Evanescent Wave Spectroscopy using Hollow Cylindrical Waveguide Probes

By
Deirdre Coleman

> A Thesis presented to
> Dublin City Unversity

For the degree of Master of Science

June 1996

Supervisor Dr Vincent Ruddy
School of Physical Sciences
Dublin City Unuversity
Ireland

Declaration

I nearby certify that this maternal, which I now submit for assessment on the programme of study leading to the award of Master of Science is entirely my own work and has not been taken from the work of others save to and to the extent that such work has been cited and acknowledged within the text of my work

Date 8-fuly-1996

Dedication

For Mam and Dad

Acknowledgements

I would like to thank Dr Vince Ruddy for his unending help and guidance throughout this project I would also like to show my apprectation to my fellow members in the Optical Sensors Group, both old and new, for their companıonship and brain power Vincent Murphy, Tom Butler, Ger O'Keeffe, James Walsh, Fergus Connolly

Thanks are due also to Des Lavelle for his creative skılls, Joe Maxwell and Al Devine for help and advice in crisis management

Finally, thanks to Damien especially, and all my friends in the Physics Department

Abstract

Opucal waveguides carry bound modes which consist of a core E and H field, which is oscillatory across the wavegude and evanescent in the waveguide cladding Both the core and claddnng component of each mode has the same frequency and propagation constant When the frequency of the light carried by the waveguide matches an absorption transition of the materal of the claddng, the mode loses optical power as it propagates due to the attenuation of the evanescent cladding portion of the mode This process is called attenuated total reflection spectroscopy (ATR) or evanescent wave spectrophotometry As in stmple transmission spectrophotometry the absorbance of the mode is related to the interaction length of the waveguide with the absorbing cladding, the concentration of the absorbing species of the cladding and the fraction of the optical power in the evanescent waves of the vanous modes

This work firstly represents a theoretical analysis of the bound modes that can exist in a step index hollow cylindrical waveguide, their evanescent power fraction and the effectuve length of such a wavegude when located in an absorbing cladding matenal The waveguide is found to bave a normalized frequency or effectuve V number whose magnitude determines the total number of bound modes and influences the mean evanescent power fraction between modes This effective V number reduces to that of the soldd step index fiber waveguide in the limit of a zero radus inner cavity Likewise the expression for the mean evanescent mode power fraction becomes - in the limit of zero inner radus - identical to that of the fiber waveguide The evanescent absorbance of such a hollow wavegurde located in an absorbing fluid is modeled in terms of the bulk absorption coefficient of the fluid and the waveguide dumensions

In the second part of the thesis a set of expermental absorbance values for ATR spectrophotometry using a hollow silica waveguide probe are reported Good correspondence is found between the theoretical model and the expenmental data

Schematic of Hollow Waveguide Evanescent $P_{\text {robe }}$

Table of Contents
1 INTRODUCTION TO EVANESCENT WAVE SPECTROPHOTOMETRY 1
11 Modes in Waveguides 1
1.2 The Planar Waveguide 3
1.3 The Cylindrical Waveguide. 4
14 The Evanescent Power Fraction 7
15 The Waveguide as a Sensor 8
16 Absorbance of a Sensor Probe 9
17 Conclusions 10
18 References 11
2 THE HOLLOW CYLINDRICAL WAVEGUIDE - A THEORETICAL MODE ANALYSIS 12
21 Introduction 12
2.2 The E and H fields of modes in a hollow waveguide 12
2.3 The mode eigenvalue equation 15
2.4 Mode cut-off condition 18
25 Mode indices (l, m) 20
26 Lumiting values of 1 and m 22
27 The total number of bound modes 22
28 An effective V number for the wavegude (V^{\prime}) 23
29 The mode power in core and cladding 23
210 The evanescent power fraction of a mode 24
211 Conclusions 24
212 References 25
3 MODEL OF HOLLOW CYLINDRICAL WAVEGUIDES - A COMPUTATIONAL ANALYSIS 26
31 Introduction 26
3.2 Program to determine mode cut-off values 26
33 Computer program to solve the eigenvalue equation 29
34 Program to derive \mathbf{E} and \mathbf{H} field component amplitudes in core and claddıng 29
35 Program to evaluate mean evanescent power fraction \bar{f} among modes 30
36 Mode power fraction distribution 33
37 Dependence of f on V^{\prime} and (b/a) 35
38 Dependence of \mathbf{N} on \mathbf{V}^{\prime} 37
39 Conclusions 39
39 References 40
4 EVANESCENT WAVE SPECTROPHOTOMETRY USING A HOLLOW WAVEGUIDE PROBE 41
41 Intı oduction 41
42 The ATR probe 41
4.3 Excitation of modes in the probe 41
44 Theoretical absorbance of hollow waveguide probe 43
4.5 Absorbance measurement technique 45
46 Conclusions 47
5 EXPERIMENTAL ABSORBANCES USING HOLLOW SILICA WAVEGUIDE 48
51 Introduction 48
52 Bulk properties of the absorbing cladding 48
5.3 Evanescent absorbance as a function of probe ummersion depth 49
54 The experimental \bar{f} value 51
55 Conclusions 52
56 References 53
APPENDIX A CUTS M A-1
APPENDIX B CUTOUT M B-1
APPENDIX C HOLL M C-1
APPENDIXD HOLL_SEM D-1
APPENDIX E HOLLPOW M E-1
APPENDIX F MODES M F-1
APPENDIX G REFLECTION COEFFICIENT G-1
APPENDIX H 6X6 MATRIX H-1

Table of Figures

Figure 11 The propagatıon constant β of a partıcular mode 1
Flgure 12 A Planar Waveguide 3
Figure I 3 Cylindrical Waveguide 4
Figure 1-4 Power distribution in a waveguide 9
Figure 2-1 Hollow cylindrical waveguide 12
Figure 2-2 Radial E field of $(3,3)$ mode 17
Figure 2.3 Radial Efield in three dimensions 18
Figure 2-4 Example of 1 versus m graph 21
Figure 3-1 Flow-chart of program Cuts m 27
Figure 3-2 Flow-chart of Holl m 28
Flgure 33 Flow-chart for Holl_se m 31
Figure 3-4 Flow-chart for Hollpow m (contınued in figure 3-5) 32
Ftgure 3-5 Contınuatıon of flow-chart for Hollpow m 33
Figure 36 Histogram of power fraction f distribution 34
Figure 3.7 f versus $1 / N^{\prime \prime}, C=15$ 35
Figure 38 fversus $1 / \mathrm{N}, C=12$ 36
Figure 3-9 Graph of \bar{f} versus C 37
Figure 3-10 C $=15$ 38
Figure 3-11 C=I 2 38
Figure 4-1 Aluminum plug with fibers attached 42
Flgure 4-2 Light being focused into fiber bundle 43
Figure 4-3 Example of saturation of absorbance with increasing depth 45
Figure 51 Bulk absorbance versus solution concentration 49
Figure 52 Evanescent absorbance versus depth ($28756 \mu M$ solution) 50
Figure 5-3 Evanescent absorbance versus depth, (306 $902 \mu M$ concentration) 51
Figure G-1 Reflection and transmission at an interface between two media G-1
Ftgure G-2 Light ray undergoing total internal reflection G-2
Table 3-1 fvalues with corresponding mode percentages 34

1. Introduction to evanescent wave spectrophotometry.

1.1 Modes in Waveguides.

When light travels within a waveguide, the path that the light follows is defined by the shape and dimensions of the waveguide According to wave theory, the electromagnetic E and H fields must also be solutions of the wave equation

$$
\begin{equation*}
\nabla^{2} E-\frac{1}{v_{p}^{2}} \frac{\partial^{2} E}{\partial t^{2}}=0 \quad v_{p}=\frac{c}{n} \tag{Eqn 111}
\end{equation*}
$$

These allowed light paths are considered bound within the waveguide, and are called modes An opucal waveguide can only support a finite number of bound modes Each mode consists of two disunct parts, that which exists within the core of the waveguide (which is oscillatory in behaviour) and that part which traveis along the interface of the core and cladding The second part is called the evanescent wave, with an electric field amplitude that falls off exponentally with distance from the interface A mode is identified by its' core and cladding mode parameters, U and $W U$ and W are related by the propagation constant β, which represents the component of the wavevector along the waveguide axis If the wave has a wavenumber k, in free space, then in the core (medium with refractive index n_{1}, where $n_{1}>n_{2}$) its' value is $n_{1} k$, so

$$
\begin{equation*}
\beta=n_{1} k \operatorname{Cos} \theta_{z} \tag{Eqn 112}
\end{equation*}
$$

where θ_{2} is the angle the wavevector makes with the waveguide axis (z axis)

Figure 1.1 The propagation constant β of a particular mode

The transverse component is therefore

$$
\sqrt{n_{1}^{2} k^{2}-\beta^{2}}
$$

For a core dimension of 2 a , the core and cladding mode parameters are given by

$$
\begin{align*}
& U=a \sqrt{n_{1}^{2} k^{2}-\beta^{2}} \tag{Eqn 113}\\
& W=a \sqrt{\beta^{2}-n_{2}^{2} k^{2}}
\end{align*}
$$

U and W combine to give

$$
U^{2}+W^{2}=a^{2} k^{2}\left(n_{1}^{2}-n_{2}^{2}\right)
$$

This is usually denoted

$$
\begin{aligned}
& U^{2}+W^{2}=V^{2} \\
& V=a k \sqrt{n_{1}^{2}-n_{2}^{2}}
\end{aligned}
$$

Eqn 114

V is called the normalized frequency of a waveguide, and relates the core diameter (2a) to the numerical aperture, $N A=\left(n_{1}{ }^{2}-n_{2}{ }^{2}\right)^{1 / 2}$, and the wavenumber k of the light V is a property only of the waveguide and of wavelength, λ Because of the above equation,

$$
\begin{aligned}
& 0 \leq U \leq V \\
& 0 \leq W \leq V
\end{aligned}
$$

and when one is large, the other is small

1.2 The Planar Wavegurde.

Figure 1-2 shows a planar waveguide

Figure 12 A Planar Wavegulde
The solution to this waveguide is derived from the wave equation (equation 111) and is

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial x^{2}}+\frac{\partial^{2} E}{\partial y^{2}}+\frac{\partial^{2} E}{\partial z^{2}}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=0 \tag{Eqn 121}
\end{equation*}
$$

in cartesian coordinates Assuming that the E and H field components of the electromagnetic wave have a tume (t) and distance (z) dependence of the form

$$
\begin{equation*}
\exp t(\omega t-\beta z) \tag{Eqn 122}
\end{equation*}
$$

then a tral solution of

$$
\begin{equation*}
E=E_{x} \exp t(\omega t-\beta z) \tag{Eqn 123}
\end{equation*}
$$

will yield the wave equation m the core and cladding as

$$
\begin{array}{ll}
a^{2} \frac{\partial^{2} E_{x}}{\partial x^{2}}+U^{2} E_{x}=0 \quad @ \quad x \leq a \\
a^{2} \frac{\partial^{2} E_{x}}{\partial x^{2}}-W^{2} E_{x}=0 \quad @ \quad x \geq a \tag{Eqn 124}
\end{array}
$$

U and W , the mode core and cladding parameters are given in section 11 The wavenumber k is given by $2 \pi / \lambda, \lambda$ being the free space wavelength The solutions to the above equations are given by

$$
\left.\begin{array}{l}
E=A_{1} \operatorname{Sin}\left(\frac{U x}{a}\right) \text { or } \tag{Eqn 125}\\
E=A_{2} \operatorname{Cos}\left(\frac{U x}{a}\right)
\end{array}\right\} \text { for } x \leq a
$$

where A_{1}, A_{2} and A_{3} are amplitude coefficients Within the planar wavegude core the waves are sinusoidal (or cosinusoidal), and are evanescent in the cladding

1.3 The Cylindrical Waveguide.

Figure 13 Cylindrical Waveguide

The cylindrical waveguide is shown in figure 1-3 The solution of the wave equation in a cylindrical waveguide is denved as follows

$$
\begin{equation*}
\nabla^{2} E-\frac{1}{v_{p}^{2}} \frac{\partial^{2} E}{\partial t^{2}}=0 \tag{Eqn 131}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla^{2} E-\frac{n^{2} k^{2}}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=0 \tag{Eqn 132}
\end{equation*}
$$

where $\mathrm{k}=2 \pi / \lambda$, and λ is the free space wavelength

Expressing equation 131 in cylindncal polar coordinates ($r, \phi \mathrm{z}$) and inserting a trial solution of

$$
\begin{aligned}
E & =E(r, \phi) \exp t(\omega t-\beta z) \\
& =E_{t} \exp t(\omega t-\beta z)
\end{aligned}
$$

Eqn 133
gives

$$
\frac{\partial^{2} E_{t}}{\partial r^{2}}+\frac{1}{r} \frac{\partial E_{t}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} E_{t}}{\partial \phi^{2}}+\left(n^{2} k^{2}-\beta^{2}\right) E_{t}=0 \quad \text { Eqn } 134
$$

Changing to a normalised radius $\mathrm{R}=\mathrm{r} / \mathrm{a}$ gives

$$
\frac{\partial^{2} E_{t}}{\partial R^{2}}+\frac{1}{R} \frac{\partial E_{t}}{\partial R}+\frac{1}{R^{2}} \frac{\partial^{2} E_{t}}{\partial \phi^{2}}+a^{2}\left(n^{2} k^{2}-\beta^{2}\right) E_{t}=0
$$

Eqn 135

Since the medium has cylindrical symmetry we can write

$$
\begin{equation*}
E_{t}=F(R) \Phi(\phi) \tag{Eqn 136}
\end{equation*}
$$

1 e separating $E_{1} \operatorname{in}$ radıal (R) and azımuthal (ϕ) components Equation 135 then gives

$$
\begin{equation*}
\frac{R^{2}}{F}\left\{\frac{d^{2} F}{d R^{2}}+\frac{1}{R} \frac{d F}{d R}\right\}+R^{2}\left(n^{2} k^{2}-\beta^{2}\right)=-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}} \tag{Eqn 137}
\end{equation*}
$$

If we write equation 137 as some positive quantity $+l^{2}$ then

$$
-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}=l^{2}
$$

Eqn 138
which has (S H M) solutions of the form $\operatorname{Cos} \ell \phi$ or $\operatorname{Sin} l \phi$ For the function to be single valued, ie

$$
\begin{equation*}
\Phi(\phi)=\Phi(\phi+2 \pi) \tag{Eqn 139}
\end{equation*}
$$

we must have $l=0,1,2,3$ Since for each value of l there may be two independent states of polarisation, modes with $l \geq 1$ are four fold degenerate while $l=0$ modes, being ϕ independent are two fold degenerate In equation 137 above the second term $R^{2}\left(n^{2} k^{2}-\beta^{2}\right)$ may be posituve or negatuve depending on the relative magnitude of $n k$ and β
a) When $n^{2}{ }_{1} \mathrm{k}^{2}>\beta^{2}>\mathrm{n}^{2}{ }_{2} \mathrm{k}^{2}$

For β in this range the radial fields $F(R)$ are oscillatory in the core and decay in the cladding (evanescent) These are known as guided modes or bound modes Recalling that β represents the z component of the wavevector $n_{1} k$ in the core, Snell's Law for rays says that guded or internally reflected rays occur if

$$
\begin{align*}
& \theta>\operatorname{Sin}^{-1} \frac{n_{2}}{n_{1}} \\
& n_{1} \operatorname{Sin} \theta>n_{2} \tag{Eqn 1310}\\
& n_{1} k \operatorname{Sin} \theta>n_{2} k
\end{align*}
$$

Where θ is the angle the ray makes with the normal at the interface Now $\theta+\theta_{z}=\pi / 2$ therefore Snell's Law gives

$$
\begin{align*}
& n_{1} k \operatorname{Cos} \theta_{z}>n_{2} k \\
& \text { te } \quad \beta>n_{2} k \tag{Eqn 1311}
\end{align*}
$$

for total internal reflection Since $\beta=n_{1} k \operatorname{Cos} \theta_{2}, \beta_{\text {max }}$ is $n_{1} k$ so we have

$$
\begin{equation*}
n_{1} k>\beta>n_{2} k \tag{Eqn 1312}
\end{equation*}
$$

for total internal reflection (θ_{z} is shown in Figure 1-1)
b) $\beta^{2}<\mathrm{n}_{2}{ }_{2} \mathrm{k}^{2}$

For such values of β the radıal fields $F(R)$ are oscillatory in the cladding These are known as radiation modes and correspond to refracted light in the cladding

Returnmg to equation 137 the wave equation for guided or bound modes becomes

$$
\begin{array}{ll}
R^{2} \frac{d^{2} F}{d R^{2}}+R \frac{d F}{d R}+\left(U^{2} R^{2}-l^{2}\right) F=0 & R<1 \\
R^{2} \frac{d^{2} F}{d R^{2}}+R \frac{d F}{d R}-\left(W^{2} R^{2}+l^{2}\right) F=0 & R>1
\end{array}
$$

Eqn 1313
where

$$
\begin{align*}
& U^{2}=a^{2}\left(n_{1}^{2} k^{2}-\beta^{2}\right) \\
& W^{2}=a^{2}\left(\beta^{2}-n_{1}^{2} k^{2}\right) \tag{Eqn 1314}
\end{align*}
$$

Equations 1313 are of the standard form of Bessel Equations with solution $J_{1}(U R), Y_{1}(U R)$ in the $R<$ 1 core region and modified Bessel functions $\mathrm{K}_{4}(\mathrm{WR})$ and $\mathrm{L}_{4}(\mathrm{UR})$ in the cladding

The equations above give the allowed solutions

$$
\left.\begin{array}{l}
E_{t}=A_{1} J_{l}(U R) \operatorname{Cos}(l \phi) \\
\text { or } \quad E_{t}=A_{l} J_{l}(U R) \operatorname{Sin}(l \phi)
\end{array}\right\} \text { for } \quad R \leq 1
$$

Eqn 1315
where A_{1} is the wave amplitude The $Y_{1}(U R)$ and $L_{4}(U R)$ Bessel functions are not allowed solutions in this case as $Y_{1}(U R)$ is infinite at $R=0$, and $L_{1}(U R)$ is infinite at $R=1$ (Abramowitz and Stegun, Figures 91 and 98)

1.4 The Evanescent Power Fraction.

For both planar and cylmdrical waveguides the evanescent field
(1) is approximately exponentually decaying away from the interface
(n) Has a penetration depth $\cong a / W$, or

$$
d_{p}=\frac{1}{\sqrt{\beta^{2}-n_{2}^{2} k^{2}}}
$$

By taking the Poynting vector ($\overline{\mathrm{E}} \times \overline{\mathrm{H}}$) and integratang from $\mathrm{R}=1$ to $\mathrm{R}=\infty$, the power of the evanescent wave may be calculated Thus the power fraction of a mode which exists as an evanescent wave can be determined This fraction f, was shown by Gloge (1971) to be

$$
\begin{equation*}
f=\frac{U^{2}}{V^{2} \sqrt{W^{2}+l^{2}+1}} \tag{Eqn 141}
\end{equation*}
$$

For modes close to cut-off, 1 e modes for which $\mathrm{W} \rightarrow 0$, this fraction will be large, ($\mathrm{W} \rightarrow 0$ as $\mathrm{U} \rightarrow$ V)

$$
f \cong 1 / l
$$

while for modes far from cutotf $(\mathrm{W} \rightarrow \mathrm{V}$, as $\mathrm{U} \rightarrow 0$) the power fraction will be neghgible

1.5 The Waveguide as a Sensor.

In order for a wavegude to be used as a sensor, an analytical wavelength of the cladding material must match that of the light being carried by the core The cladding will then absorb photons from the modes at a rate determmed by the bulk absorption coefficient of the cladding material (which may be solid or fluid) The amount of absorption that occurs also depends on the distance over which the core is in contact with the absorbing medium The sensing mechanism is the detection of the size of this power loss into the absorber, and relating the power loss to the concentration of absorber present Vanous evanescent wave sensor geometries are possible Harnck (1987) Chapter 4 discusses rectangular waveguide designs Kapany et al (1963) I and II, Hansen (1963) and Harrick (1964) describe solid rod waveguides used in attenuated wave spectrophotometry

1.6 Absorbance of a Sensor Probe.

Figure 1-4 Power distribution in a waveguide

Because only light being transmitted as an evanescent wave comes in contact with the absorber, only a small fraction of the total light launched into the waveguide is used to provide sensor information Therefore a modified version of the Lambert-Beer law applies, being

$$
\begin{equation*}
I=I_{0} \exp (-f \alpha z) \tag{Eqn 161}
\end{equation*}
$$

This can be seen as follows The evanescent power at point A in Figure 14 is

$$
\begin{equation*}
I(z)=f I \tag{Eqn 162}
\end{equation*}
$$

The loss in power of the mode in travelling $\Delta \mathrm{z}$ is $\Delta \mathrm{I}$, where

$$
\begin{equation*}
\frac{\Delta I}{I(z)}=-\alpha(\Delta z) \tag{Eqn 163}
\end{equation*}
$$

Using equation 162 gives

$$
\begin{equation*}
\frac{\Delta I}{I}=-f \alpha \Delta z \tag{Eqn 164}
\end{equation*}
$$

On integrating from $\mathrm{z}=0$ to z , for $\mathrm{I}=\mathrm{I}_{0}$ to I we get

$$
\log \frac{1}{I_{0}}=-f \alpha z
$$

Eqn 165

$$
\begin{array}{ll}
I=I_{0} \exp (-\alpha f z) & \text { Eqn } 166 \\
A^{\prime}=(0434) f \alpha z & E q n 167 \tag{Eqn 167}
\end{array}
$$

For a given mode, specified by the core mode parameter U, and cladding mode parameter W, then the above equation gives the evanescent absorbance A^{\prime} using equation 141 for $f-$ as

$$
\begin{equation*}
A^{\prime}=(0434) \frac{U^{2} \alpha z}{V^{2} \sqrt{W^{2}+l^{2}+1}} \tag{Eqn 168}
\end{equation*}
$$

In this case z is the length of the waveguide in contact with the absorber Where many modes are excited, each with the same incident power ($\mathrm{I}_{0} / \mathrm{N}$), the transmitted power will be

$$
\begin{array}{ll}
I=\sum_{N}\left(\frac{I_{0}}{N}\right) \exp \left\{\frac{-U^{2} \alpha z}{V^{2} \sqrt{W^{2}+l^{2}+1}}\right\} & \text { Eqn } 169 \\
I / I_{0}=\frac{1}{N} \sum_{N} \exp \left\{\frac{-U^{2} \alpha z}{\sqrt{W^{2}+l^{2}+1}}\right\} & \text { Eqn } 1610 \tag{Eqn 1610}\\
A^{\prime}=-\log _{10}\left[\frac{1}{N} \sum_{N} \exp \left\{\frac{\alpha z U^{2}}{\sqrt{W^{2}+l^{2}+1}}\right\}\right] & \text { Eqn } 1611
\end{array}
$$

where the summation is carried out over N modes A^{\prime} is the evanescent absorbance

1.7 Conclusions.

This chapter provides the basıs from which theoretical analysis on the hollow cylindrical waveguide will be done The methods shown above will be expanded to describe the hollow waveguide in similar mathematical terms, so that the hollow waveguide will describe both the planar and fibre waveguides when the dimensions of the hollow waveguide are sufficiently large to be considered planar or small enough to be considered a solid fibre

1.8 References.

Abramowitz M and Stegun I A, "Handbook of Mathematical Functions", (National Bureau of Standards, Washington DC USA 1964) Eqn 9-5-28 p374

Gloge D, "Weakly Guiding Fibers", Appl Opt 10 pp 2252-2258 (1971)

Hansen W N, "A New Spectrophotometric Technique using Multuple Attenuated Total Reflection", Anal Chem 35 765-769 (1963)

Harrick N J, "Multuple Reflection Cells for Internal Reflection Spectroscopy", Anal Chem 36 188193 (1964)

Harrıck N J, "Internal Reflectuon Spectroscopy", (Harrick Scıentufic Corp NY (1987))

Kapany N S and Pontarellı D A (I), "Photorefractometer I Extension of Sensitivity and Range", Appl Opt $2425-430$ (1963)

Kapany N S and Pontarellı D A (II), "Measurement of N and K", Appl Opt $\underline{2}$ 1043-1050 (1963)

Snyder A W and Love J D, "Optucal Waveguide Theory", (Chapman and Hall, London / NY (1983))

2. The hollow cylindrical waveguide - a theoretical mode analysis.

2.1 Introduction.

Figure 21 Hollow cylindrical waveguide
Figure 2-1 above shows a bollow cylindrical waveguide The inner hole ($0<\mathrm{r}<\mathrm{a}$) and outer region $(\mathrm{b}<\mathrm{r}<\infty$) are the lower index media, and the glass region $\mathrm{a}<\mathrm{r}<\mathrm{b}$ is the higher refractuve index medium In this configuration the glass annulus acts as a light guide, but with cladding at two mterfaces giving two surfaces where evanescent absorption can take place

2.2 The E and H fields of modes in a hollow waveguide.

The hollow cylinder is described as having an mner diameter of 2 a and outer diameter 2 b , this region being made of a glass with refractive index n_{1}, and surrounded internally and externally by a medium of refractive index n_{2} with $n_{1}>n_{2}$ The following analysis is based on the method used in

Unger(1980) for E and H fields in doubly clad cylindrical fibre waveguides modified for the hollow cylinder

Barlow (1981, 1983) developed the first published work on the "three concentric layer cylindrical waveguide" In his analysis - pertaming to fiber waveguides - the waveguide dimensions are small (typically $100 \mu \mathrm{~m}$) and the refractive indices of the 3 layers ($\mathrm{n}, \mathrm{n}_{2}, \mathrm{n}_{3}$) are very close together, obeying the so-called "weakly guiding approximation" The latter condition is valid only in very limited cases but the thrust of the mode analysis can form a basis for a more general theory Tsao et al (1989) carried out further 3 layer fiber mode characterisations, again invoking a weakly guiding condition Brunner et al (1995) published some work on Attenuated Total Reflection Spectrophotometry using "capillary optical fiber" probes using the mode analysis technique of Barlow (1983) for their work Mode analysis for a 3 layered cylnndrical waveguide of a hollow cylinder shape, where the guiding glass annulus is surrounded by 2 media of the same refractive index (as shown in figure 2 1) is carned out by the author without recourse to the weakly guiding condition ($n_{1} \equiv n_{2}$) This is the most general case and the analysis described here is the first representation of such a treatment

Solutions of the wave equations in a medium in which the phase velocity of light is $v=c / n$

$$
\begin{align*}
& \vec{\nabla}^{2} \vec{E}-\frac{1}{v^{2}} \frac{\partial \vec{E}}{\partial t^{2}}=0 \\
& \vec{\nabla}^{2} \vec{H}-\frac{1}{v^{2}} \frac{\partial \vec{H}}{\partial t^{2}}=0 \tag{Eqn 221}
\end{align*}
$$

(where $\bar{\nabla}^{2}$ is a vector operator) may be expressed in terms of the two waveguide parameters U and W , defined in equation 113 The two vector differentals 221 for E and H can be broken into six differentral scalar equations Of these, four involve more than one E of H field component The other two involve the z components E_{z} or H_{z} alone These can be written as

$$
\left\{\frac{\partial^{2}}{\partial R^{2}}+\frac{1}{R} \frac{\partial}{\partial R}+\frac{1}{R^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+U^{2}\right\} E_{z}=0 \quad @ 1<R<C
$$

$$
\left\{\frac{\partial^{2}}{\partial R^{2}}+\frac{1}{R} \frac{\partial}{\partial R}+\frac{1}{R^{2}} \frac{\partial^{2}}{\partial \phi^{2}}-W^{2}\right\} E_{z}=0 \quad @\left\{\begin{array}{l}
0<R<1 \tag{Eqn 222}\\
C<R<\infty
\end{array}\right.
$$

where R is the normalised radius r / a and C is given by b/a The ϕ dependence of the fields may be represented by $\operatorname{Cos} \phi$ or $\operatorname{Sin} \phi$ terms giving a degeneracy of four for $l>0$ in general and a degeneracy of two - corresponding to only two orthogonal polarisations - for the $l=0$ modes Similar equations can be written for the H_{z} fields

The solutions of these equations in the three zones of interest, (within the centre of the tube, the glass itself and outside the tube) ignoring those whose values become infinte at any of the boundanes ($\mathrm{R}=0, \mathrm{R}=1, \mathrm{R}=\infty$) are

$$
\begin{align*}
& I_{l}(W R) \operatorname{Cos}(l \phi) \\
& I_{l}(W R) \operatorname{Sin}(l \phi) \tag{Eqn 223}
\end{align*}
$$

$$
\text { in } 0 \leq R \leq 1
$$

$J_{l}(U R) \operatorname{Cos}(l \phi)$ and $Y_{l}(U R) \operatorname{Cos}(l \phi)$ $J_{l}(U R) \operatorname{Sin}(l \phi)$ and $Y_{l}(U R) \operatorname{Sin}(l \phi)$ in $I \leq R \leq C$ Eqn 224

$$
\begin{align*}
& K_{l}(W R) \operatorname{Cos}(l \phi) \\
& K_{l}(W R) \operatorname{Sin}(l \phi) \tag{Eqn 225}
\end{align*}
$$

$$
\text { in } C \leq R \leq \infty
$$

where J_{l} and K_{4} are Bessel functions of the first and second kind (of order l) and represent oscullatory functions, L_{i} and Y_{t} are modified Bessel functions of the first and second kind and represent exponentually varying functions of R, respectively (Abramowitz and Stegun, 1964) If each field is normalised so that it is unity in the $\mathbf{R}=1$ interface, the fields of the even modes in the glass can be written

$$
\begin{array}{lc}
E_{z}=l(A+B) \frac{I_{l}(W R)}{I_{l}(W)} \operatorname{Cos} l \phi & R<1 \\
E_{z}=l_{l}\left\{A \frac{J_{l}(U R)}{J_{l}(U)}+B \frac{Y_{l}(U R)}{Y_{l}(U)}\right\} \operatorname{Cos} l \phi & 1<R<C \tag{Eqn 226}\\
E_{z}=l E \frac{K_{l}(W R)}{K_{l}(W)} \operatorname{Cos} l \phi & C<R
\end{array}
$$

with the H_{z} fields as

$$
\begin{array}{lc}
H_{z}=l(G+D) \frac{I_{l}(W R)}{I_{l}(W)} \operatorname{Sin} l \phi & R<1 \\
H_{z}=l\left\{G \frac{J_{l}(U R)}{J_{l}(U)}+D \frac{Y_{l}(U R)}{Y_{l}(U)}\right\} \operatorname{Sin} l \phi & 1<R<C \tag{Eqn 227}\\
H_{z}=l F \frac{K_{l}(W R)}{K_{l}(W)} \operatorname{Sin} l \phi & C<R
\end{array}
$$

In equations 225 and 226 above the constants $A B, G, D, E F$ represent six field amphtudes The Bessel functions are normalised to have unit values at the inner interface $R=1 \quad E_{2}$ and H_{z} are chosen to be imaginary in order that the transverse components E_{r}, E_{ϕ} and H_{r}, H_{ϕ} are real The radial and azımuthal (transverse) fields can be derived from the axial ($1 \mathrm{e} z$) field components using the well known relationships (Snyder and Love, 1983)

$$
\begin{align*}
& E_{r}=\frac{l}{a\left(n^{2} k^{2}-\beta^{2}\right)}\left\{\beta \frac{\partial E_{z}}{\partial R}+\frac{k Z}{R} \frac{\partial H_{z}}{\partial \phi}\right\} \\
& H_{r}=\frac{l}{a\left(n^{2} k^{2}-\beta^{2}\right)}\left\{\beta \frac{\partial H_{z}}{\partial R}-\frac{n^{2} k}{Z R} \frac{\partial E_{z}}{\partial \phi}\right\} \\
& E_{\phi}=\frac{1}{a\left(n^{2} k^{2}-\beta^{2}\right)}\left\{\frac{\beta}{R} \frac{\partial E_{z}}{\partial \phi}-k Z \frac{\partial H_{z}}{\partial R}\right\} \tag{Eqn 228}\\
& H_{\phi}=\frac{l}{a\left(n^{2} k^{2}-\beta^{2}\right)}\left\{\frac{\beta}{R} \frac{\partial H_{z}}{\partial \phi}+\frac{n^{2} k}{Z} \frac{\partial E_{z}}{\partial R}\right\}
\end{align*}
$$

where $Z^{2}=\left(\mu_{0} / \varepsilon_{0}\right)$ is the characteristic mpedance of free space squared Differentiation of equations 225 and 226 allow the $\mathrm{E}_{\mathrm{r}}, \mathrm{H}_{\mathrm{r}}, \mathrm{E}_{\phi}$, and H_{ϕ} field components to be evaluated in all three zones of the wavegurde in terms of the vanous Bessel functions, their first denvatuves (Snyder and Love, 1983) with respect to R, the mode parameters U and W and the 6 amplitude coeffictents A - F

2.3 The mode eigenvalue equation.

The six field components $\left.e_{z}, e_{\phi,} e_{r}, h_{z}, h_{\phi}, h_{r}\right)$ in each of the three zones $(0<R<11<R<C$, $\mathrm{R}>\mathrm{C}$) were determined These are histed in Appendix A The contunuty of the field components at
the two interfaces $\mathrm{R}=1$ and $\mathrm{R}=\mathrm{C}$ generate a set of equations, the solutions of which give the allowed values of the parameters U and W (or the allowed values of the propagation constant β)

The solutions of these six equations were obtained by placing them in a matrix, and calculating the determinant of the matrix The equations used to form the determinant are as follows, with the prime indicating differentation with respect to the argument

$$
\begin{gather*}
A \frac{J_{l}(U C)}{J_{l}(U)}+B \frac{Y_{l}(U C)}{Y_{l}(U)}-E \frac{K_{l}(W C)}{K_{l}(W)}=0 \quad e_{z} \text { at } R=C \tag{Eqn 231}\\
G \frac{J_{l}(U C)}{J_{l}(U)}+D \frac{Y_{l}(U C)}{Y_{l}(U)}-F \frac{K_{l}(W C)}{K_{l}(W)}=0 \quad h_{2} \text { ar } R=C \tag{Eqn 232}\\
-A \beta l\left(\frac{1}{U^{2}}+\frac{1}{W^{2}}\right)-B \beta l\left(\frac{1}{U^{2}}+\frac{1}{W^{2}}\right)+ \\
G\left\{\frac{p}{W} \frac{I_{l}^{\prime}(W)}{I_{l}(W)}+\frac{p}{U} \frac{J_{l}^{\prime}(U)}{J_{l}(U)}\right\}+D\left\{\frac{p}{W} \frac{I_{l}^{\prime}(W)}{I_{l}(W)}+\frac{p}{U} \frac{Y_{l}^{\prime}(U)}{Y_{l}(U)}\right\}=0
\end{gather*}
$$

$$
e, \text { at } R=l
$$

Eqn 233

$$
\begin{aligned}
& A\left\{\frac{q n_{2}^{2}}{W} \frac{I_{l}^{\prime}(W)}{I_{l}(W)}+\frac{q n_{1}^{2}}{U} \frac{J_{l}^{\prime}(U)}{J_{l}(U)}\right\}+B\left\{\frac{q n_{2}^{2}}{W} \frac{I_{l}^{\prime}(W)}{I_{l}(W)}+\frac{q n_{1}^{2}}{U} \frac{Y_{l}^{\prime}(U)}{Y_{l}(U)}\right\} \\
& \quad+G \beta l\left(\frac{1}{U^{2}}+\frac{1}{W^{2}}\right)+D \beta l\left(\frac{1}{U^{2}}+\frac{1}{W^{2}}\right)=0
\end{aligned}
$$

h_{φ} at $R=1$
Eqn 234

$$
\begin{aligned}
& A \frac{\beta l}{U^{2} C} \frac{J_{l}(U C)}{J_{l}(U)}+B \frac{\beta l}{U^{2} C} \frac{Y_{l}(U C)}{Y_{l}(U)}-G \frac{p}{U} \frac{J_{l}^{\prime}(U C)}{J_{l}(U)} \\
& -D \frac{p}{U} \frac{Y_{l}^{\prime}(U C)}{Y_{l}(U)}+E \frac{\beta l}{W^{2} C} \frac{K_{l}(W C)}{K_{l}(W)}-F \frac{p}{W} \frac{K_{l}^{\prime}(W C)}{K_{l}(W)}=0
\end{aligned}
$$

$e_{\phi} a t R=C$
Eqn 235

$$
\begin{aligned}
& -A \frac{q n_{1}^{2}}{U} \frac{J_{l}^{\prime}(U C)}{J_{l}(U)}-B \frac{q n_{1}^{2}}{U} \frac{Y_{l}^{\prime}(U C)}{Y_{l}(U)}-G \frac{\beta l}{U^{2} C} \frac{J_{l}(U C)}{J_{l}(U)} \\
& -D \frac{\beta l}{U^{2} C} \frac{Y_{l}(U C)}{Y_{l}(U)}-E \frac{q n_{2}^{2}}{W} \frac{K_{l}^{\prime}(W C)}{K_{l}(W)}-F \frac{\beta l}{W^{2} C} \frac{K_{l}(W C)}{K_{l}(W)}=0
\end{aligned}
$$

Each parr of U and W values (same β value) that allow the value of the determinant to be zero (for a range of l values) is considered to be a valid solution, and therefore an allowed mode, provided it also meets the cut-off condition (which is discussed in section 24)

Figure 2-2 Radial Efield of $(3,3)$ mode
A computationally generated radial field for the $(3,3)$ mode is shown in figure 2-2 The contunuty of E_{r} at both interfaces $R=1(1$ e $r=a)$ and $R=C(1$ e $r=b)$ may be seen Figure 2-3 shows the radial E field of the $(1,3)$ mode in the annulus only (from $R=1$ to 15) It can be seen from the graph that there are two sets of intensity maxima, each 180° degrees apart, and lessening in intensity as the distance from the centre of the annulus increases The number of intensity maxima in each row was found to be equal to $(l+1)$, and the number of rows was found to be equal to $(2 \mathrm{~m})$

Mode 1,3 Intensity Plot

Figure 2-3: Radial E field in three dimensions.

2.4 Mode cut-off condition.

A mode is considered to be cut-off when $W=0\left(\beta=n_{2} k\right)$. Applying this condition to the six by six determinant gives line 1 as

$$
A \frac{J_{l}(U C)}{J_{l}(U)}+B \frac{Y_{l}(U C)}{Y_{l}(U)}=0
$$

Eqn 2.4.I
$\left(\mathrm{K}_{1}(0) \rightarrow \infty\right)$
likewise line 2 gives

$$
\begin{equation*}
G \frac{J_{l}(U C)}{J_{l}(U)}+D \frac{Y_{l}(U C)}{Y_{l}(U)}=0 \tag{Eqn 2.4.2}
\end{equation*}
$$

Mulitplying line 3 by W^{2} gives

$$
\begin{aligned}
& -\beta l A-\beta l B=0 \\
& \Rightarrow A+B=0
\end{aligned}
$$

Eqn 243

Simılarly line 4 by W^{2} gives

$$
\begin{align*}
& \beta l G+\beta l D=0 \tag{Eqn 244}\\
& \Rightarrow G+D=0
\end{align*}
$$

Mulıtplying line 5 by W^{2} gives

$$
E=0
$$

Eqn 245
And line 6 by W^{2} gives

$$
F=0
$$

Eqn 246
The solution of equations 24 land 243 give the cut-off condition

$$
\begin{aligned}
& \left|\begin{array}{cc}
\frac{J_{l}(U C)}{J_{l}(U)} & \frac{Y_{l}(U C)}{Y_{l}(U)} \\
1 & 1
\end{array}\right|=0 \\
\text { or } & J_{l}(U C) Y_{l}(U)-Y_{l}(U C) J_{l}(U)=0
\end{aligned} \quad \text { Eqn } 247
$$

For each integer value of $l(0,1,2)$ the above equation has many roots, which are specified by $\mathrm{m}=$

$1,2,3$ Thus an array of U values indexed by l and $m\left(U_{h a}\right)$ mode can be created

Each member of the family of $\left(U_{h m}\right)_{\text {cutoff }}$ values is the lowest possible value for a solution to the six by six determinant for its' given ($l, \mathrm{~m}$) values

$$
U_{l m}>\left(U_{l m}\right)_{c u u-o f f}
$$

Eqn 248
Since the maximum value of U is V (the V number of the waveguide) at which $W=0$, the cut-off condition for the ((l, m) mode becomes

$$
J_{l}(V C) Y_{l}(V)-Y_{l}(V C) J_{l}(V)=0
$$

Solutions to the above equation are given in Abramowitz and Stegun (1964), equation 9-5-28, page 374 as

$$
V=\left(U_{l m}\right)_{c} \cong \beta+\frac{p}{\beta}+\frac{q-p^{2}}{\beta^{3}}+\frac{e+4 p q-2 p^{3}}{\beta^{5}}+
$$

where $\quad \beta=m \pi / C-1$

$$
\begin{aligned}
& \mu=4 l^{2} \\
& p=(\mu-1) / 8 C \\
& q=(\mu-1)(\mu-25)\left(C^{3}-1\right) / 384 C^{3}(C-1) \\
& r=(\mu-1)\left(\mu^{2}-114 \mu+1073\right)\left(C^{5}-1\right) / 5120 C^{5}(C-1)
\end{aligned}
$$

(β above is not the propagation constant defined earlier in equation 112)

Equation 2410 is valid only for $\beta \gg p / \beta$ or

$$
m \gg l^{\frac{2}{3}}\left(\frac{C-1}{2 \pi C^{\frac{1}{3}}}\right)
$$

Eqn 2411

2.5 Mode indıces ($\zeta \mathrm{m}$).

For the fundamental mode $(l=0, \mathrm{~m}=1)$ single mode operation exists for $\mathrm{V}=126$ with $\mathrm{C}=$ 125 and for $\mathrm{V}=627$ with $\mathrm{C}=15(\mathrm{~V}<\pi /(\mathrm{C}-1)$ approximately) Equation 2410 can be used to extract the maximum value of m for $l=0$ modes and yelds the value

$$
\begin{equation*}
m_{\max }=\frac{(C-1)}{\pi} V \tag{Eqn 251}
\end{equation*}
$$

Expanding equation 2410 to the second term yields a functional relationship between l and m of

$$
\begin{equation*}
E l^{2}+F m+G m^{2}=0 \tag{Eqn 252}
\end{equation*}
$$

where E, F and G are functions of V and $C\left(E=4, F=8 \pi C V\right.$ and $\left.G=8 \pi^{2} C /(C-1)\right)$ For a large V number waveguide ($V \ggg 1$) the third term in equation 252 can be disregarded so that

$$
\begin{equation*}
E l^{2}+F m=0 \tag{Eqn 253}
\end{equation*}
$$

ie land m are related in a parabolic fashion for

$$
m \gg l^{\frac{2}{3}}\left(\frac{C-1}{2 \pi C^{\frac{1}{3}}}\right)
$$

For the other extreme, 1 e small m and large l the approximation of equation 2410 no longer holds Numerical modelling indicates that an equation of the form

$$
\begin{equation*}
m=S l^{2}+T l+U \tag{Eqn 255}
\end{equation*}
$$

applies, ie the m versus l graph is parabolic in shape (S, T and U are constant for a partucular waveguide) Furthermore the data generated for waveguides of different V and C values indicate that to a good approxiation $h_{\text {max }}$ is given by

$$
\begin{equation*}
l_{\max }=\frac{2(C+1)}{\pi} V \tag{Eqn 256}
\end{equation*}
$$

Figure 24 Example of 1 versus m graph

2.6 Limiting values of ℓ and m.

The total number of (non-degenerate) modes is given by four times the area of the bounded region shown in figure 2-4 As the area of a parabola is

$$
\begin{equation*}
\frac{2}{3} x_{\max } y_{\max } \tag{Eqn 261}
\end{equation*}
$$

the total number of bound modes in the waveguide (N) is

$$
\begin{align*}
& N=4 \times \frac{2}{3} \times \frac{2(C+1)}{\pi} V \times \frac{(C-1)}{\pi} V \\
& \quad \text { or } \tag{Eqn 262}
\end{align*}
$$

$$
N=054\left(C^{2}-1\right) V^{2}
$$

2.7 An effective V number for the waveguide (V).

Substututung $C=b / a$ and equation 114 into equation 262 gives

$$
\begin{gather*}
N=054\left(\frac{b^{2}}{a^{2}}-1\right)\left(k a \sqrt{n_{1}^{2}-n_{2}^{2}}\right)^{2} \tag{Eqn 271}\\
N \cong \frac{V^{\prime 2}}{2}
\end{gather*}
$$

where

$$
\begin{equation*}
V^{\prime}=\frac{2 \pi}{\lambda} \sqrt{n_{1}^{2}-n_{2}^{2}} \sqrt{\left(b^{2}-a^{2}\right)} \tag{Eqn 272}
\end{equation*}
$$

In the limit a $\rightarrow 0 \mathrm{~V}^{\prime}$ reduces to the V number of the step index fibre waveguide of equation 114 , and therefore the total number of modes N becomes $V^{2} / 2$, which is predicted by Gloge, equation 36 (1971) for such a waveguide V ' is called the effective V number of the hollow cylindncal waveguide This effectuve V number for the hollow cylindrical wavegude has not been reported to date T sao et al (1989) in their treatment of a 3 layered fiber structure derive an expression

$$
\begin{equation*}
\frac{2 \pi}{\lambda}(b-a) \sqrt{n_{1}^{2}-n_{2}^{2}} \tag{Eqn 273}
\end{equation*}
$$

for its V number This is significantly different to equation 272 especially when $b \gg a$

2.8 Single mode operation.

The condition for $m_{\text {max }}$ given in equation 251 may be used to derive the conditon for single mode operation of this waveguide Puting $\mathrm{m}_{\text {max }}=1$ yrelds

$$
\begin{aligned}
& (C-1) V<\pi \\
& \text { or } \quad\left(\frac{b}{a}-1\right) k a(N A)<\pi \\
& \Rightarrow \quad(b-a)<\frac{\pi}{(k) N A} \\
& \Rightarrow \quad(b-a)<\frac{\lambda}{2 N A}
\end{aligned}
$$

ie if the waveguide thickness ($b-a$) is less than the light wavelength divided by twice the waveguide numencal aperture NA $\left[N^{2}=n_{1}{ }^{2}-n_{2}{ }^{2}\right]$, only the fundamental $(0,1)$ mode can propagate in the waveguide This condition is quoted by Tsao et al (1989) for single mode operation of what they refer to as a "Ring fibre wavegude" [Equation 9123 of Tsao 1989] This is referenced in Tsao (1992) which treats the three layered cylindrical waveguide using Debye potentals The field functions (E_{r}, $\left.\mathrm{E}_{\phi}, \mathrm{E}_{2}\right)$ and $\left(\mathrm{H}_{\mathrm{r}}, \mathrm{H}_{\phi}, \mathrm{H}_{\mathrm{z}}\right)$ obtained by Tsao (1992) are identical to those quoted in this analysis when his third layer refractive index n_{3} is equated to n_{2} in this analysis The author was not aware of this paper when the enclosed analysis was carned out

2.9 The evanescent power fraction of a mode.

The mode power in the z direction in all three zones in the waveguide may be obtaned from the Poyntung vector

$$
\begin{equation*}
P_{z}=\pi a^{2} \int\left(E_{r} H_{\phi}-E_{\phi} H_{r}\right) R d R \tag{Eqn 291}
\end{equation*}
$$

using the limits approprate to the zone in question, $1 \mathrm{e}(0,1),(1, \mathrm{C})$ and (C, ∞) for the inner cladding the core and the outer cladding, with the integration being made over the cross-sectional
area (The radial and azimuthal fields are given previously in equation 228) As the power ratios in the evanescent fields only are of interest, the factor of 2π and

$$
\begin{equation*}
\int_{0}^{2 \pi} \cos ^{2}(l \phi) d \phi=\pi \tag{Eqn 292}
\end{equation*}
$$

are ignored

2.10 The evanescent power fraction of a mode.

The evanescent power fracton of each mode within a waveguide may be calculated from

$$
\begin{equation*}
f_{t m}=\frac{\left[P_{2}\right]_{R=0}^{1}+\left[P_{z}\right]_{R=C}^{\infty}}{\left[P_{2}\right]_{R=0}^{1}+\left[P_{z}\right]_{R=1}^{c}+\left[P_{2}\right]_{R=C}^{\infty}} \tag{Eqn 2101}
\end{equation*}
$$

using equatoon 291 to evaluate P_{z} Summing over l and m for all allowed modes within a wavegurde, and dividing by the number of modes gives the average evanescent power fraction for a mode within a partucular waveguide

2.11 Conclusions.

The above analysis shows that a hollow cylindracal waveguide can act as a light guide when that light travels in the allowed modes dictated by the eigenvalue equations and the boundary conditions The core and cladding parameters U and W can be predicted for a wavegutde of any given dimension for the equations discussed The number of modes that can be sustaned by the wavegude can also be predicted using the above theoretucal derivations The power distribution of core guided light to evanescently bound light can also be described for each mode in the hollow cylindrical wavegurde

2.12 References.

Barlow H M, "A Large Diameter Opucal Fiber Waveguide For Exclusive Transmission In The HE H_{12} Mode", J Phys D Appl Phys 16 1539-1451 (1983)

Barlow H M, "A Cladded Tubular Glass-fiber Guide For Singlemode Transmıssion" J Phys D Appl Phys 14 405-412 (1981)

Brunner R, Doupouec J, Suchy F and Berta M, "Evanescent -wave Penetration Depth in Capillary Opucal Fibers Challenges For The Liquid Sensing", Acta Physica Slovaca 45 (4) 491-498 (1995)

Gloge D, "Weakly Guidıng Fibres", Applıed Optucs 10 pp2252-2258 (1971) Eqn 36

Snyder A W and Love J D "Opucal Waveguide Theory", (Chapman \& Hall (1983)) Eqn 30-9 p593

Tsao C, "Optical Fibre Waveguide Analysis", (Oxford University Press, NY (1992)), Section 92 pp 300-352

Tsao C Y H, Payne D N and Gambling W A, "Modal charactenstics of three layered optucal fibre wavegurdes a modıfied approach", J Opt Soc Am A, pp 555-563 (1989)

Tsao C Y H, Payne D N and Gambling W A, "Modal Charactensucs of Three-Layered Opucal Fiber Waveguides A Modıfied Approach", J Opt. Soc Am A 6 4, 555-563 (1989)

Unger H G, "Planar Optucal Waveguides and Fibres", (Clarendon Press, Oxford (1980))

3. Model of hollow cylindrical waveguides - a computational analysis.

3.1 Introduction.

This chapter describes the computational methods and computer programs used to create an accurate smulation of the bound modes in a hollow cylindncal waveguide probe Each of the programs used was written in the Matlab language (which is based on matnces), and runs only in the Matlab envuronment A program called Modes \mathbf{m} was written to control the other programmes

3.2 Program to determine mode cut-off values.

The following flow-chart (figure 31) descnbes the construction of the program used to calculate the cut-off values for a given waveguide The main program is calied Cuts \mathbf{m}, and the program which evaluates the cut-off condition at a particular U, l and C is called Cutout m The cut-off condition in matrix form is given previously in equation 247 Any value of U the core mode parameter, which allows the value of the cut-off condition to be zero is considered to be a cut-off value for a particular l and m (the mode indices) It can be seen from equation 247 that the only other parameter in the equation is the $C(=b / a)$ value This means that there is only one set of cut-off values for any C, regardless of the actual dimensions of the waveguide This set of cut-off values is the output of Cuts \mathbf{m}, and is saved in matrix form The code for both of these programs is given in Appendices A and B

Figure 3-1 Flow chart of program Cuts m

Figure 3-2 Flow chart of Hollm

3.3 Computer program to solve the eigenvalue equation.

This program was called Holl m, the code is listed in Appendix C The purpose of this program is to calculate the allowed U values in the hollow cylindrical waveguide based on the variable parameters entered by the user To to this, the six eigenvalue equations of equations 231 to 236 were placed in a matrix form The determinant of the matrix was then calculated Each value of U (with a particular l and m) for which the determinant of the matrix equalled zero was considered to be a bound mode within the waveguide, provided the U value was greater then the appropriate cut-off value for its' given mode indices (l and m) An incremental subsutution method was used to find the correct U values, with the starting U value being the correct cut-off value, so that this condition was fullfilled automatically The flow-chart in figure 3-2 shows the logic steps used in Holl m, the code is given in Appendix C

3.4 Program to derive E and H field component amplitudes in core and cladding.

The program designed to denve the E and H field component amplatudes was called Holl_sem The code for this program is given in Appendix D The purpose of the program was to solve the the six equations 231 to 236 to find A, B, G D, E and for each mode found by Holl m This was done by setting $A=1$, and solving the resultant 5 equations smultaneously to find B, G, D, E and F In matrix form this is described as

$$
\left[\begin{array}{lllll}
a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \tag{Eqn 341}\\
b_{2} & b_{3} & b_{4} & b_{5} & b_{6} \\
c_{2} & c_{3} & c_{4} & c_{5} & c_{6} \\
d_{2} & d_{3} & d_{4} & d_{5} & d_{6} \\
e_{2} & e_{3} & e_{4} & e_{5} & e_{6}
\end{array}\right] \cdot\left[\begin{array}{c}
B \\
G \\
D \\
E \\
F
\end{array}\right]=\left[\begin{array}{l}
-a_{1} \\
-b_{1} \\
-c_{1} \\
-d_{1} \\
-e_{1}
\end{array}\right]
$$

or in vector notation

$$
\begin{align*}
& M \bar{x}=\bar{y} \\
& \bar{x}=M^{-1} \bar{y} \tag{Eqn 342}
\end{align*}
$$

Thus the five amplitudes B, G, D, E and F are obtained from the vector \bar{x} in equation 342 For each (l, m) mode for which a U and W value are known, the above operation ss used to determine the wave amplitudes in the core and in the two cladding regions The flow-chart to describe the steps in the program Holl_se m is shown in figure 3-3 [Any of the six amphtudes could be set at a fixed value, the choice of $A=1$ is purely arbitrary]

3.5 Program to evaluate mean evanescent power fraction \bar{f} among modes.

The Matlab program Hollpow m was wntten to calculate the mean evanescent power fraction $\overline{\mathrm{f}}$ among modes This was done by calculating the power contaned in the core and evanescent fields of each individual mode being guided by the hollow cylindncal waveguide, as idenufied by the method described above, then finding the fractional representation of evanescent power and calculatung the mean over all modes in the waveguide The formulas used to find the evanescent power fraction are given previously in sectuons 29 and 210 (equations 291 and 2101) The flow-chart to descnbe Hollpow m is shown in figures 3-4 and 3-5 and the code is given in Appendix

E

Figure 3-3 Flow-chart for Holl_se m

Figure 3-4 Flow-chart for Hollpow m (continued in figure 3 5)

Figure 3-5 Continuation of flow-chan for Hollpow m.

3.6 Mode power fraction distribution.

Individual evanescent mode power fractions derived by numencal integration of the Poynting vectors (using Hollpow m, and equation 210 1) were used to generate a histogram of such fractions and their mean value averaged over all the modes of a particular waveguide For example, for a waveguide for which $a=80 \mu \mathrm{~m}, \mathrm{C}=13, \mathrm{n}_{1}=146, \mathrm{n}_{2}=145$ and $\lambda=1 \mu \mathrm{~m}(1 \mathrm{e} V=71226)$ the modes are predominantly strongly guided with very low evanescent power fractions The fraction of modes
close to cut-off scales as $1 / \mathrm{V}^{\prime}$ (or $14 \% \mathrm{in}$ this case) It can be seen from table $3-1$ that only 09% of modes have an evanescent power fraction with a value greater than 075 The distribution of modes is shown in figure 3-6

f Value	Percentage of Modes
$\mathrm{f}<001$	40%
$\mathrm{f}>01$	5%
$\mathrm{f}>05$	2%

Table 3-1 fvalues with corresponding mode percentages

Figure 3-6 Histog ram of power fraction f distribution

3.7 Dependence of \bar{f} on V 'and (b/a).

Following the same argument as Gloge (1971) the dependence of the average evanescent power fraction f on the V number was investugated $T o$ do this the programs listed above were executed in sequence several tumes, each tume using different inner and outer radı for the dimensions of the hollow waveguide (but the same C value), while leaving all the other parameters the same (refractive indices and wavelength of transmitted light) This yielded a senes of average evanescent power tractions $\overline{\mathrm{f}}$ with corresponding V numbers In figures 3-7 and 3-8 the power fractions for the C $=15$ and $C=12$ waveguides for $n_{1}=146, n_{2}=145, \lambda=1 \mu \mathrm{~m}$ light is plotted against

$$
\begin{equation*}
\frac{1}{\sqrt{b^{2}-a^{2}}} \tag{Eqn 371}
\end{equation*}
$$

to invesugate a possible $1 / \mathrm{V}^{\prime}$ dependence

Power contaned in cladding regions, $\mathrm{C}=15$

Ftgure 3-7 f versus $1 N^{\prime \prime} C=15$
It can be seen that the numerical model data is scattered about a straight line through the ongin, in both cases The scatter is not unexpected since at a particular V^{\prime} number there will be one
mode extromely close to cut-off ($\mathrm{W}=0$) which will give an unusually high evanescent power fraction for that mode

Figure 38 fversus $1 / N^{\prime} C=12$
Gloge (1971) has shown that for a step index fibre waveguide the mean evanescent power fraction f averaged over all bound modes is proportuonal to $1 / \mathrm{V}$ Payne and Hale (1993) find the same dependency with a different multiplicative constant Both use an approximation in their analysis that W \ggg ifor all modes Numencal modelling of the evanescent fraction in this fibre case without the approximation (W \ggg) indicates that

$$
\begin{equation*}
\bar{f} \cong \frac{08}{V} \tag{Eqn 372}
\end{equation*}
$$

By plotung $\overline{\mathrm{f}}$ aganst C (figure 3-9) it was found from the data obtained for the hollow cylindrical wavegude model that like the fibre wavegude $\overline{\mathrm{f}}$ scaled linearly with $1 / \mathrm{V}^{\prime}$ with a small dependence on C given by

$$
\bar{f}=\frac{P}{V}\left\{\frac{C+2 P}{C-1}\right\}^{\frac{2}{\pi}}
$$

where $P=0867$ In the limit of $a=0$ or $C=\infty$ the effective V number V^{\prime} reduces to the value V and equation 372 becomes identical to equation 373

Fıgure 3-9 Graph of \bar{f} versus C

3.8 Dependence of N on V^{\prime}.

It has been shown in section 26 that the total number of bound waveguide modes is predicted to scale approximately as $V^{\prime 2}$ or as $\left(b^{2}-a^{2}\right)^{\prime}\left(V^{\prime}\right.$ is defined in equation 272) This was verified numerically by countung modes for various wavegurde dimensions, as shown in figures 3-10 and 3-11 with $C=12$ and 15 respectively The mode number values were provided by the Hollpow m program A very good fit for the total number of modes versus $\left(b^{2}-a^{2}\right)$ was obtamed, venfying the N $=V^{2} / 2$ type of relationship for the hollow wavegunde

Number of Modes, N

3.9 Conclusions.

The computer programs listed above represent a model of the effect a hollow cylindrical waveguide has on light being transmitted through it The model parameters can be varied in terms of refractive index of the core and cladding, the waveguide dimensions and the wavelength of light being transmitted through it The model yielded theoretucal relatonships between the number of modes, N , the mean evanescent power fraction, $\stackrel{\rightharpoonup}{f}$, and the effective V number, V^{\prime}, and showed the inter dependence of the various parameters

3.10 References.

Gloge D, "Weakly Guidıng Fibers", Appl Opt 10 pp 2252-2258 (1971)

Payne F P and Hale Z M, "Deviation from Beer's Law in Multumode Optical Fiber Evanescent Field Sensors", Int J Optoelectrontcs, $\underline{8}$ (5/6) 743 - 748 (1993)

4. Evanescent wave spectrophotometry using a hollow waveguide probe.

4.1 Introduction.
The design of an Attenuated Total Reflectance (ATR) Hollow Cylindncal Sensing probe and an absorbance detection system is described Uniform mode excitation is achieved using a senes of launch step-index fibers butt coupled to the ATR probe

Abstract

4.2 The ATR probe.

A length of fused silica hollow tubing of inner diameter (2a) 932 mm and outer diameter (2b) 11863 mm was chosen as the sensor probe The rod was cut to a length of 280 mm , using a damond saw and polished at both ends on a Logitech PM2A Lapping Machine, with a set of water based grits of decreasing drameter from $10 \mu \mathrm{~m}$ to $1 \mu \mathrm{~m}$ For the polishing the silica was supported in a stanless steel disk, and kept vertucal by strapping to the central shank of the "polishing tree" Regular inspection of the end (1 e cut) surfaces was carned out to ensure that all surface blemushes were removed by the coarse grt lapping and polshed to a high transparency by the final fine grt

Abstract

4.3 Excitation of modes in the probe.

As discussed brefly in section 41 excitation of the modes in the hollow wavegude was acheved by butt coupling an array of step index fibers (CeramOptec GmbH OPTRAN H-UV 1000/1035) to one end of the probe This was done using a machined aluminum plug to which the fibers were epoxied as shown in figure 4-1 The plug was lodged into the waveguide using an o-ring seal

Figure 4-1 Aluminum plug with fibers attached

Light from a 20 W Tungsten balogen light source, powered by a 6 V dc supply was focussed by a 50 mm diameter 65 mm focal length convex-concave lens combination (convex effect) into the fiber bundle as shown in figure 4-2 below To provide stable emttance conditions the lamp was run below its' 33 A rating, a figure of 25 A was found to be sufficient With no liquid surrounding the probe a bright ring of light was observed at the other end of the probe indicating a uniform excitation of the modes in the waveguide probe

Figure 4-2 Light being focussed into fiber bundle

4.4 Theoretical absorbance of hollow waveguide probe.

The probe dimensions listed in 41 lead to a value of the dimensionless constant $C(=b / a)$ of 12728 from the average values of a senes of measurements of a and b The refractuve index n_{1} of fused silica was taken as 146 In order to determune the effectuve V number of the waveguide $1 t{ }^{\prime}$, numencal aperture NA must be determined, ie NA $=\left(n_{1}{ }^{2}-n_{2}{ }^{2}\right)^{1 / 2}$ The solution used for evaluation of the probe was Eosin Yellow ($\mathrm{C}_{20} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{Na}_{2} \mathrm{O}_{5}$) in Methanol Eosin yellow has an absorpuon band centred at 524 nm At the concentrations used the refractive index of the solutions were that of Methanol namely 13276 Takıng $n_{1}=146, n_{2}=13276$ gives a probe numencal aperture of 0607 Because this numencal aperture is quite large and because the probe was to be excited by light from a set of step index fibers (of small numencal aperture) butt coupled to one end, the limiting numencal aperture of the system was the smaller of the two, which in this case was the NA of the fibers This excitation using fibers will be discussed in a subsequent section Here the value of $\left(n_{1}{ }^{2}-n_{2}{ }^{2}\right)^{1 / 2}$ wall be
taken as the numencal aperture of the fibers, namely 037 Using equatuon 272 with $\lambda=524 \mathrm{~nm}$ the effectuve V number of the hollow tube waveguide is then 16281214 Using equation 373 the theoretucal mean evanescent power fraction \bar{f} is then 245389×10^{6} (where P is set at 0867 and C at 12728)

It has been shown in section 16 that for an individual mode the transmitted intensity is related to the launched intensity $\left(\mathrm{I}_{0}\right)$ by

$$
\begin{equation*}
I=I_{0} \exp (-\alpha f z) \tag{Eqn 441}
\end{equation*}
$$

If all N modes are excited with equal incident power ($\mathrm{l}_{0} / \mathrm{N}$) then the transmitted power (after a length z of absorbing region) is

$$
\begin{equation*}
I=\sum_{n=1}^{N} \frac{I_{0}}{N} \exp \left(-\alpha f_{n} z\right) \tag{Eqn 442}
\end{equation*}
$$

so that the absorbance $A^{\prime}=\log _{10}\left(I_{0} / I\right)$ is given by

$$
A^{\prime}=-\log _{10}\left\{\frac{\sum_{n=1}^{N} \exp \left(-\alpha f_{n} z\right)}{N}\right\}
$$

When $\alpha f z \ll 1$ for all modes equation 443 can be evaluated using the $\operatorname{expansion} \exp (-x) \cong 1-x$ in which case

$$
\begin{aligned}
A^{\prime} & =-0434 \log _{e}\left\{\frac{\sum_{n=1}^{N} 1-\alpha f_{n} z}{N}\right\} \\
& =-0434 \log _{e}\left\{1-\alpha z \frac{\sum f_{n}}{N}\right\} \\
& =-0434 \log _{e}(1-\alpha z \bar{f})
\end{aligned}
$$

where \bar{f} is the mean evanescent power fraction Using the expansion $\log (1-\mathrm{x}) \equiv-\mathrm{x}$ for small x therefore gives

1 e absorbance scales linearly with $\overline{\mathrm{f}} \alpha \mathrm{z}$

When $\alpha z \overline{\mathrm{f}} \gg 1$ the absorbance of equation 443 is more comphcated and leads to a saturation of absorbance with increasing α, or increasing z, or increasing αz

Figure 4-3 Example of saturation of absorbance with increasing depth

4.5 Absorbance measurement technique.

As shown in figure 4-2 light was launched into the probe using a beam splitter A small fraction of this light is back reflected at the distal end where the probes annular up interfaces with the Iqquid Because the numerical aperture of the probe is quite small, modes strike the end face at angles very close to the normal and are reflected with a power reflection coefficient of approximately

$$
R=\left[\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right]^{2}
$$

(the Fresnel reflection coefficient for normal incidence) [It is shown in Appendix G that for a practical range of incident angles θ_{1} the reflection coefficient R is approximately independent of θ_{1}]

If an intensity I_{0} is launched into the probe (at a wavelength λ) then $I_{0} \exp (-\bar{f} \alpha z)$ reaches the endface, $R_{0} I_{0} \exp (-\bar{f} \alpha z)$ is reflected and $R_{0} I_{0} \exp (-2 \bar{f} \alpha z)$ is returned to the launch fibers This is based on absorption occuring at an analytical wavelength At a wavelength well removed from the absorption band - the so-called reference wavelength - a back reflected intensity of $R I_{0}$ occurs (i e no attenuation) Thus an evanescent power absorbance (A^{\prime}) of

$$
\begin{align*}
A^{\prime} & =\log _{10}\left\{\frac{R I_{0}}{R I_{0} \exp (-2 \bar{f} \alpha z)}\right\} \tag{Eqn 452}\\
& =\left(\begin{array}{lll}
0 & 434
\end{array}\right)(2 \bar{f} \alpha z), \quad \bar{f} \alpha z \ll 1
\end{align*}
$$

is obtained This is the previously derived expression of equation 445 but doubled for 2 way travel of the evanescent wave along the probe length z As before equation 452 apphes provided $\overline{\mathrm{f}} \alpha \mathrm{z} \ll 1$ As previously defined α is the bulk attenuation coefficient of the absorber and z is the immersion depth of the probe in the absorber By comparing the back-reflected light intensity at the analytical and reference wavelength then the absorbance of the probe can be measured

Two interference filters were used to isolate a wavelength band centered at $\lambda=525 \mathrm{~nm}$ (where Eosin Yellow has an absorption band) and $\lambda=430 \mathrm{~nm}$ in the blue to one side of the absorption band The filters were supported on a mechanical side and could be placed in turn in front of the entrance window of a Hamamatsu 931A photomulupher tube The photomultupher was operated in the "grounded anode" mode, the detector signal being extracted as a voltage across a $10 \mathrm{M} \Omega$ resistor The light entering the launch fibers was modulated using a mechanical chopper which operated at a chopping frequency of 330 Hz The chopper drive unit (Scitec Instruments optical chopper) supplied the square wave pulse train to synchronise phase sensitive detection with a lock-in amplifier The PM output was fed by coaxial cable to the signal input of an EG\&G model lock-in amplifier (model 950 VG) whose post filter tume constant was set at 3 seconds

An absorbance measurement then involved recording two output voltages from the lock-m amplifier corresponding to each opucal filter being in the hight beam returning to the photomultupher
detector A senes of back reflected intensity measurements, with the probe enclosed in a light ught box, was made to determine if any drift occured in either (i) the light source intensity or (il) the photomulupher output It was found that the lamp intensity stabilised in 45 minutes after switching on, and there was no detectable photomultupher dnft over a 2 hour penod The PM was powered by a 500 V EHT unt (EMI electron tube division Power Supply PM28B)

4.6 Conclusions.

A relatively simple back-reflection ATR probe, excited by light from a tungsten balogen lamp via an array of step index fibers butt coupled to one end and operated in phase sensitive detection, was constructed The evanescent light in both the inner hole and surrounding medium may be used to analyse fluids with absorption bands in the visible using a dip-suck style of approach All opucs are concentrated at one end of the probe

5. Experimental absorbances using hollow silica waveguide.

5.1 Introduction.
Absorbance measurements made with the ATR analyser probe discussed in chapter 4 are reported here Results are compared to the mode model predictions of chapters 2 and 3

5.2 Bulk properties of the absorbing cladding.

As stated earlier a solution of Eosin Yellow in Methanol was chosen as the absorbing cladding with which the hollow cylindrical ATR probe was to be evaluated The bulk absorption propertes of this chemıcal at $\lambda=524 \mathrm{~nm}$ were examıned using a SHIMADZU (UV - 1201) UV-VIS spectrophotometer Solutions of various molar concentrations ($1 \mathrm{M}=069186 \mathrm{gram} / \mathrm{cc}$ of solute) were prepared and their bulk absorbances (at 524 nm) were measured In each case a cuvette containing the solution was inserted in the spectrophotometer beam and the beam attenuation compared to that of the solute (methanol) on its own A graph of absorbance versus solution concentration (figure 5-1) was prepared and a least-square fit line generated throught the data points (using an "Origin" subroutine) From the best-fit slope the bulk absorption coefficient α for Eosin Yellow was found For a 1M solution α was found to be $\alpha=232500 \mathrm{~mm}^{1}$ (or $002325 \mathrm{~mm}^{1} \mu \mathrm{M}^{1}$)

For a weaker solution - say of concentration $10^{3} \mathrm{M}$, the corresponding α value is 1000 umes smaller For evanescent wave absorption the parameter of interest is $\overline{\mathrm{f}} \alpha$, where $\overline{\mathrm{f}}$ is the mean evanescent power fraction among the modes

Figure 5-1 Bulk absorbance versus solution concentratıon

5.3 Evanescent absorbance as a function of probe immersion depth.

We have seen in section 44 that the evanescent absorbance A^{\prime} is predicted to scale Inearly with the product $\bar{f} \alpha z$ For a probe of constant dimensions (a, b) the evanescent absorbance is predicted, therefore, to scale linearly with the immersion depth z This was investigated expenmentally

A solution of $28756 \mu \mathrm{M}$ Eosin Yellow in Methanol was prepared and placed in a graduated cylinder which could be rased or lowered around the hollow ATR probe A senes of absorbance measurements (at $\lambda=524 \mathrm{~nm}$) were made as a function of the immersion depth z These results are shown in figure 5-2

The functional relationship of equation 442 is vindicated in this strarght line graph The saturation effect alluded to in section 45 for high concentrations of solution or large immersion depths (1 e when $\overline{\mathrm{fo}} \mathrm{z} \geq 1$) was observed with this probe

Figure 52 Evanescent absorbance versus depth ($28756 \mu M$ solution)
A $306902 \mu \mathrm{M}$ solution was used with the same immersion depth Results are shown in figure 5-3

Figure 5-3 Evanescent absorbance versus depth, $306902 \mu M$ concentration
It can be seen that the complete absorption of some modes or the differential attenuation of the modes - varying from weak attenuation for modes far from cut-off $(U \ll V)$ to strong attenuation for modes near cut-off $(U \approx V)$ - gives rise to a non-linear dependence of absorbance on immersion depth (z), for fixed concentrations This effect was predicted in section 43 This effect also occurs in solid cylindncal fibre evanescent wave probes as observed by Ruddy (1994) In the intervening region, 1 e of concentration from $28 \mu \mathrm{M}$ to $306 \mu \mathrm{M}$ a family of absorbance versus mmersion depth curves were obtained at vanous concentrations These showed a gradual transition from Inearity (for low concentrations of $\sim 30 \mu \mathrm{M}$) to saturation for higher concentrations

5.4 The experimental \bar{f} value.

For the weak solution ($\overline{\mathrm{f}} \alpha \mathrm{z}<1$) the linear absorbance graph of figure $5-2$ can be used to extract an expenmental $\overline{\mathrm{f}}$ value The graph slope (s) of 00003 combined with a bulk absorpuon coefficient α of $0668577 \mathrm{~mm}^{1}$ (for $28756 \mu \mathrm{M}$ Eosin Yellow solution) yields an expenmental $\overline{\mathrm{f}}$
value of 2243571×10^{-6} This may be compared to the theoretical value of equation 373 taking $\mathrm{P}=$ $0867, C=12728, V^{\prime}=16281214$ of $\bar{f}=24538957 \times 10^{-6}$ This is a dıfference of 857% It can be seen that the mode modelling of chapters 2 and 3 and the expenmental measurement of chapter 5 are in very good agreement.

5.5 Conclusions.

Experimental measurements of absorbance using a hollow cylindrical ATR probe were used to extract a mean evanescent power fraction ($\overrightarrow{\mathrm{f}}$) among all the bound modes of the wavegurde Good correlation between the expermentally derived $\overline{\mathbf{f}}$ values and that predicted by ngorous mode analysis for such a waveguide indicates the latter It should be stated that the mode analysis carned out does not assume the "weakly guiding" approximation ($\mathrm{n}_{1} \cong \mathrm{n}_{2}$) as in general with glass based probes and liquid absorber solutions that approximation (commonly used in step-index fibre mode analysis) is not valıd

5.6 References.

Ruddy V , "Non linearity of absorbance with sample concentration and path length in evanescent wave spectroscopy using optucal fibre sensors", Optical Engineenng 33, no 12, pp (3891-2893) (1994)

Appendix A

The following is the Matlab code for the Cuts mprogram Any lines starting with a ' $\%$ ' sign are comments on the code, not part of the code itself, and are ignored by the Matab complier

\% Title Cuts m

\% Am To calculate cut off values for a hollow cylindrical \% waveguide by stepping through the cut \% off equation untul the zeros are located

```
delta_x = 1, % step size in U
x1=1,\quad % startung value for U
```

for $\mathrm{J}=0 \mathrm{~J} _$max, \quad \% loop through all orders, where j is the order l
count $=1, \quad \%$ resets the count of U values in each l order
$y l=$ cutout $(\mathbf{1}, \mathrm{x} 1, \mathrm{C}), \quad \%$ calculate value of cut-off equation while (x1 < x_max), \% step through all U values

$$
x 2=x 1+\text { delta_ } x, \quad \% \text { increment } U \text { by delta } U
$$ limit $=x 2, \quad \%$ stores largest U value tested so far $y 2=$ cutout $(1, x 2, C), \quad \%$ calculate value of cut-off equation test $=x 1, \quad$ \% stores next largest U value tested so far if $((\mathrm{y} 2 / \mathrm{y} 1)<0), \quad \%$ if sign change occurs, root is isolated while (test < limit),

$x 2=x 1+($ delta_x/10 $)$,	\% increase U value by 10% of delta U
$y 2=$ cutout $(1 \mathrm{x} 2 \mathrm{C})$	\% calculate value of cut-off equation
$f(y 2 / y 1)>0$,	\% if sign change has not occured

```
                                    xl = x2 + delta_x/10, % increase U value by 10% of
                                    % delta U
                                    y1 = cutout( (,x1,C), % calculate value of cut-off
                                    % equation
else
            slope = (y2-y1)/(x2-x1),% sıgn change has occured
            U = xl - (yl/slope), % calculate correct root value
            ucut(j+1, count) = U, % save U value in array
            count = count + 1, % mncrement counter
            test = lımıt+1, % make 'test' > 'lmmt'
                end,
                    % end of 'rf(y2/yl)>0' statement
                    y1 = y2, % prepare for next run through loop
                    xl = x2, % prepare for next run through loop
                    end,
            else
                y1 = y2, % prepare for next run through loop
                x1=x2, % prepare for next run through loop
                end, % end of 'while (test < lumit),' statement
end, % end of 'If (y2/y1)<0)' statement
if count == 1, % if no cutoffs are found
    break, % exit 'while (x1 < x_max),' loop
end,
Lf f>0,
```

If ucut $(1,1)<x _\max , \quad \%$ if all roots of present order t have not yet been tound, $\mathbf{x l}=\operatorname{ucut}(\mathrm{j}+1,1), \%$ start searchang at last known U value
end,
else
$x 1=6, \quad \%$ reset to lowest U value, to search next l order
end,
ucut(J,) \% output to screen all found U values
end, $\%$ end of ' $\mathrm{J}=0 \mathrm{~J}$ _max' loop

Appendix B

This program evaluates the cut-off equation at values passed to it from the program that called it in this case the calling program is Cuts m
\% Title Cutout m
\% Arm To calculate value of cut off equation at a given U value
funcuon[y _val] $=\operatorname{cutout}(\mathrm{j}, \mathrm{x}, \mathrm{C}) \quad \%$ defines the function name and the number and value of vanables $\%$ the function will use
$\mathrm{yl}=\left(\right.$ bessel $\mathrm{J}(\mathrm{f}, \mathrm{x}) *$ bessely $\left.\left(\mathrm{f}, \mathrm{C}^{*} \mathrm{x}\right)\right), \quad$ \% defines the equation parts used in the function $\mathrm{y} 2=\left(\operatorname{bessel} \mathrm{J}\left(, \mathrm{C}^{*} \mathrm{x}\right) * \operatorname{bessely}(\mathrm{~J}, \mathrm{x})\right)$,
$y_{-} \mathrm{val}=\mathrm{y} 1-\mathrm{y} 2, \quad \%$ calculates the value of the function at the specified parameter values,
\% and returns this value to the calling program

Appendix C

This program finds the correct U values for each order by using the cut-off values calculated by Cuts m
\% Program tutle holl8 m
\% Purpose To establish the correct modes for each order of l functuon in a hollow cylandrical \% wavegurde
\% Method To cycle through a range of U values and calculate the determmant of the matrix for each \% value untul all the values for which the determinant is zero are found
global $1, \quad$ \% declares ' 1 ' as a varable used throughout the program
$k=(2$ * p$) /$ lambda,$\quad \%$ calculates the wavenumber k
$Z=377, \quad$ \% defines the characteristic impedance of free space
$\mathrm{j}=1$,
$\mathrm{p}=-\mathrm{k} * \mathrm{Z}, \quad$ \% substututional varable
$\mathrm{q}=\mathrm{k} / \mathrm{Z}, \quad$ \% substututional variable

$\boldsymbol{\operatorname { b e t a }}(1)=\mathrm{n} 1 * \mathrm{k}$,	\% sets the value of the porpagation constant
U_max $=1 n_{\sim} \mathrm{rad} * \operatorname{sqrt}\left(\right.$ ($\left.11^{\wedge} 2 * \mathrm{k}^{\wedge} 2\right)-\left(\mathrm{n} 2^{\wedge} 2^{*} \mathrm{k}^{\wedge} 2\right)$),	\% calculates the maximum U value
delta $=001$,	\% sets the step size in U
lımit $=\left(\mathrm{U}_{-}\right.$max*100)-delta,	\% calculates the limit in steps of delta
$\mathrm{u}(1)=00$,	\% sets startung $\mathrm{U}=0$

fid = fopen('holl8a.tmp', w');	\% opens a file for output.
for $\mathrm{i}=1$: length(ucut),	\% length(ucut) is the size of the array holding cut-off values.
if ucut($\mathrm{i}, 1$) > U_max,	\% if first value of any row (i) is > U_max.
j_lim $=\mathrm{i}-2$;	\% sets limit of 'j' loop.
break;	\% break out of loop.
end;	\% end of 'if' statement.
end;	\% end of 'for' loop.
$x=0 ;$	\% initialise x variable.
for $\mathrm{j}=0$: $\mathrm{j}_{\text {_ }} \mathrm{lim}$;	\% for every order (j) from 0 to $\mathrm{j}_{\text {_lim }}$ in steps of 1.
$x=x+1 ;$	\% increment x .
$\mathrm{i}=3$;	
$\mathrm{t}=1$;	
while i < limit,	\% limit is defined at U_max - delta.

$\% u(i)$ is incremented from cut off value
\% there is no zeroth row in array, so order 0 values stored in1st row.

$\mathrm{u}(\mathrm{i})=\mathrm{ucut}(\mathrm{j}+1, \mathrm{x})+(\mathrm{t}$ delta $) ; \quad \% \mathrm{u}$ set at	\% u set at cut-off value + (${ }^{*}$ delta) ,
$t=t+1 ; \quad$ \% counter	\% counter of number of increments on u .
beta $(\mathrm{i})=\operatorname{sqrt}\left(\left(\mathrm{n} 1^{\wedge} 2^{*} \mathrm{k}^{\wedge} 2\right)-\left(u(i) \wedge 2 / i n_{-} \mathrm{rad}^{\wedge} 2\right)\right) ;$)); \% calculate porpagation const.
$\mathrm{U}=\mathrm{u}(\mathrm{i}) ; \quad$ \%	\% set value of core mode parameter.
$\mathrm{W}=$ in_rad $* \operatorname{sqn}(\text { beta(})^{\wedge} 2-\left(\mathrm{n} 2^{\wedge} 2^{*} \mathrm{k}^{\wedge} 2\right)$); \% calculate cladding mode parameter.	
UC $=$ out_rad * sqrt($\left.\mathrm{n} 1^{\wedge} 2^{*} \mathrm{k}^{\wedge} 2\right)-$ beta(()$\left.^{\wedge} 2\right)$;	; \% calculate $\mathrm{U}^{*} \mathrm{C}$.

WC $=$ out_rad * sqrt $\left(\right.$ beta $\left.(1)^{\wedge} 2-\left(n 2^{\wedge} 2^{*} k^{\wedge} 2\right)\right), \quad \%$ calculate $W^{*} C$

$\mathrm{BJU}=\operatorname{bessel}(\mathrm{J}, \mathrm{U})$,	\% calculate value of Bessel J at U
DBJU $=-\operatorname{bessel}(\mathrm{J}+1, \mathrm{U})+(\mathrm{J} / \mathrm{U}) * \mathrm{BJU}$,	\% calculate value of Bessel J denvative

BJUC $=$ bessel $(\mathrm{y}, \mathrm{UC}), \quad \%$ calculate value of Bessel J at UC
DBJUC $=-\operatorname{bessel}(\mathrm{J}+1, \mathrm{UC})+(\mathrm{y} / \mathrm{UC}) *$ BJUC, $\%$ calculate value of Bessel J derivatuve

BYU $=$ bessely (J, U),	\% calculate value of Bessel Y at U
DBYU $=-\operatorname{bessely}(\mathrm{j}+1, \mathrm{U})+(\mathrm{J} / \mathrm{U}) * B Y \mathrm{U}$,	\%calculate value of Bessel Y derivatuve

BYUC $=$ bessely $(1, \mathrm{UC}), \quad$ \% calculate value of Bessel Y at UC
DBYUC $=-\operatorname{bessely}(\mathrm{f}+1, \mathrm{UC})+(\mathrm{J} / \mathrm{UC})^{*}$ BYUC,

\% calculate value of Bessel Y
\% denvatıve

BIW $=$ besselı (J, W),	\% calculate value of Bessel I at W
DBIW $=$ bessel $(\mathrm{J}+1, \mathrm{~W})+(\mathrm{J} / \mathrm{W}) * \mathrm{BIW}$,	\%calculate value of Bessel I denvative

BKWC $=$ besselk $(\mathrm{\jmath}, \mathrm{WC}), \quad$ \% calculate value of Bessel I at WC
DBKWC $=-\operatorname{besselk}(\mathrm{J}+1, \mathrm{WC})+(\mathrm{J} / \mathrm{WC}) * \mathrm{BKWC}, \quad \%$ calculate value of Bessel I

$\%$ denvatuve
$\mathrm{BKW}=\operatorname{besselk}(\mathrm{J}, \mathrm{W}), \quad$ \% calculate value of Bessel K at W

```
DBKW = -besselk (\jmath+1,W) +(j/W) * BKW, %calculate value of Bessel K denvatuve
```

$\% \times 1-4$ and y 1-6 are substututional variables used in the matrix

$$
\begin{aligned}
& \mathrm{x} 1=\mathrm{BJUC} / \mathrm{BJU}, \\
& x 2=B Y U C / B Y U, \\
& x 3=B K W C / B K W \text {, } \\
& x 4=\left(1 / U^{\wedge} 2\right)+\left(1 / W^{\wedge} 2\right), \\
& \text { y1 = DBIW / BIW, } \\
& \text { y2 = DBJU / BJU, } \\
& \text { y3 = DBYU / BYU, } \\
& \text { y4 = DBYUC / BYU, } \\
& \mathrm{y} 5=\mathrm{DBKWC} / \mathrm{BKW}, \\
& \text { y6 = DBJUC } / \text { BJU, }
\end{aligned}
$$

\% the following are the elements of the 6*6 matrix,

$$
\begin{aligned}
& a 1=x 1, \\
& a 2=x 2, \\
& a 3=0, \\
& a 4=0, \\
& a 5=-x 3, \\
& a 6=0,
\end{aligned}
$$

```
bl=0,
b2 = 0,
b3 = x1,
b4 = x2,
b5 = 0,
b6 = -x3,
cl = (-beta(1)*J)* x4,
c2 = (-beta(1)* j)*x4,
c3 = ((p/W) * yl) +((p/U) * y2),
c4 = ((p/W) * yl) +((p/U) * y 3),
c5=0,
c6 = 0,
d1 =((q* n2^2* y1)/W) +((q * n1^2* y2)/U),
d2 = ((q * n2^2 * y ) / W) +((q*n1^2* y3)/U),
d3 = beta(1) *J * x4,
d4 = beta(1) * J * x4,
d5 = 0,
d6 = 0,
el = (beta(1) * J * x l)/(U^2 *C),
e2 = (beta(1)* J * x2)/(U^2 * C),
```

```
e3 = (-p * y6)/U,
e4 = (-p * y4)/U,
e5 = (beta(1) * J * x 3)/ (W^2 * C ),
e6 = (-p * y5)/W,
f1=(-q * n1^2 * y6)/U,
f2=(-q * n1^2* y4)/U,
f3=(-beta(1)*J*x1)/(U^2*C),
f4 = (-beta(1) * j * x2)/(U^2 * C),
f5 = (-q* n2^2 * y5)/W,
f6 = (-beta(1) * J * x3) / (W^2 * C),
matr1 = [ a1 a2 a3 a4 a5 a6
    b1 b2 b3 b4 b5 b6
    c1 c2 c3 c4 c5 c6
    d1 d2 d3 d4 d5 d6
    e1 e2 e3 e4 e5 e6
    f1 f2 f3 f4 f5 f6], % places each element in the matrix
deter(1)=\operatorname{det}(matr 1),
m(1)=\operatorname{deter}(1)/\operatorname{deter}(1-1),
    % divides determunany value of matrix by
    % previous determinant value
If (m(1)<00)
    % if sıgn change has occured
```

```
        If (deter(1-2)) -=0 0, % elımınates false roots
            U_t(f+1,x)=u(1)-((deter(I)* delta)/(deter(1) - deter(1-1))),
                    % calculates exact value of core mode parameter
                    beta_t(x)= sqrt((n1^2**^^2) - (U_t(}+1,x ^) 2/hn_rad^2)),
                    % calculates value of corresponding propagatuon constant
                    W_t(f+1,x)= in_rad* sqrt(beta_t(x)^2-(n2^2*k^2)),
                    % calculates value of correspondıng cladding mode parameter
                    fprint(fid,'% Of % Of %f %fln',j,x,U_t(f+1,x),W_t(j+1,x)),
                    % prints \ell,m, U and W to the output file
                    flag=1, % I needs to be incremented by }1
                    save djc mat, % saves all variables in the workspace
            end, % end of true roots 'If' statement
end, % end of sign change 'If' statement
If flag == 1, % if a root has been found
    x=x+1,\quad% increment mode count
            t=1,\quad% reset deita step size to 1
            1=1+10 % to separate stored determinant values in 'deter' array
            flag = 0, % reset flag
end, % end of posituve flag 'if' statement
1=1+1, % increment '1' counter
ux = ucut( }}+1,x)+(\mp@subsup{t}{}{*}\mathrm{ delta) }+001,%ux\mathrm{ is a vanable used for checkıng
If ux >= (U_max - 2*delta) % if the next cut-off value is greater than
```

$$
\begin{array}{ll}
\mathrm{t}=\text { lımit, } & \text { \% to break out of loop } \\
\mathrm{x}=0, & \text { \% reset mode counter } \\
\mathrm{u}=\mathrm{u}^{*} 0, & \text { \% reset u array } \\
\text { deter }=\operatorname{deter} * 0, & \text { \% reset deter array values } \\
& \text { \% end of if loop }
\end{array}
$$

end,

end,	\% end of 'while $1<$ lımit' loop
end.	\% end of 'for J $=0$ __lım' loop
fclose('all'),	\% closes all open files

Appendix D

\% Program title holl_se in

\% Purpose To compute the coefficients apporpriate to each allowed mode in a hollow cylindncal \% wavegurde
\% Method A 5*5 determinant will be inverted and muluplied by a column matrix to extract the \% coefficients
\% The 5*5 matrix consists of 5 lmes taken from the 6*6 matrix in holl m , with all of the first column \% moved to a column matrix to form the constants

$\mathrm{J}=1$,	\% sets j back to 1 after exitung the previous program
$\mathrm{p}=-\mathrm{k} * \mathrm{Z}$,	\% substututional variable
$\mathrm{q}=\mathrm{k} / \mathrm{Z}$,	\% substututional variable
$\mathrm{x}=1$,	\% sets x back to 1 after exitung the previous program

$\operatorname{beta}(1)=n 1 * k$,	\% sets first propagation constant value
fid2 $=$ fopen('hollse dat',' w '),	\% opens a file for the output data
$\left[\right.$ limit,maxmode $=\operatorname{size}\left(U_{-} t\right)$,	\% finds the size of the Matrix contaning the true U
	\% (core mode parameter) values

$$
1=1
$$

$$
\text { for } \mathrm{j}=0 \text { limit-1, } \quad \% \text { loops through all mode orders }
$$

$$
x=1
$$

\% sets mode index (within each order) to 1
while $\mathrm{x}<=$ maxmode,


```
BKWC = besselk(I,WC), % calculates value of bessel K at WC
DBKWC = -besselk(\jmath+1,WC) +(\jmath/WC)*BKWC, % calculates denvauve of bessel K at WC
BKW = besselk(\jmath,W), % calculates value of bessel K at W 
```

\% x 1-4 and y1-6 are substitutional vanables used in the matrix

```
x1 = BJUC / BJU,
x2 = BYUC / BYU,
x3 = BKWC / BKW,
x4 = (1/U^2) +(1/W^2),
```

$y 1=$ DBIW $/$ BIW,
$\mathrm{y} 2=\mathrm{DBJU} / \mathrm{BJU}$,
$y^{3}=$ DBYU $/ B Y U$,
y $4=$ DBYUC $/ B Y U$,
$\mathrm{y} 5=\mathrm{DBKWC} / \mathrm{BKW}$,
y6 = DBJUC $/$ BJU,

$$
\text { if } \mathrm{j}==0 \text {, }
$$

method is

$$
\text { templ }=\left(\left(\mathrm{n} 2^{\wedge} 2 * y 1\right) / W\right)+\left(\left(n 1^{\wedge} 2 * y 2\right) / U\right), \quad \% \text { used to calculate coefficients }
$$

```
    temp2 = ((n2^2 * y1)/W) + ((n1^2 * y3)/U),
    coe(1)=(-temp1)/(temp2), % first coefficient is found
    coe(4)=(x1+(x2*\operatorname{coe}(1)))/x3,\quad% fourth coefficient is found
    coe(2)=0, % all others are set to zero
    coe(3)=0,
    coe(5)=0,
else % if mode order is not zero
% the following are the elements of the 5*5 matrix,
```

```
a2 = x2,
a3 = 0,
a4=0,
a5 = -x3,
a6 = 0,
c2 = (-beta(ı)* j) * x4,
c3 =((p/W)*y1)+((p/U)*y2),
c4 =((p/W) * y1) +((p/U) * y 3),
c5 = 0,
c6 = 0,
d2 = ((q*n2^2* y1)/W)+((q*n1^2*y3)/U),
d3 = beta(1) * J * x4,
d4 = beta(1) * J * x4,
```

```
dS = 0,
d6 = 0,
e2 = (beta(i) * j * x2 )/ (U^2 * C ),
e3 = (-p * y6)/U,
e4 = (-p * y4)/U,
e5 = (beta(1) * J * x 3)/ (W^2 * C),
e6 = (-p * y5)/W,
f2 = (-q * n1^2* y4)/U,
f3 = (-beta(1) * J * x1)/ (U^2 * C),
f4 = (-beta(1) * J * x2) / (U^2 * C),
f5 =(-q* n2^2* y5)/W,
f6 = (-beta(1) * J * x 3) / (W^2 *C),
matr 1 = [ a2 a3 a4 a5 a6 % puts each element of the 5*5 matrix in the correct
    c2 c3c4c5c6 % position
    d2 d3 d4 d5 d6
    e2 e3 e4 e5 e6
    f2 f3 f4 f5 f6 ],
```

\% the folowing are the elements of the column matrix

```
\(a 1=-x 1\),
\(\mathrm{c} 1=(\operatorname{beta}(1) * \mathrm{f}) * \mathrm{x} 4\),
```

```
    dl = ((-q* n2^2 * y1)/W)-((q*nl^2* y2)/U),
    el = (-beta(1) * J * xl) / (U^2 *C),
    f1 =(q* nl^2 * y6)/U,
    matr2 = [a1, cl, dl, el, f1], % sets up the column matrx
    coe = matrl \matr2, % muluplies mverse of matrl by column matrix
    end, % the ' '' is a special matlab character for this operation
    fprmnt(fid2,'\n% Of % Of % 4f % 4f,j,x,U_t(f+1,x),W_t(j+1,x)),
fprntf(fid2,' % 5f % 5f % 5f % 5f % 5fln',coe(1),coe(2),coe(3),coe(4),coe(5)),
```

\% the order, mode index m, U value, W value and the corresponding coefficients are output to a file
if $x<$ maxmode, $\quad \%$ if the last mode in a given order has not been reached if $U_{-} t(1+1, x+1)=0, \quad \%$ if the next mode of that order is zero $x=$ maxmode $+1, \quad \%$ make $x>$ maxmode end,
end, $\quad \%$ end of ' x < maxmode' loop
$x=x+1, \quad$ \% increment x
end, \quad \% end of 'while $x<=$ maxmode' loop
end, \quad \% end of 'for $\mathbf{j}=0$ limut-1' loop
fclose('all'), \quad \% close all open files
save c bollse mat
\% save vanable values in a matlab workspace file

Appendix E

\% Title hollpowm	
\% Object To calculate the power rato in a hollow cylundrical waveguide	
\% Method To numencally integrate over all allowed modes in annulus	
$\mathrm{j}=1, \quad$ \%	\% set mode order no back to 1
$\mathrm{p}=-\mathrm{k} * \mathrm{Z}, \quad$ \%	\% substututional variable
$\mathrm{q}=\mathrm{k} / \mathrm{Z}, \quad$ \%	\% substututional vanable
$x=1, \quad \%$	\% set mode order index to 1
$\operatorname{beta}(1)=\mathrm{n} 1 * \mathrm{k}, \quad$ \%	\% set first value of propagation constant
$A A=1, \quad \%$	\% AA is first coefficient, and was set to 1 in previous program to enable
the	
\% calculation of the other coefficients	
fid = fopen('hollse dat', 'r'),	\% opens the file to which Hollse m saved the results of its run
ın_data $=$ fscanf(fid,'\%fln'),	'), \% reads in the data as one column
fclose(fid),	\% closes the file
lımit $=$ length(in_data),	\% calculates the number of variables in the column of data
$1=1$,	\% set index equal to 1 , the first element of the data column
while $1<=$ lumit,	\% read in mine values for each single mode
$\mathrm{j}=1 \mathrm{n}_{\text {_ }}$ data(1),	\% each input value is assigned a label and stored

```
    x = in_data(1+1),
    U_t ( }1+1,x)=1\mp@code{n_data(t+2),
    W_t(f+1,x)= in_data(1+3),
    BB}(1+1,x)=1n_data(1+4)
    CC(1+1,x)= in_data(1+5),
    DD( }\mathbf{|}+1,\mathbf{x})=1\mp@subsup{\textrm{m}}{\mathrm{ _data(1+6),}}{
    EE(1+1,x)= 1n_data(1+7),
    FF}(f+1,x)=1n_data(1+8)
    1=I+9, % index mcremented by nme to the next set of nme values
end,
J_limit = in_data(1-9), % sets the maximum value of J
[qwe,x_lmint] = size(U_t), % finds the size of the array bolding the U values
U_t(f_limut,x_limit+1)=0, % increases the array columns by 1, and sets that column = 0
fidl = fopen('hollpow5 dat','w'), % opens a file for output data
Fl=0, % the vaniables that will store the power fractions are set to 0
F2 = 0,
F3 = 0,
mode_count = 0, % the mode counter is set to 0
for j = 0 j_lmmt, % loop through all the mode orders
    x=0,\quad% sets mode index to 0
    while x < x_lumt, % while mode index is less than ts maximum value
        x = x + 1, % increment mode index
```

```
U = U_t( 
W=W_t(j+1,x),% retrieve corresponding W value
beta = sqrt((n1^2**^2) - (\mp@subsup{U}{}{\wedge}2/ın_rad^2)), % calculate correspondıng prop const
\begin{tabular}{ll} 
BJU \(=\) bessel \(\mathrm{J}(\mathrm{J}, \mathrm{U})\), & \% calculates bessel J at U \\
DBJU \(=-\operatorname{bessel}_{\mathrm{J}}(\mathrm{J}+1, \mathrm{U})+(\mathrm{J} / \mathrm{U}) *\) BJU, & \% calculates denvative of bessel J at U
\end{tabular}
\begin{tabular}{ll} 
BYU \(=\) bessely \((\mathrm{J}, \mathrm{U})\), & \% calculates bessel Y at U \\
DBYU \(=-\operatorname{bessel}(\mathrm{J}+1, \mathrm{U})+(\mathrm{j} / \mathrm{U}) * B Y \mathrm{U}\), & \(\%\) calculates derivatuve of bessel Y at U
\end{tabular}
\begin{tabular}{ll} 
BIW \(=\) besselı \((\mathrm{J}, \mathrm{W})\), & \% calculates bessel I at W \\
DBIW \(=\) bessel \((\mathrm{J}+1, \mathrm{~W})+(\mathrm{J} / \mathrm{W}) * \mathrm{BIW}\), & \(\%\) calculates denvative of bessel I at W
\end{tabular}
```

```
BKW = besselk(\jmath,W), % calculates bessel K at W
DBKW =-bessel (1+1,W) +(J/W) * BKW, % calculates dernvatuve of bessel K at W
```

\% the following are substitutional varrables

$$
\begin{aligned}
& \mathrm{a} 1=(\text { beta } *(\mathrm{AA}+\mathrm{BB}(\mathrm{\jmath}+1, \mathrm{x}))) /(\mathrm{W} * \mathrm{BIW}), \\
& \mathrm{a} 2=\left(\mathrm{p} * \mathrm{~J}^{*}(\mathrm{CC}(\mathrm{f}+1, \mathrm{x})+\mathrm{DD}(\mathrm{\jmath}+1, \mathrm{x}))\right) /\left(\mathrm{W}^{\wedge} 2 * \mathrm{BIW}\right), \\
& \mathrm{a} 3=\left(\text { beta }{ }^{*} \mathrm{~J}^{*}(\mathrm{CC}(\mathrm{f}+1, \mathrm{x})+\mathrm{DD}(\mathrm{\jmath}+1, \mathrm{x}))\right) /\left(\mathrm{W}^{\wedge} 2 * \mathrm{BIW}\right), \\
& \mathrm{a} 4=\left(\mathrm{q} *{ }_{\mathrm{n}} 2^{\wedge} 2 *(\mathrm{AA}+\mathrm{BB}(\mathrm{j}+1, \mathrm{x}))\right) /(\mathrm{W} * \mathrm{BIW}),
\end{aligned}
$$

$$
\mathrm{bl}=(-\mathrm{beta} * \mathrm{AA}) /(\mathrm{U} * \mathrm{BJU})
$$

```
b2 = (-beta * BB ( }+1,\textrm{l},\textrm{x}))/(U*BYU)
b3 = (-p * J * CC( 
b4 = (-p * J * DD(j+1,x))/(U^2 * BYU),
b5 = (-beta * j * CC( }+1,1,x))/(U^2 * BJU)
b6 = (-beta * j * DD(j+1,x))/( U^2 * BYU),
b7 = (-q*n1^2 * AA)/(U*BJU),
b8 = (-q* n1^2 * BB(f+1,x))/(U * BYU),
c1 = (beta * EE(j+1,x))/(W * BKW),
c2 = (p * | * FF( 
dl = (beta * J * FF( }\textrm{f}+1,\textrm{x}))/(\mp@subsup{\textrm{W}}{}{\wedge}2* *KW)
d2 = (q* n2^2 * EE ( + +1,x ))/(W * BKW),
el = (-beta * j * (AA+BB(1+1,x))) / (W^2 * BIW),
e2 = (p * (CC( }+1,\textrm{x})+\textrm{DD}(\jmath+1,x)))/(W * BIW)
f1 = (beta * (CC( ( +1,x)+DD( ( +1,x)))/(W * BIW),
f2 = (-n2^2 * q * f * (AA +BB(f+1,x)))/(W^2 * BIW),
g1 = (beta * J * AA)/(U^2 * BJU),
g2 = (beta * J * BB( 
```

```
g3 = (-p * CC(f+1,x))/(U * BJU),
g4 = (-p * DD(f+1,x))/(U * BYU),
h1 = (-beta * CC(1+1,x))/ (U * BJU),
h2 = (-beta * DD(j+1,x))/(U * BYU),
h3 = (ni^2 * q*AA)/(U^2 * BJU),
h4 = (n1^2 * q * BB( ( +1,x))/(U^2 * BYU),
11 = (-beta * J * EE(f+1,x))/(W^2 * BKW),
12 = (p*FF( + l,x))/(W * BKW),
\jmath1 = (beta * FF( }+1,\textrm{l},\textrm{x}))/(\textrm{W}*\textrm{BKW})
j2=(-n2^2 * q * * EE( + +1,x))/(W^2 * BKW),
```

R_min $1=00$,	\% sets the smallest radius of the waveguide
R_min $2=1$,	\% radius at inner interface of cladding and core
R_min $3=C$,	\% radus at inner interface of claddıng and core
R_min4 $=2 *$ C,	\% radus at outer surface of cladding
deltaR $=001$,	\% step size used to increment radus
$\max 1{ }^{\text {a }}$ R_mm2/deltaR,	, \% number of steps from $\mathrm{R}=0$ to $\mathrm{R}=1$
$\operatorname{maxN} 2=($ R_mın3 - R_mın2 $) * 2) /$ deltaR, \% number of steps from $\mathrm{R}=1$ to $\mathrm{R}=\mathrm{C}$	
$\max 3=\left(\right.$ R_min4 $-\mathrm{R}_{-} \mathrm{min}$)	n3) / deltaR, \% number of steps from $\mathrm{R}=\mathrm{C}$ to

sum $1=0$,

for $\mathrm{N}=1 \operatorname{maxN} 1$,	\% from $\mathrm{R}=0$ to $\mathrm{R}=1$
$\mathrm{R}=\mathrm{R}$ _min $1+\left(\mathrm{N}^{*}\right.$ deltaR $)$,	\% calculate radus
$\mathrm{UR}=\mathrm{R} * \mathrm{~m}_{-} \mathrm{rad} * * \operatorname{sqrt}(\mathrm{n} 1 \wedge 2$	- beta^2), \% $\mathrm{U}^{*} \mathrm{R}$
WR $=$ R * m_rad * sqrt(beta	2^2* ${ }^{\wedge}$ 2)), \%W*R

BIWR $=$ bessel $(\mathrm{J}, \mathrm{WR})$,	\% bessel I at $\mathrm{W} * \mathrm{R}$
DBIWR $=\operatorname{bessel}(\mathrm{J}+1, \mathrm{WR})+(\mathrm{J} / \mathrm{WR}) *$ BrWR,	\% denvative of bessel

\% I at W*R
terml $=(\mathrm{a} 1 * \mathrm{DBIWR})+((\mathrm{a} 2 * \mathrm{BIWR}) / \mathrm{R}), \%$ substitutional vanables
term2 $=((\mathrm{a} 3 * \mathrm{BIWR}) / \mathrm{R})+(\mathrm{a} 4 *$ DBIWR $)$,
term3 $=((\mathrm{e} 1 *$ BIWR $) / \mathrm{R})+(\mathrm{e} 2 *$ DBIWR $)$,
$\operatorname{term} 4=(\mathrm{f} 1 * \mathrm{DB}[\mathrm{WR})+((\mathrm{f} 2 * \mathrm{BIWR}) / \mathrm{R})$,
total 1) $=($ term $1 * \operatorname{term} 2)-(\operatorname{term} 3 * \operatorname{term} 4)$,
total $(1)=\operatorname{abs}($ total $(1)), \%$ calculates power at each radus

```
    sum1 = sum1 + (total(1) *R * deltaR),% runnng total of power values
end, % end of mnner section loop
```

sum2 $=0$,
for $\mathrm{N}=1 \max \mathrm{~N} 2 \quad$ \% from $\mathrm{R}=1$ to $\mathrm{R}=\mathrm{C}$
$R=R _$min $2+(N *$ delta $), \quad \%$ calculates raduus

```
UR = R *m_rad * sqrt((n1^2*k^2) - beta^2), % U*R
WR = R * m_rad * sqrt(beta^2 - (n2^2*k^2)), % W*R
```

$\mathrm{BJUR}=$ bessel $\mathrm{J}(\mathrm{J}, \mathrm{UR}), \quad$ \% bessel J at UR
DBJUR $=-$ bessel $(\mathrm{j}+1, \mathrm{UR})+(\mathrm{J} / \mathrm{UR}) *$ BJUR, \% denvative of bessel J at UR

```
BYUR = bessely(J,UR), % bessel Y at UR
DBYUR = -bessely(j+1,UR)+(\jmath/UR)*BYUR, % denvatuve of bessel
% Y at UR
```

\% substututional variables

$$
\operatorname{terml}=(\mathrm{b} 1 * \mathrm{DBJUR})+(\mathrm{b} 2 * \mathrm{DBYUR})+((\mathrm{b} 3 * \text { BJUR }) / \mathrm{R})+((\mathrm{b} 4 *
$$

BYUR)/R),

$$
\text { term2 }=((\mathrm{b} 5 * \text { BJUR }) / \mathrm{R})+((\mathrm{b} 6 * B Y U R) / \mathrm{R})+(\mathrm{b} 7 * \text { DBJUR })+(\mathrm{b} 8 *
$$

DBYUR),

```
\(\operatorname{term} 3=((\mathrm{g} 1 * B J U R) / \mathrm{R})+((\mathrm{g} 2 * B Y U R) / \mathrm{R})+(\mathrm{g} 3 *\) DBJUR \()+(\mathrm{g} 4 *\)
```

DBYUR),

```
term4 \(=(\mathrm{h} 1\) * DBJUR \()+(\mathrm{h} 2 *\) DBYUR \()+((\mathrm{h} 3 * B J U R) / R)+((144 *\)
```

BYUR)/R),

$$
\begin{aligned}
& \operatorname{total}(2)=(\operatorname{term} 1 * \operatorname{term} 2)-(\operatorname{term} 3 * \operatorname{term} 4) \\
& \operatorname{total}(2)=\operatorname{abs}(\operatorname{total}(2)), \quad \% \text { calculates power at each radus }
\end{aligned}
$$

$\operatorname{sum} 2=\operatorname{sum} 2+(\operatorname{total}(2) * R *$ deltaR $), \%$ running total of power values end, \% end of glass annulus loop
$\operatorname{sum} 3=0$,

$$
\text { for } \mathrm{N}=1 \max \mathrm{~N} 3, \quad \% \text { from } \mathrm{R}=\mathrm{C} \text { to } 2 * \mathrm{C}
$$

$$
\mathrm{R}=\mathrm{R} _\mathrm{m} \ln 3+(\mathrm{N} * \text { deltaR }), \quad \% \text { calculates radıus }
$$

$$
\mathrm{UR}=\mathrm{R} * \operatorname{in} _\mathrm{rad}^{*} \operatorname{sqrt}\left(\left(\mathrm{n} 1^{\wedge} 2^{*} \mathrm{k}^{\wedge} 2\right)-\operatorname{beta}^{\wedge} 2\right), \quad \% \mathrm{U}^{*} \mathrm{R}
$$

$$
\mathrm{WR}=\mathrm{R} * \operatorname{m} _\mathrm{rad}^{*} \operatorname{sqrt}\left(\text { beta }{ }^{\wedge} 2-\left(\mathrm{n} 2^{\wedge} 2^{*} \mathrm{k}^{\wedge} 2\right)\right), \quad \% \mathrm{~W} * \mathrm{R}
$$

$$
\text { BKWR }=\text { besselk }(\jmath, W R), \quad \text { \% bessel } K \text { of WR }
$$

$$
\text { DBKWR }=-\operatorname{besselk}(\mathrm{j}+1, \mathrm{WR})+(\mathrm{J} / \mathrm{WR}) * \mathrm{BKWR}, \quad \% \text { derivatuve of bessel }
$$

\% K of WR
\% substututuonal variables

```
terml \(=(\mathrm{cl} * \mathrm{DBKWR})+((\mathrm{c} 2 * B K W R) / \mathrm{R})\),
\(\operatorname{term} 2=((\mathrm{d} 1 * B K W R) / \mathrm{R})+(\mathrm{d} 2 * \mathrm{DBKWR})\),
term3 \(=((11\) * BKWR \() / R)+(12 *\) DBKWR \()\),
term4 \(=(\jmath 1 *\) DBKWR \()+((\jmath 2 * B K W R) / R)\),
total \((3)=(\operatorname{term} 1 * \operatorname{term} 2)-(\operatorname{term} 3 *\) term 4\()\),
total(3) \(=\operatorname{abs}(\) total \((3)), \quad \%\) calculates power at each radius
sum \(3=\operatorname{sum} 3+(\operatorname{total}(3) * R * \operatorname{deltaR}), \%\) runnıng total of power values
```

end, $\%$ end of outer cladding loop
\% power fractions for each section of the wavegurde are calculated

$$
\begin{aligned}
& \mathrm{R} 1=\operatorname{sum} 1 /(\operatorname{sum} 1+\operatorname{sum} 2+\operatorname{sum} 3), \\
& R 2=\operatorname{sum} 3 /(\operatorname{sum} 1+\operatorname{sum} 2+\operatorname{sum} 3) \\
& R 3=\operatorname{sum} 2 /(\operatorname{sum} 1+\operatorname{sum} 2+\operatorname{sum} 3),
\end{aligned}
$$

```
    fprintf(fid1,'% Of % 0f % 4f % 4f % 4e % 4e % 4e % 4eln',
J,x,U,W,R1,R2,R3,R1+R2),
```

 \(\mathrm{Fl}=\mathrm{F} 1+\mathrm{R} 1, \quad\) \% running totals of power fractions
 \(\mathrm{F} 2=\mathrm{F} 2+\mathrm{R} 2\),
 \(\mathrm{F} 3=\mathrm{F} 3+\mathrm{R} 3\),
 mode_count \(=\) mode_count \(+1, \quad \%\) mode count is incremented
 If \(U_{-} t(j+1, x+1)==0, \quad\) \% if last mode for this order has been reached
 \(\mathrm{x}=\mathrm{x}\) llmimit \(\quad\) \% break out of mode index loop, move to next
 \% mode
 end,
 end,
 \%end of \(x\) loop
 end,
\%end of J loop
fclose(fidl),
\% close output file
Fl $=$ F1/mode_count
\% output average power fractions to screen

F2 $=$ F2/mode_count

F3 $=$ F3/mode_counts

Appendix F

This program controls the running of all the other programs needed to calculate power fractions for the hollow cylindrical waveguide probe Varables named in this program become common to all the programs called by this one
\% Title Modes m
\% Aim To combine all steps to calculate power fractions in a hollow cylundrical waveguide
\% The following are commands to obtain information from the program user
$\mathrm{n} 1=\operatorname{mput}($ 'Enter the refractuve index of the glass '),
$\mathrm{n} 2=\operatorname{mput}($ 'Enter the refractuve index of the cladding '),
lambda $=$ input(${ }^{\text {What }}$ is the excitation wavelength $?$ '),
in_rad = input('What is the inner radius dimension ?'),
out_rad = input('What is the outer radius dmension ${ }^{\prime}$ '),
\% the following are examples of values that could be used by the program
$\% \mathrm{nl}=146$
$\% n 2=145$
\%lambda $=1 \mathrm{e}-6$
$\% \mathrm{n} _$rad $=80 \mathrm{e}-6$
\%out_rad = 100e-6
$\mathrm{C}=$ out_rad/ın_rad, \quad \% ratio of inner radius to outer radius

```
k=(2 * pi)/ lambda, % defines the wavenumber, k
Z=377, % the characternsus impedance of free space
x_max = (n_rad * sqrt((n1^2* *
                                    % values
j_max = x_max + 35, % max j value used in findıng cut-off values
cuts,
% each program is called in order of use
holl,
holl_se,
hollpow,
```


Appendix G

In the text of Chapter 4, section 26 , it was assumed that all modes in the hollow waveguide were reflected with the same reflection coefficient R at the end face (silica-silver interface) This is proved in this appendix for the range of incident angles within which the quasi plane waves strike the glass-silver interface

For reflection at an interface (for light whose E field is in the plane of meidence) the reflected E field amplitude E_{f} is related to the incidnet value by the expression (due to Fresnel)

$$
\frac{E_{r}}{E_{1}}=\frac{Z_{2} \operatorname{Cos} \theta_{2}-Z_{1} \operatorname{Cos} \theta_{1}}{Z_{2} \operatorname{Cos} \theta_{2}+Z_{1} \operatorname{Cos} \theta}
$$

(see Pain, (1968))

Figure G-1 Reflection and transmussion at an interface between two media.

Now $Z_{2}=Z_{0} / n_{2}$ and $Z_{1}=Z_{0} / n_{1}\left(Z_{0}=377 \Omega=\right.$ characteristic impedance of free-space (or vacuum)

For silica ($\mathrm{n}_{1}=146$) surrounded by a methanol solution ($\mathrm{n}_{2}=1329$) the critical angle is 655° For a launch numerical aperture of 037 we can write

$$
\begin{aligned}
& 037=1 \operatorname{Sin} \theta_{\text {uncudent }}=146 \operatorname{Sin} \theta_{\max } \\
& \text { ie } \theta_{\max }=1468^{\circ}
\end{aligned}
$$

$\theta_{\text {max }}$ is the maximum value of the incident angle within the waveguide

Figure G-2 Light ray undergoing total internal reflection

Because of total internal reflection, the maximum value of θ_{1} at the distal end is by symmetry also 1468° By Snell's Law the transmitted angle θ_{2} (maximum) is given by

$$
\begin{aligned}
& 146 \operatorname{Sin} 1468^{\circ}=1329 \sin \left(\theta_{2}\right) \\
& \text { 1e } \theta_{2(\text { maximum })}=16165^{\circ}
\end{aligned}
$$

Using equation G-1, R is then

$$
\frac{(146)\left[\operatorname{Cos}\left(\begin{array}{ll}
16 & 16)
\end{array}\right]-1329[\operatorname{Cos}(1468)]\right.}{\left(\begin{array}{ll}
1 & 46
\end{array}\right)\left[\operatorname{Cos}\left(\begin{array}{ll}
16 & 16
\end{array}\right)\right]+1329[\operatorname{Cos}(1468)]}=00434
$$

Eqn G-3

At normal incidence $\theta_{1}=\theta_{2}=0$, the amplitude reflection coefficient is

$$
\frac{146-1329}{146+1329}=00487
$$

Eqn G-4
or about 12% larger than the minmum possible value (which occurs at $\theta_{1(\max)}$ of 1616°) shown in equation G-3 above Over the full range of possible mode incident angles, then it is not unreasonable to assume a constant reflecuon coefficient R for all modes as adopted in equation 452

Appendix F References.

Paın HJ
"The Physics of Vibrations and Waves" (Wiley \& Sons NY, 1968) Chapter 7, p208

$$
\left\lvert\, \begin{array}{ccc}
\frac{J_{l}(U C)}{J_{l}(U)} & \frac{Y_{l}(U C)}{Y_{l}(U)} & 0 \\
0 & 0 & \frac{J_{l}(U C)}{J_{l}(U)} \\
-\beta l\left(\frac{1}{U^{2}}+\frac{1}{W^{2}}\right) & -\beta l\left(\frac{1}{U^{2}}+\frac{1}{W^{2}}\right) & \frac{p}{W} \frac{I_{l}^{\prime}(W)}{I_{l}(W)}+\frac{p}{U} \frac{J_{l}^{\prime}(U)}{J_{l}(U)} \\
\frac{q n_{2}^{2}}{W} \frac{I_{l}^{\prime}(W)}{I_{l}(W)}+\frac{q n_{1}^{2}}{U} \frac{J_{l}^{\prime}(U)}{J_{l}(U)} & \frac{q n_{2}^{2}}{W} \frac{I_{l}^{\prime}(W)}{I_{l}(W)}+\frac{q n_{1}^{2}}{U} \frac{Y_{l}^{\prime}(U)}{Y_{l}(U)} & \beta l\left(\frac{1}{U^{2}}+\frac{1}{W^{2}}\right) \\
\frac{\beta l}{U^{2} C} \frac{J_{l}(U C)}{J_{l}(U)} & \frac{\beta l}{U^{2} C} \frac{Y_{l}(U C)}{Y_{l}(U)} & -\frac{p}{U} \frac{J_{l}^{\prime}(U C)}{J_{l}(U)} \\
-\frac{q n_{1}^{2}}{U} \frac{J_{l}^{\prime}(U C)}{J_{l}(U)} & -\frac{q n_{1}^{2}}{U} \frac{Y_{l}^{\prime}(U C)}{Y_{l}(U)} & -\frac{\beta l}{U^{2} C} \frac{J_{l}(U C)}{J_{l}(U)}
\end{array}\right.
$$

0	$-\frac{K_{l}(W C)}{K_{l}(W)}$	0
$\frac{Y_{l}(U C)}{Y_{l}(U)}$	0	$-\frac{K_{l}(W C)}{K_{l}(W)}$

$$
\frac{p}{W} \frac{I_{l}^{\prime}(W)}{I_{l}(W)}+\frac{p}{U} \frac{Y_{l}^{\prime}(U)}{Y_{l}(U)}
$$

$$
\beta l\left(\frac{1}{U^{2}}+\frac{1}{W^{2}}\right)
$$

$$
\begin{array}{cc}
0 & 0 \\
\frac{\beta l}{W^{2} C} \frac{K_{l}(W C)}{K_{l}(W)} & -\frac{p}{W} \frac{K_{l}^{\prime}(W C)}{K_{l}(W)}
\end{array}
$$

H X!puədd \forall

$$
-\frac{p}{U} \frac{Y_{l}^{\prime}(U C)}{Y_{l}(U)} \quad \frac{\beta l}{W^{2} C} \frac{K_{l}(W C)}{K_{l}(W)}
$$

$$
-\frac{\beta l}{U^{2} C} \frac{Y_{l}(U C)}{Y_{l}(U)} \quad-\frac{q n_{2}^{2}}{W} \frac{K_{l}^{\prime}(W C)}{K_{l}(W)} \quad-\frac{\beta l}{W^{2} C} \frac{K_{l}(W C)}{K_{l}(W)}
$$

