
A Quality Software Process for
Rapid Application Development

By
Gerard Coleman

School of Computer Applications,
Dublin City University,

Glasnevin,
Dublin 9.

M. Sc., September 1997

A Quality Software Process for
Rapid Application Development

A Dissertation Presented in Fulfilment
of the Requirement for the M.Sc. Degree

September 1997
Gerard Coleman

School of Computer Applications
Dublin City University

Supervisor: Mr. Renaat Verbruggen

I hereby certify that this material, which I now submit for assessment on
the programme of study leading to the award o f M.Sc. is entirely my own
work and has not been taken from the work of others save and to the
extent that such work has been cited and acknowledged within the text of
my work.

Declaration

Date:

I would like to thank Renaat for his assistance, insight and guidance
during the research.
I would also like to thank my wife, Fiona, for her encouragement and
understanding throughout the compilation of this work.
Finally, I would like to thank Patrick O’Beime, Shay Curtin and Gerard
McCloskey who gave so generously of their time to review this work.

Acknowledgements

iv

Abstract
Having a defined and documented standardised software process, together with the
appropriate techniques and tools to measure its effectiveness, offers the potential to
software producers to improve the quality of their output. Many firms have yet to
define their own software process. Yet without a defined process it is impossible to
measure success or focus on how development capability can be enhanced. To date, a
number of software process improvement frameworks have been developed and
implemented. However, most o f these models have been targeted at large-scale
producers. Furthermore, they have applied to companies operating using traditional
development techniques. Smaller companies and those operating in development areas
where speed of delivery is paramount have not, as yet, had process improvement
paradigms available for adoption. This study examined the software process in a small
company and emerged with the recommendation o f the use of the Dynamic Systems
Development Method (DSDM) and the Personal Software Process (PSP) for
achieving software process improvement.
DSDM has been designed as a framework for Rapid Application Development (RAD)
and provides a documented approach for organisations to follow when undertaking
RAD projects. Through the mechanisms outlined by DSDM developers become
empowered and time-to-market for software can be substantially reduced.
The PSP allows individual software engineers to assess, measure and improve their
performance. By improving the skills of individual developers, quality can be
engineered into RAD projects at all life-cycle stages.
Combining PSP and DSDM, therefore, enables the production of high-quality
software and at the same time allows reductions in development time to be achieved.

Table of Contents

Chapter 1 - The Software Process.. 1
1.0 Introduction.. 1
1.1 What is the Software Process?... 2
1.2 Background.. 3
1.3 The Software Process - Maturity and Assessment.................................. 6

1.3.1 Process M aturity.. 6
1.3.2 A Maturity Framework and the Capability Maturity M odel... 7
1.3.3 ‘Bootstrap’ ... 9
1.3.4 SPIC E ... 10

1.4 Dynamic Systems Development Method (DSDM)................................... 10
1.5 Personal Software Process (PSP)... 11
1.6 Sum m ary.. 11

Chapter 2 - Rapid Application Development (RAD) and the Dynamic
Systems Development Method (DSDM)....................................... 12

2.0 Introduction... 12
2.1 Rapid Applications Development (RA D).. 12
2.2 RAD - A Worthwhile Investment?..12
2.3 Dynamic Systems Development Method - A RAD Standard..................19
2.4 DSDM - What the Method Contains.. 20
2.5 Principles o f D S D M ..20

2.5.1 Applications Suited to the DSDM Approach.......................... 21
2.5.2 Applications Unsuited to the DSDM A pproach...................... 21
2.5.3 DSDM Implementation - Critical Success Factors................... 21

2.6 The DSDM Life-Cycle... 22
2.6.1 Prototyping within D SDM ... 24

2.7 Quality Issues in D SD M .. 25
2.7.1 Quality C ontrol... 25
2.7.2 DSDM and the C M M .. 25

2.8 Introducing DSDM into an Organisation... 25
2.9 DSDM - A Way Forward for R A D ?............................ 26

2.9.1 Other Factors which May Influence Development................ 29
2.10 D SD M -The B enefits.. 32
2.11 Summary.. 34

Chapter 3 - Process Improvement using the Personal Software
Process (PSP).. 35

3.0 Introduction.. 35
3.1 Personal Software Process (P SP).. 35
3.2 PSP Improvement P hases.. 36
3.3 The Baseline Personal P rocess... 36

3.3.1 PSP0.1 .. 37
3 .4P S P 1 .. 38

3.4.1 Proxy-based Estim ating... 38
3.4.2 Resource and Schedule Estimating.. 39
3.4.3 Measurements in the P S P ... 39

3.5 PS P 2... 39
3.5.1 Design and Code R eview s............................... 39
3.5.2 Software Quality M anagement.. 40

3.5.2.1 Product Q uality.. 40
3.5.2.2 Process Q uality.. 40

3 .6P S P 3 .. 41
3.6.1 Scaling Up the Personal Software Process.............................. 41
3.6.2 The PSP3 A pproach.. 41

3.7 Using the Personal Software Process... 42
3.8 Personal Software Process - An Analysis... 43
3.9 Summary.. 49

Chapter 4 - Assessment of the Software Process within a
Small C om pany.. 52

4.0 Introduction... 52
4.1 Software Process Questionnaire ... 52
4.2 Questionnaire Findings.. 53

4.2.1 Project Review and Sign-Off.. 55
4.2.2 Configuration M anagem ent.. 56

vii

4.2.3 Software Estimation.. 56
4.2.4 M etrics.. 56
4.2.5 Education/Training.. 57
4.2.6 Project Management.. 57
4.2.7 Software Quality Assurance.. 58
4.2.8 Requirements Specification.. 58
4.2.9 System D esign.. 59
4.2.10 Implementation... 59
4.2.11 Testing.. 60
4.2.12 Operations/Maintenance.. 60

4.3 Analysis of Findings.. 60
4.4 Sum m ary.. 62

Chapter 5 - Evaluation of the Development Environment within a
Small Software Company .. 63

5.0 Introduction..63
5.1 Process Assessment - Environment Evaluation...63
5.2 Development Strengths and Weaknesses within the Company 66

5.2.1 Development Strengths.. 66
5.2.2 Development Weaknesses.. 66

5.3 Comments on the Development Process.. 69
5.4 Starting Point for an Improved Process... 69

5.4.1 The Requirements Document.. 71
5.4.2 The Test P lan ... 72
5.4.3 Using Fault Reporting... 72
5.4.4 Change Request Form ... 73

5.5 Sum m ary.. 74
Chapter 6 - A Software Process for R A D ... 76

6.0 Introduction.. 76
6.1 Implementing a Software Process for R A D 76
6.2 Using DSDM within the Company............................. 78
6.3 How Will using DSDM Benefit the Company?.. 80
6.4 Using PSP within the Company.. 82

viii

6.5 A New Development Environment.. 83
6.5.1 A Quality Software Process for RAD - Combining

DSDM and P S P 3 .. 84
6.5.2 A Quality Software Process for RAD - Using Proxies............. 86
6.5.3 A Quality Software Process for RAD - Testing........................ 88
6.5.4 A Quality Software Process for RAD - A Quality P lan89
6.5.5 A Quality Software Process for RAD - M etrics....................... 91

6.5.5.1 Defect M etrics.............................. 94
6.5.5.2 Productivity M etrics... 96
6.5.5.3 Size M etrics..98
6.5.5.4 Time/Schedule M etrics.. 99
6.5.5.5 Extended M easures.. 102
6.5.5.6 Cost o f Quality (C O Q)... 104

6.5.6 Maintenance... 105
6.5.7 Software R euse .. 107

6.6 Summary.. 109
C h ap te r 7 - Independent R eview ... I l l

7.0 Introduction... I l l
7.1 Review P anel...I l l
7.2 Independent Review Com m ents... I l l
7.3 Summary... 118

C h ap te r 8 - Conclusions... 119
8.0 Introduction.......................... . , , .. 119
8.1 Detailed Analysis... 119
8.2 Recommendations.. 121

8.2.1 Data Recording Assistance... 121
8.2.2 Inspection/Review Assistance... 122
8.2.3 DSDM Software Process Improvement M easures................. 122

8.3 Future Research 122
9. R eferences.. 125
Appendix A ... 130
Appendix B .. 131

Appendix C
Appendix D

List of Figures
1.0 Waterfall M odel... 4
1.1 Spiral Process M odel... 5
1.2 Process Maturity Framework.. 8
2.0 DSDM Life-Cycle... 23
2.1 DSDM Prototyping C ycle... 24
3.0 PSP Evolution ... 36
3.1 PSP3 Process.. 42
4.0 Company Process Maturity C hart... 55
5.0 Company Development Paradigm .. 65

List of Tables
2.0 Advantages and Disadvantages of Prototyping.. 18
2.1 Advantages and Disadvantages of R A D ... 19
2.2 DSDM - Critical Success F acto rs... 22
2.3 Summary o f Inspection D a ta ...27
3.0 Object Category Size in L O C .. 38
5.0 Company Strengths and W eaknesses............... 66
5.1 Company Weaknesses - Standardisation and Procedures................................... 67
6.0 Factors which favour DSDM U sage.. 79
6.1 Factors which favour PSP U sage... 83
6.2 Defect Type Standard... 93
6.4 List o f M etrics... 94

XI

Chapter 1 - The Software Process

1.0 Introduction
This study examines the different approaches which can be taken to develop software
with a view to proposing a methodology for use in small software companies. Many
companies possess a backlog of software waiting to be developed. Much of this
backlog exists because companies must devote large resources to maintaining existing
software. This can occur, either through enhancement of existing systems or, through
having to fix systems of poor quality.
These problems are particularly acute in small companies.
To try and reduce the backlog and address this ‘software crisis’ companies are using a
number of approaches. These include improving the quality of developed software so
that less time and resources are spent fixing defects and using Rapid Application
Development (RAD) techniques to speed up the development process [MART91].

The objective of this study is examine this ‘software crisis’ as it exists in small
software companies and to propose a software process framework suitable for such
companies who wish to get quality software products onto the market as quickly as
possible. The research involved the study of software processes and methods suitable
for use in small companies. Also a small software development company was
examined to determine the methods and processes it used and subsequently how any
suitable software process paradigms might be applied within such an environment.
The study concludes by proposing the use of a combination o f the Dynamic Systems
Development Method (DSDM) [DSDM95], a life-cycle for use in RAD environments,
and the Personal Software Process (PSP) [HUMP95] which is targeted at improving
the performance o f individual software developers.

1

1.1 What is the Software Process?
Many companies, particularly small and medium-sized enterprises (SMEs), develop
software in an unstructured and undefined way. The set of approaches and
mechanisms which organisations use to develop software is known as The Software
Process.
Every organisation has its own particular software process. Some are based on
traditional development models such as the Waterfall Model [ROYC70] whilst others
have evolved from historical company practices.
In order to improve its software capability each organisation must have a defined and
documented software process. However, many different process models exist and
have applicability in different environments. Some models, such as the Capability
Maturity Model (CMM), assess the ‘maturity’ of software development organisations
[HUMP88]. The CMM basically indicates that the more mature a software
development organisation, the more capable it is of developing high-quality software.

Unfortunately, many companies operate without a defined process, with each software
system being developed independently without regard for previous or concurrent
developments.
As such, the quality of the finished product depends primarily on the assiduity of the
development personnel, their design and programming skills and commitment to
comprehensive testing.
Also, any methods, or tools, to support the process are used in an unstructured and
haphazard fashion. Further, it is unlikely that any metrics will be collected.
Boehm defined software engineering as:
‘The application o f science and mathematics by which the capability of computer
equipment is made useful to man via computer programs, procedures and associated
documentation’ [BOEH76].

A process, Humphrey states, is a series of tasks, that when properly executed,
achieves the desired result [HUMP88].

2

Ultimately, the manufacture of software can be reduced to a list of tasks that must be
carried out in a certain sequence. However, if the desired result is software of
measurable quality then it is necessary to adopt an engineering-style approach to the
creation of that product.

1.2 Background
It has taken a long time for the idea that software should be developed within a
mature, managed process, to become established.
In 1987, Brooks claimed that, at that time, there did not exist a single development in
either technology or management technique that promised a significant improvement
in software engineering but, notwithstanding that, a coherent and consistent attempt to
exploit and incorporate new technologies should produce that improvement
[BR0087]. Prior to the emphasis on the software process and software engineering
approaches, designing an appropriate model for software development was the major
task.
In 1956, Benington proposed the stagewise model which suggested a series of phases
along which development would proceed [BENI56].
Royce expanded on this to produce the Waterfall model [ROYC70]. The Waterfall
model became the standard approach to software development for many subsequent
years and is still in wide use today.

3

The layout o f the Waterfall model is shown in Figure 1.0.

SYSTEM
REQUIREMENTS

ANALYSIS

L PROGRAM
DESIGN

CODING

Figure 1.0 - The Waterfall Model

What the model shows is essentially a series of progressions through discrete stages,
from system inception through definition of requirements, analysis, design and
coding, testing and then final delivery of systems.
On the whole the model has proved a successful management tool and has laid the
foundation for structured software development, however, its rigid hierarchy and
inflexibility has led to the creation of alternatives.
In attempting to address the deficiencies contained within the Waterfall model, Balzer
et al. proposed the Transform model [BALZ83]. The Transform model is based on the
production o f a formal specification o f a software requirement and the subsequent
conversion of that specification into a working program matching the specification.
The model also incorporates the facility to amend the specification based on
operational experience. The advantage here is that, as the code is regenerated, it
always matches the specification.

4

However, this technique may only be used at present in limited application areas and
unplanned evolutionary paths may be difficult to incorporate.

In 1986, Barry Boehm developed what he termed a ‘Spiral’ model (Figure 1.1) for
software development, which though essentially based on the Waterfall model,
attempted to incorporate the best features o f all the preceding models [BOEH88].
The key difference with the Spiral model and its predecessors is the fact that it is risk-
driven, rather than document- or code-driven. The Spiral model moves from the centre
out and works as follows :
Each stage begins with determining the objectives for that stage, the alternative
approaches which can be taken and the evident constraints. The alternatives are then
evaluated and the associated risks are identified and resolved.
Development and verification o f the product then follows and finally planning of the
next phase is carried out. Each cycle o f the spiral terminated by a review.

Figure 1.1 - The Spiral Process Model [BOEH881

5

The exposed limitations of the Waterfall model led to the formulation of the
Evolutionary Development model [McCR92]. This model is well placed to take
advantage of fourth-generation languages as essentially an initial version of a software
product is produced rapidly, evaluated, the amendments incorporated and a new
version speedily created. However, the evolutionary development model possesses its
own limitations in that its code/test/fix procedure can lead to a planning deficit.

Software development or life-cycle models can teach us a lot about the creation of
software and the steps required. However, to ensure continued success across all
development areas, these models need to be incorporated as part of an effective
software process.

1.3 The Software Process - Maturity and Assessment
In the 1980s, when it became apparent that deficiencies in managing development and
maintenance were hindering the improvement of software productivity and quality,
the move towards a software process began.

1.3.1 Process Maturity
Process maturity is intrinsically linked to the concept of quality management.
Thompson and McParland state that a mature organisation has a well-defined software
development process and measures both the quality of the process and the products it
creates [THOM93]. Gauging the maturity level o f an organisation is achieved by
using assessments to analyse the competence or capability of an organisation’s
development process.
Curtis and Paulk proceeded to differentiate the mature organisation from the immature
one [CURT93]. Accordingly, they state that the mature organisation possesses the
ability to meet its cost, quality and schedule targets.

6

However, the failures o f the immature organisation are legion:
=> Processes are improvised during projects.
=> Unrealistic assumptions are made about project and phase completion dates.
=> Because of these unrealistic assumptions product functionality is often

jettisoned in a desperate attempt to meet deadlines.
=> Success depends totally on the commitment and talent o f the developers.
=> The final products often contain many errors, incomplete documentation and

the delivery lacks rudimentary configuration management.

The mature organisation, by contrast, has a well-defined, carefully managed process
in place and this process is communicated to all employees. Thus, employees have a
clear understanding o f their roles/responsibilities.
All developments are planned and the process ensures the plan is adhered to in all
respects. Quantitative methods are used to judge the quality of the software product.
Finally, when new technology is to be introduced or developed, the process can be
simply adjusted to cater for this.

1.3.2 A Maturity Framework and the Capability Maturity Model
Several bodies, most notably the Software Engineering Institute (SEI) have been in
the vanguard of promoting assessments of organisations and the evaluation of
organisations’ software development capability.
The SEI developed a Maturity Framework which included two methods, software
process assessment and software capability evaluation, plus a maturity questionnaire
to appraise software process maturity [HUMP88].
The assessment helps in finding the maturity level o f the organisation’s process while
the questionnaire examines in great detail all aspects of software development
including methodologies and tools used.
Endeavouring to illustrate this improvement path for customers, the SEI categorised
organisations under five headings denoting their level of maturity [Figure 1.2].

7

LEVEL 5
OPTIMISING

Process Control

LEVEL 4
MANAGED

Process Measurement

LEVEL 3
DEFINED

Process Definition

LEVEL 2
REPEATABLE

Basic Management Control

LEVEL 1
INITIAL

Figure 1.2 - Process Maturity Framework

At Level 1 ‘Initial’ the development process is chaotic and unstructured.
From levels 2 through 5 organisations are attempting firstly to establish and then
subsequently improve their development process.

At Level 2 ‘Repeatable’ , the overall objective is to ensure that successful techniques
and approaches utilised on previous projects can be assimilated and used on current
and indeed future developments.
Level 3 ‘Defined’ - At this level companies now focus, rather than on specific
projects or project management techniques but on process and ensuring its integration
throughout the organisation. The emphasis now is on process definition and
improvement and on equipping all software engineers and managers with the skills
and tools required to execute their roles effectively.
Level 4 - ‘Managed’ - Here, software measurement is introduced to assist in
managing the quality o f the process itself and the software product.
Level 5 - ‘Optimising9 - Having achieved the previous four maturity levels, the
organisation can now focus on continuous quality improvement.

After extensive work in this area the SEI evolved the Maturity Framework into the
Capability Maturity Model (CMM) [PAUL93]. The CMM is based on the
knowledge acquired from these studies and specifies recommended practices in the
particular areas that have been shown to enhance software development and
maintenance capability.

1.3.3 ‘Bootstrap’
It would be incorrect to conclude that the work being carried out by the SEI was the
only development in this area. Work has recently been ongoing in Europe.
‘Bootstrap’ was a project completed as part of the European Strategic Programme for
Research in Information Technology. Its objective was ‘to develop a method for
software process assessment, quantitative measurement and improvement’
[HAAS94]. In doing so, ‘Bootstrap’ took the model developed by the SEI for process
assessment and tailored it for use in the European Software arena. The key aspects of
‘Bootstrap’ are :
♦ Questionnaires are created to establish the organisation’s/project’s maturity level.
♦ Organisations are encouraged to create a software engineering process model

before setting up a quality system.

9

♦ Unlike the SEI method which expects certain attributes to be evident at
certain maturity levels and to rate companies accordingly, 'Bootstrap’ rates
the attributes irrespective o f the level at which they occur.

♦ The maturity of the organisation is more important than the maturity o f the
technology or the methodology.

1.3.4 SPICE
The SPICE (Software Process Improvement and Capability dEtermination)
standard was launched by the International Standards Group for Software Engineering
in 1991 [DORL93],
Its objective is to develop an international standard on software process assessment.
The project includes features o f the CMM and ‘Bootstrap’ among others.
The standard can be used :
1. To help organisations evaluate the capability o f a software supplier.
2. By companies to assess and improve their own development and

maintenance process.
3. By companies to determine their ability to implement new software

projects.

1.4 D ynam ic System s D evelop m en t M ethod (D SD M)
The Dynamic Systems Development Method (DSDM) was established to define a
process for use with projects developed using Rapid Application Development (RAD)
techniques. It is an attempt to provide a life-cycle and process in which RAD projects
can be managed, controlled and tracked. It appears suitable for companies involved in
developments where time-to-market is crucial or where the user interface is o f prime
importance. The method will be discussed in more detail later in this study.

10

1.5 Personal Software Process (PSP)
The Personal Software Process (PSP) is an attempt to scale down the best, large-scale,
software practices for use by individual developers. It enables individual practitioners
to define, manage, measure and subsequently improve their own software process.
It has particular use in small software departments or organisations.
The PSP will also be examined in more detail later in the study.

1.6 Summary
The objective o f this study is to look at the process operating within small software
organisations in Ireland and in one small company in particular.
Many companies are currently developing software in an ad-hoc manner within an
unstructured environment. Efforts to improve companies’ development capabilities
include CMM, Bootstrap and SPICE.
This study is concerned with the introduction of quality practices into small software
organisations. The sample company examined in the study is a small software
producer. Because of its size, and the market sector in which it operates, all the
documented software improvement approaches are not applicable.
The implementation of the most suitable methods and techniques, which can be
beneficially introduced into the company, will be outlined when the background and
operational characteristics of the company have been described.

11

Chapter 2 - Rapid Application Development (RAD)
and the Dynamic Systems Development Method
(DSDM)

2.0 Introduction
This chapter looks in detail at Rapid Application Development (RAD). It begins by
describing what Rapid Application Development is and examines a number of studies
which have been undertaken in this area. These studies highlight the advantages and
disadvantages of RAD, the pitfalls which can be encountered and the potential
benefits o f using the approach.
This section then progresses to examine the Dynamic Systems Development Method
(DSDM) which has been promoted as a life-cycle framework for RAD. The section
concludes by discussing whether DSDM achieves its objective of being a suitable life­
cycle approach for RAD and discusses its applicability in small companies.

2.1 Rapid Applications Development (RAD)
The term Rapid Application Development or RAD has generally been attributed to the
consultant James Martin, since the publication of the eponymous book [MART91],
It is taken to relate to projects based around tight timescales, which use prototyping
and combine high-level development tools and techniques.

2.2 RAD - A Worthwhile Investment?
Proponents of RAD claim that it increases productivity, reduces delivery time and
gains high usage because of the extent of user involvement in the development.
In his spiral model, Boehm, was one o f the pioneering proponents o f using
prototyping in software development [BOEH88], It was, he felt, one way of reducing
project risk.
According to Luqi and Royce, prototyping has three main benefits :

12

1. By demonstrating the user interface, it improves communication between users and
developers.

2. By improving communication it reduces any risks inherent in the project
3. It assists in validating specifications; supporting a common understanding and

agreement between developers and users thereby making it more likely that the
system will satisfy user requirements [LUQI91].

Gordon and Bieman, in their study, claim that in 80% of cases developers considered
rapid prototyping a success [GORD95]. The study focused on three headings,
Product Attributes, Process Attributes and the Problems encountered in RAD
projects. On the Product Attribute side respondents indicated that RAD projects
improved ‘Ease o f Use’ and in a significant majority of cases matched ‘User Needs’
better. On the Process Attribute side, of those who recorded a change, the reduction
in development effort was a notable factor. Also, end-user participation was greatly
increased. However, some problems were reported in the different areas.
Evolutionary prototyping possesses inherent difficulties particularly with the danger
of inefficient code being retained and therefore being a part o f the final product.
Quality problems can also occur because of the speed of development and the rate of
change of the prototype. To counteract this, good control procedures, standards and
documentation are necessary. Furthermore, while user involvement is essential for
success in RAD projects this too has to be controlled.
Another highlight from the study, showed that more experienced development staff
were required for RAD projects as programming in this area regularly involves design
decisions. Finally, Gordon and Bieman conclude that rapid prototyping can be a
positive factor in software development and can be used in a variety o f applications.

Other RAD supporters are also positive about its future. Reilly contends that RAD can
benefit both users and developers [REIL95]. He believes RAD approaches will help
ensure a business and user-oriented approach and thus ensure that all requirements are
properly gathered; concurrent development activities will reduce system delivery
times; and evolutionary prototyping extends prototyping into the analysis stage thus
improving the prospects o f building the ‘right’ system.

13

Carmel, takes issue with some of these claims [CARM95]. He believes that RAD
approaches will not work because the following are not correctly addressed; Picking
the Right Team, the Management and Customer Support of the project and the
Methodologies used. On ‘selecting the right team’ he essentially concurs with Gordon
and Bieman in that getting the right people is important for project success and that
technical skills are paramount. Also, because o f the extent of user interaction, good
communication skills are also important. On ‘management and customer support’ he
is referring to sound management understanding and control of the project. Also,
almost in a mirror o f that required of developers, customers have to be available but
also able to make decisions quickly. On the third issue of Methodology, he asserts that
RAD projects abandon rigorous methodologies and because of this software reuse
becomes impossible later on.

Card, examines RAD in a business context concentrating on whether RAD helps in
getting products onto the market more quickly [CARD95]. He believes that
incremental development used in RAD approaches may reduce time-to-market in that
the customer receives at least partial capability sooner. However, he also highlights
the need for good project management of RAD projects.
Olsen, also concentrates on time-to-market in his examination of RAD [OLSE95]. He
believes that the iterative development approaches, such as develop-test-repair,
inherent in RAD, rather than the more traditional ‘Waterfall’ approach, can help
reduce time-to-market.

Rafii and Perkins, look at RAD in terms of concurrent engineering and contrast this
with conventional sequential development [RAFI95], Concurrent engineering allows
different stages o f the development process to overlap, thus reducing development
time. They caution, that even though project management is important to the success
o f all projects, it is crucial to the success of a project using concurrent engineering
techniques. These findings are in agreement with those of Card, Carmel and Gordon
and Bieman.

14

Henry and Faller, also looked at time-to-market as a reason for using RAD
[HENR95]. Their belief was that time-to-market or cycle/development time could be
reduced through software reuse as a RAD technique. Again, it is pointed out that
project management, in conjunction with the appropriate development methods and
tools, is essential to success. Their results show that through software reuse, cycle
time can be substantially reduced, developer productivity can be increased and quality
can be improved as a result o f lower fault rates.

Linthicum, states that RAD promises the following advantages over traditional
programming :
1. A reduced, more flexible development cycle and
2. Competent end-users can develop applications [LINT95].
He proposes that organisations should focus on the business objectives as this, he
believes, is the way to good RAD usage. Another factor in good RAD development,
he adds, is the use o f reusable components. He does list some disadvantages to using
RAD. Firstly, executing or porting RAD code can be time-consuming as the
development tools are typically interpreters (e.g. Visual Basic) and will therefore
execute much more slowly than compiled code. Secondly, you may also be locking
yourself into a particular platform as, for example, two of the major RAD tools,
Visual Basic and Delphi, only support Microsoft Windows. Thirdly, he refutes the
claim made by RAD vendors that end-users can develop their own applications using
RAD tools. With the exception of the simplest systems, he reckons developers must
learn the underlying language. He concludes that RAD projects still need a good
understanding of business requirements, a sound design and skilful programming.

Jacques, asserts that RAD developed systems are of a higher quality and are more
flexible than those developed using traditional approaches [JACQ94]. Applications
development is simpler, he believes, and there are benefits from users being involved
from the beginning. Apart from the promise o f increased system acceptance, this also
allows users to develop a training plan for system usage.

15

He also suggests that an advantage of RAD is that the applications can be used as
templates for future development efforts. He does warn, however, that to achieve
success, staff must be trained in RAD concepts.
Simon, contends that, using traditional methods o f systems development, problems
are not discovered in the early stages of the life-cycle [SIM095]. He counsels that
RAD, in order to be fully successful, needs the development o f comprehensive
requirements, product specification details and data modelling. Also, he states, there
may be some performance trade-offs in using RAD tools.

Hanna, in her study canvassed industry practitioners for their views on RAD
[HANN95]. One respondent claimed that companies are turning to RAD because they
can no longer afford the long requirements definition phase associated with the
‘Waterfall’ model. Also, the tools are currently available to allow developers to
progress without having to know all the details of the application under development.
Furthermore, it is stated that projects, which last longer than six to nine months, risk a
change in system functionality or loss of interest by the potential user. Another
respondent suggested that RAD is not always the best way to develop software. If
developers know a great deal about the systems to be developed the waterfall model
should be the chosen approach. Conversely, though, if the requirements are vague and
you need to clarify the user interface, then RAD is a very productive way to proceed.
One respondent declared that a developer’s ability to work with the customer is
crucial. During this process, the business rules of the system can be determined and
the processing details can subsequently evolve.

A focused project study in the RAD field is Kerr and Hunter [KERR94]. They state
that as RAD demands a fully functional system between 60 - 120 days it is not well
suited to the development of highly complex software. If large applications can be
easily decomposed then RAD can work otherwise it should not be used on large
projects.

16

They list the following requirements for RAD :
• A solid methodology
• A central repository for all the information gathered in a business’s RAD projects
• CASE tools including a code generator
• Reusable code libraries
• A team approach
• Leadership

The benefits of RAD they list as follows :
=> Improved user satisfaction
=> Reduced time to delivery
=> Lower cost development
=> Lower maintenance costs
=> Enhanced employee satisfaction.

Sommerville, documents a number of benefits o f using rapid prototyping early in the
life-cycle [SOMM92]. These include reducing system misunderstandings, clarifying
requirements, and the production o f a limited system for users for evaluation.
He concludes that effective prototyping increases software quality and can give
companies a competitive edge over their competitors.

McLeod Jr. believes RAD is the desired approach to systems development [McLE93].
This is not happening at the moment, he contends, because firms do not have the
skilled personnel and have not invested in the computer-based tools essential for the
method.
He also talks about using prototyping, as a general technique, in system development
and the advantages and disadvantages he perceives in the method are contained in
Table 2.0.

17

Table 2.0 - Advantages and Disadvantages of Prototyping [McLE931

Prototyping Advantages Prototyping Disadvantages
• Communication between analyst and

user are improved.
• User’s needs can more accurately be

determined

• Implementation is easier because of
user involvement in the development.

* Danger o f ‘Quick and Dirty’
development because of time pressure.

* Because of their involvement, users
may have unrealistic system
expectations.

* Speed o f development may result in a
poorly designed product.

Hardgrave examined the stages at which prototyping should be used [HARD95]. His
study highlighted a number of factors which potential users o f prototyping felt were
most significant. These factors included :
0 Requirements Determination - study respondents felt that prototyping could be

used when requirements were unclear, expected to change or ambiguous.
0 Project Size - Large systems should use prototyping as there is a likelihood that

requirements will change during development.
0 Availability of Tools - If suitable tools are available to, say, convert the prototype

to the finished product, then this may influence the decision.
0 Examining Feasibility - prototyping can be used to reduce risk and allow

experimentation before full commitment is given to the system.
0 User Involvement - Prototyping requires significant user involvement and if this is

available then prototyping can be used to encourage users to ‘buy-into’ the system
at an early stage. However, unnecessary involvement o f users can increase
development time.

To conclude this section, the advantages and disadvantages o f RAD, as reported in the
analysis, are contained in Table 2.1.

18

Table 2.1 Advantages and Disadvantages of RAD (from study analysis')

Advantages Disadvantages

Ease of Implementation Potential for poor quality systems
Improved User Satisfaction Need more experienced development staff
Shorter tlme-to market Strong project management and control required
Increased system quality Need for documented standards and procedures

It’s not enough, however, for a company to adopt RAD and expect to achieve all the
benefits claimed for it; it must change its development process accordingly.
With this in mind and to ensure quality in RAD projects the Dynamic Systems
Development Method (DSDM) Consortium was established [DSDM95],

2.3 Dynamic Systems Development Method - A RAD
Standard

The Dynamic Systems Development Method (DSDM) was created in February 1995.
It was the result of the work o f a number of organisations who formed a consortium to
examine how projects using Rapid Application Development (RAD) techniques were
being implemented. Their objective was to create a method within which RAD
techniques could be used but to ensure that quality was built into this approach.
DSDM uses prototyping techniques to ensure the frequent delivery of software
products during development. These products are delivered within fixed timescales
known as ‘timeboxes’. Users therefore receive incremental versions of the finished
system. By developing in this way, the DSDM consortium believe that users can
continually provide feedback during development and are more likely to receive a
system with which they are satisfied. Unlike traditional approaches which attempt to
indicate how long it will take to complete a fixed amount of functionality, DSDM
estimates are a statement o f what will be delivered within a given timebox.

19

The DSDM authors believe that fundamentally, it is easier to calculate how much
can be done by a certain time than to calculate how long it takes to do something.

2.4 DSDM - What the Method Contains
DSDM attempts to address the failure of software to meet end-user expectations.
A basic assumption of DSDM is that nothing is built perfectly first time, but that 80%
o f the solution can be produced in 20% of the time. The Consortium believe that
traditional development methods such as the ‘Waterfall’ model suffer from the fact
that requirements must be frozen early in the development and that the wait for one
stage to finish before continuing to the next slows development.
DSDM purports to combat this by the use of its iterative approach. This means that
the current phase need be completed only enough to proceed to the next step with the
flexibility, within the method, to return to the previous step when necessary.
DSDM offers a full software development life-cycle. It provides a framework within
which all the individual RAD tools offered by vendors can reside and is, therefore, not
vendor-specific.

2.5 Principles of DSDM
The principles on which the method is based are as follows :
1) Active user involvement, throughout system development, is imperative.
2) DSDM teams must have the power to make decisions regarding the system.
3) DSDM is focused on the frequent delivery of products.
4) The primary system acceptance criterion is ‘fitness for purpose’.
5) Iterative and incremental development is essential.
6) All amendments during development are reversible.
7) System requirements are baselined at a high-level.
8) Testing is integrated throughout the life-cycle.
9) All relevant staff must co-operate during development.

20

2.5.1 Applications Suited to the DSDM Approach
The DSDM consortium has attempted to identify application areas in which it
believes DSDM could profitably be used.
These are application areas which:
• Involve systems, where the user interface is of prime importance.
• Possess a well-defined user group.
• Are not computationally complex.
• If large, are capable of sub-division into smaller components.
• Are time critical
• Possess requirements which are ‘fuzzy’ or not clearly defined.

2.5.2 Applications Unsuited to the DSDM Approach
The consortium believes that the following applications may not be suited to the use
o f DSDM :
• Applications where functional requirements have to be fully specified before any

programs are written.
• Real-Time applications
• Safety-Critical applications.

2.5.3 DSDM Implementation - Critical Success Factors
The factors critical for success in DSDM projects are contained in Table 2.2.

21

TABLE 2.2 - DSDM CRITICAL SUCCESS FACTORS
DSDM Critical Success Factors

1 The commitment of Senior User Management to provide significant end-user
involvement.« •' 2 Easy access by developers to end-users.

■3 The stability o f the development team.
|4W : Highly skilled developers in technical and business terms.
: 5 The decision-making powers o f the users and developers.

6 The importance of Project Control.
i Development team size.

P p A supportive commercial relationship between developers and users.
9 Development technology suitable for use with DSDM.

2.6 The DSDM Life-Cycle
The development life-cycle is divided into five phases :
♦ Feasibility Study
♦ Business Study
♦ Functional Model Iteration
♦ Design and Build Iteration
♦ Implementation.
An overview of the life-cycle appears in Figure 2.0.

22

Figure 2.0 - DSDM Life-Cvcle

The first phase, the Feasibility Study, determines the feasibility of the project and its
suitability for development using DSDM. The Business Study defines the high-level
functionality and the affected business areas. These are then baselined as the high-
level requirements together with the primary non-functional requirements. The main
part o f the development is contained within the two iterative prototyping cycles. The
objective o f the Functional Model Iteration is on eliciting requirements while the
emphasis in the Design and Build Iteration is on ensuring that the prototypes meet
pre-defmed quality criteria. The method authors state that there should be a maximum
o f three iterations o f each o f the prototyping cycles. The final phase, the
implementation phase, is the handover to users which will normally be accompanied
by a project review.

23

2.6.1 Prototyping within DSDM
Prototypes in DSDM may focus on :

- Business factors, such as functionality
- Usability factors, such as the User Interface
- Performance and Capacity factors and
- Capability factors (e.g. testing a particular design approach).

Each prototyping cycle contains four stages as outlined in Figure 2.1:

Figure 2.1 - DSDM Prototyping Cycle

1. Identify Prototype
Before building a prototype, the functions to be prototyped must be defined.
2. Agree Schedule
It is vital that a limit be set on the time spent on each prototype. This ensures that the
prioritised functionality is developed first.
3. Create Prototype
Prototypes are usually developed in conjunction with users and this is especially
important where the user interface or the business functions are being prototyped.
4. Review Prototype
Each prototype should be reviewed by both developers and users.

24

2.7 Q uality Issues in D S D M

2.7.1 Quality Control
Quality Control in DSDM is practised through :
• Product Inspections and Reviews
• Dynamic testing of products and prototypes
• Reviews e.g. of prototypes
• Static code analysis.
Quality Assurance - The consortium suggest that every DSDM project should have
an accompanying Quality Plan. QA in traditional life-cycle projects focuses on all the
individual stages in the development ensuring that the quality of outputs from one
stage is sufficiently high to permit progression to the next stage.

2.7.2 DSDM and the CMM
Regarding the CMM the Consortium believe that introducing DSDM into an
organisation can help the organisation achieve maturity level 2 [PAUL93].
This will move the organisation from one which develops software in an ad-hoc
fashion to one which achieves repeatability where it is capable of repeating project
successes with similar applications.

2.8 Introducing DSDM into an Organisation
There are a number of issues to consider before DSDM can be used within an
organisation for a particular project:
• How are the projects currently staffed? Is rigid specialisation present? e.g.

programmers only program and carry out no analysis tasks; Analysts never write
any code etc.

• Are the project managers empowered? Do they feel they have the power to make
decisions?

• Is the current working environment controlled by regulations or consensus?
• Are developers flexible with regard to changes in working practices?
• Can staff relocate on a project-by-project basis?

25

• Are facilities available for Joint Application Development (JAD) sessions?
• Will operations staff be capable of responding quickly to system requests from the

development team?
• Does the development environment allow for prototyping with users?
If any of the above issues present a problem then ways to surmount them should be
considered. The presence o f a DSDM champion within the organisation will be a
significant help in this regard.

2.9 DSDM - A Way Forward for RAD?
It is clear that there are fears abroad that RAD is a return to the bad old days of
unstructured development. As such there is a definite need for a methodology which
will allow quality to be incorporated into RAD projects. DSDM attempts to counteract
this through :
• Inspections, Reviews and Walkthroughs
• Demonstrations to user groups
• Testing (Static and Dynamic Analysis of code).
Testing in DSDM is conducted at every stage of the development process.
While this is very desirable and necessary in an iterative development environment,
on its own it is insufficient to guarantee the quality of the finished product. Though
the consortium themselves admit, ‘testing can never prove that a system works’, very
little time is devoted by them to the use of alternative measures o f assuring the quality
of the developed product. They state that all DSDM products can be verified using
techniques such as, static analysis, inspections and reviews, but decline to comment
on how these techniques should be used and how the results of these activities should
be handled.
A large body of work [including FAGA76, FAGA86, WELL93, DAVI94, ACKE89,
FREW86] exists which claims that inspections and reviews are superior to testing at
discovering errors. However, in DSDM’s defence, a lot of this work is based on
waterfall approaches where testing is confined to an activity that occurs after
requirements have been defined, design has been completed and coding undertaken.
Different results may well occur if testing is integrated at all life-cycle stages.
Nonetheless, the importance o f reviews and inspections cannot be dismissed.

26

The consortium state that there are two key documents for which a formal quality
inspection is essential, the Business Area Definition and the Prioritised Functions.
However, inspections should at a minimum also be carried out on the Functional
Prototypes and the Design Prototypes. The composition of the DSDM team should
assist the inspection process. Weller shows in tabular form the benefits inspections
have had in his company in Table 2.3 [WELL93].

TABLE 2.3 - Summary of Inspection Data 1990 to 1992 (from WELL93)
Data Category 1990 1991 1992
Code-Inspection Meetings 1,500 2,431 2,823
Document-Inspection Meetings (anything other than code
inspection)

54 257 348

Design-document pages inspected 1,194 5,419 6,870
Defects removed 2,205 3,703 5,649

Any DSDM development team must be multi-skilled with team members having
analysis/design and coding skills. Furthermore, users must be on hand to evaluate the
user interface elements of any development prototypes. With such strength in depth
within the team, formal inspections will be rewarding at every DSDM phase.

When introducing inspection techniques in small companies code inspections could
be introduced first and when the benefits have been illustrated, expanded to design
inspections. The rigorous use of inspections will also reduce the testing burden on the
company. Also in a small company like this, the inspection process can be less
bureaucratic. However, it is important that inspection findings are documented and
acted upon. Concerns about the length of time that this process will take, with
consequent delays to timebox deliverables will be allayed because o f the reduction in
rework that will emanate from the application of inspections. Ultimately, this can only
be proven through the collection of appropriate metrics. Design and Code reviews
should also be used as quality indicators. Findings from the PSP show that design and
code reviews are superior at detecting errors than is testing.

2 7

The reviews that are specified in DSDM are mainly concerned with checking
requirements issues with users, with the consortium stating that ‘reviews should be
short and informal within the development team’. However, design and code
reviewing should be conducted by each developer with the results documented. These
results, again, can be amassed to reflect process application and effectiveness.
Furthermore, as review skills improve, reviews and inspections could replace testing
as quality control mechanisms in the early DSDM development phases.

Montgomery, illustrates how the Software Engineering Laboratory (SEL) uses testing
as a QA measure and design and code reviews as techniques to ensure requirements
are met and code does what it is supposed to do [MONT95]. This would be an
improved approach to adopt with DSDM.

While the quality approaches in DSDM mirror the best practices in traditional
software development there is a greater emphasis on the use of software tools to
support the quality process. The success of the quality control procedures depend on
the rigour with which they are implemented, the availability of tool support and the
development team’s capacity to use the tools. While developer lack o f familiarity with
the tools may introduce an element o f risk into the project their absence will certainly
slow the time-to-delivery. Also, because o f the iterative nature of DSDM
development, tools such as those which provide ‘capture/playback’ testing facilities
are imperative as testing must occur throughout the life-cycle. Also CASE tools with
code generation facilities are beneficial.

With regard to Quality Assurance practices, DSDM does not define the QA activities
it expects users to invoke. However, it does state that every DSDM project should
have an accompanying Quality Plan that states how quality and standards are to be
enforced. The difficulty that arises here is that the development of the plan for each
project will command a time overhead which could impact the delivery schedule.
Consequently, the Quality Plan could be the initial basis for document reuse within
DSDM projects.

28

Organisations could derive a template based on the quality factors, referred to in the
DSDM document, such as, is sufficient user involvement present?, are priorities being
adhered to?, are timeboxes being met?, which require assurance and then insert the
appropriate elements based on the particular system being developed.

A section of the DSDM manual discusses the method with relation to the Capability
Maturity Model (CMM). As documented previously in this study, the CMM assesses
the maturity of the software development process within an organisation.
In the DSDM manual it states ‘The DSDM Consortium believe that introducing
DSDM into an organisation can help the organisation achieve process maturity level
two’. Process maturity level two, ‘Repeatable’, describes a process where basic
management controls exist to track cost, schedule and functionality and the discipline
exists within the process to repeat previous project successes.
This, at first, appears to be a fairly modest target for a methodology which is defining
a life-cycle approach incorporating a number of quality measures.
However, there are two factors which clearly illustrate why the Consortium’s target of
level two attainment is correct.
Firstly, DSDM is a method for use in RAD projects. As stated previously not every
project is suitable for RAD development, so the approach could not become an
organisation wide development standard unless every project the organisation
developed used RAD techniques!
Secondly, the CMM framework describes the capability of an organisation and as
such requires substantial organisation and management structures and practices which
go beyond the mere adoption o f the development framework which is DSDM.
To progress to level 3 would, therefore, require organisational changes.

In conclusion, then, DSDM is a very useful addition to organisations wishing to
adhere to the CMM criteria.

2.9.1 Other Factors which may Influence Development
There are other factors which have not been directly referred to in the published
articles and which affect the efficacy of DSDM.

29

Because user involvement is fundamental to the success of RAD, companies writing
packaged software or bespoke software for another company may have difficulties
with user involvement in development.
Obviously, companies writing packaged software are writing for a whole class of
users who may have different applications for the package. However, the project
sponsors are likely to be based internally and so can act as users. The difficulty of not
working with the actual users of the product may mean that business objectives are
not met and users receive a system which does not actually meet their needs.

Problems in this regard may be countered by Beta testing the product at a number of
selected sites. In fact using RAD, a version of the product with perhaps limited
functionality could be released more quickly, produce early feedback and the
comments made fed into the next system prototype. Used in this way RAD can assist
in producing a system that is more likely to meet users needs much more quickly than
using traditional approaches.

Writing bespoke software raises other issues. If the developers and users are
physically separated, say working at their own individual company’s premises, then
development may be slowed awaiting the confirmation of decisions etc..
Also, in this scenario users, particularly, are likely to get drawn into their own day-to-
day work with the result being reduced commitment to the project. Collocation of
developers/users will assist greatly in this regard. Users may not be required for 100%
o f the time but should be available when needed on the project.
Because o f this it may be best if developers were actually sited at the users premises
during bespoke developments using DSDM. The manual addresses this saying ‘Risks
can also be mitigated by seconding and locating developers where the users are
situated. This is best done physically but....it has been done using groupware and
video/e-mail conferencing facilities to create a virtual location.’ In this way the
collocation requirement is being met but users can execute their day-to-day duties
when not working on the project. To succeed, this requires the support of user
management. Without it the project is at risk and delivery time will be extended.

30

Component reuse is encouraged in DSDM, nonetheless, the manual suggests there
may be a risk that ‘the DSDM team may start building components for future reuse,
incurring development costs not related to the DSDM project objectives’. The
Consortium believe that the ‘costs in creating and supporting reusable
materials...should be regarded as corporate investments in infrastructure and assets..’.
They suggest that after delivery of a RAD project developers may be involved in
‘enhancing and re-engineering components that were identified during the project as
potentially reusable.’ Though RAD components are not being specifically designed
for reuse there is also a danger that they may be unmaintainable.

The manual is somewhat vague on the question of maintenance. It states that
‘systems with poor maintainability :
• take more resources in maintenance
• take longer to change
• are more likely to introduce further errors with change and be unreliable
• will cost more to maintain’.
While re-engineering reuse components was considered to be a corporate cost then
maintenance costs certainly relate to a project. The manual states ‘It is therefore
important that the system as a whole and all its components are engineered to be
maintainable from the start...’. It goes on to say that with RAD ‘An environment is
created where a small team works...towards...providing maximum business benefit’.
The section concludes by saying ‘One o f the principal advantages of DSDM is that it
explicitly deals with these dangers’.
How DSDM actually deals with these dangers is that decisions regarding
maintainability are taken by senior user management. The manual outlines the three
possible choices of business objective to cover maintainability :
• maintainability is a required attribute of the initially delivered system
• A short-term tactical solution - earliest delivery is paramount; the system will be

replaced/rewritten before maintenance costs are a problem.
• deliver first - re-engineer later - time-to-market is important and re-engineering to

provide maintainability will occur after implementation.

31

Later on the manual comments that ‘DSDM does not ensure maintainability by itself.
[Maintainability] is made possible by a combination of...
• tools
• people
• documentation
• good practice guidelines’.
All o f these factors are indeed relevant not just to DSDM projects but to every
development approach.

As can be seen from the above the DSDM manual is slightly ambiguous regarding
maintenance. The maintainability of the delivered system is not guaranteed by the
method but is based on the decision taken by the project sponsors.
Another factor is in regard to integration o f software. With RAD there is the
temptation to build stand-alone systems which can be delivered within the chosen
timescale rather than ones which will integrate with existing systems but cannot be
delivered within the allocated timeframe. Such systems may not easily interface with
current ones leaving a substantial engineering task in order for them to do so. Again
with DSDM this will be a management decision regarding the type of system they
wish to deliver. Once again though the cost o f integrating the system into the current
environment post-delivery must be allocated to the project itself.

2.10 DSDM - The Benefits
The first benefit that can be attributed to DSDM is that it provides a quality-oriented
approach for RAD development. Some of the fears raised related to the absence of a
methodology for RAD.
A study o f the DSDM manual will show that it is a well-thought out approach and
covers all o f the issues raised in the articles and addresses the perceived disadvantages
o f RAD.
The second benefit of RAD, as was extensively argued in section 2.2, was of how well
it assists in ensuring user satisfaction with the delivered system.

32

This is true in a number of ways, such as, ensuring the ‘right’ system is built, helping
to clarify requirements, increasing user acceptance by having them involved in
development and in promoting developer/user communication. DSDM underpins
these benefits. As stated on a number of occasions a fundamental assumption of
DSDM is to ensure that business objectives take precedence over everything in a
DSDM project. By providing a documented life-cycle it supplies a framework in
which prototypes, which help clarify requirements, can be developed.
The methodology insists on some form of collocation o f developers and users, thus
helping team communication. Other contributions in this area are the definition of
team structures contained in the manual which if followed will supply the necessary
experience from the user and development side. Also the way the life-cycle is
documented coupled with the team structures will significantly contribute to good
communication. Furthermore, the use of software tools which provide diagrammatic
and graphical representation of the system, encouraged in DSDM, will aid
communication even more.

The third major benefit claimed for RAD is that of increased productivity and reduced
time-to-market. The use o f advanced software tools including code generation, the
ability to produce prototypes and the emphasis on rigid adherence to timeboxes within
DSDM again help underpin these benefits.
Another means to reduce time-to market is through software reuse. The method itself
doesn’t contribute significantly in this regard. While it promotes reuse where
components are available, it suggests designing for reuse may itself reduce time-to-
delivery.

O f the other factors listed and contained within the articles, the final element referred
to the quality of the finished product. A majority of the authors who commented on
this area felt quality may suffer using RAD, however, some felt quality may be
improved. This improvement, it was felt, would come from increased user
involvement and the higher chance of meeting business objectives. Proponents believe
the delivered system would be more likely to possess a ‘fitness for purpose’ attribute.

33

2.11 Summary
DSDM with its emphasis on user involvement within the development process and the
emphasis on building the ‘right’ system contributes to the likelihood of user
satisfaction being achieved. The provision of a prototyping methodology, the
inclusion of quality mechanisms, the emphasis on testing throughout the life-cycle,
the personnel mix and the guidance on software tool support all contribute to
improving the quality of the delivered product and to ensure ‘fitness for purpose’.

DSDM has great potential for small companies in that:
□ It provides a defined and documented life-cycle
□ It can assist in reducing development time; crucial for companies operating on

small margins or where getting to market first is vital
□ It is best suited to small teams.
The third factor here is particularly relevant to small companies as in DSDM-based
projects developers and users sometimes play more than one role. It is common in
small companies for employees to have less structured roles. For example, project
managers may act as programmers and systems analysts may write technical
documentation. These factors make DSDM potentially a very beneficial approach for
small companies.

34

Chapter 3 - Process Improvement using the Personal
Software Process (PSP)

3.0 Introduction
The purpose of this chapter is to examine the Personal Software Process (PSP), which
was designed by Watts Humphrey o f the Software Engineering Institute [HUMP95].
It describes, in detail the components o f the PSP and the approaches and
documentation associated with the PSP. The approaches contained within the PSP are
then analysed by relating them to other relevant studies in the area. The chapter then
concludes with a summary o f the PSP and its relevance to small development
organisations.

3.1 Personal Software Process (PSP)
The Personal Software Process (PSP) is an attempt to scale down current software
quality and assessment practices, for the improvement o f individual software
developers. The objective, of the PSP, is to make the individual a better software
engineer. It is essentially a bottom-up approach where individuals manage and assess
their own work as opposed to the organisation-wide approach of, for example, the
Capability Maturity Model [PAUL93]. As such the PSP is o f particular interest to
small software houses where tailoring large-scale practices can cause difficulties.
The PSP is essentially a framework of forms, guidelines and procedures to assist in
improving performance at the individual level. It provides historical data which helps
you measure your performance, your work patterns and practices. By examining these
and using the PSP framework Humphrey believes the developer can :
• Plan better
• Track performance
• Measure product quality
• Improve productivity
• Make more accurate estimates
• Reduce defects.

35

Examples of the forms used in the PSP are contained in Appendix C.

3.2 PSP Improvement Phases
The Evolution o f the various PSP phases is illustrated in Figure 3.0.

Cyclic
Personal
Process

Personal
Quality
Management

PSP2
Code Reviews

Design Reviews

Personal
Planning
Process

PSP1
Size Estimating

Test Report

PSP1.1
Task Planning

Schedule Planning

Baseline
Personal
Process

PSPO
Current Process
Time Recording

Defect Recording
Defect Type Standard

PSP0.1
Coding Standard

Size Measurements
PIP Proposal

Figure 3.0 - The PSP Evolution

3.3 The Baseline Personal Process (PSPO)
The principal objective o f PSPO is to provide a framework for gathering your own
initial process data. Each PSP phase is accompanied by scripts, logs and summaries,
which in effect produce a defined process.
PSPO has three elements - the Planning phase, the Development phase and the
Postmortem phase. Each o f these elements is accompanied by a script.

36

There is also a Process script to ensure that the individual phases are being executed
correctly. Each of the scripts contain Entry and Exit criteria and individual phase
elements. PSPO has two measures :
• The time spent per phase and
• The defects found per phase.
The Time Recording Log (Appendix C) is used to document the time spent on each
phase. The benefit of the time recording log is that not only does it show you how
your development time is distributed (i.e. the time spent per phase) but the frequency
and duration of interruptions.
The Defect Recording Log (Appendix C) is used to record defects as they arise in
each phase. Each defect is allocated a number, a type e.g. syntax, interface etc., and
the phases at which the defect was injected and removed are entered. Another
important factor to record is the time taken to fix the defect. It is also possible to
record defects introduced while fixing another defect using the ‘Fix Defect’ column.
The PSPO Project Plan Summary (Appendix C) requires you firstly, to document
your estimated time for the development. Then, on completion, you enter the actual
time spent in each phase and the phases in which defects were injected and removed.
The figures will be taken from the Time Recording Log and the Defect Recording Log
respectively. To date figures are included to assist in measuring progress.

3.3.1 PSP0.1
PSPO.l extends PSPO by the inclusion o f additional planning and size measurement
details. Planning is the first step in the PSP. The plan defines how the work is to be
done and allows for comparisons with actual performance. The second element in
planning software projects is measuring software size. If you can estimate the size of
the product you plan to build, you can then make better judgements about the amount
of work required to build it. Size can be measured by counting Lines of Code (LOC),
Function Points (FPs), Objects or some other suitable unit. Lines of Code (LOC) are
usually based on program source code and normally exclude comments and blank
lines.

37

Function Points (FPs) are derived from counting certain parameters e.g. number of
user inputs, number of external interfaces etc. and applying a weighting complexity
factor to these parameters. These weighting factors may be adjusted based on other
system related factors, such as, whether the code is to be designed to be reusable or if
performance is critical. Another important element of PSP0.1 is the Process
Improvement Proposal. Which provides a way of recording process problems and
improvement ideas. This form can then act as input for later process improvements.

3.4 PSP1

3.4.1 Proxy-based Estimating
In order to assist with size estimation, Humphrey proposes the use of Proxy-Based
estimating. Because few people can judge accurately how many LOC it will take to
meet a software requirement there is then a need for a proxy to be used. A proxy is a
substitute or stand-in and in this instance the proxy is used to relate product size to the
functions the estimator can visualise and describe. Examples o f proxies include
objects, screens, files, scripts or function points. Objects or functions fulfil the proxy
requirements particularly well. Humphrey suggests using the PROBE (PROxy-Based
.Estimating) method with the PSP.
Table 3.0 shows a sample proxy table for C++ objects.

TABLE 3.0 - Object Category Size in LOC per method (C++) (from HUMP95)
C++ Object Size in LOC Per M ethod
Category Very Small Small Medium Large Very Large
Calculation 2.34 5.13 11.25 24.66 54.04
Data 2.60 2.47 8.84 16.31 30.09
I/O 9.01 12.06 16.15 21.62 28.93
Logic 7.55 10.98 15.98 23.25 33.83
Set-up 3.88 5.04 6.56 8.53 11.09
Text 3.75 8.00 17.07 36.41 77.66

38

3.4.2 Resource and Schedule Estimating
Having made a size estimate, you now need to decide the time the work will take,
assess the accuracy of this estimate and generate a development schedule.
When estimating the program size you used your historical size data as input to that
process. Consequently, you use your historical productivity figures and the data
relating to your resources available as input to your resource estimates. Combining
these estimates produces the schedule.

3.4.3 Measurements in the PSP
Measuring your process allows you to understand how it works and look at ways it
can be improved.
1. Product Measures
These generally refer to the volume of product produced and include LOC, pages of
documentation, numbers of screens/files etc..
2. Process Measures
These can include such as, number of defects removed in test, number of changes
made to requirements, number of defects injected per phase. You may also use cycle
time (time taken to complete a project) as a measure.
3. Resource Measures
While productivity measures are of use, equally important is the breakdown of time
spent in development.

3.5 PSP2

3.5.1 Design and Code Reviews
Humphrey believes, that by doing design and code reviews you will see greater
improvements in your own personal software process than through any other change
you may make. The principal review methods used in software development are
inspections, walk-throughs, and personal reviews.
An inspection is a structured procedure for allowing a team of people to review a
software product.

39

Each participant in an inspection has a defined role and the material to be inspected is
distributed to the participants in advance o f the inspection meeting.
A walk-through is less formal than an inspection and usually takes the form of a
presentation by the programmer/designer with the presenter going through, step-by-
step, how the software will perform.
A personal review occurs where you examine your own software products. The
objective is to find and fix as many defects as possible prior to inspection, compilation
or test.
Apart from code, design and requirements documents, test plans, user documentation
etc. can also benefit from the review process.
PSP data gathered by Humphrey show that extra time spent in reviews is more than
compensated for by reduced time in compilation and testing.

3.5.2 Software Quality Management
There are two elements to software quality management:
• Product quality, and
• Process quality.

3.5.2.1 Product Quality
The first element of product quality is that the software product must meet the users’
requirements at a time when the users need them. Secondly, the software product must
work. If the product is riddled with defects then it will not be used. Thirdly, the
software product must be capable of handling the longer-term quality issues, such as,
maintainability, portability, usability etc.

The manifestation of poor quality software is the concentration in the development
process of finding and fixing defects. By reducing defects in the development process,
focus can then be placed on the other aspects of software quality.

3.5.2.2 Process Quality
A quality process should meet the needs of its users, i.e. software engineers.

4 0

The hallmark of a good software process is that it produces good software products,
consistently.

3.6 PSP3

3.6.1 Scaling Up the Personal Software Process
As the size o f software systems increase, how can the PSP be adapted for use on these

i

larger systems? Large-scale systems must be decomposed into manageable
subprocesses. By refining these, and defining methods, you will be able to create a
vocabulary o f individual processes. These known and repeatable methods can then be
used in scaling up our processes.

3.6.2 The PSP3 Approach
The role o f PSP3 is an example of the personal process for large-scale software
development. The key element in PSP3 is the Cyclic Development Process.
Each cycle is essentially a PSP2.1 process that produces a part o f the product.
During the cycles the reviews and tests are as complete as possible.
Figure 3.1 shows the cyclic development process associated with PSP3.

41

Specifications
I

Figure 3.1 - PSP3 Process

3.7 Using the Personal Software Process
It will be easier to use the PSP if the organisation supports your improvement efforts.
If you are the only person using it, you will find difficulty maintaining the disciplines
required.

42

If it is to be introduced into an organisation then there must be commitment from
senior management, time allocated to it, support given and a schedule for
implementation.

3.8 Personal Software Process - An Analysis
Having looked in detail at the PSP it is instructive to examine what others have to say
about the approaches and techniques the method proposes.
Cusumano, in his paper on the ‘Software Factory’, states that a ‘software factory’
should have measures and controls for productivity and quality. One Japanese
‘software factory’, he studied, set two goals: firstly, the achievement o f productivity
and reliability improvement through process standardisation and control, and
secondly, the transformation o f software from an unstructured service to a product
with a guaranteed level o f quality [CUSU89]. These approaches, he claims, helped the
Japanese produce 50 percent fewer bugs per KLOC and required less maintenance
than US projects.

Grady, discusses, in his study, ways of finding program defects, categorising them and
subsequently analysing them [GRAD93]. His approach was to use inspections, code
coverage, and complexity measures along with testing to uncover errors. The lessons
learned were that changes, prompted by metric results, were the easiest ones for
organisations to accept and implement. Reducing rework was possible using the
proven software engineering methods. Analysis of defects allows you to focus process
improvement decisions on the most important problems and the monitoring and
measurement o f product quality is the single most important performance measure.

Wohlwend and Rosenbaum, in a study of their company’s organisations, carried out
an evaluation to see where improvements in software development capability could be
made [WOHL94], Their improvement efforts included focusing on tracking the
deliverable size and efforts on current projects, and gathering data about code and
testing errors. These are areas which are covered particularly by PSP1 and PSP2.

43

Sharp, believes that the one dominant factor in determining software quality is how
well the project is managed [JOCH95]. He cautions, however, that reliable software
often has fewer features and takes longer to produce. One of the companies Joch,
spoke to talks about the exorbitant cost of fixing a defect when software is in use
compared to fixing it if found during coding ($1000 Vs. $1) [JOCH95],
These companies have managed to reduce their error rates substantially by using code
reviews both for original code and, importantly, for subsequently amended code.

Montgomery, states that though creating reliable software is difficult it is a product of
the management of processes methods and tools [MONT95], Commenting on
NASA’s Software Engineering Laboratory (SEL) he states that their objective is to
produce error-free software. Their approach means that code reading and peer reviews
are used to ensure that the code does what it’s supposed to do and testing is therefore
concerned with quality assessment.

Kitchenham and Pfleeger, in their analysis of quality, show how the degrees of quality
are significant stating that errors in a word-processing package would likely not be
acceptable in a safety-critical environment such as a nuclear-power plant [KITC96].
Measurement, they say, must be able to assess how process quality affects product
quality. Their paper also contains responses from IEEE Software board members to
quality related questions. Roger Pressman (on ‘selling quality methods to
management’) believes you should approach it on the basis of cost savings. Cost data
connected to defects should be collected and the cost of quality determined as selling
factors, he believes.
Ways o f measuring the above are contained within the PSP through its standard defect
measures, cost o f quality measures, and the derived defect and quality measures.

Also in Kitchenham and Pfleeger’s paper, Larry Druffel, when asked about generating
management and employee support for introducing quality practices, believes that
these individuals must be aware o f dissatisfaction with current practices before they
will be motivated to make changes.

44

However, if they have not measured their current process, then they will not be aware
o f what state the process is in.

The PSP through its baseline (PSPO) process will allow initial measurements to be
made and therefore provide an assessment of current proficiency. On the economic
costs o f software quality, Pressman advocates shifting costs, into areas such as
reviews, where higher quality can be produced.
Dromey, warns that the widely-held belief that a quality product depends on a quality
process can mislead if the focus on process comes at the expense of constructing,
refining and using adequate quality models [DROM96]. If a quality product does
indeed depend on a quality process, he states that we should ensure that the product is
developed within a mature, well-defined process. Use of the PSP can provide the path
to this goal.

Lindstrom, details how a large-scale development project can be destroyed [LIND93].
Some o f the pitfalls he encountered included : inadequate tracking and management of
system and software requirements; selection of design, production and test and
integration methodologies that were inappropriate to the development; and a failure
to provide a metrics program that would let managers track the progress of software
production and test. During the development the company used methods that had
previously been successful with small programs. When the system turned out larger
than anticipated, the company was unable to scale up its methods to meet this
requirement.
This capability of scaling up software engineering practices is well addressed by
PSP3.
Another problem the project encountered was the fact that it was ineffectively tracked.
The management believed the project to be near completion and reduced resources
accordingly. This proved disastrous as the project was in fact entering a critical phase
when all resources were needed.
The PSP’s Schedule Planning capability coupled with is concept of Earned Value
provides exactly the sort of information needed to see how closely the project is on
schedule and would help to avoid the sort of scenario outlined above.

45

As Lindstrom says, metrics may not prevent schedule slippage but they allow projects
to be monitored and enable timely, corrective action to be taken.

Reporting from a software measurement conference, Burgess outlines how one of the
contributors warned of fitting historical results to a new project if those results
themselves stem from poorly managed projects [BURG95]. Another contributor
highlighted the crucial role of company management in a successful metrics
programme. Unsuccessful programmes contained staff who felt the data collected was
inaccurate, no feedback was provided and the metrics data was being used
surreptitiously for performance appraisal. The dangers of using metrics in this way are
highlighted by the PSP.

There are some, however, who challenge the primary quality goal of defect-free
software. Yourdon, in his paper, introduces the concept of “Good Enough” software,
an approach, he believes, can be a key factor in the success of software companies
[YOUR95],
He cites the popularity of some of the most successful word processing and
spreadsheet packages. Some of this software, it is widely recognised, contain many
defects, yet judging by sales figures this software is obviously considered “good
enough” by buyers. In conjunction with this he asserts that for many customers how
quickly they receive the software can be more important than the number of faults it
contains as delayed software, even a defect-free product, may mean a lost business
opportunity. While he’s not suggesting that safety-critical systems should be other
than defect-free he raises the important issues o f the time and cost required to produce
defect-free products. In some instances, he suggests, these may not be the highest
priorities.

Carmel, carried out a survey of companies involved in producing software packages
[CARM93]. One of his findings was that developers were aware that users were
prepared to accept some level of defects in software. Significantly, the experience of
these companies was that market early adopters were more prepared to accept a less-
than-perfect product than late adopters; the time-to-market argument again.

4 6

Another interesting finding was that companies felt that introducing quality assurance
would increase development costs and would have such a detrimental effect on
pricing as to reduce overall revenues. The survey also revealed that in the companies
questioned the software developers had little experience or training in quality
assurance. Interestingly, all the companies surveyed were all small software
development environments. Carmel comments that it may not be appropriate to
introduce the process formalisms developed for large-scale development into such
small companies.

Fagan, believes that the successful management of any process requires planning,
measurement and control [FAGA76]. He argues in favour of design and code
inspections as a way of reducing defects in programs thereby improving the quality of
the product. He claims that the cost of reworking errors in programs becomes higher
the later they are reworked in the process, so every effort should be made to find and
fix errors as early in the process as possible. As such he believes inspections, which
result in finding errors early, reduce the overall rework time and increase productivity.
This would concur with the view expressed by Humphrey in the PSP. Indeed
Humphrey suggests that “there is some evidence that inspections are as good as, or
better at, finding the difficult-to-fix defects than is test”.

In his follow-up paper, Fagan, defines a defect as “an instance in which a requirement
is not satisfied” [FAGA86]. He discusses the need to inspect requirements and test
plans. In every instance, throughout the life-cycle, one of the benefits of carrying out
inspections is that they are performed much nearer the point of defect injection than is
testing. This, he says, is achieved by inspecting the output of each operation to check
that it satisfies the exit criteria of the operation. Consequently, this will reduce the
find/fix time and reduce overall project costs. This concept of exit criteria is in tandem
with what Humphrey proposes in the PSP, for each PSP level.

Weller, discusses his company’s successes with software inspections [WELL93].

4 7

During the inspection process a number of metrics are collected including: time to
prepare for the inspection; time to conduct the inspection and defect data including
defect type. This then allows them to execute a defect causal analysis.

The PSP also includes a table of defect types and its author states that as the PSP
matures within companies they can then start conducting defect analyses, to see the
type o f defects being introduced at each stage in the process. These analyses can then
assist in defect prevention. Weller also comments on the reluctance o f some
developers to conduct code inspections prior to testing. He laments that code
inspection after unit test is still more popular even though it has been documented that
this yields far fewer defects. His company’s experience also showed that defect
detection rates were lower when they inspected after unit test and, significantly, there
were more defects in the product after shipping. The self-convincing nature of
following PSP disciplines is important here. By following these disciplines
practitioners can see the benefits they produce at first hand as the metrics are collected
on route. Weller asserts that the following disadvantages are associated with
inspecting after unit te s t :
• It lowers the motivation of the inspection as developers have false confidence in

the ‘tested’ product
• Following test, the temptation exists to bypass code inspection and proceed to

integration test
• Unit testing first reduces the opportunity to save time and resources. A good,

mature inspection process producing good results may allow you to bypass unit test
and proceed directly to integration test

• Inspections often highlight design defects. Waiting until after unit test may
increase rework and, therefore, project costs.

He warns, however, that no amount of inspection can make up for design flaws. The
lesson is to get the design right in the first instance. The PSP’s emphasis on design
verification can help to ensure that the system design is indeed correct.

Davis, in his paper also advocates inspecting code as a much better way of finding
errors than testing [DAVI94].

48

He reports on data that shows that inspections can reduce testing time by 50 to 90
percent. Gilb, quoted in a software quality conference proceedings report, proposes
inspections for all documentation as well as code [MYER93]. He believes that
documents for a project phase should not be accepted unless they exit their previous
phase with no more than a maximum number of remaining defects.

Ackerman et al, discuss inspections and say they are superior to reviews and
walkthroughs as a verification process [ACKE89]. They report on data that show that
inspections reduce the testing effort substantially and that they are between 2 and 10
times more effective at defect removal than testing. Two important advantages of
software inspections, they list, are firstly, that they improve quality by reducing the
number o f defects in the released product and secondly that they improve productivity
by removing defects earlier when they take less time to fix. They also support
inspections by stating that it costs 20 times less to remove defects through inspections
than through tests and that finding a major defect at inspection takes about one hour
compared with about nine hours for testing.

Frewin and Hatton, also comment on the increasing cost of removing a defect the
further its discovery is from its source and that the output from each stage must be
thoroughly reviewed before progression to the succeeding project stage [FREW86].
They also believe that reviewing is the most cost-effective way of removing defects.
Quality management, they state, achieves known and predictable product reliability
which enables the software user to plan and schedule more accurately.

3.9 Summary
As has already been illustrated in this study, most organisations have introduced, or
wish to introduce software process improvements into their development
environments.
For some it has been the adoption of standards. For others it has been the introduction
of a metrics program. For many, it has been the use of software inspections and
review techniques to isolate errors earlier in the development process.

4 9

The quality of the software product is an issue that is facing most companies. Most
have tackled it by concentrating on the quality of the software process believing that a
good product consistently emerging from an ad-hoc process is a remote possibility.
The results detailed by the study have shown the benefits of such process
improvements.
Software inspections have helped a number o f companies to find and fix errors earlier
in the development life-cycle, when it is cheaper to do so. Some have also seen further
improvements with less time spent in unit testing as a result of this. Using inspections,
some have noted productivity increases with products being released earlier and
significantly less rework. For other companies, it has been the introduction of reviews
which has led to improvements.
Software metrics are being used more and more as a way of measuring and controlling
the software process. Organisations have found that in the absence of metrics they are
unaware of the state of their own process. Collecting even basic defect metrics has, at
least, allowed them a preliminary evaluation of their own software capability.
Knowing the type of errors generated and the life-cycle stage at which they are
introduced, organisations have then been able to focus on their development
weaknesses. Improvement efforts in these areas are in the form of defect prevention
methods as opposed to the defect detection approaches o f inspections and reviews.

The study has highlighted the role of management in any process improvement
programme. Company management must be prepared to devote time and resources to
ensure that process improvement measures succeed.
What companies must not do is to use any metrics collected as an instrument in
performance appraisals. Should employees have even the vaguest suspicion that this is
indeed the case then such a programme is doomed to failure and if the company
persists will result in inaccurate metric figures and low staff morale.

While time-to-market emerged for some companies as the primary issue use of the
PSP may not be a deterrent in this regard. With its support for verification measures,
such as reviews and inspections, more defects may be caught earlier in the process.

50

As the studies show, use of such techniques can result in productivity increases which
in turn can aid in faster product delivery. Continued use of the PSP will also result in
a standardised and repeatable process, which can also help in the speedier
development of software. The Personal Software Process contains the appropriate
mechanisms to assist in implementing all the process improvement factors outlined.
It supports the collection of metrics, details the relationships between product size,
development time and productivity and outlines the techniques for removing defects
early and implementing defect prevention programmes.

From the point of view of a small software development company the PSP is
particularly attractive. As with DSDM it provides a defined and documented software
process. However small companies will inevitably have small development teams and
this will assist greatly with the implementation of PSP. Even one person in a small
team using PSP can have a noticeably greater impact on the resultant product quality
than one person in a large team. There is also the potential for such a person to act as a
‘process champion’ with other team members adopting the approaches. PSP is also a
bottom-up approach and is, therefore, more quickly and easily implemented in a small
company. In a larger company PSP would have to be used in conjunction with a larger
process model as it would be necessary to capture corporate-wide metrics and develop
large-team and corporate-based processes.

Taken together, PSP and DSDM offer significant potential for software process
improvement in small companies.

51

Chapter 4 - Assessment of the Software Process
within a Small Company

4.0 Introduction
The purpose of this chapter is to assess the state of process maturity in a small
software company. Without real data on how small companies operate, it is difficult to
determine which process models are appropriate. With this in mind a small software
company was chosen to ascertain what approaches it took to developing software,
what weaknesses existed in this process and where improvements could be made.
This company assessment is divided into two sections. Firstly, a questionnaire was
used to obtain general information on the company’s processes; the questionnaire was
used with members of staff at different levels in the company.
Secondly, having processed the questionnaire responses, I then proceeded to perform
a detailed evaluation o f the company. This is covered in the next chapter.

4.1 Software Process Questionnaire
The use o f a software process questionnaire, in this way, is an attempt to gauge an
understanding of the process and the development environment (Appendix D).
The questionnaire is based on the Software Process Maturity Questionnaire, which has
been developed by the Software Engineering Institute as a method to appraise the
maturity of software development organisations [SPMQ94],
The SEI’s maturity questionnaire identifies key process areas in the development of
software. However, some of the areas targeted in the SEI’s questionnaire are
appropriate for large companies only. In a small development environment, roles are
often amalgamated and the necessary bureaucracy often associated with a large
organisation is mostly absent. As such it was necessary to tailor the questionnaire to
suit the small software house under study.
The approach was not intended as a software capability assessment but as a first step
to gather information about how the company’s software process functioned.

52

The questionnaire was delivered in a structured format with questions being addressed
directly to the interviewee, the responses being documented and any extra relevant
information not covered by the questionnaire being captured. The questionnaire was
completed by members of staff at all levels o f the company, so that a broad range of
views and understanding could be achieved. Respondents were asked to reply ‘Yes’,
‘No’, ‘Don’t Know’ or ‘Does Not Apply’ to a series of questions grouped under a
range of headings which covered all aspects o f the Software Process. The approach I
took to documenting the answers is the same as that used in the SEI maturity
questionnaire and these instructions accompany the questionnaire in Appendix D.

The headings used in the questionnaire were:
Project Review and Sign-Off
Configuration Management
Software Estimation
Metrics
Education/T raining
Project Management
Software Quality Assurance
Requirements Specification
System Design
Implementation
Testing
Operations/Maintenance.

4.2 Questionnaire Findings
The company was assessed under twelve headings.
The figures involved represent the percentage achievement of target.
Target is the carrying out of all the activities, represented under each heading, at
all times.

53

Target is 100%.

Process Area % of Target Achieved

Review and Sign-Off 30
Configuration Management 27
Estimating 31
Metrics 0
Education/T raining 32
Project Management 46
Software Quality Assurance 0
Requirements Specification 33
System Design 27
Implementation 21
Testing 13
Operations/Maintenance 27

These results are represented graphically in Figure 4.0.

54

Pr
oc

es
s

A
re

a

Software Process Maturity Chart

Operations/Maintenance

Testing

Implementation

System Design

Requirements Spec.

Project Management

QA

Configuration Mgt.

Education/Training

Metrics

Estimating

Review and Sign-Off

0 10 20 30 40 50 60 70 80 90 100
% of Target Achieved

Figure 4.0 Company Process Maturity Chart

Below is a detailed record o f the responses and any accompanying comments.

4.2.1 Project Review and Sign-Off % of Target Achieved 30
The questions related to whether senior management had a mechanism for reviewing a
project’s status and whether line managers sign off schedules and deliverables.
Comments suggested that

- a mechanism existed but was not well documented
- the mechanism used was an inform al discussion
- deliverables are signed-off bu t schedules are n o t

55

4.2.2 Configuration Management % of Target Achieved 27
The questions in this section referred to whether the company had a configuration
management function, whether this process was documented, how changes were made
to software and how software releases were handled.
Comments included :

On whether mechanisms existed for controlling changes to the code
-U p to the individual programmer
- Executed by the Project Team
- Responsibility o f management

On procedures for ensuring changes are reflected at every life-cycle stage
- Procedure exists on Unix platform but not on PC
-U p to the individual programmer
- Ad-Hoc.

4.2.3 Software Estimation % of Target Achieved 31
The questions in this section inquired whether formal procedures existed to estimate :

a) Software Cost
b) Software Size
c) Software Development Schedules.

Responses to:
a) Based on past experience and is documented

Estimates for man-hours only and on an individual basis
An informal procedure exists

b) Up to the individual programmer
c) Based on past experience and documented

4.2.4 Metrics % of Target Achieved 0
This question asked whether any statistics, on software code and test errors are
gathered.
From the responses it was clear that no metrics are collected, however one respondent
commented that perhaps they may be collected on the current project.

56

4.2.5 Education/Training % of Target Achieved 32
The questions in this section referred to whether:

a) Training activities are planned
b) Do staff receive the necessary training
c) Are sufficient resources provided for training
d) Are training programmes regularly reviewed.

Comments
a) Activities not formally planned

Not very effective
Few courses for software developers

b) Different types o f training are received
There is no time available for training

c) There is a significant amount o f ‘on the job ’ training
No training budget exists
Training is insufficient

d) Enough training is not being done
Training programmes not formally reviewed
A training process is required

4.2.6 Project Management % of Target Achieved 46
Respondents in this section were asked about

a) Project Planning
- Do procedures exist and are they followed
- Are project activities and deliverables documented and are estimates

made in advance
b) Project Monitoring

- Do procedures exist and
- Are actual results compared with estimates and is action taken

57

a) Procedure exists but is not documented
Procedure exists only for European Projects
Perhaps a procedure exists fo r European Projects
Procedures are followed for European Projects
The following ofprocedures is application dependent
Activities and deliverables are documented fo r European
programmes
Programmers get a verbal indication and 1 page document on
what system is supposed to do

b) Some checking o f actual results against estimates is done by
General Manager

4.2.7 Software Quality Assurance % of Target Achieved 0
Questions in this section related to :

a) Whether the firm had a documented procedure for implementing SQA
b) Whether the organisation specified measurable quality goals
Comments

Company has used questionnaires to customers to determine quality
ofproduct

4.2.8 Requirements Specification % of Target Achieved 33
Questions asked here included

a) As requirements change are amendments made to plans, estimates and
documentation

b) Does a written procedure exist for documenting requirements
c) Is the requirements process subject to SQA review
Comments

In relation to c) Discussions take place concerning progress

Comments

58

4.2.9 System Design % of Target Achieved 27
Questions asked here included

a) As design changes are made are amendments made to plans, estimates
and documentation

b) Does a written procedure exist for documenting design
c) Is the design process subject to SQA review
Comments

a) Up to the individual software developer
There are no formal plans, estimates or documentation
Sometimes

c) Ad-Hoc

4.2.10 Implementation % of Target Achieved 21
Questions asked here included

a) As design defects are discovered are amendments made to plans,
estimates and documentation

b) Does a written procedure exist for documenting programs
c) Is the programming activity subject to SQA review
Comments

a) Up to the individual programmer - there are no form al plans,
estimates or documentation

b) Not as detailed as it might be
c) Testing is used to check functionality

59

4.2.11 Testing % of Target Achieved 13
Questions asked here included

a) As design defects are discovered are amendments made to plans,
estimates and documentation

b) Does a written procedure exist for performing software testing
c) Is the testing activity subject to SQA review
Comments

a) Up to the individual programmer - there are no formal plans,
estimates or documentation

b) Incremental or ad-hoc testing is used

4.2.12 Operations/Maintenance % of Target Achieved 27
Questions asked here included

a) As system defects are discovered are the necessary amendments made
to documentation

b) Does a written procedure exist for documenting maintenance activity
c) Is the maintenance activity subject to SQA review

Comments
a) Amendments are made to programmer’s documentation
b) Log is kept by programmer

A report will be filed
c) Details o f maintenance activity will be kept by the programmer.

4.3 Analysis of Findings
Cursory examination o f the findings would suggest that the company has much to do
to improve its software process. However, while the results highlight deficiencies in
some areas they also reveal that significant progress has been achieved in others.
A lot o f activity is carried out within the company in an informal way. This would be
typical for a small company. Procedures and activities are not documented.

60

Information is communicated verbally and each employee understands where he/she
stands in relation to the development activities. However without written procedures,
misunderstandings do arise. Some respondents believed certain activities were
documented. In answer to the same question others felt that activities were not
documented but were understood.
On occasion respondents at managerial level felt the responsibility for certain actions
lay with the individual programmer while in response to the same question developers
felt that the responsibility lay with management. In some instances management were
aware o f certain tools which were available to assist the development process whereas
developers were unaware of their existence.

From the responses, Project Management scored highest with the most formal
approaches being adopted in this area. It is clear that procedures do exist for managing
software projects however, they are not documented. Also, all development staff
understand and agree their roles in advance o f projects. For some developers, project
plans are created to document the activities and deliverables for each project stage.
In the area o f control and monitoring, estimates are made in advance of the project
and action is taken if the actual figures deviate from the estimates. The drawback is
that much o f this is not documented or proceduralised.
There are two process areas where the company has yet to establish a presence :

Metrics and
Software Quality Assurance.

There was unanimity in the replies to the questions on Software Metrics and Quality
Assurance. No attempt has been made, by the company, to collect any metrics during
the software life-cycle. Also, no goals have been set for assessing product quality.
The only tool that has been used to date to determine the quality of the product is the
elicitation o f comments from customers. On occasion, customers have been issued
with questionnaires to determine their satisfaction with the delivered system.
In the other areas such as Configuration Management, the Specification of
Requirements and Education and Training the organisation has done some work and is
edging towards a more mature process.

61

It is worth noting that the company’s process becomes less mature as you move from
the Requirements Specification through System Design and Implementation to
Testing. Formal, documented standards and procedures are less apparent as one gets
to the programming/testing level. Furthermore, because of the absence of any QA
techniques, no guarantee can be given that the next system to be produced will be of
the same quality as its predecessor. In the current situation much depends on the skill
and dedication o f the employees.

4.4 Sum m ary
While a company remains small it is easier for management to retain some control
over the quality of its products.
However, to retain a high-level of quality in software, as the organisation expands, a
quality-oriented software process must be established. This will help to ensure that the
systems which future customers receive will be o f comparable standard to those which
have already been delivered. Quality cannot be added to a software product at the
testing or delivery stage. It must be engineered into the product as it is being
developed. Building quality assurance into the software process will help guarantee
the quality of the delivered system and ensure customers remain satisfied.
Whilst in the initial period this will be time-consuming the streamlining of the
software process will enable the company to develop future systems more quickly,
produce more accurate estimates of development time and have confidence in the
quality of the final product.

62

Chapter 5 ~ Evaluation of the Development
Environment within a Small Software Company

5.0 Introduction
Whilst the process maturity questionnaire gave a general overview of the company
processes, it raised many conflicting views on how the software process operates and
highlighted a lack o f understanding or communication difficulties amongst
employees. The purpose o f this chapter is to attempt to overcome the confusion, that
exists within the company, on roles, responsibilities and the operation of the software
process. The approach taken, therefore, was to look in detail at how individual
projects are tackled within the company, the forms and procedures used, and the
development roles allocated to each employee. As part of this examination of the
company, some recommendations were made on small measures that could be taken
to improve the development process in the short term, prior to implementing more
wide-ranging longer term improvements.

5.1 Process Assessment - Environment Evaluation
Prior to discussing the environment evaluation, some background company
information is useful.
• Most of the company’s products are based on Multimedia applications.
• All of the company’s software output is bespoke. They have the customers in

advance of development, and manufacture the product according to the user’s
specific needs.

• The user is involved at all stages of development. Within the multimedia area,
feedback and input from the user are paramount if the system is to achieve its
goals. Development is also an iterative procedure with changes and amendments
being made based on user reaction.

• Projects may use different software development environments and hardware
platforms.

63

The organisation in question is keen to adopt a quality approach to manufacturing
software. The Centre for Software Engineering suggest that if a quality software
system is to be established then it is essential that a particular life-cycle approach is
adopted [CSE92]. With this in mind it was imperative to ascertain if the company
developed products within any particular life-cycle model. This would be important as
a future starting point for developing a standard software process within the company.
Although the company believed that it used no particular development model,
conversations with the development staff did suggest that there was an outline of a
systematic method. However, this method was not ‘visible’ to the development staff
and was not documented.

From my conversations with them it became more apparent that they had a way of
doing things which had a degree of consistency attached. The approach could be
diagrammatically represented as Figure 5.0. The design, construct and test elements,
combine to form one iterative phase which is predicated upon user reaction to the
delivered product. Ultimately, when user satisfaction is achieved the system is
released. Although not always visible to the organisation this is the way they approach
software development.
Significantly, the approach used by the company is closely aligned to the
Evolutionary Development Model as outlined by Folkes and Stubenvoll [FOLK92],
The evolutionary approach centres around prototyping. The developed prototype is a
working model of the system in its own right. The user can then evaluate the product
and recommend changes. Based on the user’s feedback the prototype may then be
used to develop the next version of the system which the user can subsequently
evaluate. The advantage o f this technique is that users get to see a version of the
system very quickly and are in a position to assess how closely their needs are being
met.
Also the approach allows changes to the user’s requirements to be incorporated at the
earliest possible opportunity.
The user can also determine, very early in the process, if, say, certain system
functionality is no longer needed. This feature of the method can save unnecessary
development time.

64

Analysis of User
Requirements

I
System design

1

System Construction

J
System Test

J
System Release

.
System Maintenance

Figure 5.0 - Company Development Paradigm

System Requirements

System Outline
Prototype

65

5.2 Development Strengths and Weaknesses within the
Company

5.2.1 Development Strengths
Apart from the evidence provided by the questionnaire responses, the employees were
also asked for their opinions on the company’s strengths and weaknesses.
These are contained in Table 5.0.

Table 5.0 - Company Strengths and Weaknesses as perceived by its employees
Company Strengths Company Weaknesses
Ability to get things done
Good Working Environment
High Quality Work
Use o f up-to-date tools/technology

Lack o f Documentation
The Absence of Procedures/Standards
No Measures of Quality
Insufficient Software Reuse

A wider look at the organisation’s development process, introducing the questionnaire
responses, shows that there are evident strengths within it. These lie particularly in the
extent o f user involvement in the development and the use of up-to-date tools and
skilled personnel. Having extensive user involvement will help ensure that
requirements are met and will improve the prospect of satisfaction with the delivered
system. However, the development process, in its present form, does have some
noticeable drawbacks and these will now be examined.

5.2.2 Development Weaknesses
Examination of the process, however, based on the questionnaire highlights more
fundamental weaknesses not perceived by the employees. Apart from the absence o f a
defined software development process the company lacks formality and standards in
other areas as outlined in Table 5.1:

66

Table 5.1 Company Development Process Weaknesses in the area of
Standardisation and Procedures

Fundam ental Development Process Weaknesses
1. No standard User Requirements Document
2. No standard Design Document
3. No programming standards exist
4. Programmers are not required to produce Unit Test Plans
5. No formal independent testing of modules
6. No formal documentation of errors found during acceptance testing
7. No recording of live fault reports and change requests from users

1. No Standard User Requirements Documentation - Currently, the company
works closely with the users in order to produce the User Requirements Specification,
however, no standard document is produced at the end of this phase. Another problem
is that no common format has been devised by the company for what should be
included in/excluded from a User Requirements Specification. The absence of an
agreed standard for this document will lead to confusion and misunderstanding on
individual projects and prevent repeatability of success on subsequent projects.

2. No Standard Design Documentation - The company produces, initially, at
this stage a Systems Requirements Document. Unfortunately, this also fails to
conform to a standard layout with the result that the same problems associated with
the User Requirements Document are evident. The organisation then produces an
outline of the system which will be used in the prototyping stage. This again does not
conform to any agreed standard. The document given to the developers is invariably
composed of a few short pages o f text. The absence of standardised documentation
and approaches to design has many knock-on effects.
The system developers have to try and interpret a document written in purely natural
language. The document they receive may bear little resemblance in format to
documents previously received. For the developers to try and interpret this document
unambiguously is an extremely difficult task.

67

As a result on many occasions the System Designer is required to sit alongside the
programmers, often as they enter code, to ensure that the design requirements are met
as closely and unambiguously as possible. Equally importantly, short and quickly
prepared design documents, such as those issued to the programmer, cannot be used to
any great extent during integration testing o f the system and their overall contribution
to ensuring the quality of the delivered product is at best negligible.

3. No Programming Standards Exist - The absence of programming standards
will have a particular effect on system maintenance complicating error fixes and
system enhancement.

4. No Unit Test Plans are Produced - The fact that no unit test plans are
required from programmers makes the testing process less reliable. Formal test plans
should at least ensure that the major system functionality is fully tested. However, unit
test plans are also particularly important when program amendments are required after
the product has been shipped. Their absence leaves the testing process less formalised
and more subject to individual programmer diligence.

5. No Formal Independent Testing of Modules - Without independent testing,
the emphasis is solely on programmers to ensure that programs are defect free. Also,
without a defect detection and prevention system in place testing is used as the main
error finding mechanism. Further, because no unit test plans are produced, the quality
of the finished product will vary from project to project.

6. No Formal Documentation of Errors - Without this, measurement of the
process cannot take place. Without measurement the company remains unaware of its
strengths and weaknesses and this will render process improvement extremely
difficult.

7. No Formal Recording of Fault Reports and Change Requests from Users
Without logging these, the company is unaware of what problems their products are
encountering in the field.

Also the number of errors found after shipping are not being distinguished from
change requests or enhancements. Without this analysis the company cannot measure
the quality o f its products.

5.3 Comments on the Development Process
The study of the development process provides a snapshot o f how the company
manufactures its software products. There is no doubt that the company has achieved
a considerable degree of success in its chosen marketplace. However, as can be seen
from the analysis of the development environment this is due to the quality and
technical skill of the staff and their hard work and endeavour rather than the
application o f standards and procedures and the creation of a quality process.
Discussions with the company have raised a number of important issues:
• They are keen to develop a quality process
• They use and are prepared to use up-to-date software tools and techniques
• They are prepared to address the deficiencies in documentation and standards
• They are prepared to make the necessary adjustments to the way they work in order

to create the quality-oriented environment
• They are interested in collecting metrics and commence attempts to measure the

process
• The commitment exists, from top management, to make the process work.
The above factors contribute greatly to the prospects of making a successful transition
to a quality oriented software process.

5.4 Starting Point for an Improved Process
Having analysed the company and process approaches, which offer potential usage
within small companies, this study will now examine how the transition can be made
from the current company development environment to a new one based on quality.

With this in mind the DSDM approach to development in RAD projects could
profitably be used here.

69

DSDM would provide the company with the quality oriented life-cycle it desires. The
disciplines imposed by DSDM would introduce standardisation into an area where it
is lacking. However, one of the advantages o f DSDM is the flexibility it allows in
development. The concentration is on fulfilling business requirements and so the
company could easily meet a second desire o f using up-to-date methods and tools as
the RAD/Pro to typing environment encourages this.
Furthermore DSDM’s features do not impose unnecessary bureaucracy. This would be
welcome in a small dynamic company such as this one. Its success involves getting
things done and over-emphasis on documentation or procedures could stifle this
attribute.

The company also expressed an interest in collecting metrics. Use of the PSP would
provide an opportunity to do this. Metrics are a by-product of using the PSP allowing
developers to track and measure their own process. Introducing metrics at an
individual level will encourage their acceptance and allow for subsequent company-
wide implementation. PSP will also be accompanied by standardisation and
documentation. However, this will have to be introduced carefully as excessive
recording and documentation could hinder development momentum. Nonetheless, if
individual developers can adapt to a personal software process then the resultant work
could have increased quality incorporated as a by-product.
Because o f the noted deficiencies in the testing process the company have also
expressed an interest in defect prevention (the hallmark o f a good quality
development process), and a more formalised testing process. A vague and ill-defined
inspection process takes place currently. This mainly consists of an informal review of
design documents and code. However, those charged with the task have not received
any formal training in the inspection process.
The company is also interested in using software tools to assist the inspection process.
Code analysers may be able to offer assistance in this area.

Developing a standardised software process will require the involvement and
commitment o f personnel, at all levels of the organisation, over a lengthy period of
time.

70

There are, however, some simple measures, involving the standardisation of
documentation, which could be implemented immediately and would assist in
defining a software development process.

5.4.1 The Requirements Document
At present the requirements document agreed between the user and the analyst does
not conform to a particular standard. The requirements document contains both the
requirements definition and the requirements specification. The IEEE Standard 830
relates to Software Requirements Specifications and defines the areas to be included
in such documents [IEEE84]. The requirements document should be composed of a
series of chapters and, at a minimum, should include the following :
• Document title, Date of Production and Version Number
• Table o f Contents
• Introduction (which may include background to and scope of the system)
• General Description of system
• Detailed Functional Requirements (This may include the detail of each of the

system’s functions; the input, processing and output involved; hardware and
software requirements; database or file requirements; screens used etc.)

• Performance Requirements
• Glossary of Terms
• References (used in the document)
• Appendices (These may include, layouts of the screens as they occur during

system operation, a list of the error messages within the system etc.).
If the company choose to follow a particular system development methodology then a
format for the Requirements Document may be imposed.
The requirements document could then include diagrammatic sections encompassing
such as, Data Flow Diagrams, System Diagrams, Entity Relationship Diagrams,
Structure Charts, Decision Tables and Decision Trees and, if Object Oriented
approaches were being used, Object Models, Object Interaction Diagrams etc.

71

5.4.2 The Test Plan
At present no test plans are produced either for unit testing or system testing.
While the detail o f the design and build elements of the software life-cycle will be
examined in greater later in the study, the company should endeavour immediately to
devise a standard system test plan template. This should include, as a minimum :
• Document Title
• Project or System Title
• Test Plan Author
• Date o f Creation o f Test Plan
• Date (or range of dates) when Tests executed
• And for each Test

- Test Number or Id
- Test Description
- Screen Sequence (if any) Expected
- Expected Test Result
- Actual Test Result
- Fault Description (if any).

5.4.3 Using Fault Reporting
When the developed system goes live, even with a quality-oriented development
process in place, after a period of time some software faults may emerge. However,
given that errors will arise it is useful if a standard document, called, say, a Fault
Report Form, is used to capture them. The company may also utilise this form when
recording errors found in final testing, when, for example, tests are being executed in
the public domain.

72

The form should contain the following:
• Document Title
• Project or System Title
• Fault Number or Id.
• Date Fault Occurred
• Description o f Fault (including Screen Reference, Data Used etc.)
• Name of individual using system who encountered the fault
• Date of Fix
• Description o f Fix
• Modules Amended
• Screens Amended
• Author of Fix.
Two files should be kept of the Fault Report Forms. One of these will contain
outstanding, or unfixed errors, the other will contain forms where the errors have been
fixed and a new software release has been issued to the user.
Having standard forms like these allow an archive of a system to be maintained. It
may also be useful in defect analysis studies of the system and could be used in the
collection of metrics.
Appendix A shows a proposed layout for such a form.

5.4.4 Change Request Form
When a system has been live for some months users will often request a change to the
system.
This may be for a number o f reasons:

- Because a bug has been encountered
- The company wants to incorporate extra functionality into the system
- New legislation has been introduced changing the way documents are
produced

- A new management team has changed the way the company does business.
Any requests for changes to the system should then be recorded on a standard form.

73

This should include the following:
• Document Title
• Project or System Name
• User Name
• Date o f Change Request
• Change Request Number or Id.
• Description of Change
• Reason For Change
• System Error/Enhancement Indicator
• Date of Change
• Description o f Change
• Modules Amended/Added
• Screens Amended/Added
• Author o f Change.
When a Change Request is subsequently executed, the standard test plan can be used
for a regression test to ensure the change has not adversely affected any other system
modules. Apart from the cross-referencing capabilities the archiving of Change
Request Forms in the same manner as Fault Report Forms will contribute towards
defect analysis and metrics collection. Appendix B shows a proposed layout for such
a form.

5.5 Summary
The analysis of the company’s operating methods has shown that software is
developed, primarily in an ad-hoc fashion with limited standardisation and
reproducibility. Significant changes are required to the software process if it to be
standardised and capable of being both measured and continuously improved. The
document standards outlined in 5.4.X are not proposed as a solution to the problems
inherent in the company’s software process. They are, however, suggested as a
starting point for the company to begin the process o f drawing up standards and
procedures. Moving from there to having a defined software process in place requires
substantially greater changes.

74

The next section of the study focuses on these changes and recommends the use of
DSDM and PSP and a means of achieving a defined, documented and measurable
software process.

75

Chapter 6 - A Software Process for RAD

6.0 Introduction
So far the study has outlined the different types of process models that are available to
software developers and has looked in detail at two particular models; DSDM for
supporting RAD projects and PSP for improving the capability of individual
developers. The study then examined a small software company with a view to
determining the process used, the difficulties encountered in developing software and
potential solutions to overcoming these difficulties. The purpose of this section is to
propose how combining DSDM and PSP can be used as a solution to the software
process problems experienced by the small company studied and other similar small
companies. There are obviously certain issues to be examined when implementing
new disciplines such as those contained in DSDM and PSP and these are discussed
first. However, like any process, in order to determine the success of using these
models, it is necessary to measure their effectiveness. With this in mind a range of
metrics are suggested which can help measure this new develop environment and
provide a roadmap for improvement.
Throughout this chapter, the phrase ‘the company’ refers to the company assessed and
evaluated in Chapters 4 and 5.

6.1 Implementing a Software Process for RAD
Small companies looking to develop and use a standard software process need a
starting point. DSDM and the PSP provide it. As the company works extensively on
multimedia software and uses RAD tools and techniques, such as prototyping and
iterative development, any process must facilitate these approaches. DSDM supplies
this framework. Companies adopting this paradigm have given milestones and targets
for which to aim. The Business Study and Feasibility Study elements of DSDM
include the initial documentation standards which this company desires.
DSDM discusses what should be included in the Feasibility and Business studies and
the accompanying exit criteria.

76

This is a critical starting point for the company as they are made aware of what
documents are appropriate at each development stage and what should be included in
those documents. The life-cycle framework also provides the company with a
roadmap for development by clearly illustrating phase deliverables and resource
requirements, thus allowing project monitoring and control to take place.

Working in the other direction, from the bottom-up, the PSP provides individual
developers with the framework to develop and improve the own process. While
DSDM provides the life-cycle around which the entire company can subscribe, the
PSP allows individuals to improve their own performance. The PSP crucially imposes
the collection of measures about the subscribing developer’s performance. As has
been stated previously in this study, one of the best ways to encourage process
improvement is through the use of metrics. If individuals can witness the benefits of
measurement then this could act as a precursor to a company-wide metrics
programme. A company-wide programme would provide the springboard for
significant process improvement. Used properly, metrics can supply the crucial data
about an organisation’s performance, highlight development strengths and weaknesses
and lead to measurable improvement. However, meaningful metrics can only be
collected if the development process is standardised and consistent which brings us
back to adopting an appropriate life-cycle model.

A good approach to examining how to implement DSDM and the PSP into a small
company is to use the Capability Maturity Model (CMM) as a benchmark for
comparison. While CMM is primarily aimed at large software organisations, many of
its ‘key process areas’ are equally applicable to small software development units.
The DSDM consortium state that introducing DSDM will help a company eliminate
some of the ad-hoc practices associated with CMM level 1 and will address the key
process areas specified by level 2. The PSP, on the other hand, covers key process
areas from level 2 of the CMM, right up to the highest level, level 5.

Also, DSDM is an entire life-cycle approach. In the main, the PSP concentrates on the
detailed design, coding and testing phase of projects.

7 7

Only when the PSP is implemented and fully understood by development staff could
it be extended to other life-cycle areas. At that point the cyclic development process
offered by PSP3 could be used in conjunction with DSDM.

The PSP is, essentially, a “metrics-driven” approach, with the measures collected
during development being used to drive future changes and adjustments to both the
process and software engineering practices.
DSDM is, on the other hand, a “requirements-driven” approach, with the emphasis on
meeting user/business requirements in a short time-frame.

While there are major differences between DSDM and PSP and in how they
can/should be used, there are areas for productive cross-fertilisation. The
methodology, proposed in this study, can harness and integrate both paradigms.

6.2 Using DSDM within the Company
Certainly for a company, such as the one highlighted in this study, where there are no
defined processes in place, DSDM is a good place to start. There are two questions
which need to be answered:
• Is the organisation suited to the introduction of DSDM?
• Are the projects to be developed suitable for use with DSDM?

In answer to the first question, an organisation with no defined process and operating
in an ad-hoc fashion certainly needs to begin by adopting a particular life-cycle.
The adoption of a life-cycle is the first stage in process definition. At the fulcrum of
the DSDM approach is the use of prototyping. This brings with it its own demands -
an iterative approach, developers capable of doing analysis, design, coding and
testing, strong user interaction, a commitment to deliver a product quickly, and
expertise in using development tools. Because of these strong demands, not every
development environment is suited to the introduction of DSDM. However, the
company featured in this study is a potentially good environment for the introduction
of the method.

78

Furthermore, the type of applications developed by the company encourage a
prototyping development approach. There are a number of important points which
favour the use of DSDM within the company and these are documented in Table 6.0.

Table 6.0 - Factors which favour DSDM usage within company
Factors Favourable for DSDM Usage
1. Highly-skilled Development Staff
2. Company application area (Multimedia) already includes major User Involvement
in Development
3. Prototyping techniques are currently employed
4. Expertise in latest RAD and software tools
5. Senior Management are committed to improving quality
6. Desire to get products onto the market more quickly

1. The company is small with multi-skilled staff. With current projects, many staff are
carrying out analysis and design tasks in tandem with coding and testing. They
develop bespoke systems with a particular emphasis on the multimedia area.
This, in turn, provides several further DSDM-friendly factors (user interaction,
prototyping/iterative development, RAD tools).
2. Writing multimedia software requires a significant user involvement. One of the
primary factors in multimedia applications is the user interface. A good user interface,
requires significant user involvement during its development, a factor essential to
DSDM.
3. With such applications, there will be a large component o f iterative development.
Prototypes will be written, demonstrated to the user and, based on user reaction and
feedback, a new improved prototype will be developed. This process will continue
until such time as the user requirements have been satisfied.
4. Another factor is the use of development tools. This company, by the nature of their
business, are using the latest development tools. Prototyping requires tool support. A
dynamic organisation, containing skilled staff, such as the one examined in this study,
is more open to the introduction of new technology.

79

5. There is senior management commitment to process definition and improvement.
Also, there is a drive towards quality as a factor in competitive advantage, particularly
as some company projects involve European partners.
6 . They wish to get their products on the market quickly as they again believe there is
competitive advantage in this.

6.3 How Will using DSDM Benefit the Company?
DSDM will benefit the company in both process and product terms.
In section 2.10, the general benefits from using DSDM were documented. But there
are some additional benefits for the type of company addressed in this study.
Initially, the company will be able to adopt a life-cycle model for its prototype-driven
development. This will be the first step in process definition.
The ad-hoc system currently in place leads to lack of developer understanding, regular
requests for clarification of program specifications from developers, rework, the
absence of process measurement, no objective mechanism for assessment of process
or product quality, the absence of scheduling, tracking and control mechanisms and
the likelihood of being unable to repeat successful development approaches on
successive projects.

Introducing a life-cycle model will provide a standardised software process from
which to baseline development.
In 2.5 the DSDM principles were outlined. These fundamentals must be in place if the
benefits detailed above are to be achieved. Significantly, several of these factors,
including working with users, iterative and incremental development, the ability to
reverse amendments during development, the baselining of requirements at a high-
level and the co-operation o f all relevant staff during development, are already in
operation in the company. What is absent is the documented and defined process in
which these factors can be optimally used. The use of DSDM, by the company, will
provide this framework. Then with DSDM in place, the remaining fundamentals can
be introduced.

80

In 2.5.1, the type of applications, suggested by the consortium, as suited to DSDM are
listed. The first of these are applications where the user interface is of prime
importance and where functionality is clearly visible. Multimedia applications, the
primary application area of the company, unquestionably come into this category. The
fact that such applications are so fundamental to the company makes the introduction
of DSDM easier as there will be a greater choice of projects on which to pilot the
method. Also because developers are more attuned to this iterative/prototyping
approach, acceptance o f this change will be more straightforward and the disciplines
and rigours attached will seem more intuitive. All of these factors enhance DSDM’s
chances o f acceptance and success within the company.

But what o f the critical success factors listed in 2.5.3?
This is a more subjective area. Certainly the factors which are development specific,
such as the use o f prototyping and the adaptation of the latest tools and techniques are
already in place within the company. What is less definite is the role of, and the access
to, end-users, which is also required for success with DSDM.
The company operate as a software house. They write bespoke software for third
parties. The concise role, which end users will play in any project, will depend on the
organisation they represent. In companies where software is being developed for
internal consumption then it may be easier to guarantee the required commitment of
end users. Where third party bespoke development is involved, this is not so easy to
ensure. If DSDM is to be used successfully, the company must convince the purchaser
of the overriding importance of its having sufficient access to its users. If, however,
the company does not have ready access to the purchaser’s end users then the
potential for using DSDM with the project is reduced, because in this case the ability
to consult readily regarding requirements, prototypes and the user interface is
diminished.

The company has, however, operated in such environments previously. Some of the
work undertaken has involved European partners and system development has been
shared. The company has foreseen the difficulties that such developments may
encounter.

81

As a result it has successfully introduced up-to-date technologies to reduce risks.
These technologies include ISDN which is installed within the company and available
externally, videoconferencing facilities and extensive electronic mail and Internet
connections. These innovations can ensure sufficient project momentum and help
counter project risk associated with lack of direct access to users.

I f the company has doubts about user involvement and support for the project, then
the use of DSDM should be project specific. Because user involvement is paramount
to success with the method, this should be evaluated initially to determine if DSDM
can be used. I f the requisite level of user involvement is not present then another
approach should be adopted. This could take the form of prototypes being used in the
early development stages to clarify user requirements and then, when this is achieved,
the requirements could be frozen and a waterfall type approach used to complete the
project.

6.4 Using PSP within the Company
As has already been illustrated in this study, the PSP is an attempt to scale down
software engineering best practices to the individual level.
The potential benefits of introducing the PSP are substantial and its virtues have
already been outlined in section 3.1. The analysis offered by Grady [GRAD93] is
important in this context, where he discovered that changes to software development
methods were easiest for employees to accept if backed up by metrics findings.
The results of the software process questionnaire discussed in Chapter 4 o f this study,
showed that there was a desire to introduce standardised ways of working. The
employees believe that they produced good quality products and would be happy to
have this ‘proven’. With this background the chances of the PSP gaining widespread
acceptance and usage within the company are enhanced.

Earlier in the study we saw that the company had not implemented any form of
metrics programme. Thus, it was impossible for them to ascertain their performance
and to gain any objective assessment o f their process and product quality.

82

The PSP enables metrics to be gathered as part o f a defined process and as a by­
product o f normal working.
The factors which favour the introduction of PSP into the company are outlined in
Table 6.1.

Table 6.1 - Factors which favour PSP usage within company
FACTORS FAVOURABLE TOWARDS PSP USAGE
1. Commitment to quality
2. Desire for documented process and standardisation
3. Desire to commence metrics gathering
4. Skilled, enthusiastic developers
5. Small development staff complement

For this company the PSP will be of particular use where waterfall-type approaches
are used for project development, or as cited earlier, where ready access to users is not
guaranteed. However, PSP disciplines can be introduced with DSDM projects and this
will now be examined.

6.5 A New Development Environment
While the structure and approach of DSDM and the PSP disallow easy integration of
the two methods, there are many opportunities for fruitful cross-fertilisation between
them. DSDM was created to provide a defined life-cycle for RAD applications while
the PSP was bom out of the best practices inherent in the waterfall approach to
software development.
However, taken individually neither approach offers the software process that is
necessary for the company to achieve software of measurable quality in the long run.
While DSDM offers a ready-made life-cycle for RAD it is weak on the application of
quality measurement techniques and metrics collection. PSP, conversely, offers
process improvement at an individual level but is not RAD-oriented. Neither does it
offer a life-cycle that can be used on a team-wide basis. Further, its focus is on the
program design and coding elements of software development.

83

Taken together DSDM provides the life-cycle and framework which can be used by
RAD teams and PSP offers the quality control mechanisms that are absent in DSDM.
The PSP and DSDM can, therefore, be combined to form a quality software process
for RAD, which will satisfy the software process requirements of the company.

6.5.1 A Quality Software Process for RAD - Combining DSDM and
PSP3
PSP3 offers the closest match with the objectives and framework of DSDM.
PSP3 is the scaled-up version of the lower PSP versions and is suitable for larger
projects involving more than one developer. PSP3 is a series of repeated PSP2.1
elements with each iteration increasing product functionality or system capability.
Figure 3.1 has already illustrated the PSP3 life-cycle. The Requirements and Planning
stage, of PSP3, carries out similar functions to DSDM’s Business Study; The High-
Level Design phase resembles DSDM’s Functional Model Iteration; and the Cyclic
Development section is very much akin to the Design and Build Iteration in DSDM.
Where DSDM scores over the PSP, for the type of applications used by the company
in this study, is the increased emphasis on iteration particularly in the Functional
Model stage. PSP3 is premised on the fact that the system requirements and the
system design can be baselined and following this the system can then be developed
using a sequence of increments. DSDM, by contrast, believes that the system
requirements are to some extent fluid. While the Business Study will endeavour to
baseline high-level requirements, it is assumed that lower-level requirements may be
amended during development. Indeed if time pressures mean that the full system
cannot be delivered within the allocated timeframe, then some functionality may be
deferred to a future release. Implementing a development approach such as this within
the company would be possible as a degree of iterative development takes place at
present. Thus, what is required is that the existing iterative techniques are subsumed
within a DSDM framework.

However, the PSP3 method does have some useful features which could be adopted
within a DSDM project. PSP3 promotes some activities also argued by DSDM. PSP3
includes unit and integration test within each of its development cycles.

84

This is particularly important as each increment is adding extra functionality to the
previous increment. If there are residual defects in the initial increment then these may
cause a ‘ripple’ effect in subsequent increments. Furthermore, subsequent increments
must also find these defects. PSP3 insists on the use of reviews to prevent this. After
each o f the early cycle stages, detailed design, test plan development and coding a
review is suggested. Closely adhering to this framework will ensure that ‘clean’
versions of software are used as input to subsequent system increments. This factor
should be built into DSDM developments. The company could incorporate this
relatively easily.
The software process questionnaire results has shown that reviews are already used
within the company albeit in a haphazard and unstructured way. As the commitment is
already present to use reviews some extra training o f appropriate employees will
improve the usage of review techniques.
The questionnaire responses also indicate that in this small company developers have
great responsibility and roles are not as rigid as perhaps in a larger company.
Developers, therefore, have experience of not just coding but analysis and design also.
This will be invaluable for adopting DSDM as speed of development is maintained if
the development team are skilled and empowered to make decisions.
While the fact that only programmers tested their own modules was seen as a
weakness in the process, based on questionnaire responses, it is inevitable that this
will happen in DSDM projects. This is because momentum must be maintained at
each life-cycle phase. More importantly, it reduces the overall test burden ensuring
that all o f the testing is not left until coding has been completed. Also it ensures that
defect-free modules can be passed from one stage to the next.
This requires the commitment of experienced personnel. That commitment is present
within this company. The High-Level Design phase of PSP3 includes, as an activity,
the identifying o f the product’s natural divisions. It suggests that a good benchmark is
for each cycle to produce between 100 and 300 lines of new and changed source code.
Having historical productivity figures for developers will enable estimates to be made
of cycle development time, or in DSDM, how much code/functionality can be
delivered within, say, a given timebox.

85

I f , for example, historical productivity is 20 LOC/Hour and an estimate for certain
system functionality is 3000 LOC then it can be estimated that, on a utilisation factor
of 6 hours per day, a developer will take 25 days or 5 working weeks to produce the
desired functionality. In some projects it may be that LOC is not an appropriate
measure. In systems which are heavily GUI dependent then modules, screens or
sessions which are more user-visible may be more appropriate. Within DSDM, using
the activities proposed by the PSP’s High-Level Design, will allow the natural
boundaries for timeboxes and prototypes to be established.
These figures, however, are not a natural by-product of using DSDM.
Indeed the Consortium does not specify how the necessary metrics are to be collected.
PSP can be used in this regard. By getting individual developers to collect these
metrics it makes the subsequent implementation of a company-wide programme
easier. Without these metrics the estimates needed by DSDM for timeboxes,
prototyping and overall schedules will not be easily produced and may be inaccurate.

In the way outlined above, the PSP has made allowance for iterative approaches to be
used. It is important to note, however, that each PSP3 cycle is essentially a PSP2.1
process that produces part o f the final product.
As such, it is fundamental to examine the lower levels o f the PSP and establish ways
in which they can be integrated with DSDM.

6.5.2 A Quality Software Process for RAD - Using Proxies
DSDM, as has been illustrated, has five life-cycle stages. At PSP levels 0 to 2, a
process is defined for the activities of detailed design, coding and testing. These
activities will be carried out in DSDM in the two iterative prototyping stages, the
Functional Model Iteration and the Design and Build Iteration.

The objective of the Functional Model Iteration is to demonstrate the required system
functionality and to highlight the essential non-functional requirements. This is done
through the production of a prototype.

86

The DSDM consortium contend it is easier to calculate how much can be done by a
certain time than to calculate how long it takes to do something; thereby promoting
the use o f timeboxes within which given portions of functionality can be delivered.
In order to assist the estimates of how much functionality can be delivered within a
timebox, the consortium suggest the use of function point analysis.

While the PSP supports FPA as an estimating technique, its own favoured approach is
through the use of Lines of Code (LOC) as the base measurement unit. The PSP
expands on these size/complexity techniques through its use of Proxies. Proxies,
which act as code substitutes from which program size can be determined, were
discussed in 3.4.1. From historical data you can determine how many LOC or FPs can
be developed within the timebox. Further, as historical data amasses and estimating
skills improve, additional proxies can be developed for other programming languages.
Use o f proxies in this way will improve estimating techniques in DSDM projects and
help ensure that business functionality is met.

At present estimates are made by the company in advance of projects. These estimates
are primarily based on the experience of the project manager and are not backed up by
historical figures. In the absence of these figures the company is at risk of
overestimating development time and therefore losing potential customers or
substantially underestimating development time with the consequent failure to meet
deadlines, reduced quality end products and/or substantial overtime requirements or
extra staff complement. The use of proxies will help this company refine its estimates.
If they are aware o f the relationship between software size and development time then
they can bid for contracts more confidently. The PSP will allow them to collect the
necessary figures. They could then relate estimates of software size with developer
productivity to assess with confidence and accuracy how long a project would take.
These productivity measures could also be used within the proposed quality software
process for RAD to state what functionality could be produced within a given
timebox. Without PSP and the accompanying measures this would not be possible.

87

6.5.3 A Quality Software Process for RAD - Testing
In the section of the DSDM documentation devoted to testing, the consortium state
that, though testing is burdened by time and resource constraints, no amount of testing
would locate all errors; an admission that testing is not the most effective way of
detecting and eliminating errors. The consortium also advocate independent testing of
software (i.e. the software is tested by someone other than the author), and
recommend that the user carries out this activity.
The consortium also state that during testing ‘confidence is derived from finding
errors which are then fixed’. Users who have spent many excessive hours in
acceptance testing would balk at this statement. Continually finding errors in products
at this stage substantially reduces their confidence in the system, as they have no way
of knowing how many errors they are not finding!
Without proper reviews and inspection, prior to product handover to the user, there is
potential for the user to receive error-laden code. This could certainly reduce the
user’s confidence in the system and may mean the passing back and forth of software
products between developer and user, notwithstanding the possibility of substantial
rework. While it is laudable and desirable for users to be involved in acceptance
testing, theirs should be a further quality assurance element.
An improved procedure would be for each individual developer to conduct a design
and code review with testing then executed by a technical peer. This will ensure that
the product the user receives will be more error-free. This would increase user
confidence in the product and allow them to concentrate their testing efforts on the
major areas of system functionality.

Any moves towards improved testing procedures within the company should be
accompanied by a commensurate effort to improve inspection and review techniques.
The DSDM Consortium recommend the use of static code analysers since they do ‘a
degree of code inspection almost for free’. Whilst there are potential benefits to using
these products, their success will depend on how skilled the developers are in using
them and the language dependency of the particular tool.

Until the company is wholly satisfied with the specific code analysis tools, available
for use with its development environment, it should concentrate on a manual
inspection/review approach for code.
Also in this company, with no history o f formal inspections, the sole use of software
tools to carry out this work would be undesirable. This is because the employees will
not gain sufficient understanding of the importance of inspections and will come to
rely on the tools to do all the work. The tools should be used as support only when a
manual inspection process has been in place, used extensively, understood and
properly applied.

6.5.4 A Quality Software Process for RAD - A Quality Plan
In 6.5.3, it has been shown how the defect detection techniques advocated for use with
the PSP can be used within the proposed quality software process for RAD. The
DSDM consortium also address other quality issues which are of interest and which
can benefit from PSP methods. In the PSP, the quality emphasis is on defect
management and this provides the foundation on which a comprehensive quality
strategy can be built. DSDM takes a broader view of quality. It is stated that every
DSDM project should have a quality plan that outlines how quality will be controlled
and standards applied. The proposed quality software process for RAD will have a
quality plan and could include much of the documentation provided by the PSP.

Obviously in early projects, the plan itself will evolve and will require evaluation and
subsequent improvement. Small companies will not normally have such a plan and,
indeed, the company under examination in this study has yet to develop one.
Therefore, the creation of a Quality Plan will be a primary task.
Adopting the proposed new software quality process will provide an approach to
development which contains the procedures for controlling quality in a RAD
environment. However, the techniques of process definition outlined in the PSP can
assist in the creation of a Quality Plan.

For example, the PSP process scripts for each level of the PSP should be included in a
Quality Plan.

89

Having a process script which outlines the Entry and Exit criteria for a phase with a
detailed outline of the steps to be undertaken during that phase is a very useful quality
control technique. The process scripts are accompanied by planning, development and
postmortem scripts for each phase which again ensure quality coverage o f the process.
Including these in a quality plan introduces the standards and control elements
demanded by DSDM. Each time, for example, a prototype is being developed the
software engineers can refer to the relevant scripts in the quality plan. This will ensure
that they are conforming to the quality criteria decreed by the organisation and will
result in greater consistency of results and the increased prospects o f repeating
successes on future projects.
In the company we have studied, the introduction of these documents and techniques
as part o f the proposed quality software process will provide two elements which are
currently absent; a documented and defined development method and quality control
measures.

Another quality control mechanism, which could be adapted from the PSP for use in
the new environment, is the checklist. Design and code review checklists could be
established for each language used by the organisation. Furthermore, as the company
introduces new development environments, these too could be added to the quality
plan. The PROBE estimating script, introduced in PSP1, could also be included in the
quality plan. This exists to assist the estimation process and will be very useful in
assessing product deliverables within DSDM timeboxes.
At present the company attempts to make estimates prior to project commencement.
These are essentially based on experience and guesswork. The adaptation of PROBE,
which with enthusiastic developers could be successfully achieved, would produce
greater estimating accuracy and supply engineering disciplines to their software
process. Another PSP document which would be part o f the quality plan is the Process
Improvement Proposal (PIP) already referred to in section 3.3.1 as part of PSP0.1.
The PIP provides a means o f documenting process shortcomings and suggested
solutions. PIP copies should be retained in the quality plan. Also, a mechanism should
be established to ensure that suggestions made on PIPs are evaluated and
implemented, where appropriate.

90

Having a quality plan enables you to gain control of your process. Once you have
done this you can then examine how to improve it.

One way of assessing the effectiveness of the quality plan is to measure the process
itself. The PSP provides quality measures for use in PSP projects. However, some
new measures are appropriate for use in our quality software process for RAD. The
prerequisite for using these measures in the new process is the introduction of the
metrics detailed in the next section.

6.5.5 A Quality Software Process for RAD - Metrics
At present, the DSDM consortium is not recommending any specific approach
towards collecting metrics. However, they do recommend recording the following by
timebox:
• The business functions delivered
• The effort expended
• The elapsed time
• The size of the prototypes in such as, function points, lines of code etc..
They also suggest that these records should be kept for each prototype developed.
While these are undoubtedly useful measures, no counts are being kept of any errors
introduced during the timebox or prototype development. What is stated, in the
DSDM Manual, is that ‘during system testing, a count of detected errors should be
kept with the aim of improving this as time goes on’. If a process is to be successful,
and continually improve, it is too late to start collecting error metrics at the system
testing stage. There are many reasons for this.
Firstly, it may be very difficult to determine the exact cause of the error, as the defect,
which gives rise to the error, may have been introduced during any previous timebox
or prototyping phase.
Secondly, it may also be difficult to ascertain what development activity caused the
error i.e. analysis, design, coding etc. which, in turn, will make it difficult to
determine where the weakness in the process lies.
Thirdly, no record will be available of the time it has taken to fix errors (which have
been removed prior to system testing) and during which activity they were removed.

91

Fourthly, there will be no picture available of how effective the interim testing is i.e.
testing of timebox elements, prototypes etc.
Fifthly, although the consortium state that ‘in a DSDM project, task-based time
recording is an unnecessary overhead’, without doing so process weaknesses and
deficiencies will not be highlighted.
DSDM also proposes the analysis of errors and their causes. Again, without collecting
error data as the project progresses, identifying error causes will be a complex and
imprecise activity.

It is proposed that errors be categorised by type in DSDM projects. Five categories are
suggested, however, the Defect Type Standard Table (Table 6.2), taken from the PSP,
is more comprehensive and could be used in the new process.
Some additions or adjustments could be made to the table to take account of GUI
environments. Defects relating to control positioning on forms or incorrect property
values should be documented. Developers will likely create their own standard in
these cases which can be language or environment dependent.

92

Table 6.2 Defect Type Standard - Sample from PSP

Purpose To facilitate cause analysis and defect
prevention

Note The types are grouped into ten general
categories.
• If the detailed category does not apply,

use the general category.
• The % column lists an example type

distribution.
No. Name Description %
10 Documentation comments, messages, manuals 1.1
20 Syntax general syntax problems 0.8

21 Typos spelling, punctuation 32.1
22 Instruction Formats general format problem 5.0
23 Begin-end did not properly delimit operation 0

30 Packaging change management etc. 1.6
40 Assignment general assignment problem 0

41 Naming declaration, duplicates 12.6
....

....

Within the new process, defects should be recorded by timebox and by prototype,
using the PSP approaches. Analysis of defects will show process deficiencies.
Improvement in the process can then be achieved by tackling these areas where
deficiencies exist.
As the new process will be prototype-driven, then the timebox should be the basic unit
o f time in which the measurements are collected. Measurements can also be collected
by prototype phase.
If metrics are to be collected accurately then it is important that they are based on the
new and changed code developed in each iteration. Because of the iterative nature of
RAD developments, a Base Program will be used as input to each iteration.

93

As such, productivity is not centred around the total lines of code or total function
points resulting from that iteration but the new and changed code/function points
produced in that iteration. Therefore, it is the new and changed code/function points
that are essential to the validity of the metrics. A list of the metrics proposed for use
within the company appears in Table 6.3.

Table 6.3 - Metrics which could be introduced effectively into the company
Metric Type (Example)
1. Defect Metrics (Total Defects per KLOC, Test Defects per Prototype etc.)
2. Productivity Metrics (LOC/Hour, Function Point/Day etc.)
3. Size Metrics (Total New & Changed LOC, Size Estimation Error etc.)
4. Time/Schedule Metrics ((Time Estimation Error, Delivery Ratio etc.)
5. Extended Metrics (Phase Yields, Defect Removal Leverage etc.)
6. Maintenance Metrics (Live/Deveiopment Defect Ratio, Defect Fix Time Ratio etc.),

It is important to note that it is desirable not to introduce all these metrics at once into
a project. Some companies may have specific weaknesses, such as, large numbers of
development defects, which they may wish to tackle initially.
It is only through using and collecting metrics that companies or individuals can
decide which are the most appropriate and cost-effective to collect. As competency in
metrics collection improves, then the range of measures gathered can be widened.

6.5.5.1 Defect Metrics
The defects will be measured relative to code size. Size can be measured either per
new and changed function point (NFP) or per thousand new and changed lines o f code
(KLOC). Defects can then be measured as follows :

Total Defects/Size (Timebox) = Total defects per Timebox
Size per Timebox

9 4

Test Defects/Size (Timebox) = Test defects per Timebox
Size per Timebox

The above measures can also be used with prototypes :

Total Defects/Size (Prototype) = Total defects per Prototype
Size per Prototype

ALSO

Test Defects/Size (Prototype) = Test defects per Prototype
Size per Prototype

Ideally a defect database should be maintained containing information about the
defects injected and removed during the development. The database should contain,
such as, Program Number, Defect Number, Defect Type (using, say, the Defect Type
Standard illustrated in Table 6.2), Inject Phase, Remove Phase and Fix Time.
The above fields are proposed for use with the PSP. As a result, they are based on the
design, coding and testing areas. These fields, however, could be adjusted for use with
the iterative development approach that is central to DSDM. The Program Number
field could be changed to Prototype Identifier, to reflect the DSDM approach.
Additionally, new fields, such as Timebox Number and Object/Function/Method
Number and Type (e.g. I/O, Interface etc.) could be included.
This extra data will assist in future defect analysis and can illustrate not only the type
o f defects being injected but within what type of object, function and timebox. This
can subsequently be related to the type of functionality being delivered in the given
timebox and, therefore, provide a more complete picture of when the defects are
injected, the nature of the modules/functions associated with the introduction of
certain defect types and what sort of time/deliverable pressures results in what type of
defects.

The effectiveness of the testing process can be assessed through :

95

The fix times will throw further light on the process’s defect removal capability.
When compared against the defect types and the phases introduced it can show where
deficiencies lie. These figures can be used to assess the DSDM process. Because of
time constraints an organisation may wish to use automated tool support for code
inspections and testing.
The figures contained in the database can be o f great assistance in evaluating both
manual and automated procedures, if they are in place, and prove a measure of the
capability of the organisation.

At present, in the company, no metrics are collected. Questionnaire respondents
indicated that the introduction of quality control measures would be welcome and
would be embraced by employees.
Defect metrics are probably the best and easiest measures to introduce to this
company first. Whereas developers may have more difficulty adapting to and
understanding the implications of size and schedule metrics, they can instantly
identify with defect metrics. Using DSDM and the PSP make it easy to collect defect
metrics and employees can see their own performance at first hand. However, for such
a programme to be successful in this company, it is essential that the goodwill o f the
developers is not abused by using these defect metrics in such as performance
appraisal. Management have an opportunity in this instance to demonstrate their
goodwill in relation to the use of these measures.
Handled properly, it will allow other process measures to be introduced and the co­
operation and support o f the development staff to be gained.

6.5.5.2 Productivity Metrics
The standard productivity measures relate to code amendments and additions.
If we treat Additions as either new and changed lines of code (NLOC) or new and
changed function points (NFP) and Time Units of hours in relation to NLOC and
days in relation to NFP then Productivity can be measured as:

Productivity = Total Additions_____
(Development Time Unit)

96

Productivity measures should also be calculated by prototype

Productivity (Prototype) = Total Additions (for prototype)____________
Total Development Time Units (for prototype)

The productivity measures could also be calculated per timebox :

Productivity (Timebox) = Total Additions (for Timebox)___________ _
Total Development Time Units (for Timebox)

In waterfall developments, coding is done at a specific stage, post software design and
prior to testing. In RAD environments, some coding will be done at the early stages
to clarify requirements, and subsequently there will be an iterative cycle of
designing/coding/testing throughout the development with the ever-present prospect
o f rework. Using the LOC/Hour measure for total development will not necessarily
give a true productivity reflection in this environment. It is essential to measure
productivity by timebox and by prototype. In doing so, a better indication of
bottlenecks and timebox/prototype accuracy is recorded. For example, a process may
be weak at the functional model iteration prototype phase. Developers may be
experiencing difficulty progressing from the Business Study, and coding the
prioritised functions from the agreed architectures and designs.
This difficulty will be hidden if LOC/Hour or FP/Day is based on Total Development
Time. If this calculation is taken at the prototyping phases then such weaknesses will
be highlighted. Similarly, calculating LOC/Hour or FP/Day at the Timebox level will
expose any deficiencies which may exist at the different development phases.

In this company the productivity metrics will need to be treated carefully. They will
complement the size metrics. Using RAD tools where a lot of screen design is
completed without the requirement to write code, productivity figures, if based on
lines o f code, can look low. Also in many stages of development large portions of
time may be spent in user consultation.

97

This again may reduce crude LOC productivity figures but is essential if business
functionality is to be met and user satisfaction achieved. Similarly, if there is
significant code reuse then again productivity figures based on LOC may be
underestimated. The company must devise appropriate measures of productivity.
These should be different for projects which use different development environments.
For example, multimedia projects which involve substantial user interface design and
user involvement should be treated differently than other company projects involving
lots o f file handling employing 3GL code.
These measures should be agreed in advance between developers and management.
The key factor is consistency. The same measurement techniques must be used for
each development, based on project type, if reliable metrics are to be collected and
acted upon.

6.5.5.3 Size Metrics
Size can be counted at all stages of development and can be based on Lines o f Code
(LOC) or Function Points(FP) delivered. What would be useful in DSDM, and to
ensure minimum disruption to development, is automated support for counting FP or
LOC. These figures will be necessary for both the productivity and the defect
measures to be calculated and, therefore, need to be collected not only for overall
development, but also by prototype and by timebox.
The figures can be used to determine the estimation errors in code size.

Size estimation errors can be calculated as follows:
Error% = 100 * (Actual Size - Estimated Size)

Estimated Size

Size can be counted as Lines o f Code (LOC) or delivered Function Points (FP).
While the estimation error can be calculated for the total delivered code, it would be
useful in DSDM to measure it by prototype and by timebox.

98

By prototype
Error%

(per prototype) = 100 * (Actual Size of Prototype - Estimated Size of Prototype)
Estimated Size of prototype

By timebox
Error%

(per timebox) = 100 * (Actual Size o f Timebox - Estimated Size o f Timebox)
Estimated Size of Timebox

In DSDM, a corollary of this is the actual functionality delivered within a given
timebox. Each organisation may have its own method o f assessing functionality,
whether it be functions, objects, modules, screens, files etc. In our company the size
metrics have significant importance for other metrics. Because of the current
widespread use of RAD tools, the fact that the company is edging towards software
reuse and the prevalence o f multimedia systems, Line o f Code counting is not
necessarily the best way to estimate size. In some company projects, where
multimedia is not used and 3GLs are the standard, LOC then have relevance.
However, this company should look at Function Point counting in some detail. This
would more closely reflect the way the development environment operates and would
give credit towards time spent on screen design, developing reusable modules,
interfacing with users etc.. The size metrics outlined above can operate with either the
Function Point or the LOC approach.

6.5.5.4 Time/Schedule Metrics
For future estimates of development time or deliverable capability per timebox it is
necessary to collect time measures. This facility is present throughout the PSP where
the time spent on the various phases is documented.
These time measures are then used to determine how much time was spent on
development in each of the particular phases. It feeds into the productivity measures
for determining LOC/Hour etc. If the productivity measures are to be accurate then
the analysis of time spent must also be recorded per prototype and per timebox.

99

For scheduling, the PSP techniques can be used to plan timeboxes and check whether
the promised deliverables have been completed within the timebox. The Schedule
Planning Template and the Task Planning Template from the PSP can be adapted for
use with DSDM timeboxes and prototypes. The Earned Value concept referenced in
3.8 can be used to measure the success o f achieving delivery targets. All of the
collected measures can be used as future inputs to timebox delivery estimation and
scheduling.
Time estimation errors can be calculated as follows:

Error% = 100 * (Actual Time - Estimated Time)
Estimated Time

Time can be counted in the most appropriate units e.g. hours, days, weeks etc..
While the estimation error can be calculated for the total development time, it would
be useful in DSDM to measure it by prototype.
The necessary calculations would be:
Error% (per Prototype) =
100 * (Actual time to develop Prototype - Estimated time to develop Prototype)

(Estimated time to develop Prototype)

There may also be agreement between users and developers to apply priority
weightings or percentages to specific items of functionality. To check its capability,
the organisation should then measure the delivered functionality at the end of each
timebox, prototype and on project completion. This is crucial as, in order to stay
within time schedules, some lower-prioritised functionality may have been jettisoned.
However, using a formula similar to the one for error estimation can assist in
measuring the closeness between predicted timebox deliverables and actual timebox
deliverables. As the prime objective in DSDM is ‘building the right system’ this
metric will serve as both a quality and productivity measure for the development.

100

Assuming this measure is termed the Delivery Ratio (DR) it can be calculated thus:

DR (Total
Development)

100 * Delivered Functionality
Planned Functionality

This can also be calculated by prototype and timebox:

DR (Prototype A) 100 * (Delivered Functionality in Prototype A)
(Planned Functionality in Prototype A)

DR (Timebox A) = 100 * (Delivered Functionality in Timebox A)
(Planned Functionality in Timebox A)

Importantly, the measure could be used at the end of any iterative phase or timebox to
determine the ratio of delivered functionality to date:

Gathering all of the above figures will assist in refining the estimation process. Also,
in this way, a picture o f the development process can be established and the figures
used to feed into future estimates. Time and Schedule metrics are particularly
important for small software companies where, typically, only a small number of
projects are under development at any one time. The importance of accurate measures
for our company in this regard cannot be overstated. Also, having reliable time and
schedule figures allows the company to make more accurate bids for software
development projects. This would be particularly important in fixed price contracts
where financial loss can occur as schedules slip and deadlines are subsequently
extended.

DR (Milestone A) 100 * (Delivered Functionality to Milestone A)
(Planned Functionality to Milestone A)

101

6.5.5.5 Extended Measures
With the basic metrics in place, some derived measures can also be generated.
The Yield o f a phase is the percentage of defects removed from a phase over the total
number o f defects removed and remaining:

Yield (step n) = ______ 100 * (defects removed in step n)
(defects removed in + escaping from step n)

Review Yields refer to the percentage of defects in the design or code at the time of
the review that were found by the review. This can only be categorically determined
when the reviewed code has been tested and subsequently used. Review Yields could
be used to check both the quality of the review procedure and any automated tools
used to carry out inspections or reviews.

Review Yield = _______ 100 * (Defects Found By Review)______________
(Defects Found by Review + Escaping from the Review)

This approach could be further refined to assess prototype and timebox yields.
For example, a prototype yield could be:
Yield (Prototype) = ______ 100 * (Defects found in Prototype')_______________

(Defects Found in Prototype + Escaping from the Prototype)

And a timebox yield would be:
Yield (Timebox) = ______ 100 * (Defects found in T i m e b o x) ________

(Defects Found in Timebox + Escaping from the Timebox)

The Defect Removal Leverage (DRL) provides a measure of the effectiveness of
different defect removal methods. The DRL is the ratio of the defects removed per
hour in any two phases and is particularly useful in comparing say a review phase
with a test phase.

102

Defects/Hour = 60 * (Defects Removed in Phase)
(Minutes in that phase)

DRL (Design Review) = Defects/Hour (Design Review)
Defects/Hour (Unit Test)

These approaches could again be profitably employed in DSDM by measuring defect
removal rates in prototypes and timeboxes. This will be more effective, as the results
will be provided more quickly because of iterative development and the regularity of
testing. The defect removal rates will provide essential information in making
comparisons between early prototypes and later prototypes and between early and
later life-cycle timeboxes. Again the review measures would be useful in assessing the
proficiency of any automated tool used in inspections/reviews.

The measures could be calculated as, for example:
DRL (Code Review) = Defects/Hour (Code Review for Prototype A)

for Prototype A) Defects/Hour (Unit Test for Prototype A)

OR

DRL (Design Review) = Defects/Hour (Design Review for Timebox A)
forTim eboxA) Defects/Hour (Unit Test for Timebox A)

Review yields illustrate the quality of your development process. Taken in
conjunction with test yields they show where defects are being uncovered. High
review yields are preferable to high test yields as the former indicate that defects are
being found earlier in the process and are thus cheaper to correct. High test yields
indicate escapes from the other quality control mechanisms and are more costly to fix
so the figures provided by these measures carry great significance. DRLs show the
defect removal capability of your process. You are looking for high defect removal
leverage in the review phases over the testing phases.

103

Again this is an indication of the success of the early quality control mechanisms as
this study has already shown that reviews are a faster and more cost effective way of
removing defects than testing.

6.5.5.6 Cost of Quality (COQ)
There are a number of Cost of Quality (COQ) measures associated with the PSP
which address the time spent in review as a ratio of time spent in test.
The Failure Cost o f Quality is the percentage o f total development time spent testing
and compiling while the Appraisal Cost o f Quality is the percentage o f total
development time spent in design and code review. These measures could also be
used in DSDM. The PSP Appraisal COQ is designed to illustrate that time spent
reviewing means less time spent testing. The Appraisal to Failure Ratio (A/FR) is the
ratio of Reviewing to Compiling/Testing. The higher this ratio, the more time spent
reviewing and the less testing. However, the use of, for example, Static and Dynamic
Code Analysers will reduce the amount of time spent reviewing. In this instance the
Appraisal COQ may be quite low. Therefore caution is advised in making
comparisons o f these figures. As such, different Cost of Quality measures are required
in RAD environments. The Delivery Ratio has already been proposed as a potential
quality measure for DSDM. This together with the Yield metrics already discussed
will provide a better indication of the Cost of Quality than those associated with the
PSP.

The extended measures will be useful in this company as they start to give a true
indication of the capability o f the development process. When the process has been
measured in this way, it can be examined and improvements identified. The extended
measures should be introduced after the basic measures have successfully been
implemented and assessed.

104

6.5.6 Maintenance
Projects developed in RAD environments have, in the past, been criticised for being
unmaintainable. Companies, however, use RAD because they wish to develop
systems quickly. Delivering systems quickly, though, may mean that maintainability
factors are sidelined during development. The quality software process for RAD
proposed in this study will improve the maintainability of projects through improving
their quality. Because of this, maintenance efforts should primarily be directed at
product enhancements.

This does not mean that post-delivery defects should not be collected. The PSP allows
for post-delivery defects to be included in the defect counts. A useful measure of the
quality o f the development process would then be the Live to Development Defect
Ratio (LDDR):

LDDR = 100* Defects found in live environment_________
Defects found during development

In order for this to be truly meaningful the defects would have to be categorised as to
whether they were actual defects uncovered in the software (Corrective Maintenance),
requests for software changes due to changed business requirements (Adaptive
Maintenance) or requests for system enhancements. Proposed formats for collecting
the details of change requests and fault reports, as suggested for use by the company
examined in this study, are included in Appendices A and B.
Another useful measure of the maintainability of the product would be a measure of
the time spent in corrective maintenance. This would be the actual time spent fixing
defects after development. The best measure here would be the average defect fix time
post-delivery versus the average fix time prior to delivery. The PSP forms proposed
for use with DSDM will collect the fix times for defects both during and after
development.

105

The average defect fix time during development could be calculated thus:
Avg. Defect Fix Time = Total defect fix time during development
(during development) Total number of defects during development

The average defect fix time post development would be:
Avg. Defect Fix Time = Total defect fix time post development_____
(post development) Total number o f defects post development

Therefore, the Defect Fix Time Ratio (DFTR) for two phases would be:
DFTR (Phase A /Phase B) = Average Defect Fix Time (Phase A)

Average Defect Fix Time (Phase B)

For Post-Delivery versus Pre-Delivery this would be:
DFTR (Post-delivery / = Average Defect Fix Time (Post-Delivery)

Pre-delivery) Average Defect Fix Time (Pre-Delivery)

This measure could also be extended to illustrate the time spent fixing defects within
development phases e.g. fix time per defect in testing versus fix time per defect in say
design or code review. The DFTR and the previous measure the LDDR will be of
particular relevance in RAD projects as it will help illustrate the ‘hacking component’
o f the project and the phases o f the development where the defined software process
was not properly followed.

The company in question has, at present, no indication of the number of errors
occurring in the field. It also does not distinguish between errors reported and change
requests generated. The only measures it uses currently are qualitative ones.
Customer questionnaires have been produced to ascertain satisfaction with the
finished product. The responses, however, have not been quantitatively assessed. Use
of the maintenance metrics proposed would provide important information as to
where developers were spending their time, for example on new systems or the
corrective or adaptive maintenance of existing ones.

106

Information such as this would be very useful to the company for resource allocation
and future staff projections. It would also highlight the weight of the maintenance
burden. In speaking to the employees it was clear that developers spend a lot of time
answering customer queries and fixing bugs, based on customer requests, on an ad-
hoc basis. No records are kept of the amount of time developers spend doing this type
of work. In many instances the developers, deciding that the fix is a simple one, make
it on the spot. Also there are often lengthy phone calls dealing with customer queries.
Again this particular activity is not documented. As such getting an overall picture of
how developers are spending their time is impossible. This is where the maintenance
metrics have a role.
Even if the company were to spend one month just tracking the time spent in these
areas there could be a real payback in terms of raising awareness of the true costs
involved.

What activity like this does show however, is the fact that skilled developers make
design decisions and intuitive guesses of how long fixes and rework is going to take.
This ability could be developed and harnessed within a quality software process for
RAD.

6.5.7 Software Reuse
Both DSDM and PSP state that reusing existing software components will result in
productivity and quality improvements.
In section 2.2 the belief, that reuse will increase the speed of development and reduce
the time-to-market, was shown [HENR95]. Also, there is a fear that some RAD
methods because of their quest for fast delivery ignore the engineering and
maintainability issue with software having to be rewritten if it is to be reused.
It is here that there are sharp differences between DSDM and the PSP. While DSDM
believes there are a number of benefits to reuse it does not believe that DSDM
projects should bear the costs of enabling that reuse. The DSDM consortium states
that though RAD developers should use, where possible, existing software
components there is a risk that ‘the DSDM team may start building components for
future reuse, incurring development costs not related to the DSDM project objectives.

107

This should be actively discouraged’. Therefore to enable reuse in this type of RAD
environment, the costs of reuse could be charged to a different cost heading.
In contrast, the PSP has an objective of developing ‘the personal process disciplines
needed to produce reuse-quality software’. Indeed within the PSP forms, areas are
reserved for documenting both the amount o f existing code reused and the code
developed which is destined for future reuse.

Both disciplines are correct. There is no doubt that there are significant productivity
benefits to reusing software. Corporations can profit from having libraries o f reusable
components accessible to every new project. There are, however, significant costs
associated with reuse. Apart from the extra time it takes to design and develop
reusable parts, there is the question of managing and maintaining the reuse library.
This is undoubtedly an organisation cost. If developers are to reuse these parts then
they must satisfy themselves that the components meet the functionality requirements
and are of sufficient quality to be reused. There are also the costs associated with the
extra time required to develop reusable components.

A DSDM project which possesses tight delivery deadlines may not have the time to
develop reusable parts. They may have to be re-engineered later. Again there are costs
with this development, however, these may not be time-constrained.
There is always the possibility though that this re-engineering may then necessitate
and trigger other re-engineering requirements within the same project. It is up to the
company, implementing the PSP and DSDM to decide what its own policy is on reuse
and where the costs are to be borne. Ultimately, from a corporate perspective, there is
no benefit to developing reusable components if the procedures and personnel are not
in place to manage and control software reuse component libraries. The individual
developer, however, can still maintain his own component library.
Whatever policy is adopted concerning software reuse will, o f course, have an effect
on system maintenance and maintainability.

This company has shown a willingness to develop reusable components. Without a
defined software process in place such activity could prove wasteful and unworkable.

108

It is only through a defined, standardised software process that proper software reuse
can exist. This environment is provided though the proposed quality software process
for RAD.
Developers must be encouraged to reuse software. In this company they have tried to
do this without the proper support mechanisms. These mechanisms, libraries,
dictionaries and references can only exist and be properly managed within a defined
process. As such, to gain maximum benefit from reusability and to prevent wasted
effort, a defined process should first be put in place before software reusability
becomes fully achievable. With a controlled, measured process in existence the
introduction of proper corporate reuse libraries can be created. This will allow
maximum benefit to derive from an area that has huge potential.

6.6 Sum m ary
The Personal Software Process (PSP) and the Dynamic Systems Development
Method (DSDM) are based on two separate paradigms.
The PSP has emerged from the waterfall approach to software development, which is
a sequential technique for software development, whereas DSDM has emerged from
the iterative approach to software production. Both approaches have their advantages
and disadvantages. What is at stake is the ability to harness the beneficial elements of
each method into one process. This chapter has focused on this particular opportunity
and has proposed a new development environment using a quality software process
for RAD.

In the study we are dealing with a company which though effective is operating with
no defined software process. In the absence of a software process, the company has no
way of measuring its performance. This study has focused on how two methods,
suitable to such a company could be used to provide a defined and measurable
software process. This chapter has illustrated how the two methods could be
introduced into the company. Ways o f using and integrating the two methods have
been discussed. It has been shown how the metrics proposed by the PSP, for
measuring defect rates, time and schedule estimates, productivity rates and quality
measures could be adapted for use in a RAD environment.

109

Also, new metrics, for determining functionality delivery capability and for assessing
live defect rates have been detailed.
The benefits of software inspection and review as defect detection techniques, and
how they can be introduced within an iterative development approach were also
highlighted. Also discussed were the implications for the testing of prototypes and the
usefulness of testing as a quality assurance measure.
The chapter has further outlined how maintenance could be handled in the
environment, comprising PSP and DSDM, and discussed the factors affecting
software reuse where the two paradigms offer competing agendas.
Within the chapter it has been explained how, if all of the measures outlined were
implemented within the company, as part of a quality software process for RAD, it is
anticipated that not only would the company then have a defined and measurable
process, but that this would produce lower defect rates, higher productivity, reduced
schedules and quality products.
In addition, the company would now have a basis for continuing software process
improvement.

110

Chapter 7 - Independent Review

7.0 Introduction
The purpose of this section was to have the proposed process model, combining
DSDM and PSP, validated by software professionals experienced in the field.
These professionals have expertise in working with small companies and in using
various life-cycle models and approaches and, as such, are well-qualified to comment
on whether or not the proposed approach is suitable for its chosen environment.

7.1 R eview Panel
The review panel comprised 3 experienced practitioners in the areas of RAD and
Software Process Improvement: Mr. Patrick O’Beime (Systems Consultant, Systems
Modelling Ltd.); Mr. Shay Curtin, Product Director, Kindle Banking Systems); and
Mr Gerard McCloskey (Lecturer in Computer Science, Letterkenny RTC and formerly
Project Manager, Information Technology Centre, Letterkenny).
Their comments on the proposed methodology and the author’s response are detailed
below:

7.2 In dep en den t R ev iew C om m ents
Mr. Patrick O’Beime:
The study has shown an interesting liaison o f DSDM and PSP.
Firstly, re. the PSP, it is important to use the self-convincing nature o f the PSP
course. People used to sales pitches don’t believe documentation but they believe
their own experience.
Company Assessment [Chapter 5]
On the company assessment - i t ’s nice to see the way an objective assessment can
reveal “hidden ’’flaws.

I l l

A Quality Software Process for RAD [Chapter 6]
The DSDM emphasis on the user leads nicely into the PSP emphasis on the design
aspect, where PSP assumes the requirements are ‘obtained’.
Regarding metrics, in the PSP they are personal. The public interface needs to be
agreed. This happens once any work is passed onto someone else. In ‘prima donna ’
development, this may not happen.
I like the points about DSDM being top-down, requirements-driven and the PSP being
bottom-up, metrics-driven. I also think there is good matching between the company
and the project to DSDM.
Section 6.5 ‘A New Development Environment’ is o f particular interest to me. I think
that in RAD areas LOC is not really appropriate and perhaps user-visible things like
modules or sessions are more suitable.
I agree with the statement that ‘it's easier to calculate how much can be done in a
certain time..[pp.87] ’ as that is how practitioners do it. I t ’s possible because ‘how
much functionality ’ is a much fuzzier measure than ‘how much time ’.
I think perhaps reviews could be regarded as tests within DSDM.
I couldn’t agree more with the paragraph challenging the assertion that ‘confidence
is derived from finding errors [pp. 88] It exposes the confusion between ‘confidence
in the testing process ’ and ‘confidence in the development process ’.
You could perhaps adjust the defect type standard table [pp. 93] to include references
to GUI environments e.g. ‘10 minutes lining up controls on the fo rm ’ will make
people ask is there a better way o f doing things. Answer - ‘hold down the shift key
while you c lick ... ’
With so many metrics i t ’s worth specifying the point about climbing Everest one stop
at a time. In other words talk about incremental improvement.
Companies must ensure that defect metrics are not used in performance appraisal.
I t ’s worth considering how this issue can be raised, discussed and resolved in a
trusted manner.
I notice you make reference to the difficulty o f productivity/total time hiding phase
inefficiencies [pp.97]. They serve different purposes: one is fo r estimation and the
other is fo r process improvement. The key word is not ju st ‘consistency’ but ‘fitness
fo r purpose ’ which I see you also subsequently refer to.

112

Be careful o f using the phrase ‘figures can be misleading ’ in the section on Appraisal
COQ and Failure COQ [pp. 104]. Any figure can be used to mislead. It can only be
validly used in the context to which it applies. NOT collecting data ju st because one
process is different from another is scarcely useful. Flagging the inadvisability o f
comparing such figures is important. The Appraisal COQ may be low, but be careful
o f using words like ‘true reflection ’. I t ’s true as fa r as it goes.
I liked the suggestions on maintenance and the metrics associated with assessing
maintenance effort [Section 6.5.6, pp. 105]. Regarding initial improvements to the
company’s process, i f the company did nothing else (in terms ofprocess improvement)
fo r one month but track that time, there could be a real payback in raising awareness
o f true costs.
Regarding the section on software reuse [section 6.5.7, pp. 107], is DSDM really anti­
reuse? Maybe they just mean that it should be charged to a different cost heading
than the current project. I t ’s a good sink o f time and money fo r developer gold-
plating. I wholeheartedly agree with the section on ensuring that a proper reuse
infrastructure exists i f reuse is to be instituted [pp. 108]. You can only reuse code (or
modules, or screens) i f you can find them, and the IDE makes it as effortless as
pasting in a built-in language element.

Author’s comment
Mr. O ’Beime raises many important issues in this section. Firstly on the issue of
Lines of Code (LOC) not being an appropriate standard for measurement in RAD, I
agree with him on the whole. Because of the prevalence of the user interface and the
saving in development time (and code) offered by GUIs LOC may not be the most
appropriate measure.
The reservation I have, is that in companies that have not previously introduced
metrics, LOC is an easier measure to understand and introduce and the concept and
implementation of function points requires greater skill and training which may not be
available to such a company.
Mr. O ’Beime’s reference to the defect type standard not including GUI references is
valid. The PSP has essentially derived from waterfall approaches and third generation
languages.

113

Adjustments could be made to the standard to include defects on user interface design,
control design etc.. Indeed I have made some reference to this in the section in the
study on defect metrics.
His point about not using metrics in performance appraisal is an important one. If
management do use them in such a way then the process is discredited and developers
will subsequently not ‘buy-into’ the process and could become deliberately mislead
regarding defects generated, time spent on project phases etc.
The PSP insists that the metrics generated are personal. Metrics generated company-
wide could be discussed at QA fora within the company. Calculated at a project level,
particularly within a resource pool environment, they can be effective as figures will
not then be individually attributable. Indeed if developers can be encouraged to ‘buy-
into’ the process then they may wish to remedy their own weaknesses. This can be
successfully achieved in a non-threatening environment and should be encouragcd.
I accept his criticism regarding comparison of figures for Appraisal Cost of Quality
and Failure Cost of Quality and have adjusted the text accordingly.
Finally regarding my comments on DSDM being anti-reuse, I was suggesting that
there may be a conflict between RAD and reuse at the development level. The
emphasis in RAD is on producing a product that is fit for purpose in a specified
timeframe. Designing for future reuse may hinder that development as more effort
will be required in component design to ensure that it is reusable. Indeed in DSDM
they talk about project components being re-engineered for reuse following project
delivery. A trade-off may be required between RAD and reuse if both approaches are
to be successful.

114

Mr. Shav Curtin:
I think your theory o f marrying PSP and DSDM is excellent, well researched and
very well worked through. I've always had difficulty relating 100% o f the theory to
practical software development processes and all o f this difficulty revolves round the
"soft" factors. Conditions must be ideal fo r theory and practice to be
indistinguishable and any observations I have on your study are related to this.
DSDM is a sound methodology and you have covered the issue o f access to users and
the bespoke nature o f the projects involved. Ultimately the majority o f software
development companies become software product companies where the emphasis is
on off-the-shelf or near off-the-shelf products. In this scenario, DSDM is still useful
as a specification development methodology, where once specified and agreed the
production follows the more classical waterfall process.
PSP, like any software process, requires the buy-in o f everyone involved - in the case
o f traditional projects, the measurement is o f the whole o f the effort involved and this
"averages-out" the skill differential and the effect o f the "soft" factors (i.e.
Company/Management style, environment, incentives, motivation, .).
PSP relies heavily on individual self-measurement and the "soft" factors can influence
the accuracy o f recorded statistics.

Author’s comment
Mr. Curtin’s references to the ‘soft’ factors involved in software development are very
pertinent. Ultimately, it comes down to whether the developers ‘buy-into’ the process
or not. If not, then the recorded figures will be at best unreliable and at worst
deliberately distorted. Mr. Curtin mentions the factors that have an effect on this;
management style, culture, motivation, incentives etc.. If developer support is not
present for any process or approach then improvement is unlikely. Mr. Curtin’s
suggestion o f using DSDM as a specification approach is interesting. The difficulty
with this is guaranteeing the subsequent speed of development when then reverting to
more traditional approaches to complete the project. Also user involvement, in the
project, may be systematically reduced as traditional approaches take precedence.
This in turn could effect the delivered system’s chances o f satisfying the user’s
requirements and being ‘fit for purpose’.

115

Mr. G. McCloskev:
A number o f the points made in the ‘Company Assessment’ section [Chapter 5, pp .63]
I won't wholly agree with but I suppose someone looking from the outside can take a
much more clinical and fairer view than people working within the company
everyday. The approaches o f DSDM and PSP mentioned in section 6.1 [pp. 76], in my
opinion, have a number o f disadvantages.

My main concerns about using the approach would be when would the prototyping
end and the reliance on the end-users, currently guiding system development
correctly, begin. While developing multimedia applications fo r public use, constant
interaction with small user groups does not guarantee success.
Also reading through your study I was unsure as to what exactly a RAD was.
Is it dependent on the development environment, the number o f lines o f code, or the
language? I suppose my question is i f I am developing over I OK lines o f C++ using a
visual IDE; is this RAD? Also complexity should be a factor here.
The approach does not pu t forward anyway o f using the benefits o f classes and
inheritance supplied by C++ and JAVA.
The iterations suggested during each stage o f development would greatly increase
development time. In some projects where profit margins are small development
would be occurring at a loss.

For PSP my main concern would be s ta ff evaluating themselves and the difficulties o f
monitoring their progress based on these results. The approach o f documenting
errors and actions is good but i f the company is working on numerous small projects
simultaneously the overhead may be outweighed especially when developers do not
log all their errors.

The fa c t that the overall approach is more o f a conglomeration o f existing
development and testing methods it maybe cheaper/quicker/better fo r companies
to readjust their current approach to areas in DSDM where they believe they
are weak.

116

Author’s comment
Firstly, end-user involvement is there to improve the chances of success of the project.
I agree there is no guarantee o f success but results have shown that user involvement
does increase the chances of the users being satisfied with the finished product and of
its meeting their requirements [LUQI91, GORD95, JACQ94, KERR94],
On the issue o f RAD there is indeed confusion in the industry as to what constitutes
RAD. RAD is essentially a paradigm in which projects are delivered in a short space
o f time. This time is divided into timeboxes in which incremental elements of the
system are delivered. Following these basic rules RAD can be independent of
platform and development environment. In practice, however, companies are using
advanced development tools to produce systems within short timeframes. DSDM
provides a quality framework in which this can be achieved and also supplies a
‘suitability filter’ to gauge whether projects are suitable for RAD or not.

I take issue with the fact that the method does not supply a way of utilising the classes
supplied by C++ and Java. A section of the study is devoted to reuse and argues in
favour of reuse as being a provider o f quality and enabling RAD. Certainly at the
Business Study and Functional Model Iteration phases of DSDM reusable
components should be identified. As stated in the study this will only be successful if
a properly supported environment for reuse exists.
On the suggestion o f the iterations increasing development time, a maximum of three
iterations are recommended by the consortium. If the developers can meet the
requirements in one iteration then great!

On the difficulties o f monitoring staff progress using PSP, I disagree with this point.
PSP should be used by developers to monitor their own progress. It should not be
used by management in the same way.
Regarding the overhead o f developers recording figures if working on several
projects, it is conceded that there will be an overhead involved in recording figures.
However, the developers will be recording their own figures for estimation, defects
etc. across projects. They can if they wish record it by project but again these figures
are for their own consumption.

117

Finally Mr. McCloskey suggests that organisations could adjust their own process to
fit in with areas of DSDM where they think they are weak. 1 have reservations about
this.

Firstly it assumes that the organisation has a defined process. In the organisation
studied as part o f this study no such process existed and introducing a process was
important.
Secondly, if an organisation does not collect any metrics it cannot say for certain in
what areas it is weak. Only by collecting metrics will strengths and deficiencies be
highlighted.
Thirdly, as the DSDM consortium states, using this approach will only move
companies to level 2 of the CMM. To progress to a more mature development
organisation, companies will be required to refine their process a lot more if further
improvement is to be achieved. This study has provided a road map for how this can
be achieved in certain small companies.

7.3 Summary
The independent review undertaken as part of this study has revealed a number of
important issues and, I believe, strengths o f the method proposed.
All three contributors made reference to the importance of the developers believing in
the process and recording the figures. I agree that this is paramount. However, if
figures are to be collected then this must be done within a well-defined process; if the
process cannot be defined then it cannot be controlled and measured.
Overall I believe that the method provides a route to a more mature process for small
companies who have yet to define a process. The proposed methodology can also be
adopted by companies who develop projects in a RAD environment and wish to start
measuring their process in order to improve it.
I believe the approach outlined in this study provides a framework for achieving A
Quality Software Process for Rapid Application Development and I therefore
welcome the positive responses and the support given by the reviewers for the
proposed method.

118

Chapter 8 - Conclusions

8.0 Introduction
This study is concerned with improving the software development capability of small
software organisations. The study proposes using a process model, which combines
the top-down, RAD-oriented framework of DSDM with the bottom-up, metrics driven
approach of PSP. The findings have been validated by three software professionals to
determine the usability o f the proposed model in small software companies.
The purpose of this chapter is to document the results of the research and to
recommend areas suitable for further study.

8.1 Detailed Analysis
The objective o f this study was to examine the software process in a small software
development environment and to propose ways in which this could be improved.
Two new methods, DSDM and PSP, were examined to determine their suitability and
application in small software organisations.
A company was then chosen, an overview questionnaire completed and interviews
with company staff undertaken to determine the methods used by the company to
develop software, the tools employed and the standards and procedures followed.
What emerged was a small dynamic company, composed of skilled staff using
undocumented and ad-hoc approaches.
The prevalence of ad-hoc development approaches in such circumstances was clear
and as a result the organisation could be said to be immature. This, nevertheless,
would not be untypical for a small software company. It was against this background,
that the analysis was undertaken.

Two development paradigms, DSDM and PSP, were examined to identify what
benefits they could offer and whether they were suitable for a small company.

119

The study revealed that implementation o f DSDM would provide a road map for
development and a means o f achieving Capability Maturity Model (CMM) level 2.
While DSDM provided many advantages, the company also needed to begin
measuring its performance in terms of estimating, scheduling and particularly the
quality of both its products and process. These performance measures are supported at
the individual level by the Personal Software Process (PSP).
The next aspect o f the study was to outline how DSDM and PSP could be used
together as process improvement mechanisms within the company.

DSDM offers the potential for faster delivery of software. To ensure that the software
is o f sufficient quality requires the quality control and assurance mechanisms, such as
checklists, reviews and inspections, associated with PSP to be used. Further, PSP does
not preclude the use o f tool support in these areas. Trained, experienced personnel
using appropriate tools, such as static and dynamic analysers, can ensure that project
momentum is maintained.
Also PSP3, through its support for cyclical development, supplies the synergy that is
required to operate with DSDM. PSP3 supports unit and integration testing at each
cycle and this is congruent with the iterations produced in DSDM.
Other benefits also accrue from using PSP and DSDM together. The proxy-based
estimating technique o f PSP will help with defining timebox elements in DSDM.
PSP also supplies appropriate metric-collection techniques which can be used in
DSDM projects. Also some additional metrics were proposed which take account of
the particular requirements o f RAD projects.
DSDM projects require a quality plan. The documents and scripts associated with PSP
provide a major input into this plan and together with the metrics-collection
approaches allow you to plan for quality, monitor it and check that quality targets
have been achieved.
This study, therefore, proposes that both the PSP and DSDM could be profitably used
together, in small companies, as part of a quality software process for RAD.

120

8.2 Recommendations

8.2.1 Data Recording Assistance
The rigours of form filling and data recording, associated with the PSP, may cause
problems in the new software process environment.
There is no doubt that the detailed form filling required to gather all of the necessary
data for process measurement within the PSP will hinder the speed of development.
In order to prevent this, organisations using PSP measures within a RAD framework
could either simplify the recording approaches or investigate the use of software tools
to collect some of the basic data.

One study, carried out in a Canadian company, has employed a different approach for
the collection of PSP time recording measures [SHOS96], In CAE developers were
encouraged to maintain detailed logs o f their time on randomly selected days only.
This would reduce substantially the potential development delays generated by the
rigid data collection features o f the PSP.

With respect to using software tools to reduce the data collection overhead, there are a
number o f tools available to count lines of code (LOC). In areas where the user
interface is crucial, LOC counting may not be as effective as function point counting.
Tools which can count function points after development would be of tremendous
benefit in such an environment.
Similarly, tools which assist in defect recording would be advantageous.
Any tool which can assist with time recording would also prove effective. Should
such a tool not be available then the provision of an on-screen clock or ‘stopwatch’
would be an interim measure. The PSP provides a spreadsheet which generates all the
statistical data and charts necessary to assess progress. Unfortunately, the user must
enter the data manually into the spreadsheet first. Assistance in automatically
transferring this data from development to the spreadsheet could be profitable.

121

8.2.2 Inspection/Review Assistance
The PSP places great emphasis on code reviewing and inspection as methods of
finding defects early in the process. DSDM recommends the use o f automated support
for code reviewing and inspection. Particular benefit will be gained if these tools can
be adapted for use with the PSP. Ideally then, they could not only highlight code
errors but by reference to, perhaps, the PSP defect standard, they could record the
category o f defect. These tools, however, should only be considered when the manual
review and inspection process is fully understood.

8.2.3 DSDM Software Process Improvement Measures
DSDM has been designed to provide a life-cycle model for RAD. However, within
DSDM there is no account taken of software process improvement measures.
Within the DSDM manual it states that DSDM can be viewed as a process. Although
the process is particularly well-defined, few measures are included for improving the
process. While version 3 o f DSDM may include process improvement measures, PSP
measures can be used for process measurement and improvement in the intervening
period.

8.3 Future Research
Having examined the background of both DSDM and the PSP and proposed how they
could be utilised within a small software development company, future research could
concentrate on a number o f areas.

1. Implementing the measures within a company.
The adoption of these approaches by a company will allow the determination of their
efficacy within the suggested environment.
The results emanating from such a study will allow for the refinement and
improvement of the paradigms and how best they can effectively be cross-fertilised.
The time measures will be o f particular interest as they will illustrate by how much
the recording mechanisms inherent within the PSP will affect development speed and
schedules within DSDM.

122

It is proposed in early projects that, where appropriate, only DSDM is used in
situations where the project criteria correspond with those discussed in 6.2. Similarly,
in early projects which follow the criteria in 6.4, only the PSP should be used.
Employing the paradigms in this way allows developers to become familiar with the
standards imposed by each approach. Then when sufficient experience has been
achieved, and early feedback from their use evaluated, the migration path for
amalgamating them, where appropriate, can be determined.

2. New ways to measure quality - how can customer satisfaction be
measured?
At present the PSP proposes measures for both the product and the process. Most of
those measures concentrate on, for example, the number of defects within the product
and adherence to schedules. One of the only measures used after the product has been
shipped is the count o f the number o f post-delivery defects. Future research could
concentrate on objectively quantifying customer satisfaction with the delivered
system, through the use of, perhaps, usability metrics or other such measures. Pre­
development agreements including clauses where the customer ‘must be 100%
satisfied’ with the product could then be more objectively managed.

3. CASE environments to support metrics collection and RAD
Future research in this area could also examine the prospect of developing integrated
CASE tools to support the entire RAD development process.
Also effort could be put into verification and validation tools which could perhaps,
take in as input a system design written in a form of standard pseudocode. Also a tool
which permitted the entry o f user-defined design checklists against which the
formalised design could be compared would be advantageous.

123

4. Defect Prevention vs. Defect Removal, Causal Analysis,
Statistical Measures
Future work may also wish to explore the area of defect prevention and causal
analysis.
Causal and statistical analysis could provide interesting information on how defects
are introduced in RAD and what are the similarities/differences between those and the
ones produced in waterfall developments.
Statistical analysis of historical data will allow companies to predict the number of
defects within a product after shipment. Better still, by analysing the cause of defects,
process deficiencies, such as insufficient developer experience, inadequate training,
poor process documentation etc. can be highlighted.
Indeed it is only in this way by measuring and examining their activities that
companies can increase their software process maturity.

124

9. References
[ACKE89] Ackerman, A. Frank, Buchwald, Lynne S.& Lewski, Frank H.
‘Software Inspections: An Effective Verification Process’, IEEE Software, May 1989,
31-36.
[BALZ83] Balzer, R, Cheatham, T.E. and Green, C. ‘Software Technology in the
1990s: Using a New Paradigm’ IEEE Computer, November 1983, 39-45.
[BENI56] Benington, H. D. ‘Production of Large Computer Programs’
Proceedings Symposium on Advanced Programming Methods for Digital
Computers, Office of Naval Research, USA, 1956, 15-27 (see also Proc. 9th. Int. conf
on Software Engineering, 1987 (IEEE Computer Society Press 299-310.)).
[BOEH76] Boehm, Barry W. ‘Software Engineering’ IEEE Trans on Computers,
December 1976, Vol. c-25,No. 12., 1226-1241.
IBOEH88] Boehm, Barry W. ‘A Spiral Model of Software Development and
Enhancement’ IEEE Computer, May 1988, Vol. 21, No. 5, 61-72.
[B R 0087] Brooks, F. P. ‘No Silver Bullet: Essence and Accidents of Software
Engineering’ IEEE Computer, April 1987, 10-20.
[BURG95] Burgess, Angela ‘Mad About or Mad At Measurement’ IEEE
Software, January 1995, 115-117.
[CARD95] Card, David ‘The RAD Fad: Is Timing Really Everything?’, IEEE
Software, September 1995, 19-22.
[CARM93] Carmel, Erran ‘How Quality Fits Into Package Development’, IEEE
Software, September 1993, 85-86.
[CARM95] Carmel, Erran ‘Does RAD Live Up to the Hype?’, IEEE Software,
September 1995, 25-26.
[CSE92] The National Centre for Software Engineering, Framework fo r
Success: A Guide to Quality in Software Development and Support, National Centre
for Software Engineering, 1992.
[CURT93] Curtis, B. & Paulk, M. ‘Creating a software process improvement
program’ Information and Software Technology, June/July 1993, Vol. 35, No. 6/7,
381-386.

125

[CUSU89] Cusumano, Michael ‘The Software Factory: An Historical
Interpretation’, IEEE Software, March 1989, 23-30.
[DAVI94] Davis, Alan M. ‘Fifteen Principles of Software Engineering’, IEEE
Software, November 1994, 94-101.
[DORL93] Dorling, A. ‘SPICE: software process improvement and capability
dEtermination’ Information and Software Technology, June/July 1993, Vol. 36, No.
6/7, 404-406.
[DROM96] Dromey, R. Geoff ‘Cornering the Chimera’, IEEE Software, January
1996,33-43.
[DSDM95] Dynamic Systems Development Method, Version 2.0, DSDM
Consortium, November 1995.
[FAGA76] Fagan, M.E. ‘Design and Code Inspections to Reduce Errors in
Program Development’, IBM Systems Journal, 1976, Vol. 15, No. 3, 182-211.
[FAGA86] Fagan, M.E. ‘Advances in Software Inspections’, IEEE Transactions
on Software Engineering’, July 1986, Vol. SE-12, No. 7, 744-751.
[FOLK92] Folkes, Susan and Stubenvoll, Sue Accelerated Systems Development,
The BCS Practitioner Series, Prentice Hall, 1992.
[FREW86] Frewin, G.D. & Hatton, B.J. ‘Quality Management - Procedures and
Practices, Software Engineering Journal, January 1986, Vol.l, N o.l, 29-38.
[GORD95] Gordon, V. Scott & Bieman, James M. ‘Rapid Prototyping: Lessons
Learned, IEEE Software, January 1995, 85-94.
[GRAD93] Grady, Robert B. ‘Practical Results from Measuring Software Quality’,
Communications of the ACM, Vol. 36, No. 11, November 1993, 62-68.
[HAAS94] Haase, Volkmar, Messnarz, Richard, Koch, Gunter, Kugler, Hans J. &
Decrinis, Paul ‘Bootstrap: Fine-tuning Process Assessment’ IEEE Software, July
1994, 25-35.
[HANN95] Hanna, Mary ‘Farewell to Waterfalls?’, Software Magazine, May
1995, Vol. 15, 38-46.
[HARD95] Hardgrave, Bill C. ‘When to Prototype: Decision Variables Used in
Industry’, Information and Software Technology, 1995, Vol. 37, No. 2, 113-118.

126

[HENR95] Henry, Emmanuel & Faller, Benoit ‘Large-Scale Industrial Reuse to
Reduce Cost and Cycle Time’, IEEE Software, September 1995, 47-53.
[HUMP88] Humphrey, Watts S. ‘Characterising the Software Process: A Maturity
Framework’ IEEE Software, March 1988, 73-79.
[HUMP95] Humphrey, Watts S. A Discipline fo r Software Engineering, Addison
Wesley, 1995.
[IEEE84] IEEE Guide to Software Requirements Specifications, IEEE Standard
830, 1984.
[JACQ94] Jacques, Trevor ‘RAD Takes Developers Across the Waterfall’,
Computing Canada, January 1994, Vol. 20, 22.
[JOCH95] Joch, Alan & Sharp, Oliver ‘How Software Doesn’t Work: Nine Ways
to Make Your Code More Reliable’, Byte, December 1995, 49-60.
IKERR94] Kerr, James & Hunter, Richard Inside RAD - How to build fully

junctional computer systems in 90 days or less, McGraw Hill, 1994.
[KITC96] Kitchenham, Barbara & Pfleeger, Shari Lawrence ‘Software Quality:
The Elusive Target’, IEEE Software, January 1996, 12-21.
[LIND93] Lindstrom, David R. ‘Five Ways to Destroy a Development Project’,
IEEE Software, September 1993, 55-65.
[LINT95] Linthicum, David S. ‘The End of Programming’, Byte, August 1995,
69-72.
[LUQI91] Luqi & Royce, Winston ‘Status Report: Computer-Aided Prototyping’,
IEEE Software, November 1991, 77-81.
[McCR92] McCracken, D.D. and Jackson, M.A. ‘Life-Cycle Concepts Considered
Harmful’ ACM Software Engineering Notes, April 1992, 29-32.
[McLE93] McLeod Jr., Raymond Managing Information Systems: A Study o f
Computer-Based Information Systems, 5th Ed., Macmillan, 1993.
[MART91] Martin, James Rapid Application Development, Macmillan, 1991.
[MONT95] Montgomery, John ‘Make Quality Job 1’, Byte, December 1995, 54.

127

[MYER93] Myers, Ware ‘At Forum on Quality, Emphasis is on Testing’, IEEE
Software, September 1993, 94-96.
[OLSE95] Olsen, Neil C. ‘Survival of the Fastest: Improving Service Velocity’,
IEEE Software, September 1995, 28-38.
[PAUL93] Paulk, Mark C., Curtis, Bill, Chrissis, Mary Beth & Weber, Charles
‘Capability Maturity Model, Version 1.1’, IEEE Software, July 1993, 18-27.
[RAFI95] Rafii, Farshad & Perkins, Sam ‘Internationalising Software with
Concurrent Engineering’, IEEE Software, 1995, 39-46.
[REIL95] Reilly, John P. ‘Does RAD Live Up to the Hype?’, IEEE Software,
September 1995, 24-26.
[ROYC70J Royce, W. W. ‘Managing the Development o f Large Software
Systems: Concepts and Techniques’ Proceedings IEEE, Wescon 1970 (see also Proc.
9th. Int. conf. on Software Engineering, 1987 (IEEE Computer Society Press 328-
338.)).
ISHOS96] Shostak, Barry ‘Adapting the Personal Software Process to Industry’,
Software Engineering Technical Council Newsletter, Winter 1996, Vol. 14, No. 2, 10-

[SIM095] Simon, Ray ‘Software Development needs Modem Approach’,
National Underwriter (Property & Casualty/Risk and Benefits Management),
September 1995, Vol. 99, No. 5, 20.
[SOMM92] Sommerville, Ian Software Engineering, 4th Ed., Addison Wesley,
1992.
[SPMQ94] ‘Software Process Maturity Questionnaire’, Software Engineering
Institute, Carnegie Mellon University, 1994.
[THOM93] Thompson, K., & McParland, P. ‘Software Process Maturity (SPM)
and the Information Systems Developer’ Information and Software Technology,
June/July 1993, Vol. 35, No. 6/7, 331-338.
[WELL93] Weller, Edward F. ‘Lessons from Three Years o f Inspection Data’
IEEE Software, September 1993, 38-45.

128

[WOHL94] WohlWend, Harvey & Rosenbaum, Susan ‘Schlumberger’s Software
Improvement Program’, IEEE Transactions on Software Engineering, Vol. 20, No. 11,
November 1994, 833-839.
[YOUR95] Yourdon, Ed. ‘“Good Enough” Software’, Software Quality
Management, Issue 27, Autumn 1995, 30-33.

129

Appendix A

FAULT REPORT FORM

Project/System Title :

Date of Fault Occurrence : Fault Id. :

Fault Description :

Fault Uncovered By :

Date of Fault Repair :
Description of Fault Repair :

Modules Amended : Screens Amended :

Signed By :

130

Appendix B

C H A NG E REQ UEST FO RM

Project/System Title :

User Name :

Date of Change Request : Change Request Id. :

Description of Change

Reason For Change :

System Error/Enhancement: Date of Change :
Description of Change :

Modules Amended/Added : Screens Amended/Added :

Signed By :

131

A ppendix C - Samples of the forms used in the PSP

Time Recording Log

Student Date ______
Instructor _____ Program # _____

Date Start Stop
Interruption
Time

Delta
Time Phase Comments

Defect Recording Log

Student _______________________ Date
Instructor Program #

Date Number Type Inject Remove Fix Time Fix Defect Description

132

PSPO Project Plan Summary
S t u d e n t ________________ ______ Date
Program _______________________ Program #
Instructor ______________________Language

Time in Phase (min.) Plan Actual To Date
Planning ______
Design ______
Code ______ ______
Compile ______ ______
Test ______ ______
Postmortem ___ ______

Total

Defects Injected
Planning
Design
Code
Compile
Test

Total Development

Defects Removed
Planning
Design
Code
Compile
Test

Total Development

To Date %

133

Date
Program #
Language

To Date
Base (B)

Deleted (D) ._____
Modified (M) ______ ______
Added (A) ______ ______
Reused (R) ______ ______

Total New and Changed (N)________________________
Total LOC ______
Total New Reused _

Time in Phase (min.)
Planning
Design

Defects Injected
Planning
Design

Defects Removed
Planning
Design

PSP0.1 Project Plan Summary
Student _______________________
Program _______________________
Instructor

Program Size (LOC) Plan Actual To Date %

134

APPENDIX D Software Process Questionnaire

Completing the Questionnaire
1. To the right of each question there are boxes representing the four possible

responses to the question.

Answer YES when the practice is :
- Well established and consistently performed. (The practice should be
performed on every occasion to meet the criteria).

Answer NO when the practice is :
- Not well established or inconsistently performed.

Answer DON’T KNOW when you have insufficient knowledge about certain
aspects o f your process or project to answer the question.

Answer DOES NOT APPLY when you have sufficient knowledge about the
process or project but feel the question does not apply or has no relevance in
this instance.

2. Comments should be used for the following :
- To record any supporting material to justify a Yes answer.
- Where a No is recorded but some elements of the practice are performed.
- For elaborating on Does Not Apply answers.
- For documenting practices performed by the company which may not be
covered sufficiently by the other questions.

3. The ‘You’ in the questions refers to the company or project not the specific
individual.

135

PRELIMINARY
QUESTIONS

136

Yes No Don’t Does
Know Not

Apply
Software Initiatives
1. Are all software initiatives generated from within the □ □ □ □
company?
Comments:

2, Is a formal process used to evaluate each system □ □ □ □
proposal before commencing development?
Comments:

Review and Sign-Off
1, Does senior management have a mechanism for the i—i r—i i—i i—i
regular review of the status of software development
projects?
Comments:

2. Do software development line managers sign-off Q i
schedules and deliverables?
Comments:

Software Quality Assurance
I. Does the company have a Software Quality Assurance i
Team?
Comments:

(Only i f ‘Yes’ to 1.)
2. Does the Software Quality Assurance team have a □ □ □ □
management reporting channel separate from the
software development project management?
Comments:

137

Yes No Don’t Does
Know Not

Apply

1. Does the company have a software Configuration
Management function?
Comments:

Configuration Management

2. Is a mechanism used for con tolling changes to the
software requirements?
Comments:

3. Is a mechanism used for controlling changes to the Q Q Q I
code ? (Who can make changes and
under what circumstances)?
Comments:

Estimating
1. Is a formal procedure used to make estimates of Q Q | |
software cost?
Comments:

2. Is a formal procedure used to make estimates of | | I I I I I I
software size?
Comments:

3. Is a formal procedure used to make estimates o f | | | | | [I I
software development schedules?
Comments:

Metrics
1. Are statistics on software code and test errors I I [I l I I I
gathered?
Comments:

138

SOFTWARE
PROCESS

OVERVIEW

139

Yes No Don’t
Know

ORGANISATION FOCUS

1. Has your organisation developed, and does it maintain, | | | | | |
a standard software process?
Comments:

If ‘Yes’ go to 2 otherwise go to Education
and Training)
2. Do software development staff refer to the organisation
defined software process when undertaking software
development?
Comments:

3. Does the organisation have a Software Engineering □ □ □
team or individual responsible for improving the
organisation’s software process?
Comments:

4. Do the individuals involved receive the required Q
training to perform these activities?
Comments:

5. Is the organisation’s software process reviewed on a □ □ □
regular basis?
Comments:

6. Are senior management involved in improving the j i I
organisation’s software process?
Comments:

Does
Not
Apply

□

□

□

□

□

□

140

Yes No Don’t Does
Know Not

Apply

7. Is the organisation’s software process documented? □ □ □ □
Comments:

141

Yes No Don’t
Know

EDUCATION AND TRAINING

1. Are training activities planned? | | | | | |
Comments:

2. Do software managerial and development staff receive □ □ □
the training necessary to perform their roles?
Comments:

3. Are adequate resources provided to implement the | I [~~l I I
organisation’s training programme?
Comments:

4. Are training programme activities regularly reviewed? I~1 l~~l f~l
Comments:

□

□

□

□

Does
Not
Apply

142

Yes No Don’t
Know

PROJECT MANAGEMENT

Project Planning
I. Does a written procedure exist for managing a software ” .
project?
Comments:

2. Does the project follow a written organisational
procedure for planning a software project?
Comments:

3. Is agreement reached in advance of development Q Q
between all groups in response to their roles and
commitment in relation to the project?
Comments:

4. Do the software plans document the activities to be Q Q
performed during the project and the deliverables for
each project stage?
Comments:

5. Are estimates (e.g. schedule, size and cost) made in | | |~1 I I
advance o f the project?
Comments:

Project M onitoring
I. Does a written procedure exist for monitoring a □ □ □
software project?
Comments:

2. Are the actual results of the project compared with the I I I I I I
estimates?
Comments:

Docs
Not
Apply

□

□

□

□

□

□

□

143

Yes No Don’t Does
Know Not

Apply

3. Is action taken when actual results deviate from the □ □ □ □
project’s scheduled results?
Comments:

144

Yes No Don’t
Know

CONFIGURATION MANAGEMENT

1. Does the organisation have a documented procedure for □ □ □
Configuration Management?
Comments:

2. Does the organisation have a documented procedure for Q l
ensuring that any software changes are reflected in the
appropriate documentation at every life-cycle phase?
Comments:

3. Does the organisation have a team or individual □ □ □
responsible for controlling changes to Software and issuing
software releases?
Comments:

4. Are project personnel trained to perform the software j "
configuration management activities for which they are
responsible?
Comments:

5. Are change requests and error reports filed with copies □ □ □
distributed to affected individuals?
Comments:

6. Are software changes agreed to by all affected groups □ □ □
and individuals?
Comments:

7. Are all new software releases fully regression tested
before release?
Comments:

Does
Not
Apply

□

□

□

□

□

□

□

145

QUALITY ASSURANCE

1. Does the organisation have a documented procedure
for implementing Software Quality Assurance?
Comments:

2. Does the organisation have a team or individual
responsible for controlling changes to Software and
issuing software releases?
Comments:

3. Does the organisation specify measurable goals (e.g.
reliability, portability, functionality) for managing the
quality o f its software products?
Comments:

I f ‘Yes* to 3.
4. Does the organisation compare the software output
against the objective software measures?
Comments:

5. Does the SQA function provide objective verification
that software products and activities conform to company
standards and procedures?
Comments:

6. Are metrics collected during the software development
phase?
Comments:

Yes No Don’t Does
Know Not

Apply
REQUIREMENTS SPECIFICATION

1. As Requirements change are the necessary □ □ □ □
amendments made to plans, estimates and
documentation?
Comments:

2. Does a written procedure exist for documenting □ □ □ □
requirements?
Comments:

3. Is the requirements specification/definition activity Q Q Q
subject to SQA review?
Comments:

147

Yes No Don’t Does
Know Not

Apply
SYSTEM DESIGN

1. As design changes are made are the necessary | |
amendments made to plans, estimates and
documentation?
Comments:

2. Does a written procedure exist for documenting □
design?
Comments:

3. Is the design activity subject to SQA review? | ') | | |]
Comments:

148

Yes No Don’t
Know

IMPLEMENTATION

1. As design defects are discovered are the necessary □ □ □
amendments made to plans, estimates and
documentation?
Comments:

2. Does a written procedure exist for documenting
programs?
Comments:

3. Is the programming activity subject to SQA review? ; |
Comments:

Does
Not
Apply

□

□

□

149

Yes No Don’t
Know

TESTING

1. As design defects are discovered are the necessary |
amendments made to plans, estimates and
documentation?
Comments:

2. Does a written procedure exist for performing software
testing?
Comments:

3. Is the testing activity subject to SQA review? Q | |
Comments:

Does
Not
Apply

□

□

□

150

Yes No Don’t Does
Know Not

Apply
OPERATIONS/MAINTENANCE

1. As system defects are discovered are the necessary □ □ □ □
amendments made to documentation?
Comments:

2. Does a written procedure exist for documenting
maintenance activity?
Comments:

3. Is the maintenance activity subject to SQA review? □ □ □ □
Comments:

151

