higher than eight, filters of
order as high as fifteen can be realised using this technique. It has been found
however that, for example, the order of filter which can be synthesised for an
equiripple passband response is dependent on the values specified for the cutoff 
frequency and the passband ripple. Obviously, these limits on the achievable filter 
order are not absolute, since it is the precision of the arithmetic used in 
performing the synthesis which determines the amount of error introduced. 
However, it is felt that they would be typical of the results obtainable using 
double-precision arithmetic in, for example, most implementations of FORTRAN.
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Given the dramatic improvement in the results obtained using the
technique of [87], instead of earlier techniques, it is possible that new methods 
may be discovered which avoid the numerical difficulties which remain in the 
method of [87], and which thereby allow the order of filter which may be
synthesised to be increased. Further investigation into alternative synthesis
techniques is thus justified. Another area of interest is the application of the 
technique of [87] to other filter types, such as bandpass, highpass and linear phase 
filters [91,96,98], to see if its numerical advantages extend to these filter types.

Software for the evaluation of the sensitivities of the squared-amplitude 
response of a switched- capacitor ladder filter to variations in its element values 
has been presented. This allows the hypothesis that switched- capacitor ladder 
filters feature low passband sensitivity to be verified. The results presented have 
demonstrated that these filters, when designed for an equiripple passband response,
possess low passband sensitivity, but that this sensitivity is non-zero at the peaks 
in the passband response. This contrasts with the properties of conventional 
doubly-terminated LC ladders, which can be designed to feature zero sensitivity at 
the maxima of the passband response. This zero sensitivity occurs because 
maximum power transfer can be achieved at these points. However, the equivalent
circuit of the switched- capacitor ladder filter features terminations whose resistance
varies with frequency, and so the peaks in the passband response no longer 
co-incide with points of maximum power transfer. Thus the sensitivity properties of 
the LC ladder filter have not been reproduced in the switched- capacitor ladder 
filter.

To verify this result, switched- capacitor ladder filters which feature a
transducer power gain which is equiripple in the passband have been synthesised,
and have been shown to feature lower sensitivity in the passband than do the 
corresponding filters which have an equiripple amplitude response in the passband. 
The results obtained show that the increase in sensitivity of the latter filters is not 
substantial, and so the use of a filter structure which models that of a doubly 
terminated LC ladder is justified. However, the sensitivity properties of switched- 
capacitor bandpass and highpass filters require investigation, to determine the effect 
of the frequency variable terminations on their sensitivity properties. The extension 
of the sensitivity analysis technique described in Chapter Four to cover switched- 
capacitor ladder filters of such types would be a simple but useful step.
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The low sensitivity properties of switched- capacitor ladder filters 
justified their use even when an exact design technique was not available. Such
filters were then limited to operation at low frequencies, since the approximate 
design technique used required that the sampling rate greatly exceed the limit 
imposed by the sampling theorem. Removal of this design constraint has thus
allowed switched- capacitor ladder filters to be designed for use at high frequencies
[142], However, special circuitry is required for switched- capacitor filters designed 
to operate over an extended frequency range.

Circuit topologies have been described which result in reduced settling
time requirements for the op-amps in a filter. The benefits of a fully differential 
filter structure have been outlined. The fully differential filter design of Fig. 5.7
has been proposed for use over an extended frequency range. This requires three 
op-amps to provide a transfer function with a second-order z-plane numerator, 
comparable with that of a standard two op-amp biquad, although it features an
additional pole. An algorithm for obtaining the capacitor ratios for the proposed 
filter has been presented. It has been shown that, by means of simple
transformations of the circuit, a family of filters similar in structure to that of Fig. 
5.7 can be obtained, so that any z-domain transfer function with three poles and 
two zeros can be implemented. This follows from the versatility of a fully
differential filter structure, in which both polarities of filter output are available.
Therefore, this family of filters can be used, for example, instead of the family of 
biquads presented in [23], where high frequency operation is required. A 
comparative study of the operation of this filter, and of other filter types, 
numerically evaluating, for example, the effects of finite op-amp bandwidth on the 
filter response, would be of considerable interest.

Circuitry has been proposed for the implementation of a line equaliser 
for baseband digital communications. The kernel of the design is a programmable 
equaliser section based on the circuit of Fig. 5.7, but using programmable capacitor 
arrays. The pre-filter employed features a third-order continuous-time anti-aliasing 
filter and a 4:1 sampling rate reduction incorporated in a second order switched- 
capacitor lowpass ladder filter, with two stages of stray-insensitive cosine filtering. 
This is implemented economically by exploiting the versatility of a fully differential 
filter structure.

Techniques for optimising the equaliser section transfer function so as to
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minimise the intersymbol interference when the equaliser input is the pulse response 
of a telephone line have been investigated for various line lengths.

A time domain method which seeks to directly minimise the value of 
intersymbol interference by optimising the locations of the poles and zeros of the 
equaliser section has been presented. The results obtained show that this technique 
results in excellent values for intersymbol interference. A disadvantage of this 
method is that it offers no control over the frequency response in the system, and, 
in particular, does not limit the system bandwidth. Pole and zero locations which 
result in low capacitance ratio spread in the equaliser section, whilst keeping the 
value of intersymbol interference low, do not result in a finite system bandwidth. 
Thus, in practice, a very tight specification on the pre-filter, or an additional 
roll-off filter, which limits bandwidth without substantially increasing intersymbol 
interference, would be required.

A frequency domain technique has also been investigated. This seeks to 
optimise the equaliser section response so that the pulse response of the complete 
system approximates to a cosine roll-off function, which is known to result in zero 
intersymbol interference [180]. The results obtained indicate that the complexity of 
the equaliser section is not sufficient to allow a cosine roll-off response to be 
approximated accurately. The technique results in values for intersymbol interference 
which are inferior to those for the time domain method, although high frequency 
attenuation is introduced, at the expense of an increase in capacitor ratio spread.

The results obtained suggest that a hybrid optimisation technique may 
prove to be superior to both the above methods, wherein the equaliser section 
transfer function is optimised so as to minimise the intersymbol interference for the 
equaliser system, whilst also minimising the high frequency response of the 
equaliser section.

A technique has been proposed for introducing adaptive operation of the 
line equaliser. This technique uses a bandpass filter to determine the high 
frequency attenuation introduced by the line. For this method to be successful, it is 
critical that the equaliser frequency response should be similar for each of its 
possible settings, when connected to a line of the length for which the equaliser 
section transfer function at that setting has been optimised, so that there will be a
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correlation between the bandpass filter output and the equaliser misalignment. This 
requires the use of a frequency domain optimisation algorithm, modified so that the 
output of the bandpass filter is always above a chosen reference level for 
over-equalisation, and below it for under-equalisation. Such an optimisation is 
expected to be very costly in computer time.

Details of a number of the circuits which have been designed have 
been given to the National Micro-electronics Research Centre (N.M.R.C.) in Cork. 
These circuits are being fabricated on the 5 (am CMOS process available there. 
Thus the practical features and limitations of the circuits designed can be assessed. 
At the time of writing, no information is available about the properties of the 
integrated filters. A comparison of the actual operation of these filters, the results 
expected of an ideal filter, and the results from a simulation of the circuits which 
assigns realistic values to such non-ideal factors as the finite op-amp bandwidth, 
and switch on-resistances, would be of considerable benefit when designing further 
switched- capacitor filters for the same target process.
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APPENDIX A: ANALYSIS OF FULLY DIFFERENTIAL INTEGRATORS

A.l: Introduction.

The fully differential counterparts of the lossless discrete integrator 
(l.d.i.) and damped discrete integrator (d.d.i.) circuits of [9] will here be analysed. 
Note that the abbreviated notation

f(n)= f(nT)

is used to represent a function of time f(t) evaluated at t = nT.

A2: The Non-inverting L.D.L

Fig. A-la shows the structure of a conventional (single-ended ) 
non-inverting l.d.i. Fig. A-lb shows the corresponding circuit for a fully-differential 
(double-ended) integrator.

S

Let the two phases of the clock wavefoim be <p1 (the odd phase, 
nominal time of occurrence being from time t = (n-l)T to t = (n-^)T. where n is
an integer and T is the clock period ) which is the phase illustrated, and (p2 (the
even phase .occurring from time t = (n-J)T to t = nT). It is assumed that the
switches are ideal and that the op-amp can be modelled by the circuit in Fig.
A-2.

Consider the odd phase. The circuit on this phase is as shown in Fig. 
A-3. Let Q1,Q2,Q3,Q4 be the charges on C ^ .C ^ .C ^ .C ^  respectively, where the 
’+’ signs at the capacitors in Fig. A-3 indicate which plate is regarded as having 
a positive charge.

The input voltages V, and V2 are sampled by Cia and C,^. Thus :

Qt ( n - 1) = C ^ i n - i )  (A.l)
Q2(n-*) = C,V2(n -l)

1
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Fig. A-l(b): Double-ended non-inverting l.d.i.
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At the start of (p,, the charges on capacitors C2a and Czb are determined by 
the voltage differences across them at the end of cp2.

Q3( n - 1) = C2 ( V0 (n-1) - Va (n-1) ) (A.2)
Q«(n-1) = C2 (-V0 ( n - 1) - Vb (n-1) )

The question now arises as to whether the output voltage V0 can change 
during (p,, i.e. in the time interval (n-l)T < t < (n-J)T. First note that, on the 
odd phase, one plate of both C2a and C2b is open-circuited. Thus the charges on
these capacitors cannot change during <p, .

Qa( n - i)  = Q3(n-1) (A.3)
Q«(n-*) = Q4(n -1)

The output voltage is given by

V0 ( t )  = k V( t ) ,V = Vb - Va (A.4)

Because Q 3,Q4 remain constant during <p,, it follows that the associated
voltages remain constant.

k V (t) - Va ( t )  = VC1, (A.5)
(n -l)T  < t < (n -i)T

-k V( t ) - Vb( t )  = VC2,
VC1 ,VC2 constan t values

Thus

2k V (t) + Vb( t ) - Va ( t )  = VC1 - VC2 (A.6)

or

(2k + 1) V (t) = VCl - VC2 , (A.7)
(n -l)T  < t < (n - i)T

Hence, since k * (k > 0) it follows that V(t) and consequently V0(t) is 
constant during <p, .

V0 ( n - i )  = V0 (n-1) (A.8)
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Now consider the even phase shown in Fig. A-4a which is redrawn in 
Fig. A-4b for clarity. The output of this circuit, given initial charges on the 
capacitors, can readily be determined using charge conservation, and will be in the 
form of a step change from the previous value of output to the new value. 
However, the case will instead be considered where the voltage sources include 
source resistance, and the resulting circuit will be analysed in the limit as the 
resistance becomes negligible. To this end, the circuit of Fig. A-5 will be 
considered.

The expression for V(t) must be found for this circuit, given that, at 
time t = O', C^C;, are precharged to Q^O") = -C^V^O") , Q 2(0") = C 2V 2(0") , 
and that the voltage source is instantaneously connected into the circuit at time t = 
0 .

Gearly, the current flowing in the circuit is

i = [ V - (V,+V2) ] / R (A.9)
= C2« / d t (V2)
= C1d/dtO',>

Now eliminate V 2 using

d/d t(V 2) = ( C ,/C 2 ) d/dtCV,) (A. 10)

Hence
I V  -  £- J V  <A11>J n ^ 2 0

V 2(t) - V,(t) = (C,/C2)( V,(t) - V,(0) ) (A-12)

or

V 2(t) = (C,/C2)( V,(t) - V,(0) ) + V 2(0) (A. 13)
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Thus

V ,( t)  + V2( t )  = [ (C, + Ca)V ,( t)  - C ,V ,(0) + C2(0) ] /C 2

Hence (A .12) becomes

R C ^/dtC V ,) = V (t) - V2(0) (A. 15)
- [ (C, + C2)V ,( t)  - 0 ^ , ( 0 )  ] /C 2

In the limit as R -> 0, the left hand side of (A. 15) becomes zero, and we 
obtain :

Case 1) for t = 0+ :

The right hand side of (A.15) is finite unless V(0) = V1 (O’) + V2(0") 
so if R -» 0 then d/dt(V,) i.e. for R = 0 there is a step change in V, +
V 2 at time t = 0. Clearly in the situation where V(0) = V,(0~) + V 2(0') no 
current flows and hence V, ,V2 are unchanged.

Case 2) for t > 0 :

After the transient at t = 0, the circuit will tend to a steady state and 
thus the right hand side of (A.15) will become zero. So

(C, + C2) /C 2 V ,( t ) = V (t) - V2(0) + C ,/C 2 V ,(0) (A. 16)

or e q u iv a le n tly

V, ( t )  = [ C2V (t) - 0 ,(0 )  - Q2(0) ] / [  C, + C2 ] (A. 17)

It is interesting to note that, for t sufficiently large, this equation is always
valid, regardless of the value of R.

Relating the above result to the circuit of Fig. A-4, it follows that

Va ( t ) = [ C2kV( t ) - Q ,(n -J) - Q3(n -* )]/[C , + C2] ,  (A. 18)
Vb ( t )  = t-C 2kV (t) - Q2(n - i)  - Q4(n - J ) ] / [C , + C2] ,

(n -i)T  < t < nT

(A. 14)
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where the initial values of Q1fQ2,Q3,Q4 are the charges present at the end 
of (pv Therefore

V (t) = V5 ( t )  - Va ( t )  (A. 19)

-2C2kV (t) + Q ,(n -J) - Q2(n - i )  + Q3(n-*) - Q4(n -J )

C, + 2̂

and so

Q ,(n -J)  - Q2(n -J)  + Q3(n -J )  - Q4(n -J)
V( t ) = -------------------------------------------------------------- (A.20)

C, + C j + 2kC2

V0 = k V so (A.20) to is re-arranged to obtain

Q ,(n -J)  - Q2(n - i)  + Qa(n -J)  - Q„(n-J)
V0 ( t )  = ------------------------------------------------------------  (A.21)

(C, + C2)/k  + 2C2

In the limit as k -> °° this becomes

Q,(n-i) - Q 2(n-i) + Q 3(n-i) - Q4(n-J)
V0 ( t )  = -------------------------------------------------------------  (A.22)

2C2

Substituting from (A.l), (A.2) and (A.3) for the values of charge at the start 
of (p2 yields the following expression for V0 at the end of <p2 :

V0 (n) = ( C ,/2C 2) ( V ,(n -J) - V2(n -J)  )
+ 1/2 ( V0 (n-1) - Va ( n - 1) ) (A.23)
- 1/2 (-V0 (n-1) - Vb (n-1) )

or

V0 (n) = ( C,/2C2) ( V,(n-i) - V 2(n-J) )
+ 1/2 (2V0 (n-l) + V(n-l) ) (A.24)

7



As k -> «=, V(n-1) -> 0 ( from (A.20) ), and so, substituting V, = vin and 
V 2 = -Vin, the following result is obtained :

V0 (n) = (C ,/C 2) Vin (n -¿ ) + V0 (n-1) (A.25)

This is the same difference equation as for the single-ended case, under 
the assumption that all circuit elements are ideal.

A.3: The Non-inverting D.DX

The fully differential non-inverting d.d.i. is shown in Fig. A-6. The 
derivation of the difference equation for this integrator is similar in form to that 
for the l.d.i. The difference is that, in Fig. A-4, C2 must be replaced by C2 + 
C 3, since, on the even phase of the d.d.i. C3a (C3b ) is in parallel with C2a
( C 2b )•

Fig, A-6: Double-ended non - in ve r t ing  d.d.i.
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The damping capacitors C3 do not contribute any additional charge on 
<p2, since they are discharged on <p,. Thus, for the d.d.i. case, (A.22) becomes :

Q , ( n - * )  - Q2( n - * )  + Q3( n - * )  - Q4 ( n ' i )
V0 ( t )  = (A.26)

2 (C 2 + C 3)

However, the charges Q1,Q2,Q3,Q4 at the end of the odd phase are the same 
as in the l.d.i. case. Thus

As in the case of the l.d.i., V(n-l) 0, and so, with V, = -V2 = Vjn, the 
expression for V0 becomes :

This difference equation is again identical to that for the single-ended case.

A.4: The Inverting LJD.L

Fig. A-7 shows a fully differential inverting l.d.i. During the odd
phase, the circuit is identical to Fig. A-3, with the exception that both terminals of 
C ia and C lb are connected to earth, so

V0 (n) = ( C ,/2(C2 + C3) ) ( V,(n-J) - V 2(n-*)) 
+ ( C 2/2(C2 + C3) ) (2V0 fn-l) + V(n-l) )

(A.27)

V0(n) = C,/(C2 + C3) Vin(n-i)
+ C2/(C2 + C3) V0(n-1) (A.28)

V o ( n - i )  = V0(n-1) 
Q,(n-i) = Q2(n-J) = 0

(A.29)
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Fig, A—7: D ouble-ended inverting  l.d.i
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During the even phase, the circuit is as shown in Fig. A-8. By a simple 
extension to the equations for Fig. A-4 to account for the presence of V, and V2> 
(A-18) becomes

C2( kV (t) -V ,( t)  )-  Q3(n - i )  
Va ( t )  = v , ( t )  + --------------------------------------------

C, + C2, (A. 30)

C2(-k V (t) -V2( t ) )- Q4(n -J )
Vb ( t )  = V2( t )  +

C, + C2,
(n-¿)T  < t < nT

+

Thus

V (t) = V5 ( t )  - Va ( t )  (A.31)

= V2( t )  - V ,( t)

- 2C2kV(t) - C2V2( t )  + C2V ,( t)  ) + Q3( n - i)  - Q „(n -i)

C 1 +  C 2

and so

C,V2( t )  - C .V ,(t)  + Qa(n - i)  - Q4(n - i)
V (t) = -------------------------------------------------------------  (A. 32)

C, + C 2 + 2kC2

Hence (A.32) to is re-arranged to obtain

C,V2( t )  - C ,V ,( t)  + Q3(n - i)  - Q4(n - i)
V0 ( t )  = ------------------------------------------------------------ (A-33)

(C, + C2) /k  + 2C2

Substituting from (A.2) and (A.3) for the values of charge at the start of (p2
and in the limit as k -> «*» yields the following expression for V0 at the end of

11



V0 (n) = ( C,/2C2) ( V 2(n) - V^n) )
+ 1/2 ( V0 (n-1) - Va(n-1) )
- 1/2 (-V0(n-1) - Vb(n-1) )

(A, 34)

V0 (n) = ( C ,/2C 2) ( V2(n) - V ,(n) )
+ 1/2 (2V0 ('n -1) + V (n-l) ) (A.35)

As k V(n-1) -> 0 ( from (A.32) ), and so, substituting V, = vin and
V 2 = -V^, the following result is obtained :

V0 (n) = - (C ,/C 2) Vin (n) + V0 (n-1) (A.36)

This is the same difference equation as for the single-ended inverted
integrator, under the assumption that all circuit elements are ideal.

A .5: The Inverting D.D.I.

The above derivation of the difference equation describing the inverting 
l.d.i. can readily be extended to the case of the inverting d.d.i. shown in Fig. A-9.
The details of the derivation will not be given here, as it is largely a repetition of
the equations above. As with the non-inverting d.d.i., C2 is replaced by C2 + C3
in the appropriate equations, e.g. (A.32), (A.33). Thus (A.33) becomes

C,V2( t )  - C ,V ,( t) + Q3(n - i )  - Q4(n-£)
V0 ( t )  = ------------------------------------------------------------  (A.37)

(C, + C2 + C3) /k  + 2(C2 + C3)

Substituting from (A.2) and (A.3) for the values of charge at the start of <p2
and in the limit as k -> yields the following expression for V0 at the end of
<p2:

V0 (n) = + C3) ( V2(n) - V ^n ) )
+ C2/2 (C 2 + C3) ( V0 (n -1) - Va ( n - 1) ) (A.38)
- C2/2 (C 2 + C3) (-V0 (n-1) - Vb (n-1) )
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or

V0 (n) = C ,/2 (C 2 + C3) ( V2(n) - V ,(n). )
+ (V 2 (C 2 + C3) (2V0 ( n - l )  + V (n -l) ) (A.39)

As k -> «>, V(n-1) -» 0 , and so, substituting ^1 -  ̂ in  and V2 = -Vin, the
expected result, identical to that for the single-ended case, is obtained :

V0 (n) = - ( V ( C 2 + C3) Vin (n)
+ C2/(C 2 + C3) V0 (n-1) (A.40)

Fig, A-9> Double-ended in ve r t in g  d,d,i,
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A.6: The Diffcrencing-input Integrator.

Because both polarities of the filter output are available in double-ended 
switched-capacitor filters, additional circuit topologies are possible which would 
require additional inverting circuits with single-ended designs. One example is the 
integrator shown in Fig. A-10, which is known as a differencing-input integrator.

This consists of a d.d.i. which provides non-inverting integration for V ,, and
inverting integration for V2. It can readily be shown (e.g. by a straight-forward
application of superposition using equations (A.28) and (A.40) ) that the circuit
output is

C2V0 ( n - 1) - C1V2(n) + C ,V ,(n -i)
V0 (n) = ------------------------------------------------------ (A.41)

C2 + C3

If we choose V, = -V2 = Vin then

C2V0(n-1) + C, ( V, (n) + V^n-J) )
V0 (n) = -----------------------------------------------------  (A.42)

C2 + C 3

The same operation can be obtained with a reduced number of capacitors 
using the circuit of Fig. A-11.

The exact form of the transfer function implemented by a switched- 
capacitor integrator which nominally implements the l.d.i. or d.d.i. depends on when 
the input samples are held, and is particularly important for differencing- input 
integrators :

Case 1) Vjn is held during the even phase, i.e.

VinW = VjnOH) (A.43)
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Then

C2V0 ( n - l )  + 2C1Vin (n - i )
V0 (n) = ----------------------------------------- (A.44)

C  2 +  C 3

This is the difference equation of a standard non-inverting d.d.i. with the
exception that C, in this case need only be half the value for a standard d.d.i.

Case 2) Vjn is held during the odd phase, i.e.

V in (n -i)  = Vin (n-1) (A.45)

Then

C2V0 ( n - 1) + C, ( Vin (n) + Vin (n-1) )
V0 (n) = ----------------------------------------------------------- (A.46)

C2 + C3

This equation corresponds to a damped integrator of the bilinear type ,
i.e. based on the use of the variable

1 - z'1
\ = -------

1 - z " 1

to obtain a discrete-time approximation of integration.

Therefore, this approach allows the exact implementation of a filter 
which simulates a passive prototype, using the bilinear transformation. However, 
such an approach, which leads to delay-free loops in digital filters [10,168], will, 
in switched-capacitor filters, lead to a structure where, on one of the clock phases, 
there will be a path for charge connecting all filter stages. Since this will mean 
that the filter will have a long settling time on this phase, such a structure is not 
suitable for high frequency operation.
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Case 3) V jn  changes from phase to phase

This can occur if Vin is the output of a sampled-data filter operating at 
twice the sampling rate of the differencing-input integrator, or if it is a 
continuous-time waveform. In this case, we can write

C2V0 ( n - l)  + 2C1v j n (n)
V0 (n) = -------------------------------------  (A.47)

C + C2 T  3

where

V in(n) = i ( Vin (n) + Vin ( n - i )  ) (A.48)

(A.47) is the equation of a non-inverting d.d.i. with the exception that 
the usual delay of T/2 through the integrator is not present. (A.48) is the equation 
of a cosine filter [175] which is used to filter out potentially aliased frequency 
components before decimation. Therefore, in this case, the differencing-input 
integrator is suitable for use as a filter input stage.
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APPENDIX B: ANALYSIS OF PROPOSED FILTER STRUCTURE

A transfer function is derived for the single-ended filter proposed in 
Chapter 5, the circuit of which is shown in Fig. B-l.

The convention will be adopted of referring to a voltage v(t) as v(n) at 
the end of cp2 and as v(n-£) at the end of <pr

The first stage is a standard d.d.i. with its output changing on <p,.
Thus

C21V ,(n - i)  + C ,a iVin (n) - Clb lV2(n+J)
V ,(n+ i) = ------------------------------------------------------------  (B-l)

^ 2  1 +  ^ 3  1

The second stage  is  s im ila r , w ith  an output changing 
on (p 2

C22V2( n - l)  + C ^ V ^ n - i )
V2(n) = ---------------------------------------  (B.2)

2 + ^3 2

The th ird  stage  output changes on cpT.

C23V3(n-*) + Cia 3Vin (n) + Clb 3V1(n) + ClC3V2(n)
V3(n+ i)=

c + c2 3 T  - 3 3

Since V2(n+ i) = V2(n) (B .l)  becomes

(B.3)

C2lV1( n - i )  + Cia i Vin (n) - Clb lV2(n)
V ,(n+ i) = -------------------------------------------------------  (B.4)

c + c2 1 3 1



The z -tran sfo rm s o f (B .2 )-(B .4 ) are

kaiVin(z) ‘ kbiv 2(z)
z'/J V,(z) = ---------------------

1 - kdl z - ’

ka2 z - i / a  V ,(z)
V2(z ) = ---------------------------

1 - kd2 z -i

kaav in ( z ) + kbaz " 1/ 2y iCz ) + kC3V2(z)
Z1/ 2 V 3 (Z ) = ------------------------------------------------------------

1 - kd3 z -1

where

kat "  ^ ia i^ ( c 21 + c . i
2 = ^12 ! ( *-2 2 + *-3 2

^as = ^ ia s / ( C23 + C 3 3

kbi = C,b i / ( C21 + C31
kb 3 = ^ ibs^ ( 3 + *-33

kC3 = ^ 1 C 3 ̂  ( *“"2 3 + ^33

k d  i = *-2i / ( C„ + c31
k d  2 =  ^ 2 2 / ( C22 + ^• 32

k d 3  " * - 2  3 / ( ^ 2 3 + * - 3  3

Expressions for V, (z) and V 2(z) can now be derived. From

ka2z'1 ( ka,Vin(z) - kblV 2(z) )
V2(z ) = ------------------------------------------------------

( 1 - kd2 z ' 1 ) ( 1 - kdl z - f  )

(B.6)

(B.7)

(B.8)

(B.5),(B.6)

(B.5)

(B.9)
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Z' 1 kai ka 2 v in (z )
V 2(z ) = --------------------------------

N(z)

whe re

N(z) = ( 1 - kd2 z - i  ) (  1 - kdl z - i  ) + kb l z - i

I t  follow s th a t

k ai N(z) Vin (z) - kb lka ik a2 z ' i  Vin (z)
z i/2V 1(z)=  --------------------------------------------------------------

( 1 - kdl z - i  ) N(z)

kai ( 1 - kd 2 z " 1 ) v in ( z )

N(z)

V3 is  th e re fo re , from (B .13), (B.10) and (B .7 ), given
by:

kasN(z) + z _1kb 3ka ika2 + ka ikC3 ( 1 - kdzz 1)
z 1/ 2V3(z) = ----------------------------------------------------------------------

( 1 - kd3 z-1 ) N(z)

X Vin (z)

Re-arranging (B.14), and observing that the filter output V0(z) 
to V 3(z), the following transfer function for the filter is obtained :

V0 (z) z-o -5  ( a 0+ a ,z * 1 + a 2z ‘ 2)

Vin (z) (1 - b 0z ' 1) (b , + b 2z - i  + b 3z ' 2)

(B.10)

(B. 11)

(B.12)

(B.13)

(B.14)

is equal

(B.15)
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where

a o — k a 3 ,
a, = - kag(kd,+kd2) + k a g k a ^ b ,

+ kbgka, + k C g k a^a j ;
a 2 = k a g k d ^ d j - k b g k a ^ d j ;
b 0 = kdg ; (B.16)
b, = 1.0  ;
b 2 = k b tk a 2 - kd, - kd2 ; 
b 3 = kd^dj ;

and where the k c o - e f f ic ie n ts  are given by (B .8 ) .
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