
C o m p o s i t i o n o f O b j e c t - O r i e n t e d

S o f t w a r e D e s i g n M o d e l s

Siobhàn Clarke, B Sc in Computer Applications (Hons)

Thesis Submitted for the Degree of

Doctor of Philosophy in Computer Applications

School of Computer Applications
Dublin City University

Supervisor
Dr John Murphy

January 2001

© 2001, Siobhan Clarke

I hereby certify that this material, which 1 now submit
for assessment on the programme of study leading to
the award of a Doctor of Philosophy in Computer
Applications is entirely my own work and has not
been taken from the work of others save and to the
extent that such work has been cited and acknowl
edged within the text of my work

Signed

Date

T a b l e o f C o n t e n t s

Preface » . * • « * . . » * • ..»• «• •« x
Statement of Contribution x
Acknowledgements xi

Chapter 1 Introduction *•** •• ** * 1
Thesis Contributions 8
Thesis Structure 9

Chapter 2 Motivation ••• •• • ♦ 11
Specification Paradigms Across Lifecycle 12

Requirements 13
Object-Oriented Analysis and Design 16
Object-Oriented Implementation 18
Comparison 18

Example Software Engineering Environment 19
Requirements Specification 19
Supported Grammar for Expressions 20
Expressions as Abstract Syntax Trees 20

SEE System Design, Version 10 22
Product Flexibility 26
Comprehensibility 21
Managerial 28
Conclusion 29

Evolving the SEE System Design 29
New Requirements 29
Extending Version 1 0 directly SO
Using Design Patterns 3 0
Assessing Design Patterns 32
Summary 34

Drawing Conclusions for a Solution 34
Chapter Summary 35

Chapter 3. Related Work 37
Requirements Engineering Models 3 8

Viewpoints and Perspectives 38
Use Cases 40
Features 41
Services and Facilities 42

Object-Oriented Analysis and Design Models 42
Unified Modeling Language (UML) 42

Abstract ix

i

Role Modeling (OORam) 43
Catalysis 44
Role Modelling (Kristensen) 45
Contracts 45
Views 46
Design Patterns 47

Object-Oriented Programming Models 48
Subject-Oriented Programming 48
Aspect-Oriented Programming 49
Composition Filters 50
Adaptive Software 51
Metaobject Protocols 52

Database Models 53
Discussion 57
Chapter Summary 63

Chapter 4* Composition of 0 0 Designs* The Model 64
Decomposing Design Models 65

Structural Matching with Requirements 66
Overlapping Subjects 70

Composing Design Models 71
What does a Subject look like ? '72
Composing Design Subjects 75
Deferring Subject Composition 78

Specifying Composition 78
Specifying Inputs 79
Identifying Corresponding Elements 80
Scope of Composition Relationship 83
Rules for Specifying a Composition Relationship 84
Integran on of Inputs 8 7
Override Integration 88
Merge Integration 91
Notation 95

Analysis of the Output of a Composition 95
Forwarding of References 96
Ill-Formedness of Result 99

Using Subject-Oriented Design 102
Usefulness throughout Development Process 103
What Size is a Subject7 104
Duplication of Effort 104
How Complex is Composition Specification? 105
Feature Interaction Problem 106

Chapter Summary 107

Chapter 5 Composition Relationship An extension to the UML
Metamodel . 109
The UML Metamodel 109
Composable Elements 111
Composition Relationship 113

Description of Constructs 113
Well-Formedm u Rules 117
Semantics for Identifying Corresponding Elements 122
Semantics for Forwarding References to Composed Elements 123

Chapter Summary 125

ii

Chapter 6 Override Integration.......................................127
Syntax 128
Well-Formedness Rules 128
Semantics 130

General Semantics 130
Impact of Override on Subjects 132
Impact of Override on Classifiers 134
Impact of Override on A ttributes 137
Impact of Override on Operations 139
Impact of Override on Associations and Generalizations 140
Impact of Override on Dependencies 146
Impact of Override on Constraints 146
Impact of Override on Collaborations 148

Chapter Summary 15 3

Chapter 7* Merge Integration 155
Description 156

Merge as a Simple Union 156
Merge with Corresponding Classes, Attributes 157
Merge with Conflicts m Corresponding Elements 157
Reconciling Conflicts in Corresponding Elements 158
Merge with Corresponding Operations 160

Merge Integration Syntax 164
Merge Integration 165
Reconciliation of Conflicts 165
Collaborations for Merged Operations 167

Well-Formedness Rules 168
Semantics 169

General Semantics 169
Impact of Merge on Subjects 170
Impact of Merge on Classifiers 173
Impact of Merge on Attributes 177
Impact of Merge on Associations and Generalizations 180
Impact of Merge on Dependencies 184
Impact of Merge on Constraints 185
Impact of Merge on Operations 188
Impact of Merge on Collaborations 195

Chapter Summary 196

Chapter 8 Composition Patterns .. 198
Composition Patterns Model 199

Merge Integration 199
UML Templates 200
Combining the Two Composition Patterns 200
Composition Pattern Specification 201
Composition Binding Specification 205
Composition Output 207

Composition Patterns Metamodel 209
Well-Formedness Rules 211

Chapter Summary 211

Chapter 9 Applying the Subject-Oriented Design Model 213
SEE System Design, Version 10 213

Design Subjects 214

in

Characteristics of SEE Design Subjects 216
Composition Relationships for Design Synthesis 218
Composition Pattern 221
Producing Code from the Design 222

Evolving the SEE System Design 222
Chapter Summary 223

Chapter 10. Case Study and Evaluation 225
Requirements Specification 225

Functional Requirements 226
Technical Requirements 22 7

Design with Structural Matching to Requirements 227
Decomposition 228
Design Subjects 229
Composition 237

Evolving the LMS 242
Subjects 243
Composition 244

Evaluation 247
Product Flexibility 247
Comprehensibility 248
Managerial 248
Comment 249

Chapter Summary 250

Chapter 11 Summary, Conclusions and Future Work . 251
Summary 251
Future Work 253

Supporting Technologies 253
Additional Features and Rules 255
Software Development Process Support 258
Formal Foundations 258

Conclusions 259

Bibliography 260

Appendix A Partial Illustrations of UML Metamodel .. 269
Package 269
Classifier 270
Attribute 270
Operation 270
Relationship 271
Dependency 271
Constraint 272
Collaboration 272

IV

L i s t o f F i g u r e s

Figure 1 AST Nodes as Classes 20

Figure 2 AST Classes with Superclasses 21
Figure 3 Composite Pattern for AST 21
Figure 4 Core Expression Design in UML 22
Figure 5 Sequence Diagram for Checking the Syntax of an Expression A-B+2

23
Figure 6 Support for Check added to Class Diagram 23
Figure 7 Class Diagram with Expression AST and Check, Evaluate, and
Display Tools 24
Figure 8 Collaboration Diagram for Logging Utility Example - Check() 25
Figure 9 UML Class Diagram for SEE, Version 1 0 25
Figure 10 Using Visitor to Separate Check Functions 31
Figure 11 Using Observer for Logging 31
Figure 12 Using Decorator for Logging 32

Figure 13 Matching SEE Requirements with Design Models 35
Figure 14 Requirements and Subjects One-to-One Structural Match 66
Figure 15 Requirements and Subjects One-to-Many Structural Match 68

Figure 16 Requirements and Subjects Many-to-One Structural Match 69
Figure 17 A Subject as a Tree Structure 73
Figure 18 Composing Design Subjects to New Result 76
Figure 19 Composing Design Subjects with Overlap 77
Figure 20 Subject-Level Inputs to Composition 80
Figure 21 Explicit Correspondence 81
Figure 22 Implicit Correspondence 82
Figure 23 DontMatch Correspondence 82
Figure 24 Multiple Composition Relationships 84
Figure 25 Composition Relationships and Corresponding Parents 86
Figure 26 Composition Relationships at the Same Level in Subject Tree 86
Figure 27 Participation in Multiple Composition Relationships 87

Figure 28 General Override Semantics 90
Figure 29 Merge Integration with Reconciliation Specification 93
Figure 30 Merge Integration with Interaction Specification 94
Figure 31 Forwarding References to Composed Elements 97

v

Figure 32 Ambiguities with Forwarding of References 98
Figure 33 Resolving Ambiguities with Forwarding of References 98

Figure 34 Loss of (some) Constraints in Input Subjects 100
Figure 35 Composing Incompatible Operations 101

Figure 36 Elements that may participate in Composition Relationships 112

Figure 37 Composition Relationship 114
Figure 38 Correspondences between Primitives 122
Figure 39 Correspondences between Composites 123

Figure 40 Forwarding of References Semantics 123
Figure 41 Forwarding Ambiguous References with Attachment to Relationship

124
Figure 42 Forwarding to Implicit Composition Output as Default 125

Figure 43 Override Integration 128
Figure 44 General Semantics for Ovemde Integration 131
Figure 45 Impact of Ovemde on Subject Specifications 133
Figure 46 Impact of Ovemde on Classifier Specifications 134
Figure 47 Breaking Well-Formedness Rules for Classifiers 136
Figure 48 Impact of Ovemde on Attribute Specifications 138
Figure 49 Impact of Ovemde on Operation Specifications 139
Figure 50 Example 1 Impact of Ovemde on Associations 141

Figure 51 Example 2 Impact of Ovemde on Associations 141
Figure 52 Example 3 Impact of Ovemde on Associations 142

Figure 53 Example 4 Result of Ovemde on Associations 143
Figure 54 Example 1 Impact of Ovemde on Generalizations 144
Figure 55 Example 2 Impact of Ovemde on Generalizations 145
Figure 56 Impact o f Ovemde on Dependencies 146
Figure 57 Example 1 Impact of Ovemde on Constraints 147
Figure 58 Example 2 Impact of Ovemde on Constraints 147
Figure 59 Example 3 Impact of Ovemde on Constraints 148
Figure 60 Example 1 Impact of Ovemde on Collaborations 149
Figure 61 Example 2 Impact of Ovemde on Collaborations 150
Figure 62 Example 3 Impact of Ovemde on Collaborations 151
Figure 63 Example 4 Impact of Ovemde on Collaborations 151
Figure 64 Simple Merging of Subjects 156
Figure 65 Merge with Corresponding Classes and Attributes 157
Figure 66 Conflicts in Corresponding Elements 158

Figure 67 Reconciliation with Subject Precedence 159
Figure 68 Merging Corresponding Operations 161
Figure 69 Attaching Collaborations to Composition Relationship 163
Figure 70 Merge Integration 165

Figure 71 Reconciliation Specification 165
Figure 72 Collaborations for Merged Operations 168

VI

Figure 73 All corresponding operations referenced in attached collaborations

169
Figure 74 Impact of Merge on Subjects 171
Figure 75 Reconciling Conflicts in Subject Specifications 173
Figure 76 Impact of Merge on Classifiers 174
Figure 77 Breaking Well-Formedness Rules for Classifiers 175
Figure 78 Reconciling Conflicts in Classes 176
Figure 79 Impact of Merge on Attributes 178
Figure 80 Reconciling Conflicts in Attribute Specifications 180

Figure 81 Example 1 Impact of Merge on Associations 181
Figure 82 Example 2 Using Defaults to Reconcile Conflicts m Associations
182
Figure 83 Example 3 Impact of Merge on Associations 183
Figure 84 Example 1 Impact of Merge on Generalizations 183
Figure 85 Example 2 Impact of Merge on Generalizations 184
Figure 86 Impact of Merge on Dependencies 185
Figure 87 Example 1 Impact o f Merge on Constraints 186

Figure 88 Example 2 Result of Merge on Constraints 186
Figure 89 Example 3 Impact of Merge on Constraints 187
Figure 90 Impact of Merge on Operations 190
Figure 91 Operations involved in Multiple Compositions 191
Figure 92 Merging Operations with Attached Collaborations 192
Figure 93 Merging Operations with Different Parameters 193
Figure 94 Merging Operations with Other Conflicting Properties 193
Figure 95 Merging Operations with Pre/Post conditions 194
Figure 96 Impact of Merge on Collaborations 196
Figure 97 Merge Integration Example 199
Figure 98 Specifying Templates in a Composition Pattern 202
Figure 99 Specifying Patterns of Cross-Cutting Behaviour 204
Figure 100 Specifying Binding for Composition 207
Figure 101 Output from Composition with Pattern Subject 208
Figure 102 Composition Patterns Metamodel 210
Figure 103 Design Subjects for SEE 214
Figure 104 Kernel Subject Class Diagram 214
Figure 105 Check Subject Class Diagram 215
Figure 106 Evaluate Subject Class Diagram 215
Figure 107 Display Subject Class Diagram 216

Figure 108 Log Subject Design 216
Figure 109 Composition Relationship for Merging SEE Subjects 218
Figure 110 Composed SEE Design (Class Details Only) 219
Figure 111 Composed SEE Design with Relationships 220
Figure 112 Applying Composition Pattern for Logging 221

Vll

Figure 13 Evolving SEE with New Check Requirements 223

Figure 14 Initial Assessment of Project Classes and Tasks 228

Figure 15 Division of Tasks into Design Subjects 229

Figure 16 Add Resource Class Diagram 230

Figure 17 Add Resource Interactions 230

Figure 18 Remove Resource Class Diagram and Interactions 231

Figure 19 Order Resource Class Diagram 232

Figure 20 Order Resource Interactions 232

Figure 21 Search Resource Class Diagram 233

Figure 22 Borrow Book Class Diagram 233

Figure 23 Borrow Book Interactions 234

Figure 24 Return Book Class Diagram 234

Figure 25 Return Library Book Interactions 235

Figure 26 Pay Fine Class Diagram and Interactions 235

Figure 27 Synchronize Pattern Classes and Interactions 236

Figure 28 Specify Composition of Resource Management Subjects 238

Figure 29 Output of Composition of Resource Management Subjects 238

Figure 30 Generated Interaction 239

Figure 31 Specifying Exception to General Matching 239

Figure 32 Specify Composition of Borrowing Subjects 240

Figure 33 Output of Composition of Borrowing Subjects 241

Figure 34 Specify Composition with Synchronization 241

Figure 35 Output of Composition with Synchronization 242

Figure 36 Updating rules for borrowing 243

Figure 37 Order Received 244

Figure 38 Specify Composition of Borrow Checking Update 244

Figure 39 Output of Composition of Borrow Checking 245
Figure 40 Specify Composition with Receiving Orders 246

Figure 41 Output of Composition with Receiving Orders 247
Figure 42 Partial UML Metamodel for Package 269
Figure 43 Partial UML Metamodel for Classifiers 270
Figure 44 Partial UML Metamodel for Attributes 270
Figure 45 Partial UML Metamodel for Operations 270
Figure 46 Partial UM1 Metamodel for Relationship 271
Figure 47 Partial UML Metamodel for Dependency 271
Figure 48 Partial UML Metamodel for Constraint 272

Figure 49 Partial UML Metamodel for Collaborations 272

Figure 50 Partial UML Metamodel for Collaboration Roles 273

Vili

A b s t r a c t

In practice, object-oriented design models have been less useful throughout

the lifetime of software systems than they should be Design models are often

large and monolithic, and the structure of designs is generally quite different

from that of requirements As a result, developers tend to discard the design,

especially as the system evolves, since it is too difficult to keep its relation

ship to requirements and code accurate, especially when both are changing

This thesis identifies a number of key, well-defined problems with current

object-oriented design methods and proposes new techniques to solve them

The new techniques present a different approach to designing systems, based

on flexible decomposition and composition The existing decomposition

mechanisms of object-oriented designs (based on class, object, interface and

method) are extended to include decomposing designs in a manner directly

aligning design with requirements specifications Composition mechanisms

for designs are extended to support the additional decomposition mecha

nisms The approach closely aligns designs with both requirements specifica

tions and with code It is illustrated how this approach permits the benefits of

designs to be maintained throughout a system’ s lifetime

IX

i

P r e f a c e

S t a t e m e n t o f C o n tr ib u t io n
The author based the ideas relating to extending the decomposition and com

position capabilities of the UML on the previously published work on sub

ject-oriented programming from IBM Research. Having worked on the

application of the ideas to the design phase for a time without contact with

the subject-oriented programming team, the foundations of the work took

notable shape when worked on collaboratively with the IBM Research soft

ware composition group, led by Harold Ossher, at the IBM T. J. Watson

Research Center in Hawthorne, New York. In particular, the author worked

most closely with Peri Tarr in moulding the work, and defining its shape, at a

high level. This collaborative work culminated in a number of publications,

in particular [Clarke et al. 1999a]. Participation in a number of workshops in

that year explored subject-oriented design’ s application to the problems of

multi-dimensional separation of concerns [Clarke et al. 1999b], software

evolution [Clarke et al. 1999c], [Clarke et al. 1999e] and separation of cross

cutting concerns [Clarke et al. 1999d]. The author benefited greatly from dis

cussions with many different people at these workshops.

In addition to those publications mentioned above, the author produced the

following publications prior to this thesis. Introductions to the changes made

to the UML metamodel to support composition relationships are contained in

[Clarke 2000a] and [Clarke 2000b]. A description of the composition patterns

model is contained in [Clarke 2000c]. Early ideas on how to resolve conflicts

between corresponding elements are described in [Clarke & Murphy 1998a].

Early ideas on composing design models were also presented at a number of

workshops, where again, the author benefited from discussions with many

different people. Position papers for these workshops are contained in

[Clarke & Murphy 1998b], [Clarke & Murphy 1998c] and [Clarke & Murphy

1997]. In all cases, this thesis should be regarded as the definitive account of

the work.

x

P re f a c e A c k n o w l e d g e m e n t s

Acknowledgements
This thesis could not have happened without the support of many people

First, John Murphy As my supervisor, he provided constant encouragement

with his unwavering belief in me, and his willingness to provide me with the

freedom and guidance to pursue my ideas As my friend, he has been unfail

ingly supportive from the moment he put the idea o f a PhD into my head

I am indebted to Rob Walker (University of British Columbia) for his m-

depth reviews of early drafts of this thesis, and numerous detailed discus

sions and suggestions about the finer points of the “ subject” approach I have

no doubt that this is a better thesis because o f him Thanks also to Renaat

Verbruggen (Dublin City University) for reviewing early drafts, and lending

a sense of reality to the approach

I believe that the most pivotal and influential period was the three months I

was privileged to spend in the IBM T J Watson Research Center I am grate

ful to Harold Ossher for the opportunity (initiated by Stuart Kent from the

University o f Kent) o f working in his software composition group While

there, I worked most closely with Peri Tarr in defining the “ subject” ideas for

design And I had a great time too1 Thanks, Peri1 I am also grateful to Bill

Harrison for igniting my early interest in subject-oriented programming, and

for numerous interesting discussions

I received so much from many friends in IBM Ireland Ltd Paul Murphy and

Greg Scollan provided advice and encouragement in the early stages Pat O’

Connor provided funding for conference travel Emer MacDowell, Paul

McDaid, Carol Smith and Donal Sullivan embroiled themselves in interesting

discussions about my work John O’ Sullivan and James Rush gave invaluable

information development tips Thanks also to Regina, Catherine and Paula

I am grateful to Andrew Butterfield from Trinity College, and Mel O Cin-

neide from University College Dublin, for organising seminars for me that

gave me the opportunity to discuss the ideas

I was funded throughout by Dublin City University, and Padraic Moran

Thanks to my family and other friends for putting up with me, and giving lots

of very useful advice, especially my parents, Ursula, Regina, Aidan, Niamh,

Anne, Grdinne, Paula, Winnie and Ian

Finally, there is one person who was a constant support in every conceivable

way 1 couldn’ t even begin to itemise them This thesis is dedicated to my

husband Padraic, with all my love

XI

C h a p t e r 1 : I n t r o d u c t i o n

Software design is an important activity within the software lifecycle and its

benefits are well documented ([Booch 1994], [Coleman et al. 1994], [Cook &

Daniels 1994], [Jacobson et al. 1992], [Rumbaugh et al. 1991], [Shlaer &

Mellor 1988]). The benefits include early assessment of technical feasibility,

correctness and completeness of requirements; management of complexity

and enhanced comprehension; greater opportunities for reuse; and improved

extensibility. The object-oriented design paradigm has become the standard

approach throughout the software development process, but many issues

remain open for research into improving its effectiveness against these bene

fits [Engels & Groenewegen 2000].

Current Issues with Object-Oriented Modelling
In [Engels & Groenewegen 2000], a broad range of issues associated with

current object-oriented modelling techniques are discussed. This work repre

sents the most up-to-date view of areas requiring research. The issues are

dealt with in the context of the Unified Modeling Language (UML) as it is

the current standard language for object-oriented modelling, as defined by

the OMG [UML 1999]. Currently open issues range across a number of dif

ferent categories: 1) issues associated with the UML as a language, with

assessments on its architecture, notation, completeness and semantics; 2)

issues with the modelling units of the UML and their interdependencies; 3)

issues with model composition techniques; 4) issues with the modelling proc

ess, with consideration for consistency, coordination and communication; 5)

issues with the reviewing techniques available, for example, animation, sim

ulation and analytical techniques; and 6) issues with embedding object-ori

ented modelling into the full software development process, with round-trip

engineering and support tools among the cited concerns.

The Problems Addressed in this Th9i
This thesis addresses a very important subset of the issues raised in the afore

mentioned paper. In particular, the modularisation (or decomposition) capa

bilities of object-oriented modelling units, and object-oriented model

1

I n t roduc t i on

composition capabilities, are addressed As can be seen by the list of issues

raised, many of the benefits of software design are not being realised within

the object-oriented paradigm Within this thesis, the need to realise more of

the benefits of software design is an ultimate goal Problems with current

techniques are assessed based on their capabilities relating to management of

complexity and enhanced comprehension, greater opportunities for reuse, and

improved evolvability As illustrated in this thesis, modularisation and com

position capabilities are key to realising these benefits, and therefore become

the focus for the research described in this thesis

First, let us consider modularisation Object-oriented modelling modularisa

tion is based on the notion of class and object, which encapsulate structural

properties defined by attributes and behavioural properties defined by opera

tions and methods This thesis illustrates that the limited modularisation

catered for by the object-oriented paradigm is insufficient to support readily

understandable models This insufficiency impacts the ease with which mod

els may change as the design evolves, and also impacts the opportunities for

reuse

Failure of Existing Approaches
For example, a brief look at the limited modularisation capabilities of the

object-oriented paradigm shows that the units of modularisation are structur

ally different from the units of modularisation o f requirements specifications

(see “Chapter 2 Motivation” on page 11 for more details) Requirements are

specified based on the features and capabilities required of the software sys

tem Evidence of the structural difference between this kind of modularisa

tion and of object-oriented classes and methods is manifested in how the

design of a single requirement generally needs multiple classes and methods

to support that requirement, and also, how an examination of most object-ori-

ented classes demonstrates that they support multiple different requirements

From a comprehension point o f view (one of the key goals for software

design), this means that understanding a single requirement needs an under

standing of multiple classes across a design, and understanding a single class

needs comprehension of multiple requirements

So, what about extensibility, another of the key goals9 Consider a situation

where a new requirement is received Adding the design of this new require

ment may be as simple as adding a new class, with no impact on any existing

class, but it is easy to imagine that this is often not the case (examples are

illustrated in this thesis) In many cases, designing support for a new require-

2

I n t roduc t i on

ment will involve changing many of the existing classes and methods This

means that the details of all the existing classes, and the impact o f all those

changes must be clearly understood This level of invasive change to the

existing design is not compatible with the goal of a design that is easily

changeable

Finally, how does standard object-oriented modularisation fare when it

comes to re-use9 The structural mismatch previously discussed between units

of modularisation in requirements specifications and in object-oriented spec

ifications noted that an examination of a class demonstrates support for mul

tiple different requirements Classes, therefore, often include much more

functionality than any given client would use, which decreases comprehensi

bility and, potentially, usability

Other approaches exist that improve the modularity of object-oriented

designs For example, design patterns attempt to isolate different parts o f a

design into separate units, thereby attempting to improve understandability

and extensibility [Gamma et al 1994] However, as illustrated in “ Chapter 2

Motivation” on page 11, and indeed, discussed for each of the patterns in

[Gamma et al 1994], design patterns have their own difficulties For exam

ple, usage o f each pattern must be pre-planned and included in the design, as

retrofitting any pattern once the design is complete may require multiple

changes across the existing design This is a problem, as it is not possible to

anticipate all the changes that may be required of a system, and therefore to

anticipate the best patterns to be included in a design

In “ Chapter 3 Related Work” on page 37, other approaches to improving

modularisation across the software development lifecycle are examined

There are some approaches discussed that yield ideas that are adapted for the

research documented in this thesis, and other approaches which have limita

tions that influence the direction of this research

In this thesis, composition is discussed in the context of the capabilities

required to support new modularisation (or decomposition) approaches

Proposed Solution
This thesis proposes a new approach to object-oriented design that extends

the modularisation capabilities currently available Current object-oriented

modelling techniques support decomposition of design elements by class,

attribute, operation and interface Groupings o f classes into packages are

currently available, where a package is simply a “grouping of model ele

ments” [UML 1999] As discussed previously, the structural difference

3

In t ro duc t i on

Decomposition

between the way that requirements are specified/modularised and the way

that object-oriented designs are specified/modularised causes difficulties in

comprehension, reuse and extensibility This thesis directly addresses this

structural mismatch by adding decomposition capabilities that support struc

tural matching o f design models with individual requirements specifications

Corresponding composition capabilities are included in this new approach,

where separate design models may also be integrated

The approach to modularisation and composition described in this thesis is

primarily based on a similar approach to modularisation and composition of

object-oriented programming models, called subject-oriented programming

[Ossher et al 1996] Throughout this thesis, the research described will be

referred to as the Subject-Oriented Design Model, or subject-oriented design

The basis o f the subject-oriented design approach to decomposition is that

separate object-oriented design models may be specified for each individual

requirement This has two important implications

• Overlapping Specifications Supported Different requirements may exist

that have an impact on the same core concepts (for example, objects) of the

system It is this level of overlapping of requirements that is one of the

causes of the problems with comprehensibility, extensibility and reuse dis

cussed previously in object-oriented models That is, an examination of

many classes in object-oriented models require an understanding o f multi

ple different requirements in order to fully understand each class, and

indeed, to understand multiple collaborating classes The subject-oriented

design model recognises and explicitly caters for this level of overlap in

the different design models for each requirement This is achieved by

allowing each separate design model to include the specification o f any

core concepts only as suits the requirement under design by that design

model Composition capabilities supported by this new approach cater for

identifying overlapping concepts, integrating them, and handling any con

flicts

• Cross-cutting Specifications Supported There are also many kinds of

requirements that will have an impact across the full design of a software

system For example, a requirement for distributed objects has an impact

on a potentially large proportion o f the objects of a computer system Such

requirements are referred to as cross-cutting [Kiczales et al 1997], since

support for such requirements must be included across many different

objects in a system With the approach to decomposition proposed in this

4

In t roduc t i on

Composition

thesis, cross-cutting requirements may also be designed separately, with

composition capabilities handling their integration with other system

objects as appropriate

Standard object-oriented design language constructs may be used within the

individual design models modularised to support separate requirements In

other words, the new design approach proposed within this thesis does not

require any new notations for the separate design models

Corresponding composition capabilities are required to support the new kinds

of decomposition proposed in this thesis In order to verify the separated

design models, and understand the implications of all the design models for

the full system, composition o f the design models is required This thesis

defines a new design construct, called a composition relationship that sup

ports the specification of how design models should be composed With com

position relationships a designer can

• Identify and specify overlaps Where decomposition allows overlaps in dif

ferent design models, corresponding composition capabilities must support

the identification of where those overlaps are In order to integrate separate

design models, overlapping design elements (or elements which corre

spond and should therefore be integrated into a single unit) are specified

with composition relationships

• Specify how models should be integrated Design models may be integrated

in different ways, depending on why they were modularised in a particular

way For example, if different design models were designed separately to

support different requirements, a composed design where all the require

ments are to be included might be integrated with a merge strategy - that is,

all design elements are relevant to the composed design Alternatively, if a

design model contains the design of a requirement that is a change to a

requirement previously designed (for example, a business process has

changed), then that design model might replace the previous design In this

case, integration with an override strategy is appropriate, where existing

design elements are replaced by new design elements These two particular

integration strategies are described in detail in this thesis (see “ Chapter 6

Override Integration” on page 127 and “Chapter 7 Merge Integration” on

page 155) However, other integration strategies are possible, and so this

thesis discusses how new integration strategies may be added to this

approach

5

I nt roduc t i on

• Specify how conflicts in corresponding elements are reconciled: For some

integration strategies, where some corresponding elements are integrated

into a single design element, (merge integration is an example of such a

strategy) conflicts between the specifications of those corresponding ele

ments must be reconciled. Composition relationships support the specifica

tion of different kinds o f reconciliation possibilities - for example, one

design model may take precedence over another, or default values should

be used.

Composition relationships are a new kind of design construct. This thesis

uses the UML as the sample object-oriented design language on which to

illustrate the decomposition and composition capabilities of the model

described in this thesis. As such, extensions to the UML metamodel to incor

porate this new design construct are included in “ Chapter 5: Composition

Relationship: An extension to the UML Metamodel” on page 109.

Composition For design models that support cross-cutting requirements (i.e., those
Patterns requirements that have an impact on potentially multiple classes in the

design), composition of those models with other models is likely to follow a

pattern. In other words, a cross-cutting requirement has behaviour that will

affect multiple classes in different design models in a uniform way. For these

kinds of requirements, this thesis defines and discusses a mechanism

whereby this common way of composing the cross-cutting design elements

may be defined as a composition pattern.

Solving the Problems
In [Engels & Groenewegen 2000], two of the issues with object-oriented

modelling that are discussed relate to modularisation (or decomposition) of

models, and composition of models. This thesis illustrates that limitations

with current modularisation possibilities are the cause of difficulties with

comprehensibility, extensibility and reuse of object-oriented designs. The

limitations identified and illustrated in “ Chapter 2: Motivation” on page 11

are directly associated with the structural mismatch between the modularisa

tion of requirements specifications and the modularisation of object-oriented

designs.

The subject-oriented design model described in this thesis removes this limi

tation by adding the capability o f decomposing design models in a manner

that supports the direct structuring of design models with requirements spec

ifications. The approach is simple, as it means that standard object-oriented

design techniques may be used for the resulting individual design models.

6

I n t ro duc t i on

Comprehensi
bility

Extensibility

Reuse

The primary extension to the standard is a new composition relationship that

supports the composition of those models that contain the design of different

requirements So, how does this model solve the problems that current modu

larisation limitations cause9

As previously discussed, comprehensibility difficulties relating to the struc

tural mismatch between modularisation in requirements specifications and

modularisation in object-oriented models are two-fold First, in order to

understand how a particular requirement is designed, multiple design ele

ments must be examined and understood in full Second, in order to under

stand a particular object-oriented design element (for example, a class),

multiple requirements must be examined and understood in full This is illus

trated in “ Chapter 2 Motivation” on page 11 The subject-oriented design

model proposed in this thesis eases this comprehensibility problem by having

separate design models for each requirement Understanding the design of

one requirement in full requires an understanding of only those design ele

ments that directly support that requirement An examination of a single

design element requires a detailed knowledge of only one requirement This

approach, as illustrated throughout this thesis, has a positive impact on the

comprehensibility of design models

As for extending and changing a system’ s design, this thesis also illustrates

how this can be achieved in a manner that does not require direct manipula

tion o f existing designs, and therefore is simpler as a result Each extension

(for example, as a result of a new requirement) or change (for example, as a

result o f a change to business processes) may be designed in a separate

design model, with its composition with existing designs specified with a

composition relationship In “Chapter 2 Motivation” on page 11, there is a

discussion of the negative impact of having to change designs directly when

new requirements are received In “ Chapter 9 Applying the Subject-Oriented

Design Model” on page 213, there is an illustration of the improvements to

extensibility with the new approach described in this thesis

As previously discussed, an important impediment to reusing design models

is the tangling of the design for multiple requirements within design ele

ments This results from the structural mismatch o f the modularisation

approaches in requirements specifications and object-oriented models If a

need is identified for reusing the design of some particular requirement,

unwanted design elements are part of the deal, impacting development and

testing With the approach described in this thesis, however, each require-

7

In t ro duc t i on T h e s i s C on t r i bu t i o n s

ment is supported by a single design model, and therefore the reuse potential

of that design model is considerably enhanced

1.1. Thesis Contributions
The previous section discusses the problems with current object-oriented

design techniques addressed in this thesis, introduces the approach to solving

these problems that is the basis of thesis, and summarises how this new

approach to object-oriented design solves these problems In this section, a

succinct summary of the contributions o f the research described in this thesis

is provided They are

• E x t e n s io n s to O bject-O rien ted M o d u la risa tio n C a p a b i l i t ie s

The units of abstraction and decomposition in current object-oriented designs

tend to focus on interfaces, classes and methods This thesis describes an

additional unit of decomposition designed to align object-oriented designs

with requirements specifications This approach to decomposition has been

previously documented and implemented at the code level m the work on

subject-oriented programming [Harrison & Ossher 1993], [Ossher et al

1996] This thesis applies the subject approach to the Unified Modeling Lan

guage [UML 1999], which has not previously been researched

Important implications o f modularisation in this manner are that

* Overlapping specifications are supported

• Cross-cutting specifications are supported

• E x t e n s io n s to O bject-O rien ted M odel C o m p o sit io n C a p a b i l i t ie s

The subject-oriented design model introduces composition relationships to

UML which specify how designs should be composed A composition rela

tionship between design subjects (and component design elements) indicates

correspondences between elements in subjects that describe overlapping con

cepts, specifies how mismatches between corresponding elements are to be

resolved with reconciliation specifications, and how design subjects are to be

understood as a whole with integration specifications The full semantics of

the subject-oriented design model are described in this thesis

• E x te n s io n s to the UML M etam ode l to S u p p o r t D e s ig n Model C o m p o s it io n

Composition specification requires key extensions to the UML that are

described in this thesis The semantics of the UML itself have been specified

at the meta-level in [UML 1999], with the description o f a metamodel A

metamodel “defines a language for specifying a model” [UML 1999] - that is,

I n t ro duc t i on T h e s i s S t ruc t ur e

it defines all the design language constructs (for example, Class, Operation,

Attribute etc) that are available for specifying a design model Since a com

position relationship is an additional kind of design language construct

required to support subject-oriented design, its semantics are defined within

the UML metamodel as defined in [UML 1999] (see “Chapter 5 Composition

Relationship An extension to the UML Metamodel” on page 109) This is

achieved with

• meta-class models illustrating the details o f composition relationships

• well-formedness rules specifying constraints for composition relationships

• detailed descriptions of the semantics of composition

• C o m p o s i t io n P a t te r n s fo r C o m p o s in g C o l la b o ra t iv e B e h a v io u r S u p p o r te d

Sophisticated specification of the behaviour of operations that are merged

from different design models is possible This is supported with the ability to

attach collaborations to composition relationships with merge integration In

particular, patterns of collaborative behaviour may be identified and reused

A requirement that may have a behavioural impact across the full design may

be encapsulated, with this impact specified as a pattern Pattern composition

relationships may be specified when the behaviour needs to be reused (see

“ Chapter 8 Composition Patterns” on page 198)

1.2. Thesis Structure
Chapter 2 motivates the need for an approach such as subject-oriented design

by describing problems associated with current approaches to object-oriented

design The focus is on problems with the use o f UML, and UML with design

patterns [Gamma et al 1994]

Chapter 3 discusses the current state of software engineering from the point

of view of providing a context for subject-oriented design Different

approaches to requirements specifications, object-oriented design, object-ori

ented programming and database management systems are discussed

Chapter 4 defines the foundation for the subject-oriented design model

There is a discussion of the approach to decomposing design models and the

approach to specifying how design models may be composed using composi

tion relationships, with an introduction to the rules associated with their

usage There is also an analysis of the output of a composition process - the

Chapter 2

Chapter 3

Chapter 4

9

I n t ro duc t i on T h e s i s S t ru ct ur e

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

composed design models, and a discussion on the usage of the subject-ori

ented design model

Chapter 5 defines the syntax and semantics of the subject-oriented design

model against the UML metamodel This includes meta-class diagrams of the

constructs for composition relationships, well-formedness rules covering

constraints on composition relationships, and descriptions of the semantics of

composition This chapter includes an abstract specification of how integra

tion may be specified with composition relationships, but excludes details of

any specific integration strategies

Chapter 6 defines the syntax and semantics of override integration This

includes a meta-class diagram illustrating the constructs of override integra

tion in the context of the composition relationship constructs in Chapter 5,

additional well-formedness rules for composition relationships with override

integration specified, and a detailed description of the impact of override

composition on each of the design constructs supported in this thesis

Chapter 7 defines the syntax and semantics o f merge integration This

includes meta-class diagrams illustrating the constructs of merge integration

in the context o f the composition relationship constructs in Chapter 5, addi

tional well-formedness rules for composition relationships with merge inte

gration specified, and a detailed description of the impact of merge

composition on each o f the design constructs supported in this thesis

Chapter 8 discusses how patterns of composition may occur, and presents a

solution for specifying patterns of cross-cutting behaviour based on a combi

nation o f the subject-oriented design merge integration model, and UML

templates These patterns are called composition patterns

Chapter 9 describes the application of subject-oriented design to the exam

ples in Chapter 2, showing how those problems are ameliorated with subject-

oriented design

Chapter 10 demonstrates the use of the subject-oriented design model using a

Library Management System case study

Chapter 11 concludes and s u gg es t s pos s ibi l i t ies for future work

10

C h a p t e r 2 : M o t iv a t io n

Evaluation Criteria

This chapter motivates the need for a new approach to object-oriented design

With current software engineering techniques, a structural mismatch exists

between the specification paradigms across the software development lifecy

cle This structural mismatch is the root o f the problems described in this

chapter The problems exist because of a scattering and tangling effect that

is the mismatch’ s natural outcome That is, support for a single requirement

touches multiple classes in the object-oriented design and code (scattering),

and a single class in the object-oriented design and code may support multi

ple different requirements (tangling) The new approach to object-oriented

design proposed by this thesis adds decomposition capabilities to the object-

oriented design model that support structural matching to requirements,

thereby reducing scattering and tangling

First, this chapter examines the specification paradigms of the requirements,

analysis/design and implementation phases of the development lifecycle The

different paradigms are compared and a structural mismatch is found

It is then illustrated how the structural mismatch causes scattering and tan

gling properties It is shown that these properties result in a negative impact

on the initial development and evolution phases of software development

The illustration is based on working with a small example and uses the cur

rent OMG standard language for object-oriented design (UML), together with

design patterns (design improvement techniques, [Gamma et al 1994]) The

impact of the structural mismatch is assessed based on criteria used by Par-

nas in [Parnas 1974] 1 These criteria are

• Product flexibility The possibility of making drastic changes to one part

of the system, without a need to change others

1 Parnas considered that these criteria were the benefits to be “expected of modular pro
gramming” These benefits remain good goals for high-quality software engineering

11

Mo t i v a t i o n S p e c i f i c a t i o n P a r a d i g m s A c r o s s L i f e c y c l e

• Comprehensibility The possibility of studying the system one part at a

time The whole system can therefore be better designed because it is bet

ter understood

• M anagerial The length of development time, based on whether different

groups can work on different parts o f the system with reduced need for

communication

The expected benefits to software design discussed in “ Chapter 1 Introduc

tion” on page 1 (comprehensibility, extensibility and reuse) are subsumed

and extended by Parnas’ criteria Extensibility is discussed within “ product

flexibility” and reuse is discussed within “ comprehensibility”

The problems found motivate the need for a different design approach A new

design approach is proposed that diminishes the difficulties described and is

the central tenet o f this thesis

2.1. Specification Paradigms Across Lifecycle
This section compares the specifications of requirements, object-oriented

analysis/designs, and object-oriented implementations for software systems

The comparison is made based on one central theme - how the problem is

divided into smaller parts \

As with any large, complex problem, breaking the problem into smaller p̂ arts

makes it easier to understand [P61ya 1957] Software engineering is no dif

ferent m this respect, and so the specifications from each phase divide the

whole problem into smaller parts This section examines the selection of the

parts for division in each phase, and the motivations for those selections It is

illustrated that since the motivations for selection are different, the resulting

divisions are different, causing a structural mismatch in the specifications

The process of developing software, and of changing software over its life

time, has a number of different basic phases These are

Software Phases • Requirements Specification The output of this phase is a documentation of

what the software system is expected to do [Jacobson et al 1999] The

needs and requirements of the potential end-users o f the software system

are elicited and documented The business processes the software system

must support are examined, and the requirements to support those business

processes are documented The technical environment and technical con

straints within which the software system must run are assessed and docu

mented All existing software systems with which the new software system

12

M o t i va t i o n S p e c i f i c a t i o n P a r a d i g m s A c r o s s L i f e c y c l e

must interact are identified, and the requirements for their interaction doc

umented Requirements specifications tend to be documented in a language

which can be understood by the eventual users of the system This is gener

ally a natural language

• Analysis and Design The analysis phase refines and structures the require

ments, providing a better understanding o f those requirements [Jacobson et

al 1999] By refining the requirements into more detail, the analysis proc

ess attempts to tease out any ambiguities and inconsistencies associated

with the requirements specifications, and attempts to ensure that the com

plete set of requirements for the computer system has been defined2 This

process is performed with the involvement of the business domain experts,

and the people who define the technical requirements, in cooperation with

the software analysts The requirements are structured and documented in

the language of the developer The design phase shapes the system, provid

ing sound and stable architectures and creates a blueprint for the imple

mentation [Jacobson et al 1999] Detailed design decisions are made and

documented (for example, class structure/behaviour, how the system

should handle performance, distribution, concurrency - indeed, all techni

cal concerns, subsystem separation for implementation, etc)

• Implementation Starting from the design specifications, the system is

implemented in terms of source code, scripts, binaries and executables

[Jacobson et al 1999]

• Test The result from the implementation is verified against the require

ments A test team develops a set of test cases that are based on the

requirements specifications The test cases are run against the software to

verify that all the requirements are met by the software

Requirements The usage of software systems in society is ever increasing Individuals, and

groups of individuals (for example, clubs or businesses), have different needs

for software systems from both a business and personal perspective The

vocabularies and processes used to describe these needs are wide and varied

This section examines

2 Without the use of a formal description technique, it is difficult to test or measure the
completeness and lack of ambiguity/inconsistency of analysis specifications Without
the ability to test and measure these properties, informal analysis techniques are there
fore assumed to be, to some extent, ambiguous, inconsistent and incomplete

13

Mo t i v a t i o n S p e c i f i c a t i o n P a r a d i g m s A c r o s s L i f e c y c l e

1 the differences in the vocabularies used by various approaches to label

individual requirement “ units” (e g feature, functionality, service), and

also,

2 the different approaches to dividing up a requirements specification into

smaller parts There are many terms associated with multiple users of a

software system using it in different ways (e g role, view, perspective,

responsibility) Each of these have an influence on the decision-making

process associated with dividing the requirements specification into

smaller parts, and so these factors are considered

Units’ in Require First, a look at how individual units in a requirements specification are

labelled There are many words used to describe what a computer system is

supposed to do “ requirement” , “ feature” , “ functionality” , “ facility” and

“ service” Tn order to give a context for the vocabulary, the dictionary [OED

1989] definitions for each of these terms are as follows

Requirement “need, depend for success, fulfilment, etc on, wish to have”

Feature “distinctive or characteristic part of a thing, part that arrests

Different requirements engineering processes use different vocabularies to

describe units of interest to the requirements gatherer For example, the Uni

fied Software Development Process, described in [Jacobson et al 1999],

refers to requirements, features and functionality, but in essence, describes

the process of capturing requirements as “ Use Cases A use case delimits

the system from its environment, outlines who and what will interact with the

system, and what functionality is expected from the system, and captures and

defines m a glossary common terms that are essential for creating detailed

descriptions of the system’ s functionality

Modelling domains in a feature-oriented way, integrated with a use case

approach is described in [Gnss et al 1998] The purpose of feature-oriented

domain analysis (FODA) is “ to capture in a model the end-user’ s (and cus

tomer’ s) understanding of the general capabilities of applications in a

domain” , which, the point is made, “ sounds like use-case modelling” How-

ments Specification

Service

Function

Facility

attention, important participant in”

“mode of action or activity by which a thing fulfils its purpose”

“provision of what is necessary for due maintenance of a thing

or property”

“equipment or physical means for doing something”

14

M ot i v a t i o n S p e c i f i c a t i o n P a r a d i g m s A c r o s s L i f e c y c l e

Motivation for
Choosing Units

ever, the integration of the two approaches is motivated by the difference of

use-case modelling and feature modelling serving different purposes The use

case model is user-oriented, providing the “what” of a domain a complete

description of what systems in the domain do The feature model is reuser

oriented, providing the “which” of the domain which functionality can be

selected when engineering new systems in the domain

Features, described as “ an optional unit or increment of functionality” in

[Zave 1999], are also at the core o f the Distributed Feature Composition

(DFC) architecture described in [Jackson & Zave 1998] The fundamental

idea of the DFC architecture for the telecommunications domain is to treat

features as independent components through which calls are routed from

caller to callee Examples of features in the telecommunications environment

are “ call-waiting” , or “ 3rd-party conference”

Services and facilities are part of the specification of the OMG work on

CORBA [Mowbray & Zahavi 1995], [Siegel 1996] Examples of services a

system supporting distributed objects, and conforming to the CORBA stand

ard, should provide are an object naming service and an object event service

Examples of common facilities provided for by CORBA are user interface

facilities, and data interchange facilities

From these definitions, and the approach of different requirements specifica

tion techniques, requirements for computer systems can be seen to be state

ments of what the computer system should do The opinions of what computer

systems should do, even opinions of the same computer system, are depend

ent on the people who will use the system, and what they will use the system

for Different kinds o f people have different needs - and again many different

terms are used to describe the different motivations, for example view, per

spective, role As before, in order to give a context for the vocabulary, the

dictionary [OED 1989] definitions for each of these terms are as follows

View “manner of considering a subject, opinion, mental attitude,

intention, design”

Perspective “ aspect of a subject and its parts as viewed by the mind, view”

Role “one’s function, what person or thing is appointed or expected to

do”

Processes for requirements gathering take different approaches that are based

on the motivations of the end-users of the computer system Those motiva

15

Mo t i v a t i o n S p e c i f i c a t i o n P a r a d i g m s A c r o s s L i f e c y c l e

Output of Require
ments Phase

Object-Ori
ented Analy
s i s and
Design

“Units in Object
Oriented Specifica
tion

tions depend on the views, the perspectives, the roles or the responsibilities

of the end-users Views in requirements engineering are the focus in

[Nuseibeh et al 1994], where views are described as allowing “ development

participants to address only those concerns or criteria that are of interest,

ignoring others that are unrelated” A framework for requirements elicitation

based on the capture of multiple perspectives is described in [Easterbrook

1991], while the roles end-users play under different domain-dependent cir

cumstances are the motivation behind role-modelling from [Reenskaug et al

1995]

A requirements specification, therefore, contains descriptions of required

features, services, functions and facilities Potentially, each individual unit

may be described from different views and perspectives, and to support mul

tiple roles

In this section, the units of the object-oriented analysis and design paradigm

are examined, together with the typical motivations for their specification

From the early to the mid 1990’ s, there was a so-called “ methods war”

[Jacobson 1994], which resulted in “26 different object-oriented methods

described by OMG’ s special interest group on analysis and design (SIGAD)”

The proliferation of multiple methods prompted numerous studies into the

differences between them, for example [deChampeaux & Faure 1992], [Car

michael 1994], [Graham 1993], [Hutt 1994] These studies illustrate differ

ences between methods, but for the purposes o f comparison of the basic units

o f decomposition common to the object-oriented paradigm, it is sufficient to

consider them collectively, as the methods generally agree in this regard The

most basic units of decomposition in object-oriented analysis and design

methods in general are classes and objects [Wirfs-Brock et ai 1990] Classes

and objects encapsulate further units describing structural and behavioural

elements of the system, namely attributes, operations, interfaces and meth

ods Many different methods have slightly different definitions of these

terms, but essentially, the notions are the same

Some examples of how each of the units are described in some of the differ

ent methods are

16

Mo t i v a t i o n S p e c i f i c a t i o n P a r a d i g m s A c r o s s L i f e c y c l e

Structural Units

Class A description of a set of objects that share the same attributes, operations, relation

ships and semantics [Booch et al 1998]

Objects which share the same behaviour are said to belong to the same class A

class is a generic specification for an arbitrary number of similar objects [Wirfs-

Brocketal 1990]

A description of a group of objects with similar properties, common behaviour,

common relationships and common semantics [Coleman et al 1994]

Object A concrete manifestation of an abstraction, an entity with a well-defined boundary

and identity that encapsulates state and behaviour, an instance of a class [Booch et

al 1998]

A concept, abstraction or thing with crisp boundaries and meaning for the problem

at hand [Coleman et al 1994]

The “is a” abstraction, representing a part of a system An object has identity and

attributes and is encapsulated so that the messages it sends and receives constitute

all its externally observable properties [Reenskaug et al 1995]

Attribute A named property of a class that describes a range of values that instances of the

property may hold [Booch et al 1998]

A data value held by the objects in a class [Coleman et al 1994]

The information an object may store [Reenskaug et al 1995]

Behavioural Units

The implementation of a service that can be requested from any object of the class

in order to affect behaviour [Booch et al 1998]

A function or transformation that may be applied to or by objects in a class [Cole

man etal 1994]

A piece of code triggered by a message [Cook & Daniels 1994]

A collection of operations that are used to specify a service of a class or a compo

nent [Booch et al 1998]

The implementation of an operation [Booch et al 1998], [Coleman et al 1994]

The motivations associated with the choice o f “ object” as the basic decompo

sition unit in the object-oriented software paradigm was to model “ real

world” objects, thereby making software systems easier to develop and

understand Since everyday living involves dealing with all kinds of objects,

Operation

Interface

Method

Motivation for
Choosing Units

17

Mo t i v a t i o n S p e c i f i c a t i o n P a r a d i g m s A c r o s s L i f e c y c l e

Object-Ori
ented Imple
mentation

Com parison

the concept of working with objects at the software specification level is

therefore familiar and intuitive

note Following the methods war of the early 1990’ s, a collaborative effort

started which resulted in a consortium of companies agreeing on a single sub

mission to the OMG for an object-oriented analysis and design modelling

language - the Unified Modelling Language (UML) [UML 1999] Given the

general consensus associated with the usage of UML as the standard object-

oriented modelling language (and endorsed as a standard by the OMG), this

thesis will hereafter refer to the semantics definition of the UML only Anal

ysis and design are considered throughout the thesis as object-oriented mod

elling Though often referred to within the thesis as designs, the models

considered are any that are written using the UML

The units of decomposition in object-oriented programming technologies

such as C++ [Stroustrup 1991] and Java™ [Gosling et al 1996], directly and

deliberately match the the units at the design level described m the previous section

The direct matching is clear from each of the object-oriented programming languages’

construct support for the notions of class, the encapsulation of attributes and methods

with class, interface, and the instantiation of classes to produce runtime objects The

deliberate matching is natural for the purposes of structuring object-oriented code with

the same decomposition units as object-oriented designs, thereby providing direct

traceability between the two phases

For the purposes of this examination of specification paradigms across the

software development lifecycle, the specification paradigms of the object-

oriented design and object-oriented implementation phases are therefore con

sidered as the same
/

The requirements specification paradigm contains the notions of features,

capabilities, services, functions etc - with generally no mention of objects

and interfaces or any of the units of interest in the object-oriented design

domain The object-oriented paradigm contains the notions of objects and

interfaces etc - with no mention of features, or requirements, or any of the

units of interest in the requirements domain That is the mismatch

The units of interest in the requirements domain are structurally fundamen

tally different to the units of interest in object-oriented designs Thus,

requirements units of interest generally are not, and cannot readily be, encap

sulated in the design This is illustrated in “ 2 3 SEE System Design, Version

1 0” on page 22

18

M o t i v a t i o n E x a m p l e S o f t w a r e E n g i n e e r i n g E n v i r on m e n t

In the previous section, there is a discussion about how object-oriented

designs structurally match object-oriented code, providing a measure of

traceability between the two phases This necessitates a transition from “ fea

ture” (or function or) concerns in the requirements phase to the object/

class concerns of the object-oriented paradigm at the design phase In achiev

ing a close tie to code, object-oriented design loses potential for a close tie

with requirements

This point is particularly important In general, most design paradigm s are

not sufficiently powerful to permit designs to match both requirements and

code - they allow designs to align with either the requirements or the code,

but not both

The evidence of the negative impact of the structural mismatch between

requirements specifications and object-oriented designs can now be pre

sented The next section introduces the example to be used that will show this

evidence The following section illustrates how the mismatch affects the ini

tial development of the system (“2 3 SEE System Design, Version 1 0” on

page 22) The negative impact on the evolution of that system is described in

“ 2 4 Evolving the SEE System Design” on page 29

2.2. Example: Software Engineering Environment
This section presents a running example that is used to illustrate the prob

lems that motivates this research The example involves the construction and

evolution of a simple software engineering environment (SEE) for programs

consisting of expressions A simplified software development process is

assumed, consisting of informal requirements specification in natural lan

guage, design in UML, and implementation in Java

Requirements The required SEE supports the specification of simple expression programs
Specification

The following initial set of tools are needed to work with expressions

* an evaluation capability, which determines the result of evaluating expres

sions,

* a display capability, which depicts expressions textually, and

* a check capability, which optionally determines whether expressions are

syntactically and semantically correct

The SEE should also permit optional logging of operations

19

M o t i v a t i o n E x a m p l e S o f t w a r e E n g i n e e r i n g E n v i r on m e n t

Supported
Grammar for
E xp ress io n s

The initial software system supports a small grammar for expressions as fol

lows

E x p r e s s i o n = V a n a b l e E x p r e s s i o n | N u m b e r E x p r e s s i o n | P l u s -

O p e r a t o r I M i n u s O p e r a t o r | U n a r y P l u s O p I U n a r y M m u s O p

P l u s O p e r a t o r = E x p r e s s i o n ' + ' E x p r e s s i o n

M i n u s O p e r a t o r = E x p r e s s i o n E x p r e s s i o n

U n a r y P l u s O p = ' + ' E x p r e s s i o n

U n a r y M m u s O p = E x p r e s s i o n

V a n a b l e E x p r e s s i o n = (' A ' | ' B ' | ' C ' | | ' Z ') +

N u m b e r E x p r e s s i o n = (' O ' I ' 1 ' | ' 2 ' | | ' 9 ') +

This grammar is very simple and small to effectively illustrate two problems

first, even with a small grammar, the design of a supporting SEE gets

unwieldy and second, adding new constructs to the grammar, for example a

product or assignment operator, requires invasive changes to the design

E x p re ss io n s
a s Abstract
Syntax Trees

In this thesis, the SEE design in all examples represents expressions as

abstract syntax trees (AST) Each type of AST node is represented as a class

as shown in Figure 1

UnaryPlusOp

Figure 1 AST Nodes as Classes

Further examination of the nodes of the tree for this grammar show that there

may be common properties between different nodes which could be

abstracted to superclasses For this example, the P l u s O p e r a t o r and the

M i n u s O p e r a t o r have similar properties in that they both have left and

right operands, which could be abstracted to a class called B i n a r y O p e r a -

t o r Also, the U n a r y P lu s O p and the U n ary M m u sO p are similar in that

they both only have one operand, which could be abstracted to a class called

U n a r y O p e r a t o r Finally, N u m b e r E x p r e s s i o n and V a n a b l e E x -

p r e s s i o n are literals, and so could be abstracted to a class called L i t

e r a l These classes are illustrated in Figure 2

20

M o t i v a t i o n E x a m p l e S o f t w a r e E ng i n e e r i n g E n v i r on m e nt

Figure 2 AST Classes w ith Superclasses

The tree structure nature of the AST is supported using the Composite pattern

from [Gamma et al 1994] The intent of the Composite pattern is to “ com

pose objects into tree structures to represent part-whole interactions” The

idea is to provide a uniform interface to the objects within such a tree struc

ture, be it a leaf or a composite object Composite is centred around an

abstract class that represents both primitives (in the SEE case, literals) and

their containers (in the SEE case, operators, which “ contain” one or two

expressions) From the pattern, a container object maintains an aggregation

relationship [Booch et al 1998] with its parts As shown in Figure 3, the

abstract class that is used to represent literals and operators is called

E x p r e s s i o n Since both U n a r y O p e r a t o r and B i n a r y O p e r a t o r are

containers of expressions, they maintain aggregation relationships with

E x p r e s s i o n

Figure 3 Composite Pattern fo r AST

The basic structure of this design recurs in all examples of designs for a soft

ware engineering environment supporting expressions

21

M o t i va t i o n S E E S y s t e m D e s i g n V e r s i o n 1 0

The next two sections show evidence o f the negative impact o f that structural

difference on a small example object-oriented system design, affecting first

the initial development and then the evolution of that system

2.3. SEE System Design, Version 1.0
In this section, the design is considered as “ Version 1 0” (the “ first release”)

of the SEE system In later sections, the impact of evolving the system as a

result of adding new requirements is assessed

The requirements specification in “ Requirements Specification” on page 19

identifies several requirements that must be realised in the design expression

support, the evaluation tool, display tool, check tool, and a logging utility

that can be included or excluded from the environment

There may, of course, be many approaches to the design and implementation

o f such a system, from both a management and technical point o f view Tech

nically, a simple design is illustrated here In “ Evolving the SEE System

Design” on page 29, some general kinds o f problems that other approaches

produce (notably, those that use design patterns) are discussed From a man

agement perspective, let us assume that the project manager recognises that a

team member is knowledgeable in the area of expressions, and design pat

terns, and gives him the task of designing the core expression environment

This designer designs an expression as an abstract syntax tree, as described

in “Expressions as Abstract Syntax Trees” on page 20, which, with its struc

tural and accessor properties, is illustrated in Figure 4

opera dl

Figure 4 Core Expression Design in UML

22

Mo t i v a t i o n S E E S y s t e m D e s i g n , V e r s i o n 1.0

The project manager also has an expert in the syntax checking of expressions,

who is given the task of designing the check requirement.

minus:
BlnaryOperalor

aVarA: Plus: aVarB : aNum2:

VariableExpression BinaryO perai or-----1----- VariabtoExpression NumberEx pression

checkt) che<*C om pati bleT#»s()

getType Descriptor;)

getTypeDescriptorO

checkf)

C T T
getTypeDescriptorO

*u
getTypeDescriptdrö

I1
check() 1 [

eheckO T
1

' L

Figure 5: Sequence Diagram for Checking the Syntax of an Expression: A-B+2

This designer, however, must wait until the core structure of the expression

classes is decided, before working on a design for the checking behaviour. He

works with a number of scenarios for sequence diagrams to determine the

required operations, determining that recursive operations are appropriate for

the tree nature of expressions. One example of a scenario is one to support

the checking of the expression A-B + 2 as illustrated in Figure 5.

operand!

UmryTlmOp | UnanMim isop | riu so paaior | Minus Opcntor

t-----------------------1

Figure 6: Support for Check added to Class Diagram

23

M o t i v a t i o n S E E S y s t e m D e s i g n V e r s i o n 1 0

Once the check designer is comfortable with the design elements (attributes

and operations) that are to be added to the class, and therefore appear on

class diagram, he must ensure exclusive access to the class diagram in order

to update it with the additional properties to support checking expressions

Of course, sophisticated CASE tool support may reduce the “wait-time” for

the exclusive access to the class diagram The impact o f adding the checking

design properties to the class diagram is illustrated in Figure 6

The experts on evaluating expressions and those on displaying expressions,

design these tools as recursive functions over the abstract tree representation

o f expressions, in a standard object-oriented manner, using the UML [Booch

et al 1998], and in a manner similar to the behavioural design of the check

tool illustrated in Figure 5 The behavioural diagrams may be worked on sep

arately, but the additional structural and behavioural properties may only be

added to the class diagram when it is available, after which the class diagram

is as illustrated m Figure 7

* asS&mi
+ display)
+ avalli at
+ checks

90

e[> a

2
Literal

value Numb«

+ getVeluef) Number
f setVatuejNumber)
+ check[)
•getTypiDescilpto^)

operandi

openmd2

0
UnaryOperator

■ getOperandft
■ setOperand(Expression)
•ctieckl)
■ ctieckCompattoleTypesQ
■ getTypeDes nptor()

V anableExpress ion
name String
value Number

■getNameO Strtig
setName{Strfig)

■ asStrrg!)
- display!)
• eveluatefl

Numb«£jq>resacn

+ dsplHrt)
+ waàjatef}

ÒJÙL
BmaryOperator

+ getOperandK) Expression
♦ setOperandliExpressran)
♦ get0p9rend2() Expression
♦ setOperanû2(B(pression)
♦ check!)
+ ctieokCompatoteTypesO
♦ getTypeDdsa-fpforii

UnarçfflnsOp UnaryMinnsOp

* asStrmpO
+ display!)

evaluated

+ asStnngO
+ dsptayt)
* evaluate)

PlmOperttoc MuueOperator

♦ as3ringQ
+ displeyO

evaluate^

+ esSting!)
+ display!)
+ evaluate!)

Figure 7 Class Diagram with Expression AST and Check, Evaluate, and Display Tools

The remaining requirement to be designed is the optional logging of opera

tion execution Figure 8 shows an example collaboration diagram for logging

a c h e c k () operation If the logging utility is turned on (modelled as a

Boolean attribute lo g g x n g O n) each operation invokes L o g g e r b e f o r e -

I n v o k e () prior to performing its action, then invokes L o g g e r a f t e r -

I n v o k e () just before it terminates The Logger permits applications to turn

24

Mo t i v a t i o n S E E S y s t e m D e s i g n , V e r s i o n 1.0

logging on and off with its t u r n L o g g i n g O n () and t u r n L o g g i n g O f f ()

methods. This permits logging to be optional, as required.

Figure 8: Collaboration Diagram for Logging U tility : Example - Check ()

Express on

- loggngOn boolean

+ asSlringO
♦ display!)
♦ evaluate!)
+ cneck()

Y

Literal

- value : Number

* getValue() Number
* setValue(Number)
♦ check!)
+ getTypeDescriptorO

-

Logger
instance : Logger

► Instanced
► beforetnvoke<)
► alterlrvokeO
► tumLogginOn()
► lumLogglngOfli[)
► loggingOnQ
store!)

LogFile

■ file■instance LogRe
• Instance!)
• store()
■ load!)

operand operand2

—o
UnaryOperator

getOperandO : Expression
setQperand(Express»ofi)
check!)

• checkCompatibteTypes!)
getTypeDescrptor()

V ariabl eExpre s s ion

Mme : String
- value : Number
+ getName<): String

setName<Slrlrg)
' asStrmgO
■ dsplay!)

+ evaluated

NumiwtExprisacn I
asString()
cispiayO
evaluate!)

KKX
BinaryOperator

+ getOpefand1<) Expression
+ setOperandlfExpression)
+ getOperand2() Expression
+ setOperend2(Expression)
+ check!)
+ checkCompatibleTypes!)
+ getTypeDescriptorO

UnaryPlusOp UnaryMinusOp

* as SfringO
♦ display!)
+ evaluate!)

♦ asSlringO
+ display!)
♦ evaluate«)

.T
PlusOperator Minus Operator

♦ asStingO
♦ display!)
+ evaluate!)

♦ asS&mgQ
♦ display!)
♦ evaluate!)

Figure 9: UM L Class Diagram for SEE, Version 1.0

The impact of the logging requirement on the structure diagram of the SEE is

illustrated on Figure 9. Logging is modelled as a separate, singleton class,

L o g g e r . “ Singleton” is a design pattern from [Gamma et al. 1994] that

ensures a class only has one instance, as is appropriate for a class performing

a logging function that will always behave the same way regardless of what

operation is being logged.

2 5

M o t i v a t i o n S E E S y s t e m D e s i g n , V e r s i o n 1.0

Product Flex
ibility

The design demonstrates some important features. The mapping from design

to code is straightforward and quite direct - every unit of interest (i.e. class)

in the UML class diagram will have a direct correspondent in the code. This

is not unexpected, since both are object-oriented, and much of the reason for

the trend toward object-oriented design is that it permits a direct mapping

between design and object-oriented code.

The mapping between the SEE requirements specification and this design, on

the other hand, is more complex. Even with a requirements specification for a

small system, there is evidence of problems against each of our evaluation

criteria from Parnas:

• product flexibility

• comprehensibility

• managerial.

As described in [Parnas 1974], product flexibility is the “possibility o f mak

ing drastic changes to one part o f the system, without the need to change oth

ers '”. The structural differences in the specification paradigms between the

requirements specification, and the object-oriented design (discussed in gen

eral in “ 2.1. Specification Paradigms Across Lifecycle” on page 12) for the

SEE are central to the difficulties associated with changing the system.

The natural outcome of the structural differences is a scattering and tangling

effect across the object-oriented design.

Scattering: The structural difference results in the design of a single require

ment being scattered across multiple classes and operations in

the object-oriented design.

Tangling: The structural difference also means that a single class or opera

tion in the object-oriented design will contain design details of

multiple requirements.

Scattering and tangling are apparent in the design for the SEE.

Scattering: The SEE requirements of expression evaluation, checking, and

display, which are described as encapsulated concerns in the requirements

specification, are not encapsulated in the design. In fact, these requirements

are scattered across the AST classes - each class contains a method that

implements these capabilities for its own instances. Scattering is negative

from an evolutionary perspective: the impact of change to a single require

2 6

Mo t i v a t i o n S E E S y s t e m D e s i g n V e r s i o n 1 0

Comprehen
sibility

ment, well localised at the requirements level, can nonetheless be extremely

high, because that change necessitates multiple changes across a class hierar

chy

Tangling The logging capability is realised as a first-class unit of interest in

both the requirements and the design Nonetheless, the protocol for logging

requires co-operation from each method in each AST class, to appropriately

invoke L o g g e r b e f o r e l n v o k e () and L o g g e r a f t e r I n v o k e () This

is tangling - satisfying a given requirement necessitates interleaving design

details that address the requirement with details that address other require

ments Tangling is a serious impediment to software comprehension, reuse

and evolution because it is impossible to deal with the design details relating

to one requirement without constantly encountering and having to worry

about intertwined details relating to other requirements

Traceabihtv Scattering and tangling are also devastating from the point of

view of traceabihty the ability to determine readily how a piece of one soft

ware artefact (e g requirement, design, code) affects others Traceabihty

makes it possible to look at a change to a requirement, and to find those parts

of the design and code details that are affected by the change Traceabihty is

essential to keeping requirement and design documents up-to-date with

respect to evolving code Without it, these documents are likely to become

obsolete and useless, since, when it is difficult to determine how a proposed

change to one will impact the other, changes may not be propagated across

them consistently, or at all

As described in [Parnas 1974], comprehensibility is the “possibility o f study

ing the system one part at a time The whole system can therefore be better

designed because it is better understood’ The descriptions of the scattering

and tangling problems as manifested in the SEE, and which are described in

the previous section, also have a negative impact on the comprehensibility of

the system Any attempt at “studying the system one part at a tim e ' will

result in a required knowledge of the full design if the ' one part ’ chosen is a

requirement, or will result in a required knowledge of all the requirements if

the uone p a r t ” chosen is a class in the design

Comprehensibility is also an essential property to the successful reuse of any

unit from a system design, as any unit to be reused must be understandable or

it will not be reused correctly “Reuse” is a much heralded benefit of the

object-oriented approach to software engineering, but the properties o f scat

tering, tangling and poor traceabihty also contribute to a design that is diffi

27

M o t i va t i o n S E E S y s t e m D e s i g n V e r s i o n 1 0

Managerial

cult to reuse Poor traceabihty (resulting from scattering and tangling) makes

it difficult to follow exactly what parts of the design relate to a particular

feature of the system, and therefore what parts must be included m a reuse of

that feature Another important ingredient for successful reuse is clean

boundaries - i e a design unit that does not have interdependencies with

other design units, and which may therefore be easily incorporated into a dif

ferent system, with limited impact on the system Again, scattering and tan

gling properties in a design are the antithesis of such a clean incorporation

into another system Further, effective reuse requires powerful mechanisms

for customisation and adaptation With this design, designers are forced to

make invasive, rather than additive changes to adapt design units For exam

ple, adding a new feature to the SEE, like additional forms of checking of

expressions, requires each of the AST nodes to be changed

As described in [Parnas 1974], managerial issues concern the “length o f

development time, based on whether different groups can work on different

parts o f the system with little need fo r communication7 The abstraction units

of the object-oriented paradigm (classes, interfaces, packages) are inherently

centralised, in that they each cleanly encapsulate (and own) all the structural

and behavioural features relating to them As described, even in this small

system, comprehension, maintainability and reusability are reduced as a

result of the monolithic nature of the classes This monolithic property also

has ramifications for the design process itself For example, designers are

limited in their ability to work concurrently on the design (and on the code),

to a much greater degree than when producing a requirements specification

Specifically, it would be desirable to have a compiler expert work on the

AST representation itself, a user interface expert work on the design of the

display feature, etc The scattering and tangling of these features results,

however, in interdependencies across these features and across the classes,

that hampers concurrent design and implementation Since classes encapsu

late and own their own structural and behavioural properties, they are inher

ently centralised notions, so it is also often fairly difficult to permit

concurrent development of the same classes Further, while the logging capa

bility can be designed independently of the AST classes, all the developers

must be aware of its presence and must design with it in mind For the same

reasons, all of the SEE tool designers must wait for the “ core” AST to be

defined before they can work effectively even if designers could work in par

allel on features This opens the door to a variety of errors, and it can result

in delays while designers wait for one another

28

Motivation Evolving the SEE System Design

Conclusion The core reason for these problems is because the concerns identified in the

requirements, which are based on requirements o f the SEE, are different from

those used to modularise the design, which are the objects and classes that

implement the SEE Thus, the requirements units of interest generally are

not, and cannot readily be, encapsulated in the design This is different from

the relationship between design and code, where the respective set of con

cerns are very similar In the process of creating designs from requirements,

UML and other object-oriented formalisms and languages necessitate a tran

sition from feature concerns to object concerns This transition essentially

results in the discarding of the encapsulation of those units of interest identi

fied during requirements specification in favour of units of interest mandated

by the design and coding paradigms In achieving a close tie to code, object-

oriented design loses its close tie with requirements Scattering and tangling

are, in fact, symptomatic of this mismatch

Thus, designs fail to achieve one of their primary purposes to promote trace-

abihty by bridging the gap between requirements and code Traceability is an

important prerequisite to evolution, as is encapsulation, which aids in limit

ing the impact of any given change For example, it is difficult both to deter

mine how a change to the logging requirement will impact the design, and to

affect such a change additively, rather than invasively Limited traceability

and encapsulation, as is present in the SEE design, result in reduced evolva-

bility Consequently, they also result in the eventual obsolescence of require

ments, design or both, since changes may not be propagated consistently if it

is difficult to determine how a proposed change to one will impact the other

The next section looks at the process of evolving the SEE system as a result

of new requirements Different approaches to designing systems, based on

Design Patterns [Gamma et al 1994], are examined to assess whether they

are sufficient to solve the problems illustrated in this section

2.4. Evolving the SEE System Design
This section assesses the impact on the design of adding new requirements to

the SEE requirements specification The approaches to extensibility as rec

ommended by design patterns [Gamma et al 1994] are considered

New Require- After using the SEE for some time, the clients request the inclusion of differ-
m ents

ent forms of optional checking,

29

Mo t i va t i on Evolving the SEE System Design

Extending
Version 1.0
directly

Using Design
Patterns

1.A check is required to ensure that all variables used are defined, and all

variables defined are used (def/use)

2. A check is required to verify that expressions conform to local naming

conventions.

3 .The check feature is a “ mix-and-match” capability - clients can choose a

combination of syntax, def/use, and/or style checking to be run on their

expression programs when they invoke the check tool.

This change in requirements is additive - it need not affect any other require

ment. At the design level, however, the change is not as straightforward,

since the check feature is not encapsulated as a concern in the design. In fact,

this change necessarily affects all AST classes in the design. One approach is

to add new d e f U s e C h e c k () , and s t y l e C h e c k () operations to each of

the AST classes, with conditional execution based on boolean attribute

options. This approach requires each class in the design to be changed, with

corresponding significant potential for error introduction even to Version l .0

of the SEE system design. Another possible approach to designing the new

forms of checking would be to create new subclasses of the AST classes,

where a given subclass overrides the original (syntax) c h e c k () method

with one intended to provide def/use or style checking for a particular kind of

AST class. Clearly, while this approach is non-invasive, it is completely

impractical, as it results in combinatorial explosion of classes with each new

feature.

A better approach is to use the Visitor design pattern [Gamma et al. 1994].

The Visitor pattern “ represents an operation to be performed on elements of

an object structure. Visitor lets you define a new operation without changing

the classes of the elements on which it operates” [Gamma et al. 1994].This

pattern definition with its corresponding description in [Gamma et al. 1994],

makes it a good candidate for solving the problem o f adding new check oper

ations non-invasively. This is achieved by having a Visitor to represent

checking, and to provide different visitors that correspond to the different

kinds of checking. The Visitor approach, which is depicted in Figure 10,

facilitates “mix-and-match” without combinatorial explosion o f classes. It

requires, however, an invasive change to all of the AST classes, to replace

the c h e c k () methods with a c c e p t (V i s i t o r) methods.

30

Motivation Evolving the SEE System Design

Figure 10 Using V isito r to Separate Check Functions

The use of visitors also introduces a second complication The logging fea

ture requires the visitors to invoke L o g g e r b e f o r e l n v o k e () and L o g

g e r a f t e r l n v o k e () appropriately, further increasing the scattering and

tangling problems associated with this feature

Another possibility for the use o f design patterns is in the design of the log

ger functionality For example, a mutation of the Observer pattern [Gamma et

al 1994] appears as if it might be useful in capturing operations for logging

The Observer pattern supports an object that has changed state notifying

other objects that have expressed an interest in its state In Figure 11, this

approach is evolved to capture all operations on an object by the interested

object which is the Logger

Expression

+ attach(Observer)
+ detach(Observer)
+ notify Beforê)
+ nctilyAilerO |

for all o in observers {
o->notifyQefore()

}

Observer

+ noöfyBeforeO
+ notitvAfterO

Logger

+ Instanced
+ notifyBcforeO
+ notifyAfterQ

instance Logger
Log

logFile File
instance Log

-t- InstanceO
4- storeO
+ loadO

Figure 11 Using Observer for Logging

31

Mo t i v a t i o n Evolving the SEE System Design

A ss e s s in g
Design Pat
terns

In this design, any operation call results in a call to n o t x f y B e f o r e () and

n o t i f y A f t e r () , before and after its execution This approach has the

advantage that any object other than an instance of a logger, may express an

interest in operations within the expression, and attach itself as an observer

to be notified before and after operation execution For example, different

kinds o f audit trails may be attached with no change to the design of the

expression AST

Another approach to designing logging is to use the Decorator pattern

[Gamma et al 1994] Decorator supports the attachment of additional respon

sibilities to an object dynamically Decorators provide an alternative to sub

classing for extending functionality, and reduces coupling by, for example in

the logging case, separating the logging functionality into separate, decorator

objects, as illustrated in Figure 12

Expression

+ eheck()

beforelnvokeO
Decorator checkO
afterlrtvokeO

e x p re s s io n
0

D e c o r a t o r |

+ c h e c k {) ^ - i
J

expression check()

LoggmgDecorator

A checkQ
+ beforelnvakeO
+ afterlnvokeO

L o g

+ Instanced
+ storeO
+ loadQ

logFile File
instance Log

Figure 12 Using Decorator fo r Logging

Many other design approaches are possible for the SEE, and some of them

address some of the issues that have been raised For example, the judicious

application of design patterns might help solve some of these problems

While it is impossible to elaborate the possible design approaches (with or

without design patterns) exhaustively, this section briefly explores some of

the design pattern alternatives to illustrate why neither they, nor other

approaches, address the whole problem

Visitor The initial use of the visitor pattern to model checking (“ SEE System

Design, Version 1 0” on page 22) would have facilitated greatly the addition

o f new checkers - this is the case precisely because visitors provide encapsu

lation o f features, which results in better alignment o f design with require

ments While visitors promote some forms of evolution, they hmder other

forms For example, adding a new type o f expression, like assignment, is

32

Motivation Evolving the SEE System Design

simple in the original design in Figure 9, but it would necessitate invasive

changes to all visitors [Gamma et al 1994]

Observer To reduce the coupling between the logger and the AST classes,

logging could be performed by observers This approach would achieve

looser coupling Observer is, however, an extremely heavyweight solution

that incurs high overhead, in both complexity and performance Further, it

does not improve the scattering problem, as AST methods must notify any

observers, thereby scattering the implementation of logging across all the

AST classes Used in conjunction with visitors for the AST tools (check,

evaluate, display), the design for the SEE becomes significantly larger and

more complex, with many more interrelationships among the classes to be

represented and enforced

Decorator As an alternative to observer, logging could be designed using

the decorator pattern, where decorators optionally perform logging Decora

tor, like observer, helps to reduce coupling, and unlike observer, it reduces

tangling by segregating logger notification code into separate, decorator

objects Unfortunately, the decorator solution is significantly more problem

atic than the observer solution, because of the object schizophrenia problem

That is, to ensure that logging occurs consistently, it is necessary to ensure

that all messages to all objects go through the decorator, not directly to the

object itself Once a method on an object is invoked, however, that method

may invoke others, which, in turn, must go through the decorator This means

that the object must know about its decorator(s), which introduces a new

form of coupling and tangling (i e each class must include code to imple

ment interaction with the decorator)

This evolutionary change, which appeared to be straightforward and additive

from the client’ s perspective and from its impact on the requirements, dem

onstrates, in a microcosm, the spectrum of problems resulting from the mis

alignment problem Scattering and tangling lead to weak traceability and

poor encapsulation o f requirements-level concerns within the design, and

subsequently, the code They also make propagation of requirements changes

to design and code very difficult and invasive It is even difficult to deter

mine which design elements are affected by a given requirements change

The level o f effort needed to propagate changes from requirements to design

is much greater than the effort to propagate the changes from design to code,

precisely because of the misalignment

33

Motivation Drawing Conclusions for a Solution

Summary Design patterns can help alleviate some, but not all, o f the identified prob

lems Unfortunately, m diminishing some problems, they introduce other

problems or restrictions [Gamma et al 1994], [Vlissides 1998] Designs and

code must be pre-enabled with design patterns to avoid subsequent invasive

changes to incorporate them This need to pre-plan for change - which is

present in the use o f all design patterns - is especially problematic It is

impossible to anticipate every kind of change that might be required, even if

it were possible, flexibility always comes at a cost in terms of conceptual

complexity and/or performance overhead, as the visitor, observer and decora

tor patterns demonstrate Enabling for some forms of change inhibits other

kinds of change - for example, introducing visitors will promote the future

addition of new types of checkers, but it greatly complicates the addition of

new types o f expressions

Thus, while design patterns and other design approaches are very useful, they

cannot address the issues raised here - their use results in the exchange o f one

set of problems for another In some cases, the new set of problems is accept

able, but in others, it is not As long as the misalignment problem exists, its

consequences - weak traceability, low comprehensibility, scattering, tan

gling, coupling, poor evolvability (including high impact of change and inva

sive change), reduced concurrency in development, etc - will be present

Clearly, the need for a new approach to designing object-oriented software

has been motivated The next section proposes the solution that is the central

theme of this research

2.5. Drawing Conclusions for a Solution
As illustrated in this chapter, the structural misalignment of requirements,

design and code is at the root of the problems associated with object-oriented

designs Two general approaches exist to addressing the misalignment prob

lem One is to impose the same development paradigm on all software arte

facts This is precisely the approach that has been used to provide close

alignment between designs and code - both are written in the object-oriented

paradigm This approach is not appropriate when applied to requirements

specifications, however, as requirements deal with concepts in the u ser’s

domain, while designs and code deal with concepts in the programming

domain

The other approach to addressing the misalignment problem is to provide

additional means of further decomposing artefacts written in one paradigm so

34

Motivation Chapter Summary

that they can align with those written in another This approach suggests, for

example, that it must be possible to cleanly encapsulate requirements within

the object-oriented design paradigm - that is to have object-oriented design

models encapsulating requirements units of interest only This is the

approach that is adopted in this thesis, in recognition of the fact that different

paradigms are appropriate under different circumstances, so that homogene

ity, while appealing, is likely to be inadequate The approach proposed in this

thesis is called Subject-Oriented Design and is related to the work on sub

ject-oriented programming, which addressed misalignment and related prob

lems at the code level [Harrison & Ossher 1993], [Ossher et al 1996]

Like subject-oriented programming, subject-oriented design supports decom

position of object-oriented software into modules, called subjects, that cut

across classes For the SEE system, this means that there will be separate

design modules for each o f the requirements (see Figure 13)

Requrements
Specification

Design
Subjects

1 | 1 m
«subject»
Kernel 1

« s u b je c t »
Evaluate

a s u b je c t»
Check

« s u b je c t »
Display

■ s u b je c t » I
Log J

Figure 13 Matching SEE Requirements with Design Models

The complexity of understanding the combined impact of multiple require

ments on the design of a system is not entirely removed, however, as these

separated design models may also be integrated to form complete designs

See “Proposed Solution” on page 3 for a brief introduction, and “ Chapter 4

Composition of OO Designs The Model” on page 64 for more details

2.6. Chapter Summary
This chapter clearly illustrates that a new approach is needed for object-ori

ented design This is because object-oriented designs are difficult to under

stand, extend and re-use The chapter outlines and illustrates why this is the

case At the root of the problem is a significant structural mismatch between

the units of interest that are the focus of requirements specifications and the

units of interest that are the focus of object-oriented specifications

First the chapter analyses how requirements are specified and how object-ori

ented designs are specified with the respective motivations for selection of

35

Motivation Chapter Summary

the units of interest discussed The two paradigms are compared, and a struc

tural mismatch found

This is followed up with an illustration of how this structural mismatch

causes difficulties with the development and evolution of software systems

because o f the scattering and tangling effect that is its natural outcome That

is, software system support for a single requirement touches multiple classes

in the object-oriented design and code, and a single class in the object-ori

ented design and code may support multiple different requirements Even

with a small example system, the impact of this mismatch is obvious, with

the scattering and tangling of requirements in the designs reducing the flexi

bility and comprehensibility of the system, and causing managerial difficul

ties in the development process Other design approaches based on Design

Patterns are examined, but while some of the problems are solved, their use

often involves the exchange of one set of problems for another

Finally, a new approach to designing systems is proposed that is described in

this thesis This new approach extends the object-oriented design paradigm

by adding additional decomposition capabilities that support the designer

creating design models that directly encapsulate a single requirement,

thereby aligning the designs directly with requirements, and removing the

scattering and tangling properties that cause the outlined problems In the

remainder of this thesis, it is illustrated how this solution removes the scat

tering and tangling properties of standard object-oriented designs, thereby

improving comprehensibility, extensibility and reusability The SEE example

is redesigned in “ Chapter 9 Applying the Subject-Oriented Design Model”

on page 213

The new approach is called Subject-Oriented Design The model supports

both the new decomposition capabilities and the corresponding composition

o f design models capabilities, and is described in more detail in “ Chapter 4

Composition of OO Designs The Model” on page 64

First though, let us examine work related to this thesis (“Chapter 3 Related

Work” on page 37) Approaches throughout the software development lifecy

cle are considered, as the need to decompose large problems, together with

the need to integrate them are common problems for each development

phase

36

C h a p t e r 3 : R e l a t e d W o r k

The approach to designing object-oriented software proposed in this thesis is

based on providing a new way to decompose (that is, divide up) design mod

els, with supporting techniques for identifying overlaps in design units, and

for integrating design models Recognition that decomposition of object-ori

ented systems by class is necessary, but not sufficient for good software

engineering is not new, and this chapter looks at many interesting approaches

to extending the manner in which software artefacts are divided up

Software design can be seen as a bridge between requirements and code, and

therefore, it is interesting to consider related work across the development

phases of requirements gathering, analysis/design, and coding The need to

decompose artefacts in each phase, together with the need to recognise and

identify overlaps in different artefacts, and the need to integrate artefacts, are

common problems across the hfecycle Therefore, each approach in each

phase is examined by considering how these needs are catered for In addi

tion, since one of the integration strategies described in this thesis caters for

reconciliation of conflicts, this category of problem is also examined in this

chapter

Related work in the database field is also included Decomposition of data

for database management systems is primarily either based on relational the

ory or the object-oriented paradigm, and therefore, from a decomposition

perspective, the work is not directly relevant for comparison purposes How

ever, research into integration of heterogeneous schemas has many similari

ties in the areas of identifying overlapping elements, reconciling conflicts in

elements, and integration of schemas

The chapter is divided up into the following sections

• Requirements Engineering Models

• Object-Oriented Analysis and Design Models

• Object-Oriented Programming Models

• Database Models

37

Related Work Requirements Engineering Models

Within each of these four areas, different approaches are discussed based on

their approaches to decomposition, identifying overlaps, integration and, in

some cases, reconciliation of conflicts A discussion section follows which

assesses the impact of these approaches on the subject-oriented design

model

3.1. Requirements Engineering Models
In the requirements phase, requirements are decomposed based on the units

o f interest to the requirements gatherer There will also be the units of inter

est to the person(s) from whom requirements are elicited This section dis

cusses viewpoints [Easterbrook 1991] [Nuseibeh 1994], use cases [Jacobson

et al 1999], features [Zave 1999] [Turner 1999], and services/facilities

[Mowbray & Zahavi 1995] [Siegel 1996]

Viewpoints Using “ perspectives” as a unit for decomposition is the focus of the elicita-

tives^01̂ *390 tlon recluirements In [Easterbrook 1991], where a supporting framework

for multi-perspective integration is described in [Nuseibeh et al 1994] The

model proposed in [Easterbrook 1991] is that “ a separate knowledge base is

built for each perspective, to capture the knowledge offered by the person

expounding that perspective” , thus ensuring that “each perspective is prop

erly represented in the integration process” This approach to decomposition

is supported in [Nuseibeh et al 1994], where a ViewPomts framework sup

ports multi-perspective development, with method integration This frame

work structures, organises and manages the different perspectives, and also

checks consistency, handling inconsistencies between the different perspec

tives

The existence of overlaps in the different perspectives o f requirements for

computer systems is central to this approach to requirements gathering The

approach’ s process of requirements analysis is based on first identifying and

developing the different perspectives, but then comparing them to build an

understanding of how the different perspectives relate Though avoiding the

“ tough problem” of comparing representation schemes, the approach to com

parison of the different perspectives is based on the notion that the origina

tors of the different viewpoints are not wholly unfamiliar with the other

viewpoints Therefore, the originators’ suggestions of correspondences

between the different viewpoints may be used as a basis for discussion of the

overlaps The supporting framework later described in [Nuseibeh 1994] sup

ports the explicit identification of the general relationships between view-

38

Related Work Requirements Engineering Models

points with an inter-ViewPoint relationship Through this relationship,

overlaps within viewpoints may be identified, and rules governing the over

lap specified Rules, for example, may specify constraints such as existence

rules (a ViewPoint requires the existence o f another ViewPoint, or o f ele

ments within another ViewPoint), or agreement rules (expressing relation

ships between the contents of Viewpoints), or exclusion rules (for example,

uniqueness of names) These rules are the vehicle for viewpoint integration,

as they express the relationships between viewpoints, identifying overlaps

and defining rules for those overlaps

The integration of perspectives o f requirements in this model begins with

comparing the different perspective specifications to assess where the over

laps are Integration of the perspectives is then about resolving any differ

ences between them A process of in-depth negotiation between all parties

involved in each perspective is described The negotiation process is

intended to resolve the differences in the perspectives In the supporting

framework ([Nuseibeh 1994]), integration involves consistency checking of

rules defined between different viewpoints - the inter-viewpoint relation

ships Viewpoints are “ consistent” when all the rules defined between them

have been found to hold The notion of consistency is central to the integra

tion objectives - integration is achieving consistency This is different to the

notion of integration in the subject-oriented design model, where integration

is either integrating the subject design models into one result model, or pro

viding a specification for the integration of supporting subject programs into

one result module

Resolution o f conflicts is through a process o f education and negotiation

between the parties involved in the different perspectives The model

describes three phases the exploration of the different perspectives, where

the participants learn about each other’ s perspectives, the generation of sug

gestions for resolving conflicts, and the evaluation of these suggestions The

supporting framework described in [Nuseibeh 1994] considers resolution pri

marily as the handling o f inconsistencies The view is that forcing consist

ency may restrict the creativity and inventiveness of the development

process, and therefore, to manage rather than restrict inconsistency supports

the reality of inconsistencies in the development process This management

of inconsistency takes the form of identification of where inconsistencies

exist based on inter-viewpoint relationships, and acting on them based on the

use of actions at the meta-level These actions specify how to act according

to the context of the particular inconsistency identified, and are based on

39

Related Work Requirements Engineering Models

Use Cases

temporal logic with temporal operators An open issue identified within the

framework is the actual resolution of conflicts, with the focus described

based on identifying and managing inconsistencies

The approach to decomposing and capturing requirements described in

[Jacobson et al 1999] is based on the notion of use cases A use case outlines

who and what will interact with the system, what functionality is expected

from the system, and also captures and defines in a glossary common terms

that are essential for creating detail descriptions of the system’ s functional

ity

The policy of working with use cases is based on keeping each use case as

separate as possible during the requirements phase The benefits associated

with this approach is that each use case is simpler for the software users to

understand during requirements elicitation Consideration of the inherent

overlaps associated with use cases therefore becomes more in focus during

the analysis and design phases Here, there is recognition that analysis and

design elements such as classes and their objects may participate in many

different use cases This level of overlap is identified through a series of use

case realisations that have trace dependency relationships from particular

use cases to the analysis and design models realising those use cases No fur

ther reasoning is supported for those overlaps

The notion o f integration in relation to use cases is not considered in [Jacob

son et al 1999], as use cases are explicitly independent from each other for

the purposes of maintaining comprehensibility for the end-users Complica

tions associated with overlap in terms of concurrency, conflict or general

interferences between use cases are left for consideration in the analysis and

design phases The structural decomposition visible in use cases is not car

ried through to the analysis and design models, where the object-oriented

paradigm of decomposing based on the notion of class, interface etc is

applied The link between use cases and analysis and design models is main

tained through trace dependency relationships, where elements within the

analysis and design models may participate in multiple use cases Explicit

integration is therefore not required

While there is recognition in the use case modelling approach described in

[Jacobson et al 1999] that there may be conflicts and interferences between

different use cases, handling of those conflicts is essentially an intellectual

effort during the analysis and design phases Use cases are explicitly main

tained and worked with separately during the requirements phase Object-ori

40

Related Work Requirements Engineering Models

Features

ented analysis and design techniques, which are the responsibility of the

analyser and designer, apply to handling the impact of the conflicts in the

analysis and design models Solutions are not fed back to the use cases

In [Zave 1999], decomposition of requirements specifications is by “ feature”

Features, described as “ an optional unit or increment of functionality” [Jack

son & Zave 1998], are at the core of the Distributed Feature Composition

architecture DFC is for a telecommunications domain, where features are

treated as independent components through which calls are routed from caller

to callee Features are also the core of feature-oriented domain analysis

(FODA) where the purpose is to “ capture in a model the end-user’ s (and cus

tomer’ s) understanding of the general capabilities of applications in a

domain” [Gnss et al 1998]

The need to reason about “ features” from the requirements phase and

throughout the software lifecycle is the subject of the work on Feature Engi

neering described in [Turner 1999],[Turner et al 1999] The definition of

feature used in the work on Feature Engineering [Turner 1999] states that “ A

feature is a clustering or modularization o f individual requirements within

that [requirements] specification” The decomposition described at the

requirements phase particularly focuses on identifying the features of a sys

tem The approach maintains the perspective of identification o f features

throughout the lifecycle, with the ultimate contribution at the level of config

uration management Here, configuration management supports the developer

“ checking-out” all the appropriate software artefacts relevant to particular

features This ensures that the impact of any change made is catered for

across all artefacts impacted by a feature

The notion that features may have overlapping requirements is central to the

motivation of feature engineering, which therefore has an important need to

identify the overlaps A prototype configuration management tool supports

the explicit specification of feature as a first-class construct Here, features

are identified and their relationships detailed For example, relationships

such as x m p le m e n te d b y associates features with all the components par

ticipating in its implementation This explicitly identifies components that

may implement multiple features Feature relationships such as com-

p e t e s w i t h , e x c l u d e s , and r e q u i r e s may be identified to indicate con

straints between features It is not clear, however, how these relationships

between features are used When there is a need to work with components, a

41

Related Work Object-Oriented Ana lys is and Design Models

check-in/-out procedure is based purely on the lm p le m e n t e d b y relation

ships between features and components

Services and The notion of services and facilities is the basis for decomposition of require-
Facilities

ments for a system in the specification of the OMG work on CORBA [Mow

bray & Zahavi 1995], [Siegel 1996] Examples of services a system

supporting distributed objects, and conforming to the CORBA standard,

should provide are an object naming service and an object event service

Examples of common facilities provided for by CORBA are user interface

facilities, and data interchange facilities

3.2. Object-Oriented Analysis and Design Models
At the analysis and design level, there have been many approaches to enhanc

ing the basic object-oriented model A significant body of work is centred

around decomposition based on roles This section talks about three

approaches to roles, OORam [Reenskaug et al 1995], Catalysis [D’ Souza &

Wills 1998] and an approach described in [Kristensen & 0sterbye 1996]

Other interesting approaches to enhancing the basic object-oriented model

discussed here are contracts from [Helm et al 1990], views from [Shilling &

Sweeney 1989] and design patterns [Gamma et al 1994] First though, we

look at the standard UML, and discuss its existing composition mechanisms

Unified Model- The UML is a “ language for specifying, constructing, visualizing, and docu-
ing Language
{UML) menting the artifacts of a software-intensive system” [UML 1999] Structural

and behavioural aspects of systems may be captured by a series of different

kinds of models - Class, Object, Use case, Sequence, Collaboration, State-

chart, Activity, Component and Deployment diagrams These diagrams

present different “views” of underlying structural and behavioural concepts,

and may be “ combined” into a single design model The UML metamodel is

structured to support such a separation of different “views” into different

models Where one diagram references a model element that is also refer

enced in another diagram (for example, operations appear in both class dia

grams and interaction diagrams), only one specification o f that element is

supported, with both diagrams referencing the same specification As such,

combining diagrams into the same model does not present any conflict diffi

culties, or merging of behaviours

The UML contains a small number o f mechanisms that could be used to sepa

rate different elements that support different requirements For example,

42

Related Work Object-Oriented Ana lys i s and Design Models

Role Modeling
(OORam)

attributes and operations may be organised within classes using stereotypes

to group them for particular needs. In addition, multiple models of the same

kind (e.g. multiple object models, or class models) may be defined within the

same package that could be used to provide a limited measure of separation,

based on requirements. This support is limited for overlapping concepts (con

cepts that support multiple requirements) because, using UML, design ele

ments that support the same concept, but have different views that necessitate

different specifications, must be specified separately. Since there is no means

o f synthesising a complete design of incomplete pieces in UML, such ele

ments will remain separate throughout the design cycle.

Multiple generalization is another mechanism that could be used to combine

multiple different structural and behavioural properties, designed to support

different requirements. However, there are some difficulties with using this

technique in an attempt to separate support for different requirements into

different classes. First, as described previously for the use of multiple mod

els of the same kind, separation based on multiple generalization is not possi

ble when there are overlapping concepts that support multiple requirements.

Another issue is the practicality o f the approach based on the possibilities

relating to an explosion o f the class hierarchy for each new requirement

added.

Role modelling from the OORam software engineering method [Reenskaug et

al. 1995] shows how to apply role modelling by describing large systems

through a number of distinct models. The designer constructs a role model

for each activity or task carried out in the overall system, or constructs sev

eral role models for the same activity at different levels of detail. Using this

decomposition approach, separation of the design models may be structured

to match requirements specifications, where the different roles objects play

to support a particular task are distinct in separate role models.

A central notion of role modelling in OORam is the close relationships

between the different role models. This is because the same objects often

appear in several of them, playing different roles. Synthesis in OORam is at

the level of role models (not on single roles) so an explicit specification of

the mapping of all roles in base models to roles in a derived model is

required. This is supported by an OORam language which has constructs to

identify derived and base models, and the explicit mapping between roles.

This serves to support the identification of those roles that overlap in the

sense that they should be synthesised in the derived model.

43

Related Work Object-Oriented Ana lys i s and Design Models

Catalysis

Integration (or synthesis) in OORam is based on synthesising base role mod

els into a derived model Every base role in a base model is synthesised into

a derived role in the derived model Base model semantics are retained in

derived models While static correctness of the derived model is achievable,

approaches to ensuring dynamic correctness of the derived model are less

clear This is recognised within the OORam model, and approaches to ensure

“ safe” synthesis limit the possibilities available for integration Two exam

ples of approaches to safe synthesis for dynamic behaviour are defined The

first is called Activity Superposition where each base model activity is

retained unchanged in the derived model The second is called Activity

Aggregation where a base model activity is changed to include the execution

of another base model activity in the derived model As described in

[Andersen & Reenskaug 1992], the synthesised role models form the basis

for the type requirements of the classes implementing the design

Another approach to role modelling, based on the UML, is Catalysis

[D’ Souza & Wills 1998] Catalysis separates design models according to

concerns, using horizontal and vertical slices Vertical slices decompose

models according to the point o f view o f different categories of users The

approach yields different models o f the same types and actions Horizontal

slices decompose based on separating technical infrastructures and communi

cations protocols from the business models This approach to decomposition

supports structuring design models to align with both business requirements,

and more technical kinds of requirements that may have an impact across all

of the business requirements

In Catalysis, the joining of package specifications is based, by default, on

joining those definitions with the same name Exceptions to this may be

explicitly specified using extra invariants which may state that two defini

tions with different names should be considered to map together, and explic

itly stating the name to be used in the result This approach can also be used

to state that two definitions with the same name should not map together, by

explicitly renaming one o f them

Integration is based on a definition of the UML import relationship, called

jo in In general, the resulting definition for each type of element in a package

contains the combined set of elements that are defined for that type For

example, a set of all the attributes from the joined packages appears Con

straints are and-ed, including preconditions, postconditions, rely conditions

and guarantee conditions

44

Related Work Object-Oriented Ana lys is and Design Models

Role Model
ling (Kns-
tensen)

Contracts

The approach to role modelling described in [Knstensen & Osterbye 1996]

decomposes based on the separation of an object’ s intrinsic properties from

the roles that an object may play These roles are entities that may contain

additional state and behaviour, and are attached to the base object The anal

ysis of a system may be in terms of the roles of objects, lifting roles to a pri

mary consideration in the design This supports the structuring of analysis

models to match with requirements that specify different tasks to be per

formed by the same objects playing different roles

With this approach to role modelling, roles are explicitly related to particular

intrinsic objects to which they add role behaviour The notion o f roles work

ing with particular core concepts (and therefore overlapping) is explicitly

identified at design time Though roles have state and behaviour, they may

not exist independently (i e they do not have identity), and must be attached

to intrinsic objects Multiple role objects may be attached to intrinsic objects,

and may be referenced by a single reference to groups of those roles called a

subject reference However, a restriction exists that does not allow for over

lap between those roles Though this is recognised as a restriction, it ensures

that a remote access through a subject reference, which may reference multi

ple different roles, is always well defined

Roles may be aggregated for an intrinsic object For example, a Professor

may be an aggregation of Teacher and Researcher roles The separation of

role specifications from intrinsic object specifications supports the dynamic

attachment of roles to different objects at different times A subject is seen as

an instantiation of a class with roles, and in this sense, is an integration of a

class with particular roles As described in [Kristensen & 0sterbye 1996],

restrictions apply on the naming o f roles involved m a subject instantiation,

for the purposes o f avoiding name collisions An extension to this restriction

is described in [Kristensen 1997], where, for the purposes of composition of

hierarchies (both role and class), like-named roles and classes are considered

to be the same and their integration supported only where the resulting hier

archy does not contain cycles

A different approach to decomposition of analysis and design models speci

fies components called contracts, where the focus is on decomposition in an

interaction-oriented way [Helm et al 1990], [Holland 1992] Contracts spec

ify behavioural compositions and obligations on participants They capture

explicitly and abstractly the behavioural dependencies amongst collaborating

objects Contract specification identifies the participants in a behavioural

45

Related Work Ob)ect-Oriented Ana lys i s and Design Models

Views

composition and their contractual obligations Contract conformance checks

classes to ensure that they behave appropriately relative to all the contracts in

which they participate Contract instantiation creates objects at run time that

interact as described by the contract

With this approach, contracts are defined independently of classes, and spec

ify the contractual obligations of participants in the contract - therefore, the

notion of “ overlap” is not an issue Decomposition is based on separating the

specifications for behavioural interactions between collaborating objects,

where the identification of objects that conform to the contract specification

is done with an explicit “ conformance” specification stage Once an object

has been deemed to conform to the contractual obligations of a particular

participant in the contract, then it may be instantiated as that participant and

behaves as defined by the contract In the sense where an “overlap” may be

seen as a specification of a correspondence, then the specification of class

mappings to contracts (with contract conformance declarations) may be seen

as the specification of correspondence to a contract participant

Behavioural compositions specifying the interactions o f collaborating objects

are specified with contracts Contracts define the obligations o f participants

in a contract in terms of the variables, external interfaces and sequences of

actions which must be supported m order to participate Basic contracts can

be further composed to specify more complex behavioural specifications with

contract refinement and inclusion Refinement supports the specialisation of

contract specifications, with extensions to its actions or invariants Contract

inclusion supports the union o f contract specifications, thereby allowing mul

tiple contract specifications to be composed to more complex specifications

In terms of creating behavioural compositions o f objects that participate col-

laboratively as defined by a contract, this is done through the instantiation of

contracts This requires the identification o f objects as participants, and

establishing the contract via the methods defined in the contract

Some approaches to extending the decomposition o f object-oriented systems

are based on the notion of “ views” - for example, [Shilling & Sweeney 1989]

Here, large, complex systems may be decomposed based on the “ view” o f the

user The basis of this architecture relies on extending the object-oriented

paradigm in three steps 1) defining multiple interfaces in object classes, 2)

controlling visibility of instance variables, and 3) allowing multiple copies

o f an instance variable to occur within an object instance These object

extensions are used to create view classes and view instances A view class is

46

Related Work Object-Oriented Ana lys i s and Design Models

Design Pat
terns

a global abstraction which uses many object classes to provide a unified glo

bal behaviour A view class is defined as a set o f ordered pairs of the form

(object c lass , interface) A single object may participate in many view

classes This allows view instances to intersect The object class specifies

how view instances interact by its rules for sharing and accessing instance

variables

Specification of the control of overlaps in this “ Views” model is contained in

the object classes that participate in the View - that is, the global abstraction

o f multiple collaborating objects Each object class has rules for sharing and

accessing instance variables by explicitly stating the particular interfaces that

may access instance variables and methods The identification of overlaps

(or, corresponding elements) is therefore defined for each class as part of the

specification of the different interfaces the class supports It is the responsi

bility of the specifier of the view class - that is, the set of ordered pairs

{object c lass , interface) that participate in the view - to ensure that the view

class is coherent in its inclusion of the appropriate pairs to support the

required view

A View Class specifies the composition of objects important to a particular

view with its ordered set of tuples (object c lass , interface) Instantiation of

objects is only in the context of an instance of a view class Composition of

the objects is by join ing each object instance to the view instance The parts

o f the objects (interfaces and instance variables) visible to the view are as

specified by the view class (interface), and the object class (instance varia

bles) It is the responsibility of the view class designer to ensure that the set

o f (object class, interface) tuples that make up the view is a set that makes

sense to support the particular requirement of the view

The decomposition focus of design patterns [Gamma et al 1994] is on ena

bling the design of reusable, extensible software To this end, decomposition

is based on isolating different aspects of a problem into separate design units

Different patterns support this approach from different perspectives, for

example, structural decomposition is supported with a Decorator pattern that

separates extensions to an object’ s functionality in an alternative to subclass

ing, and behavioural decomposition is supported with the Visitor pattern that

supports the definition of new operations without changing the elapse'» of the

elements on which it operates Depending on the kind of separation required

in a particular design situation, an appropriate design pattern is chosen and

applied

47

Related Work Object-Oriented Programming Models

The notion of overlap is catered for explicitly in design patterns. The level of

decomposition for each of the design patterns, where structural, behavioural

or creational issues may be decomposed separately from core objects, is

designed into the suite of collaborating design elements supporting that pat

tern. The pattern of collaboration between the appropriate design elements

explicitly caters for the overlapping of concepts. Therefore, the identification

of corresponding elements which must work together is an essential part of

each pattern.

The specification of each design pattern in [Gamma et al. 1994] includes how

the appropriate collaborating objects to support a particular design pattern

are integrated. Integration is not explicit in the sense of synthesis into a sin

gle result, but rather, it is a specification of collaboration of appropriate

objects to achieve the goal of the particular design pattern. The level of inte

gration in this sense is explicitly designed into the classes that are identified

as participating in the design pattern.

3 .3 . O b j e c t - O r ie n t e d P r o g r a m m in g M o d e l s
Approaches to enhancing the object-oriented decomposition paradigm are

also prevalent in different programming models. This section discusses sub

ject-oriented programming [Harrison et al. 1996], aspect-oriented program

ming [Kiczales et al. 1997], composition filters [Aksit et al. 1992], adaptive

software [Lieberherr 1995] and metaobject protocols [Kiczales et al. 1991].

Hyper/J™ [Tarr & Ossher 2000] supports what they term “ multi-dimensional

separation of concerns” [Tarr et al. 1999]. This is an approach to decompos

ing software into modules, each of which contains the code for (thereby

encapsulating) a particular area of interest. These modules are called hyper

slices. Examples of the areas of interest that motivate this level of decompo

sition are functions, data types/classes, features (e.g. “ persistence” , “ print” ,

“ concurrency control”) and roles. Developers can write separate programs in

Java™ to support this decomposition. This work has evolved from the work

on subject-oriented programming [Harrison & Ossher 1993], [Ossher et al.

1996].

The modules that implement different units of interest (hyperslices) in

Hyper/J are composed by identifying corresponding units in different hyper

slices, and integrating them. The relationships between corresponding units

in different modules are identified in a specification file that has two main

parts:

48

Subject-Ori-
ented Pro
gramming

Related Work Objec t -Or ien ted Programming Model s

Aspect -Ori
en ted Pro
gramming

1 it exp l i c i t ly na m e s the hypers l i ces invo lved in the compos i t i on (keywo rd
h y p e r s l i c e s) ,

2 it i dent i f i es the cor r es po nd i ng uni t s wi thin these hypers l ices , and how they
are to be in tegrated (ke y wo rd r e l a t i o n s h i p s)

So m e re la t ionships ident ify the co r re sp on d in g e lements by com b in in g the
matc h in g cr i t er i a wi th the integrat ion cr i t er i a Fo r exam ple , mergeByName

speci f i ed in the re la t ionships par t o f the spec i f ica t ion fi le indicates that units
wi th the same name correspond , and shou ld be me rg ed Other r e l a t ionsh ips
j u s t ident ify units that co r respon d , wi tho u t an ind icat ion o f how they should
be integrated For ex am ple , the e q u a t e re l a t ionsh ip ind icates tha t a set o f
uni t s ma tc h each o ther , and the m a t c h re l a t ionsh ip p ro v ides a more f l ex ib le
pat te rn ma tc h i n g wi th wi ld cards The compo s i t io n process uses these re la
t ionsh ips to ident ify the units wi th in the d i f fe rent hypers l i ces tha t co r r e
spond

This separate spec i f i ca t ion fi le is the mea ns for spec i fy ing integrat ion o f
hypers l i ces This f i le ident if i es the hypers l i ces to be compo sed , the units
wi th in the hypers l i ces tha t co r respon d , and how they are to be integra ted
In tegra t ion re la t ionships such as me rge and over r ide speci fy di f fe rent k inds
o f integrat ion s tr at egies for co r re sp on d in g units m e r g e ind icates that co r r e
s p on d i ng units are to be integrated toge the r into a single uni t o v e r r i d e

causes one uni t to r ep lace o the r co r r es p o n d i n g units The actual in tegra t ion is
pe r fo rm ed by Hyper / J , the resu l t o f wh ic h is a co mp os ed Java p rogram c o n
tain ing the com bi na t ion o f the inpu t hypers l i ces as de f ined by the integra t ion
s tr ategy

D eco m p o s i t i o n based on “ as p ec t s ” is the app roach t aken in A sp ec t J™ [Kic-
zales & Lo pes 1999], wh ere an aspec t is a unit o f interest tha t “ c r o ss -c u t s”
ano the r unit o f in te res t T w o uni t s o f interest c ross -cu t each o the r when the
ava i l ab le d ec om po s i t io n pa rad igm suppor t s the encapsu la t ion o f one unit o f
interest , but this p resen ts di f f i cul t ie s in cl ean ly loca l is ing the o ther E x a m
p les o f a c ro ss -cu t t ing unit o f interest are “pe rs i s t en ce ” , “concu r renc y c o n
t r o l ” and “d i s t r ib u t i on ” Wi th Aspec t J , such c ross -cut t ing units o f interest
can be encapsu la ted , and code d (in Java) separa tely f rom the rest o f the code
The approach is ca l l ed “ asp ec t -o r i en ted p r o g r a m m i n g ” [Kicza les et al 1997]
The ex i s t ence o f a “ b as e” p rogram into which aspect code is we av ed is the
p r i ma ry d i f fe rence in the app ro ach es o f su b je c t -o r i en ted p ro g ra m m i n g (and
the re fo re , dec o m p o s i t i o n in sub jec t -or i en ted des ign) and aspec t -o r i en ted p ro
g ra m m i n g In su b je c t -o r i en ted p ro g ra m m i ng , the re is no co nc ep t o f a base

49

Related Work Ob je c t -Or ien ted Programming Model s

Compos i t ion
Filters

p r ogram - each code sub jec t is independen t , and comple te ly p rov ides the
code for the pa r t i cula r uni t o f decomp os i t i on suppor ted

Asp ec t J has ex t ended Java to su ppor t cons t ruc t s that im p le me n t the a sp e c ts

tha t c ross -cu t p ro gr am s The overlaps wi th s t andard Java p rog rams are
expl ic i t ly and clear ly def ined wi th new Jav a l anguage cons truct s tha t s u p
por t

1 The ident i f i cat ion o f the po in t s in the base Jav a p r ogram (such as types ,
messa ge s , ins tan t ia t ions , excep t ions or m e m b er s) where the aspect p ro
gram defines act ions tha t may be pe r f o r me d on those point s The key wo rd
c r o s s c u t is used here

2 The aspec t p r ogram al so speci f i es the ac t ions to be pe r fo rm ed on the i d e n
t if ied point s, and con trol s when t hese ac t ions are pe r fo rm ed wi th new k e y
words - so m e ex am ple s o f wh ic h are b e f o r e , a f t e r , f i n a l l y and
c a t c h

In tegra t ion in a spec t -o r i en ted p ro g ra m m i n g us ing Aspec t J is pe r fo rm ed at
co mpi la t ion t ime The source] a v a aspec t and class f i les are input to an
aspect comp i l e r that “w e a v e s ” the input source fi les, and p roduces Java code
co n ta in ing the integrat ion o f the aspec t code and the class code Th e w eav er
genera tes the ou tpu t Java code based on the spec i f ica t ion in the input a spect
f i les The aspec t f i les ind icate the exact point s in the class fi les that have
add i t iona l ac t ions speci f ied, and w h er e thos e ac t ions shou ld be integra ted
(e g before, af t er etc) The gen era ted Jav a code may then be co mpi led wi th a
s tandard Java com pi le r

“Com pos i t ion f i l t e r s” are the appr oac h to d ec om po s i t io n desc ribed in [Aks it
et al 1992], w h er e de co m p o s i t i o n based on “v ie w s ” in tegra tes da tabase - l ike
fea tu res with the ob jec t -o r i en ted mod e l Vi ew s are su ppor ted with “ f i l t e rs”
which are par t o f the def ini t ion o f a class Fi l ters de fine the gu idel ines for an
o b j e c t ’s be h av io u r and have two co m p o n en t s a f i l ter han d le r tha t de t e rm in es
wha t is to be done wi th mess ag es , and an accep t- se t funct ion that de f ines the
cond i t ions under wh ic h m e ss ag es to the ob jec t are accep ted Mul t ip le v iew s
are de f ined in t e rms o f fi l ters , wh ere a c l ient ob jec t is ex am ine d to de te rmine
the behav iou r to wh ic h it has access D i f fe r en t f i l ters may be de f ined for each
class to suppor t d i f feren t k inds o f v iews - for example , co n cu r re nc y or s y n
chron i sa t ion Each f i l ter is r e s pons ib le for hand l ing all aspect s o f its a s s o c i
ated v iew S ince both me ss ag e sends and rece ives are t r ap ped by fi l ters,
f i l ters can pe r fo rm cer t ain ac t ions re levan t fo r its v iew, be fo re the ac tual
me th o d is execu ted Th is appr oa ch dif fers f rom the su b je c t -o r i en ted app roach

50

Related Work Ob je c t -Or ien ted Programming Model s

Adapt ive Soft
ware

pr imari ly in its hand l ing o f separat ion for a s ing le cl ass, where mult ip le , co l
l abora t ing c lasses are separa ted into subjec t s

In this ap proach , f i l ters are expl i ci t ly a t tached to class def ini t ions in the l an
guag e Each class def ini t ion def ines the beh av io u r o f any fi l ters on receipt o f
incom ing me ssages , and the be h av io u r tha t may be de f ined as a resul t o f o u t
go ing m e ssa ge s Further ident i f i ca t ion o f overlaps is not r equi red

In tegrat ion invo lves in tegra t ing the fi l ters tha t conta in the addi t iona l c o n
st raint s or beha v io ur to suppor t the separa ted units o f interest The ef fec t o f
in tegra t ing f i l ters is es sen t i a l ly to a n d them toge the r , wi th messages be ing
accepted or re j ec ted in a sequen t i a l ma nner

The p roblem wi th s tandard ob jec t -o r i en ted p r o g ra m m in g l anguages
addressed by adap t ive so f tware [Lieberher r 1995] is the impact o f a t tach ing
methods to c l asses The impact is tha t the detai ls o f the class s t ruc tu re for
co l l abora t ing objec ts are encod ed into the p r ogram This means that p ro
g ram s are hard to evo lve and main tain as chang ing the class s truc tu re
requ i res changes to all code that exp l i c i t ly refe rs to that s t ruc ture Adap t ive
so f tware de co m p o s es p ro gra ms by separa t ing the a lgor i thms on da ta into
code pa t te rns Thes e pat te rns , ca l l ed p ro p a g a tio n p a tte rn s , i nt eract wi th a
class dic t ionary that def ines cl ass s t ructure wi th min imal dep end en cy on that
s t ruc tu re Min imal dep en den cy is ach i ev ed because p ropaga t ion pat te rns c o n
ta in ing a lgor i thms only refer to cl ass s tructures impl ic i t ly through a level o f
ind i rect ion f rom the actual cl as s s truc ture , cal led a p ro p a g a tio n g rap h The
p ro paga t ion g raph p ro v ides the succinc t speci f ica t ion o f the g roup o f c o l l a b
o ra t ing c lasses r eq u i red for the a lgor i thm in the p r op aga t ion pat tern This
l evel o f de co mp o s i t io n p ro tec t s the a lgor i thms f rom changes to the base class
s truc ture , mi n im is in g the impac t o f chan ges

So, we have p ro p a g a tio n p a tte rn s tha t i m p le m en t funct ional i ty for g roups o f
co l l a bora t in g classes , and p ro p a g a tio n g ra p h s t ha t speci fy what those classes
are The iden t i f i cat ion o f over lap requ i red to integra te the a lgor i thms wi th
the c lasses is do ne wi th p ro p a g a tio n d irectiv es How classes shou ld be t r a
ve r sed to sui t the a lgor i thms is speci f i ed by the p rop aga t ion d i rect ives The
co r re sp o n de nc e (o r over lap) o f the col labora t ing c lasses with the appropr ia te
a lgor i thm is speci f ied wh en a p rop ag a t ion pat tern uses the p ropaga t ion d i r e c
t ive spec i fy ing the co l l a bora t ing g roup and its t raversal

Integra t ion in adap t ive so f tware sy s tems wi th p ropaga t ion pa t te rns is p e r
fo rmed at comp i l e t ime The pat tern comp i l e r integrates a class hierarchy
wi th a lg or i th ms de f ined in p rop aga t ion pat te rn w rappers , as def ined by a

51

Related Work Objec t -Or ien ted Programming Model s

Metaobject
Protoco ls

p ropaga t ion d irect ive which speci f ie s the t r ave rsa l th r oug h the appropr ia te
co l l a bora t in g c lasses A “w r a p p e r ” spec i f ica t ion wi th in a p ropaga t ion pat tern
may express com b in a t io n s o f me th od s , wh ere the genera ted code resul t ing
from the compi la t ion s imula tes mul t ip le inher i t ance wi th in the class h ie ra r
chy

The separat ion o f base and meta - l eve l s o f p ro gra ms is the focus for d e c o m p o
si t ion with meta leve l p ro g ra m m i n g The inte rface be tween the base- l evel and
meta - l eve l p ro gr am s is ach ieved wi th m etaob ject p ro to co ls [Kicza les et al
1991] M eta ob je c t p ro toco l s are inte rfaces to the p r o g ra m m in g l anguage that
al low pr o g ra m m er s to cus tomise the b e h av io u r and imp le me nt a t ion o f p r o
g r am m in g l anguages and o the r sys tem sof tware Me taob jec t s t rap message
sends and rece ives to ob jec ts , and can the re fo re s u pp l em ent the beh av iour o f
opera t ions at the base l evel With this level o f separa t ion, me taob jec t s may
con ta in suppor t for d i s t r ibut ion o f ob jec ts , concu r renc y , etc , t he reby neat ly
separat ing such concerns f rom the base - l evel a lgor i thms o f the objec t H o w
ever , fu r the r decomp os i t i on at the meta - l eve l r emains an open issue, as it is
not poss ib le to separate , for exam ple , d i s t r ibut ion suppor t from concur rency
suppor t i f bo th are r eq u i red for the base objec t Aspe c t -o r i e n te d p r o g r a m
mi ng can be seen as an ou tg rowt h o f this work , where d ec om po s i t io n based
on any k ind o f c ross -cu t t ing act ivi ty is poss ible

As desc r ibed in [Kicza les et al 1991], me ta ob je c t s are def ined by me taob jec t
c l as ses , where , for each kind o f p ro g ra m m i n g const ruct (e g cl ass, me thod) ,
a bas ic me ta ob j ec t class may be def ined Thes e bas ic me taob jec t c l as ses may
be fur ther spec ia l i sed and a t t ached to s t andard base c lasses to ex tend their
b e h a v io u r O n e imp le me nt a t ion o f this for C + + is de f ined in [Go wing &
Cahi l l 1996], w he re ca tegor ies o f poss ib le me ta ob j ec t c l as ses for C+ + have
been de f ined (fo r example , ob jec t c rea t ion , me tho d invocat ion etc) A p ro
g ra m m e r may specia l i se me ta ob j ec t c l a sses wi th in these ca tegor ies , de f ining
add i t iona l s tate and be h av io u r The not ion o f iden t i fy ing overlaps is handled
exp l i c i t ly , where base objec ts r equ i r ing any addi t iona l be h av io u r wi th in the
de f ined ca tegor ies are exp li c i t ly a s soc ia ted wi th the re levant me taob jec t (s)

In tegrat ion in me ta ob je c t p ro tocol s amounts to s imply a t t aching the ap p ro p r i
ate me ta ob j ec t s to the base level ob jec t s [Kicza les et al 1991] Each p r o
g r am m in g l anguage tha t hand les the speci f ica t ion o f me taob jec t c l a sses has
general ly , been ex tended to su ppor t the re la t ionsh ip be tw een the de f ined
meta ob je c t s and base ob jec ts , and the re fo re ex ecu tes the requi red meta-
b eh av io u r on invoca t i on o f the appropr ia te p r o g ra m m i n g l anguage const ruct

52

Related Work Database Model s

in the base objec t - for ex ample , objec t ins tan t i a t ion, me th o d ent ry, or
me th od exi t etc

3 . 4 . D a t a b a s e M o d e l s
The means to m an ag e da ta wi th in an o rgan i sa t ion wi th da tabase m a n a g e m en t
sy s tems first em erg ed in the late 1960 ’s [Bell & G r imson 1992] T h e m o t i v a
t ions for d e co m p o s i ng da ta in di f fe rent ways were many - for exam ple , to
e l imina te dupl i ca t ion o f data, to avoid p ro b le m s associa ted with mul t ip le
upda tes o f data, and to min imise incons i s t enc ies across appl i ca t ions [Ba t im
et al 1986] Di f fe ren t ap pr oa che s to dec o mp o s i t io n ov er the decade s from
the 1 9 60 ’s have been desc ribed as fi rst , s econd and thi rd genera t ion [Stone-
b raker et al 1991]

N et w o r k and h ie rarch ica l da tabase systems wer e c lass i f i ed as “ f i rs t-genera-
t io n ” and wer e p reva len t in the 1970 ’s H o w ev er , due to the complex i ty o f
nav iga t ion , these f i rs t genera t ion app roa che s to da ta m a n a g e m e n t were
l argely rep laced by the “ s e co n d -g en er a t io n ” o f da t abase m a n a g e m en t sys tems
- re l a t ional da tabases De co m po s i t io n o f da ta in the relat ional model is in
t w o- d i m en s io n a l s truc tures known as tab le s or re la tio n s [Bell & G r i ms on
1992] Re la t iona l da t abase t echn o log y has a s t rong theoret ical bas is in m a t h
emat ica l re l a t ional theory, and has p roven a success ful appro ach to data m a n
ag em en t H ow ev er , because o f a pe rce ived l imi ta t ion m suppor t ing a b roader
base o f ap p l i ca t ions [S ton ebr ak er et al 1991], a third ge nera t ion o f database
m a n a g e m e n t sys tems wer e born , based on the ob jec t -o r i en ted pa rad igm

D if fe ren t a t t empts at def ining an ob jec t -o r i en ted da tabase m a na ge m en t sys
t em are desc r ibed in man i fe s t os f rom [S tonebraker et al 1991], and from
[Atk inson et al 1990] In summ ary , ob jec t -o r i en ted da tabases mana ge c o m
p lex ob jec ts , wi th ob jec t ident i ty , and su ppor t s t andard ob jec t -o r i en ted p r i n
c iples o f en cap su la t ion and inher i t ance Othe r fea tures and charac te r i s t i c s
r equ ired o f ob jec t -o r i en ted da tabases are com pu ta t io na l co mp le teness , p e r
s is t ence, concu r renc y , r ecovery and an ad-hoc query faci l i ty Ob jec t -o r i en ted
da tabase m a n a g e m e n t sys tems fol low the s truc tu ra l decomp os i t i on pa ra d ig ms
o f ob jec t -o r i en ted ana lys is , des ign and cod ing pa rad igms

From the point o f v iew o f deco mp o s i t io n , modern da tabase m a n a g e m e n t s y s
t ems are p r imari ly e i the r based on re lat ional theory or the ob jec t -o r i en ted
pa rad igm There fo re , from a deco mp os i t i on pe rspec t ive , the work is not
di rec t ly r e l evan t for com par i so n pur pos es The approach p roposed in this t h e
sis is mot i va ted by p ro b lems with the ob jec t -o r i en ted pa ra d i gm, and the refo re

53

Related Work Database Model s

Reference
Architecture for
Schema Inte
gration

Identifying
Overlaps

m o re re levan t r e l a t ed w ork is in areas wh ere the ob jec t -o r i en ted pa rad igm is
be ing ex tended H ow ev er , r esea rch into integrat ion o f he t e ro gen eo us s ch e
mas has ma ny s imi lar i t i es in the areas o f ident i fy ing over l ap p ing e lements ,
r econc i l ing conf l ic t s in e l ements , and in tegra t ion o f schemas, and the refo re
this d i scuss ion on d ec om po s i t io n in da t ab ase m a n a g e m e n t sys tems is useful

An en v i r on m en t wi th mul t ip le he te ro g en eo us da tabases , wh ere da ta is
r eq u i red f rom each o f these di f fe rent sources , needs an a rch i tecture whereby
any requ i red da ta may be in tegra ted , r ega rd less o f the source o f tha t da ta In
[She th & Larson 1990], a r e fe rence a rch i t ec tu re is de f ined , f rom w hich fe d e r
ated da tabase sy s tems (that is, a col lec t ion o f coo pera t ing da tabase sys tems
tha t are au t ono m ous and possibly he t e ro gen eo us) may be d ev e l ope d The re f
e rence a rch i t ec tu re inc ludes desc r ip t ions o f co m p o n en t s that have re sp on s i
b i l i t ies for m a pp in g the s ch em as f rom d i f fe ren t da tabases and for check ing
const ra in t s and integra t ing da ta f rom the d i f fe ren t sources The f ive- l evel
sch em a a rchi t ec ture desc r ibed def ines the steps the sch ema s f rom d if feren t
da tabases go th rough , from the lo c a l s c h em a tha t is p r iva te to a c o m p o n en t
d a tabase system o f the federa t ion , to the e x te rn a l s ch em a tha t conta ins data
r eq u i red by a user and /o r app l i ca t ion Fr om the per spec t ive o f the work tha t
is r e l a t ed to thi s thesi s , the focus is on l evels that have in tegra t ion and r e c o n
ci l ia t ion e l ements

In the federa ted da t abase system a rch i t ec tu re desc r ibed in [She th & Larson
1990], sch em a t ransla t ion and sch em a ana lys i s steps p rov ide the means to
ex am ine c o m p o n en t da tabase systems for over laps Whe re da tabase sys tems
are desc r ibed us ing d i f fe rent data mode l s (that is, C o m m o n Dat a Mode l s
(C D M s) or d i f fe rent “ l an g u ag es ”) sc h em a t ransla t ion suppor t s the t r anslat ion
o f the di f fe rent mode l s into a un i fo rm CDM , a iding the analysi s step s ince it
is eas ie r to co mp ar e da ta desc r ibed in the same l anguage , than it is to c o m
pare da ta desc r ibed in d i f fe ren t l anguages Sc h e m a analysi s invo lves c o m p a r
ing the objec ts in the sch em a prior to in tegrat ion, and ident i fy ing na mi ng and
d o ma in conf l ic t s , s t ructural and con s t ra in t d i f ferences , and miss ing data The
iden t i f ica t ion o f the over laps in the d i f fe ren t schemas invo lves spec i fy ing the
in te r re la t ionsh ips am ong the sch em a objec t s

R e sea rch into in tegra t ing da tab ase sche ma s genera l ly co nfo rm s to an a r ch i
t ectu re o f ident i fy ing overlaps be tween d i f fe ren t schemas and integrat ing the
s ch ema s to p r ov ide a s ingle v ie w From the pe r s pec t ive o f ident i fy ing o v e r
l app ing e lements wi th in d i f fe ren t sche ma s , app ro ach es vary in the ex ten t to

54

Rela ted Work Database Model s

Integrating
Schemas

which they au tom at e the p rocess , and the exten t to which they suppor t the use
o f heuri s t i cs for ident i fy ing over lap For exam ple , in [She th et al 1993], the
re l a t ionsh ips be tw een a t t r ibutes in d i f feren t sch em a are ident i f i ed by a
h um an wi th attrib u te re la tio n sh ip s, but these are conside red only a part ial
iden t i f ica t ion o f over lap p ing e lements Gen era t i on o f an a t t r ibute h ie ra rchy
is suppor ted , fur ther e s t ab l i sh ing semant ics eq u iva lence be tween a t t r ibu tes

In genera l , exp l i c i t iden t i f i ca t ion o f o v er la p p i n g e le me nts is p r ev a l en t m
da tabase sc h e m a integrat ion app roaches For example , there are articu la tio n

ax iom s f rom [Col le t et al 1991], in ter-sch em a corresp on den ce a sse r t io n s

f rom [S paccap ie t ra et al 1992], assu m ption p re d ic a te s f rom [Got tha rd et al
1992], pai r ing o f user -de f ined vertices f rom sch em a g ra p h s in [Klas et al
1996] and ob ject corresp on den ce a sse rt io n s f rom [Nava the & Savase re
1996] Co r r esp o n d en ce types ident i f i ed in [Nava the & Savase re 1996] are
de f ined as eq u iv a lence , con ta ins , con ta ined- in , overlap, dis joint , aggrega te
and co mp os i t e Simi la r ly in [Ber t ino & I l l a r ramendi 1996], co r res po nde nc e
types are def ined as equ iva lence , inc lusion , over lap p ing and d is jo in t In each
o f th e se approac hes , va ry in g l evel s o f exp l i c i t ident i f i cat ion and heur i s t i c s to
suppor t the ge nera l iden t i f ica t ion o f po ss ib le over laps are app l i ed, wi th the
in tegra to r con f i rmi ng or r e j ec t ing resul ts f rom the general heuri s t i cs

In the re f e rence federa ted da t abase system a rchi t ec ture desc r ibed in [Sheth &
Larso n 1990], a “ federa ted s c h e m a ” is the in tegra t ion o f mul t ip le expor t
sc hem as from co m p o n en t da tabases Expo r t sc h em a s are the subse t o f the
co m p o n e n t sc h em a (that is, local sch ema t ransla ted to a co m m o n da ta model)
tha t is ma de ava i l able to the federa ted da tabase system Impl em en ta t io ns o f
the re fe rence a rch i t ec tu re mus t have a sch em a integra t ion s tep tha t may
inc lude au t oma te d in tegra t ion bas ed on the re la t ions h ips p revious ly def ined
be twe en the c o m p o n en t sch ema dur ing an analysi s for the ident i f i cat ion o f
over laps , and also, su ppor t for a m o re in te rac t ive integra t ion p ro cess
wh ere by a use r may be gu ided th rough a p rocess o f def in ing equ iva le nc es for
in tegra t ion Is sues wi th in tegra t ing sch em a s f rom the point o f v iew o f d i f fe r
ences in data r ep res en ta t io n are iden t i f i ed in [Br igh t et al 1992] as 1) n a m
ing d i f fe rences (sy non yms , h o m o n y m s) , 2) fo rmat d i f fe rences (da ta types ,
do ma in , scale, p rec i s ion) , 3) s truc tural d i f fe rences (s ing le v mul t ip le values,
d i f fe rences in types) , 4) miss ing or conf l i c t ing data (conf l ic t s in actual data
values s to red) Ap p roa ch es to integrat ing da tabase sc h e m a desc r ibed in this
sec t ion , in genera l , con tend wi th these i ssues

55

Related Work Database Model s

Resolving Con
flicts

H ow eve r , once co r re sp on den ce s in di f fe rent sc h e m a have been es tab l i shed ,
ap pro ach es to integrat ion o f schemas are based on m ergin g s chemas in d i f fe r
ent ways [N ava the & Savase re 1996] desc r ibe a nu mb er o f d i f fe rent me rg ing
opera to r s that contain s tr at egies to handle the mer g ing o f pairs o f objec ts
(e s t abl i shed as co r re sp on d in g) as app ropr ia te to the i r types, and the ex tent to
which their m e rg in g requ i res suppor t to hand le conf l ic t s be tween them The
me rg ing s tr at egies r ange, for example , f rom add ing a genera l i sa t ion or s p e
c ia l i sa t ion ob jec t to cap tu re c o m m o n at t r ibu tes and /o r the ir const ra in ts , to
the c rea t ion o f a new ent i ty to contain the un ion o f all a t t r ibu tes Some
res t ruc tu r ing opera to rs are also inc luded wh ere new ent i ty types may be c re
ated (or de le ted) in the co m p o s ed sc h em a where necessa ry Au tomated class
in tegra t ion based on fo rmal r eas on ing is desc r i be d in [Sheth et al 1993],
where the a t t r ibute r e l a t ionsh ips def ined by the user to speci fy cor respo nd in g
a t t r ibu tes are used as the basis for fo rmal use o f a c la s s if ic a t io n a lgor i thm
wh ic h is based on the semant ics o f c l as s subsum ption - that is, w h e t he r a
class is a superclass o f ano the r

T h es e two app ro ach es are good rep res en ta t ives o f the general app ro ach es to
in tegra t ing s ch em as - t r ans fo r mat i on (o r so me level o f s truc tu ral e n h a n c e
me nt) o f sche ma s is a co m m o n theme , as a l so is the use o f fo rmal heuri s t i cs
for some level o f au tomat ion o f the un ion o f schemas

Conf l i c t s m he t e ro ge ne ous da tabase mod e l s can ar i se as a resul t o f “ s y s t em s ”
reason s (w he re the ha rdware , opera t ing system, da tabase m a n a g e m en t sys
t em, t r ansac t ion m a n a g e m e n t sys tem, or c o m m u n ic a t io n s p ro tocol s are d i f
ferent) or for “ s e m a n t i c ” reasons (where there are d i f fe rences in the way data
is mode l l ed , r e su l t ing in conf l ic t s in da tabase sch emas) Su b su m in g ear l ier
work on c lass i fy ing he t e rogene i t i e s in re l a t ional mul t id a ta ba se systems (for
exam ple [Kim & Seo 1991]) , [Ga rc ia -So laco et al 1996] c l assi f i es nu m er o u s
ca tegor ies where semant ic he te rogene i t i e s may arise - namely , d i f fe rences in
ex tens ions (i e instances o f c l a sses) , d i f fe rences in a t t r ibutes , me tho ds and
name s , d i f fe rences in do m ai n s and d i f fe rences in const ra in t s Th is work c o n
c ludes that de tec t ion o f semant ic he te ro ge ne i t i e s is “ the mos t cri t ica l t ask o f
the recon c i l i a t i on ” , and that it is not possible to ful ly au tom at e the p rocess
due p r imari ly to incom ple tene ss o f des ign metho do log i es , semant ic poorness
o f loc a l / c o m po n en t sche ma s , and al so becaus e some sem ant ics can only be
de te rmi ne d wi th respec t to a pa r t i cu la r con tex t that may only be known to the
in tegra to r H ow ev er , while human in terven t ion is unavo idab le , some measure
o f au t oma t io n is poss ib le The re fo re this sect ion looks at some represen ta t ive

56

Related Work Discussion

wo rk in the da t abase f ield in the a rea o f au t oma t in g the reconc i l i a t ion o f c o n
f l icts in da tabase schem as

Rese arc h into the au t oma t io n o f m appin g o f info rmat ion from input sche ma s
to integrated schemas is the focus o f the app roa ch es in [Harder et al 1999]
and in [Spacc ap ie t r a & Paren t 1994] A m ap p i n g l anguage , cal led BR IIT Y, is
des c r ib ed in [Harder et al 1999] , wh ic h has been des igned to “b r idge h e t e ro
g en e i ty ” For each c lass if i ca t ion o f conf l ic t , the ma pp in g l anguage has rules
to def ine how each confl ic t shou ld be reso lved These rules are based on
c o m b in in g the ob jec t -o r i en ted pa ra d i gm wi th set theory f rom re lat ional d a t a
bases to es t ab l i sh re la t ionsh ips be tween ent i t ies and a t t r ibutes o f the
ins tances o f d i f feren t sc he ma s The l angu age has expl ic i t const ruc ts to i de n
t ify the ma pp in g s be t we en the types and ent i t ies o f d i f fe ren t schemas The
appr oac h to ma pp in g desc r ibed in [S paccap ie t ra & Pa ren t 1994] is based on
co r re sp o n de nc e asse r t ions de f i ned be tw een re lated cons t ruc t s in d i f feren t
sch ema s For each asser t ion , formal rules s ta te h o w to der ive the cons truc t s
to be inse r t ed into an in tegrated sc h e m a Where conf l ic t s exi st in c o r r es p o n d
ing ent i t ies , the in tegrat ion holds the l east re s t r ic t ive represen tat ion

A n o th er inte res t ing and d i f feren t appr oac h to au t oma te d reso lut ion o f s e m a n
t ic he te rogene i ty is based on the use o f on- l ine l ingu is t i c tool s to in te rp re t a
u s e r ’s imprec i se l anguage in r eques t ing data [Bright et al 1994] First , a g lo
bal da ta s t ruc ture is bui l t re l a t ing local access t e rms which are semant ica l ly
s imi la r Then , us ing this g lobal s t ructure and on- l ine l inguis t ic tool s, the
u s e r ’s imprec i se query is inte rp re ted and assoc ia ted wi th the p reci se local
system access t e rms that are semant ica l ly c loses t This is not the same as r e s
o lu t ion m the sub jec t -o r i en ted des ign sense o f r eso lv ing to a s ingle output ,
but is an inte res t ing approach to be ing as f l ex ib le as poss ib le from a u s e r ’s
pe rspec t ive

3 . 5 . D i s c u s s i o n
As stated p rev ious ly , the fu ndamenta l goal go ve rn ing this wo rk is to ex tend
the d ec om po s i t io n capab i l i t i e s o f so f tware ar t efac ts , as app li ed to so f tware
des igns In su ppor t o f this , the iden t i f icat ion o f overlaps in d i f fe ren t des ign
mod e l s , the integrat ion o f des ign mod e l s , and the reconc i l i a t ion o f conf l ic t s
be twe en des ign mod e l s is r equ i red Fo r this r eason , the d i scuss ion in the p re

57

Related Work Discussion

v ious sec t ions focused , w he re appropr ia te , on how each approach handled
these areas. See Tab le 1 for a sum mary .

Decomposition Identifying
Overlaps Integration Reconciling

Conflicts

Requirements Engineering Models

Viewpoints Capture o f perspective o f

requirem ents from in d i

v idua ls

Re la tion sh ip s between

v iew po in ts e x p lic it ly

defined w ith in te r-V ie w

po in t re la tionsh ip w ith

ru les to govern overlaps

Integration based on

negotiation o f perspec

tives, and consistency

check ing o f in te r-V ie w

po in t re lationsh ips. Inte

gration is ach iev ing

consistency

A t gathering phase,

based on negotiation

and understanding

o f perspectives.

Supporting fram e

w ork based on m an

aging

inconsistencies

Use Cases Based on functiona lity

expected from system

U se cases are kept sepa

rate.

A n a ly s is phase han

d les inconsistencies

Features
(Zave)

In te lecom m unications

dom ain, based on un it o f

functiona lity

Features
(Turner)

M odu la r isa t ion based on

in d iv id u a l requirem ent

E x p lic it assoc ia tion o f

features w ith system

com ponents w ith an

implementedBy keyw ord

Services/
Facilities

Techn ica l k inds o f serv

ices - fo r exam ple, object

nam ing and object events

Object-Oriented Analysis and Design Models

OORam R o le m odel fo r each

a c tiv ity o r task

Language defined w ith

e x p lic it constructs to

iden tify m appings

between ro les in d ifferent

ro le m odels

Base ro le m odels are syn

thesised into a derived

m odel. A notion o f

“ safe” synthesis lim its

p o ss ib ilit ie s fo r integra

tion - tw o poss ib ilities:

a c tiv ity superposition

(each a c tiv ity retained

unchanged) and a c tiv ity

aggregation (activ ity

changed to inc lude exe

cu tion o f another)

Catalysis H orizon ta l and vertica l

s lices fo r d iffe ren t k inds

o f functiona lity

Jo in in g genera lly based

on “ same name” corre

spondence, w ith in va r i

ants to define exceptions

poss ib le

Based on a d e fin it ion o f

U M L import re la tion

sh ip ca lled join. Resu lt

conta ins com bined set o f

elem ents w ith con

straints and-Q d

Role
Modelling
(Kristensen)

Separation o f in tr in s ic

object from ro le object

p lays

O verlap s defined at

design tim e, w ith e x p lic it

attachment o f ro les to

in tr in s ic objects. L ik e -

named ro les and classes

are a lso considered to be

the same.

Ro les may be aggregated

fo r a s ing le in tr in s ic

object. Integration o f

like-nam ed ro les and

c lasses o n ly possib le

when resu lt does not con

tain cyc les.

Table 1: Summary of Related Work

58

Related Work Discussion

Decomposition Identifying
Overlaps Integration Reconciling

Conflicts

Contracts A contract separates

specifica tion o f behav

îoura l com positions and

ob liga tions on pa rtic i

pants

C lasses m ay be e x p lic it ly

mapped to contracts

deem ing that c lass as a

partic ipan t in the contract

B y instantiation o f con

tracts behavioura l com

positions o f co llabora ting

objects are created C on

tracts m ay be com posed

to define more com p lex

specifica tions

Views System decom posed

based on V ie w o f user

w ith d e fin it ion s o f d iffe r

ent interfaces and varia

b le v is ib ilit ie s and cop ies

fo r d ifferent v iew s w ith in

each class

V lew c lasses define the

set o f object c lasses and

in terfaces o f the requ ired

set o f co llabora ting

classes

V lew C lasses specify

com position o f objects

re levant fo r a particu la r

v iew Instantiation o f

objects is in context o f an

instance o f a v ie w class

Design
Patterns

Isolates d ifferent parts o f

a prob lem m areas such

as structural, behav

ioura l and creational con

cem s

The interaction o f co llab

orating objects is defined

as part o f each pattern

Integration not e x p lic it in

the sense o f synthesis to

s ing le result, but as a

spec ifica tio n o f co llabo

rating classes

Object-Oriented Program m ing M odels

Subject-
oriented pro
gramming

D iffe ren t m odules con

tain code fo r d iffe ren t

areas o f concern along

m u lt ip le d im ensions

Correspond ing units in

d ifferent m odules (hyper-

s lices) are defined w ith

re la tionsh ips

Integration strategy

defined w ith e x p lic it key

w ords (e g merge over
ride) w ith input m odules

com posed by a com posi

to r that produces an out

put m odule

Aspect-
oriented pro
gramming

Separates cross-cutting

concerns (such as d istn

bution) in to separate

m odules

A spect language con

structs (keyw ord cross
cut) specify the parts o f

the base program

affected by an aspect

Integration perform ed at

co m p ile tim e w ith aspect

coded w eaved in w ith the

based program as speci

fied by the aspect pro

gram

Composition
filters

F liters support v iew s

on classes by de fin ing

w hat is to be done w ith

messages a n d th e c o n d i

tions under w h ich mes

sages are accepted

F ilte rs are attached to

c lass de fin it ion s (sup

ported by language con

structs)

F ilte rs m ay be integrated

(that is and-ed) w ith tests

fo r acceptance o f mes

sage through the filte rs in

a sequentia l manner

Adaptive
Software

Separates a lgorithm s

from the data on w h ich

a lgorithm s w ork using a

leve l o f ind irection to

w o rk w ith the class struc

ture required

Propagation directives
conta in in fo rm ation on

the class h ie rarchy and

how it shou ld be tra

versed by the a lgorithm

(propagation pattern)

Perfo rm ed at com p ile

tim e the pattern com

p ile r integrates the a lgo

n thm s w ith the class

h ie rarchy as defined by

propagation d irectives

Metaobject
Protocols

Base and meta le ve ls o f

classes are separated,

w ith metaobject proto

co ls supporting the trap

ping of messages to an
object, fo r enhancement

M e ta objects and base

objects are e x p lic it ly

associated w ith support

ing language constructs

Integration s im p le

attaches the appropriate

metaobjects to the base

objects

Table 1 Sum mary of Related Work

59

Related Work Discussion

Decomposition Identifying
Overlaps Integration Reconciling

Conflicts

D atabase Models

B y the th ird generation o f

database m odels decom

pos it ion is based on the

standard object oriented

paradigm

E x p lic it id en tifica tion o f

correspond ing elements

is prevalent w ith schema

integration m odels fo r

exam p le w ith corre

spondence assertions

assum ption predicates

a rticu la tion axiom s etc

Integration is based on

schem a union
App roaches are genera lly

based on transformation
(som e leve l o f structural

enhancement) o r formal
heuristics fo r the automa

tion o f the un ion o f sche

mas

Research in to class i

fica tions o f d iffe ren t

k inds o f heterogene

ity basis fo r heuns

tics o f m apping

input to output to

avo id co n f lic t T h is

tends to in vo lve

transform ation

Table 1 Summary of Related Work
In genera l , d ec om po s i t io n in r equ i reme nts eng ine e r ing mod e l s is based on
uni t s o f r e l evance to the end user , or on units o f r e l evance for the t echnica l
e n v i r on m en t Th is m a k e s sense , as r equ i reme nts are genera l ly ga the red from
end-use r s , or de f i ned to suppor t a pa r t i cula r en v i r on m en t It is impor tan t ,
the refo re , for val idat ion purposes , that the requ i r eme nts spec i f ica t ion be in a
l angu ag e un ders tood by the end-use r s , and tha t the ir concerns are the p rimary
uni t s o f speci f i ca t ion For this r eason , it is unl ikely tha t r equ i rements e n g i
neer ing resea rch will r ad ical ly chan ge h o w requ i reme nts spec i f i ca t ions are
de co m p o s ed in the future

Co m p ar ed wi th the requ i reme nts mode l , the re appears to be more f l exibi l i ty
in the ap proaches to d ec om po s i t io n in analys i s and des ign mode l s Research
in this f ield is mos t no tab le for the inte res t ing w ay s o f a t t em pt in g to d iv ide
up des ign ar t efac ts The goa ls for these a t t empts are, in genera l , s imi la r to
each other , wi th app ro ach es t ry ing to ma ke so f tware des igns more re-usab le ,
ex tensib le , and co mp re he ns i b le Su b jec t -o r i en ted des ign has these goals in
co m m o n wi th ma ny app ro ach es In general , sub jec t -o r i en ted des ign d i s t in
gu i sh es i t se l f wi th its suppo r t for d i f fe ren t k inds o f integrat ion o f o v er la p
p ing concep t s , the reby enab l ing m o re f l ex ib le k inds o f deco mp os i t i on

Th e ap p ro ach to decomp os i t i on in ro le mo d e l l in g in O O R a m [Re en sk a ug et
al 1995] is su bs u m ed by the appr oac h t aken in the research desc r ibed in thi s
thesi s Addi t iona l d ec om po s i t io n capab i l i t i e s for t echn ica l k inds o f co ncerns
are poss ib le wi th the sub jec t -or i en ted des ign model There are al so s t rong
s imilar i t i e s wi th Ca ta lys i s [D ’S o u za & Wi ll s 1998] , wi th vert ical and h o r i
zonta l s l i ces s imi la r to funct ional and c ross -cu t t ing d ec o mp os i t i on s Where
the sub jec t -o r i en ted des ign mode l d i s t ingu i shes i t s e l f is p r imari ly in its s u p
por t fo r d i f fe ren t k inds o f in tegra t ion, and its suppor t for speci fy ing pat te rns
o f co l l a bora t ing des ign e lements The more sophi s t i cated resolut ion and in te
g ra t ion capab i l i t i es in su b je c t -o r i en ted des ign , especia l ly o f over lap p ing ele-

60

Related Work Discussion

ments , suppor t ex t ens ions to the deco mp os i t i on capab i l i t i es in Ca ta lys is . The
ap proach to role mod e l l in g from [Kr i s t ensen & 0 s t e r b y e 1996] is di f fe rent
f rom su b jec t -o r i en ted des ign in the speci f i ca t ion o f the int rins ic ob jec t to
which roles are a t t ached . Wi th the subjec t -o r i en ted des ign model , the re is
f l ex ib i l i ty for evo lv i ng the p roper t i e s o f an ob jec t over t ime, by spec i fy ing
new or ch anged p roper t i e s and co m p o s in g them wi th p rev ious ve rs ions o f an
object .

Di f fe rences are more s igni f ican t in the app ro ach es to cont rac t s , v iews and
des ign pat te rns . Wi th cont rac t s , deco mp os i t i on is based on suppor t ing c o m
pos i t ion o f ob jec t s as o ppo se d to compo s i t io n o f c l asses as def ined in the
sub jec t -o r i en ted des ign model . Thi s is also t rue o f v iews [Shi l l ing &
Swe eney 1989], whi le des ign pat te rns do not have a no tion o f ov er lapp ing
spec i f i ca t ions , or integrat ion o f des igns .

From the ci ted work wi th in p ro g ra m m i n g mode l s , the sub jec t -o r i en ted des ign
model mos t emula tes the approach suppor ted for code by Hyper / J [Tarr &
O ssh er 2000] . H y p erslice s are modules that im p le me n t di f fe rent units o f
interest , and are d irect ly ana lo gou s to des ign subject s in the sub jec t -o r i en ted
des ign model . The ideas wi th in the sub jec t -o r i en ted des ign mode l based on
the spec i f ica t ion o f over laps (cor re spo nd ing e l ements) wi thin di f fe rent s u b
je c t s , and the app roa che s to integrat ing subject s are based on those wi thin
this p r o g ra m m in g model . At the h ighest level , whe re sub jec t -or i en ted des ign
d i s t ingu i shes i t se l f (a s ide from wor k ing with des igns ins tead o f code) is p r i
mari ly in the abi l i ty to speci fy pa t te rns o f co l l abora t ing des ign e lements . At a
more detai led level , there are o ther d if fe rences be t ween the rules and c a p a
bi l i t ies o f co mp os i t ion re la t ionships (su b jec t -o r i en ted des ign) and c o m p o s i
t ion rules (sub jec t -o r i en ted p ro gra mm ing) . See “ Comp os i t io n o f 0 0 Des igns:
The M o d e l ” on page 64 for more detai ls .

Also f rom the ci ted work wi th in p r o g ra m m in g model s , the aspec t -o r i en ted
p r o g ra m m in g app roach [Kicza les et al. 1997] has many s imi lar i t i es wi th s u b
j ec t -o r i e n te d des ign in t erms o f the goa ls that each is t ry ing to ach ieve.
Cr oss -cu t t in g concerns are separated f rom “ base p ro g ra m s ” within the
as pec t -o r i en ted p r o g ra m m in g mode l . Cr oss -cu t t in g concerns may al so be
des igned as a separate des ign sub ject wi th in the subjec t -o r i en ted des ign
model . Ho wev er , as in subjec t -o r i en ted p ro gra mm ing , sub jec t -o r i en ted
design also docs not have the notion o f a "base des ign” . Each requi rement or
area o f interest may be des igned separa tely , inc lud ing funct ional r eq u i re
ments that are all implem en ted in the “ base p r o g r a m ” wi th in aspec t -o r i en ted
p ro g ram m in g . Thi s al so has impl ica t ions for compo s i t io n spec i f ica t ion, as in

61

Related Work Discussion

the sub jec t mode l (both des ign and p ro g ram m in g) , co mp os i t i on spec i f ica t ion
is separate f rom the ind ividua l sub ject s , wh ereas in the aspect model , how
aspec t s are co m p o s ed wi th a pa r t icu la r base p r og ram is part o f the aspec t p ro
g ram w hich also con ta ins the c ross -cu t t ing beh av io u r speci f ica t ion N o n e t h e
less, the goal s o f both app ro ach es are suf f i c ient ly s imi lar to war ran t
inves t iga t ion into the appl icab i l i ty o f the aspec t -o r i en ted p ro g ra m m in g
imp le me nt a t ion as a su ppor t ing t echn o log y for sub jec t -or i en ted des ign (see
“Fu tu re W o rk ” on page 253 for more detai ls)

Di f fe renc es wi th the o the r p ro g ra m m i n g mode l s are more s ign if i cant C o m
posi t ion f i l ters d ec o m p o s e units o f interes t on a per -c lass basis [Aks it et al
1992], wh ereas the sub ject appr oa ch de co m p o s es based on uni t s o f interest o f
g ro ups o f co l l abora t ing c lasses The more sophi s t i cated reconci l ia t ion and
integrat ion capabi l i t i e s o f the su b je c t -o r i en ted des ign mod e l a l low more f l ex
ibi l i ty o f d ec om po s i t io n than is ava i l ab le m adap t ive sof tware [Lieberherr
1995] Whi le me ta ob je c t s p e rm i t the separa t ion o f the base and metaobject s ,
it is not poss ible to co mp o se metaob jec t s , and the re fo re fu rther d e c o m p o s i
t ion o f m e t ao b j ec t s to impl eme nt di f fe rent funct ional i ty is not poss ib le [Kic-
zales et al 1991]

Re so lv in g conf l ic t s in over lap p ing ent i t ies has been the focus o f some w ork
in the requ i reme nts eng inee r ing and the da tabase f i elds par t icular ly Work in
the ana lys i s /des ign and p ro g ra m m i n g f ie lds t ends to res t r ict the kinds o f
overlaps possible to ensure that conf l i c t ing e lements are not integrated H o w
ever, in the requ i reme nts eng inee r ing f ield, it is par t icu la r ly impor tan t to
a t t empt to r e solve conf l i c t ing requ i reme nts , as it is not poss ible to res t r i ct the
k inds o f r equ i reme nts that end-u se r s w an t to inc lude As a resul t , it is not
poss ib le to avoid the possibi l i ty o f the re be ing conf l i c t ing requ i rements
Thes e conf l ic t s mus t be resolved pr ior to com ple t ion o f the requ i rements
spec i f i ca t ions

In the da tabase f ield, the core p rob lem addressed in cu r ren t re sea rch is based
on the ass um pt ion o f he te rogene i ty in sch ema s to be integrated There fo re ,
a lg or i th ms and p rocesses for the reso lu t ion o f conf l ic t s in h e t e ro gen eo us
sch ema s are the focus o f much resea rch The sub jec t -or i en ted des ign model
p roposed by this thesi s a l lows d i f fe rences in spec i f i ca t ions o f ove r l app in g
des ign mod e l s , and the re fo re r econc i l i a t ion o f poten t i a l conf l ic t s is requ i red
where co r re sp on d in g e le me nts are to be integrated into a single e l em ent (this
occurs in m erge i nt eg ra t ion)

62

Related Work Chap ter Summary

3 . 6 . C h a p t e r S u m m a r y
This chap te r exam ines res ea rch w o rk re lated to the new approach to object-
o r i en ted des ign p ro p os ed in this thesi s, cal led sub jec t -o r i en ted des ign Since
so f tware des ign can be seen as a b r idge be tw een requ i rements and code,
r esea rch has been exam ined wi th in the f i elds o f r equ i rements eng inee r ing ,
ob jec t -o r i en ted ana lys i s and des ign, ob jec t -o r i en ted p ro g ra m m i n g and d a t a
base m a n a g e m e n t sy s tems Whi le the focus o f the research desc ribed in this
thesi s is the ob jec t -o r i en ted des ign phase, the very fact tha t the s truc tures o f
the ar t efac ts f rom phases across the l i fecycle are fun damenta l ly d i f fe ren t is
the roo t cause o f many o f the p r ob lems mot i va t ing sub jec t -o r i en ted des ign
There f o r e , becaus e o f the “ b r i d g e ” na tu re o f des ign, it is pa r t i cula r ly in te res t
ing to ex am ine the ma nn er in which so f tware ar t efac ts are s t ruc tu red m the
d i f feren t phases

Wi th in these areas, the t he me s us ed to ana lyse d i f feren t ap p ro ach es are based
on the p r imary areas o f focus for sub jec t -o r i en ted des ign - they are d e c o m
pos i t ion, ident i f i ca t ion o f overlap, in tegrat ion, and reconc i l i a t ion o f conf l ic t
In this way , the re is an em phas i s on the par t i cu la r par t s o f r el at ed areas o f
work that are speci f ical ly r el at ed to the d i f fe ren t parts o f subjec t -o r i en ted
des ign Th i s serves to h igh l ig h t s imi la r i t i es and d i f fe rences in a focused way

From the vo lu m e o f re search tha t ex is t s for imp rov ing and ex tending the
ob jec t -o r i en ted pa ra d i gm, it may be dedu ced tha t the re is cons ide rab le r ec o g
n it ion o f the need for i m p ro ve me nts across the so f tware de ve lo p m en t l i f ecy
cle The se lec t ion o f the w o rk chosen for d i scuss ion in this chap ter is
re search tha t end eavo urs to p rov ide d i f feren t ways o f d iv id ing up sof tware
ar t efac ts A c o m m o n theme o f all t he resea rch d i scussed here is the need to
separate d i f fe ren t kinds o f uni t s o f interes t T h i s need is based on the des i re
to ma ke sof tware a r t efac t s eas ie r to unders tand , eas ie r to ex tend, and eas ie r
to r e-use

N o w that we have mo t i va ted the resea rch desc ribed in this thesi s, and e x a m
ined o the r w ork in this field, we now take a c lose r , more deta i l ed look at the
subjec t -o r i en ted des ign mode l (see Chap te r 4 Comp os i t io n o f 0 0 Des i gns
The M o d e l ” on page 64)

63

Chapter 4: Composition of OO
Designs: The Model

The root p roblem addressed in this thesi s is the inherent s truc tu ra l mi smatch
be tween requ i reme nts spec i f i ca t ions and ob jec t -o r i en ted des ign spe c i f i c a
t ions. “ Ch ap te r 2: M ot i v a t i o n ” on page 11 desc r ibes and i l lus t ra tes the n e g a
t ive impac t o f this s t ruc tu ra l mis ma tch - support for ind iv idual r equ i rements
is scat te red across the des ign and suppor t for mul t ip le r eq u i rements is t an
g led in ind iv idua l des ign units . Thi s r educes com prehe ns ib i l i ty and t r aceab i l -
i ty, mak ing des igns di f f i cul t to develop, r e-use and ex tend.

Thi s chap te r desc r ibes an ap proach to add ress ing the s truc tu ral mi sm at ch
p rob lem. The appr oa ch is based on p rov id ing a means o f d ec o m p o s in g a r t e
facts wri t t en in one pa rad igm so that they can s truc tural ly ma tch those wr i t
ten in anothe r . In o rde r for the re to be such a s truc tu ra l ma tch, it must be
poss ible to dec o m p o s e ob jec t -o r i en ted des igns in a m a nn er that a l igns with
the s t ruc tu re o f r equ i reme nts speci f i cat ions . Re qu i r em en ts are general ly
desc r ibed by feature and capab i l i ty . So, this means that ob jec t -o r i ented
des igns mus t a l so d ec o m p o s e des ign mode l s by feature and capab i l i ty ,
the reby en cap su la t ing and separa t ing the ir des igns . Since req u i rements are
en capsu la ted , dec o mp o s i t io n in this way removes the scat te r ing o f r eq u i r e
ments across the full des ign. It a l so removes the t ang l ing o f mul t ip le r eq u i r e
ments in ind iv idua l des ign uni t s, as r eq u i rements are separa ted into di fferen t
des ign mode l s .

D ec om pos i t i on in thi s m ann er r equi res co r r esp on d in g com pos i t io n suppor t ,
as ob jec t -o r i en ted des igns sti l l mus t be unders tood toge the r as a comple te
des ign. The core o f this thesi s is the spec i f ica t ion o f how des ign mod e l s are
co mp os ed . C o m p os in g des ign mode l s involves :

1. Iden t i f i ca t ion o f Cor re sp o n d in g E lements : As desc r ibed in “ 4.1. D e c o m
p os ing Des ign M o d e l s ” on page 65, de co m p o s in g des ign mode l s based on the
s t ruc ture o f r equ i rem ent s spec i f i ca t ions may resul t in ove r l ap p in g parts,
wh ere there are di f fe rent v iews o f those parts in d i f feren t des ign mode l s . In

64

Composition of 00 Designs The Model Decomposing Design Models

order to successfu l ly co m p o s e des ign mod e l s , those over l ap p ing par t s (ca l l ed
co rre sp o n d in g elem en ts) mus t be ident if i ed

2 In tegra t ion In tegra t ion o f des ign mo d e l s invo lves syn thes i s ing a s ingle
co m p o s ed des ign model f rom a co l l ec t ion o f des ign mode l s Two kinds o f
integrat ion are desc r ibed in this thesi s “ Chap te r 6 Over r ide In teg ra t ion ” on
page 127 g ives a detai led desc r ip t ion o f the se ma nt ics o f over r id ing des ign
subject s in the con te x t o f UM L, and the impact o f overr ide on di f fe rent kinds
o f des ign e lements “ Chap te r 7 M erg e In te g ra t io n ” on page 155 p rov ides the
same detai l for mer g ing des ign subject s

Th is chap te r desc ribes the compos i t i on mode l wi th the fo l lowing sect ions

• D ecom p osin g D esign M o d els This sec t ion desc ribes the s truc tu ra l m a tc h
ing o f des ign mode l s wi th requ i reme nts speci f i cat ions

• C om posin g D esign M o dels Th is sect ion g ives an ov erv iew o f the c o m p o
s it ion mod e l , that is, i nput des ign mode l s are integrated to an ou tpu t
des ign model It i n t roduces the no t ion o f des ign mode l s as d esign su b jec ts

and desc r ibes their s t ruc tu re f rom the pe r sp ec t ive o f co mp os i t ion

• Sp e c ify in g C om position This sect ion de sc r ibes the means for spec i fy ing
h ow des ign mode l s shou ld be co mp os ed Th i s is wi th a new k ind o f des ign
re la t ionsh ip , cal led a com position re la tio n sh ip

• A n aly sis o f the O utput o f a C om position Th is sect ion analyses the outpu t
o f a comp os i t i on , and cons ide r s poss ib le di f f i cul t ie s a ssoc ia ted wi th it
So lu t ions to these dif f i cul t ie s are d iscussed

• U sin g Su b jec t-O rien ted D esig n This sect ion d i scusses the phases o f the
d e v e l op m en t cycle when the appr oa ch desc r ibed in this re sea rch is useful,
and so me impl ica t ions o f its usage

4 . 1 . D e c o m p o s i n g D e s i g n M o d e l s
For ob jec t -o r i en ted des ign mod e l s , ma tc h in g the s t ructure o f r equ i rements
me an s tha t des ign mode l s mus t be d ec o m p o s ed - tha t is, d iv ided up - into
separa te mode l s that ma tch tha t s t ructure These separate mode l s are cal led
d esign su b je c ts Each des ign sub ject separate ly descr ibes tha t par t o f a sys
t em or c o m p o n en t that re l at es to a pa r t i cu la r r equ i rement , encap su la t in g its
des ign and separa t ing it f rom the des ign o f the rest o f the sys tem

T he kinds o f r equ i reme nts wh ose des igns can be desc r ibed in des ign subject s
are many and var i ed They inc lude units o f r equ i reme nts l ike features , and
so -ca l l ed c ro ss-cu ttin g r eq u i rements , (l ike pe r s i s t ence or d i s t r ibut ion) that

65

Composition of OO Designs The Model Decomposing Design Models

af fec t mul t ip le uni t s o f func t iona l i ty D es ig n subject s can also enc apsu la te
uni t s o f change, m a k i n g evolu t ion o f so f tware addi t ive ra ther than invas ive

Con cep tu a l ly , a des ign subjec t can be wr i t t en in any des ign l anguage , but the
focus o f this thesi s is the U M L [U M L 1999] A U M L des ign sub ject can c o n
cep tua l ly con ta in any val id U M L d ia gr am s Sc op i ng for this wo rk , ho wever ,
invo lved se lec t ing a subse t o f the full set o f U M L d ia grams , and is deta i l ed in
“ Scope o f W o rk ” on page 72 Appl ica t ion o f this approach to o the r des ign
l anguages , and to all U M L d iagr ams remain interest ing i ssues for future
r esea rch

Des i gn subjec t s thus p ro v ide a m ea ns o f d e c o m p o s i n g systems tha t c o m p l e
ment s those a l ready p rov ided by the o the r U M L d ia grams They permit the
encap su la t io n o f all , and only, those des ign e l ements that rel at e to a pa r t i c u
lar r e q u i r em e nt Whe reas the des ign e le me nts in a conven t iona l UM L des ign
mo d e l mu s t be de f ined com ple te ly wi th respec t to the ent ire sys tem, the
des ign e le me nts in a des ign sub ject need only contain thos e detai ls that are
r e l evan t to the re q u i r em en t it encapsu la tes

The s imples t model for s t ruc tu r ing des ign subject s d irect ly wi th requ i r eme nts
spec i f i ca t ions is to have a o ne - t o - one ma tch o f r equ i r eme nt wi th subjec t The
ful l r eq u i rem ent s spec i f ica t ion is the input to the dec i s io n -m ak in g associa ted
wi th d iv id ing up the des ign into des ign subject s In “Ch ap te r 2 M o t i v a t i o n ”
on page 1 1 , a d i scus s ion o f the re q u i rem en ts spec i f i ca t ion pa rad igm notes
tha t the re are nu m er o u s ap pr oa che s to r eq u i r em e nt s ga t he r ing and sp ec i f i ca
t ion based on the no t ions o f fea tures , capabi l i t i es , services , etc

One-to-One In ma ny cases , a d iv i s ion into des ign subject s based di rect ly on the pa r t icula r
uni t s o f divi s ion at the req u i rem en ts speci f i ca t ion l evel wi l l y ie ld a one- to -
one m a tc h o f r e q u i r em en t wi th sub ject

S t r u c t u r a l
M a t c h i n g
w i th R e q u i r e
m e n t s

Figure 14 Requirements and Subjects One-to-One Structural Match

Fo r the smal l ex am ple mot i va t in g this w o rk desc r ibed in “ Chap te r 2 M o t i v a
t io n ” on page 11, an analysi s o f the req u i rem en ts speci f ica t ion (Requ i re -

66

Composition of 00 Designs The Model Decomposing Design Models

One-to-Many

ments Spe c i f i ca t i o n ” on page 19) shows tha t cap tu r ing each feature o f the
SEE in a sub ject i l lus tra t es this s imple mode l (see Figure 14)

E ven a r e q u i r em en t w h ic h has an impact across all the o ther r equ i rements ,
such as the sub jec t “L o g ” (which logs op era t ion execut ion across the full
SEE), may be separa ted f rom those op era t ions , and des igned as a separa te
m ode l Thes e kinds o f r eq u i rem en ts are cons ide red to be c r o s s

cutting r eq u i r em e nt s ([K icza les et al 1997], [Tarr et al 1999]) , and the i r
separa t ion f rom the des ign e lements they cut across is a par t icular ly useful
capabi l i ty o f this mode l This is becaus e c ross -cu t t ing req u i rem en ts are g en
eral ly t ang led up wi th the des ign for o ther r eq u i rements , the reby ex ac e rb a t
ing dif f i cul t ie s wi th co mp re hen s i on , etc (see “ Chap te r 2 M o t i v a t i o n ” on
p ag e 1 1)

The abi l i ty to s t ruc tu re des ign mode l s in this way a l l ev ia tes the sca t te r ing
and t ang l in g p ro b le m s that mot iva te this work Each des ign sub ject is easy to
un de rs t an d as it suppor t s only one req u i rem ent , wi th every inc luded des ign
e l em ent p rov id ing for some need wi th in the req u i rement , and no red undan t
des ign e l em ent tha t is no t used for that r e qu i r em en t Traceabi l i ty is c l ear
b ecause o f this on e- to -one ma tc h Any new re q u i r em e nt may also have its
ow n des ign subject , m a k i n g chan ge s addi t ive ra the r than invas ive Reuse o f
any pa r t icula r des ign sub ject is not compl ica ted by the exi s t ence o f des ign
e le me nts wi th in the sub ject that are not r e l evan t

Fr om a U M L perspect ive , the appr oa ch to cap tu r ing requ i r eme nts as Use
Cases is l ikely to y ie ld a on e- to -one match wi th des ign subject s [Jacobson et
al 1999] Use cases suppor t the separa t ion o f r eq u i rem en ts spec if ica t ions
into the d i f fe ren t uses o f a c o m p u te r sys tem This separa t ion is not m a i n
t a ined through the analys is and des ign wi th U M L, but wi th an approach such
as this compos i t i on mode l , the d ec om po s i t io n o f the des ign mode l s cou ld be
based on the ind ividua l use cases in a one- to - one match

There may al so be s i tuat ions where the level o f g ranula r i ty o f a pa r t icu la r
r e q u i r em en t may y ie ld a co mp le x des ign subject , which, based on the in tu i
t ion and ex per ience o f the des igner , could be fu r ther d iv ided up and cap tu red
as mul t ip le des ign subjec t s This has the ad van tage o f s impl i fying the des ign
o f the ind ividua l des ign sub ject s , and also suppor t s thei r conc ur ren t d e v e l o p
me nt by d i f fe rent t eams For exam ple , fu r ther ana lys is o f the display req u i r e
m e nt o f the SEE mi gh t h igh l igh t the need to display exp ress ions on d i f feren t
k inds o f dev ices , and in d i f feren t ways, 1) Disp l ay an exp ress ion as a st r ing
on a t ext w in d o w , 2) Display an expr ess ion as a t ree s t ruc ture on a g raph ica l

67

Composition of 00 Designs: The Model Decomposing Design Models

Many-to-One

wi ndo w; 3) Display an express ion as a s tr ing and h igh l igh t d i f fe ren t c o n
st ructs in d i f feren t co lours , on a g raph ica l w ind ow ; etc. The or iginal display
re qu i r em en t migh t thus be captu red as mul t ip le des ign subject s as i l lus tra ted
in Figure 15.

Requirements f D i s p l a y ^

Specification (E x p r e s s i o n s)

--------1 ------- 1 |

Design «subject» asubjecbo «subjects

Subjects DisplayAsText D isplayA sTree DisplayM ultiColour

F ig u re 15: R e q u ire m e n ts and Sub jects: O n e - to -M a n y S t ru c tu ra l M a tch

An o th er poss ib i l i ty o f a one - t o -m any ma tch o f r equ i reme nts wi th des ign s u b
jec t s is whe re a s ign i f i can t change reques t may be rece ived f rom an in ter
es ted party. One appro ach to handl ing such a reques t , w her e the impac t is
s igni f ican t , is to des ign the change as a separate des ign subject , and co mp os e
wi th the des ign sub ject to be c h a n g e d 1. Whi le the change request may i t se l f
be v iewed as a new requ i rement , and the re fo re the one- to - one s t ruc tu ral
ma tch app l i e s - on the o ther hand, from the or iginal r e q u i re m e n t ’s p e r s p e c
t ive, its co r rec t des ign is now in mul t ip le subject s.

On e- t o -m any s truc tu ra l ma tches could be looked upon as hav ing the negat ive
sc a tte r in g p roper t ie s that resul t in di f f i cul t ie s a s socia ted wi th c o m p re h e n s i
bi l i ty, t r aceab i l i ty , evo lvabi l i ty and reuse as desc r ibed in “ Chap te r 2: M o t i
va t io n ” on page 11. In both cases , a s ing le r equ i r eme nt is scat te red across
mul t ip le subject s . H o we v er , c l ea r t r aceab i l i ty to the original r equ i r eme nt still
exi st s in this case. In add it ion, the ra t iona le for fu rther d iv iding the subject s
is for r easons o f de co m p o s in g com plex i ty in the f irst case, and eas ing change
o f a sub ject by des ign ing the change separa tely in the second case. Final ly,
s ince the model support s the com po s i t io n o f subject s , the “m a n y ” subject s in
the o ne - t o -m any s tructural ma tch may be co m p o se d to a s ingle subject ,
t he reby s imula t ing a on e- to -one s t ruc tu ra l ma tch.

It is a l so possible tha t mul t ip le r equ i r eme nts may be suppor ted by a s ingle
des ign subject . Ho wev er , this occurs as a resul t o f a com po s i t io n , as the
resul t o f a compo s i t io n is i tse l f a des ign subject . In general , t he ou tpu t o f
co mp os i t i on o f mul t ip le subject s is expec ted to have scat te r ing and t angl ing

1. See “ Is every Requirement a Subject?” on page 70 for a discussion on whether every
change is designed as a separate design subject.

68

Composition of 00 Designs The Model Decomposing Design Models

propert ie s as thi s is the mot iva t ion for d e co m p o s i ng des ign mode l s in the
f irst p lace H o w ev er , the case cons ide r ed here is where a smal l , logical
g ro up i ng o f r eq u i rem ent s may each ha ve been des igned as separate subject s,
but , for conv en ie nc e , co mp os ed into a des ign sub ject as a s ing le unit From
the SEE exam ple , thi s migh t oc cur wh ere the re are d i f fe rent kinds o f c h e c k
ing requ i rem en ts , 1) Chec k for syntax , 2) C h e c k for co n fo rm an ce to o rg an i
sat ion style, 3) Check va r i ab les de f ined are used, and va r i ables used are
de f ined Each o f these three req u i rem ent s may be des igned as separate s u b
j ec t s , which c lean ly separates the i r des igns , mak i ng them easier to u n d e r
s tand Ho we v er , f rom a h igh er l evel pe r spec t ive , they migh t col lec t ive ly be
con s ide re d as a s ingle, check act ivi ty (and the re fo re as one requ i rement) , and
c o m p o s ed into a single subject to s impli fy the inc lus ion o f check ing into an
express ion e n v i r on m en t (See F igure 16)

Requrements
Specification

Design
Subjects

t
1 " r n i--------i ...

«subject» «subject» «subject»

C heckStyle

-,------- s « ------

C heckSyntax C heckD efU se

«subjects

Check

Figure 16 Requirements and Subjects Many-to-One Structural Match

T h e Check sub ject in F igure 16 is the co mp os i t i on o f the C h e c k S t y l e ,

C he ck Sy nta x and CheckDefUse subject s that are a on e- to -one match with
the requ i reme nts for check in g As such, Check now con ta ins the des ign for
those three req u i rem en ts In one way , Check i t s e l f could be cons ide red as
“ t a n g l e d ” up wi th a n u m b e r o f d i f fe ren t r equ i reme nts Tan g l ing is a p roper ty
p rev ious ly ident i f i ed as hav ing a nega t ive impac t on com preh ens ib i l i ty ,
t r aceab i l i ty , evo lvab i l i ty and reusabi l i ty (see “Chap te r 2 M o t i v a t i o n ” on
p ag e 11) H o w ev er , as r egards comp re he ns ib i l i ty , the separa ted check ing
subject s may still be r easoned abou t separate ly Traceabi l i ty to the re q u i re
ments r emains c lea r Any changes to the ex is t ing check requ i rem ent s , or any
new check requ i reme nts may still be des igned separa tely and co m p o se d
w he re requi red Fina l ly , each ind iv idual check subjec t may still be reused
separa tely from the other s, and co m p o s ed separa tely , where requ ired

69

Composition of 00 Designs The Model Decomposing Design Models

Many-to-Many

Is every
Requirement a
Subject*>

O v e r l a p p i n g
S u b j e c t s

The f inal general cardinal i ty poss ib i l i ty cons ide r ed here is whe the r ma ny- to -
ma ny requ i reme nts to des ign subject s are acc ep tab le Though the mod e l does
not cu rren t ly expl i ci t ly en force rules to ensure tha t this s i tuat ion is avoided ,
it is not recom m ended In general , such a case is exac t ly the k ind o f s i tuat ion
tha t the su b jec t -o r i en ted des ign mo d e l is exp li c i t ly des igned to avo id The
scat t e r ing and t ang l ing p ropert ie s a s soc ia ted wi th a s tructural mis ma tch
b e t we en requ i reme nts and des ign mod e l s f ea ture highly here, and the refore ,
such a des ign wil l exhibi t the same dif f i cul t ie s as those desc ribed in “ Chap te r
2 M o t i v a t i o n ” on page 11, that are the cent ral mot iva t ion s for thi s work

Sys tem chan ge request s r ece ived f rom test t eams (or any interested par ty)
may be cons ide red as r equ i rements on the system Here, w he re the change
req ues t is a s ign i f i can t size, it may o ft en be p ruden t to des ign the cha ng e as a
separa te subject , t he reby ma ki n g it m or e easy to unders tand and w ork with,
and avo id i ng the need for invas ive chan ge o f an exi s t ing sub jec t How eve r , in
p rac t ical t e rms , not all chang e reques t s migh t war ra n t a new des ign subject
Whe re the change is smal l and invas ively chan g in g an exi s t ing sub jec t is not
an i ssue, it may be more pract i ca l to s imply chang e the sub jec t di rect ly

The t r a d e - o f f to be ma de wh en maki ng such a dec i s ion is to ba lance the pe r
ce ived need for keep i ng separate all changes to subject s during the t es t ing
phase , aga ins t the possible cost o f ma na g i n g all the separa te subject s K e e p
ing all changes separa te has the adva n ta ge o f p rov id ing an audi tab le , h i s to r i
cal r ecord o f chan ge dur ing t e s t ing - qual i ty a s surance p r o fess iona l s l ike this
level o f aud it ab i l i ty for the ir r ecords and for genera l acc oun t in g purposes for
f eed ing into the nex t p lann i ng phase [I B M a 2000] , [IBMb 2000]

Where the re is good d e v e l op m en t en v i r onm ent support , a de ve lo p m en t t eam
may be able to easi ly m an ag e mul t ip le separate des ign subject s In this case,
a need to keep all changes separate may be easi ly suppor ted Ho wev er , where
the en v i r on m en t su ppor t is insuff i c i ent , a ba lance may need to be cons ide red
as to ho w imp or tan t it is to keep chan ges des igned separa tely , ve r sus how
d if f icul t it is to m an ag e separa te subject s Th is will t end to in f luence the
deci s ion o f w h e t he r to des ign a pa r t i cu la r change reques t as a new des ign
subject , or j u s t chan ge the sub jec t d irect ly

It is poss ib le - indeed, expec ted - tha t some o f the same concep t s may be rel
evan t to mul t ip le des ign subject s For exam ple an educa t iona l system that
con ta ins r eq u i rem en ts for t eachers and for s tuden t s bo th cons ide r the concep t
o f Pe r son (as suming , in this case, that t each ing is pe r f o rm ed by people)

70

Composition of 00 Designs The Model Composing Design Models

Thus, i f d i f fe ren t r equ i r eme nts were each mod e l l e d as separa te des ign s u b
j ec t s , they would both inc lude the i r own v iews o f pe op le These v iews may,
or may no t be ident i ca l , for exam ple , one sub jec t mig h t a t t empt to genera l ise
its percep t ion o f basic p roper t ie s o f people , and specia l i se for its r e q u i re
ment , whe rea s the other , in a s im i la r a t t e mpt at good so f tware eng inee r ing,
may use de le ga t io n for separat ion o f d i f fe rent k inds o f p roper t ie s , and may
a lso hav e a d i f feren t v iew o f wh a t the bas ic p r oper t i e s o f peop le are

Des ign subject s may the re fo re o v e r la p , and may include some d if ferences in
the i r v iews o f ove r l ap p in g parts Thi s is the s t r eng th o f des ign subject s - they
p e rmi t each o f the d i f fe ren t par t s o f a sys tem unde r des ign to mode l the same
conc ep t s in w h a t ev er way is mos t appropr ia te to suppor t tha t s u b j e c t ’s
r e q u i r em en t Thi s abi l i ty p rov ides cons id e ra b le decomp os i t i on and e n ca p s u
lat ion p o w e r Di f fe rences in v iews can be ident if i ed and resolved dur ing
co mp os i t ion , as par t o f the des ign p roc es s Wi th U M L , des ign e lements that
suppor t the same concep t , but have d i f feren t v ie ws tha t necess i t a t e di fferen t
spec i f i ca t ions , mus t be speci f ied separate ly And, s ince the re is no mea ns o f
s yn th es i s ing a compl e t e des ign f rom inc omp le te p ieces in UML, such e l e
ments will r emain separa te th r ou g h o u t the des ign cycle

4 . 2 . C o m p o s i n g D e s i g n M o d e l s
D e c o m p o s i n g des ign mode l s br ings ma ny benef i ts r e l a t ing to c o m p re h e n s i
bi l i ty, t r ac ea b i h ty , evolu t ion and reuse H o w ev er , des igns tha t have been
d ec o m p o s ed m u s t a l so be in tegra ted at some later s tage in order to u n de r
s tand the des ign o f the system as a whole Th is is r eq u i red for r easons such as
ve r i f i cat ion , or to su ppor t a d e v e l o p e r ’s full unde rs tand i ng o f the semant ics
o f the des ign and the impact o f co mp os i t i on on the ful l des ign Thi s sect ion
d i scus ses the po l i c ie s e m p l o y e d in this r e s ea rch for co mp os ing des ign s u b
j ec t s and inc ludes

What does a Su b ject look lik e 9 Here , the scope o f this w ork is def ined ,
and how the des ign e lements within a sub jec t are v iewed by is c o m p o s i
t ion d i scuss ed

• C om posin g D esig n Su b jec ts Here , the re is a general d i scuss ion on what
compo s i t io n is - i e the synthes i s o f input des ign subject s to an ou tpu t
des ign sub ject

• D e fe rr in g Su b ject C om position T h ou g h n o t the main focus o f thi s
r e search, this sect ion descr ibes how des ign subject s need not be co m p o se d
at the des ign level Wi th suppo r t ing p ro g ra m m i n g mode l s , the deco mp os i -

71

Composition of 00 Designs The Model Composing Design Models

W h a t d o e s a
S u b j e c t l o o k
l ik e?

Scope of Work

Tree Structure

t ion into des ign subject s may be main ta ine d in the code, wi th com po s i t io n
de fe r red to the code phase

T he desc r ip t ion o f how to speci fy compo s i t io n wi th in the su b jec t -o r i en ted
des ign mode l then fo l lows in “4 3 Spec i fy ing C o m p o s i t i o n ” on page 78

A des ign sub ject is s imi lar to a UML p ac k ag e in tha t it is a g rou p in g m e c h a
n ism for model e l e me nts A des ign subjec t is r ep resen ted as a specia l type o f
U M L pa ckage , s t e reo typed as « s u b j e c t » The d if fe rence be tw een a sub ject
and a p ac ka ge is tha t the re is a res t r i c t ion on the k inds o f mod e l e l ements that
a sub jec t may g roup Thi s res t r i c t ion is for the p u rp ose s o f p rov id i ng a m a n
ag eab le b o un dar y fo r thi s work

T h e U M L sem ant ics guide states tha t “ A Pack ag e may only own or r e fe rence
Pack ag es , C lass i f i er s , A sso c ia t ions , Gen era l i za t ions , Dep en den c i es , C o n
s traint s , Co l l abora t ions , S ta teM ach ine s , and S t e r e o t y p es ” For the purposes
o f this thesi s , we fu r ther r es t r i c t a sub jec t to a subset o f these e lements by
s ta t ing tha t

“A Su b jec t m ay only own or referen ce Su b jects, C la ss if ie r s , A sso c ia tio n s ,

G en era liza tio n s, D epen den cies, C o n stra in ts, an d C o llab o ra tio n s ”

The res t r i c t ion does not imply that the compo s i t io n conc ep t is only a p p ro p r i
ate fo r a sub ject tha t owns or r efe rences only these model e l ements The
exten t to wh ic h “s u b j ec t” and “p a c k a g e ” should be cons ide red sy non yms
mus t be inves t iga ted , and the re fo re , the impact o f compos i t i on on all the
mod e l e l ements tha t are owne d o r r e f e renced by packages needs to be co n s id
ered This is an imp or tan t area for fu ture r esearch

Whi le a subjec t looks l ike s t andard UM L des ign mode l s to the des igner , f rom
the pe r sp ec t ive o f com pos i t ion , a sub ject looks l ike a t ree s t ruc tu re The c o n
s ide rat ion o f a sub ject as a t ree s t ructure for the purposes o f compos i t ion p r o
v ides a co nv en ien t m ec h an i sm for a s s ign ing rules to its speci f ica t ion
Co m p os i t io n is speci f ied wi th co mp os i t i on re lat ionsh ips be t ween des ign e l e
me nts Re pr es en t in g des ign e lem ent s as a t r ee s t ructure suppor t s the d e f i n i
t ion o f rules re l a t ing to scope, p rec ed en ce and general val id i ty o f those
compo s i t io n re la t ionsh ips See “4 3 Spec i fy i ng C o m p o s i t io n ” on page 78 for
more detai ls

Thi s r ep res en ta t io n o f subject s is based on the o b se rva t io n tha t each U M L
des ign e le m ent has p roper t i e s and may (or may not) con ta in o ther des ign e l e

72

Composition of 0 0 Designs The Model Composing Design Models

Composable
Elements

ments in a s t andard t ree type o f s truc ture For ex am ple , in F ig ure 17, the t r e e
l ike s t ruc tu re o f the des ign e lements wi th in the scope o f this work is i l lus
t rat ed

Figure 17 A Subject as a Tree Structure

The f irst ob se rva t ion to be ma de from F igure 17 is that not all o f the UML
cons t ruc t s suppor ted wi th in the scope o f this work have been inc luded The
des ign e lements i l lus tra ted are those e lements which may direct ly par t ic ipate
in compos i t i on re la t ionsh ips , and are the re fo re cons ide r ed to be “ compo sa b le
e l e m e n t s ” While the re are many o the r des ign e lements wi th in the scope o f
this work (for exam ple , genera l i za t ions , dep end en c ie s , pa ramete r s , etc), and
which the re fo re may be impac ted by com pos i t io n , these are the only e l ements
which may be d irect ly rel at ed by a compos i t i on re la t ionsh ip The exc lusion
o f o the r des ign e lements f rom the set o f co mp o sa b le e l ements is based on two
cr i ter i a

• So m e e lements wi th in the scope o f thi s wo rk logical ly belong to an o the r
e l e m ent which is i t se l f a c o m p o s ab le e l em ent For exam ple , pa ramete r s
are par t o f opera t ions The full s ignatu re o f opera t ions inc ludes the p ro p
er t ies de f ined by the U M L for the Opera t i on metac lass , but a l so, the set o f
pa ra m et e r s which are con ne c t ed to an opera t ion The se ma nt ics o f c o m p o
s it ion in rel a t ion to opera t ions is based on this full s igna tu re There fo re ,
Pa ramete r s are exc luded as e l ements which may d irect ly par t ic ipa te in a
compo s i t io n re la t ionsh ip independen t ly o f the operat ion to which they
be long A n o th er exa m ple o f such an e lem ent is A sso c i a t ion En d - a U M L
meta c la ss which def ines the co nn ec t ion o f an assoc ia t ion to a c l assi f i er
Th es e are also cons ide red to be part o f the full speci f ica t ion o f A s so c i a
t ions , and are the re fo re ex c luded as e l ements which may direct ly pa r t i c i
pa te in compo s i t io n re la t ionsh ips

• Othe r k inds o f des ign e lements are b road ly cons ide red to be “ con s t r a i n t s”
on pa r t i cula r co m p o s ab le e l ements within des ign subject s , and so they
are al so appropr ia te ly cons ide r ed to be par t o f the full speci f ica t ion o f the
e l ement (s) to wh ic h they are a t t ached - for exam ple , instances o f the C o n

73

Composition of 00 Designs The Model Composing Design Models

Primitive vs
Composite

straint , De p en d en cy and Ge ner a l i za t ion me ta c la sse s Thes e e lem ent s are
the re fo re exc luded f rom par t i c ipa t ing direct ly in co mp os i t ion re la t ion
ships

A fur ther obse r va t io n may be ma de f rom F igure 17 Som e e lements are nodes
wh ich are co mp os ed o f o the r e l ements fur ther down the t ree (e g Subject ,
Class) , whi l e o the r e l ements are l eaves (e g At t r ibute , Opera t ion) The e l e
ments which are co mp os ed o f o the r e l ements are cal led com po sites The e l e
ments which are l eaves are cal led p rim itiv es W h e t he r an e lem ent is a
p r imi t ive or a co mp os i t e has an impact on the se ma nt ics o f compos i t ion ,
desc r ibe d in thi s sec t ion

The select ion o f the des ign e lements tha t are cons ide red to be com pos i t e s or
p r imi t ives is not d i rect ly obv i ou s from the U M L me ta m o d e l Just cons ide r ing
the U M L m et am o d e l d i rec t ly , for exam ple , we mig h t co ns ide r opera t ions to
be com pos i t e s as they contain pa ra m et e r s H ow eve r , the d is t inc t ion between
the two is not based on the de f in i t ions wi th in the meta mod e l , but instead
based on the se ma nt ics o f com pos i t ion

Pr imi t ive e lements are those des ign e le me nts tha t are cons ide red in
the i r en t i re ty fo r the pu rposes o f compo s i t io n - that is, a ll p roper t ie s
o f p r imi t ive e lements are cons ide red toge th e r when es tabl ish ing
co r re sp on de nc es be tween them, and wh en in tegrat ing them

Revi s i t in g the ex am ple o f opera t ions , operat ions con ta in pa ramete rs , but the
full s igna tu re o f an opera t ion is integrated wi th the full s igna tu re o f o ther
opera t ions For exam ple , the fo l lowing opera t ion spec i f ica t ion is o f a p ro
tected operat ion na me d o p l with two pa ramete r s
o p l { p i I n t e g e r , p2 S t r i n g)
An o th er sub ject has a spec i f ica t ion for o p l as a publ i c opera t ion with three
pa ramete r s
+ o p l {pi I n t e g e r , p2 S t r i n g , p3 B o o l e a n)
Wi th a co mp os i t i on re la t ionsh ip wi th overr ide in tegra t ion s pec i f i e d2, this
resul ts in a co mp os i t i on o f the two opera t ions Over r id ing the f irst o p l s p e c
i f icat ion wi th the second resul ts in an opera t ion speci f i ed as publ i c , wi th
three paramete r s as de fined by the second spec i f i ca t ion Th is ex am pl e i l lus
t r at es how the full speci f ica t ion o f an opera t ion is overr idden , and so, in this
sense, opera t ions are p rim itiv e s 3

2 Where a composition relationship with override integration is specified between two
design elements, this means that the specification of one of the design elements is
replaced by the specification of the other design element

3 See “Incompatible Elements” on page 100 for a general discussion on composing ele
ments with potentially incompatible properties

74

Composition of 00 Designs The Model Composing Design Models

Pr im i t i ves are de f ined as e l e me nts w h o se ful l sp ec i f i ca t ions are c o m p o s ed
wi th o the r p r imi t ives For the purposes o f comp os i t i on , the fo l lowing e l e
ment s are cons ide red to be p r imi t ives At t r ibu tes , Opera t ions , Assoc ia t ions
and In te rac t ions Ex cep t for a t t r ibutes , each o f these e lements , f rom the pe r
spec t ive o f the U M L me ta mo de l , appears to be a con ta ine r for o the r c o n
s truc ts - opera t ions own paramete r s , a s soc ia t ions own assoc ia t ion ends, and
inte rac t ions own me ssa ge s H ow eve r , f rom the pe r spec t ive o f compos i t ion ,
they are cons ide r ed in the ir ent ire ty as the ir com p o n en t s are not sensibly
des igned or r easoned abou t separa tely (for exam ple , w h a t ’s an assoc ia t ion
end wi tho u t its a s s o c i a t i o n 7)

There are, how eve r , so me e lements tha t con ta in o the r e l ements , and canno t
be cons ide red as p r imi t ive For exam ple , a c l as s con ta ins at t r ibu tes and o p e r
a t ions , and those a t t r ibu tes and opera t ions , as p r imi t ives , are ex am in ed ind i
v idual ly for co mp os i t i on Such e lem ent s are cal l ed com po sites

C om pos i t e s are de f ined as e l ements wh ose com p o n en t s are not
cons ide red par t o f the full speci f ica t ion o f the co mp os i t e and
the refo re are cons ide red separate ly for co mp os i t ion

Fo r the pu rposes o f com pos i t ion , three types o f e l ements are r ecogn i sed as
co mp os i t e - Sub ject , C lass i f i e r and Co l l abora t ion Each o f these con ta in e l e
ment s tha t have been ident if i ed as p r imi t ive co mp o sa b le e l ements , and t h e r e
fore, dur ing com pos i t ion , these e lements are cons ide r ed separa tely From the
pe r spec t ive o f comp os i t i on , comp os i t e s may al so con ta in o the r compo s i t e s
An ex ample wi th in the cur ren t scope o f this w or k is a subjec t which may c o n
tain o the r sub ject s , c l as s if i er s or in te rac t ions

The mod e l for co m p o s i n g des ign mode l s is, es sen t i a l ly, the synthes i s o f m u l
t iple (two or more) input des ign subject s to an outpu t des ign sub jec t Each
inpu t des ign subjec t is an i nde pe nd en t t ree s t ruc tu re in its own namesp ac e , as
de f ined by the U M L The input subject s are integrated as def ined by a (set of)
co mp os i t ion re la t io ns h ip s4, and the resu l t is a new, indepen den t t r ee s t ruc
ture in its own n am es pa ce (see F igure 18)

C o m p o s i n g
D e s i g n S u b
j e c t s

4 In each of the examples in this thesis, a composition relationship is represented as a dot
ted arc between the elements to be composed The arrowheads at the ends of the arc
have meaning m terms of specifying the integration strategy, and are further explained
in “Integration of Inputs” on page 87

75

Composition of 00 Designs The Model Composing Design Models

Figure 18 Composing Design Subjects to New Result

Why compose
into new model?

An a l t e rna t ive to co mp os ing des ign subject s into a new “ resu l t ” des ign s u b
j ec t migh t be to ma ke the appropr ia te chan ges to an exi s t ing sub ject This
ques t ion app li es to compo s i t io n wi th over r ide integrat ion par t icular ly O v e r
r ide integrat ion mea ns tha t des ign e lements in a pa r t i cu la r des ign sub jec t are
r ep laced by des ign e le me nts in an o th e r sub jec t Here, it is not immediate ly
c lear wh e t he r it wo u ld be bet te r to ma ke the re p la cem ent s in the exi s t ing
des ign sub jec t - tha t is, chang e the par t icular t ree s t ructure o f the subject
be ing over r idden , or copy e lements to a new subjec t as appr op r ia te For the
fo l lowing reasons , the resul t o f compo s i t io n o f des ign subject s is a new
des ign sub ject

* C on sisten cy Whi le it is not im m edia te ly obvious which approach to take
for over r ide in tegrat ion, co m p o s in g subject s to a new sub jec t is the a p p r o
pr ia t e course o f act ion for me rge in tegra t ion Since the semant ics o f
merge is es sen t i a l ly the am al ga m at io n o f des ign subject s , it is appropr ia te
that the resul t is a new sub ject For con s i s t ency purposes , a s ingle c o m p o
s i t ion s tr ategy is used Th is mea ns tha t compo s i t io n wi th overr ide in teg ra
t ion al so c o m p o s es to a new sub ject

• C om preh en sib ility One o f the di f f i cul t ie s wi th conven t iona l ob je c t -o r i
ented des ign is the d if f icul ty in unde rs tand i ng its semant ics Th is is
becaus e o f the sca t te r ing o f the su ppor t o f a s ing le r e q u i r em en t across the
full des ign, and because o f the t ang l ing o f the su ppor t for mul t ip le

76

Composition of 00 Designs: The Model Composing Design Models

Composing
Overlapping
Subjects

requ i reme nts in a single des ign e lement . M ain ta in ing the separate des ign
subject s whi le c o m p o s i ng to a new resu l t ing sub jec t suppor t s c o m p r e h e n
sibi l i ty, as the full des ign may be unde rs too d by unde rs t an d i ng the c o m
pone n t subject s .

• V ersion co n tro l : M ain ta in ing the h is tor i es o f ve rs ions is an impor tan t part
o f so f tware en g inee r ing . The h is tor i es o f deci s ions , and the c lear r e p re
sen ta t ions o f p rev ious app ro ach es are va luab le info rmat ion for the m a i n
tenan ce and evolu t ion o f so f tware . Co m p o s i n g subject s to new subjects ,
the reby ma in ta i n ing the separate c o m p o n en t subject s support s c lean ve r
sion con trol . M ain te n an ce o f mul t ip le cop ies is not an issue, as, wi th this
ap proach , changes to the des ign are the mse lv es en cap su la ted in a separa te
des ign subject , to be co mp os ed where appropr ia te .

As desc r ibed in “ Ov er l app ing Su b je c t s ” on page 70, some o f the same c o n
cep ts may be re levan t for mul t ip le subject s , and the re fo re each sub jec t may
conta in a spec i f ica t ion o f tha t conc ep t f rom the per spec t ive o f the par t icula r
subject .

f
S1S2

^ 7 xClassB ClassD
ClassA / W / watt2 °P2 °P3 att2 op2 op3

F ig u re 19: C o m p o s in g D esign S u b je c ts w ith O v e r la p

The a reas o f over lap in the input subject s to a co mp os i t ion are ident if i ed as
co rre sp o n d in g elem ents du r ing com po s i t io n speci f ica t ion (see “ Iden t i fy ing
Co r r esp o n d in g E le m e n t s ” on page 80). As i l lust ra ted in Figure 19, c o r r e
spond i ng e lements are synthes i sed in the resul t ing des ign subject . The exact
nature o f this integrat ion depe nd s on the integra t ion st r ategy de f ined wi th in
the compo s i t io n spec i f ica t ion (see “ In tegra t ion o f Inp u t s” on page 87).

77

Composition of 00 Designs The Model Specifying Composition

D ef er r i n g
S u b j e c t C o m
p o s i t i o n

E n ha nc in g exi s t ing UM L decomp os i t i on capab i l i t i es by add ing an abi l i ty to
d e c o m p o s e based on the s t ruc tu re o f r equ i reme nts spec i f i ca t ions p rov ides
ma ny benef i t s r e l a t ing to co mpre hens ib i l i ty and tr aceab i l i ty Wi th su ppor t ing
capabi l i t i es in the p r o g ra m m in g domain , this separa t ion can be mainta ined
th r ou g h o u t the l i fecycle Such suppor t is avai l able , fo r ex am ple , in Hy per / J™
for Java, f rom IBM Rese arc h [Tarr & Ossher 2000] Wi th a p r o g ra m m in g
m ode l l ike tha t p ro v id ed in Hyper / J , the d ec om po s i t io n into des ign subject s
desc r ibed here can be main t a ine d to the code phase In Hyper / J , compos i t ion
o f the resul t ing code subject s is speci f i ed wi th com position ru le s , which
ident ify co r re sp o n d i n g code e lements and speci f ie s how the p rog rams should
be in tegra ted The co mp os i t i on re la t ionsh ip sp ec i f i ca t ion for compos i t i on o f
des ign subject s has been inf luenced by compos i t i on rules f rom this p r o g r a m
mi ng mod e l Au to m at ed genera t ion o f the compos i t i on rules tha t are used for
c o m p o s in g p r o g ra m s in Hyper / J , f rom the compo s i t io n re la t ionsh ips for
des ign subject s desc r ibe d here, r emains an impor tan t area for future work
Such au t omated genera t ion is l ikely to be re lat ively s t r a igh t fo rward , because
the concep t s are s imi la r A compl e t e a s ses sm ent o f wh ere the d i f fe rences lie
is r equi red , and is added to fu ture work

An o th er p ro g ra m m i n g mode l that p rov ides s imi la r l evel s o f separat ion at the
code level is the asp ec t -o r i en ted p r o g ra m m in g model , as implem ent ed by
A sp ec t J™ [Kicza les & Lopes 1999] Thi s model has d i f fe rences with the
d e c o m p o s i t i o n /c o m p os i t i o n approach t aken here for des ign mode l s - most
par t icula r ly in the not ion o f a “b a s e ” p rogram to which all “ as p ec t s” are
app l i ed H ow eve r , at a concep tua l l evel , the goa l s o f the aspect and subject
ap pro ach es are s imi lar , in tha t separa t ion o f d i f fe rent k inds o f r equ i rements
is suppor ted An in terest ing area o f fu ture r esea rch is to as sess the ap p l i cab i l
ity o f the sub jec t -or i en ted des ign mod e l desc r ibed here as the des ign
approach for a s pe c t -o r i en ted p ro g ra m m in g

It is important , ho wever , for the w or k desc r ibed in this thesis to def ine the
s em ant ics o f compo s i t io n re la t ionsh ips by desc r ib ing the ir impac t on the
des ign subject s Once the semant ics o f compos i t i on re la t ionsh ips at the
des ign level are w e l l - d e fm e d , ge nera t ion o f compos i t i on rules at the code
phase shou ld be s t r a igh t fo rward

4 . 3 . S p e c i f y i n g C o m p o s i t i o n
Co m p os i t io n o f des ign mode l s is speci f ied wi th a com position re la tio n sh ip

b e t w ee n the des ign mode l s to be co m p o s ed Th i s co mp ar es wi th the sp ec i f i
cat ion o f jo in in g packa ges in Ca ta lys i s (speci f ied us ing a s t e reo typed

78

Composition of 00 Designs The Model Specifying Composition

S p e c i f y i n g
I n p u t s

d ep en den cy re la t ionsh ip [D ’So uz a & Wi l l s 1998]) , and also comp ar es with
the syn th esis opera t ion f rom O O R a m , which ident if i es role mode l s to be s yn
thes i sed [R een ska ug et al 1995]

A compo s i t io n re la t ionsh ip ident i f i es co r re sp on d in g des ign e lements in the
relat ed mode l s , and speci f i es h o w the mode l s are to be in tegra ted , i e the
c o m p o s i t i o n ’s in tegrat ion s tr a t egy Di f fe ren t k inds o f integra t ion s tr ategies
may be a t tached to a co mp os i t i on re la t ionsh ip - for exam ple , the mode l s
shou ld be merged , or one model shou ld over r ide ano the r Thes e two in t egra
t ion possib i l i t i e s are de f ined in detai l in this thesis

In this sect ion the re is

• a desc r ip t ion o f how input s to a co mp os i t i on are speci f ied,

• a d i scuss ion on how co r re sp o n d i n g e lements are speci f ied,

• a desc r ip t ion o f rules go ve rn i ng a co mp os i t i on re la t io n sh ip ’s scope, and

• a desc r ip t ion o f the k inds o f in tegra t ion curren t ly suppor ted wi th in the
mode l

The intel l ec tual exe rc i se o f ch oo s in g the pa r t i cu la r des ign subject s to be
co mp os ed dep ends on the needs de f ined by the d e v e l op m en t effort under
way D ep en d in g on the o r iginal d ec om po s i t io n into des ign subject s, the
se lect ion o f the des ign subject s for a pa r t i cu la r ma n i fes ta t ion o f a c o m b i n a
t ion o f r equ i reme nts may be var i ed , and is based on the needs o f var ious
p layers wi th in the dev e l op m en t p rocess - for ex am ple integra t ion t es ter s
may ex p er i me n t wi th the co mp os i t i on o f mul t ip le di f fe rent comb ina t ion s o f
subject s , system tester s may ex p er i me n t wi th d i f fe rent co mb in a t ion s again,
whi le accep tan ce t e s t ing by d i f fe ren t users may requi re the compo s i t io n o f a
set o f subject s to fulfi l l t he bus iness needs o f those users This re sea rch does
not p rov ide a p rocess for a id ing this intel l ec tual exerci se , but the poss ib i l i ty
o f p rov id i ng rules and gu ide l ines for such se lec t ion remains an interest ing
a rea for fu r ther re search Ins tead , this sect ion cons ide r s the t echn ica l a spect
o f how to speci fy input s to a co mpos i t ion wi th compo s i t io n re la t ionsh ips

Com p os i t io n re la t ionsh ips are de f ined be t we en co mp o sab le des ign e lements
Th e e lements that are r el at ed by a com po s i t io n re la t ionsh ip are the input s to
tha t compos i t i on speci f i ca t ion As d i scus se d p rev ious ly , compos i t i on en ta i ls
syn th es i s in g two or more input subject s into an outpu t sub jec t There fo re ,
ident i fy ing input s to a compo s i t io n mus t first involve ident i fy ing the input
subject s , and sp ec i fy ing a com pos i t ion re la t ionsh ip be tween those subject s
Figure 20 i l lust ra tes a co mp os i t i on re la t ionsh ip be tween subject s - tha t is,

79

Composition of 00 Designs: The Model Specifying Composition

f rom the pe r spec t ive o f com po s i t io n , be t we en the roots o f the t rees to be
co mp os ed . The compo s i t io n re la t ionship be tween the roots o f the t rees to be
co m p o se d p rovides the con tex t for the com po s i t io n to a s ing le ou tpu t subject .
Thi s r e l a t ionsh ip is r equ i red because it speci f ie s con tex t in the sense that it
p rov ides a nam e sp ac e wi th in which rules a s soc ia ted wi th naming , e l ement
r e fe renc ing and integrat ion o f co m p o se d e lements in the outpu t sub ject
occurs (see “ 4.4. Ana lys i s o f the Outpu t o f a C o m p o s i t io n ” on page 95 for
more detai ls) .

Designer
View

S1
ClassA ClassB L

Lîe J
0 [op2| [öpä]

Figure 20: Subject-Level Inputs to Composition

Once the contex t for compos i t i on is set wi th a co mp os i t ion re lat ionship
be tween input subject s , fur ther compos i t i on re la t ionships may be def ined
be twe en co mp o sab le e l ements at lower l evel s o f the t ree. These def ine e x c e p
t ions to the genera l com po s i t io n spec i f ica t ion def ined at sub ject level . There
are many exam ples o f this in fo r t hc om in g sect ions . See “ Scope o f C o m p o s i
t ion Re la t io ns h ip ” on page 83 for rules a s soc ia ted wi th spec i fy ing c o m p o s i
t ion re la t ionsh ips at l evel s o f the t ree lower than the sub ject level.

Identifying
Correspond
ing Elements

Ele me nt s in d i f feren t subject s wh ich p rov ide a des ign for the same concep t
are said to co r respo nd . Th oug h the e lements in the d i f feren t subject s may
p rovide d i f feren t v iews or speci f i cat ions for a concep t , they no ne the less r ep
resen t the same funda men ta l concep t in the domain . Thes e are the over laps
which were d i scussed in “ O v er l app ing Su b je c t s ” on page 70. Th ere fo re , the
semant ics o f any integra t ion s tr ategy must r ecogn i se this co r respo nde nc e ,
and act accord ing ly . For exam ple , an over r ide in tegrat ion s tr ategy speci f ie s
tha t an e le m ent is ov er r idden by its co r re sp on d in g e lem ent in an o the r subject ,
and e lements wi thou t co r r es p o n d i n g e lements are not over r idden . Com pos i -

80

Composition of 00 Designs The Model Specifying Composition

Explicit

Implicit

t ion re la t ionsh ips speci fy co r re sp on d in g e lements e i the r expl i ci t ly , or im p l ic
itly wi th ma tch ing cr i ter i a

Inpu ts to a co mp os i t i on re la t ionsh ip exp li c i t ly de fine tha t those input s are
co r re sp on d in g Since co mp os i t i on re la t ionships may be def ined be tween
co m p o s ab le e l ements which are both p r imi t ive e le me nts and comp os i t e e l e
ments , then the co r re sp o n de nc e o f e l e me nts may be expl i ci t ly de f ined
b e t we en p r imi t ive e le me nts and be tween compos i t e e l ements

Figure 21 Explicit Correspondence

In Figure 21, the fo l lowing e le me nts are co r r es po nd i ng

• Subjec t S I cor r esponds wi th sub ject S2

• Class S I C l a s s A co r respon ds wi th class S2 C l a s s A

• Opera t ion S I C l a s s A o p l cor responds with opera t ion
S2 C l a s s A o p l

Im plic it speci f i ca t ion o f co r re sp o n de nc e is ach ieved in a general way that
app l i es to all e l ements ow n ed by the e lements re l a t ed by the compos i t ion
re la t ionsh ip - tha t is, all e l ements lowe r in the t r ee s t ruc tu re than the e l e
ments be tw een which the co mp os i t i on re la t ionsh ip has been de f ined The
general rule is a m a tc h in g speci f i ca t ion a t t ached to the compos i t ion re la t ion
ship and is based on ma tch ing the va lues o f p ropert ie s o f des ign e lements o f
the same type For exam ple , a ma tch spec i f i ca t ion may state that a ma tch on
the values o f the name proper t i e s o f the re la t ed e lements implies c o r r es p o n d
ence In theory, the va lues o f all p ropert ie s (as desc r ibed in the U M L spec i f i
cat ion [UML 1999]) a s so c ia ted wi th the typ e o f the des ign e l em en t may be
used for ma tc h in g cr i t er i a H ow ev er , wi th in the scope o f the research
desc r ibed in this thesi s , ma tc h in g is on name only Based on the general
m a tc h i n g speci f ica t ion, each o f the e lements wi th in the scope o f the c o m p o s i
t ion re la t ionsh ip are co mp ar ed in order to es tab l i sh whe t he r they are co r r e
s p on d i ng (see “ Scope o f Co m p os i t io n R e la t i o ns h i p ” on page 83 for more
detai ls on the scope o f co mp os i t i on re la t ionsh ips) F igure 22 i l lust ra tes how

81

Composition of 00 Designs The Model Specifying Composition

Exceptions

mul t iple compos i t i on re la t ionsh ips as i l lus t ra t ed in Figure 21 can be avo ided
th r oug h the use o f general ma tc h in g cr i ter i a

a i | match) name] S3 |

ClgSSA t r ~ ~ v ClassA

□
M W 0

1 ,--------;----------

Figure 22 Implicit Correspondence

In F igure 22 the fo l lowing e le me nts are co r re sp on d in g

• [Eg4 3 1] Subjec t S I cor responds wi th sub ject S2

• [Eg4 3 2] Class S i C l a s s A cor r es po nds wi th c lass S2 C l a s s A (from
ma tc h in g cr i ter ion speci f ied in [Eg4 3 1])

• [Eg4 3 3] At t r ibu te S i C l a s s A a cor r es po nds wi th a t t r ibute
S2 C l a s s A a (from matc h ing c r i ter ion speci f ied in [Eg4 3 1])

• [Eg4 3 4] Opera t ion S I C l a s s A o p l co r respon ds wi th opera t ion
S2 C l a s s A o p l (f rom ma tc h in g cr i ter ion speci f ied in [Eg4 3 1])

A compos i t i on re la t ionsh ip with match [name] impl ici t co r r es po nde nc e
spec i f i e s that iden t i f ica t ion o f co r re sp on d in g e lements is on the values o f the
name proper ty All co m p o n en t s o f co mp o s i t e s are sub ject to this check for
co r re sp o n de nc e H ow eve r , in so me cases , the re may be except ions , where
e l em ent s o f the same name are not intended to co r resp on d Com pos i t ion re la
t ionsh ips be tw een the excep t ions wi th a dontMatch spec i f i cat ion speci fy
tha t those e lements do not co r resp on d This speci f ica t ion t akes p re cedence
ov er any re la t ionships be tw een the ir owners (see “ Scope o f C o m pos i t ion
Re la t i o n s h i p ” on page 83 for more detai ls)

match[name] S2 |

OessA t V ' ClassA

H 0 dontMatch H H
' ~ ~ ~ "

> 0 0 0
■

Figure 23 DontMatch Correspondence

82

Composition of 00 Designs The Model Specifying Composition

S c o p e o f
C o m p o s i t i o n
R e l a t i o n s h i p

In Figure 23 the fo l lo wi ng e lements are co r r esp o n d i n g

• [Eg4 3 5] Sub jec t S I cor r esponds wi th sub ject S2

• [Eg4 3 6] Class S I C l a s s A cor re sp on ds wi th class S2 C l a s s A (from
ma tc h i n g cr i t er i a speci f ied in [Eg4 3 6])

• [Eg4 3 7] At t r ibu te S i C l a s s A a cor r esponds with at t r ibu te
S2 C l a s s A a (f rom ma tc h i n g c r i t e r i a speci f ied in [Eg4 3 6])

• [Eg4 3 8] Opera t ion S I C l a s s A o p l cor r esponds wi th opera t ion
S2 C l a s s A o p l (f rom ma tc h in g cr i t er i a speci f ied in [Eg4 3 6])

• [Eg4 3 9] Opera t i on S I C l a s s A op 2 co r respon ds wi th opera t ion
S2 C l a s s A op2 (f rom ma tc h in g cr i t er i a speci f ied in [Eg4 3 6])

Opera t ion S I C l a s s A op 3 does no t co r resp on d wi th S I C l a s s A op3

because o f the re la t ionsh ip wi th d o n t M a t c h speci f ied, and the refo re they
are t r eated as separa te e l e me nts m the in tegrat ion p rocess

The speci f ica t ion o f compo s i t io n in a co mp os i t i on re la t ionsh ip be tween two
c o m p o s ab le e l em ent s app l i e s to all e l ements at l evels o f the sub ject tree
lowe r than the e le me nts r e l a t ed by the re la t ionship , except for those e l ements
w h er e add i t iona l r e l a t ionships are def ined The lower levels to which c o m p o
s it ion re la t ionsh ip spec i f ica t ion app li es are ca l l ed the sco p e o f the c o m p o s i
t ion re la t ionsh ip For exam ple , in F ig ur e 20 on page 80, all des ign e lements
in the t ree are wi th in the scope o f the re la t ionsh ip be tw een sub jec t SI and
sub jec t S2

With in the main con text o f the co mpos i t ion (that is, t he compo s i t io n re l a t ion
ship be tw een the input subject s - see “ Spec i fy ing In p u t s ” on page 79), a d d i
t ional compo s i t io n re la t ionsh ips may be de f ined be tween e lements at a lower
level o f the t ree - sub ject to cer t ain ru l es 5 Fo r example , in F igure 24, a d d i
t ional co mp os i t i on re la t ionships are speci f i ed at l evels o f the t ree lower than
the re la t ionsh ip b e t we en the subject s

5 See “Rules for Specifying a Composition Relationship” on page 84 for a discussion on
some rules

83

Composition of 00 Designs The Model Specifying Composition

S 1

Designer
View

Tree
Representation

Î3J
Figure 24 Multiple Composition Relationships

Precedence Composition relationships between elements take precedence over relation

ships at a higher level in the tree For example, looking at the tree representa

tion in Figure 24, the elements S I C l a s s B o p 3 and S2 C l a s s D o p4 are

composed based on the specification of the composition relationship marked

[3] That is, regardless of the integration specification specified in relation

ships [1] or [2] , these elements are composed only based on what is speci

fied in [3] Similarly for the composition of S I C l a s s B and S2 C l a s s D

These are composed based on the specification in the relationship marked

[2] , though S I C l a s s B o p 3 and S2 C l a s s D o p 4 are excluded because of

their participation m another relationship

R u l e s f o r
S p e c i f y i n g a
C o m p o s i t i o n
R e l a t i o n s h i p

As with any design construct, rules are defined to ensure the validity of com

position relationships This section only addresses general rules for composi

tion relationship well-formedness that serve to describe the subject-oriented

design model For the full list of well-formedness rules for composition rela

tionships in the context of the UML see “ Chapter 5 Composition Relation

ship An extension to the UML Metamodel” on page 109, and for rules

directly related to integration strategies, see “ Chapter 6 Override Integra

tion” on page 127, and “ Chapter 7 Merge Integration” on page 155

Inputs are the [Rule 1] Composition relationships may only be specified between
Same Type elements o f the same type

In the subject-oriented design model, inputs to a particular com po sition rela

tionship must be the same type Some work in the database field where mte-

84

Composition of 00 Designs The Model Specifying Composition

Context for
Composition
must be Speci
fied

Inputs to a com
position relation
ship at lower level
to their corre
sponding parents

grat ion o f schemas is the focus (for exa m ple [Bat i rn et al 1986]) , def ines
equ iva le nce s be tw een di f fe rent cons t ruc t s in the da t abase mod e l One e x a m
p le is w h er e a co nce p t m ig h t be m o d e l l ed as an a t t r ibute in one schema, and
as a separa te ent i ty wi th a r e l a t ionsh ip in ano the r The app l i ca t ion o f this
level o f f l exibi l i ty to integrat ion wi th in the ob je c t -o r i e n t ed mo de l l ing pa ra
d igm remains an inte res t ing a rea for fu r ther re sea rch The res t r i c t ion def ined
here is in keep ing with s imi lar r e s t r i c t ions de f i ned for integrat ion in the c o m
posi t ion o f mu l t i -d im en s i o n a l concerns im p le m en te d in Hyper / J , [Tarr &
Os she r 2000] and also the aspec t -o r i en ted p ro g ra m m i n g mod e l im plemented ;
in Aspec t J [Kicza les & Lo pes 1999] T hes e are the mos t l ikely can d ida tes for
d irect p ro g ra m m i n g suppor t for the su b je c t -o r i en ted des ign model (see
“De fe r r in g Sub jec t C o m p o s i t io n ” on page 78) , and so this res t r i c t ion is c u r
rent ly not seen as an issue

[Rule 2] A compo s i t io n re la t ionsh ip mus t be speci f ied be tween
input subject s to def ine the con tex t for com po s i t io n o f input s to an
ou tpu t subject , and a con tex t for compo s i t io n re la t ionsh ips at lower
levels o f the sub jec t t ree

[Rule 2] has been p rev ious ly d i scussed in “ Spec ify ing I n p u t s ” on page 79

[Rule 3] Co m p os i t io n re la t ionsh ips may only be speci f ied be tween
e lements wh ose paren ts are co r re sp on d in g , and the re fo re are
integrated in the resul t

Co m p os i t io n o f e l e me nts to a r e sul t r equ ires a con tex t and nam espace wi th in
wh ich to p lace the co m p o s ed e le m ent Recal l the t ree s t ruc tu re o f a des ign
sub jec t desc ribed in “Tree S t ru c t u re ” on page 72, wh ic h i l lus t ra ted composa-
ble e l e me nts as e i the r comp os i t e s or p r imi t ives , w her e comp os i t e s conta in
p r imi t ives , and some may al so contain o ther comp os i t e s In o rder to ma inta in
thi s t ree s t ruc ture in the ou tpu t des ign subject , each co mp os ed e lem ent must
be p laced in an ap pro pr ia te no de o f the t ree As i l lus t ra ted in Figure 25, a
compo s i t io n re la t ionsh ip be tw een e lements where the paren t s are not c o m
posed l eads to an unscop ed na m e sp ac e wi th in which to place a resul t o f such
a co mp os i t ion

85

Composition of 00 Designs The Model Specifying Composition

Participation tn
multiple composi
tion relationships

m eternarne]

V i op3 op4 att2 cp4 opS

V^rMidt In ClasiA composition) /
y

Where does result 90">
Unscoped and so relationship ill formed

Figure 25 Composition Relationships and Corresponding Parents

An impl ica t ion o f this ru le is tha t all i nput s to a compo s i t io n re la t ionship will
be at lower l evels o f the t ree to the ir co r re sp o n d i n g paren t s For exam ple , in
F i gure 26 the co mp os i t i on re la t ionsh ip ma rke d [1] has been de f ined as the
re la t ionsh ip set t ing the con tex t for the compo s i t io n to an outpu t (see [Rule
21) A fu r ther compo s i t io n re la t ionsh ip b e t w een S I S3 and S2 v iola tes [Rule
3J, when de f i ned wi th in the con tex t o f the re la t ionsh ip ma rk ed [1] The rule
avo ids di f f i cul t ie s which this case may have p res en te d The na me spa ce
wi th in which to p lace the co mp os ed e lements o f S I S3 and S2, in the c o n
tex t o f a co mp os i t i on be tween S I and S2, is am big uo us O f course, in a d i f
fe ren t con text , as a compos i t i on to a d i f fe ren t ou tpu t , a r e l a t ionship between
S3 and S2 may be va l id The compos i t i on re la t ionsh ip be tween S i S4 and
S2 S5 (mar ke d [3]) does not p resen t the same dif f icul ty , as the namesp ac e
for the resul t is in the con tex t o f the ou tpu t o f the co mp os i t i on o f S I and S2

Figure 26 Composition Relationships at the Same Level in Subject Tree

There is no res t r i c t ion to the n u m b e r o f r e l a t ionsh ips in which a des ign e l e
m e nt may pa r t i c ipa te Whi le ind ividual integrat ion s tr a teg ies may extend
res t r ic t ions in this area, the general compo s i t io n mod e l a l lows an e lem ent to

86

Composition of 00 Designs The Model Specifying Composition

par t i c ipa te in mul t ip le co mp os i t i on re la t ionsh ips , sub jec t to [Rule 31 For
e x am ple , the set o f co mp os i t i on re la t ions h ips dep ic ted in F ig ure 27 are p o ss i
ble

maternons}'
✓ MU

Figure 27 Participation in Multiple Composition Relationships

Here , wi th in the con tex t o f the compo s i t io n re la t ionsh ip be t we en subjec t s SI ,

52 and S3 (mar ked as [1]), S I C l a s s A par t i c ipa tes in two d i f fe ren t exp l i c i t
c o mp os i t i on re la t ionsh ips ([2] wi th S2 C l a s s G and [3] with
53 C l a s s E) From these two re la t ionsh ips , the re wil l be two resul t c lasses
wi th in the co m p o s ed SI , S2 and S3 whic h conta ins an in tegra t ion invo lv ing
S I C l a s s A S I C l a s s A is a l so co m p o s ed wi th S3 C la s s A , as they cor r e
spon d becaus e o f the con tex tua l r e l a t ionsh ip (m ark ed as [1]) which speci f ie s
ma tc h in g by name for iden t i fy ing co r re sp o n d i n g e lements

This exam ple al so i l lus tra tes tha t co mp os i t i on re la t ionsh ips at lower l evels
do not have to have the same n u m b e r o f input s as compo s i t io n re la t ionships
at h igh er l evels in the t r ee Th is increases the f l exibi l i ty o f the k inds o f c o m
posi t ions poss ib le wi th in the con te x t o f the compos i t i on o f one ou tpu t s u b
je c t

I n t e g r a t i o n o f The integrat ion o f inpu t subject s to p ro duc e an ou tpu t sub jec t is at the core o f
I n p u t s compo s i t io n o f des ign mode l s The se ma nt ics o f the integra t ion s tr ategy mus t

detai l how co r re sp on d in g e le me nts are r ep rese n te d in the ou tpu t sub ject (that
is, t he o v er l ap p in g e lements) , and how e lements wi th no cor res po nd in g e l e
ments are cate red for in the ou tpu t subject s Des ign e le me nts may be in te
g ra ted in many di f fe rent ways , and it is not the in ten t ion o f the subject -
o r i en ted des ign m o d e l to r es t r i c t the k inds o f integrat ion wh ic h can be done
In this thesi s , two pa r t i cu la r k inds are descr ibed - override and m erge How-

87

Composition of 0 0 Designs The Model Specifying Composition

O v e r r i d e In te
g r a t i o n

Specifying
Override Inte
gration

ever , s ince it is not poss ib le to ant i c ipate all the d i f fe ren t kinds o f integra t ion
tha t mig h t be ne eded , it is the pol i cy o f sub jec t -o r i e n te d d esign to m a k e the
in tegra t ion semant ics as extens ib le as poss ib le Thi s is done by abs t ract ing
the integrat ion speci f ica t ion par t o f com po s i t io n re la t ionsh ips at the m e t a
l evel , the reby a l lowi ng it to be ex t ended as requi red (see “ Chap te r 5 C o m p o
si t ion Re la t io nsh ip An ex tens ion to the U M L M e t a m o d e l ” on page 109 for
more detai ls)

An exi s t ing des ign sub jec t is chan ge d by c rea t ing a new des ign subject that
con ta ins the des ign o f n ew behav iour , and o v errid in g t he exi s t ing des ign s u b
j e c t wi th this n ew des ign sub jec t O ver r i d ing an exi s t ing des ign subject is
speci f ied wi th com position re la tio n sh ip s wi th override in tegration , speci f ied
b e t we en the ex i st ing des ign sub ject and a new des ign sub ject

Ov er r id ing des ign e lements is also poss ib le in the overa l l con te x t o f mul t ip le
subject s be i ng me rg ed Th is is ana logous to des ign e lements at lower level s
o f the sub ject t ree be ing co m p o s ed in a cer t ain way , as speci f i ed by a c o m p o
s i t ion re la t ionsh ip which t akes p rec ed en ce o f a co mp os i t i on re la t ionship at a
h igh er l evel o f the sub jec t tree

C o m p os i t io n re la t ionships wi th ov er r ide integrat ion speci fy w hich des ign
e l em ent s in the ex i s t ing des ign sub jec t are to be over r i dde n by des ign e l e
ments in the new des ign sub ject Any des ign e le me nts in the exi s t ing des ign
sub jec t that are not over r idden by des ign e le me nts in the new des ign sub ject
are added to the resul t un ch an ge d Any des ign e le me nts in the new des ign
sub jec t that do not overr ide des ign e le me nts in the exi s t ing des ign subject are
added to the resul t

As wi th all k inds o f in tegrat ion, the over r i dde n des ign subject i t se l f r emains
u n ch an ge d , as the resul t o f integrat ion is to a new ou tpu t sub ject (see d i s c u s
s ion in “ C o m p os in g Des ign Sub je c t s” on page 75) Th ere fo re , integra t ion
does not imp ac t any compos i t i on speci f i cat ions in which the over r idden s u b
j e c t has p rev ious ly pa r t ic ipa ted I f it is app ropr ia te for the ou tpu t o f the o v e r
r ide integrat ion to pa r t i c ipa te in any such co mpos i t ions , then the outpu t
sub jec t mus t be exp l i c i t ly inc luded in those comp os i t ion s

Ov er r ide in tegrat ion is speci f i ed by f i rst se lect ing the input s to the c o m p o s i
t ion re la t ionsh ip , the des ign e l em ent to be ov er r idden , and the des ign e lement
co n ta in ing the over r id ing speci f i ca t ion Over r i de in tegra t ion as par t o f a
compo s i t io n re la t ionsh ip is r ep resen ted by a s ing le a r rowhe ad at only one
end o f the da sh ed arc, which ind icates the e l em en t to be over r i dde n In g e n

88

Composition of 0 0 Designs The Model Specifying Composition

General
Semantics

eral , t he scop ing and rules a s socia ted wi th co mp os i t i on re l a t ionsh ips apply
wh en over r ide in tegrat ion is speci f ied, wi th two excep t ions

[Over r ide Rule 1] A co mp os i t i on re la t ionsh ip wi th overr ide
integrat ion may only be speci f ied be tween two co mp o sab le
e l ements Tha t is, one co mp o sab le e l em ent is over r idden by one
o the r co mp o sab le e l ement

Ov er r id e in tegra t ion chan ges the spec i f ica t ion o f an e l em en t to be o v er r i d
den Thi s rule is inc luded becaus e wi tho u t it (that is to a l low an e lem ent to be
over r i dde n mul t ip le t imes by d i f fe ren t e l em ents) the re may be unan t i c ipated
resul ts W i th ou t expl ic i t o rde r ing o f the d i f fe ren t in tegrat ions , it is not p oss i
ble to p red ic t the final spec i f ica t ion o f the over r idden e le m ent General
o rd e r i ng o f mul t ip le co mp o s i t io n s is cu rren t ly no t suppor ted in the sub ject -
o r i ented des ign mode l , but r emai ns an in terest ing area for future r esearch

[Overr ide Rule 2] Wi th i n the con te x t o f a single com pos i t ion , a
co mp o sab le e l e m ent m a y only pa r t ic ipa te in one co mp os i t ion
re la t ionsh ip as an over r i dde n e lem ent

This ru le is an ex ten s ion to [Over r ide Rule 1J} as the same a rg u m e nt app l i e s
in the con tex t o f a single compo s i t io n o f mul t ip le input subject s to a s ingle
ou tpu t sub ject

This sect ion i l lus t ra tes the genera l sem ant ics o f over r ide in tegra t ion For a
mor e compl e t e d i scuss ion on the impact o f over r ide in tegra t ion on all e l e
ment s cu rren t ly suppor ted by the sub jec t -o r i en ted des ign mode l , see “ Chap te r
6 Ove r r i de In te gr a t ion ” on page 127

[1] For each co m p o n e n t in the over r idden comp os i t e e l ement , the ex i st ence
o f a co r re sp on d in g e lem ent in the over r id in g co mp os i t e e l em en t resul ts in the
speci f ica t ion o f tha t e l em ent to be chang ed to tha t o f the co r re sp on d in g e l e
m ent F rom F igure 28, the fo l lo wi ng over r ides occur
• The speci f i ca t ion o f class S2 C l a s s A is chan ge d to the speci f ica t ion o f

S I C l a s s A as a resul t o f over r ide
• The spec i f ica t ion o f a t t r ibute S2 C l a s s A a is changed to the sp ec i f i c a

t ion o f S I C l a s s A a as a resul t o f overr ide

• The spec i f ica t ion o f opera t ion S2 C l a s s A o p l is changed to the s p ec i
f i ca t ion o f S I C l a s s A o p l , as a resul t o f over r ide

• The speci f ica t ion o f opera t ion S2 C l a s s A op2 is changed to the s p ec i
f i cat ion o f S I C l a s s A op2, as a resul t o f ov er r ide (recal l that e l ements
may pa r t i c ipate in mul t ip le co mp o s i t io n s f rom “ Par t i c ipa t ion in mul t ip le
compo s i t io n re l a t io n sh ip s” on page 8 6)

89

Composition of 00 Designs The Model Specifying Composition

• The spec i f ica t ion o f opera t ion S2 C l a s s A op3 is ch anged to the sp e c i
f i cat ion o f S I C l a s s A op2, as a resul t o f over r ide

No te tha t the re are two spec i f i ca t ions o f S I C l a s s A op 2 since it was
invo lved in two over r ide comp os i t i on s One o f these is r enam ed to avoid a
name c la sh (arbi t ra r i ly chosen) Whi le thi s co n fo rm s to the general c o m p o s i
t ion mode l , in this case the re is some scope fo r op t imisa t ion in fu ture work

[2] E lem ent s in an over r i dde n co mp os i t e that are not involved in a co r r e
s p ond enc e match are un changed For exam ple , f rom F igure 28, the a t t r ibute
S2 C l a s s A c has no co r re sp on d in g e l ements , and so is added to the resul t
un ch ang ed

[3] E le ments that are co m p o n en t s o f an over r id ing comp os i t e and are not
invo lved in a co r re s p o n de nc e match are added to the resul t For example ,
f rom F igure 28, the a t t r ibute S I C l a s s A b has no co r re sp on d in g e lements
in S2 Since it is a c o m p o n en t o f an over r id ing class name d C l a s s A , it is
added to the speci f i ca t ion o f C l a s s A as a resul t o f overr ide

[4] Chang es to an over r idden subject , ei ther as a resul t o f over r id ing o f co r r e
s p on d i ng e lements , or as a resul t o f add ing e lements direct ly to the o v e r r i d
den subject , may not re su l t in na m e c lashes In the even t o f na m e clashes ,
r e nam ing o f c l a sh ing e lements occurs For example , f rom Figure 28, o v e r r i d
ing opera t ion S2 C l a s s A op 3 with S I C l a s s A op2 resul ts in a name
c lash wi th an a l ready exi s t ing opera t ion S2 C l a s s A op2 To avoid this,
the na me o f the over r idden opera t ion is ch anged

Class Spiclflcation

I name C la ssA ^
isftoot true

I isLeaf- false
tru# J

Attnbiie Spec

owTO/Scope Instance |
I vtstoihty pubic '
| mutbpUcity
cfianQ&abiity non« I

' iargatScope Instance |
\ifHbatVatue nul

Operatori Spec

name op1
cmnerScope instance

I vi&bdity pubic
I concurmcy sequential I
rsQ ij&y falsa

I isftoot true
| isLeet false
. rsAbstract true [
BpsctiCQinn "

Class Specificalo^

jttame C lass A ^
isRoof fafse
isLeaf- false

ysAbstracI false)

Attrtnte Spec

ownorScope instane» |
vtstbMy privato

| m ti i U p b c i y 1 '
changeabiity none |
targetScope instance .

\mibalVattf« nul

Operrtion Spec

name op1
ownerScopo instance
visibility prvate
concurrency sequential
isQt/a/y true

I e/too/ false
| tsLeaf (also
/sA&stract fafse
apecifcBtan

Figure 28 General Override Semantics

90

Composition of 00 Designs The Model Specifying Composition

M e r g e In te
g r a t i o n

Specifying
Merge Integra
tion

[5] T h e co m p o s ed sub jec t m u s t con form to the we l l - fo r m ed n es s rules o f the
U M L Com pos i t ion o f input subject s to an ou tpu t sub jec t has the poten t i a l to
re su l t in p r ob lems in the ou tpu t sub jec t Thes e p ro b le m s are d i scussed in
“ 4 4 Analys i s o f the Outpu t o f a C o m p o s i t io n ” on page 95 Suff ice it to say
here that where it is appropr ia te , the su b je c t -o r i en ted des ign mode l will ass is t
in avo id ing so me k inds o f p ro b le m s In o ther cases , it is the responsib i l i ty o f
the des ig ner to w ork to ensure the we l l - fo r m ed n es s o f the ou tpu t o f the c o m
pos i t ion

Des ign subject s are merg ed by spec i fy ing co m p o s i t i o n re la t ionsh ips with
me rge in tegrat ion b e t we en the subject s to be me rg ed Com pos i t ion re la t ion
ships ident ify the subject s to be me rge d , and the des ign e lements wi th in those
subject s tha t speci fy the same concep t (i e co r resp on d to each o ther) and
should be cons ide r ed as one For ma ny e le me nts (for exam ple , c l as s if i er s and
a t t r ibutes) this me an s tha t the co r re sp o n d i n g e lements appear once in the
m e rg ed resul t In cases where d i f fe rences in the speci f i cat ions o f c o r r e s p o n d
ing des ign e le me nts need to be reso lved , compo s i t io n re la t ionships with
me rg e in tegra t ion speci fy gu ide l ines for the reconc i l i a t ion

Wi th me rg ed operat ions , the rece ip t o f a me ss ag e tha t may have ac t ivated one
o f the opera t ions m an inpu t subject , now resul ts in the ex ecu t ion o f all o f the
merge d opera t ions In te rac t ions may be a t t ached to a co mp os i t i on re l a t ion
ship wi th me rge integrat ion to de te rmine the o rde r o f execu t ion In general ,
co mp os i t i on re la t ionsh ips wi th me rge integra t ion co nform to the scoping and
genera l rules o f co mp os i t i on re la t ionships

Spec i fy i ng co mp os i t i on re la t ionsh ips wi th me rge integrat ion involves
• Spec i fy i ng the inpu t e l e me nts to be merg ed wi th in the con text o f an o v e r

al l compo s i t io n This con te x t does not have to be a compo s i t io n re l a t ion
ship wi th merge integrat ion speci f i ed H ow eve r , the e lements at lower
l evel s o f the t ree to a compo s i t io n re la t ionsh ip wi th merge integrat ion are
subject to this integrat ion un less fur ther r e l a t ionsh ips are de f ined

• For e l ements wi th in the scope o f m er g e in tegrat ion that are not o p er a
t ions , r econc i l i a t ion s tr a teg ies shou ld be a t t ached to the re la t ionsh ip to
ha nd le poss ib le conf l ic t s Reco nc i l i a t i on o f conf l i c t ing e lements is in t ro
duced in this sect ion, but fo r a m o re detai led d i scuss ion , see “Ch ap te r 7
M erg e In te g ra t io n ” on page 155

• F o r opera t ion e lements wi th in the scope o f me rge in tegra t ion where the
o rde r o f the ir execu t ion is impor tan t , an in teract ion spec i fy in g this o rder

91

Composition of 00 Designs The Model Specifying Composition

Specifying Recon
ciliation for Con
flicts

shou ld be a t tached to the co mp o s i t io n re la t ionsh ip Whe re the order o f
ex ecu t ion is no t impor tan t , and an in teract ion is not a t t ached to the c o m
posi t ion re la t ionship , m er g e in tegra t ion gen era tes in te ract ions wi th the
s peci f i ca t ion tha t each o f the opera t ions is execu ted Spec ify ing in te r ac
t ions for o rde r ing o f co r re sp o n d i n g opera t ion s execu t ion is in t roduced in
thi s sect ion , but for a m o re deta i l ed d iscuss ion , see “ Ch ap te r 7 Merge
In te g ra t io n ” on page 155

• Pa t t e rns o f merge in tegra t ion may be ident i f i ed and de f ined Some kinds
o f r eq u i rem en ts may have the same imp ac t on mu l t ip le c l a sses in a des ign
mod e l Fo r ex am ple , the logg ing o f opera t ion s requ i r eme nt in the SEE
ex am pl e impac t s all opera t ions in a mo d e l Th is pat te rn o f interact ion
be tween logg ing and opera t ions requ i r ing logg ing may be ident if i ed and
des igned separa te ly for compos i t i on w h er e requ i red See “ Chap te r 8

Com p os i t io n Pa t t e rn s ” on page 198 for detai ls on co mp os i t i on pat te rns

W h en subject s are me rge d , e l ements tha t are speci f ied to su ppor t c o r r e s p o n d
ing concep t s are ident i f i ed , and wil l be me rg ed in the co mp os ed subject -
tha t is, for mo s t k inds o f e l ements (excep t , for exam ple , opera t ions) , they
wil l ap pear once in the me rg ed sub ject Ho wev er , s ince cor r esp on d in g e l e
ment s may have been speci f i ed separa te ly , the re may be d i f fe rences in those
spec i f i ca t ions There is cons ide rab l e d i scus s ion in [Nuseibeh 1994] as to the
na tu re o f confl ic t b e t w een v iews , wi th a d i scuss ion bas ed a round d if fe rences
in t e rms o f incons i s t enc ies , confl ic t s , co n t r ad ic t ions and mis takes For the
pu rposes o f this work, a conf l i c t is def ined as fol lows

I f the values o f any o f the p roper t i e s o f co r res po nd in g des ign
e lements are di f feren t , then these des ign e le me nts conf l ic t

Di f fe rences be tween e l em ent s mus t be recon c i l e d for the co m p o s ed sub jec t
One approach to r ec onc i l ing conf l i c t is to a ss ign p re ced enc e to one o f the
sub ject s invo lved in the me rge Wh en a confl ic t occurs , the speci f ica t ion o f
the e l em ent in the sub jec t wi th p rec ed en ce is d ee m ed to be the spec i f i ca t ion
for the merg ed e le m ent

92

Composition of 00 Designs The Model Specifying Composition

U M L Attrffiute Specification

.owner a .
o w n e t S c o p » Instane*

I Wjb t t t y protected I
I m u t p t t c t y
cfrarrg&abifty none

' t a r g e t S c o p » instance 1
I t y p e String

mil

matclfnnnt]

ClassA

_ a C (Ì

opl op3 :

S2
ClassA

» H 0

op* °p2 J

ClassA

a El
op1 ôpi] [op3~| [op*]

U M L Attutale Specification

n a m v a
o w n w S t t f » Inslsnce

."H v t s t ü t y private

I
* t a r g e t s c o p e Instance
liype Irtleger

VA

Figure 29 Meî ge Integration with Reconciliation Specification

By add ing a p rec ed en ce ind ica tor to S I (see F ig ure 29), the resul t o f the
merge is
• S I C l a s s A a and S2 C l a s s A a co r re sp on d f rom m a t c h [name]

me rg e re la t ionsh ip be tw een S I and S2 Since the ir speci f i cat ions are d i f
ferent , and p r ece de nc e has been speci f i ed for S I (from compos i t i on re la
t ionsh ip wi th m er g e in tegra t ion be tw een S I and S2) , S I C l a s s A a is
added to the resul t

• S I C l a s s A b and S2 C l a s s A c cor respo nd f rom compo s i t ion re la
t ionsh ip be tw een the two Aga in, s ince the i r spec i f i ca t ions are dif ferent ,
and p r ece de nc e has been speci f ied for S I , S I C l a s s A c is added to the
resu l t

Ot he r r econc i l i a t ion s tr at egies are possible and are desc r ibed in “ Chap te r 7
M er g e In te g ra t io n ” on page 155

Specifying Inter- Wh en the o rde r o f ex ecu t ion o f co r r es p o n d i n g opera t ions is important , an
actions for Order
ing Execution of i nt e rac t ion spec i fy ing thi s o rde r shou ld be a t tached to the m er g e re lat ion-
Operations ,ship 6 In this case, the a t t ached in teract ion is added to the me rge d sub ject as

the spec i f ica t ion o f the beh av io u r o f co r re sp on d in g opera t ions (see Figure
30) All opera t ions in the co r re sp on d in g op era t ion set mus t be inc luded in
any in teract ion de fined

6 Where the order of execution is not important, no interaction need be attached in this
case an interaction is generated arbitrarily specifying when each corresponding opera
tion is executed

93

Composition of 00 Designs The Model Specifying Composition

Figure 30 Merge Integration with Interaction Specification

In this example , the resul t o f the merge is

• S I C l a s s A and S2 C l a s s A cor resp on d f rom m a t c h [n a m e] merge
re la t ionsh ip be tw een S I and S2 No confl ic t exi st s be tween the s p ec i f i c a
t ions , and so C l a s s A is added to the resul t

• S I C l a s s A a and S2 C l a s s A a co r re sp on d f rom m a t c h [n a m e]
merge re la t ionsh ip be tween S I and S2 N o confl ic t exists be t ween the
speci f ica t ions , and so C l a s s A a is added to the resu l t S I C l a s s A c
and S2 C l a s s A c have no co r re sp o n d i n g a t t r ibutes and so are added to
the resul t

• S I C l a s s A o p 3 , S2 C l a s s A o p l and S2 C l a s s A o p 2 co r r e
spond f rom the me rg e re la t ionsh ip be tw een them All the opera t ions are
added to the resu l t The in te rac t ions a t tached to the me rge re la t ionship are
added to the resul t ind icat ing tha t on rece ip t o f an o p l or an o p 2 or an
o p 3 messa ge , o p l fo l lowed by o p 3 fo l lowed by o p 2 are execu ted

N ot i ce in Figure 30 tha t opera t ions have been added to the resul t in order to
cap tu re the in teract ion be tween the co r re sp on d in g opera t ions For a full d i s
cuss ion on the op t ions cons ide red for cap tu r ing this behav iour , and a d es c r ip
t ion o f the approach t aken , see “ Impac t o f Merge on O p er a t io n s ” on
page 188

94

Composition of OO Designs The Model Analysis of the Output of a Composition

N o t a t i o n Co m p os i t io n re la t ionships are g raph ica l ly r eprese n te d wi th do t t ed arcs as
hav e been i l lus tra ted p rev ious ly in ex am ple s Co m p os i t io n re la t ionships with
m e rg e integrat ion are r ep resen ted wi th mul t i - he ad ed a rrows at the input s to
the arcs Co m p os i t io n re la t ionships with over r ide in tegra t ion are r ep resen ted
wi th s ing le - he ade d a r rows, wi th the a r ro w h ea d at the end o f the e lem ent to be
over r i dde n In many cases , add i t iona l r e l a t ionsh ip speci f icat ion (fo r example ,
impl ici t ma tc h in g speci f ica t ion such as m a t c h [n a m e]) may be a t t ached to
the re la t ionsh ip There are o the r cases , ho w ev er , w h en the exten t o f the s p e c
i f icat ion assoc ia ted wi th a compo s i t io n re la t ionsh ip make s it unwie ldy to
r e presen t the full spec i f ica t ion g raph ica l ly in a d ia gram It is r e c o m m e n d e d
tha t a CA SE tool su ppor t the selec t ion o f compo s i t io n re lat ionsh ips , and the
re pr esen ta t ion o f all the app ropr ia te a s soc ia ted speci f ica t ion in support ing
d ia logs

In all the exam ples i l lus t ra t ed in this thesis , each o f the compo s i t io n re la t ion
ships under d i scuss ion are r ep resen ted in the i l lus tra t ions How ev er , the
ex am ple s are very smal l , and it is easy to imag ine that the n u mb er o f c o m p o
si t ion re la t ionsh ips migh t be large w her e mode l s are large For this r eason , it
is a l so re c o m m e n d e d that a C A S E tool support s the represen t a t ion o f ju s t the
con tex tua l l evel compos i t i on re l a t ionsh ip (1 e , be tw een inpu t subject s) , wi th
d ia log su ppor t i l lus t ra t ing the detai l o f all compos i t ion re la t ionsh ips at lower
l evel s

The exam ples in the thesi s i l lus tra t ing t ree s tructures o f subject s are purely to
suppor t d i scuss ion and exp la na t io n o f the co mp os i t i on model , and are not
co ns ide red par t o f the notat ion

4 . 4 . A n a l y s i s o f t h e O u t p u t o f a C o m p o s i t i o n
W hen c o m p o s i ng des ign subject s , the re is poten t i a l for the resu l t ing sub ject
to be “ i l l - fo rm ed ” , f rom the pe r sp ec t ive o f the UM L w el l - fo r me dn es s rules
[UML 1999] One ex am pl e is tha t co mp o s i ng des ign subject s wi th di fferen t
genera l i za t ion g raphs may resul t in cycles , which are not pe rmi t t ed in the
UML There are many cases w he re compos i t i on may resu l t m a b reakage o f a
we l l - fo r m ed n es s rule o f the U M L It is the pol icy o f this compo s i t io n mode l
to pe r fo rm the co mp os i t i on as speci f ied by the des igner wi th compos i t ion
re la t ionsh ips , and h igh l igh t b rea k ag es to the we l l - fo r m ed n es s rules on the
resul t Th is is for the fo l lowing reasons

• D ifficu ltie s with au to m ated sem an tic re a so n in g A d i f fe ren t approach to
“ co mp os e f i rst - check l a t er” is to a t t empt to au t omat ica l ly “ f ix” e lements

95

Composition of 0 0 Designs The Model Analysis of the Output of a Composition

F o r w a r d i n g
o f R e f e r
e n c e s

tha t cause a b reakage o f the rules Thi s is poss ib le m ma ny cases and is
d i scussed in “F o rw ar d i n g o f R e fe re n ce s ” on page 96, but in some s i tu a
t ions , the solut ions to the cor rec t p roper t i e s to apply to e l ements in a c o m
posed subjec t are based on the domain o f the c o m p u te r system “ Chap te r
6 O v er r i d e In teg ra t ion ” and “ Cha p t e r 7 Merge In te gr a t ion ” i l lust ra te
e x am ple s in some detai l T h ou g h it is not adv i sab le or des i rable in many
s i tua t ions to au to m at e “ f ixes” , it is cons ide r ed mos t useful to comp os e
subject s as speci f ied by the com po s i t io n des ig ne r and h igh l igh t p rob lems
in the resul t The des ig ne r mus t solve the h igh l igh ted p roblems for the
resul t ing sub ject to be we l l - fo rme d

• U n an tic ip a ted re su lts Wher e the com po s i t io n p rocess guaran tees to p e r
form the compo s i t io n preci se ly as speci f ied by the de s igner wi th c o m p o s i
t ion re la t ionsh ips , the des igner is p ro tec ted f rom unan t i c ipa ted resul ts tha t
mi gh t oc cur i f automat ion o f f ixes to poten t i al b reak ag es occurs

• V alidation o f com position re la tio n sh ip s Ano the r approach to f ixing
poten t i al p ro b le m s is to hal t the compo s i t io n p ro cess at the first b reakage ,
t he reby en s u r in g tha t the resul t a lways co nf orm s to the we l l - fo rme d rules
o f the U M L H ow ev er , pe r f o rm ing the full com pos i t ion tes ts the full set o f
compo s i t io n re lat ionsh ips de f ined for the co mp os i t i on p rocess, and p ro
v ides the oppor tun i ty o f a s sess ing the impact o f compo s i t io n across the
wh ole des ign Th is may be requ i red to solve some we l l - fo r med ne ss p r o b
lems

T here are, how ev er , so me areas in which the compo s i t io n mod e l may ass is t in
a l l ev ia t ing dif f i cul t ie s in the resul t In “ For war d in g o f Re fe re n ce s ” on
page 96 an appro ach to m a i n t a i n in g ou t s ide re fe rences to e l ements changed
as a resul t o f compo s i t io n is d i scussed Othe r di f f i cul t ie s could be avo ide d by
ex te nd ing the rules a s soc ia ted wi th spec i fy ing co mp os i t i on re la t ionships and
are d i scussed in “ I l l -Fo rm ed nes s o f R e su l t ” on page 99 Thes e rules are not
i nc luded in this ve rs ion o f the compo s i t io n mode l

In some cases , integrat ion o f des ign e lements re sul ts in changes to an e l e
m en t in an ou tpu t sub jec t - for example , over r ide integrat ion changes the
spec i f ica t ion o f the ov er r id den e l em en t to tha t o f the over r id ing e lem ent E le
ments which re fe rence such an e l em ent in an input subjec t may the refore,
when t hem se l ves cop ied to the outpu t , have a d if f icul ty becaus e the ir r e fe r
enced e lem ent has chang ed For exam ple , in Figure 31, opera t ion
S 2 C l a s s A o p 3 has a pa ram et e r o f type C l a s s C , which is val id wi th in the
n am esp ac e o f S2 H o w ev er , wh en the e le me nts o f S2 are over r idden by the

96

Composition of 0 0 Designs The Model Analysis of the Output of a Composition

e le me nts in S I , in pa r t icu la r w h e n S2 C l a s s C is over r i dde n by S I C l a s s B ,
the resul t ing class in the ou tpu t is ca l l ed C l a s s B

S1S2

ClassB ClassA

-
opi op3

U M L "Operation Specificatoli

ne op3
' ownefScope instance '
I visibility public
concurrency sequential
jsQue/y false
parameter { x C la ssQ

The operation op3() has a parameter
referring to a class type whose name
has changed as a result of overriding

==> Car*didate for “forwarding of this
reference to the overridden dass m the
resuit

F ig u re 31 F o rw a rd in g R e fe ren ces to C o m p o se d E le m e n ts

This ex am ple i l lust ra tes tha t in add i t ion to co p y in g the comp os i t i on s o f e l e
ments to an ou tpu t , r efe rences to thos e e le me nts cou ld al so be “ f o rw a rd e d ” in
the same ou tpu t This case is not am bi g u o us as to intent , and the re fo re , the
s ub j ec t -o r i en ted des ign model suppor t s the fo rwa rd in g o f r e fe rences to
chan ged e lem ent s wi th in o ther e l ements to the ou tpu t sub ject

There are cases , how eve r , w h er e the re may be so m e am bigu i ty as to which
c o m p o s ed e le me nts in the resul t r efe rences shou ld be fo rwarded to This
occurs because o f the poss ib i l i t i e s a l lowi ng des ign e lements to par t ic ipa te in
mul t ip le co mp os i t i on re la t ionsh ips wi th in the same compo s i t io n con tex t (see
“ Par t i c ipa t ion in mul t ip le compo s i t io n re la t io ns h ip s” on page 86) Cons ide r
the exa m ple in F igure 32 B e cau se o f the par t ic ipa t ion o f S I C l a s s A in two
d i f fe rent compo s i t io n re la t ionsh ips wi th m er g e in tegrat ion, two c lasses to
wh ic h C l a s s A has cont r ibu ted app ear in the ou tpu t subject Th is causes
ambigu i ty o f fo rw ard in g for C l a s s X a in the resul t , s ince it has a type o f
C l a s s A

97

Composition of 00 Designs The Model Analysis of the Output of a Composition

R E S U L T

Figure 32 Ambiguities with Forwarding of References

To reso lve this am bigu i ty , an add i t iona l a t t ac h m en t to compo s i t io n re la t io n
ships is suppor ted This a t t achment , ca l l ed [f o r w a r d s] , exp li c i t ly sta tes the
compos i t i on to which a l l e l ements o f a pa r t i cu la r inpu t subjec t fo rwards
This a t t ach me nt may be added to any or all ends o f a compo s i t io n re la t io n
ship, but a r es t r i c t ion has been app li ed which neg a tes any ambigu i ty

[Forwards Rule 1] Wher e a des ign e lem ent par t i c ipa tes in mul t ip le
co mp os i t i on re la t ionsh ips wi th in a s ing le compo s i t io n con tex t , only
one o f those compos i t i on re la t ionsh ips may be ann o ta ted as
spec i fy ing the resu l t to wh ic h all r efe rr ing e le me nts wi th in the input
sub jec t fo rward

Figure 33 Resolving Ambiguities with Forwarding of References

Figure 33 i l lus tra tes the [f o r w a r d s] a t t ach me nt to the p revious exam ple
As speci f ied, any e lements in sub jec t S I will forward to C l a s s A _ C I a s s B in
the ou tp u t in this ex am ple , no an no ta t ion is requi red for e l ements re fe r r ing
to C l a s s B with in S2, or to C l a s s C with in S3, as each o f these only p a r t i c i
pate in one co mpos i t ion re la t ionship

98

Composition of 00 Designs The Model Analysis of the Output of a Composition

Discussion

l l l -F or me d -
n e s s o f
R e s u l t

Loss of Con
straints

Whi le the ambigu i ty re l at ing to fo rwa rd in g has been c leared up wi th this
anno ta t ion , the re is an impl ied res t r i c t ion in [Forwards Rule 11 Th i s rule
me an s tha t a l l o f the e lements in a pa r t i cula r input sub ject wh ic h refer to the
e l em ent pa r t i c ipa t ing in mul t ip le comp os i t i on s will refer to the sam e resul t in
the ou tpu t An a l te rnat ive to this appr oac h is to su ppor t the analysi s o f each
ind iv idual r e fe rence wi th in an inpu t sub ject and the selec t ion o f the pa r t i cu
lar fo rwa rd in g resu l t f rom mul t ip le co mp os i t ions for each one This is a more
f l ex ib le ap proach , and wil l be cons ide r ed for the sub jec t -o r i en ted des ign
mod e l in its fu ture i te ra t ions De ta i l ed resea rch is r equ i red to assess the su i t
abi l i ty o f the ap proach , as it may ca u se its own pro b le m s - for example , s pe c
i f icat ion o f fo rw ard in g for ind iv idual e l ements may p rove unwie ldy and
d if f icul t to ma in ta in H ow ev er , for the pur pos es o f this thesi s , the ambigu i ty
whic h is the cause o f d if f icul ty is c losed The pr i ce for the s implici ty o f the
so lu t ion is the lack o f f lex ib i l i ty

The cur ren t f l ex ib le appr oac h to a l low in g compo s i t io n o f any des ign e l e
ment s so long as they have the same type (and the ir paren ts co r res po nd) has
the poten t i a l to crea te o ther d i f f icu l t ie s Th is sec t ion looks at two areas o f
concern in par t i cula r

• Cons t r a i n t s on e lements speci f ied m inpu t subject s may be lost in the ou t
put as a resul t o f over r id ing or r econc i l i a t ion o f conf l ic t s

• E le me nt s which may be the same type , but which may be incompat ib le in
o ther ways , may be com p o se d

Ea ch des ign co ns t ruc t wi th in the U M L has a n u m b er o f p ropert ie s that p ro
v ide in fo r mat ion about , or cons t ra in t s on instances o f that cons t ruc t For
exam ple , a t t r ibu tes and opera t ions have a v is ibi l i ty proper ty which s tates
wh e t he r it is publ i c , p ro tec ted or p r iva te The par t i cula r semant ics o f a des ign
sub jec t may dictate the va lues o f such p ropert ie s for e l e me nts wi th in the s u b
j e c t as a w ho le H ow ev er , as i l lus tra ted in F igure 34, such const ra in t s may be
easi ly lost wi th in a co mp os i t i on con te x t as a resul t o f the use o f over r ide
integrat ion, and al so, r econc i l i a t ion o f conf l i c t ing e le me nts in me rge in tegra
t ion

In Figure 34, subject s S I and S2 are merged , w he re e lements wi th the same
name are co r re sp on d in g , and p re ced enc e is g iven to e l e me nts within S I in the
even t o f a confl ic t As a re su l t o f this co mp os i t i on speci f ica t ion ,
S I C l a s s A a and S2 C l a s s A a are co r r es po nd i ng , and the re fo re merg ed
H o w e v e r , the i r sp ec i f i ca t ions are d i f fe ren t (pa r t i cu la r ly , the values o f the

99

Composition of 0 0 Designs The Model Analysis of the Output of a Composition

Incompatible
Elements

v i s i b i l i t y proper ty conf l ic t) , but , because o f the p re ced enc e given to SI

in the co mp os i t i on re la t ionsh ip , the speci f i ca t ion o f C l a s s A a in SI is c o p
ied to the ou tpu t H ow ev er , this m ea ns tha t any e lements in S2 which worked
wi th C l a s s A a as a publ i c a t t r ibute no longer w ork O f course, that may not
have been a very ob jec t -o r i en ted appr oac h for those e lements , but n o n e th e
l ess, it i l l ust ra tes the po in t o f w he re di f f i cul t ie s can ar ise as a re sul t o f c o m
pos i t ion

UML "ABrlbLÌQ Spedflcatiwi
name a
cmnerScope Instance

I vtsbiUy private
I mubpbciy
cfìangoau

1 targetScopa Insto nc*
I type Irl egei
0WfeVeJbe rail

match [name]

✓ - “ ^

I o o n a r w n c y ■•quwitbl
ts Q u e r y false

I p a ra m e te r {x GassC}
isftocrf true

1 isieaf false
I isAbärad true

specificai ion

UML Attribut« Specification

», c

E H -

1

*" *
Cl.tsC

■ »«»Tw a ^
cwiwScop* Instane«

I vishRty public ■
I muMpBcity I
changoabMy nona .

1 fa/peiScop» Instance
I typ« Integer I
JnUaWakw ruil j

UML Operation Specifi caron

| n a m e o p 1 '
ownerSpqcw instance

I m s ib n ty public
I c o f j c u r æ n c r c « n e u r r » n t
L is O u e r y false
| p a r a m e t e r {x ClassQ
, ts R o o t true
' i s L e a f false
I is A b ä r a e t true

specJIcefon-

F ig u re 34 L o ss o f (som e) C o n s tra in ts in In p u t Sub je c ts

A more sym pa t he t i c ex am ple is the impact on the operat ion S2 C l a s s C o p l

as a resul t o f be ing over r idden by S I C l a s s D o p l The speci f i cat ions o f
the two o p l s are d i f fe ren t in the values o f the p roper ty c o n c u r r e n c y The
sem ant ics o f S2 may be such that exp ec ta t ions o f C l a s s C o p l are that it
wo rk s concur rent ly H o w ev er , as a r e su l t o f be ing over r i dde n by an o p l tha t
is speci f ied as sequent ia l , ex pec ta t ions o f co nc ur ren t beha v io ur speci f ied
wi th in the ou tpu t (cop ied f rom S2) will cause p r ob lems A no the r poss ib le
p rob lem wi th opera t ions not i l lus t ra t ed here is chang ing the v is ibi l i ty o f an
opera t ion f rom publ i c to p r iva te There is poten t i al for caus ing d i f f icu l t ie s
wi th chang ing the speci f i cat ions o f all p roper t i e s o f all cons t ruc t s in an o u t
put

Th e e x am pl es g iven m the p re v i ous sec t ion i l lus tra te d i f f icu l t ie s wi th c h a n g
ing the spec i f i ca t ions o f e l ements as a re su l t o f compos i t i on A no the r e x a m
ple o f w her e di f f i cul t ie s may ar ise in the ou tpu t subject exi st s where the
spec i f i ca t ions o f co m p o s ed e lements are each added to the resul t , but
merge d The semant ics o f me rg in g opera t ions adds all co r re sp on d in g opera-

100

Composition of 00 Designs The Model Analysis of the Output of a Composition

Discussion

t ions to the outpu t , and spec i f i e s tha t on ex ecu t ion o f one o f those opera t ions ,
all co r re sp o n d i n g opera t ions are execu ted Thi s beha v io ur has poten t i a l for
c o m p o s in g opera t ions which are semant ica l ly incompat ib le f rom an e x e c u
t ion per spec t ive

2*
mat certame]

n5raop3' \
l o w n w S c a p s instance
I v ia tx à ty public

c o n c u rre n c y tequenta!
I is Q u e r y false

p a r a m e t e r i)
'i t R o o t true
I i s L e a f false

i s A b s l r x L f i ts e
p̂ecificalon

S1S2
ClassA

Jst.ojtf) |S2_opl| S2_opl|

[öpi] [opz] [öpä] 0

Cûtafc_Ci«*ïA._cp30

I Cofab_Cta«A op2Q

Collab_Class*i_oplO
aClassA

op 1(x Integer) |

* -

|S2_pp1W

^ |S1_0P3Q

|S2_op30

r

name op2 \
lownerSccpe instance
,vieiii(%-protected •
concurrency guarded |

¡ i s O j e r y true
parameter I
IfsRooi false i
»si-eaf false
rs A b s tm c t true I

I vrstbiitiy prr/ate [
c o n c o r w n c y CDncurrentj
I is Q u e r y true

p a r a m e t e r {x Integer} I

I i s L e a f true
«Aijsiracf falsa
Vspeĉ OTton

Figure 35 Composing Incompatible Operations

Co n s i de r the ex am pl e in F igure 35 Three opera t ions are merg ed which have
d i f fe rences in the ir speci f i cat ions for every p roper ty o f the operat ion c o n
s truc t T h e semant ics tha t def ines tha t each o f th e co r re sp on d in g opera t ions
are execu ted means that the des ign spec i f ica t ion in the ou tpu t subject spe c i
fies (in the au tomat ica l ly g en era te d inte rac t ion) tha t the ex ecu t ion o f a publ i c
me th o d (o p 3) will also resul t in the execu t ion o f the p ro tec ted and private
me th od s A n o th er d if f icul ty is in rel at ion to the d i f fe rences in the n u m b er o f
pa ra m et e r s - f rom an imp le me nt a t ion pe r spec t ive , thi s is not current ly s u p
ported in p ro g ra m m i n g model s

This d i scuss ion also app li es for over r ide in tegra t ion, as it is cu rren t ly p o ss i
ble to over r ide one opera t ion wi th an o the r tha t is es sen t i a l ly incompat ib le
from an im p le me n ta t io n pe r sp ec t ive For example , they may have d if fer ing
p a r am et e r lists (for exam ple , cardinal i ty or types d i f fe rences) , which wo uld
have an impac t on c l i en ts o f the ov er r id den opera t ion

Loss o f const ra in t s for inpu t subject s and the poss ib le co mp os i t i on o f e s s e n
t ia l ly incom pa t ib le opera t ions is an area o f conc ern for the subjec t -o r i en ted
des ign mod e l An appro ach to avo id i ng such di f f i cul t ie s mi gh t be to bu i ld a
t ax on o m y o f rules a s soc ia ted wi th the val id i ty o f co m p o s in g e lements based

101

Composition of 00 Designs The Model Using Subject Oriented Design

on the va lues o f p roper t i e s (and the com bi na t ion o f va l ues o f p ropert ie s) , o f
e l e me nts o f all t ypes Fo r exam ple , one rule mi gh t be

[Examp le Rule] Only those e lements wi th the same v is ibi l i ty may be
co mpo se d

This appro ach requ i res that every poss ib le va lue o f every p roper ty o f every
cons t ruc t (and every co mb in a t io n the reof) , be exam ine d to assess whe the r a
rule guard ing aga ins t co mp os i t i on is r equ i red , w h er e va lues are d i f feren t
Ca ta lys i s has a smal l n u m b er o f rules for j o i n i n g c lasses that go some way
tow a rd s avo id i ng p rob lems wi th cons t ra in t s (for ex am pl e va r i able types must
be the same [D ’Souza & Wi l l s 1998]) , bu t these do not go far eno ugh to
avo id all poss ib le di f f i cul t ie s A full t a x on o m y o f rules based on all poss ib i l
i t ies o f values is r equi red ,

Such a set o f rules a s s oc ia ted wi th the spec i f ica t ion o f compo s i t io n re la t ion
sh ips wo u ld guard aga ins t the loss o f con s t ra in t s m inpu t subjec t s , and ensure
tha t incompat ib le e l e me nts are ne ver co m p o s ed Th is piece o f wo rk wo uld be
a va luab le add i t ion to the su b jec t -o r i en ted des ign mode l , and is adde d to the
future work

W i th ou t this set o f rules (as is the case wi th the mode l desc r ibed in this t h e
sis), it is the respons ib i l i ty o f the des igner to use caut ion wh en speci fying
co mp os i t i on re la t ionships The des igner shou ld ex amine the outpu t to ensure
the semant ics o f the input subject s are p rese rved Ho we v er , a l lowi ng the
m er g e integrat ion o f inc om pa t ib le e l e me nts re sul ts in a mode l o f opera t ion
execu t ion tha t is u n su p p o r te d bo th in U M L and p ro g ra m m i n g l anguages For
this r eason , and in the abs en ce o f an appro pr ia te t ax on o m y o f rules, the s u b
je c t -o r i e n t ed des ign mod e l deems operations with different specifications
to be non-corresponding, and therefore they will not be merged A single
excep t ion is ma de to this rule when the conf l i c t in spec i f i ca t ions is r el at ed to
the p a r am et e r l ists This case is p e rm iss ab le when the des ig ner speci f i es an
in teract ion deta i l ing the beh av io u r when these opera t ions are exec u t ed This
excep t ion is desc r ibed in more detai l in “ Confl i c t Ru les for M er g in g O p e r a
t io n s ” on page 192

4 . 5 . U s i n g S u b j e c t - O n e n t e d D e s i g n
In this sect ion, the phases o f a so f twa re d ev e l o p m en t p roce ss w he re the s u b
je c t -o r i e n t ed des ign model may be used are desc r ibed Then , some possible
issues wi th, and l imi ta t ions to, the usage o f the mod e l are d iscussed

102

Composition of 00 Designs The Model Using Subject Oriented Design

U s e f u l n e s s
t h r o u g h o u t
D e v e l o p
m e n t P r o
c e s s

Di f fe ren t phases o f so f tware d ev e l op m en t cyc les m a y gain d i f fe ren t k inds o f
benef i t s f rom d e co m p o s i ng des ign mode l s based on req u i rem ent s sp ec i f i c a
t ions For exam ple

• A new system is under design , an d the in itia l d esign p h a se is being

p la n n e d A p r imary goal f rom a p la nn i ng pe r s pec t ive may be to r educe the
cri t ica l pa ths o f par t s o f the system This ma x i m is es d es i gn er effor t by
mi n i mi s in g idle t im e gen era ted by wa i t ing for ar t efac ts on cr i t ical paths
By d e c o m p o s i n g based on requ i rem en ts , d i f fe ren t r eq u i rem ent s may be
d es igned concu r ren t ly by d i f fe ren t t eams In this s i tua t ion , the c o m p o s i
t ion re qu i r em ent is to am al gam at e (1 e me rge) all the d i f feren t des igns to
bui ld the co mp le te des ign The designers may a l so search for reusable
a r t efac t s p revious ly des igned e l sewhere , which migh t be integra ted with
the n ew des ign effor t

• New v ersio n s o f ex istin g system s a re requ ired , b a se d on ad d in g new f e a

tu res N e w requ i rem ent s for addi t iona l features are r ece ived As per the
ini t ial des ign e ffor t for p rev i ous ver s ions , separa t ing each new req u i r e
me nt into d i f feren t subject s suppor t s co nc ur r en t deve l opm ent , wi th the
co mp os i t i on requ i r eme nt be i ng to me rge the n ew des igns wi th the p rev i
ous ver s ion

• New v ersio n s o f ex istin g sy stem s a re requ ired , b a se d on ch an ges to the

su p p o rted b u sin e ss p ro c e s s The p r ev ious des ign o f cer t ain r equ i rements
is no longer ap p l i cab l e becaus e o f changes to the business p rocess
Re qu i r em en ts are r ece ived that des c r ibe changes to the b eh av iou r o f the
system as speci f i ed p r ev ious ly Again , the chan ged requ i rements may be
des igned separa tely in d if fe ren t des ign sub jec t s In this case, the in tegra
t ion o f the new des ign subject s r ep laces (1 e over r ides) the obsole te
r e qu i r em en ts in the p rev ious ve rs ion wi th the new des ign subject s

• E x istin g system needs to be p o rte d to d ifferen t tech n o logies For example ,
a fat c l ient im p le me n ta t io n is to be changed to wo rk in a d is t r ibuted e n v i
r o n m en t Here, it is l ikely that the whole des ign is af fected Even so, the
des ign o f the suppor t for the new e n v i r on m en t may be sep ara ted into a
des ign sub ject and merg ed wi th the exi s t ing subject s Or, i f expl ic i t s u p
por t for a di f fe rent e n v i r on m en t exi st s in a p r ev ious des ign, then this s u p
por t may need to be ov er r idden

• System ch an ge req u ests a re rece iv ed fro m test team s (or any in terested

p arty) Here , it has been de t e rm in ed tha t the beh av io u r as speci f ied in a
des ign sub jec t does not adequa te ly or cor rec t ly suppor t the requ i r eme nt A

103

Composition of 0 0 Designs The Model Using Subject Oriented Design

W h a t S i z e i s
a S u b j e c t ?

Duplication
of Effort

des ign sub ject may be des ign ed to co r rec t the ina dequac ies , wi th c o m p o s i
t ion requ ired to over r ide the p rev ious ef fo rt

It is not the inten t o f thi s thesi s to impose any pa r t i cu la r dev e l op m en t p rocess
for use wi th the compo s i t io n mode l Th is list o f poss ible areas o f use fu lness
th r ou g h o u t a de ve lo p m en t process is not exhaus t ive Di f feren t de ve lo p m en t
p rocesses may have d i f fe rent needs in di f fe rent s i tua t ions Since it is not p o s
s ib le to ant i c ipa te all the k inds o f p rocesses a so f tware de ve l opm en t ef for t
may employ , it is the approach o f this compo s i t io n mode l to suppor t the c o m
pos i t ion o f des ign mode l s in the mos t f l ex ib le way poss ib le Th is is ach ieved
by a l lowing the sub-d iv i s ion o f des ign mod e l s into w h a t ev er is mos t a p p r o
pr iate for the par t i cu la r d ev e l o p m en t ef for t , and su ppor t ing subseq ue n t c o m
posi t ion o f those model s

The su b je c t -o r i en ted des ign mode l does not exp li c i t ly r e co m m en d any pa r t i c
u la r “ s i ze” for a des ign sub jec t I f a des ign sub jec t is mea sur ed by the
n u m b er o f des ign e lements con ta ined wi th in , then the size will be d ic ta ted by
w h a t is necessa ry to suppor t the par t i cu la r r e qu i r em en t under des ign by that
sub jec t Other des ign app roaches p rov ide so me gu ide l ines as to the size o f
the ir d i f fe rent mode l s For exam ple , the O O R am mode l desc r ibe d in [Reen-
skau g et al 1995] p rov ides some loose gu ide l ines for the s ize o f role mode l s ,
based on the not ion tha t human shor t t erm me mo ry can m an ag e seven plus or
minus two no t ions at the same t im e The sugges ted gu idel ine , the re fo re, is
tha t a role mode l shou ld consi s t o f be tween f ive and n ine roles - whe re fewer
than f ive roles shou ld be syn thes i sed into a l arge r role mode l , and where c o n
s idera t ion shou ld be g iven to fur ther b reak i ng up a model wi th g reate r than
n ine roles Whi le the su b je c t -o r i en ted des ign mode l does d iscuss fur ther
d e co m p o s i ng des ign subject s where an ana lys i s o f the requ i re me nt it support s
l ends i t s e l f to such d iv i s ion (see F igure 15 on page 68), such deco mpo s i t ion
is r e co m m en d ed based on poss ib le logical d iv i s ions wi th in the requ i rement ,
and not the “s iz e ” o f the des ign subjec t

As desc r ibed in “ Ov er la p p in g Su b je c t s ” on page 70, it is expected that some
o f the s am e basic do ma in concep t s may be used in mul t ip le des ign subject s
Thes e domain conc ep t s may requi re d i f fe ren t spec i f i ca t ions in d i f fe rent sub
j e c t s to suppor t d i f fe ren t r eq u i rem ent s For ex am ple , r eq u i r em e nt s to check
and evalua te expres s io ns both w ork wi th a basic ex press ion , but have d i f fe r
ent be ha v iour to handle the d i f feren t r e q u i r em en t There fo re , there are b e n e
fits in the abi l i ty to des ign these pe r spec t ives separate ly The benef i ts

104

Composition of 00 Designs: The Model Using Subject-Oriented Design

How Complex
is Composition
Specification?

inc lude inc reased compre hen s i b i l i ty , t r aceab i l i ty , evo lvabi l i ty and reuse
capab i l i t i es . Ho wev er , the re is a l so som e poten t i a l for over lap where the
same concep t s do not requ i re di f fe rent spec i f i ca t ions for the di f feren t
r equ i r em ent s they suppor t . In this case, the re is a dang er o f dup l i ca t ion o f
de s igner ef for t in the des ign o f those concep t s . Thi s dang er is inheren t in this
ap proach , but can be a l lev ia ted wi th careful deco mp os i t i on o f the des ign
model s . In add it ion to dec o m p o s in g the des ign mode l s based on s truc tu ring
wi th the requ i rem en ts , con s ide ra t ion could also be g iven to areas o f the
do ma in w hich may be re-used uncha nge d in many parts o f the des ign. Such
a reas o f the domain migh t al so be separa ted into a des ign subject . In t e rms o f
ma tc h ing with req u i rements , this is v iewed as a case s imi lar to that i l lus
t ra t ed in Figure 15, wi th one d i f fe rence - one o f the subjec t s may be re-used
for mul t ip le r equ i rements .

Where the area o f over lap is very smal l , or not ob v ious to the des igners
im me dia te ly , it may be more d if f icul t to ini t ial ly as sess that it should be
d es igned as a separa te subject , and dup l i ca t ion o f effor t may occur . This is an
area o f concern which requi res fur ther r e sea rch to assess its impact . Pa r t o f
this a s se ssm en t migh t be to ca lcu la te the benef i ts o f deco mp os i t i on in this
a rea against the cos t o f some dup l i ca t ion o f e ffor t because o f over lap where
the spec i f i ca t ions for d i f feren t r eq u i rements are the same.

C o m p os i t io n spec i f ica t ion wi th com po s i t io n re la t ionsh ips is f l ex ib le in the
k inds o f co mp os i t i on s a l lowed . Wi thin the co n tex t o f a compo s i t io n re l a t ion
ship be tween e lements at the roots o f the sub ject t rees to be comp os ed , mul t i
ple o the r compo s i t io n re la t ionsh ips may be speci f i ed be tween e l ements at
l evels lower in the t ree, wi th the same e l ements possibly pa rt i c ipat ing in m u l
t iple d if feren t r e l a t ionsh ips . Thi s f l exibi l i ty means that the sui te o f c o m p o s i
t ion re la t ionsh ips wi th in the con tex t o f a com pos i t ion to a s ing le outpu t could
get qui t e complex . Where some coo pera t ion exi st s be tween the des ign t eams
o f subject s wi th po ten t i a l ly cons id e ra b le over lap, co mp os i t ion speci f ica t ion
could be as s imple as a s ing le com po s i t io n re la t ionsh ip be tween input s u b
jec t s . In thi s case, wi th some co mm u n ic a t io n , the re may be few d if fe rences in
the ov er lapp ing areas. On the o ther hand, one o f the benef i ts o f this approach
is the suppor t for des ign t eams w o rk in g concur ren t ly wi th, poten t i a l ly , lit t le
or no contac t be t ween them. Taken to the ex t reme , this mig h t resul t in c o n
s ide rab le d i f fe rences in the speci f i cat ions o f ove r l ap p in g concep t s . Thi s s i tu
at ion wo uld requi re mul t ip le com po s i t io n re la t ionsh ips to speci fy the
ove r l ap p in g c o n c e p t s ’ re so lut ion and integrat ion. In this case, co mpos i t ion

105

Composition of 00 Designs The Model Using Subject Oriented Design

F e a t u r e In t e r
a c t i o n P r o b
l em

speci f i ca t ion be co me s more compl ex For each so f tware dev e l op m en t p ro ject
us ing the sub jec t -o r i en ted des ign model , a ba la nc e shou ld be found be t ween
inc reas ing the l evel s o f co m m u n ic a t io n b e t we en d i f fe ren t des ign t eams and
the reby dec rea s ing the complex i ty o f compo s i t io n speci f i ca t ion ver sus total ly
i sola t ing the des ign t eams , the reby inc reas ing the l ikel ihood o f more co mpl ex
compo s i t io n speci f i ca t ion D ep en d in g on the pe r sonne l make -u p o f the o v e r
all t eam in t e rms o f l evels o f ex per ience and k n ow le d g e , and the phys ical
loca t ions o f the di f fe rent t eams, di f fe rent cho ices may be appropr ia te In
addi t ion, expe r i enc e wi th us ing the mod e l will p rov ide assi s t ance in both
d e t e rm in in g an ap pro pr ia te ex tent o f i so la t ion o f t eams, and also wi th ex p er i
ence wi th the speci f ica t ion o f co mp os i t i on re la t ionsh ips , the reby support ing
mo re i solat ion

Th e so -cal l ed fe a tu re -in te rac tio n p rob lem is wel l d o cu m en t ed for the t e l e
co m m u n ic a t i o n s doma in ([Jackson & Zave 1998], [Zave 1999], [Turner
1999]) , and seems l ike an ideal p rob lem for which sub jec t -o r i en ted des ign
wo uld find a so lu t ion - the p rob lem should , in some cases , inf luence the
cho ice o f input subject s to a co mp os i t i on The feature in teract ion p roblem is
de f ined in [Zave 1999] as

A bad feature in teract ion is one tha t causes the speci f ica t ion to be
incomple te , incons i s t en t , or un im p le m en ta b le , or tha t causes the
overa l l system beha v io r to be undesi rab le

[Turner 1999] desc ribes def in ing “con f l i c t s” or “c o m p e t e s ” or “ cons t r a i n t s”
r e l a t ionsh ips be tween features in o rder to captu re p ro b le m s be tween their
poten t i al in te ract ions The sub jec t -o r i en ted des ign mode l cu rren t ly does not
suppor t such re la t ionsh ips be tw een subject s , but su ppor t is possible with
so me ex tens ions to the mode l Fo r exam ple
• an ex tens ion o f the dep en d en cy re la t ionsh ip in UM L to inc lude s t e r eo

types to suppo r t s imi la r k inds o f d ep en de nc i es to those desc ribed in
[Turner 1999]

• an ex tens ion to the rules a s socia ted wi th the speci f i ca t ion o f co mp os i t ion
re la t ionsh ips to ca ter for such d ep en den c ie s when de fin ing inputs to a
co mp os i t i on For exam ple , a rule mi gh t be inc luded tha t s ta tes that s u b
je c t s that confl ic t may not pa r t i c ipa te in the same compo s i t io n contex t

An in teres t ing part o f thi s fu ture work is a s tudy o f how such ex t ens ions to
the su b je c t -o r i en ted des ign mode l will su ppor t the speci f i ca t ion o f how fea
tures interact and how they may confl ic t when or i f they are compo sed

106

Composition of 00 Designs The Model Chapter Summary

4 . 6 . C h a p t e r S u m m a r y
This chap te r p r ov ides a desc r ip t ion o f the su b je c t -o r i en ted des ign approach
to des ign ing so f tware Mot i va ted by the need to r e m ove scat te r ing and t a n
g l ing p ropert ie s in s t andard ob jec t -o r i en ted des igns , the model is based on
ad d ing d ec om po s i t io n capabi l i t i e s to s t ruc ture de s igns more direct ly with the
s t ruc ture o f r equ i reme nts spec i f i ca t ions Cor re sp o n d in g compo s i t io n ca p ab i l
i t ies suppor t cons id e ra b le f l exibi l i ty in the de co mp o s i t io n o f des ign model s

Firs t , this chap ter desc ribes how des ign mode l s may be d ec om po sed into
d esign su b je c ts A des ign sub jec t encap su la tes a r equ i reme nt , p rov id i ng a
co mp le te des ign for tha t r equ i reme nt , wi thou t r ed u n d an t des ign e lements
C h an g es to the des ign as a re su l t o f new req u i rem ent s may the mse lves be
enca ps u la ted into des ign sub ject s , thus maki ng chan ges to the des ign addi t ive
ra the r than invas ive Im pe d i m en ts to the reuse o f des igns were desc r ibed in
“ Ch ap te r 2 M o t i v a t i o n ” on page 11 as roo ted in the t ang l in g o f mul t ip le
r eq u i rem en ts in des ign mod e l s Wi th the appr oa ch de sc r ibed in this chap ter ,
each des ign sub jec t support s a single r equ i rement , where every e lement
wi th in the des ign subject is needed to su ppor t tha t r equ i rement , and no
r ed un da n t des ign e lem ent s are inc luded Even req u i rem en ts tha t c ross -cut
o th e r des igns may be des igned separate ly and wi thou t expl ic i t r efe rence to
o ther des ign model s

The model is then fu r ther deve lope d wi th a desc r ip t ion o f the means o f c o m
pos ing des ign subject s - com po sition re la tio n sh ip s Comp os i t io n re la t ion
ships ident i fy the subjec t s to be co mp o se d , over laps wi th in those subject s to
be in tegra ted as over l ap p ing concep t s , and how the e lements shou ld be in te
g ra ted C o n s i de rab le f l exibi l i ty is i l lus tra ted wi th d i f fe ren t comb ina t ion s o f
comp os i t i on re la t ionsh ips suppor ted Pa t t e rns o f compo s i t io n may be ident i
f ied and speci f i ed separa tely , p rov id ing su ppor t for the en cap su la t ion o f
c ros s -cu t t ing requ i rem ent s , and the i r re-use

The f r am ew o rk for compo s i t io n involves the compos i t i on o f input subject s to
an ou tpu t sub ject Thi s ch ap te r ana ly se s this ou tpu t and i l lus tra tes how d i f f i
cu l t ie s may occur as a re su l t o f compo s i t io n One ca tegory o f di f f i cul t ie s
re l at ing to r efe rences to in tegrated e le me nts is ha n d led by the compos i t ion
re la t ionsh ip So lu t ions to o ther ca tegor ies o f d i f f icu l t ie s - the loss o f input
subjec t cons t ra in t s and the poss ib le incompat ib i l i ty o f in tegra ted opera t ions -
are p roposed but not inc luded in thi s ve rs ion o f the model

The compo s i t io n re la t ionsh ip is a new des ign cons t ruc t which needs to be
added to the U M L m e ta m o d e l Th is is desc r ibed in “ Chap te r 5 C o m pos i t ion

107

Composition of 00 Designs The Model Chapter Summary

Rela t ionsh ip An ex tens ion to the UML M e t a m o d e l ” on page 109 A more
de tai l ed desc r ip t ion o f the se ma nt ics o f the two in tegrat ion s t r a t egies
desc r ibed in this research, over r ide and merge , are in “Ch ap te r 6 Over r ide
In te g ra t io n ” on page 127, and “Chap te r 7 Merge In te g ra t io n ” on page 155
H ow to speci fy pa t te rns o f co l l abora t ive be h av io u r is desc r ibed “ Chap te r 8
C o m p os i t io n Pa t t e rn s ” on page 198

108

Chapter 5: Composition Rela
tionship: An extension to the
UML Metamodel

The mode l for co m p o s in g ob jec t -o r i en ted des igns desc r ibed in this thesi s is
based on co m p o s in g a nu mb er o f input subjec t s into an integrated outpu t s u b
j ec t (“ Chap te r 4: C o m pos i t ion o f 0 0 Des igns : The M o d e l ” on page 64).
Ove r l ap p in g e lem ent s in input subject s are integrated as co r r esp on d in g c o n
cept s. Di f fe ren t kinds o f in tegra t ion s tr a teg ies are poss ib le . The means for
spec i fy ing compos i t i on p roposed and dev e loped in this thesi s is a new kind
o f des ign re la t ionship cal led a com position re lation sh ip .

This new des ign cons t ruc t for spec i fy ing how to co mp o se des ign mode l s (the
com po s i t io n re la t ionsh ip) needs to be de fined in the con tex t o f the des ign
l anguage used. Thi s chap te r desc r ibes how the U M L may be ex tended to
inc lude the not ion o f a compo s i t io n re la t ionship. A compos i t i on rela t ionship
is an ex tens ion to the l anguage , and as such, is de f ined wi th in the con tex t o f
the UM L. Thi s is ach ieved by ex te nd i ng the UM L M eta m o d e l as current ly
desc r ibed in [UML 1999].

5 . 1 . T h e U M L M e t a m o d e l
As s tated p rev ious ly in “4.1. D e co m po s i ng Des ign M o d e l s ” on page 65, a
des ign sub ject may , co nc ep tua l ly , be wr i t t en in any des ign l anguage , but the
focus o f this thesi s is the U M L [U M L 1999]. The UM L is the O M G ’s s t a nd
ard l anguage for ob jec t -o r i en ted ana lys is and des ign spec i f i cat ions . The
O M G curren t ly def ines the l anguage us ing a m etam odel. The me tamode l
de fines the syntax and semant ics o f the U M L , and is i t se l f par t ia l ly desc ribed
us ing the UM L. The m et am o d e l is desc r ibed us ing the views:

• Abs trac t syntax : Th is v iew is a U M L class d iagram sh owi ng the meta
c lasses de f in ing the l anguage cons t ruc t s (e.g. Class, At t r ibu te , Opera t ion ,
As soc ia t ion etc.) , and the ir r e l a t ionsh ips . An informal desc r ip t ion in natu-

109

Composition Relationship An extension to the UML Metamodel The UML Metamodel

ral l angu age desc r ibes each o f these cons t ruc t s and the i r r e l a t ionsh ips
The class d iagr ams include mul t ip l i c i ty and o rde r ing const ra int s

• W el l - fo rm ed n es s rules A set o f we l l - fo r m ed n es s rules, each o f wh ic h has
an informal desc r ip t ion and an OCL def ini t ion , speci fy ing cons tra in t s on
ins tances o f the me ta c lasses - 1 e the usage o f the UML language c o n
structs

• Sema nt ic s The mea n in gs o f the cons t ruct s in the l angu age are descr ibed
using natural l anguage

Becau se o f its usage o f natural l anguage, this desc r ip t ion o f the UM L is not a
comple te ly fo rmal speci f ica t ion, and the re fo re, it is a s sume d in this research
tha t am bigu i t i e s ex is t wi th in its speci f ica t ion T h e di f f i cul t ie s a ssociated
wi th ex te nd i ng the UM L (in thi s case, by add ing compo s i t io n capab i l i t i es)
are fu r ther c o m p o u n d e d by the fact that the U M L is in the ear ly s tages o f its
l ife, and is co n t i nuous ly underg o ing chan ge s - for example , work on Vers ion
2 starts this ye a r The chan ges are be ing ma de for a n u m b er o f r easons ,
inc lud ing correc t ions , and f i l l ing gaps in the exi st ing spec i f ica t ion

The ideal s i tua t ion in which to ex tend the UML wo uld be i f the s t andard l an
guage , upon which this w ork is based , were comple te ly and fo rmal ly def ined ,
and not un de rg o i n g change Since thi s is not the case, the p roblem mus t be
wo rk ed a round Prov id ing a comple te and fo rmal speci f ica t ion o f the s t a nd
ard U M L is b ey ond the scope o f this work, and en sur ing that it does not
un dergo fu r ther chan ge is be yond our cont rol , not to me n t ion inappropria te at
this t ime What is wi th in our cont rol , and wi th in the scope o f this work , is
p rov id ing a semi - fo rmal desc r ip t ion o f the syntax and semant ics o f c o m p o s i
t ion re la t ionsh ips , in a style co mp a t ib le wi th the cur ren t U M L speci f ica t ion
Since the U M L cou ld be cons ide red a m o v in g t arget , this wo rk anchors i t se l f
on the ve rs ion 1 3 beta R7 - the ve rs ion mos t cu r ren t when the bulk o f this
r e sea rch was pe r f o r me d Chang es to the U M L subseq uen t to this ver s ion will
not be ca tered fo r in this thesi s , but mus t be incorpo ra ted into future work in
this area

T h e co mp os i t i on capab i l i t i es p roposed and desc r ibed in this thesi s are i m p o r
t ant add i t ions to the U M L For this reason, the ir incorpora t ion into the s t a nd
ard U M L is cons ide r ed a h igh p rior i ty Th ere fo re , it is appropr ia te tha t the
desc r ipt ion o f this work is in a s imi la r s tyle to tha t o f the desc r ip t ion o f the
UML, and tha t r efe rences to cons t ruc t s o f the U M L are as they are descr ibed
by the O M G

110

C o m p o s i t i o n R e l a t i o n s h i p An e x t e n s i o n to the U M L Me t a m o d e l C o m p o s a b l e E l e m e n t s

This thesis, therefore, describes the extensions required to the UML with the

following subsections containing the relevant views of the extensions

• a subsection with UML class diagrams describing the constructs of the

composition, and their relationships This includes definitions of the

kinds of constructs that may participate in composition relationships

(called composable elements), followed by the composition relationship

itself

• a subsection containing the well-formedness rules describing the con

straints on instances of composition relationships

• a subsection containing descriptions of the semantics of composition rela

tionships This includes a description of how corresponding elements are

identified, and the semantics of forwarding references to elements in out

put subjects

Details of the semantics of the supported integration strategies, and their

impact on the language metamodel, are in subsequent chapters

5 . 2 . C o m p o s a b l e E l e m e n t s

As discussed in “Composable Elements” on page 73, not all of the constructs

supported within the scope of this work are composable elements - that is,

elements which may directly participate in composition relationships The

exclusion of some design elements is based on two criteria, first, whether the

element logically belongs to another element and the semantics of that ele

ment mean that it does not make sense for the element to be composed by

itself, and secondly, whether the element is considered to be a constraint on

another element One example of the first case is Parameter Parameters are a

logical part of the complete signature of an operation or method, and there
fore it does not make sense for them to participate in separate compositions

Another example is AssociationEnds These are logically part of the full def
inition of associations, and therefore it does not make sense for them to be

considered separately for compositions An example of the second case is

instances of Constraints, which are appropriately considered as part of the

model element to which they are attached Other model elements that are not

included are deemed part of the full specification of one of the model ele

ments that may participate

Figure 36 describes which constructs may be related by a composition rela

tionship The style for restricting the kinds of model elements that may par

ticipate in composition relationships is similar to the way that the UML

111

C o m p o s i t i o n R e l a t i o n s h i p An e x t e n s i o n to the U M L Me t a m o d e l C o m p o s a b l e E l e m e n t s

defines the model elements that may participate in generalization relation

ships In the UML, an abstract construct called GeneralizableElement exists,

from which any model element that may participate in a generalization inher

its Similarly, a new abstract construct, called ComposableElement, is cre

ated here to define which model elements may participate in a composition

relationship

Compos- A composable element is a model element that may participate in a composi-
ableElement , , ,,
Metaclass tl0n re*atlonship ComposableElement is an abstract metaclass

CompositeEle- A composite is a composable element that may contain other composable ele-
ment Metaclass

ments Components of a composite are not considered part of the full specifi

cation of the composite for the purposes of composition, and are therefore

considered separately for composition The relationships between the com

posites and their components are unchanged from the specifications in the

UML semantics, and are therefore not included here

CompositeElement is an abstract metaclass

PrimitiveEle- A primitive is a composable element whose full specification may be com-
ment Metaclass posed with other primitives

PrimitiveElement is an abstract metaclass

Subject Meta- A subject is a subclass of Package, and has a more restrictive set of elements
class

that may be owned or referenced than Package A subject may only own or

reference subjects, classifiers, associations, dependencies, generalizations,

constraints and collaborations

112

C o m p o s i t i o n R e l a t i o n s h i p An e x t e n s i o n to the U M L Me t a m o d e l C o m p o s i t i o n Re l a t i o n s h i p

5 . 3 . C o m p o s i t i o n R e l a t i o n s h i p

Composition relationships are the means for specifying how design elements

should be composed Composition relationships indicate elements that corre

spond, and how they should be integrated This section describes the syntax

of a composition relationship in the context of the UML metamodel The

meta-class diagram in Figure 37 illustrates

• that composition relationships are specified between composable elements

• that a contextual composition relationship between subjects defines the

context for a composition of subjects

• that composition relationships between design elements must be in the

context of a contextual composition relationship (except when the compo

sition relationship is itself the contextual one)

• that the specification of integration as an abstract metaclass attached to a

composition relationship supports its specialisation for different integra

tion strategies

• that the integration of design elements results in output design elements

that are the result of the composition

• that a contextual composition relationship defines a namespace for out

puts of the integration of design subjects and their components

The model supporting composition of design models also describes the need

for forwarding of references to elements from within an input subject to ref

erences to appropriate elements in an output subject

The meta-class diagrams illustrating the meta-class structure of a composi

tion relationship are not sufficient to define the rules associated with a well-

formed composition relationship Similarly to the UML metamodel specifica
tion, well-formedness rules for composition relationships are also described
in this section

Description Each of the metaclasses in the class diagrams defining the syntax of a compo-
of Constructs sition relationship are listed in this section with a description of their pur

pose For each metaclass, a table describing any attributes and/or

associations is included

113

C o m p o s i t i o n R e l a t i o n s h i p An e x t en s i o n to the U M L M e t a m o d e l C o m p o s i t i o n Re l a t i o n s h i p

Figure 37 Composition Relationship

Compos-
ableElement
Metaclass

A composable element may participate in a composition relationship

A ssocia tions

composedBy

usesForRefer-

enceForward-

ing

The associated composition relationships specify how this com

posable element will be composed with the other related com

posable elements

The associated composition relationship defines the composed

element to which references to its input element should forward

The cardinality for this relationship is 0 * because composable

elements may participate in multiple composition contexts, or

none at all A well-formedness rule is included to ensure that
there is only one forwarding composition specified within a sin

gle composition context

Com position Re- A composition relationship is a relationship between composable elements,
lationship Meta- , j
cjass recognising overlaps in concept specifications by identifying corresponding

elements, and specifying how elements are to be integrated

CompositionRelationship is an abstract metaclass

A ssocia tions

compose The composable elements related by this composition relation

ship

114

C o m p o s i t i o n R e l a t i o n s h i p An e x t e n s i o n to the U M L M e t a m o d e l C o m p o s i t i o n R e l a t i o n s h i p

CompositeCom-
position Meta
class

ContextualCom-
position Meta
class

integrate The integration strategy for this composition

context The contextual composition relationship that provides the com

position context for this composition

definesFor- All references to this input element (from compose relationship),

wardingOfRef- in its container subject, forward to the composed result specified

erences by this composition relationship

A composite composition relationship is a composition relationship between

two composites Composites have properties other than their components

[UML 1999], and these property specifications from corresponding compos

ites are integrated, as defined by the integration semantics A composition

relationship between composites specifies how correspondences between the

composites’ components are identified, and also specifies their integration

semantics Where a composite is itself a component of another composite, its

composition relationship takes precedence over any composition relationship

its owner may participate in

A ssocia tions

match The general matching criteria to be used to establish correspon

dence between the components of the composite

A contextual composition relationship defines the context within which a

composition of input subjects occurs All further composition relationships

between design elements that are components of the input subjects (that is, at

levels further down the subject tree - see “Tree Structure” on page 72) are

defined within the context of a contextual composition relationship - that is,

they must specify a co n tex t relationship to a contextual composition rela
tionship The contextual composition relationship also defines a namespace

within which it, and each of the composition relationships for which it pro

vides a context for, is contained

A ssocia tions

providesContextFor Any relationships between components of the input subjects

related by a contextual composition relationship are defined

within the context of this relationship

115

C o m p o s i t i o n R e l a t i o n s h i p An e x t en s i o n to the U M L M e t a m o d e l C o m p o s i t i o n R e l a t i o n s h i p

PnmitiveCom-
position Meta
class

Match Meta
class

Integration
Metaclass

definesModel- The namespace of the output subject resulting from the inte-

NamespaceFor gration of the input subjects and their components is defined

by the input subjects to the contextual composition relation

ship The name of the output subject is the concatenation of

the names of the input subjects

A primitive composition relationship is a composition relationship between

two primitives The full specifications of elements are composed with the full

specification of the corresponding elements A primitive composition rela

tionship takes precedence over any composition relationship between com

posites that own the primitives

With matching specified as part of the relationship, correspondence is estab

lished based on a match in the value of the name property of the elements

A ttribu tes

matchByName Indication that matching for correspondence identification is

based on the value of the name property of elements

dontMatch A composition relationship between elements that specifies

dontMatch indicates that those elements do not correspond

Integration is an abstract metaclass that defines how corresponding elements

are to be integrated The result of the integration of corresponding elements

is copied to one or more new design elements

As an abstract metaclass, it is the intent that Integration be specialised to

define the semantics of any integration strategy required How this is

achieved for override integration is described in “Chapter 6 Override Inte
gration” on page 127, and for merge integration in “Chapter 7 Merge Inte

gration” on page 155

A ssocia tions

composed The result of integration (as defined by the semantics of

subtypes of this metaclass) is copied to one or more new

model elements

owner The composition relationship to which the integration speci

fication is attached

116

C o m p o s i t i o n R e l a t i o n s h i p An e x t e n s i o n to the U M L M e t a m o d e l C o m p o s i t i o n R e l a t i o n s h i p

Well-Formed
ness Rules

Structural Rules

modelNamespace- The contextual composition relationship that defines the

DefmedBy namespace of the output subject that contains the result of

an integration between composable elements

The well-formedness rules described in this section are included to ensure

that composition of UML design models conforms to the general composition

model as described in “Chapter 4 Composition of 0 0 Designs The Model”

on page 64 The style used to define the rules is similar to that used to define

the well-formedness rules of the UML A textual description of the rule is

followed, where appropriate, by an OCL (Object Constraint Language

[Warmer & Kleppe 1999]) specification The reasons why these rules are

required are also included with each rule, which may, in some cases, be sim

ply a reference to the appropriate part of the description of the model in

“Chapter 4 Composition of OO Designs The Model” on page 64

[1] Composition relationships may only be specified between design ele

ments of the same type1

s e l f com pose-> forA ll (c l , c2 I

c l oclType = c2 oclType)

where s e l f is an instance of C o m p o sit io n R e la t lo n sh ip

This rule is included because it is required by the composition model as

described in “Inputs are the Same Type” on page 84

[2] PnmitiveComposition relationships may only be specified between prim

itive elements

s e l f c o m p o se -> fo rA ll (c I

c o c lIsK in d O f (P n m it iveE lem en t))

where s e l f is an instance of P n m itiv e C o m p o sit io n

In this metamodel, a distinction is made between composition relationships

that are between primitive elements and between composite elements since

the specification for composite elements includes the possibility of attaching

match criteria for components of the composite (see “Primitive vs Compos

ite” on page 74 for a description of the distinction between the two) Since

the distinction is made at the meta-levels, this rule is included to ensure that

primitive composition relationships are between primitive elements

1 Operations used in well-formedness rules (e g , compose) are defined in “Additional
Operations” on page 120

117

C o m p o s i t i o n R e l a t i o n s h i p An e x t e ns i o n to the U M L M e t a m o d e l C o m p o s i t i o n Re l a t i o n s h i p

j3| CompositeComposition relationships may only be specified between com

posite elements

s e l f c o m p o se -> fo rA ll (c |

c o c lIsK in d O f(C om positeE lem en t))

where s e l f is an instance of Com positeComposition

See previous rule, as discussion also applies to composite composition rela

tionships

141 A contextual relationship is not defined within the context of another

contextual relationship

s e l f o c l I s K in d O f(C on textúa1C om position) im p l ie s

s e l f co n tex t ísEmpty

where s e l f is an instance of C o m p o sit io n R e la t io n sh ip

A contextual relationship is a relationship between the roots of a subject tree

that defines the composition context for composition of the elements at lower

levels of the tree (see “Specifying Inputs” on page 79) Since this relation

ship is between the roots of the subject tree, it is meaningless for the rela

tionship itself to have a context, as there are no higher levels of the tree

|5| A contextual relationship is only defined between subjects

s e l f o c lIsK in d O f(C o n tex tu a lC o m p osit io n) im p l ie s

s e l f compose f o r A l l (c |

c o c l I s K in d O f(S u b] e c t))

where s e l f is an instance of C o m p o sit io n R e la t io n sh ip

This rule reinforces that contextual composition relationships must be
between subjects

|6| All kinds of composition relationships other than the contextual composi

tion relationship are defined with a co n tex t relationship to contextual
composition relationship

s e l f oc lIsT ypeO f (P n m itiv eC o m p o sit io n) or

s e l f oc lIsT yp eO f(C om positeC om p osit ion) im p l ie s

not s e l f co n tex t ísEmpty

where s e l f is an instance of C o m p o sit io n R e la t io n sh ip

The specification of composition of input subjects first involves the specifi

cation of a composite composition relationship between the roots of subject

118

C o m p o s i t i o n R e la t i o n s h i p : An e x t e n s i o n to the U M L M e t a mo d e l C o m p o s i t i o n R e l a t i o n s h i p

Common Inte
gration Rules

trees - that is, between the input subjects. This relationship defines a name

space within which composition of elements at levels of a subject tree lower

than the root occurs. Therefore, every composition relationship between lev

els of a subject tree lower than the roots must be defined relative to the com

position relationship between the roots of the tree (see “Rules for Specifying

a Composition Relationship” on page 84).

17J For each of the input design elements to a composition relationship, the

subject in which that design element is contained must participate in the con

textual relationship that defines the context of the composition relationship

s e l f . c o m p o se -> fo rA ll (c I

s e l f . c o n t e x t . c o m p o s e - > e x is t s (s |

c . ow ningSubject = s))

where s e l f is an instance of Composit io n R e la t io n sh ip

This rule reiterates that composition relationships between design elements

at levels of a subject tree lower than the root must be in the context of a con

textual relationship involving the root of each tree containing those elements.

18] Composition relationships may only be specified between elements whose

parents are corresponding, and therefore will be composed.

The specification of the semantics for identifying corresponding elements is

described in “Semantics for Identifying Corresponding Elements” on

page 122. These semantics should be considered for testing the well-formed-

ness of composition relationships against this rule.

|9) A composition relationship specified between input subjects defines the

namespace for composed elements in an output subject

s e l f . i n t e g r a t e . c o m p o se d -> fo rA ll (ou tE l |

s e l f . c o n t e x t . c o m p o se -> fo rA ll (s |

o u t E l . namespace =

s . nam espace. c o n c a t (o u t E l . nam espace))

where s e l f is an instance of Composit io n R e la t io n sh ip

As described in “Specifying Inputs” on page 79, a contextual composition

relationship defines the context for composition of all design elements within

the input subjects, providing a namespace for their integration.

119

C o m p o s i t i o n R e l a t i o n s h i p An e x t e n s i o n to the U M L M e t a m o d e l C o m p o s i t i o n R e l a t i o n s h i p

Forwarding [10] Where a design element participates in multiple composition relation

ships in multiple composition contexts, within a single composition context

only one of those composition relationships may specify the result to which

all referring elements within the input subject forward

s e l f u se sF o r R e fe re n c e F o r w a rd in g -> fo rA l l (c l , c2 |

c l <> c2 im p l ie s c l co n tex t <> c2 co n tex t)

where s e l f is an instance of ComposableElement

This rule is included to ensure that ambiguity for forwarding of references is

removed by having only one possibility defined (see “Forwarding of Refer

ences” on page 96)

)11] Within a single composition context, one composition relationship must

be defined as the one specifying the result to which all referring elements

forward

s e l f m p u tC o m p o sa b le E le m e n ts-> fo rA ll(cEl I

e x i s t s (cr C o m p o sit io n R e la t io n sh ip I

cr d e fin esF o rw ard in gO fR eferen ces i n c l u d e s (c E l)

and cr co n tex t = s e l f))

where s e l f is an instance of C ontextua lC om posit ion

A d d itio n a l O perations
(1] The operation compose returns a Set containing all related elements

compose S e t (ComposableElement) ,

compose - s e l f compose

where s e l f is an instance of C o m p o sit io n R e la t io n sh ip

[2] The operation composedBy returns a Set containing the composition

relationships in which a composable element participates

composedBy S e t (C o m p o s i t io n R e la t io n s h ip) ,

composedBy = s e l f composed

where s e l f is an instance of ComposableElement

[3| The operation composed returns a Set containing the composed ele

ments

composed Set(M odelE lem ent),

composed = s e l f composed

120

C o m p o s i t i o n R e l a t i o n s h i p An e x t e n s i o n to the U M L M e t a m o d e l C o m p o s i t i o n R e l a t i o n s h i p

where s e l f is an instance of C o m p o sit io n R e la t io n sh ip

[4] The operation ownmgSub] e c t returns the subject that owns the com-

posable element

owningSub j e c t S u b je c t ,

own m g Sub] e c t - s e l f namespace2

where s e l f is an instance of ComposableElement

15] The operation u se sF orR e feren ceF orw ard m g returns the set of

composition relationships defined as the result for forwarding of references

u se sF orR ef eren ceForw ardm g

S e t (C o m p o s i t io n R e la t io n s h ip) ,

u se sF orR ef eren ceForw ardm g =

s e l f u se sF orR ef eren ceForw ardm g

where s e l f is an instance of ComposableElement

|6] The operation p ro v id esC o n tex tF o r returns the set of composition

relationships for which the contextual composition relationship provides a

context

p ro v id e sC o n te x tF o r S e t (C o m p o s i t io n R e la t lo n sh ip),

p ro v id e sC o n te x tF o r = s e l f p ro v id e sC o n te x tF o r

where s e l f is an instance of C on textua lC om posit ion

]7] The operation m putCom posableElem ents returns the set of com-

posable elements that directly participate in composition relationships within

the context of a single composition

m putCom posableElem ents Se t(C om posab leE lem en t) ,

s e l f p r o v id e s C o n te x tF o r - > fo r A l l (c |

m putC om posab leE lem ents->un ion (c com pose))

where s e l f is an instance of C on textua lC om posit ion

2 The U M L M etamodel states that a “ nam espace is used for unstructured contents such as
the contents o f a package ” Since Subject is a stereotyped Package, then Nam espace is
considered in this thesis to be the designated name o f the subject container o f model ele
ments

121

C o m p o s i t i o n R e l a t i o n s h i p An e x t en s i o n to the U M L M e t a m o d e l C o m p o s i t i o n R e l a t i o n s h i p

Semantics
for Identify*
ing Corre
sponding
Elements

Where corresponding elements exist in input subjects, those elements must

be identified prior to integration This is because the semantics of integration

must take the potential for overlapping of subjects into account This section

describes the semantics of how corresponding elements are identified based

on a composition relationship The semantics of the other primary responsi

bility of a composition relationship - integration - are described in subse

quent chapters

[1] Correspondence between primitives is established either directly with a

primitive composition relationship, or indirectly based on matching from the

specification of its bounding composition Correspondence between primi

tives is not possible where the elements are components of non-correspond

ing composites See Figure 38

matchfname]

ClassA t ^ Classé

K C a

op2 i

4 Correspondences for Primitives

1 Attribute S1 C lassA a corresponds with S2 ClassA a
(from match(name] relationship between S1 and S2 this means
lhat Ihe atirfeides* cortanere ClassA match so check ta
rn atchoig primitives vurthm ClassA eslefclishes correspondence)

2 Attribute S1 C lassA b corresponds with S2 ClassA c
(from pmntoe composition between the two)

3 Operation S1 C!assA.op2 corresponds with S2 ClassA.op3
(from primitive composition between the two)

4 Operation S1 ClassA.op2 corresponds with S2 ClassA.op2
(from maternante] relationship between S1 and S2)

Figure 38 Correspondences between Primitives

[2] Correspondence between composites is established in two ways

• either directly with a general matching rule from a composite composition

relationship,

• or indirectly with a general matching from a composite composition rela
tionship between any owning composites at higher levels of the tree

Correspondence matching between a composite’ s components is established

• either by matching as specified in the composite composition relationship

between their owners,

• or by additional relationships which take precedence over the composite

composition relationship between their owners

Any elements that participate in composition relationship with a “dont-
Match” specification, do not correspond

122

C o m p o s i t i o n R e l a t i o n s h i p An e x t e n s i o n to the U M L M e t a m o d e l C o m p o s i t i o n R e l a t i o n s h i p

See Figure 39 for an illustration

Correspondences for Com posites

• Subject S1 corresponds with Subject S 2
(from composite relationship between S1 and S2)

• Class S1 ClassA corresponds with S2 ClassA
(from match [name] relationship between S1 and S2)

• Class S1 ClassB does not correspond with S2 ClassB
(from dortMatch relationship between the two)

• Class S1 ClassC corresponds with S2 ClassD
(from composite relationship between the two

Figure 39 Correspondences between Composites

Semantics
for Forward
ing Refer
ences to
Composed
Elements

The integration of corresponding input design elements results in an output

design element which may be different from the input design elements,

depending on the integration semantics As defined by this composition

model (see “Forwarding of References” on page 96), design elements that

reference any of the design elements that are input to a composition will ref

erence the resulting output element in the output subject

[1] Every integration strategy composes design elements to one or more out

put design elements that are added to the composed contextual namespace

Figure 40 Forwarding of References Semantics

Prior to the addition of each output design element, any references to other

design elements are examined These referenced design elements are them-

123

C o m p o s i t i o n R e l a t i o n s h i p An e x t en s i o n to the U M L Me t a m o d e l C o m p o s i t i o n Re l a t i o n s h i p

selves added to the same composition contextual namespace, either

unchanged or changed in some way as a result of the composition Where

changes to referenced elements has occurred, the semantics of forwarding

references to them requires that the change is reflected in the referring ele

ment See Figure 40 for an illustration

[2] Where a design element referenced in an input subject participates in

multiple compositions, the change to the reference is based on the composi

tion relationship specified as its forwarding composition See Figure 41 for

an illustration

UML "Operation Spec (Partial)

¡name opl
parameter {x ClassB)

^ uassft i
3} 1 * LU ^ J j
> /m, ,

I Changed prior to addition
| to com pot ad contextual
I subject due to femardnj

of reference* eeinant«
I Hier« is no cmbiguity as
I Ciassft » wily irvdvcd n
| relationship [I]

| UML Operation Spec (Pattid)

f neme. opl
| parameter (x ClassA ClassB)

 I _ ✓

UML At&ibute Spec (Partial)
 ----------- N

frame a
iype ClassA I

machinarme]
Changed prior to addition
to composed contaxtual
sutyect due to forward ng
of mftruMn semantic«
relating to the [forward«]
attachment to oomposltian
relationship [2j Ttie poesibdrty
closed off with th is attachment
is CIömACIossB from
relationship [I]

UM. Attribute Spec (Partial}
' \name a
lype aassA_ClassC I

 /

Figure 41 Forwarding Ambiguous References with Attachment to Relationship

[3] In addition to the situation where composable elements directly partici

pate in multiple composition relationships, ambiguity may also occur as a

result of implicit correspondence matching of elements from a composition

relationship at a higher level of the subject tree If there is no [forw ards]

attachment to a relationship in which the element causing the ambiguity

directly participates, forwarding occurs to the result of the implicit matching

This is because it is not appropriate to allow a direct [forw ards] attach

ment to a relationship between composite elements, as this relationship

affects all elements at levels lower in the subject tree, not just the element

causing the ambiguity See Figure 42 for an illustration

124

C o m p o s i t i o n R e l a t i o n s h i p An e x t e n s i o n to the U M L M e t a m o d e l C h ap t e r S u m m a r y

UML *X)peration Spec (Partial)

" Nf name op 1
parameter {x ClassB} '\ V

H L

ni

op1

Changed prwr to addition
to cotnpoeed contextual
•ubject due to fbrwardhg
of reference* eemontio*
Anbguityexiat* between
retotiomhip JJ] and p i
Dafailt m 0J. The anxit
be explicitly spacl-flod became
of exanple poecibilityof
aff<ctin(CbflA

UML Operation Spec (Partiel)

(name: opl
parameter {>r ClassB}

\
[inwards]

ClassX UML Attribute ^)0c (Partial)

'----------- N
 (name a

V type QassA

[2]

S3

| ' ' ^ rnatctyreme]̂ ^

ClassC ClassA ClassS

_ _ — — _
Choired prior to addition
to eonpoecd contextual
subject due to forward ng
of references semait ks
relating to the [forwards]
attachaient to own petition
relationship p] The pMsibilities
closed off with th b attachment
are ClassA_ClassB from
relationship [I] and ClouA from
relationship [3]

UML Attribute Spec (Partial)
 ̂ Nname a
type ClassA_ClassC I

Figure 42 Forwarding to Implicit Composition O utput as Default

5 . 4 . C h a p t e r S u m m a r y

This chapter defines a composition relationship as an extension to the UML

metamodel, using the same language and style as the specification of the

semantics of the UML itself Meta-class models describe the constructs asso

ciated with a composition relationship, and together with defined well-

formedness rules, constraints on the syntax of composition relationships are

specified

Composing design subjects entails identifying corresponding elements within

the design subject, and integrating the elements within the input subjects to a

composed result in an output subject This chapter also defines the semantics
of identifying corresponding elements Integration of elements is defined in

the abstract so that concrete integration strategies may be seamlessly added

to the metamodel Common semantics for all kinds of integration are defined

- that is, the integration of elements to an output subject, and the forwarding

of references to elements in input subjects to appropriate references in the

output subject

Further extensions to the metamodel are required for each individual integra

tion strategy that may be required This thesis describes two kinds of integra
tion, override and merge, and the extensions to the metamodel to support

125

these integration strategies are included in “Chapter 6 Override Integration”

on page 127, and “Chapter 7 Merge Integration” on page 155

C o m p o s i t i o n R e l a t i o n s h i p An e x t en s i o n to the U M L M e t a m o d e l C ha p t e r S u m m a r y

126

C h a p t e r 6 : O v e r r i d e I n t e g r a t i o n

Override integration is used when elements in an existing design subject need

to be changed For example, new requirements may indicate that the behav

iour specified in the existing design subject is no longer appropriate to the

needs of end-users of the computer system Therefore the behaviour as speci

fied in the existing design subject needs to be updated to reflect the new

requirements Another possible scenario requiring override integration is

when separate groups are working on individual subjects, where one group’s

element(s) specification(s) may change another group’s specifications Over

riding an existing design subject, or elements within a design subject, is

specified with composition relationships with override integration These

composition relationships are specified between the design subject requiring

change, and a different design subject containing the new elements

Composition relationships with override integration specify which design

elements in the existing design subject are to be overridden by design ele

ments in the new design subject Any design elements in the existing design

subject that are not overridden by design elements in the new design subject

are added to the result unchanged Any design elements in the new design

subject that do not override design elements in the existing design subject are

added to the result This section details the semantics of composition rela

tionships with override integration, and has the following subsections1

• a subsection with UML class diagrams describing the constructs of the

override, and their relationships

• a subsection containing the well-formedness rules describing the con

straints on instances of overrides

• a subsection containing descriptions of the semantics of override

1 Only changes to the syntax and sem antics o f com position relationships (as specified in
“ Chapter 5 Composition Relationship An extension to the U M L M etam odel on page
109) that are appropriate for ovem de integration are described in this chapter

127

Ov e r r i de I n t e gra t ion Synt ax

6 . 1 . S y n t a x

Override integration specifies that the specification of one design element is

overridden by the specification of its corresponding element Override inte

gration is defined as a subclass of the Integration metaclass from the compo

sition relationship (see Figure 43)

The semantics of override integration require that the cardinalities of the

composable elements that may participate in a composition relationship are

changed As specified in “5 3 Composition Relationship” on page 113, a

composition relationship may be specified between two or more composable

elements However, this is not appropriate when the integration strategy is

override, as the semantics of override dictate that one composable element is

overridden by one other composable element

Figure 43 Override Integration

CompositionRe- Override integration overrides one element with the specification of its cor-
lationship Meta- , ̂ , , , ,
class responding element This restricts the cardinalities of the composable ele

ments related by the composition relationship to which the override

integration specification is attached

A ssocia tions

overridden The composable element whose specification is overridden

overriding The composable element whose specification overrides the

overridden element

Override Meta- Override integration specifies that the specification of the overridden ele-
class ment is replaced by the specification of the overriding element

6 . 2 . W e l l - F o r m e d n e s s R u l e s

Override integration imposes more stringent restrictions on the number of

composable elements that may participate in a composition relationship than

are defined for the general case (see “Composition Relationship” on
page 113) In the general case, two or more composable elements may be

128

O v e r r i d e I n t e g r a t i o n W ell F orm edness Rules

related by a single composition relationship However, for a composition

relationship with override integration, this is restricted to one composable

element overriding one other (see Figure 43) This restriction means that the

well-formedness rules must specify the replacements for a number of the

rules defined for the general case For each of the rules defined m this sec

tion, there is an indication, where appropriate, of which general rule is re

written to suit a composition relationship with override integration Every

general rule defined in “Composition Relationship” on page 113 not explic

itly replaced here applies to ensure the well-formedness of composition rela

tionships with override integration

[11 The composition relationship to which override is attached relates com

posable elements based on its o v err id d en and o v e r r id in g associations

only

s e l f owner compose =

s e l f owner o v e r n d in g - > u n io n (s e l f owner o verr id d en

ComposableElement) Set(C om posableE lem ent)

where

• s e l f is an instance of O verride

• and compose is an operation defined in the well-formedness rules for

general composition relationships in “Additional Operations” on page 120

|2] The overriding and overridden elements are different

s e l f owner overr id d en <> s e l f owner o v e r r id d in g

where s e l f is an instance of Override

This rule is included as it does not make sense to override an element with

itself From the perspective of override semantics, this results in a design ele

ment that is unchanged in any way »

[3] Within the context of a single composition, a composable element may

only participate in one composition relationship as the overridden element

s e l f owner c o n te x t p ro v id e sC o n te x tF o r->

f o r A l l (c r l , cr2 |

c r l <> cr2 im p l ie s c r l overr id d en <>

cr2 overrid d en)

where

• s e l f is an instance of O verride

129

Ov e r r i de In tegra t i on S e m a n t i c s

• and p ro v id esC o n tex tF o r is an operation defined in the well-

formedness rules for general composition relationships in “Additional

Operations” on page 120

Override integration changes the specification of an element to be overrid

den This rule is included because without it (that is to allow an element to be

overridden multiple times by different elements) there may be unanticipated

results Without explicit ordering of the different integrations, it is not possi

ble to predict the final specification of the overridden element General

ordering of multiple compositions is currently not supported in the subject-

oriented design model

6 . 3 . S e m a n t i c s

As stated previously, override integration is used to override design specifi

cations in an existing design subject with design specifications in a design

subject that reflect a change to the requirements since the existing design

subject was created Overrides indicate which elements in the existing design

subject are to be overridden by which elements in the overriding design sub

ject

This section first discusses, in “General Semantics” on page 130, the general

semantics of override that apply to all types of elements Sections “Impact of

Override on Subjects” on page 132 to “Impact of Override on Collabora

tions” on page 148 then consider the impact of override on each of the differ

ent types of elements, highlighting any differences with the general

semantics

General The identification of correspondences is the same as for all composition rela-
Semantics tionships and is described in “Semantics for Identifying Corresponding Ele

ments” on page 122

[1] For each element in the overridden subject, the existence of a correspond

ing element in the overriding subject results in the specification of that ele

ment to be changed to that of the corresponding element From Figure 44, the

following overrides occur

• The specification of class S2 C lassA is changed to the specification of

SI C lassA as a result of override

• The specification of attribute S2 C lassA a is changed to the specifica

tion of SI C lassA a as a result of override

130

O v e r r i d e In tegra t i on S e m a n t i c s

• The specification of operation S2 C lassA opl is changed to the speci

fication of SI C la ssA opl, as a result of override

• The specification of operation S2 C lassA op2 is changed to the speci

fication of SI C lassA op2, as a result of override

• The specification of operation S2 C lassA op3 is changed to the speci

fication of SI C lassA op2, as a result of override

Class Specification

,name C la ssA ^
isRoot true

I tsLeaf false 1
\ is Abstract true I

Attribute Spec

ownerScope instance
I mtbiltty public
j multiplicity

changeability none |
farge fScope instance

\/nitialValue null

Operation Spec

name opl
ownerScope instance

I visibility public
I concurrency s e q uenti a! I
isQuery false

I /sRooi" true
| rsLeaf false
. isAbstract true
specitcatcn "
V.

Class Specification

¡name Class A ^
isRoot false
isLesf- false *

y s Abstract false)

Attnbute Spec

ownerScope instance |
visibility private

j multiplicity 1 '
changeability none |
target Scope instance |

\tnft/BlVali/e null

Operation Spec

name opl '
ownerScope instance

I visibility private
I concurrency sequential
isQuery true

I isRoot false
| isLeaf false
is Abstract false

' spec tfcation ,
\ _ '

Figure 44 General Semantics for Override Integration

[2] Elements in an overridden composite that are not involved in a corre

spondence match remain unchanged For example, from Figure 44, the

attribute S2 C lassA c has no corresponding elements, and so is added to

the result unchanged

[3] Elements that are components of an overriding composite and are not

involved in a correspondence match are added to the overridden composite

For example, from Figure 44, the attribute SI C la ssA b has no correspond

ing elements in S2 Since it is a component of an overriding class named

ClassA , it is added to the specification of C la ssA as a result of override

[4] Changes to an overridden subject, either as a result of overriding of corre

sponding elements, or as a result of adding elements directly to the overrid

den subject, may not result in name clashes In the event of name clashes,

renaming of clashing elements occurs For example, from Figure 44, overrid

ing both S2 C lassA op3 and S2 C la ssA op2 with SI C lassA op2

131

Ov e r r i de In tegrat ion S e ma n t i c s

Impact of
Override on
Subjects

Correspon
dences

results in a name clash To avoid this, the name of one of the overridden

operations is changed

[5] All references to elements in the result that may have changed from the

specification in the input subject are changed as described in “Semantics for

Forwarding References to Composed Elements” on page 123

[6] The composed subject must conform to the well-formedness rules of the

U M L

This section discusses what happens to subject specifications as a result of

override (See “Appendix A Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Package, from which

Subject is stereotyped) The following are illustrated with an example

• How correspondences are established

• The results of override on elements both corresponding and non-corre

sponding

• Checking the UML Well-Formedness Rules on the results of override

• Consideration of deviations from (or additions to) the general semantics

defined in the previous section

When the composition relationship between subjects does not have general

correspondence matching criteria associated with it, there is not considered

to be any corresponding elements in the subject’ s contents, unless specified

with additional relationships between its contents The following subsections

describe the impact of override on the example illustrated in Figure 45

• [Eg6 1] SI corresponds with S2 because of the composition relationship

between the two This relationship specifies matching on name for identi
fication of correspondence between the components, and is the contextual

relationship for this composition example

• [Eg6 2] SI S3 corresponds with S2 S3 (Eg6 1)

• [Eg6 3] SI S4 corresponds with S2 S5 (because of the relationship

between the two)

132

Ov e r r i de In t egra t ion S e ma n t i c s

• [Eg6 4] SI C lassA corresponds with S2 C lassA (Eg6 1)

UML Package Specification

I nemo S1 \
(cwneöEiement)

I (importedElement)
I isRoot false
 ̂ isLeat false

tsAbsfracf false

name S1S2
(owned Berne fit

I (importedEiement)
I isRoot false
. tsLeaf false

tsAbstrad false

UML Package Specification

f name S2 ^
fow/?ecf Ete/ro^i) ,

/ ' (tmportedEfoment
I tsRoot true

I tsLeat false
isAbstract true

Result of Over
ride

Figure 45 Im pact of Override on Subject Specifications

Elements with correspondences

• The specification of S2 is changed to the specification of SI This

excludes the ownedElements and the im portedElem ents as these

are components of subjects In addition, naming for subjects in the result

is by appending the names of the overriding and overridden subjects This

conforms to the specification of the namespace of the output of the com

position as defined by the contextual composition relationship and

described in “Well-Formedness Rules” on page 117

• The specification of S3 in the resulting subject is that of the specification

of SI S3 The components of S3 (in ownedElements and îm port-

edElements) are considered separately

• The specification of S5 in the resulting subject is that of the specification

of SI S4, with the names of the two concatenated The components of

both (in ownedElements and îm portedElem ents) are considered

separately, with the resulting components contained in the S4 in the

result

• The specification of C lassA in the resulting subject is that of the specifi

cation of SI C lassA (see “Impact of Override on Classifiers” on

page 134 for more details on classifiers) The components of C lassA are

considered separately

Elements with no correspondences

133

O v e r r i d e In t egra t ion S e ma n t i c s

• SI S6, and SI C la ssB have no corresponding elements in S2 They

are therefore added to the resulting subject, unchanged in any way, and

without further consideration of their components

• S2 S7, and S2 C lassC have no corresponding elements in SI They

are therefore added to the resulting subject, unchanged in any way, and

without further consideration of their components

Check on UML The well-formedness rules for packages are not broken in this example
Well-Formed-
ness Rules

Differences with
General
Semantics for
Override

The semantics for overriding Subjects conforms to the general semantics for

override, except for the naming of the result of composing subjects even

when the composition relationship between those subjects is not the contex

tual composition relationship Instead of overriding the name as per the gen

eral semantics for all composable elements, the names of subjects are always

concatenated The reason for this is to distinguish between the result and the

overridden subject, and to make clear which subjects are composed

Impact of
Override on
Classifiers

This section discusses what happens to classifier specifications as a result of

override (See “Appendix A Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Classifier) With an

example, the impact of override on Classifiers is illustrated

UML Class Specification

\name Class A
isRoot false
isLaat false
isAbstract true
isAcbve false
feature {*}

name ClassB
isRoot false
tsLeaf false
isAbstract true
tsAcltvs false
feature {*}

UML Class Specification
o'- — — —
narm ClassA S
isRoot false |
isLeaf false
isAbstract false I
/sActive false |
feature {*}

name ClassB \
isRoot false |
isLeet false
isAbstract false 1
isAcbve true |

I feature O

V . 1

Figure 46 Impact o f Override on Classifier Specifications

When the override relationship between classifiers does not have general cor

respondence matching criteria associated with it, there are not considered to

be any corresponding elements in the classifier’s contents, unless specified

134

O v e r r i d e In t egra t ion S e m a nt i c s

Correspon
dences

Result of Over
ride

with additional overrides between its contents The subsections that follow

describe the impact of override on the example illustrated in Figure 46

• [Eg6 5] SI corresponds with S2 because of the composition relationship

between the two This relationship specifies matching on name for identi

fication of correspondence between the components

• [Eg6 6] SI C lassA corresponds with S2 ClassA(Eg6 5)

• [Eg6 7] SI C la ssB corresponds with S2 C la ssB (Eg6 5)

• [Eg6 8] SI C lassD corresponds with S2 C lassC (from the composi

tion relationship between the two)

• [Eg6 9] SI C lassD also corresponds with S2 C lassD (from Eg6 5)

Recall that composable elements may participate in multiple composition

relationships (see “Participation in multiple composition relationships” on

page 86) and override integration only restricts the overridden element,

not the overriding element (see “Well-Formedness Rules” on page 128)

Any correspondence not required which occurs implicitly as a result of a

matching specification attached to a relationship at a higher level in the

subject tree must be explicitly excluded with a composition relationship

with a dontMatch attachment

Elements with correspondences

• In the result, C la ssC has the specification of SI ClassD, with one

change Since there is already a C lassD in S2, SI C lassD is renamed

to avoid a name clash SI C lassD is renamed to “SI C lassD ”

• The specification of C lassD in the resulting subject is that of the specifi

cation of SI C lassD The components of C lassD are considered sepa
rately

• The specification of C lassA in the resulting subject is that of the specifi
cation of SI C la ssA The components of C la ssA are considered sepa

rately

• The specification of C la s sB in the resulting subject is that of the specifi

cation of SI C la ssB The components of C la ssB are considered sepa

rately

Elements with no correspondences

135

Ov e r r i de In t egra t ion S e m a n t i c s

Check on UML
Well-Formed
ness Rules

Differences with
General
Semantics for
Override

• SI C la ssE has no corresponding elements in S2 It is therefore added

to the resulting subject, unchanged in any way, and without further con

sideration of its components

The example illustrated in Figure 46 does not result in a breakage of the well-

formedness rules of the UML

However, with a small change as illustrated in Figure 47, it is easy to see

where a breakage might occur The illustration highlights (with a big X)

where a breakage of the well-formedness rules of the UML may occur

Figure 47 Breaking Well-Formedness Rules for Classifiers

This example results in one breakage of the UML well-formedness rules

Classifier is a subtype of GenerahzableElement (see “Appendix A Partial

Illustrations of UML Metamodel” on page 269), and must conform to the

well-formedness rules of all generahzable elements One rule for generahza-

ble elements states that “A root cannot have any Generalizations” [UML

Semantics Guide page 2-53, GenerahzableElement, Rule [1]] The overriding

C la ssB specifies C la s sB as being a root class, but C la ssB in S2 is spe
cialised from C lassA It is the responsibility of the designer to decide what

action is appropriate In this case, the designer could either remove the gen

eralization, or change the value of isR o o t m C la ssB

• The semantics for overriding Classifiers must also take into consideration

the impact of override on association ends See “ Impact of Override on

Associations and Generalizations” on page 140 for more details

• The semantics for overriding Classifiers must also take into consideration

the impact on role specifications for collaborations See “ Impact of Over

ride on Collaborations” on page 148 for more details

136

Ov e r r i de In t egra t ion S e m a n t i c s

Impact of
Ovemde on
Attributes

Correspon
dences

Result of Over
ride

This section discusses what happens to attribute specifications as a result of

override (See “Appendix A Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Attribute) The

impact of override on Attributes is illustrated with an example

The following subsections describe the impact of override on the example

illustrated in Figure 48

• [Eg6 10] SI corresponds with S2 because of the composition relationship

between the two This relationship specifies matching on name for identi

fication of correspondence between the components

• [Eg6 11]S l C lassA corresponds with S2 C lassA (Eg6 10)

• [Eg6 12] SI C la ssB corresponds with S2 C lassC (from the relation

ship between the two This relationship specifies matching on name for

identification of correspondence between the components)

• [Eg6 13] SI C lassA a corresponds with S2 C lassA a (Eg6 10)

• [Eg6 14] SI C la ssB a corresponds with S2 C la ssC a (Eg6 12)

• [Eg6 15] SI C la ssB f corresponds with S2 C la ssC f (Eg6 12)

• [Eg6 16] SI C la ssB f corresponds with S2 C la ssC e (from the

composition relationship between the two)

Elements with correspondences

• The specification of C la ssA m the resulting subject is that of the specifi

cation of SI C la ssA The components of C lassA are considered sepa

rately

• The specification of the attribute a in the resulting C lassA is that of
SI C lassA a

• In the result, S2 C la ssB has the specification of SI C lassC The

components of SI C lassC and S2 C la ssB are considered separately

• The specification of the attribute a in the resulting C la ssB is that of

SI C la ssB a

• The specification of the attribute f in the resulting C la s sB is that of

SI C la ssB f

• In the result S2 C la ssC e has the specification of 51 C la ssB f

with one change Since there is already an attribute f in C lassC (which

137

Ov e r r i de In t egra t ion S e ma n t i c s

is overridden by C la ssB f), renaming of attribute f occurs to avoid a

name clash Attribute f is renamed to “SI C la ssB f ”

UML Attribtie Specification

.narmr a ^
w/nerScope Instance

I vtsibitiy protected
I muJHpllclty
changeability none

I ta<gefScqp& Instance
I type Siring
, MiaWakte niü

name b ^
' ownerScope Instance ^
t v£s£t»«y pUbßc
I mutpHcily \
changeability none .

I targatScope Instance
I type ClassB I
¡totbfl/atve nuO

□ H Q '

ma!cti[name]
' v

A

rnattfi[name]

I

ClassA

H Q
\

name* a
S' ownerScope Instance
IvwjWtfy pii)lie 1
I multpficlty I
cfmngeabify none |

I fa/gefSeope Instance
I type Strhg •
f̂nftblValue ntd j

\ S1S2 [1

ClassA ClassB

...— Ì E L 0 0 0
0 B | S1_ClassB_r 1 [^]

Jh
name b
ownerScope Instance

I vtstbifiy pubic *
I motfc/fcfiy \
changeability none .

I taigeiScope. Instance
I type ClassC I
./raftb/Wsfiye niil J

Figure 48 Im pact of Override on Attribute Specifications

Elements with no correspondences

• Attributes SI C lassA c and SI C la ssB d have no corresponding

attributes and so are added unchanged to the resulting C lassA and

C la ssB

• Attribute S2 C lassA d has no corresponding attribute and so is added

unchanged to the resulting C lassA

Elements requiring change as a result of “forwarding” semantics

• Attribute S2 C lassA b has a type of C lassC in S2 However,

S2 C la ssC is overridden by SI C la ssB and, therefore, all references
to C la ssC in S2 must be changed to its new specification, which is

C la ssB

Check on UML The well-formedness rules for attributes are not broken with this example
Well-Formed
ness Rules

Differences with
General
Semantics for
Override

The semantics for overriding Attributes conforms to the general semantics

for override

138

O ve r r i de I n tegrat ion S e m a nt i c s

Impact of This section discusses what happens to operation specifications as a result of
Override on override (See “Appendix A Partial Illustrations of UML Metamodel” onOperations

page 269 for an illustration of the UML specification of Operation) The

impact of override on Operations is illustrated with an example in Figure 49

UML Operation Specificaion

name Dpi '**'
owneiScope instance 1

visibility public •
concurrency sequential
isQuery false
parameter {}
isRoot true
¡sLeaf- false
isAbStract false
speoficaiion

name op3
1 ownerScope instance '
| visibtMy public
concurrency sequential

I isQueiy false
• parameter {x ClassB}
' isRoot Hue
| isLeaf false
isAbstiacl true

I specification

UML Operation Specificaion

name op 1 ^
lounerSoope instance j

/| visibility pnvate
concurrency sequential I

|jsQuery true .
parameter {} 1

Ijstfoof true |
|jsi_eaf false
isAbstrad true I

Ispecjftoafon " ,

\ S '

V — 1opl j op2 °p3 0p4 op1 op2 S1_OassB_op3 op3

name op 3
ownerScope instance •
instbiKy public
concurrency sequential

I isQuery false
parameter {x ClassQ
tsRool true

|j5i.eai false
jsAfcsfracf true

I specification m
\ V

Figure 49 Impact of Override on Operation Specifications

Correspon
dences

• [Eg6 17] SI corresponds with S2 because of the composition relationship

between the two This relationship specifies matching on name for identi

fication of correspondence between the components

• [Eg6 18] SI C lassA corresponds with S2 C lassA (Eg6 17)

• [Eg6 19] SI C la s sB corresponds with S2 C lassC (from the composi

tion relationship between the two This relationship specifies matching on

name for identification of correspondence between the components)

• [Eg6 20] SI C lassA opl corresponds with S2 C lassA opl (from
Eg6 17)

• [Eg6 21] SI C la ssB op3 corresponds with S2 C lassC op3 (from

Eg6 19)

• [Eg6 22] SI C la ssB op3 corresponds with S2 C lassC op5 (from

the composition relationship between the two)

Result of Over
ride

Elements with correspondences

• The specification of C lassA in the resulting subject is that of the specifi

cation of SI C lassA The components of C la ssA are considered sepa

rately

139

Ov e r r i de In tegra t i on S e ma n t i c s

Check on UML
Well-Formed
ness Rules

Differences with
General
Semantics for
Override

Impact of
Override on
Associations
and Generali
zations

• The specification the operation opl in the resulting C lassA is that of

SI C lassA opl

• In the result, C la ssB has the specification of SI C la ssC The compo

nents of SI C la ssC and S2 C la ssB are considered separately

• In the result, C la ssC op3 has the specification of SI C la ssB op3

• In the result, C la ssC op5 has the specification of SI C la ssB op3

with one change Since there is already an operation op3 in C lassC

(which is overridden by C la ssB op3), renaming of operation op3

occurs to avoid a name clash Operation op3 is renamed to

“S l_ C la ssB _ o p 3 ”

Elements with no correspondences

• Operations SI C lassA op2, SI C la ssB opl and SI C la ssB op2

have no corresponding operations and so are added unchanged to the

resulting C lassA and C la s sB

• Operation S2 C lassA op4 has no corresponding operations and so are

added unchanged to the resulting C lassA

Elements requiring change as a result of “forwarding” semantics

• Operation S2 C lassA op3 has a parameter type of C la ssC in S2

However, S2 C la ssC is overridden by SI C la ssB and, therefore, all

references to C lassC in S2 must be changed to its new specification,

which is C la ssB

The well-formedness rules for operations are not broken with this example

The semantics for overriding Operations must also take into consideration

the impact on collaborations See “ Impact of Override on Collaborations” on

page 148 for more details

This section discusses what happens to the association and generalization

specifications as a result of override (See “Appendix A Partial Illustrations

of UML Metamodel” on page 269 for an illustration of the UML specification

of Relationship) The impact of override on Associations and Generalizations

140

O v e r r i d e In tegra t i on S e m a nt i c s

Result of Over
ride for Example
1 Figure 50

Result of Over
ride for Example
2 Figure 51

Result of Over-
ride for Example
3 Figure 52

is illustrated with a series of examples In this section, for brevity, only the

correspondences particular to associations are considered in detail

Figure 50 Example 1 Im pact of Override on Associations

Associations are manifested in code as attributes of a class, so the first exam

ple, in Figure 50 illustrates how the semantics for overriding are similar to

attributes

• SI a s s o c l and S2 a s s o c l correspond because of the match-by-name

composition relationship between SI and S2 The specification of

S2 a s s o c l is changed to that of SI a s s o c l in the result

As with all elements, associations with no corresponding associations are

added unchanged to the result (see Figure 51)

J r
RSMC1

match[nam«j

rrcouLt

S2 |

l_ assoc2
ClassO I

ClassA jo

ClassA associ
ClassD

x V assoc2

Figure 51 Example 2 Impact o f Override on Associations

One exception to the general semantics for associations is that associations

may override other associations even if the classifiers that are the types of

141

Ov e r r i de In t egra t ion S e m a nt i c s

the association ends are not corresponding, without changing the association

end type classifiers of the overridden association (see Figure 52)

S2 |

ClassC
| assoc3

CtassF |

|x y

Figure 52 Example 3 Impact of Override on Associations

• SI a s so c 3 and S2 a s so c 3 correspond because of the match-by-name

composition relationship between SI and S2 The specification of

S2 a s so c 3 is changed to that of SI a s so c 3 in the result The types of

the classifiers of the association ends are excluded from the full specifica

tion for override, and remains the same as S2 a s so c 3

• SI a s so c3 , the association between SI C la ssB and SI C la ssE is

added unchanged to the result

Result of Over- Associations may also be overridden using an explicit override (see Figure
ride for Example
4 Figure 53 ^

• SI a s so c 3 and S2 a sso c4 correspond because of the override

between the two The specification of S2 a sso c4 is changed to that of

SI a s so c 3 in the result The types of the classifiers of the association

ends are excluded from the full specification for override, and remains the

same as S2 as soc4

• SI a s so c3 , the association between SI C la ssB and SI C la ssE is

also added unchanged to the result

142

Ov e r r i de In t egra t ion S e m a n t i c s

Matching Un
named Associa
tions

match[name]

Figure 53 Example 4 Result of Override on Associations

Associations without names are commonly used within UML design models

The UML semantics ([UML 1999] page 2-21) has the following description

of an association’ s name

"The name of an association which, in combination with its
Classifiers, must be unique within the enclosing namespace (usually
a Package) "

This implies that there may be only one association without a name between

the same set of classifiers, but that there may be many associations without a

name between different sets of classifiers Associations with no name present

a dilemma for the subject-oriented design model Conceptually, it is unlikely
that un-named associations between different classifiers are corresponding,
even if they “match” based on a match by name attachment Therefore, it is

tempting to make an exception for associations without a name, and exclude

them from name-match checking for correspondence On the other hand,

more than one association without a name between the same set of classifiers

appears to contradict the uniqueness description of association names in the

UML

To cope with both, the subject-oriented design model makes the correspond

ence general matching by name exception for associations with no name,

except for (some) associations between the same classifier sets In other

words, associations with no name between different classifier sets do not cor-

143

O v e r r i d e I n t e gra t ion S e ma n t i c s

Generalizations

respond As for associations with no name between the same classifier sets,

consideration is taken in conjunction with the specification of its Associatio-

nEnds As defined by the UML, the “bulk of the structure of an Association

is defined by its AssociationEnds” ([UML 1999] page 2-21, connection

association) Association ends also have names, which are described in

[UML 1999], page 2-23 as

"The rolename of the end When placed on a target end, provides a
name for traversing from a source instance across the association to
the target instance or set of target instances It represents a pseudo
attribute of the source classifer (i e , it may be used in the same way
as an Attribute) and must be unique with respect to Attributes and
other pseudo-attributes of the source classifier "

This definition suggests that consideration of the correspondence of associa

tions without names should be in conjunction with the names of the associa

tion ends Therefore, associations between the same set of classifiers are

considered to be corresponding if all of their association end names are the

same Otherwise, the associations are deemed to be non-corresponding

A generalization is a relationship between a more general element and a more

specific element A generalization is not a composable element, but this sec

tion considers the impact of override on generalizations All generalizations

in the scope of an override are added to the result As illustrated in Figure 54,

this may result in a multiple inheritance graph, where single inheritance was

specified in the overriding and overridden subjects

Figure 54 Fxample 1 Impact of Override on Generalizations

In Figure 54, the resulting C lassC is generalised from C la s sF through two

routes - directly, and from C la ssE This does not break the well-formed

144

Ov e r r i de In t egra t ion S e m a n t i c s

UML Well-
Formedness
Rules

Differences with
General
Semantics for
Override

ness rules as defined by the UML, but may not be the desired semantics As

with all design effort using generalizations, care should be taken with over

ride to ensure that the result is as desired

Override integration may result m breakages to the well-formedness rules for

generalizations In “Impact of Override on Classifiers” on page 134, one

example was illustrated relating to the specification of root classes Another

example is illustrated in Figure 55 and relates to the well-formedness rule

“Circular inheritance is not allowed” (See UML Semantics Guide in [UML

1999] page 2-53, GeneralizableElement, Rule [3])

Figure 55 Example 2 Impact o f Override on Generalizations

There has been some work in the area of eliminating cycles in composed

hierarchies which could be incorporated here In [Walker 2000], there is a

proposal to eliminate cycles based on separating the type hierarchy from the

implementation hierarchy in the input subjects Generalizations are main

tained in the type hierarchy, but only the implementation classes are deemed

to correspond for the purposes of integration In this way, cycles are not cre
ated in the composed implementation classes Further investigation into the

inclusion of such an approach is added to future work

• The type classifiers of association ends are not included in the full speci

fication for override This means that the result of overriding classifiers is

that for every AssociationEnd ae where ae type - overridden classi

fier, this is changed to be the overriding classifier

• The semantics for overriding Associations must also take into considera

tion the impact on role specifications for collaborations See “ Impact of

Override on Collaborations” on page 148 for more details

145

Ov e r r i de In t egra t ion S e m a nt i c s

Impact of
Override on
Dependen
cies

Result of Over
ride

Check on UML
Well-Formed
ness Rules

Impact of
Override on
Constraints

This section discusses what happens to dependency specifications as a result

of override (See “Appendix A Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Dependency) The

impact of override on Dependencies is illustrated with an example In this

section, for brevity, only the correspondences particular to dependencies are

considered m detail

A dependency is a “using” relationship, which states that the implementation

or functioning of one or more elements requires the presence of one or more

elements Dependency is not a composable element, but this section consid

ers the impact of override on dependencies

As illustrated in Figure 56, all dependencies in the scope of an override are

added to the result

S1

ClassB

ClassF

tnatehfnome]
/

j . ----------------

S1S2

ClassB ■>

CtassF j

Figure 56 Impact of Override on Dependencies

Dependency between SI C la ssB and SI C la ssE added to result

Dependency between S2 C la s sB and S2 C la s sF added to result -

dependency will be from overridden C la ssB to overridden C la s sF
(from match-by-name override between SI and S2)

The UML defines no well-formedness rules for Dependency

This section discusses what happens to constraint specifications as a result of

override (See “Appendix A Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Constraint) The

impact of override on Constraints is illustrated with a series of examples In

this section, for brevity, only the correspondences particular to constraints

are considered in detail

146

O v e r r i d e In t egra t ion S e ma n t i c s

Result of Over
ride in Figure 57

Result of Over
ride in Figure 58

A constraint is a boolean expression on an associated element, which must be

true for the model to be well formed Some constraints are predefined in the

UML, others may be user defined All constraints are included in the rule for

override, which states that the resulting model must be well-formed Con

straint is not a composable element, but this section considers the impact of

override on constraints

As illustrated in Figure 57, all constraints in the scope of an override are

added to the result

si 1 ,

/
IS

{a<10}

ClassA

H □

S1S2

ClassA 1 B< 10}

0 0 [T] 0
| " >{b>2)

Figure 57 Example 1 Impact of Override on Constraints

• Constraints on attributes SI C la ssA a and S2 C lassA b added to

result

As with the direct writing of constraints on a model, care should be taken to

ensure the constraints in the result of an override remain as intended Adding

constraints in this manner may result in unanticipated or conflicting implica

tions

s i . 1 , .

/

\ S
{ a + c < 2 0 }

ClassA f

□ □

S1S2

ClassA ■̂>{a>20}
□ H h H

[- >*<20}

Figure 58 Example 2 Impact of Override on Constraints

147

Ov e r r i de I n tegrat ion S e m a nt i c s

Result of Over
ride in Figure 59

Check on (JML
Well-Formed
ness Rules

Impact of
Override on
Collabora-
tions

For example, in Figure 58, constraints on C lassA a imply that CXassA c

must always be negative

• Constraints on attributes SI C lassA a + S l C la ssA c and

S2 C lassA a are added to result

Constraints on relationships behave in the standard way during overriding

Relationships that are overridden also have their constraints overridden (see

Figure 59)

S1S2

ClassC

ClassB

Figure 59 Example 3 Impact of Override on Constraints

Constraints are included in the well-formedness specification of a model

This section discusses what happens to collaboration specifications as a

result of override (See “Appendix A Partial Illustrations of UML Meta-

model” on page 269 for a partial illustration of the UML specification of Col
laboration) The impact of override on Collaborations is illustrated with a

series of examples In this section, for brevity, only the correspondences
related to collaborations are considered in detail

A collaboration specifies how objects interact with each other to complete a

particular task Through a series of messages specifying the communication

between the objects, actions are activated (which result in the activation of

operations) to complete the collaboration According to the UML semantics,

collaborations may be presented at two different levels - the specification

level or the instance level This thesis considers collaborations at only the

specification level

148

O ve r r i de In t egra t ion S e m an t i c s

Collaborations are named model elements within the model, and represent

either a single operation or a single classifier Operations and classifiers may

have several collaborations defined A single collaboration may have multi

ple interactions defined, which are themselves named model elements Col

laborations are therefore composites (as defined for override), and

interactions are primitives As with all composable elements, collaborations

and interactions are overridden with corresponding collaborations and inter

actions

Result of Over- Figure 60 illustrates an example of the impact of override on collaborations
ride in Figure 60 , , , ,t ,where corresponding operations do not have corresponding collaborations

Figure 60 Example 1 Impact of Override on Collaborations

• Operation SI C lassA opl overrides S2 C lassA opl The specifi

cation of SI C la ssA opl is added to the result

• Collaboration SI C o l la b l (giving a definition of a collaboration for

SI C lassA opl) has no corresponding collaboration in S2

SI C o l la b l is added to the result

• Collaboration S2 C o llab2 (giving a definition of a collaboration for

51 C lassA opl) has no corresponding collaboration m SI

52 C o llab2 is added to the result

149

Ov e r r i de In t egra t ion S e m a n t i c s

Given that the collaborations are named differently, they are not deemed to

correspond However, the result is ambiguous as to the correct collaboration

for opl, and so the designer needs to assess what to do One approach based

on using an additional composition relationship is described in Figure 62

Result of Over- Figure 61 illustrates an example of the impact of override on collaborations
ride in Figure 61 where corresponding collaborations exist

Figure 61 Example 2 Impact of Override on Collaborations

* Operation SI C lassA opl overrides S2 C lassA opl The specifi

cation of SI C lassA opl is added to the result

• Collaboration SI C o l l a b i overrides S2 C o l la b i SI C o l la b i is

added to the result

Result of Over- Figure 62 illustrates an example of the impact of override on collaborations
ride Figure 62 overrides specified between them This approach solves the ambiguity

difficulty in Figure 60

• Operation S i C lassA opl overrides S2 C lassA opl The specifi

cation of SI C lassA opl is added to the result

• Collaboration SI C o l la b l overrides S2 C o llab 2 because of the

override between the two SI C o l la b l is added to the result

150

O ve r r i de In t egra t ion S e m a n t i c s

Figure 62 Example 3 Impact of Override on Collaborations

Result of Over- Operations are invoked as a result of the messages that are defined in collab-
ride in Figure 63 T_ ̂ t . * r * .orations If an operation invoked on receipt of a particular message is over

ridden, and its signature is changed in any way, the operation invoked on

receipt of the same message is also changed

Figure 63 t> xample 4 Impact of Override on Collaborations

In Figure 63, operation S2 C la ssC op5 is overridden by
SI C la ssC op2 as illustrated There is the possibility that overriding

151

Ov e r r i de In t egra t ion S e ma n t i c s

operations will have an impact on collaborations Figure 63 illustrates this

possibility and highlights the potential problem with a “9” The following

supporting text answers the implied question by describing the result of over

ride

• Operation SI C la ssC op2 overrides S2 C lassC op5 The specifi

cation of SI C la ssC op2 is added to the result S2 C lassC op5 has

been overridden and does not appear in the result

• Collaboration S2 C o l la b l has no corresponding collaboration and so is

added to the result

• Each collaboration in SI is examined so that every interaction 1 in every

collaboration c, where c 1 m essage a c t io n o p e ra t io n

S2 C lassC op5, is changed so that c 1 message a c t io n o p e r

a t io n = SI C la ssC op2

The approach to changing references to S2 C lassC op5 to

SI C la ssC op2 is in keeping with standard forwarding semantics How

ever, the question remains what is to be done with the message9 There are

two options as to the approach to take for c 1 message First, the message

could remain unchanged, and this approach would be in keeping with the

clear separation of message and operation in the metamodel The operation

has been overridden, which need not have any impact on the message How

ever, while this approach is true to the UML metamodel (and indeed, the

object-oriented paradigm), it is not in keeping with standard usage of the lan

guage “Standard usage” may be safely assumed here as even the UML nota

tion does not define a mechanism to distinguish between message and

operation in interaction diagrams Therefore, in order to take this approach, a

new notation would need to be invented to support the separation While this
would not, in itself, be a problem, there is the disadvantage of going against

standard usage of the UML as defined by the UML notation This has associ

ated difficulties in comprehension for designers used to using interactions in

the UML in the way they are currently defined Furthermore, the distinction
is not carried through to object-oriented programming models such as C++ or

Java Therefore, override semantics takes a second approach In addition to

forwarding the appropriate operation name change, the corresponding mes

sage is also updated to reflect the change to the operation This result, there

fore answers the question in the illustration • the operation related to the call

action of the message is overridden, and the message changed correspond

ingly

152

Ov e r r i de In t egra t ion Cha p t e r S u m m a r y

Collaboration Collaborations also provide a context for participants playing different roles
RoIq s within the collaborations See “Appendix A Partial Illustrations of UML

Metamodel” on page 269 for a partial illustration of the UML specification of

Collaboration that shows the metaclasses that represent roles for associations

and classifiers These roles are in the context of sending and receiving mes

sages

When classifiers are overridden, related collaborations for that classifier will

now define their roles for the overriding classifier Each collaboration is

examined so that

every interaction 1 in every collaboration c

where c 1 m essage sender b ase = overridden classifier, this is

changed so that it now refers to the overriding classifier

• where c 1 m essage r e c e iv e r b ase = overridden classifier, this is

changed so that it now refers to the overriding classifier

• where c ownedElement b ase = overridden classifier, this is changed

so that it now refers to the overriding classifier

When associations (with association ends) are overridden, related collabora

tions for that association will now define their roles for the overriding associ

ation Each collaboration is examined so that

every interaction 1 in every collaboration c

• where c 1 m essage communicationConnection b ase = over

ridden association, this is changed so that it now refers to the overriding

association

• where c 1 m essage communicationConnection b ase = over

ridden association end, this is changed so that it now refers to the overrid
ing association end

• where c ownedElement base = overridden association, this is

changed so that it now refers to the overriding association

6 . 4 . C h a p t e r S u m m a r y

This chapter defines the syntax and semantics of composition relationships

with override integration Changes to the UML metamodel to support the

syntax are illustrated as an extension to the composition relationship meta

model as described in “Composition Relationship” on page 113 Well-

formedness rules for composition relationships with override integration are

given These rules primarily restrict the cardinalities of composition relation-

153

O v e r r i d e In t egra t ion C ha p t e r S u m m a r y

ships between composable elements, imposing a rule which ensures that

override integration is the overriding of one composable element with one

other Other than the rules explicitly replaced in this chapter for composition

relationships with override integration, all rules for general composition rela

tionships, defined in “Well-Formedness Rules” on page 117, apply for the

relationships with override integration

The semantics for override integration is defined by illustrating the impact of

overriding on each of the design elements currently supported in the thesis

First, general semantics for overriding are defined, which are, in summary,

that the specifications of elements are replaced by corresponding, overriding

elements, and any elements without corresponding elements are added

unchanged to the result However, some of the different kinds of design ele

ments are treated slightly differently in some cases In order to fully define

the semantics, the impact of override on each construct is examined, with any

change from the general semantics highlighted as appropriate

The next chapter details the semantics of the second integration strategy

described in this thesis — merge integration

154

C h a p t e r 7 : M e r g e I n t e g r a t i o n

Merge integration is used when separate design models (subjects) contain

specifications for different requirements of a computer system This may

have occurred for several reasons For example, within a system development

effort, separate design teams may have worked on different requirements

concurrently In this case, merge is especially useful where a requirement has

an impact across the whole design - for example a requirement stipulating

that objects reside in a distributed environment is likely to affect all objects

Distribution behaviour may be designed separately and merged with the rest

as required Another use of merge integration is the case where designs may

exist for requirements from a previous version of the system These require

ments are still appropriate for the system, and therefore need to be merged

with new requirements Also, designs may be reused from sources outside the

current development effort The full system design is obtained by merging

the designs of the separate design subjects

Composition relationships, with merge integration, are the means to specify

how subjects should be merged Composition relationships identify the sub

jects to be merged, and the design elements within those subjects that specify

the same concept (i e correspond to each other) and should be considered as

one For many elements (for example, classifiers and attributes) this means
that the corresponding elements appear once in the merged result In cases

where differences in the specifications of corresponding design elements

need to be resolved, composition relationships with merge integration specify

guidelines for the reconciliation

Merging operations essentially means joining behaviours, and so, with

merged operations, the receipt of a message that may have activated one of

the operations in an input subject now results in the execution of all of the

merged operations Collaborations may be attached to a composition relation

ship with merge integration to determine the order of execution

This chapter is divided up into three sections

155

M e r g e i n t egr a t i o n De sc r ip t i o n

• Description This section gives a general overview of merge integration,

introducing each of the different concerns

• Metamodel Extensions This section defines the extensions required to the

composition metamodel to support merge integration

• Semantics This section gives details of the semantics of merge integra

tion in terms of its impact on the supported UML constructs

7 . 1 . D e s c r i p t i o n

Composition relationships with merge integration may be specified between

subjects, between model elements that are owned or referenced by a subject,

and, in general, between model elements that are owned or referenced by

those elements - for example, classifiers owns operations between which

composition relationships may be specified The kinds of elements between

which it makes sense to specify composition relationships are listed in the

rules The relationship may only be specified between elements of the same

type - for example, a classifier with a classifier, a subject with a subject, etc

For brevity, merge integration will hereafter be referred to as “merge”

Merge as a At the simplest level, where there are no corresponding elements in the sub-
Simple Union A J ,jects, merge results in the merged subject containing all the design elements

of both subjects For example, in Figure 64, SI has two classes, SI C lassA

and SI C la ssB S2 has two classes, S2 C lassC an d S2 C lassD Merg

ing SI and S2 results m a subject with four classes

S1S2 1
dassC ClassDClassA

E H
Class8

0 0 □ H M
0 [°P*1 0 [ôjâ] 0 0 S

Figure 64 Simple Merging of Subjects

156

M e r g e In t e gra t ion De sc r ip t i o n

Merge with
Correspond-
ing Classes,
Attributes

Merge with
Conflicts in
Correspond
ing Elements

When subjects have corresponding classes and attributes, those elements

appear once in the merged subject See Figure 65 for an example, which

yields the following result

• SI C la ssA and S2 C la s s A correspond from the mat ch [name] com

position relationship between SI and S2 Since they are corresponding,

C la ssA only appears once in the result

• SI C lassA a and S2 C lassA a correspond from the match [name]

composition relationship between SI and S2 Since they are correspond

ing, C lassA a only appears once in the resulting C lassA

• SI C la ssB and S2 C lassD have no corresponding elements and are

added unchanged to the result

i match|namej

RESULT

S1 S2 I

ClassB ClassDQæsA h

0 0 0 0 0 I b I

fopi] [öp2][öijfl| H föjäj [ops]

Figure 65 Merge with Corresponding Classes and Attributes

Of course, merging corresponding elements like classifiers and attributes

where one element appears in the result1 is only simple when the specifica

tions of the corresponding elements are exactly the same Since the subjects

are designed separately, there is potential for differences in the specifications
of corresponding elements Figure 66 illustrates some examples of where

conflicts may exist In the example, the elements where conflicts occur are

highlighted with a “Reconciling Conflicts in Corresponding Elements”

on page 158 gives answers to these questions

In this example, we have two cases where the specifications of corresponding

attributes conflict

1 This applies to all elements except operations, constraints and collaborations

157

M e r g e In t egra t ion De s cr i p t i o n

• SI C lassA a and S2 C lassA a correspond from the match [name]

composition relationship between SI and S2 However, their specifica

tions are different, and so which specification appears in the merged sub

ject7

• SI C lassA b and S2 C lassA c correspond from the merge relation

ship between the two Again, their specifications are different (they have

different names), and so which specification appears in the merged sub

ject9

To resolve these questions, the different specifications must be reconciled

before being added to the result of the merge

UML AttrfbU* Specification
a B t
omarSeopa Instore*

I vtibBtv protected I
I mutpHcty
changoatoJUynom

' targatsoopa Instance 1
I typa String I
. tofbVal/e. nJI

mot carimi*] S 2 1

k

4

ClassA

k b a

|op4 cp2

S 1 S 2 I

CtssjA

- -a b ore?

op1 op2 op3 op+

UML "Attribute specification
. namv e .
omwtScope I rat arce

I mutplidty-

' tarQrtScopo Instance *
I typ» Integer !
.totfeVafoe mil .

Figure 66 Conflicts in Corresponding Elements

Reconciling
Conflicts in
Correspond
ing Elements

When subjects are merged, elements that are specified to support correspond

ing concepts are identified, and will be merged in the composed subject -
that is, for most kinds of elements (except, for example, operations), they

will appear once in the merged subject However, since corresponding ele

ments may have been specified separately, there may be differences in those

specifications These differences must be reconciled for the composed sub

ject

Assigning Pre
cedence to a
Subject in the
event of a Con
flict

One approach to reconciling conflict is to assign precedence to one of the

subjects involved in the merge When a conflict occurs, the specification of

the element in the subject with precedence is deemed to be the specification

for the merged element

By adding a precedence indicator to SI (see Figure 67), the result of the

merge is now

158

M e r g e In t e gra t ion De sc r ip t i o n

• SI C lassA a and S2 C lassA a correspond from the match [name]

composition relationship between SI and S2 Since their specifications

are different, and precedence has been specified for SI (from composition

relationship between SI and S2), SI C lassA a is added to the result

• SI C lassA b and S2 C lassA c correspond from the merge relation

ship between the two Again, since their specifications are different, and

precedence has been specified for SI, SI C lassA c is added to the

result

UML Attribut* Specification
.name* .
owners cope Indirne»

Ivtolitity protected I
I nwfphdy
chartgaabüty nono
TergerScopo. Instane* 1

I type string
ilntbMakie null

UML Attribue Specification
.nam e* .
wjnerScope Instance
viatmy privale I

I fnulpftnfy I
cfìangeaùUty none

1 terçptScop» Instance 1
I typ» Integer I

Figure 67 Reconciliation with Subject Precedence

Other Reconcili- It is possible to attach other kinds of reconciliation strategies to a composi-
ation Possibih- , ,
tfes tion relationship with merge integration These strategies work similarly to

the precedence strategy in that once a conflict is detected, the appropriate

strategy determines the specification of the element that is added to the

result Other examples of reconciliation strategies are

• Attach an explicit specification for the merged element to be used in the

event of a conflict For example, in anticipation of the conflict in

attributes, a specific attribute specification may be attached to the compo

sition relationship An element specification attached to a composite

merge is applied to a specific conflict between particular named compo

nent elements An element specification attached to a primitive merge is

applied directly to the elements related The named component elements

are assumed to correspond, either explicitly or implicitly, as defined by

the composition relationship Explicitly named components that do not

correspond as defined by the composition relationship are ignored - that

159

M e rg e I n t e g ra t i on De sc r ip t i o n

Reconciliation
Semantics -
General

Merge with
Correspond
ing Opera
tions

is, they do not specify additional corresponding elements The notation for

this attachment is

r e c o n c i l [e x p l i c i t [{hst_of_wput_elements}, {values}]]

• Attach default values for different types of constructs that should be used

in the event of a conflict between corresponding elements of that type For

example, one of the properties of an attribute is “owner scope” If one

attribute specifies its owner scope as in s ta n c e and its corresponding

attribute specifies its owner scope as c l a s s i f i e r , then a default speci

fication for conflicts for attributes may reconcile this conflict as default

ing to in s t a n c e The notation for this attachment is

r e c o n c i l [d e f a u l t [construct name, {values}]]

• Attach a transformation function to be applied to conflicting correspond

ing elements to determine the specification for the merged element This

specification of such a transformation function is the responsibility of the

designer specifying merge, and should result in a valid element specifica

tion The notation for this attachment is

r e c o n c i l [tran sfo rm [{list of input elements}, program name]]

A designer attaches reconciliation strategies to a composition relationship,

and indicates the order in which each of the attached strategies should be

examined When the integration process encounters a conflict between corre

sponding elements that requires a reconciliation, each of the reconciliation

strategies attached to the composition relationship that specifies those corre

sponding elements is examined, in order, to find the appropriate reconcilia

tion However, if the attached reconciliation strategies (or indeed, if there

has been none attached) do not result in a reconciled element, then each of
the corresponding elements is added to the output separately Elements

are renamed to avoid a name clash

Merging operations means joining behaviours and so, or operation elements,

merge means that on receipt of any message that resulted in the execution of

an operation in an input subject, all corresponding operations are now exe

cuted This means that all corresponding operations are added to the result

This section introduces

• How a collaboration is generated as a result of a merge, to specify that all

corresponding operations are executed on receipt of an appropriate mes-

160
\

M e r g e In t e gra t ion De sc r ip t i o n

Composition
relationship with
No Attached
Collaboration

sage In this case, the order of execution is not important, and so the

designer need not specify the order by attaching a collaboration

• How a collaboration may be attached to a composition relationship with

merge integration to specify an order of execution for corresponding oper

ations

Where no collaboration is attached to a composition relationship with merge

integration, the behaviour of the output subject in relation to the merged

operations is automatically specified with a new collaboration specification

(see Figure 68) This collaboration specifies that an invocation of one of the

corresponding operations results in the invocation of all corresponding oper

ations In this case, it is assumed that the order of execution is not important

In addition, where new collaborations are automatically specified as

described here, each of the corresponding operations must have the same

argument list For options relaxing this restriction, see “Merging Operations

with Attached Collaborations” on page 191

E B B
|si_op11 |s3_opl|

op1 op2

Cdleb_op1
QassA

opl<>

S2_op1<)

Figure 68 Merging Corresponding Operations

In this example, the result of the merge is

• SI C lassA and S2 C lassA correspond from the match [name] com

position relationship between SI and S2 No conflict exists between the

specifications, and so C la ssA is added to the result

• SI C lassA a and S2 C lassA a correspond from the match [name]

composition relationship between SI and S2 No conflict exists between

the specifications, and so C lassA a is added to the result

161

M e r g e In t egra t ion D e sc r ip t i on

New Opera
tions created to
capture merged
collaborative
behaviour

Attaching a Col
laboration to ô
composition
relationship

• SI C lassA opl and S2 C lassA opl correspond from the

match [name] composition relationship between SI and S2 After

renaming to avoid a name clash, both operations are added to the result A

new collaboration is created and added to the result indicating that on

receipt of an opl message, both SI opl and S2 opl are executed

The approach to capturing the behaviour of merged operations is based on

renaming corresponding operations from the input subjects, and creating new

operations with the same name as those in the input subjects These new

operations may be used to create collaborations that define the execution of

all the corresponding (now renamed) operations, without any ambiguity The

ambiguity avoided with this approach is one which would cause an infinite

loop For example, the specification of a collaboration for opl that specifies

that opl is one of a number of operations executed is the specification of an

infinite loop

A different approach is possible based on the clear separation of message and

operation in the UML metamodel Using this separation, collaborations could

be defined specifying that on receipt of a particular message , all the corre

sponding operations would execute However, while this separation is

explicitly defined in the UML metamodel, the UML notation does not sup

port the specification of messages on collaborations This problem could be

solved by inventing a notation to support messages, which would mean that

additional operations would not have to be added to the composed class (as in

Figure 68), and a solution could be defined that is “pure” in relation to the

object-oriented paradigm However, it goes against standard usage of the

UML, and therefore has corresponding difficulties relating to how designers

expect to use, and their general understanding of, interaction diagrams It is
therefore decided to use the approach illustrated in Figure 68 (and subse

quent examples of merging operations) as it uses the standard UML language

The approach taken based on creating new operations to define the delegation

behaviour is open to some refinement using forwarding semantics This is

described in “Merged Operations and Forwarding of References” on

page 195

When the order of execution of corresponding operations is important, a col

laboration specifying this order should be attached to the composition rela

tionship In this case, the attached collaboration is added to the merged

subject as the specification of the behaviour of corresponding operations (see

162

M erg e I ntegra t ion D e s cr i p t i o n

Figure 69) All operations in the corresponding operation set must be

included in the collaboration For options relating to operations with differ

ent argument lists, see “Merging Operations with Attached Collaborations”

on page 191

Figure 69 Attaching Collaborations to Composition Relationship

In this example, the result of the merge is

• SI C lassA and S2 C lassA correspond from the match [name] com

position relationship between SI and S2 No conflict exists between the

specifications, and so C la ssA is added to the result

• SI C lassA a and S2 C lassA a correspond from the match [name]

composition relationship between SI and S2 No conflict exists between
the specifications, and so C la ssA a is added to the result

SI C la ssA c and S2 C lassA b have no corresponding attributes and

so are added to the result

• SI C lassA op3, S2 C lassA opl and S2 C lassA op2 corre

spond from the composition relationship between them All the operations

are added to the result, and renamed to avoid ambiguity with operations

added (opl, op2 and op3) to support the specification of the merged

behaviour The collaborations attached to the composition relationship are

added to the result indicating that on execution of opl, op2 or op3,

S2_opl followed by Sl_op3 followed by S2_op2 are executed

163

M e r g e In t egra t ion M e r g e In t egra t ion S y n t a x

• SI C lassA op4 has no corresponding operations and is therefore sim

ply added to the result

The remainder of this chapter discusses the semantics of merge for design

models Using the UML metamodeling style, the section has the following

subsections

• A subsection with UML class diagrams describing the constructs of

merge, and their relationships

• A subsection containing the well-formedness rules describing the con

straints on instances of merge

• A subsection containing descriptions of the semantics of merge

7 . 2 . M e r g e I n t e g r a t i o n S y n t a x

This section describes merge integration using UML class diagrams to repre

sent the metaclasses relevant for its description, and their relationships The

class diagram includes metaclasses from the UML metamodel with which

composition relationships interact, and new metaclasses representing merge

integration itself The description of the constructs in the metamodel does not

include descriptions of those constructs that are already described in the
UML semantics

A composition relationship with merge integration specifies design elements

that are to be merged For some design elements (e g classifiers, attributes),

merging corresponding elements means one of the elements is copied to the

result A composition relationship may attach reconciliation specifications

for possible conflicts between such'corresponding elements For operations,

constraints and collaborations, all corresponding elements are added to the
result A composition relationship may attach a collaboration to specify the

order of execution of corresponding operations To handle each of these situ

ations, the syntax of a composition relationship has the following parts

• Identification of corresponding elements for composition relationships

This is described in “5 3 Composition Relationship” on page 113 and

applies to composition relationships with merge integration

• The basic composition relationship with merge integration, as described

in “Merge Integration” on page 165

• The syntax associated with attaching reconciliation specifications to a

composition relationship with merge integration, as described in “Recon
ciliation of Conflicts” on page 165

164

!

• The syntax associated with attaching collaborations to specify the order of

operation execution, as described in “ Collaborations for Merged Opera

tions” on page 167

M e r g e I n t eg ra t i on M e r g e I nt e g ra t io n S y n t a x

Merge Inte- Figure 70 describes merge integration as a subclass of the Integration meta-
gration class described in “5 3 Composition Relationship” on page 113

Integration

— y™"

Merge

Figure 70 Merge Integration

Merge Meta- Merge integration specifies that corresponding elements are merged The

semantics of merge integration depends on the kind of elements being

merged

For some design elements (e g classifiers, attributes), merging correspond

ing elements means one of the elements is copied to the result Merge inte

gration specifications may attach reconciliation specifications for possible

conflicts between such corresponding elements (Figure 71)

Reconcilia
tion of Con
flicts

{ordered)

M e rg e R e c o n c il ia t io n

Î reconcile
------------------ ^ --------------

precedents emert

Composa bleElemen f

E x p iâ t

explicit 1

ExpficrtValue

elementi N ane
elementi None

Default
1

default 1

DefaultVehje ;
con struct
property
value

TransformFunctior

transform? unction

Uninterpreted
(from UML)

Figure 71 Reconciliation Specification

Merge Meta
class

An additional property to support reconciliation is its association with Rec

onciliation

165

M e r g e In t e gra t ion M e r g e In t egra t ion S y n t a x

Reconciliation
Metaclass

Precedence
Metaclass

Explicit Meta
class

ExphcitValue
Metaclass

A ssocia tions

reconcile The reconcile association is an ordered association with recon

ciliation strategies The ordering defines the order in which rec

onciliation strategies are used to reconcile conflicts between

elements The order defined as a default is 1) Explicit 2) Trans-

formFunction 3) Precedence 4) Default This order is customis-

able

Reconciliation specifies the manner in which conflicts between the specifica

tions of corresponding elements should be reconciled There are four kinds of

reconciliation supported Precedence, Explicit, Default and TransformFunc-

tion

Reconciliation is an abstract metaclass

Precedence reconciliation specifies a composable element whose values take

precedence in the event of a conflict between specifications of corresponding

elements

A ssocia tions

precedentEle- The element that should take precedence in the event of a con-

ment flict This is generally specified as a subject, but may be any ele

ment participating in the relationship

An explicit reconciliation provides the specification that is to be used in the

composed subject instead of the specifications of particular corresponding

elements that are participating in the merge composition

Associations

explicit The element contains the references to the named elements for

which an explicit specification is required, and an associated

specification of the explicit values

An explicit value contains the names of the corresponding elements for

which an explicit specification is specified, and defines the explicit values

using a reference to the element to be used in the composed result The

named component elements are assumed to correspond, either explicitly or

implicitly, as defined by the composition relationship Explicitly named com

ponents that do not correspond as defined by the composition relationship are

ignored - that is, they do not specify additional corresponding elements

166

M e r g e In t e gra t ion M e r g e I nt e g ra t i on S y n t a x

Default Meta
class

DefaultValue
Metaclass

Transform Func
tion Metaclass

Collabora
tions for
Merged Oper
ations

A ttribu tes

element 1 The name of one of the corresponding elements

element2 The name of another of the corresponding elements

A ssocia tions

reconciled The specification that is to be used in the composed subject

instead of the corresponding elements’ specifications

Default reconciliation specifies the default values for elements of a particular

type, and so, in the event of a conflict between elements of that type, the

default values are used

A ssocia tions

default The default values for properties of composable elements

A default value contains the default value of a particular property belonging to a par

ticular construct

A ttribu tes

construct The default is specified for this construct

property The default is specified for this property of the construct

value The default value for the property

Transform function reconciliation specifies a function to be executed against

conflicting corresponding elements to determine the reconciled specification

A ssocia tions

transform- The function to be run to determine the reconciled specification

Function This makes use of the UML uninterpreted data type to refer to

the reconciliation specific function

For operations, constraints and collaborations, all corresponding elements

are added to the result Merge integration specifications may attach a collab

oration to specify the order of execution of corresponding operations (Figure

72)

167

M e rg e In t e gra t ion Wel l F o r m e d n e s s R u le s

Merge
r

interaction\ Collaboration

>
(from UML)

Merge Meta
class

Figure 72 Collaborations for Merged Operations

A ssocia tions

interaction A collaboration that specifies the order of execution of opera

tions related by a composition relationship

7 . 3 . W e l l - F o r m e d n e s s R u l e s

This section lists the well-formedness rules for merge composition relation

ships These rules are in addition to the rules specified for composition rela

tionships in general m “5 3 Composition Relationship” on page 113

Reconciliation
Specification

[1] Reconciliations attached to a composition relationship apply to all ele

ments except operations, constraints and collaborations

[2] There can only be one of each of the kinds of reconciliation in the ordered

set of reconciliations attached to a merge For example, only one precedent

element is possible Each of the other three kinds (explicit, default and trans

form function) maintain their own relevant set of explicit, default and trans

form function specifications, respectively, but only one set of each per merge

is necessary

Collaboration
Specification for
Operation
Merge

[3] All operations in a corresponding set must be referenced in any collabora

tion specifying the order of execution for that corresponding set (see Figure
73) Note, not all operations must be realised by a collaboration Any opera

tion which is not realised by a collaboration attached to the composition rela

tionship will not exhibit collaborative behaviour In this way, it is possible to

specify that some operations result in the execution of all the corresponding

operations, but not necessarily all of those operations have that effect

168

M e r g e In t egra t ion S e m a n t i c s

I cciao_op2
colab_opl

:aCiflMA

opi()_ |

1 * ~ "

^ 3 1 0 p 1 (]

^¡S2.op2()

\

□ I

| o p i | ^ r

y

CaHab_op1
aClpssA

°P1(> |

~̂[31op1C

- - L _

Figure 73: All corresponding operations referenced in attached collaborations

7 .4 . S e m a n t ic s
As stated previously, merge integration is used to merge design specifica

tions in different design subjects. Composition relationships with merge inte

gration indicate which elements in the design subjects are corresponding, and

should be considered as one element.

This section first discusses the general semantics of merge in “ General

Semantics” on page 169. Sections “Impact of Merge on Subjects” on

page 170 to “Impact of Merge on Collaborations” on page 195 then consider

the impact of merge on each of the different types of supported elements.

General [1] Corresponding elements are identified as described for composition rela-
Semantics tionships in “Semantics for Identifying Corresponding Elements” on

page 122. These semantics apply to composition relationships with merge

integration.

[2] For elements not involved in correspondence matching in different sub

jects, merge integration is a simple union of those elements in the composed

subject.

[3] For all corresponding elements except operations, constraints and collab

orations, one element representing the corresponding elements appears on the

composed result.

[4] Component elements of composites may only be merged if their owning

composites are corresponding and therefore, are merged.

[5] Where conflicts exist in the specifications of corresponding elements

(except operations, constraints and collaborations) those conflicts are recon-

169

M e rg e In t e gra t ion S e ma n t i c s

Impact of
Merge on
Subjects

ciled based on the reconciliation option specified by the composition rela

tionship

[6] All corresponding operations appear on the merged result, but are merged

in the sense that the specification dictates that an invocation of one of the

corresponding operations results in the invocation of all corresponding oper

ations Where ordering is important, a collaboration may be attached to the

appropriate composition relationship

[7] All constraints are added to the result Where only one representative ele

ment of a corresponding set of elements is added to the result, all constraints

on the corresponding elements are added to the result for that representative

element

[8] Adding elements to a composed result from different source subjects may

not result in name clashing In the event of name clashes, renaming of clash

ing elements occurs

[9] All references to elements in the result that may have changed from the

specification in the input subject are changed as described in “Semantics for

Forwarding References to Composed Elements” on page 123

[10] The composed result must conform to the well-formedness rules of the

UML

This section discusses what happens to subject specifications as a result of

merge (See “Appendix A Partial Illustrations of UML Metamodel” on page

269 for an illustration of the UML specification of Package, from which Sub

ject is stereotyped) Then, with an example, the following are illustrated

• How correspondences are established

• The results of merge on corresponding subjects with no conflicts

• The results of merge on corresponding subjects that require specification

reconciliation

• Checking the UML Well-Formedness Rules on the results of merge

• Further examples of reconciliation of conflicts in subjects

The following subsections describe the impact of merge on the example illus

trated in Figure 74

170

M e r g e In t e gra t ion S e ma n t i c s

Correspon
dences

Result of Merge

V1L Peckeg« Specification

!
match! name]

name S3 >(owflectEJement)
(ilmportedEtement
isRoot false
isLeaf- false 1isAbstfact false

J
H i

S5 I I S3

S 1 S 2 I

' S i

r L
ClassB

S 6 I S4S5 j
1 57 1

1 C lass*

A ÉMWMK1
ClanG

te W M !

UML Package Specification

f name S3 >
' (owned Etement) |
• (umportedEfement)
I tsRoot loie I
I tsLeal false |

true

Figure 74 Im pact of Merge on Subjects

• [Eg7 1] SI corresponds with S2 because of a composition relationship

between the two This relationship is the contextual composition relation

ship (see “Composition Relationship” on page 113 for details) This rela

tionship specifies matching on name for identification of correspondence

between the components

• [Eg7 2] SI S3 corresponds with S2 S3 (Eg7 1)

• [Eg7 3] SI S4 corresponds with S2 S5 (because of the composition

relationship between the two)

• [Eg7 4] SI C lassA corresponds with S2 ClassA(Eg7 1)

Elements with correspondences and no conflicts

• With subjects, the result of the merge is to name the resulting subject by

concatenating the names of the input subjects2 The specification of the
resulting subject is therefore S1S2 with the values of the other properties

copied from one of the input subjects Since there is no conflict, it is not

important which subject’ s values are copied This excludes the values for
ownedElements and îm portedElem ents as these are components of

subjects

• The specification of the subject resulting from the merge of SI S4 and

S2 S5 is named S4S5 The values of the other properties are copied

from one of the input subjects (since they are the same) The components

of both (in ownedElements and im portedElem ents) are considered

2 When the names o f the input subjects are the same, concatenating is still performed
(e g S 1 S 1) to distinguish the result from the input subjects

171

M e r g e In t egra t ion S e ma n t i c s

Check on UML
Well-Formed
ness Rules

Other Reconcili
ation Possibili
ties

separately, with the resulting components contained in S4S5 in the

result

• The specifications of SI C lassA and S2 C lassA are merged in the

resulting subject (see section “Impact of Merge on Classifiers” on

page 173 for more details on classifiers) The components of C lassA are

considered separately

Elements with correspondences and conflicts in their specifications

• The specifications of S2 S3 and SI S3 are merged The name of the

resulting subject is S3S3 However, the values of isR o o t and lsA b-

s t r a c t are different, so a reconciliation strategy is required The com

position relationship governing this correspondence (that is, between SI

and S2) indicates that SI has precedence in the event of a conflict There

fore, the values of isR o o t and i s A b s t r a c t from SI S3 are copied to

the result The components of S3 (in ownedElements and im port-

edElements) are considered separately

Elements with no correspondences

• SI S6, and SI C la ssB have no corresponding elements in S2 They

are therefore added to the resulting subject, unchanged in any way, and

without further consideration of their components

• S2 S7, and S2 C la ssC have no corresponding elements in SI They

are therefore added to the resulting subject, unchanged in any way, and

without further consideration of their components

The well-formedness rules for packages are not broken in this example

The previous example showed how a subject can be set as the precedent sub

ject, which means that in the event of a conflict between specifications of

corresponding component elements, the values from the element in the prece

dent subject are copied to the result Figure 75 illustrates the use of other rec

onciliation strategies

172

Merge Integrat ion Semant ics

UML ■Package" Specfication
name S3

■ match[name] .
reconal[explicrf[{S1 S4 S2S4} {true false false}]]
I recondl[defauI[SU)jed{false false falseJJ] I UML *Package Specfl cation

(ownedElement)
I (fmpotiedEtement *) •
I tsRocf false |
tsLeaf true .

' ¡¡Abstract false

.name S4
(ovsoedElemerrt *) ' , name S3

I (importedElemgnt *)' (awnedElement *) I
I tsRoat true
»Leaf false . | isRoot false
 ̂¡¿Abstract true aLeett false

name- S3 '
(ownedElement) |

I (tmpöftedEiement ') |
I tsRoot Irue
toleaf raise I
(¿Abstract true i

name S4 \ (ownedElement) |
I (¡mpottedEfenrent *) .

I > (impoito&lement *) | I 1 I HRc* falseI (ImportedElement - , , „ t e s f f a ,s 0
I ¡¿Root true (

(¿Abstract raise Jjf> fsLeat false
¡¿Abstract raise

isAbstract raise /

Figure 75 Reconciling Conflicts in Subject Specifications

Elements with correspondences and conflicts in their specifications

• The specifications of S2 S3 and S I S3 are merged The name of the

resulting subject is S 3 S3 However, the values of i s R o o t , i s L e a f and

i s A b s t r a c t are different, so a reconciliation strategy is required The

composition relationship between S i and S2 has two kinds of reconcilia

tion strategies attached First, a search through the explicit reconciled ele

ments shows that there is no explicit reconciliation for S3 However,

default values for subjects are included, and so the values o f i s R o o t ,

i s L e a f and i s A b s t r a c t in the resulting subject are set to the defaults

listed The components of S3 (in o w n e d E l e m e n t s and i m p o r t -

e d E l e m e n t s) are considered separately

• The specifications of S2 S4 and S I S4 are merged The name of the

resulting subject is S4S4 However, the values o f i s R o o t and i s A b

s t r a c t are different, so a reconciliation strategy is required The com

position relationship between S I and S2 has two kinds of reconciliation

strategies attached A search through the explicit reconciled elements

shows that an explicit reconciliation for S4 has been defined Therefore

values of i s R o o t , i s L e a f and i s A b s t r a c t in the resulting subject

are set to the explicit values listed The components of S4 (in

o w n e d E l e m e n t s and i m p o r t e d E l e m e n t s) are considered sepa

rately

Impact of This section discusses what happens to subject specifications as a result of
Merge on
C lassif iers merge (See “ Appendix A Partial Illustrations of UML Metamodel” on page

173

Merge Integration Semantics

Correspon
dences

Result of Merge

269 for an illustration of the UML specification of Classifier) The following

subsections describe the impact of merge on the example illustrated in Figure

76

• [Eg7 5] S I corresponds with S2 because of the composition relationship

between the two This relationship specifies matching on name for identi

fication of correspondence between the components

• [Eg7 6] S I C l a s s A corresponds with S2 C l a s s A (E g 7 5)

• [Eg7 7] S I C l a s s B corresponds with S2 C l a s s B (E g 7 5)

• [Eg7 8] S I C l a s s D corresponds with S2 C l a s s C (from the relation

ship between the two)

• [Eg7 9] S I C l a s s D also corresponds with S2 C l a s s D from (Eg7 5)

Recall that composable elements may participate in multiple composition

relationships (see “Participation in multiple composition relationships” on

page 86) Any correspondence not required which occurs implicitly as a

result of a matching specification attached to a relationship at a higher

level m the subject tree must be explicitly excluded with a composition

relationship with a d o n t M a t c h attachment

ML Class Specification

I isAbstmct true
• isflcive false |

tee fare {*}\

mat ch[name]

iSi4cfrwa false
feature {*]

3̂

UML Class Specification

I tsAbstrect false
isActive false
feature {*}

\ | isAbstiact true
■ tsAcbvB true feature <*}\

Figure 76 Impact of Merge on Classifiers

Elements with correspondences and no conflicts

• In the result, S2 C l a s s C is merged S I C l a s s D Since their names are

different, the names are appended with the result class called “C l a s s C -

C l a s s D ” The components of S2 C l a s s C and S I C l a s s D (in f e a

t u r e) are considered separately

• S I C l a s s D is merged S2 C l a s s D Their components are considered

separately

174

Merge Integration Semant ics

Check on UML
Well-Formed
ness Rules

Elements with correspondences and conflicts in their specifications

• The specifications of S I C l a s s A and S2 C l a s s A are merged Since

the names are the same, the name of the resulting class is C l a s s A How

ever, the values of i s R o o t and i s A b s t r a c t are different, so a recon

ciliation strategy is required The composition relationship between S I

and S2 indicates that S I has precedence in the event of a conflict Since

this merge applies here, the values of i s R o o t and i s A b s t r a c t from

S I C l a s s A are copied to the result The components of C l a s s A (in

f e a t u r e) are considered separately

• The specifications of S I C l a s s B and S2 C l a s s B are merged Since

the names are the same, the name of the resulting class is C l a s s B How

ever, the values of i s A c t i v e are different, so a reconciliation strategy is

required The composition relationship between S I and S2 indicates that

S I has precedence in the event of a conflict Since this relationship

applies here, the value of i s A c t i v e from S I C l a s s B is copied to the

result The components of C l a s s B (in f e a t u r e) are considered sepa

rately

Elements with no correspondences

• S I C l a s s E has no corresponding elements in S2 It is therefore added

to the resulting subject, unchanged in any way, and without further con

sideration of its components

The example illustrated in Figure 76 does not result in a breakage of the well-

formedness rules of the UML

However, with a small change as illustrated in Figure 77, it is easy to see

where a breakage might occur The illustration highlights (with a big X)

where a breakage of the well-formedness rules of the UML may occur

Figure 77 Breaking Well-Formed ness Rules for Classifiers

175

Merge Integration Semantics

This example results in one breakage of the UML well-formedness rules

Classifier is a subtype of GeneralizableElement (see “Appendix A Partial

Illustrations o f UML Metamodel” on page 269), and must conform to the

well-formedness rules of all generalizable elements One rule for generaliza-

ble elements states that “A root cannot have any Generalizations” [UML

Semantics Guide page 2-53, GeneralizableElement, Rule [1]] The

S I C l a s s B which has precedence, specifies C l a s s B as being a root class,

but C l a s s B in S2 is generalised to C l a s s A and this generalization is cop

ied to the result

This application of the general precedence resolution strategy results in a

breakage of the well-formedness rules of the model See “ Other Reconcilia

tion Possibilities” on page 176 for how a different reconciliation strategy

might have been more appropriate here

Other Reconcilh The previous example showed how a subject can be set as the precedent sub-
ation Possibih- , , , _ _ r
¡Ies ject, which means that in the event of a conflict between specifications or

corresponding component elements (in this case, Classes), the values from

the class in the precedent subject are copied to the result Figure 78 illus

trates the use of other reconciliation strategies

• fecondl{BXplldtl{S1 ClassA S2 ClassA) {Irte robe bis
r*conclíjderaLilt[Clas5lfl#r{ral» falsejalse raise}]] telse)B|

UML “Class Spacttlcdlon

isActt* false

UML *CIoh Specification
name ctassAN
IsRoct. tos» I
IsLerf falte

I Is Abstract false
isActke false I

1 feature {'})s .___ _
mv ClassB ̂
foot false I

I false i
isAbstract. true
«Ac/ve false I

I IsAbstract false I
i üActtoe. raise |
feature {*} j

I false
IzActin false I
feature {"}

Figure 78 Reconciling Conflicts in Classes

Elements with correspondences and conflicts in their specifications

• The specifications of S2 C l a s s A and S I C l a s s A are merged Since

the names are the same, the name of the resulting subject is C l a s s A

However, the values of i s R o o t and i s A b s t r a c t are different, so a

reconciliation strategy is required The composition relationship between

176

Merge Integration Semant ics

Revisiting Well-
formedness
Rules

Impact of
Merge on
Attributes

Correspon
dences

S I and S2 has two kinds of reconciliation strategies attached A search

through the explicit reconciled elements shows that there is an explicit

reconciliation for C l a s s A defined Therefore values of i s R o o t ,

i s L e a f , i s A b s t r a c t and i s A c t i v e in the resulting class are set to

the explicit values listed The components of C l a s s A (in f e a t u r e) are

considered separately

• The specifications of S2 C l a s s B and S I C l a s s B are merged Since

the names are the same, the name of the resulting subject is C l a s s B

However, the value of i s R o o t is different, so a reconciliation strategy is

required The composition relationship between S I and S2 has two kinds

of reconciliation strategies attached First, a search through the explicit

reconciled elements shows that there is no explicit reconciliation for

C l a s s B However, default values for classifiers are included, and so the

values of i s R o o t , i s L e a f , i s A b s t r a c t and i s A c t i v e in the

resulting subject are set to the defaults listed The components of C l a s s B

(in f e a t u r e) are considered separately

The example in the previous section as illustrated in Figure 77 resulted in a

breakage of the well-formedness rules of the UML when the reconciliation

automatically made the values of elements in S I take precedence in the event

of a conflict However, the example shown in Figure 78 illustrates how spec

ifying defaults with the most flexible o f values avoids problems with well-

formedness rules Here, the values of the defaults for i s R o o t and i s L e a f

are both false, which mean that a class with these values may participate as it

wishes in generalization relationships

This section discusses what happens to attribute specifications as a result of

merge (See “ Appendix A Partial Illustrations of UML Metamodel” on page

269 for an illustration o f the UML specification of Attribute)

The following subsections describe the impact of merge on the example illus

trated in Figure 79

• [Eg7 10] S I corresponds with S2 because of the composition relationship

between the two This relationship specifies matching by name for identi

fication of correspondence between the components

• [Eg7 11] S 1 C l a s s A corresponds with S2 C l a s s A (Eg7 10)

177

Merge Integration Semant ics

Result of Merge

• [Eg7 12] S I C l a s s B corresponds with S2 C l a s s C (from the composi

tion relationship between the two This relationship specifies matching on

name for identification of correspondence between the components)

• [Eg7 13] S I C l a s s A a corresponds with S2 C l a s s A a (Eg7 10)

• [Eg7 14] S I C l a s s B a corresponds with S2 C l a s s C a (Eg7 12)

• [Eg7 15] S I C l a s s B f corresponds with S2 C l a s s C e (from the

composition relationship between the two)

• [Eg7 16] S i C l a s s B f also corresponds with S2 C l a s s C f from

(Eg7 12) Recall that composable elements may participate in multiple

composition relationships (see “Participation in multiple composition

relationships” on page 86) Any correspondence not required which

occurs implicitly as a result of a matching specification attached to a rela

tionship at a higher level in the subject tree must be explicitly excluded

with a composition relationship with a d o n t M a t c h attachment

UML Attribute Specification

ownerSmpe instance
I visibility
mvltipteityr “ u - " Q □cAanpeaMfy none

i torgalScQpe instance
■ type String
miialValue null

□

matehfname] v
A

iatchfname]

UML Attribute Specification

Class*

a „

ClassC \ ,

H M

' □ □ □ H 0 0 0 0

cwnerSmpê instance j
vsMty public
multjpbcjty 1
changeability none |

II targetScopQ instance
I type String I

witian/elwe null i\ . '
,n o m e b \
ownerSoope. instoree.

I vjsjtuity public
■ multplc/ty I
changeability none |

I targetScope Instance
I type ClassC I

null I

Figure 79 Impact of Merge on Attributes

Elements with correspondences and no conflicts

• In the result, S2 C l a s s A is merged with S I C l a s s A Since their

names are the same, the name of the result class is C l a s s A

• In the result, S2 C l a s s C is merged with S I C l a s s B Since their

names are different, the names are concatenated with the result class

called “C l a s s B C l a s s C ”

• In the result S2 C l a s s B f is merged with S I C l a s s C e Since their

names are different, the names are concatenated with the result attribute

called “ e f ”

178

Merge Integration Semant ics

Check on UML
Well-Formed
ness Rules

Other Reconcili
ation Possibili
ties

• In the result, S2 C l a s s B f is merged with S I C l a s s C f Since their

names are the same, the name of the result attribute is “ f ”

Elements with correspondences and conflicts in their specifications

• The specifications of S I C l a s s A a and S2 C l a s s A a are merged

Since the names are the same, the name of the resulting attribute is a

However, the value of the v i s i b i l i t y property is different, so a recon

ciliation strategy is required The composition relationship between S I

and S2 indicates that S I has precedence in the event of a conflict Since

this relationship applies here, the value of v i s i b i l i t y (and all other

properties) from S I C l a s s A a is copied to the result

Elements with no correspondences

• Attributes S I C l a s s A c and S I C l a s s B d have no corresponding

attributes and so are added unchanged to the resulting C l a s s A and

C l a s s B C l a s s C

• Attributes S2 C l a s s A b and S2 C l a s s A d have no corresponding

attributes and so are added unchanged to the resulting C l a s s A

Elements requiring change as a result o f “ forwarding” semantics

• Attribute S2 C l a s s A b has a type of C l a s s C in S2 However,

S2 C l a s s C is merged with S I C l a s s B and, therefore, all references

to C l a s s C in S2 must be changed to its new specification, which is

C l a s s B C l a s s C

The well-formedness rules for attributes are not broken with this example

The previous example showed how a subject can be set as the precedent sub

ject, which means that in the event of a conflict between specifications of

corresponding component elements (in this case, Attributes), the values from

the attribute in the precedent subject are copied to the result Figure 80 illus

trates the use of other reconciliation strategies

Elements with correspondences and conflicts in their specifications

• The specifications of S I C l a s s A a and S2 C l a s s A a are merged

Since the names are the same, the name of the resulting attribute is a

However, the value of the v i s i b i l i t y property is different, so a recon

ciliation strategy is required The composition relationship between S I

and S2 has two kinds o f reconciliation strategies attached A search

179

Merge Integrat ion Semantics

Impact of
Merge on
A sso c ia tion s
and Generali’
zations

through the explicit reconciled elements shows that an explicit reconcilia

tion for C l a s s A a has been defined Therefore the values o f o w n e r -

S c o p e , v i s i b i l i t y , m u l t i p l i c i t y , c h a n g e a b i l i t y ,

t a r g e t S c o p e , t y p e and m i t i a l V a l u e in the resulting attribute

are set to the explicit values listed

• The specifications of S I C l a s s A b and S2 C l a s s A b are merged

Since the names are the same, the name of the resulting attribute is b

However, the values of the o w n e r S c o p e , v i s i b i l i t y and t y p e prop

erties are different, so a reconciliation strategy is required The composi

tion relationship between S I and S2 has two kinds of reconciliation

strategies attached First, a search through the explicit reconciled ele

ments shows that there is no explicit reconciliation for b However,

default values for attributes are included, and so the values of o w n e r

S c o p e , v i s i b i l i t y , m u l t i p l i c i t y , c h a n g e a b i l i t y , t a r

g e t S c o p e , t y p e and m i t i a l V a l u e in the resulting attribute are set

to the defaults listed Note that if no defaults had been listed for attribute,

and no other precedence strategy attached to the composition relationship

that applied here, then both b attributes would be added to the result,

renamed by concatenating the subject name to avoid a name clash

|matcti[nsfriB] I
r̂ecorcilieicplicia {S1 ClassA a 52 ClassA e} {instance private none iretaiv» Integer mjl})}|

'reconcilldefeulttAitntnie {instance public none instance String null>D
.name a \
owrtarSeo;» instance |

I i/is/£wiifjr protected
I multipicity

changeability none
I targetScope
I typo String

trt/hafVafue. null

name b
ownerScope classifier

I visibility private
changeability none

I targetScope instance
.type Stmg
MiA/Vaft/e mil

rents a
ownerScope Instance

I visibility public
I multipHaty
changeability none
taf̂ etSoope. Instance

I type Stmg
tnitiafVaitje. nut

nams b
cmnerScnpe instane 1 visibility protected

■ multptcity
crmoesMty r>ont»
fatgeì Scope instenoe

I type integer
initBfValue nullV

Figure 80 Reconciling Conflicts in Attribute Specifications

This section discusses what happens to association and generalization speci

fications as a result of merge (See “Appendix A Partial Illustrations of UML

Metamodel” on page 269 for an illustration of the UML specification of

Relationship) Then, with an example, the following are illustrated

• How correspondences are established

• The results of merge on corresponding associations with no conflicts

180

Merge Integration Semantics

Result of Merge
for Figure 81

Result of Merge
for Figure 82

• The results of merge on corresponding associations that require specifica

tion reconciliation

• Further examples of reconciliation of conflicts in associations

• The results of merge on corresponding generalizations

• Checking the UML Well-Formedness Rules on the results of merge

The first example, in Figure 81, illustrates the merging of associations with

the same name (with name match correspondence specification) but different

association ends

S1 I
match[name]

I
associ pnac

HtziSJLf

JEL

S1S2 I

In».» I] *ssnc1
L-J.

Classo

Figure 81 Example 1 Impact of Merge on Associations

Elements with correspondences and conflicts in their specifications

• The specifications of S I a s s o c l and S2 a s s o c l are merged Since

the names are the same, the name of the resulting association is a s s o c l

However, the values of the name properties of the association ends are

different, so a reconciliation strategy is required The composition rela

tionship between S I and S2 indicates that S2 has precedence in the event

of a conflict Since this merge applies here, the values of name at both

ends (and all other properties) from S2 a s s o c l is copied to the result

As with other elements where reconciliation may be required, defaults may

be used to reconcile differences in specifications In Figure 82, differences in

the specifications of the associations in different subjects, and in one of the

association ends occur (Note, for space reasons, all the default properties for

reconciliation of association ends are not listed in the diagram)

Elements with correspondences and conflicts in their specifications

• The specifications of S I a s s o c l and S2 a s s o c l are merged Since

the names are the same, the name of the resulting association is a s s o c l

However, the values o f the i s R o o t property of the association, and of

181

Merge Integrat ion Semantics

the i s N a v i g a b l e , o r d e r i n g , t a r g e t S c o p e and v i s i b i l i t y

properties of the association ends named x are different, so a reconcilia

tion strategy is required The composition relationship between S I and S 2

includes defaults for association and association ends in the event of a

conflict Since this relationship applies here, the values o f the conflicting

properties are taken from the default and copied to the result There are no

conflicts in the specification of the association end y, and so the result is

copied from either of the subjects Similarly, explicit values for the asso

ciation and its association ends may be specified with the composition

relationship, which would be used for their reconciliation in the result

match[name!
I reconcil[deteult[Association{fatse false false 2} As«ociationEnd{false un orde red instance public}]]

name assod
f isRoot false
I isLeaf false
isAbstract false

' connection {2}
(JML AssooationEnd
(connection from Association)

name x
f isNavigable false
I ordenng ordered
, aggregation none
1 targetScope classifier
I multiplcity

changeability changeable
visibility private

I qualifier {}
. type ClassA

specification none

name y
t isNavigable false
| ordering unordered

aggregation none
* targetScope instance
| multiplicity

changeability changeable
' visibility public
| <juei)fer {>
. type ClassD

spec if cation none
S . ____ ✓

| ordering ordered
aggregate none

* targetScope instance
| multiplicity
. changeability changeable

visibility public I quarter {}
. type ClassA

specif ¡cation none

lame assod
'isRoot true •
l/sLeaf false |
jisMsfrac* false
connection {2}
s . ✓

UML Associati onEnd
(connection from Association)

name x
isNavgabfe true
ordering unordered
aggregation none
tergefScqpe instance
multiplicity
changeability changeable
visibility public
qualifier {}
type ClassA
specif cation none
V - -name y ,
isNavigabJete\s9
ordering unordered
aggregation none
targetScope instance
multiplcity
changeability changeable
visibility public
qualifier {}
type ClassD
spec fcation none
\ _ y

Figure 82 Example 2 Using Defaults to Reconcile Conflicts in Associations

Result of Merge
for Figure 83

As with all elements, associations with no corresponding associations are

added to the result (see Figure 83) Like-named associations between differ

ent sets of classifiers are deemed not to correspond

182

Merge Integration Semantics

Generalizations

S2 1
, assoc2

ClassD 1ClassA
j °A

Figure 83 Example 3 Impact of Merge on Associations

A generalization is a relationship between a more general element and a more

specific element A generalization is not a composable element, but this sec

tion considers the impact of merge on generalizations All generalizations in

the scope of a merge are added to the result As illustrated in Figure 84, this

may result m a multiple inheritance graph, where single inheritance was

specified in the input subjects

In Figure 84, the resulting C l a s s C is generalised from C l a s s F through two

routes - directly, and from C l a s s E This does not break the well-formed

ness rules as defined by the UML, but may not be the desired semantics As

with all design effort using generalizations, care should be taken with merge

to ensure that the result is as desired

Figure 84 Example 1 Impact of Merge on Generalizations

183

Merge Integration Semantics

UML Well-
Formedness
Rules

Impact of
Merge on
Dependen
c ie s

As with all elements, merge may result in breakages to the well-formedness

rules for generalizations In section “ Impact of Merge on Classifiers” on

page 173, one example was illustrated relating to the specification of root

classes Another example is illustrated in Figure 85 and relates to the well-

formedness rule “ Circular inheritance is not allowed” [UML Semantics

Guide page 2-53, GeneralizableElement, Rule [3]]

As described previously m the semantics for override integration relating to

generalizations (“Generalizations” on page 144), ideas described in [Walker

2000] could be incorporated here to eliminate cycles in composed hierar

chies This is added to future work

Figure 85 Example 2 Impact of Merge on Generalizations

This section discusses what happens to dependency specifications as a result

of merge (See “Appendix A Partial Illustrations of UML Metamodel” on

page 269 for an illustration of the UML specification of Dependency) The

impact of merge on dependencies is illustrated with an example

A dependency is a “ using” relationship, which states that the implementation

or functioning of one or more elements requires the presence of one or more

elements Dependency is not a composable element, but this section consid

ers the impact of merge on dependencies

In general, all dependencies in the scope of a merge are added to the result

Where there are duplicate dependencies in merging subjects, only one will

appear in the result Duplicate dependencies are of the same kind and stereo

type and have the same supplier and client Figure 86 illustrates an example

184

Merge Integrat ion Semantics

Result of Merge

Impact of
Merge on
Constraints

All dependencies are added to the result

\ > cits!E 1
J _____

S1S2

matctifnarr»] \

f

CfetssB\ ------------> ClassE
“ I

— — — ClassF

Figure 86 Impact of Merge on Dependencies

This section discusses what happens to constraint specifications as a result of

merge (See “ Appendix A Partial Illustrations of UML Metamodel” on page

269 for an illustration of the UML specification of Constraint) The impact of

merge on constraints is illustrated with an example

A constraint is a boolean expression on an associated element, which must be

true for the model to be well formed Some constraints are predefined in the

UML, others may be user defined All constraints are included in the rule for

merge, which states that the resulting model must be well-formed Predefined

stereotypes of constraint are invariant, precondition and postcondition

Constraint is not a composable element, but this section considers the impact

of merge on constraints (invariants) In general, all constraints in the scope

of a merge are added to the result Where there are corresponding elements

where only one representative element is added to the result (e g classifier,

attributes), constraints on those elements are all added to the result, with the

effect of a boolean an d across the constraints that were defined for corre

sponding elements in the input subjects Care should be taken when merging

constraints to ensure that the semantics of the constraints do not conflict or

have unanticipated implications In some cases, merging of some constraints

may break the well-formedness rules of the model

Pre and post conditions are discussed with operations in “ Impact of Merge on

Operations” on page 188

185

Merge Integration Semant ics

Result of Merge
on Figure 87

Result of Merge
in Figure 88

In the first case, user-defined constraints in the separate subjects are added to

the merged subject

Figure 87 Example 1 Impact of Merge on Constraints

* Constraints on attributes S I C l a s s A a and S2 C l a s s A b added to

result

As with the direct writing of constraints on a model, care should be taken to

ensure the constraints in the result of a merge integration remain as intended

Adding constraints in this manner may result in unanticipated or conflicting

implications For example, in Figure 88, constraints on C l a s s A a imply

that C l a s s A c must always be negative

/
UZ

{a+c<20}

ClassA
—11

□ s

match [rame]

\

Vi
{ a > 2 0 }

S1S2 I
ClassA

H H] [r] 0 11 - {̂a+c<20}

Figure 88 Example 2 Result of Merge on Constraints

• Constraints on attributes S I C l a s s A a + A l C l a s s A c and

S2 C l a s s A a added to result

186

Merge Integration Sema nt i cs

Result of Merge Figure 88 illustrated an example of an unanticipated implication of merging

in Figure 89 constraints There is also the possibility that merging constraints will result

in incorrect and conflicting constraints Figure 89 illustrates this possibility

and highlights the problems with a “ 9” The supporting text following the

diagram answers the implied question by describing the policy of merge

Figure 89 Example 3 Impact of Merge on Constraints

• Constraints on the generalizations to S I C l a s s C and S2 C l a s s C are

added to result However, these constraints now conflict, as a generaliza

tion cannot be both d i s j o i n t and o v e r l a p p i n g , and cannot be both

c o m p l e t e and i n c o m p l e t e

• The constraints on the associations S I a l and S2 a l are added to the

result However, an association cannot be both a g l o b a l and a l o c a l

association

• The x o r constraint between S I a l and S I a 2 is added to the result

This causes no conflict

As described previously, the general policy of composition is to perform the

composition as specified, and to highlight breakages of the UML well-

formedness rules as a result Unlike classifiers and operations, the policy for

merging constraints is to add all specified constraints Conflicts in, for exam

ple, attributes can have reconciliation applied since only one representative

attribute of corresponding ones appears in the result Since this is not the

case for constraints, such reconciliation does not apply, and so conflicts may

exist in the composed result

187

Merge Integration Semant ics

Check on UML
Well-Formed
ness Rules

Impact of
Merge on
Operations

In this case, however, there is a strong temptation to attempt to automatically

“ fix” the problems that are illustrated in Figure 89 Possible approaches to

such fixes might be to automatically add the more flexible constraints in the

event o f a conflict (e g making the generalization i n c o m p l e t e and o v e r

l a p p i n g) or perhaps the opposite by adding the more restrictive options

With whatever policy that might be adopted for automating fixes, there

remain two fundamental problems

• Domain Semantics It is not always possible to reason about the intentions

o f the designer In this example, it is not possible to decide whether the

designer who specified the generalization as d i s j o i n t and c o m p l e t e ,

and the association g l o b a l , was correct in reflecting the constraints of

the domain in S I , or the decisions the designer of S2 made were correct

Possibly, they were both correct for their own subjects But, what is cor

rect in the merged subject9 Since the answer to this question lies in the

semantics of the domain, it is therefore safer to highlight the conflict in

the result, and ensure that an informed choice is made based on the

requirements

• Consistency Constraints in UML models may be pre-defined by the

UML, or user-defined constraints Where constraints are user-defined, it

is more difficult to define an automatic policy to adopt to handle con

flicts, and therefore, if there was a policy for those constraints pre-defined

for the UML, there would be an inconsistency in the behaviour of compo

sition - some constraint conflicts “ fixed” and some not

Constraints are included in the well-formedness specification of a model

This section discusses what happens to operation specifications as a result of

merge (See “Appendix A Partial Illustrations of UML Metamodel” on page

269 for an illustration of the UML specification of Operation)

Then, with an example, the following are illustrated

• How correspondences are established

• The results of merge on corresponding operations when no collaboration

is attached to the merge

• The results o f merge on corresponding operations with a collaboration

attached

• Checking the UML Well-Formedness Rules on the results of merge

188

Merge Integration Semant ics

Merging Opera
tions with no
Attached Col
laborations

Merging operations means that corresponding operations’ behaviours are

joined together This means that the execution of any one of the correspond

ing operations results in the execution of all o f the corresponding operations

Specification of this behaviour is achieved within the subject-oriented design

model by generating interaction diagrams realising the composed operation

as delegating to each of the corresponding input operations on invocation of

the composed operation Input operations may be renamed to avoid a name-

clash Re-naming is achieved by pre-pending the name of the input subject,

followed by an underscore, to the operation name Input operations are also

given protected visibility in the output

In Figure 90, examples of merging corresponding operations are illustrated,

showing

• The re-naming of corresponding input operations and the creation of oper

ations used to specify the behaviour of merged operations - that is, that all

corresponding operations are executed when any one of them is executed

See “ Composition relationship with No Attached Collaboration” on

page 161 for a discussion on different solutions considered here

• Use of a primitive composition relationship to indicate correspondences

between particular operations

• Correspondences between operations are only established within classifi

ers that correspond

• Collaborations are generated to specify the combined behaviour of corre

sponding operations

Correspondences

• [Eg7 17] S I corresponds with S2 because of the composition relationship

between the two This relationship specifies matching on name for identi

fication o f correspondence between the components

• [Eg7 18] S I C l a s s A corresponds with S2 C l a s s A (Eg7 17)

• [Eg7 19] S I C l a s s B corresponds with S2 C l a s s B (Eg7 17)

• [Eg7 20] S I C l a s s A o p l corresponds with S2 C l a s s A o p l , and

S I C l a s s B op4 corresponds with S2 C l a s s B op4 (Eg7 17)

• [Eg7 21] S I C l a s s A o p3 corresponds with S2 C l a s s A op2 (from

the composition relationship between the two)

189

Merge Integration Semant ics

S1

op1 op4 op1

match[riame]

S1S2

opi op2 md op3
ar* crcatcd to
hondU bitcracti
Th» <rrtwr
opérations an

op1 ^ o p i] si_op:

S1.op̂ S2_op1 S3_op2|

aiput «ubj*c+»

created to bandi«'
inta faction

op4 op1 °p2
51_cp4 S2_op¿

ffESVJ

f

S2

C0la0_as»*«_pp1
Class*

1

i SLOP 10
] 52_opl()

■ " op2 op1 □p2 op4

Coltaö_ClasaA_op2
ClassA apg(L I^ S 1_qp3

S2_cp30

Coltat)_CbssA_op3 ColW)_Cta«BjJp4
CBS» 039SB

gst_op3<> owl, I, ILJsi_op«(]
pS2_qj20 □ S2_tp40
P
1 f

Figure 90 Impact of Merge on Operations

Result

* After renaming, S i C l a s s A o p l and S2 C l a s s A o p l are added to

the result A new o p l is created and added to the result, realised by a new

collaboration which is also created This collaboration indicates that on

execution of an o p l operation, both S l _ o p l and S 2 _ o p l are executed

S l _ o p l and S 2 _ o p l have protected visibility

* S I C l a s s A o p 3 and S2 C l a s s A o p2 are renamed and added to the

result Two new operations o p 2 and o p 3 are created, realised by two new

collaborations which are also created These collaborations indicate that

on receipt of either an o p2 or an o p 3 message, both S l _ o p 3 and

S 2 _ o p 2 are executed S l _ o p 3 and S2 o p 2 have protected visibility

* After renaming, S I C l a s s B op4 and S2 C l a s s B op4 are added to

the result A new op4 is created and added to the result, realised by a new

collaboration which is also created This collaboration indicates that on

receipt of an op4 message, both S l _ o p 4 and S 2 _ o p 4 are executed

S l _ o p 4 and S 2 _ o p 4 have protected visibility

Operations
involved in Mul
tiple Composi
tions

The composition of designs model allows for composable elements to partic

ipate in multiple composition relationships (see “Participation in multiple

composition relationships” on page 86) For merging operations, this has the

potential to cause some ambiguity For example, in Figure 91 the operation

190

Merge Integration Semant ics

51 C l a s s A o p 3 corresponds with two different operations One is as a

result o f an explicit composition relationship between S I C l a s s A o p 3 and

52 C l a s s A o p 2 , and the other is as a result of the matching by name crite

ria specified in the composition relationship between S I and S2 The

semantics of merging operations states that the execution of any one of a cor

responding set of operations means the execution of each of the operations in

the corresponding set However, since there are two corresponding sets of

operations for o p 3 , there is ambiguity as to which interaction is appropriate

As with specifying composition relationships in general, care should be taken

to ensure that the behaviour in the output is as required, though this ambigu

ity can be resolved by attaching additional collaborations to the composition

relationship

Figure 91 Operations involved in Multiple Compositions

Merging Opera
tions with
Attached Col
laborations

When the order o f execution o f corresponding operations is important, a col

laboration^) specifying this order should be attached to the composition

relationship In this case, the attached collaboration is added to the merged

subject as the specification of the behaviour of corresponding operations

Result of merge in Figure 92

• S I C l a s s A o p 3 , S2 C l a s s A o p l and S2 C l a s s A o p2 are cor

responding and are renamed and added to the result The three collabora

tions attached to the composition relationship are added to the result

indicating that on execution of an o p l or an o p2 or an o p3 operation,

S2 o p l , S I _ o p 3 and S 2 _ o p 2 are executed in that order

191

Merge Integration Semantics

Conflict Rules
for Merging
Operations

matctfname]

I Colati ClMaA_i)p30
I Collab_CI»sAjjp20

Coil bJ3»j«A_op10OassA
op1(x Integer̂

LJS2_op1(x)
□ Sijjpao

<—
□ S2_0p2()

t -----
S 1 S 2 I

E B B
opl] röpä] [ops] [opt]

S2_op1 S2_op2 S1_op3

Co!t*b_CI«j»A_ p1<)
CtassA

op1(x Into gerì
Lj32_op1(x)
□ si_op3()

<—
□ S2_pp20

Figure 92 Merging Operations with Attached Collaborations

Where an operation is part of a corresponding group o f operations, and is not

realised by a collaboration attached to the composition relationship, a call to

that operation does not result in delegation to all of the operations in the cor

responding group This is only the case where at least one collaboration is

explicitly attached to the composition relationship Where no collaboration is

attached, then collaborations are generated for all of the operations This

behaviour supports the designer excluding a specific operation in the corre

sponding group as always resulting in all of the operations being executed

There are various ways in which the specifications of operations may be dif

ferent, and this section looks at the impact of merge when the specifications

of operations defined as corresponding are different

Conflicting Param eter Lists

The general rule relating to merging operations is that they must have the

same parameter list On execution, values input to the composed operation

may then be used in the calls to each of the corresponding operations

One exception to this rule is included Where one of the corresponding oper

ations has parameters whose values may be used in other corresponding oper

ations with a subset o f the parameters in the called operation, these

operations may be defined as corresponding In this case, the designer must

192

Merge Integration Semant ics

attach a collaboration to the composition relationship indicating how the

operations are called Without such a collaboration, the operations will be

deemed to conflict, therefore treated as non-corresponding, and will not be

merged Figure 93 illustrates how a designer may merge operations with con

flicting parameter lists

S1 I match[narne]
1

ClassA lì
*+ op3(SWn& int, Irrt)

4 «r
i

4*

C oHab_C lassA_op3() 1
ClassA

op3(name x i

<—

—JS1_op3(name x y)
p)S2_op4(xi
r

S2

“■+ op4(int}

Figure 93 Merging Operations with Different Parameters

Other conflicting properties

There is other potential for apparently conflicting properties in operations

that have been specified as corresponding For example, in Figure 94, o p l ,

o p 2 and o p3 are p r i v a t e , p r o t e c t e d and p u b l i c respectively Other

differences are illustrated for each of the other properties of operation It is

the policy o f merge integration that operations with conflicting properties are

deemed to be non-corresponding In this case, they are treated as any non

corresponding elements, and not merged

mat ch[nam8]

name op3
• owners cape instance
• vKibifify public concurrency sequential
| isQuery false
. pare meter {}
1 isRoct true
I isLeaf- false I ¡Abstract false
V specficalion

S 1 S 2 I
ClassA

0 0 0

[Öpi] [Öp2] [Öpä]

S2 |* ^ to.-\ ^ ClassA*
\ E E

\ 4

r -
name opl \

townerSccpe classifier
a visibility private
concurrency m recurrent

| isQu«y true
parameter {x Integer}
' isRooL false
| isLeaf true
»£Abstract false
Êpeoftcation

name- op2
t ownerScope instance
i Visit»lify protected

concurrency guarded
| «Quejy true

pararreter {}' irffaof fakp
I idJzaf- false

isAbstroct true
\ specification

_ _ S
Figure 94 Merging Operations with Other Conflicting Properties

Concerns with the rigidity of this approach are discussed in “ Incompatible

Elements” on page 100 Here, it is concluded that a taxonomy of rules to

guard against integration of truly incompatible elements, but allow some pos-

193

Merge Integration Semant ics

sibilities, is the best approach This is added to future work for composition

of design models

Pre and Post conditions fo r corresponding operations

As with constraints in general, each pre and post condition for each corre

sponding operation is added to the result, which may have unpredictable

results In the example in Figure 95, the only time that op2 {) will execute is

if op3 () changes the value o f a to be > 5 0 This may or may not be what is

required The general advice for constraints applies here Care must be taken

when merging operations with pre and post conditions, that the combination,

if not disjoint, makes sense

ClassA a

B E I

{pre a*10
post a opre a}

maternante)

[CDllab_Cla35rt_op30
I CQllafa_ClBB8\opi2Q

ClassAop1(x Integerj j
-JS2_op1M j
jjsi_Op3()
^S2_op2()
L _

S 2
— te»

N.
\

v 4

ClassA

HGD
I post a = pre a and
1 ̂ b pre b>

S 1 S 2

E B B
ôpï] [öpä] [öpä] [Öp4

S2_op1 S2_op2
z

S1_op3

V{pre a>5fl and bO
post a = pre a and

b <> pre b)
{pre a<1D
post 3 <> prea)

j Cot!*b_Cla»sA_op3Q
C o !lab_C l«s*A_op20

Co llsb_Clss aA_op10
OassA

op1(x Imegerj
US2_op1(K)
□ S1_0p3()

«--
pS2_op2()

Figure 95 Merging Operations with Pre/Post conditions

Merged Opera
tions with
Return Types

Where corresponding input operations each have a return type, what type

should the composed operation return9 The subject-oriented programming

domain, as described for Hyper/J in [Tarr & Ossher 2000], supports what

they call summary functions, which synthesise the return values of each of

the methods to return a value appropriate for the collaborating methods A

summary function, defined by the developer, takes as input an “ array of val

ues” that were returned by the composed methods, and uses them to compute

a single return value Where a summary function is not defined the default

behaviour is that the value returned by the last o f the methods executed is the

one returned by the composed method

194

Merge Integration Semant ics

Merged Opera
tions and For
warding of
References

Impact of
Merge on
Collabora
tions

Result of Merge

This is also an issue within the subject-oriented design domain Further

research is required to assess the feasibility of a “ summary function” equiva

lent solution This may require an additional attachment to a composition

relationship, but should be examined further to define the best solution Cur

rently, behaviour similar to the default behaviour defined in Hyper/J is

defined within the subject-oriented design model The value returned by the

last input operation executed is the value returned by the composed opera

tion Which operation this is may be manipulated by the composition

designer with a collaboration attached to the composition relationship speci

fying which operation is executed last

References to operations input to merge integration are forwarded to the out

put operation that delegates to the corresponding set of operations These

operations are the ones with the same signature as the input operations, cre

ated to be realised by interaction models defining the delegating semantics

There is potential here for reducing the number of operations that need to be

created to be realised as delegating to each of a set of corresponding input

operations For example, in Figure 90 on page 190, two operations (and inter

action specifications) are created to define the delegation to both

S I C l a s s A o p 3 () and S2 C l a s s A o p2 () Here S I C l a s s A o p3 ()

forwards to S I S 2 C l a s s A o p 3 () in the result, and S2 C l a s s A o p2 ()

forwards to S1S2 C l a s s A o p2 () in the result, each of which is realised

by a collaboration Since each defines the same behaviour, there is some rep

etition here Research is required to assess the potential for extending this

semantics to all multiple input operations forward to a single delegating

operation

Since all corresponding operations are added to the result, so also are all col

laborations added to the result Re-naming may be required in some cases

where collaborations have a name clash Figure 96 illustrates the result of

merging collaborations

• After renaming, S I C l a s s A o p l and S2 C l a s s A o p l are added to

the result A new collaboration is created and added to the result indicat

ing that on execution of o p l , both S l o p l and S 2 _ o p l are executed

• After renaming to avoid a name clash, S l C o l l a b l and S 2 C o l l a b l are

added to the result The changed names o f S l _ o p l and S 2 _ o p l are

reflected in the added collaborations for the two operations

195

Merge Integration Chapter Summary

Figure 96 Impact of Merge on Collaborations

7.5. Chapter Summary
This chapter defines the syntax and semantics of composition relationships

with merge integration Changes to the UML metamodel to support the syn

tax are illustrated as an extension to the composition relationship metamodel

as described in “Composition Relationship” on page 113 Well-formedness

rules for composition relationships with merge integration are given These

rules are primarily related to the specification of reconciliation strategies for

conflicting elements, and the attachment of collaborations to composition

relationships All rules for general composition relationships, defined in

“ Well-Formedness Rules” on page 117, apply for the relationships with

merge integration

The semantics for merge integration are defined by illustrating the impact of

merging each of the design elements currently supported in the thesis First,

general semantics for merge are defined For some elements (for example

classifiers and attributes) one element, representative of all corresponding

elements, is copied to the output In this case, it is important to assess

whether there are any conflicts in the properties of the corresponding ele

ments It is illustrated and described how different kinds of reconciliation

strategies may be used to resolve any conflicts

196

Merge Integration Chapter Summary

The semantics for merging operations is different in that all corresponding

operations are added to the output, because execution of an operation in the

output means that all corresponding operations are executed This behaviour

is specified by the creation o f an interaction for inclusion in the output The

order may be controlled by attaching an interaction to the appropriate compo

sition relationship, which is then copied to the output

In general, in order to fully define the semantics, the impact of merge on each

construct is examined, with any change from the general semantics high

lighted as appropriate

The next chapter looks at the kinds of requirements that may impact multiple

classes in multiple different design models The manner in which their

behaviour impacts these different models is similar in every case, and there

fore can be seen as patterns The notion of composition patterns, supporting

the capture of patterns of cross-cutting behaviour into a separate design

model, is described It is illustrated that the design of such a requirement may

be achieved without explicit reference to any class it may impact Composi

tion patterns are based on merge integration semantics, and on UML tem

plates

197

C h a p t e r 8 : C o m p o s i t i o n P a t t e r n s

One of the benefits of subject-oriented design is that a requirement that has

an impact across multiple classes in the system design, 1 e , a cross-cutting

requirement, may be decomposed into a separate design model “Chapter 7

Merge Integration” on page 155 discusses the semantics of merging different

design subjects This chapter discusses how patterns of composition may

occur, and presents a solution based on a combination of the subject-oriented

design merge integration model and UML templates Patterns of composition

occur when a design subject with cross-cutting behaviour is likely to be

merged with other design subjects in the same manner each time Specifica

tion of such a design subject is deemed to be a composition pattern

As discussed throughout this thesis, some kinds of requirements may have an

impact on multiple classes in a design model For example, a requirement for

an audit trail of operation execution has an impact on all operations in a

model In this case, if the audit trail requirement states that an operation’ s

execution entry should be logged and its execution exit should also be

logged, then the specification o f this logging behaviour is the same for all

operations Similarly to any requirement, logging functionality may be

designed separately in a subject, in such a subject, operations are likely to be

included to handle the logging before execution, and to handle the logging

after execution One approach to merging this subject with any other subject

is to design collaborations to be attached to a composition relationship (as

described in “Attaching a Collaboration to a composition relationship” on

page 162) that specify the appropriate order for execution for each operation

to be logged While this would work, it is a cumbersome solution to a merge

integration that is the same in every case - every operation would need its

own collaboration specifying the same order of execution with the logging

operations Where a merge like the logging one described is the same for

every merge case, it is considered to be pattern o f cross-cutting behaviour

198

Compos i t i on Patterns Compos i t i on Patterns Model

8.1. Composition Patterns Model
Patterns of cross-cutting behaviour may be abstracted and designed sepa

rately from the other design elements this behaviour may impact Within this

thesis, such separated designs of patterns of behaviour are called composition

patterns Composition patterns make use of template parameters from the

UML, and combine them with merge integration semantics This section

looks at how this is achieved

Merge Inte- The subject-oriented design composition model essentially takes a set of

gration input subjects and integrates them according to the strategy defined by a (set

of) composition relationship(s), producing an output subject Different inte

gration semantics define how elements specified as corresponding are com

posed The particular integration strategy relevant for composition patterns is

merge Merge integration effectively joins the input subjects, reconciling dif

ferences in element specifications (except for operations) based on specified

reconciliation strategies Merged operations combine the behaviours realized

by each corresponding operation This is achieved with the generation o f an

interaction model realizing the composed operation as delegating to each of

the corresponding input operations

« subject!
SI

A
+ a
♦ t>
oplO

+ OP20
1

...

«subject»
S2

cl» |

■ op1(>■ op3()

HSdbieet*
S1S2

Figure 97 Merge Integration Example

For example, Figure 97 illustrates two subjects, each with one class The

composition relationship between the two specifies that the subjects are to be

merged (denoted by arrowheads at each end o f the arc) and that elements

with the same name correspond to each other (denoted by m a tc h [name]

attachment to the relationship)

199

Compos i t i on Patterns Compos i t i on Patterns Model

UML Tem
plates

Combining
the Two
Composition
Patterns

In the result in Figure 97, the classes S I A and S2 A are merged because

they have the same name Each of those classes has an o p l () specification

which are deemed to be corresponding Merge semantics defines the output

o p l () as delegating to the two input specifications of o p l () , which have

been re-named to avoid a name-clash Renaming is by pre-pending the name

o f the input subject, followed by an underscore, to the operation name An

interaction diagram is generated to define the delegation behaviour Where

the order of execution is important, the designer may attach an interaction to

the composition relationship defining the required order See “Chapter 7

Merge Integration” on page 155 for details o f the semantics of merging sub

jects

Template parameters may be seen as dummy model elements that are

designed to be replaced by “ real” model elements as needed The UML

defines a template as a parameterized model element that cannot be used

directly in a design model Instead, it may be used as the basis to generate

other model elements using a “Binding” dependency relationship A Binding

relationship defines arguments to replace each of the template parameters of

the template model element The UML restricts the binding of arguments to

template parameters as one-to-one for instantiation Parameterized collabora

tions are supported to capture the structure o f a pattern, where the base clas

sifiers are templates This, however, does not cater for combining patterns of

behaviour with behaviour in replacing classifiers - in other words, combining

patterns of cross-cutting behaviour with the behaviour it cross-cuts

A composition pattern is a design subject in which at least one pattern class

(a class that is a placeholder to be replaced by a real class element) has been

specified Composition patterns harness the strengths o f both the subject-ori

ented design merge composition model and UML templates Using composi

tion patterns, patterns of collaboration may be defined for cross-cutting

behaviours Within pattern classes, both template parameter elements, and

non-template elements may be defined Merge integration semantics, with a

b i n d [p a r a m s] attachment to the composition relationship, specify the

replacement elements for template parameters, and how they are integrated

In the remainder o f this section, the following parts of the composition pat

tern model are described

• Composition Pattern Specification Here, how a designer specifies a com

position pattern is described

200

Compos i t ion Patterns Compos i t i on Patterns Model

Composition
Pattern S p e c
ification

Specifying Tem
plates

• Composition Binding Specification Here, how a designer defines which

elements replace all pattern template elements is described - i e , how a

composition pattern should be composed with (an)other design subject(s)

• Composition Output Here, the result of a composition process involving a

composition pattern is described

As discussed previously, composition patterns are based on subject-oriented

design merge semantics, and UML templates This combination requires

some extensions to template specifications as defined by the UML, and also

requires the composition designer to be more aware o f the details o f delega

tion and renaming of merged operations semantics than is required of a

standard model composition designer For example, in Figure 97, the

designer simply indicated, with the composition relationship m a tc h [name]

specification, that the o p l () s corresponded, and the composition process

took care of the re-naming and delegation specification In this section, how

a designer can harness this semantics to define reusable cross-cutting behav

iour is described First though, how does a designer specify templates within

a composition pattern7

As with any object-oriented design, the design of a cross-cutting requirement

may require multiple classes and operations to support its design A cross

cutting requirement may also impact different kinds o f classes in different

ways Therefore, a composition patterns designer needs to be able to specify

any number of classes within the composition pattern subject that contain

properties to be merged with any replacing class These are pattern classes

The designer also needs to be able to specify that there are operations within

a pattern class that are expected to be replaced on composition because the

composition pattern has defined behaviour to be merged with these opera

tions These are template param eters Both of these are analogous to the pat

tern classes and template parameters within the UML

The UML represents template parameters in a template box on the template

class, ordered to support a Binding relationship Since a composition pattern

is a subject with potentially multiple pattern classes, the representation of all

the template parameters for all pattern classes is combined in a single box

and placed on the subject box Within this box, template parameters are

grouped by pattern class (each class grouped by <> brackets) Similarly to

templates in the UML, ordering of pattern class groups, and template param

201

1

eters within the pattern class groups, is important to support composition

specification

This chapter uses the observer pattern [Gamma et al 1994] for the purposes

of demonstrating the composition patterns model This pattern defines a

“ one-to-many dependency between objects so that when one object changes

state, all its dependents are notified and updated immediately” Such behav

iour may be considered as “ cross-cutting” , as behaviour defining that the

change of state of one object (a subject) initiates the notification and update

of its dependent objects (observers), affects both subjects and observers In

addition, this behaviour is not specific to any business domain, but is rele

vant for any domain

Compos i t i on Patterns Compos it ion Patterns Model

«subject» r
Observer |______. <Subject _aStateChange()> |

1 < Observer updateQ _start(Subject) _stop(Subject)>

Figure 98 Specifying Templates m a Composition Pattern

Figure 98 illustrates a composition pattern supporting the observer pattern

There are two pattern classes, S u b j e c t and O b s e r v e r defined, the first to

represent subjects whose changes in state is observed, and the second to rep

resent any classes observing a subject’ s state Two standard classes are also

defined, V e c t o r and O b j e c t

As defined in the template box, the template parameter for pattern class

S u b j e c t is operation _ a S t a t e C h a n g e {) Within the pattern, this tem

plate is utilised to represent any state-changing operation within a subject

class The “ ” specification of the parameters denotes that any operation

signature may replace a S t a t e C h a n g e {) (see “Template Scope” on

page 204 for details)

As also defined in the template box, the template parameters for pattern class

O b s e r v e r are operations u p d a t e () , _ s t a r t (, S u b j e c t ,) and

s t o p (, S u b j e c t ,) Within the pattern, u p d a t e () represents the

202

Compos it ion Patterns Compos i t i on Patterns Model

Utilising Opera
tion Merge
Semantics

operation to be called to update observers as a result of a state change in the

observed subject _ s t a r t (, S u b j e c t ,) and _ s t o p (, S u b

j e c t ,) represent the triggers that begin and end, respectively, an

observer’ s interest in a subject’ s state The “ , S u b j e c t , ” specifica

tion of the parameters denotes that this template operation requires a parame

ter of type S u b j e c t somewhere in the pattern list (see “Template Scope” on

page 204 for more details)

Pattern classes need not specify additional templates within the pattern class,

as the pattern class may simply specify elements to be merged into a substitu

tion class

As discussed previously, where an operation’ s behaviour cross-cuts opera

tions in a different design subject, a composition relationship specifies that

these operations are corresponding in order to merge their behaviours To

achieve this, merge integration produces an output operation realised by a

collaboration specifying delegation to each of the corresponding (re-named

and protected) input operations (see Figure 97 on page 199)

A composition patterns designer needs to be able to explicitly define how the

cross-cutting behaviour collaborates with merged behaviour, and that this

collaboration is appropriate for all compositions with the pattern subject To

achieve this, the semantics for merging operations can be utilized Using

interaction diagrams, the composition pattern designer may explicitly refer to

the output and input operations separately The designer defines an input

operation as a template parameter and refers to an actual, replacing operation

by pre-pending an underscore to the template name (see Figure 99) The gen

erated output operation is referenced with the same name, but without the

pre-pended underscore

As specified by the composition pattern in Figure 99 for pattern class S u b

j e c t , execution of any operation that replaces _ a S t a t e C h a n g e () will,

in the output subject, result in the execution of n o t i f y () after the execu

tion o f the replacing operation Note, _ a S t a t e C h a n g e () was also

given protected visibility as defined by merge integration (see Figure 98 on

page 202) Similarly, a d d O b s e r v e r (S u b j e c t) will be executed after any

operation replacing _ s t a r t (, S u b j e c t ,) , and r e m o v e O b -

s e r v e r (S u b j e c t) will be executed before any operation replacing

_ s t o p { , S u b j e c t ,)

203

Compos i t i on Patterns Compos i t i on Patterns Model

« subject»
Observer <Subject aStateChange(y>

«Observer update!) st8l(Subject) stop! Subject

C d la b O b s
Subj<

aStateChangê)|

erverPtittem
xt Observer

1
1 aStateOiange() |

t—, noùlÿO |-p̂ j update() !

action Sulyad
port allobKi

arc wrrl

I - - - *

1
t iwtifyO 9
rvwi in Suiycct-obnrwcrf 3
■ updotcQ cwnt 1

Cailab_Add
Obsi

start(Subject ̂)|

* ~ l

ObserverPattem
îfver subject

1
I stan(Subject),

Ï

addObserverfthis) 1
: "Li

Collab_Rer
Obs

stop(Subject j

<—

noveObserverPattern !
prver Subject
L 1
|remOT60bserver(ttis),
' ------------------1I stop(Subject)

F !

Figure 99 Specifying Patterns of Cross-Cutting Behaviour

Where no additional behaviour is required for a template operation, use of an

additional protected operation pre-pended with an underscore is not required

One example o f this here is the u p d a t e () operation

Template When specifying template operations, we have seen different kinds of param-
ScoDe

eter possibilities defined for those operations The different possibilities

relate to the scope within which the replacing operation is executed For

example, in Figure 99, the active period of the execution of a S t a t e -

C h a n g e () defines the scope for this operation, and any parameters

defined may be used within this scope There are three possibilities for this

specification as follows

Parameter Usage

o p T e m p () In this case, the replacing operation must have no parameters This is used

when the replacing operation is called within a pattern interaction, but it is not

possible to ensure that any required parameters are possible to supply when

executed within the pattern interaction

o p T e m p () In this case, the replacing operation may have any parameters defined Here,

the pattern interaction is defined entirely within the scope of the replacing

operation

Table 2 Template Parameters Scope

2 0 4

Compos i t ion Patterns Compos it ion Patterns Model

o p T e m p (,

T y p e N a m e ,

Further Poten
tial for Tem
plate Rule
Specification

Composition
Binding
Specification

In this case, the replacing operation may have any parameters defined, but one

) of the parameters must be of type T y p e N a m e Here, the pattern interaction is

defined entirely within the scope of the replacing operation, but an operation

call is made to a T y p e N ame instance which must be supplied Where there is

more than one parameter of type T y p e N a m e , the first is used

Table 2 Template Parameters Scope

In the current composition patterns model, the properties of pattern classes

and template operations are entirely replaced by classes and operations

replacing them (1 e , those properties whose impact is considered for integra

tion semantics — see “ Impact o f Merge on Classifiers” on page 173 and

“ Impact of Merge on Operations” on page 188) For example, a template

operation whose visibility is defined as p r i v a t e will not impose a p r i

v a t e visibility in a replacing operation whose visibility is not defined p r i

v a t e The visibility o f the replacing operation (and all other properties) take

precedence in the result

This, however, is an area where an examination of the feasibility of extend

ing the capabilities of composition patterns is appropriate Further research is

required to explore extensions to this model For example, a composition

designer could specify constraints on the kinds o f elements that may replace

templates, and the conditions under which different kinds of elements may

replace templates

The subject-oriented design model defines a composition relationship to sup

port the specification of how different subjects may be integrated to a com-

posed output, and the UML defines a Binding relationship between template

specifications and the elements that are to replace those templates The com

position patterns model combines the two notions by extending standard

composition relationships with a b i n d [] attachment that defines the ele

ments that replace the templates within the composition pattern The ordering

of parameters in the b i n d [] attachment matches the ordering of the tem

plates in the pattern’ s template box Any individual parameter surrounded by

brackets { } indicates that a set of elements, with a potential size > 1, replace

the corresponding template parameter The possibilities for parameters to the

b m d [] attachment are as follows

205

Compos i t ion Patterns Compos i t i on Patterns Model

Parameter Usage

< p a r a m s > Parameters to the b i n d [] attachment are grouped by pattern class For

each pattern class specified in the composition pattern, a set of

parameters defining replacements for that pattern class and any of its

template operations are grouped in <> brackets

< { c l a s s N a m e } ,

p a r a m s >

The first parameter within a pattern class set is the name of the class that

replaces the pattern class This may also be a comma-separated list of class

names, bounded by { } to denote a set

{ c la s s N a m e

op N am e }

For each template operation defined for the pattern class, a replacing operation

may be defined with the operation’s name Where this may be ambiguous - for

example, when there are multiple classes replacing the pattern class, and there

are some operations of the same name within those replacing classes - the

operation name may be supplemented with its class name Replacements for

each template operation may also be a comma-separated list of operation

names, bounded by { } to denote a set

{ * } When specified as a replacement for a pattern class, this denotes that all

classes within the input subject are replacements for the pattern class

When specifed as a replacement for a template operation, this denotes all

operations within each replacing class are replacements for the template oper

ation

{ me t a

m e t a t e s t }

The m e ta keyword, used inside { } denoting a set, denotes that a test

against the metaproperties of elements determines their eligibility to

replace the template When specified as a replacement for a pattern

class, class properties o f every class within the input subject are

examined against the test criteria When specifed as a replacement for

a template operation, operation properties of every operation within

each replacing class are examined against the test criteria In both

cases, valid metaproperties and valid values for those properties,

must be defined, as specified by the UML semantics

T ab le3 b i n d [] param eters

There is considerable potential for further work in extending the capabilities

o f the parameters to the b i n d [] attachment Sophisticated matching criteria

for selection o f replacement candidates for pattern classes and template oper

ations are possible This work should be done in conjunction with the work

extending the rules for template specification previous discussed in “ Further

Potential for Template Rule Specification” on page 205

206

Compos it ion Patterns Compos it ion Patterns Model

Composition
Output

We now look at an example of defining a binding specification for the

observer composition pattern As illustrated in Figure 100, the binding speci

fication is

• S I C l a s s A is a replacement for pattern class S u b j e c t , with every
/

operation that is a non-query operation replacing template parameter

_ a S t a t e C h a n g e ()

• S I C l a s s B replaces pattern class O b s e r v e r

• S I C l a s s B o p2 () replaces u p d a t e ()

• o p 3 (C l a s s A) and o p4 (C l a s s A) from S i C l a s s B are supple

mented with the pattern behaviour specified for s t a r t (, S u b -

j e c t ,) and s t o p (, S u b j e c t ,) , respectively

«subject» r
Observer | «Subject _aStateChange()

<Observer updated _start(Sibject) _stop(Subject)>

bind! ClassA {meta isQuety=false}>
ClassB ap20 op3(ClassA), op4-(ClassA)>]

Figure 100 Specifying Binding for Composition

As illustrated in Figure 100, a composition relationship’ s b i n d [] attach

ment may specify multiple replacements for pattern classes and template

operations within those classes Where multiple replacements are specified

for pattern classes, each replacement class is supplemented with the proper

ties (and behaviour) of the pattern class in the output subject For example, in

Figure 101, classes O b s e r v e r S l C l a s s A has O b s e r v e r S u b j e c t ’ s

properties Where a pair of operations has been defined (e g , a S t a t e -

C h a n g e () and ^ a S t a t e C h a n g e ()) and referenced within the same

scope in a composition pattern (that is, inside the same pattern class), and

one is a template parameter for that class, composition applies merge opera

tion semantics For each operation substituting the template parameter each

reference to a S t a t e C h a n g e () is replaced by the suitably re-named

substituting operation, and a new a S t a t e C h a n g e () operation is also

2 0 7

Compos it ion Patterns Compos i t i on Patterns Model

defined Each operation’ s delegation semantics is realised by a new collabo

ration as specified within the composition pattern Each pattern class refer

enced within an interaction diagram is also re-named as appropriate

« subject»
ObserverSI

C dlab_O bserverP attem op2Q
Cotlab_ObserverRattem op 10

ClassA ClassB

action £ b t * A no+ifyO

po»t all obsarvers n C k w A ja b te rv a n arc
«ont op2Q cvsrrt

C ollab_A ddO bserverPattern
ClassB

op3(Class/y I I
S1_op3(ClassA)

addObseivertthis)

Vector fttjse

ClassB

+ Op2()
+ op3(CtassA)
#S1_op3(aassA)
+ op4(Oa£sA)
S1_op4(ClassA)

ClassA

+ op1()
S1_Op1()
+ op2()
#S1_op2()
+ addObseiver(Object)
+ removeObserver(Object)

nodfyf)

ClassC

+ 0P1(J

Object

Ì

Collab_RemoveObserverPattern

ClassB ClassA
op4(ClassA)

Figure 101 Output from Composition with Pattern Subject

In this example, the result of the composition is

♦ Two non-pattern classes, V e c t o r and O b j e c t , are defined in subject

O b s e r v e r , and are added unchanged to the result

* C l a s s A is a replacement class for S u b j e c t , and so all non-template

properties o f S u b j e c t are added to C l a s s A in the result Therefore,

operations a d d O b s e r v e r (O b j e c t) , r e m o v e O b s e r v e r (O b j e c t)

and n o t i f y () are added unchanged to C l a s s A If there had been

(an)other class(es) replacing S u b j e c t , then each of these operations

would also be added to each replacing class

• Within C l a s s A , the { m e t a i s Q u e r y = f a l s e } bind parameter indi

cates that the set of operations replacing the a S t a t e C h a n g e () tem

plate operation is selected by examination of the î s Q u e r y meta

property o f all operations within C l a s s A Those whose value for

i s Q u e r y = f a l s e are added to the replacing set In this case, operations

o p l () and o p2 () are non-query operations, and therefore both are

added to the replacing set Where multiple replacements are specified for

2 0 8

Compos i t i on Patterns Compos i t ion Patterns Metamode!

operations, each operation is supplemented with the behaviour defined

within the pattern subject This is specified in the result with both o p l {)

and o p 2 {) having interaction diagrams realising the supplementary

behaviour, with re-naming of the replacement operations in line with the

delegation of corresponding operations semantics

• Since C l a s s A is a S u b j e c t class, it also has an o b s e r v e r s associ

ation with V e c t o r added Every class replacing S u b j e c t has such an

association with V e c t o r added (in this example, this is just C l a s s A)

• C l a s s B is a replacement class for O b s e r v e r , and so all non-template

properties of O b s e r v e r are added to C l a s s B in the result Since all

properties of the O b s e r v e r pattern class used m the O b s e r v e r com

position pattern are templates, this does not add any additional properties

to C l a s s B

• C l a s s B o p 2 () is defined as the replacing operation for u p d a t e ()

This means that it is added unchanged to the result, and called from the

n o t i f y () operation in the observer pattern for both C l a s s A o p l ()

and C l a s s A o p 2 {)

• C l a s s B o p 3 (C l a s s A) and C l a s s B op4 (C l a s s A) are defined as

the replacing operations for s t a r t (, S u b j e c t ,) and

s t o p (, S u b j e c t ,) , respectively These are valid replacements as

C l a s s A is a S u b j e c t , and therefore the pattern has a valid S u b j e c t

to work with The interaction diagrams for s t a r t (, S u b j e c t ,)

and s t o p { , S u b j e c t ,) are updated to realise the replacement

operations

Additional composition relationships between levels lower in the subject tree

may be specified within a composition pattern, though only one subject in a

particular composition context may have templates defined Further research

is required to assess the impact of merging multiple subjects where more than

one subject contains template elements It may be possible to relax this

restriction, but without fully assessing the impact, the results are not defined,

and therefore the restriction is applied in this thesis

8.2. Composition Patterns Metamodel
The composition patterns model, at the specification level differs from the

UML templates model in two primary ways

209

Compos it ion Patterns Compos i t i on Patterns Metamodel

• Templates within a composition pattern are centred around pattern classes

within a subject first, which (may) have additional template parameters

defined

* Binding actual classes and model elements from (an)other subject(s) is

achieved with an extension to a composition relationship with merge inte

gration defined This composition relationship’ s arguments define which

classes replace the pattern classes, and which elements within the replac

ing classes replace a pattern c lass ’ s template parameters

These differences are demonstrated at the meta-level in Figure 102, which is

an extension to the metamodels defined in “ 5 3 Composition Relationship”

on page 113, and “7 2 Merge Integration Syntax” on page 164

Subject

Subject Meta
class

(ordered)
+pattemClass Classifier

[from UMU

{OflETBd}
+templateParameter

PatternClassJ i>
Tempi ateP aramele r

(framUMLJ

Merge &

Figure 102 Composition Patterns Metamodel

Associations

patternClass

ModeEiemenl
{from UML)

♦parameter
1 J

ReplaeementSet J

bindTest Boolean Expression 1

i

0 1

{ordered}
♦parameter

PatternM erge

An ordered list of classifiers which are deemed to be pattern

classes Each parameter is a dummy classifier designated as a

placeholder for (a) real classifier(s) to be substituted during

composition

PatternClass
Metaclass

The P a t t e r n C l a s s metaclass defines the relationship between a subject

and its pattern classes By definition, a subject with a relationship to at least

one pattern class is a composition pattern

PatternMerge
Metaclass

A pattern merge is a kind o f merge integration that also handles merging ele

ments with template specifications It is sub-classed from the M erge meta

class because it also conforms to merge integration semantics

210

Compos i t i on Patterns Chapter Summary

Associations

parameterSet The replacement set specification for elements that replace the

corresponding template elements

Replacement-
Set Metaclass

The composition patterns model supports the specification of multiple

replacements for each pattern class and template parameter The R e p l a c e -

m e n t S e t metalass defines a multiple replacement set

Attributes

bindTest Boolean expression checking values of properties of each input

element (that is, each element contained in the subject composed

with the pattern, or contained in the subject’ s classes) to decide

whether that element is to be substituted for the template ele

ment Any combination of properties of elements may be used

for test purposes This attribute may be null, where an explicit

list of elements is defined for the replacement set

Associations

parameter A list of elements that replace a template This list may be based

on the specification within the replacement set, or an explicit list

of elements

Well-Formed- [1] Only one subject involved in a single contextual composition relationship
n e s s Rules , ,may contain template elements

[2] Only a contextual composition relationship may have pattern match inte

gration defined - that is, when the composition relationship is between two or

more subjects

[3] All templates must have at least one replacement defined

[4] Replacements defined for pattern classes must be contained within the

subject input to the composition

[5] Replacements defined for a template operation must be contained within a

replacement for its owning pattern class

8.3. Chapter Summary
This chapter describes how patterns of cross-cutting behaviour can be

decomposed into a separate design model, and designed without explicit ref-

211

Compos i t i on Patterns Chapter Summary

erence to any design elements the behaviour may cross-cut This is achieved

using a combination of merge integration semantics and UML templates, in

what is described in this chapter as composition patterns A composition pat

tern is a design subject with at least one pattern class defined Within a pat

tern class, template operations may be referenced These template operations

represent operations that replace them at composition time, and that specify

behaviour to be supplemented with pattern behaviour as defined in the com

position pattern (that is, cross-cutting behaviour) A composition relationship

with merge integration may be defined between a composition pattern and

subjects requiring the pattern behaviour A b i n d [] attachment to such a

composition relationship defines the replacement elements for the pattern

classes and template operations

Composition patterns require extensions to the subject-oriented design meta

model which are described here These extensions are based on specification

of pattern classes and template parameters within composition patterns, and

on specifying the replacement classes and operations for the templates with a

composition relationship

Having described in detail the syntax and semantics o f the subject-oriented

design model in the previous chapters, the next chapter applies the model to

the motivating example from “ Chapter 2 Motivation” on page 11 This

example was based on the design o f a simple software engineering environ

ment (SEE) for programs consisting o f expressions This problem is re

designed using subject-oriented design, demonstrating improvements to the

problems motivating the work A further example o f the application o f sub

ject-oriented design is demonstrated and evaluated in “Chapter 10 Case

Study and Evaluation” on page 225

212

C h a p t e r 9 : A p p l y i n g th e S u b je c t
O r i e n t e d D e s ig n M o d e l

This thesis proposes a new approach to object-oriented design based on pro

viding additional means of decomposing design artefacts by matching the

structure of features and other user-level concerns, encapsulating those con

cerns within the design The approach addresses the structural misalignment

between requirements, designs and code that is the cause of considerable dif

ficulties with the use of design as described in “Chapter 2 Motivation” on

page 11 At the core of this model is composition specification, that allows

differences in views of overlapping concepts within different design subjects

to be identified and resolved, and supports the understanding of the design as

a whole by integration

In this chapter, the small, motivating example described in “ Chapter 2 Moti

vation” on page 11 is re-designed based on the subject-oriented design

model By applying the model to the construction and evolution of the

expression SEE, it is illustrated that the design addresses the misalignment

problem, and achieves better, more flexible system design

9.1. SEE System Design, Version 1.0
Revisiting the motivating example, the requirements specification stated

“The required SEE supports the specification of simple expression programs

It contains a set of tools that share a common representation of expressions

The initial tool set should include an evaluation capability, which determines

the result of evaluating expressions, a display capability, which depicts

expressions textually, and a check capability, which optionally determines

whether expressions are syntactically and semantically correct The SEE

should permit optional logging of operations” For further details of the

grammar and abstract syntax tree implementation of expressions, see 2 2

Example Software Engineering Environment” on page 19

2 1 3

Applying the Sub j ect Oriented Des ign Model
1

S E E Sys tem Des ign Vers ion 1 0

To align design with requirements, a design subject per feature identified in

the requirements specification is defined Thus, as illustrated in Figure 103,

there is a Kernel subject supporting the representation of expressions, an

Evaluate subject, a Check subject, a Display subject, and a subject, Log ,

responsible for logging o f operations

Requtements
Specification

Design
Subjects

— 1 ------- 1 1 -----1 1
«tut*«*» ja
Kemel |

«subject»
Evaluate

«SUbjOGt»
Check

«subject»
Display

«subject*
Log

Figure 103 Design Subjects for SEE

Design Sub- Each of the structure diagrams for the chosen design subjects is now lllus-
je c t s

trated

Kernel The Kernel subject is illustrated in Figure 104 As in the original design,

expressions are represented as abstract syntax trees Notice, however, that

the kernel design subject only defines the AST classes and their primitive

accessor methods - it does not tangle support for any of the required SEE fea

tures with the expression representation

«subject»
Kernel

operandi

Expression

"1 operand

Literal
value Number

+ Q8tValuB(] Nunnber
+ setVeiue(Number)

S

UnaryOptribr

g «Operand)] Expression setO per an d(B< press wn)

VanabicExpreseum

vafaie Number
+ g«Name() Strug + setName(String)

NixnberEjpreiam

.A.

BinsryOpcntcr

getOperand1[) Depression setOperand1(Expression)
(jetOperand2() Expression secOperand? Expression)

UraryPlusOp UnaryMirnßOp Plu-sOperator Minn Operator

Figure 104 Kernel Subject Class Diagram

1 The interaction diagrams which complete the design of each subject are not
illustrated, but are assumed to exist As described in “Impact of Merge on Col
laborations” on page 195, all interaction diagrams are added to the output,
unchanged

2 1 4

Applying the Subj ect Oriented Des ign Model S E E System Design Vers ion 1 0

Check

Evaluate

Display

The design for the check subject, illustrated in Figure 105, maintains a view

of expressions relevant for checking purposes, with only those properties that

are required by the checking behaviour

« s u b je c t »
Check

V anableEx pression

#nam* Strug
i-dwdcO

UnaiyOperator

■checkO

NumbeÆxpreEEicm

■ eheckO

operandi operand2
Expression

typeDescriptor Stnng
+ chedcO ------ <+ gdTypeDesnptnrO String

operand

PlusOperator

♦ ciieckO
checicConpaaUsTypesO

operandi
operand2

MnusOperator

t- cbtiW)
checkCa&pitlhi Typ <|

Figure 105 Check Subject Class Diagram

The design for the evaluate subject, illustrated in Figure 106, maintains a

view of expressions relevant for evaluation purposes, with only those proper

ties that are required by the evaluation behaviour

«subject»
Evaluate

operandi

operand2
Expression

evaluateO Expression
asStnngO String

operand

<
operandi

PlusOperator

cvalimU0 Exprcuioa
•«StrtngO String

operand2
operand

MmusOperatcr

■ evali inti 0 Expression
- asStnngO Stnng

A
<> <1>

VandbleExpressioo NuraberExpresaoii UnaryPlusOp UraryMinusOp

#name Slnrig
+ tvnhjutïQ Expression
+ aSStnngQ Stnng

+ evahuiiO Expression
+ uStnngO Stnng 1 + cvaluat̂ O Eiprcniou

+ «StnngQ Stnng
+ cvïLû oO
+ uStnngO Stnng

Figure 106 Evaluate Subject Class Diagram

The design for the display subject, illustrated in Figure 107, maintains a view

of expressions relevant for display purposes, with only those properties that

are required by the display behaviour

215

Applying the Subj ect Oriented Des ign Model S E E Sys tem Design Vers ion 1 0

«subject!
Display

■ drawStnrifltSInna}

VanableExpression
Sbmg

+ displojfWindcw)

operand!

O

-o
| operandi

Expression
»«widows Set<VWrdow>
+ display CMndow)

operand

A

<
operand!

PhisOperaior

■ tfî iay(Wlndow)

operand2
operand

MmusOperaUr

+ diq)lay(Wintlow)

NumberExpresaof)
+ (fî JayOModow)
+ as9nng0 String

<>
UnaryPlusOp UnaryMinusOp

+ display(Window) + display(Window)

Figure 107 Display Subject Class Diagram

Log The design for the logger subject, illustrated in Figure 108, can be designed

independently of the operations to be logged, as the ability to log operations

is not particular to expressions or ASTs An interaction specification for log

ging behaviour is included in this subject, as its specification is central to

how the subject will be composed with other subjects This is not the case

with interactions in the other SEE subjects Logging behaviour impacts all

operations in the SEE, and therefore, the Log subject is designed as a compo

sition pattern (see “ Chapter 8 Composition Patterns” on page 198)

(subjects
Log

Coi tab_Log Pattern
LoggedOests LogFile

lOflflfcJODO __j befwelnvol«() I
' write(J I

JoggedOpO
artertnvc4oo(>

SSI

I

•iLoggadClass, JoggBdO p0>

LoggedClass
log

befbrelnvokeQ
afterhvokeO

+ loggedOpO
4 JoggadOpO

LogFite

file

-wnteQ

Figure 108 Log Subject Design

Characteris
tic s of SE E
Design S u b
je c ts

These design subjects illustrate some important characteristics of subject-ori

ented design

2 1 6

Applying the Subj ect Oriented Des ign Model S E E Sys tem Des ign Vers ion 1 0

Features are
Encapsulated

Features have
Different Views

Cross-Cutting
Feature
Designed Inde
pendently

First, the kernel, check, evaluate and display subjects realise and encapsulate

their respective SEE tools in a standard object-oriented manner, with appro

priate properties - attributes and operations - in each o f the AST classes

Given that requirements are structurally different to object-oriented designs,

and each subject is designed using an object-oriented language, there is una

voidable scattering of tool support across classes within each subject None

theless, encapsulation is achieved by each subject as a whole This provides

clear alignment of the design to the requirements, as each subject represents

the design of a particular feature in total, and contains no reference to any

other feature, all cross-feature interactions are specified by means of compo

sition relationships Encapsulation of the logger feature also avoids tangling

of logger functionality with the rest of the design

A second important feature of this subject-oriented design approach is that

each of the subjects specifies its own view of overlapping design elements

For the SEE, the AST structure of an expression is manifested in each sub

ject, except the Logger subject Yet each subject defines a slightly different

view of the AST class hierarchy, for example, the Check subject does not

define the B i n a r y O p e r a t o r , U n a r y P l u s O p , and U n a r y M m u s O p

classes in its hierarchy, as they are not affected directly by the checking

methods Similarly, the Evaluation subject and the Display subject do not

include the B i n a r y O p e r a t o r and U n a r y O p e r a t o r classes The design

ers of the individual subjects need not be concerned about these differences,

as identification and resolution of any differences is supported by composi

tion relationships This increases the amount of concurrent design that is pos

sible It also enables each subject to include whatever model of AST it finds

most appropriate to its task, rather than requiring commitment to a single

AST definition This property helps to improve the individual subjects, to

insulate each designer from the effects of changes in other subjects, and to

eliminate coupling across subjects

The Logger subject illustrates another interesting feature of subject-oriented

design The SEE requirements specification imposed a requirement for

optional logging o f operations The ability to log operations is not particular

to expressions or ASTs, however, so the Logger subject can be designed inde

pendently of the operations to be logged (see Figure 108) Composition rela

tionships will establish connections between the SEE subjects (or any others)

and Logger, thereby specifying exactly when logging is to take place This

approach has the advantage of separating design of logging from that of the

2 1 7

Applying the Subj ect Oriented Des ign Model S E E System Design Version 1 0

Composition
Relation
s h ip s for
Design Syn
th es is

SEE, addressing the tangling problem that manifests itself primarily in the

behavioural specifications for operations that are to be logged (see Figure 8

on page 25) It also results in a subject that is generally reusable for any

application that requires logging o f operations

Taken together, the collection of design subjects described in the previous

section defines a fam ily o f SEEs That is, the set o f features encapsulated in

the individual design subjects can be integrated in a number o f different com

binations - e g some versions o f SEEs might include the evaluation feature,

but not the checking feature, and some might include logging while others

might not This ability to “mix-and-match” features is another benefit of sub-

ject-oriented design It requires only the specification of composition rela

tionships among whatever design subjects are to be included in any given

member o f the SEE family For example, Figure 109 illustrates the composi

tion relationships required to define a SEE that includes the features display,

check and evaluation The composition relationship with merge integration

specified between the kernel, check, evaluate and display subjects indicate

m a tc h [name] correspondence

«aibfoct»
Kernel

«subject»
Check r '

/
tnatdi(n «subis et»

Display

Evaluate

Figure 109 Composition Relationship for Merging SEE Subjects

A m a tc h [name] correspondence with merge integration means that in a

composed design subject, classes and attributes having the same name in dif

ferent design subjects would appear only once, and operations having the

same name would be aggregated The composition designer has also deemed

that, should a conflict occur in any corresponding elements, the Kernel sub

ject contains the specifications that should appear in the result This compo

sition relationship is complete and sufficient to specify the composed design

as illustrated in Figure 110 and Figure 111

2 18

Applying the Subj ect Oriented Des ign Model S E E Sys tem Des ign Vers ion 1 0

UnaryOperataf
* getOperaid() Expression
+ setOperand(Expression)
+ checkQ

Expression
ftypeDescnptor Strnç #windoifts Set<Vrtndow>
+- asStringQ Siring
+ disptay(Win<Jwv)
«■ avaluateO
getTypeDescnptof()

- drawStJing[StmB)

BinaryOperator

♦getOperandlO Expresaon + setOperandl (Express on)
4-getOperandiO Expression * setOperand2(Expressofi)

Va nable Expressen
name String
valus Number

* asStnngO Stmg
+ getName<) String t setName(Stnng]
+ ctiec*[) d is pi ay [Wind dW)
evaluaœfl Expression

Nun* »Expressen
value Nunfaer_____

+ asSlms[> Stnng # Evaluate_8sString!) String
» Dtsptay_asSmngQ Slrrg + check()
+ display (Window)+ e va lu ateO Expra s sur

Ltgal___
vatu« Number

+ getvaiue[) Number
* setVsluefNimbeO

UnaryPlusOp
+ asStnng() String
+ display (Window)+ evaluated Egression

UnaryMinusOp
* asStmg() Sling + disptoyiWhdwr)+ evakiste() Expression

PlusOperatpf
+ asStnngO String
* checkf)
cr»ckCompatiblftTypes(]

+ evaluated) Expression
+ t*splay(WindOH)

MmusOperator

♦ asStnngO String
* cfieckO
di e ckCo m p atiöleType s ()

* evaluate) Expression
♦ display<Window)

Figure 110 Composed SEE Design (Class Details Only)

This composition to a complete design is useful, particularly to a developer

attempting to understand the full semantics of a composed design and all the

ramifications o f a set o f composition relationships In this case, there is an

example of how the one simple composition relationship illustrated in Figure

109 has some undesirable behaviour Merging corresponding operations

means that on execution of any one of the operations, each of the corre

sponding operations is executed Because o f the matching by name specifica

tion of the composition relationship, the a s S t n n g O operation from

E v a l u a t e N u m b e r E x p r e s s i o n corresponds with the operation of the

same name from D i s p l a y N u m b e r E x p r e s s i o n Both of the operations

are added to the result, and both are executed when there is a call to

a s S t r i n g () However, these operations provide the same service m that a

string representation of the class is returned, and so it does not need to be

executed twice To avoid this behaviour, an additional composition relation

ship may be added within the context of the relationship in Figure 109, indi

cating that one of the a s S t n n g () operations overrides the other

As illustrated in Figure 111, all o f the associations and generalizations are

added to the result Where there are associations o f the same name, they are

deemed to be corresponding, and therefore only one representative associa

tion is added to the result Nonetheless, there are some redundant associa

tions and generalizations as a result of the differing generalization

hierarchies designed for each of the different subjects For example, the

E v a l u a t e subject did not generalize the P l u s O p e r a t o r and M i n u s O p -

219

Applying the Subj ect Oriented Des ign Model S E E System Des ign Version 1 0

e r a t o r to a B i n a r y O p e r a t o r class, as the evaluation behaviour is dif

ferent for both operators In E v a l u a t e , two associations each were added

relating to the E x p r e s s i o n class for the operands of plus and minus How

ever, in the K e r n e l subject, these were generalized to a B m a r y O p e r a t o r

where these associations were added once Since E v a l u a t e and K e r n e l

are merged in this example, all the associations are added Similarly for the

generalization relationships in this case, each of the generalization relation

ships are added to the result which means that, for example, P l u s O p e r a -

t o r inherits from E x p r e s s i o n both directly, and through

B m a r y O p e r a t o r This is a design equivalent to flattening behaviour in

merging code subjects in subject-oriented programming In subject-oriented

programming, each class is fully expanded to include all the elements from

its superclasses prior to integration Instead of flattening the design elements,

the subject-oriented design model adds all the generalization (and associa

tion) relationships to the result Flattening the output o f design composition

yields the same result as flattening the output of code composition as in sub

ject-oriented programming

Figure 111 Composed SEE Design with Relationships

Not surprisingly, the fully composed design has the scattering and tangling

characteristics of the original SEE design depicted in Figure 3 on page 21

All of the requirements are scattered across the design, and it is difficult to

identify the exact elements that support a particular requirement A single

design class has support for multiple requirements tangled up within it It is

therefore considered to be useful only for the designer who needs to under

stand the design as a whole to work with the composed design In general, it

220

Applying the Subject-Oriented Des ign Model S E E Sys tem Design Vers ion 1 0

is simpler to work with, understand and explain the input subjects that sup

port a single requirement

Producing an SEE that excludes any of the features is equally simple to pro

ducing an SEE with all the features - the subject supporting the excluded

requirement is therefore excluded from the composition relationships

Because each requirement is encapsulated in a separate subject, removal of a

feature does not impact the design of any other feature

Composition The “ generally reusable” property of the Logger subject presents a good sce-

Pattern nario for the use of composition patterns Figure 108 illustrates the design of

logging functionality using UML templates as placeholders for any operation

requiring logging An example of merging this subject with another subject

(that is, a small extract from the K e r n e l subject with one operation) is illus

trated in Figure 112

Figure 112 Applying Composition Pattern for Logging

In this example, the (partially illustrated) K e r n e l subject is merged with the

L o g subject containing a pattern class with an operation template The

< { * } , { * } > parameters of the b i n d annotation to the composition relation

ship indicate that all classes in the merging subject, and all operations within

those classes, should (separately) replace the pattern class and template oper

ation, respectively A collaboration is added for each operation indicating the

changed behaviour as a result of the merge with logging functionality This is

illustrated for the s e t O p e r a n d () operation in Figure 112 In the output

subject, the new interaction specifies that a call to the s e t O p e r a n d ()

221

Applying the Subject Oriented Design Model Evolving the SEE System Design

operation means that b e f o r e l n v o k e () is executed before execution of

s e t O p e r a n d () , and a f t e r l n v o k e () is executed immediately after

wards

An interesting example o f the usefulness of separate design and composition

of subjects is in the design of the logger In the original logger design, two

methods, t u r n L o g g i n g O n () and t u r n L o g g i n g O f f () , had to be

included to support this feature The approach to the optional nature o f log

ging is to include or exclude the Logger subject from compositions depend

ing on whether or not logging is required This approach has the benefit of

not requiring any modifications to the design subjects

For full details of the composition patterns model see “Chapter 8 Composi

tion Patterns” on page 198

Producing
C ode from
the Design

This chapter has shown how subject-oriented design aligns with require

ments There are two approaches to aligning this design with code The first

approach is to code each individual design subject as a code subject in the

subject-oriented programming paradigm, and then compose the code subjects

with a composition rule [Ossher et al 1996] derived from the composition

specifications in the design The second approach is for the designers to con

struct an integrated design, and then write standard object-oriented code

based on it In either case, however, the two-way alignment of subject-ori

ented design supports the realisation of one of software design’ s primary pur

poses - to bridge the gap between requirements and code The first approach

is preferred, however, because it results in code that is directly aligned with

requirements, and that therefore has the same properties of traceability, and

especially, evolvability, described earlier for subject-oriented designs

9.2. Evolving the SEE System Design
The design of the SEE from “ SEE System Design, Version 1 0” on page 22

suffered from the problem that what appeared to be simple, additive changes

ended up being pervasive and invasive - See “Evolving the SEE System

Design” on page 29 Specifically, clients requested the inclusion of different

forms of optional checking, thus rendering the check feature a “ mix-and-

match” capability The solutions considered either resulted in combinatorial

explosion of classes (using a non-invasive, sub-classing approach), or

required invasive changes to all of the AST classes (retrofitting design pat

terns) The subject-oriented design avoids all o f these problems Each differ-

222

Applying the Subject Oriented Design Model Chapter Summary

ent kind of checking is designed in a separate subject Effecting the change

request simply requires the definition of two new subjects one to support the

design o f a def/use checker, and one to support verifying conformance to

local naming conventions

Selective use of composition relationships permits designers to decide what

kind(s) of check(s) are to be performed in any particular system produced

from the design For example, in Figure 113 all o f the checking subjects (par

tially represented) are included in the composition, with the resulting behav

iour specification indicating that any c h e c k () operation results m each of

the three kinds of checking being executed

This example illustrates the general point that subject-oriented design facili

tates additive rather than invasive, changes, significantly increasing the ease

o f system evolution

«subject»ChckSyntax
Expression

+ ch»ckO

«subject»
ChckStyte

Expression

+ chockO

«subject*
QickSyntaxOickStyleChdOetUse

malch[name]
««X

t

«sutjed»
ChckDetUse

Expression

+ eh«ck()

Expression
+ dieckO
Chck5yntax_ct»ckQ
ChekStyte_ch«kO
#ChchD8flJs»_Chac!tO

Collab„eheek
Expression check»!
^ j Z I ChckSyrtax_c!ieck{)

ChckStyle_check()

CtickSDefUse_ch»ck(]
£

Figure 113 Evolving SEE with New Check Requirements

9.3. Chapter Summary
This chapter revisits the design of the SEE, using the subject-oriented design

model The approach illustrates how the structural misalignment between

requirements, design and code can be solved by the encapsulation of features

in design subjects In comparison with the design of the SEE illustrated in

“ Chapter 2 Motivation” on page 11, the subject-oriented design demon

strates how scattering and tangling properties have been removed Individual

design subjects encapsulate the design of their own requirement, and may

have different specifications o f common concepts

223

Applying the Subject Oriented Design Model Chapter Summary

Support for integration of overlapping concepts, even where there are differ

ing specifications is achieved with the specification of composition relation

ships Composition relationships supporting the composition of the SEE

design subjects are illustrated and discussed A composition relationship with

merge integration between the kernel, evaluate, display and check subjects is

illustrated The output of this composition illustrates that only one other

composition relationship is required to handle the duplication of the

a s S t r i n g () operation, which appears in two different subjects This illus

trates how an analysis of the output of the composition assists the designer in

verifying composition relationships In many cases, where the designer is

familiar with the details of input design subjects, the initial composition may

include the exceptions to a contextual composition relationship that governs

the composition of all the components of the input subjects

It is also illustrated how generally reusable subjects may have composition

patterns defined, simplifying the process of composition specification A

composition pattern to support logging functionality illustrates how logging

operations may be designed with reference to template operations, as

opposed to the actual operations to be logged This supports the simple com

position o f multiple subjects with operations to be logged, as illustrated

Scattering of the design for requirements across a full system design, and

tangling o f the design for multiple requirements m a single design element

have been illustrated to be the root of many of the difficulties with standard

object-oriented designs These properties make the designs difficult to under

stand, difficult to change and difficult to reuse Removal of scattering and

tangling properties therefore eases the difficulties that they cause Even in a

small example such as the SEE, separation of the support for different

requirements makes it easier to trace the design for each of the requirements

In particular, the design of logging functionality without reference to any

expression operations makes this subject reusable in any domain where the

design includes operations

2 2 4

C h a p t e r 1 0 : C a s e S t u d y a n d
E v a l u a t i o n

This chapter demonstrates the use of the subject-oriented design model using

a Library Management System case study Throughout, any decision that is

available uniquely because of the application of the subject-oriented design

model is highlighted Differences with possible alternatives using standard

UML are evaluated

The case study, though relatively small compared with most software prod

ucts, nonetheless illustrates the capabilities of the subject-oriented design

model An initial system is designed using different design subjects for dif

ferent requirements Both functional and cross-cutting requirements are

included, with a demonstration of how their composition may be specified,

and the output o f composing different subjects The chapter then shows how

changes to the borrowing rules, that demonstrate the evolution of the library

system, may be designed separately and composed with the existing system

Functional holes in the system design, the kind likely to be found during sys

tem test, are encountered and may also be designed separately and composed

with the existing system The case study demonstrates the strengths of the

subject-oriented design model, but also highlights some interesting weak

nesses

10.1. Requirements Specification
A library management systems manages the resources within a university

library, and the activities relating to those resources The subset of such a

system examined in this case study is the management o f books and periodi

cals This is essentially managing their ordering and physical locations

within the library, and managing their borrowing and return A full library

management system would be a far larger system probably including, for

example, management of client and vendor information and history Archi

tecturally, the portion o f the system included in the case study may be seen as

2 25

Case Study and Evaluation Requirements Specification

Functional
Requirements

Add library
resource

Remove library
resource

Order library
resource

Search for
library resource

the business model layer, in a “ layered architecture” ([Shaw & Garlan 1996])

separating the user interface from the objects that support the base library

concepts

A library’ s resources are multiple copies of both books and periodicals

Users of the library are librarians and borrowers, but only librarians use the

library management system The actors and their uses of the library manage

ment system are

Actors Librarians, Staff, Students, Public

Library resources Multiple copies of books and periodicals

Uses of system Add/remove library resource

Order library resource

Search for library resource

Borrow/return library resource

Pay late return fine

The librarian may add library resources to the library management system

(LMS) These may be additional copies o f an existing title, or copies of a

new title The following information is maintained by the LMS

• The ISBN, title, author(s) and publisher information o f the title

• The staff member(s) and course number(s) that use the title

• The library-assigned numbers and physical locations o f all copies

The librarian may remove all copies of a title from the LMS This is only

possible if all borrowed copies o f the title have been returned

The librarian may record an order for multiple copies of a resource through

the LMS The following information is maintained

• The ISBN, title, author(s), and publisher information of the title

• The number of copies ordered

• The vendor information and date of ordering

All users of the library may search for the physical location of copies of a

particular title The search may be on ISBN title or author information

Wildcard searches are required, which may result in multiple items returned

from the search

2 2 6

Case Study and Evaluation Design with Structural Matching to Requirements

Borrow library
resource

The only library resources which may be borrowed are copies of books

Restrictions exist for different kinds of borrowers

• Librarians may borrow any number of books

• Staff may borrow up to ten books

• Postgraduate students may borrow up for eight books

• Undergraduate students may borrow up to four books

• Members of the public may borrow up to two books

Return library
resource

The librarian may record when borrowers return books If the on-loan period

is greater than the allowed period for the type of borrower, then a fine is

imposed as follows

• Librarians may borrow their books for a period o f two months, sta ff for

two months, postgraduate students for six weeks, undergraduate students

for two weeks, and members of the public for one week

• Some titles have their own time restrictions on amount of time copies may

be borrowed which take precedence over the period restrictions for type

of borrower

Pay late-return
fine

The librarian may record the payment o f fines by the borrower

Technical
Requirements

It is required that the services for managing resources are available concur

rently However, those services that change the objects (add resource and

remove resource) should only run one at a time, and should also lock out the

query services (search for resource) On the other hand, multiple query serv

ices should be allowed run concurrently, but only when there are no changing

services running

10.2. Design with Structural Matching to Require
ments

This section discusses the options for decomposing the design of the library

problem domain for potentially different design teams The structural mis

match of the requirements specifications with object-oriented specifications

o f the library concepts is illustrated A design of the system using the decom

position capabilities provided by subject-oriented design is presented

2 2 7

co
m

co
co

>
i-

o
z

o
—

co
m

o
.c

o
-i

z
so

m
^

j

Case Study and Evaluation Design with Structural Matching to Requirements

D ecom posi
tion

This thesis does not include a discussion on how the subject-oriented design

model impacts the software development process, but recognises that this is

an important area for future work. Therefore, for the purposes of this case

study, some assumptions are made as to the “ process” a development project

manager may follow to assign tasks to different people/teams.

Without the benefit of subject-oriented design, a project manager must look

at the design domain as well as the requirements domain in order to carve up

the design domain area appropriately. Given that only one person/team may

work on an object-oriented class at one time, it is reasonable to assume that a

project manager would attempt to group classes with group(s) of require

ments as much as possible. To achieve this, it is likely that a project manager

and lead designer(s) would meet (with, possibly, white board aids) to attempt

a high-level assessment of a workable division of classes. Such an effort is

likely to result in the information illustrated in Figure 114.

The efforts of a development project manager and lead designer(s) as illus

trated in Figure 114 demonstrate the scattering and tangling properties that

are at the core of the motivation for the research described in this thesis. Any

attempt to divide up the work by requirement leads to overlapping usage of

classes, requiring complicated scheduling and critical path management. Any

attempt to divide up the work by classes leads to a need for designers to com

municate for the purposes of clear interface definitions. Where any require

ment “ colour” (Figure 114) touches multiple classes, the interface between

those classes must be clearly defined for that requirement. Communication

between designers costs time.

228

Case Study and Evaluation Design with Structural Matching to Requirements

Design S u b
je c ts

On the other hand, with subject-oriented design, it appears at this stage that a

clean division of work may be achieved by assigning one design subject for

each requirement.

A project development manager using the subject-oriented design model need

not attempt to anticipate the internals of the design for the purposes of divi

sion of the tasks. So again, making some assumptions as regards “process” ,

the manager may decide on a one-to-one structural matching of the require

ments with the design models, yielding the separate design subjects illus

trated in Figure 115.

Figure 115: Division of Tasks into Design Subjects

It is, however, likely that the development manager would meet with the sen

ior designer(s) for the purposes of estimating the size of the task of designing

each subject. This information is likely to impact the size of teams working

on each one. For the purposes of this case study, we assume that separate

teams work on different subjects, and that the number of designers in each

team is not relevant for the purposes of assessing the subject-oriented design

model.

The following subsections illustrate some details of the designs of each of

the design subjects. It is not, however, the intent of this chapter to discuss

detailed motivation for choosing and naming particular design elements, or to

discuss individual design decisions for each subject. It is assumed that stand

ard design practices and decision-making processes apply inside each indi

vidual design subject. The following subsections will, however, point out any

interesting decisions that may impact subsequent composition of those sub

jects. A further assumption with this case study is that the “Actor” manage

ment is catered for outside this case study. That is, information relating to

229

Case Study and Evaluation Design with Structural Matching to Requirements

Add Resource

library staff, academic staff, postgraduates, undergraduates and members of

the public is maintained outside the library management business model

The A d d R e s o u r c e subject handles the structural and behavioural implica

tions of storing books and periodicals in the library In the structural design

illustrated in Figure 116, the commonalities o f B o o k and P e r i o d i c a l are

abstracted to a R e s o u r c e class, from which each of them inherits The

designer o f this subject deems that it is appropriate for R e s o u r c e class to

be abstract

«stAjeci»
AddResource

Coursa
number string

Copy
+ nHumber string capes

rworce
+ addBookO
♦ addPenodicalO

ttle String ■ publish« String
date Date
- setLocaion(Location)
■ S9tCoorse(Coors9)
■ addCopy(Copy)

T
Book Periodica}

+■ author Stnrg +■ ISBN Sinng + editor String
+ period EnunwaDon

Location
 ̂room Siring

+ shelf Stnr»g

'CopyNoGenerdor
!rt«?r̂ çpp̂.Qg?nermf
+bâaï£û *■ getumĉeNumbert)

Figure 116 Add Resource Class Diagram

«subject»
AddResource

:Re s ourceMa na get

addBook(title author 1
publisher tsbn room shel | course noCopes date) creae< DUS author

publisher isfcn) -JzocY
create room shelf)
setLocationflocmlon)

setCourse(course)

~] [1=1 noCopies] creaeCcpvO
getUmqueNumbert)

create(idNumber)
eddCoptfcopy)

CcpyNoGwwraor

Copy
--

Figure 117 Add Resource Interactions

230

Case Study and Evaluation Design with Structural Matching to Requirements

Remove
Resource

The behavioural interactions o f adding a resource to the system is illustrated

in Figure 117 This design illustrates the interactions for adding a B oo k

instance The interactions for adding a periodical are similar and since they

provide no additional points of interest to the design, they are not illustrated

The R e m o v e R e s o u r c e subject handles the structural and behavioural

implications of removing books and periodicals from the library Figure 118

illustrates the structural and behavioural design Removing a book and

removing a periodical are the behaviourally the same, and so the designer of

the R e m o v e R e s o u r c e subject need only reference and use the R e s o u r c e

class This is a feature of the subject-oriented design model, where a designer

need only specify details of elements that are relevant for the particular

requirement under design

«subject»
RemoveResource

CODV
OpM Ih-

Resource« an agerV¥rJ
+ onLoen Boolean Retouce
♦ onloanO , - -0

* deleteCopxesO
► removeResource(Resource! *■ deleteResou re e(R eso u r«)

| ResouceManager (¡Resourcej | Copy |

r emweReso urce(re50u ree) ^
onLoan cop esOr Loan () '

i

D = 1 to numb« of copies]

, ______J
{onLoan = false} 1

~ j deleteResource(resojrce) |

1 onLoan [)

* ------------

!
deleteCofuesQ ^ i0 = 1 to number of a>pws]

«destroy» *

----------------X
< ---------------------

«destroy*

If “- " x

Figure 118 Remove Resource Class Diagram and Interactions

Here we can also see a difference in the specifications of the R e s o u r c e

classes in the A d d R e s o u r c e and R e m o v e R e s o u r c e subjects In the

A d d R e s o u r c e subject, R e s o u r c e was defined as being abstract, while

here in the R e m o v e R e s o u r c e subject, it is not Here, the designer has no

reason to set the R e s o u r c e class as being abstract Designers working inde

pendently will not communicate this difference of opinion, and therefore, in

a composition o f these two subjects, the details of the R e s o u r c e classes

will clash, requiring reconciliation The subject-oriented design model pro

vides the means to resolve this conflict, discussed in “ Composing Resource

Management Subjects” on page 237

231

Case Study and Evaluation Design with Structural Matching to Requirements

Order Resource Figure 119 and Figure 120 illustrate a structural and an interaction design,

respectively, for ordering resources for the library The designer works with

only those elements that are relevant for ordering resources

However, comparing this design with the design of the A d d R e s o u r c e sub

ject highlights a weakness with the subject-oriented design model The

A d d R e s o u r c e class diagram states that a resource must be stored in one

location However, the O r d e r R e s o u r c e design uses the R e s o u r c e class

to store the on-order information as well, and therefore it is not stored any

where until it has been received This designer does not even consider loca

tions as they are not relevant for ordering This is an example of where

knowledge o f the domain is required to assess the impact of joining con

straints from different models The impact of this on composition is dis

cussed in “ Composing Resource Management Subjects” on page 237

subject
OrderResource

orOerBookf tit)« author 1publisher isbn room shelf |
course noCopes vendor c&e)

■ ~ fc.li

~T

creatê title author
publier isbn) Boe|{~~[

S3tCourse<cours«)

creae(noCopies vendor date) Ordar

setOrdertordar)

Figure 120 Order Resource Interactions

There is one more interesting point to note with the O r d e r R e s o u r c e sub

ject, that the subject-oriented design model does cater for The interaction

diagram illustrated in Figure 120 shows a s e t C o u r s e () operation that sets

2 32

Case Study and Evaluation Design with Structural Matching to Requirements

Search for
Library
Resource

Borrow Library
Book

the o r d e r e d F o r relationship with C o u r s e A look at the A d d R e s o u r c e

subject shows that here also is a s e t C o u r s e () operation that sets the u s e -

d l n relationship with C o u r s e Here are two operations with the same name

that are essentially different operations, and therefore the composition

designer must cater for this How this is achieved is discussed further in

“ Composing Resource Management Subjects” on page 237

A structural design for searching for library resources is illustrated in Figure

121 This design does not highlight any additional interesting points for the

subject-oriented design model

Figure 122 and Figure 123 illustrate a structural and an interaction design,

respectively, for borrowing library books Since only books may be bor

rowed, the designer need only reference and include elements relating to

books This design does not highlight any further additional interesting

points for the subject-oriented design model

Figure 122 Borrow Book Class Diagram

233

Case Study and Evaluation Design with Structural Matching to Requirements

Return Library
Book

«subject»Barrcwßook

Figure 123 Borrow Book Interactions

Figure 124 and Figure 125 illustrate a structural and an interaction design,

respectively, for returning library books This includes a calculation of the

appropriate fine for late return

From a subject-oriented design model perspective, this design highlights

another interesting issue The R e t u r n B o o k subject has two operations that

also appear in the B o r r o w B o o k subject These are s e a r c h () and s e t O n -

L o a n (b o o l e a n) , and are calls to the same operations in both cases From

an integration perspective, the subject-oriented design model described in

this thesis has discussed merge and override Merging operations means that

all merged operations are executed when any one is Overriding operations

means that one operation’ s specification is overridden by another Conceptu

ally, neither merge nor override applies For example, it is not appropriate to

2 3 4

Case Study and Evaluation Design with Structural Matching to Requirements

Pay Late-return
Fine

call the s e t O n L o a n (b o o l e a n) operation twice i f these operations are

merged On the other hand, conceptually, overriding does not apply, as nei

ther specification is an updated version o f the other “ Composing Resource

Management Subjects” on page 237 discusses a work-around using override

integration, where one o f the operations is arbitrarily chosen as the overrid

den operation and the other as the overriding one However, the subject-ori

ented design model should include a mechanism for stating the operations are

not ju st corresponding, but are the same, and therefore only one should

appear in the result

subject»
ReturnBooh

I Book
return Boo kicopylD) |

Copy

search(copvlD)

return Book() i
ch eckR ne< datdBofrqwpd today this)

! calcTfneBorrowed()

F' [fimeBorrowed * tneWto^ed]
— |addFine(avemin tods/)

create(aaiOae) ^ r

s etOveiTun Book(copy)
■Ol

eseiOnLoan(false) |

1
decrenentOnLoanO I

- - - " - 0
I

Figure 125 Return Library Book Interactions

Figure 126 illustrates a design for recording the payment o f fines This

design does not highlight any further additional interesting points for the

subject-oriented design model

«subject*
P a y F t n e

Borrowwr
1 fina Fro

♦ p̂Fine(Rnâ)
1 ' ‘i-i---—ITT;“

Borrow* | Fno | J

payfine(1md) ' * 1

< --------

1

«destroy» y

X

1

Figure 126 Pay Fine Class Diagram and Interactions

235

Case Study and Evaluation Design with Structural Matching to Requirements

Concurrency The requirement for concurrency outlines specific library services which

should run concurrently, and how they should be synchronized The designer

assigned to this subject could explicitly provide a concurrent design for just

those services that are specified However, this designer recognises that con

currency is not a requirement that is specific to any service in a library, but

that it potentially applies outside the library management system, and indeed,

to other services within the library management system This requirement is

therefore better designed as a composition pattern, where it can be re-used

both inside and outside the current library system under design

«subject»
Synchronize

Col!ab_%nchronizeReadPatt0 rn ■
SynchrorttzedClass 1

read[) I waitWriterQ 9

TCP wait() I

J=3 incrementReaders[) 1

□ _resd()

J = decrementReadersQ

Collab_9ynchronizeWritePattem
3/nchronizedClass

write!) | waiìWhterR ©adersi)

t l wait()

Ê5 3 incrementWntersO

t] _write()

decrementWnters()

I -----------------------------1
"l <9ynclironizeciClass _wnte() _jead()>|

SynchroruzedClass

activeReaders int
activeWrilers tnt

waitWriterReadersO {concurrent}
waitWriterO {concurrent}
#wait(){concurrent}

incrementReadersO
decrementReadersQ
incremeniWntersO
decrement Writers!)

+ write! 3
#_wite()
+ read()
#_read()

Figure 127 Synchronize Pattern Classes and Interactions

The S y n c h r o n i z e composition pattern illustrated in Figure 127 has one

pattern class, S y n c h r o n i z e d C l a s s , representing any class requiring syn

chronization behaviour Within this pattern class, two template parameters

are defined, called r e a d () and w r i t e () , to represent reading and

writing operations Synchronization behaviour introduces a number o f ele

ments, both structural and behavioural, to synchronized classes Structural

properties a c t i v e R e a d e r s and a c t i v e W n t e r s maintain counts o f the

number o f read and write requests currently in process (for write, this number

will never be > 1) Two interaction patterns define the required behaviour for

reading and writing The read pattern ensures that any currently writing proc

ess is complete prior to processing a read request The write pattern ensures

that all currently reading and writing processes are complete prior to process

ing a write request In this example, and as described m “Chapter 8 Compo

sition Patterns” on page 198, the designer utilizes operation merge semantics

by representing the actual replacing read and write operations with an “

pre-pended to the template parameter name - that is, using _ r e a d () and

w r i t e () In this way, when the actual operation is executed in the con-

236

Case Study and Evaluation Design with Structural Matching to Requirements

C o m p osit ion

Composing
Resource Man
agement Sub
jects

text o f synchronization, the required behaviour is clearly defined within the

interactions

This section d iscusses the use o f composition relationships to specify how to

compose the different library management system design subjects, and exam

ines the output o f such composition With multiple, independent design sub

jects , there are multiple possibilities for choosing which ones to compose at

any particular time Research into a supporting design process for the sub

ject-oriented design model should define guidelines to aid this choice For

the purposes o f illustration, and to aid discussion, the composition task is

divided up into the composition o f subjects specific to resource manage

ment, the composition o f subjects specific to borrowing and returning books,

the composition o f the S y n c h r o n i z e pattern where appropriate

The design subjects appropriate to managing resources are A d d R e s o u r c e ,

R e m o v e R e s o u r c e , S e a r c h R e s o u r c e and O r d e r R e s o u r c e Merge

integration is appropriate for composing these subjects, as all o f the structure

and behaviour for each subject is required in the composed subject In addi

tion, a look at the separate designs shows that each designer generally used

names from the requirements specification, and so, generally, the same

names were used for the same base concepts Therefore, a m a t c h [n am e]

attachment is appropriate for establishing correspondence between elements

The issues and interesting points discussed within the design sections for

each subject were

* The R e m o v e R e s o u r c e subject defines the R e s o u r c e class as non

abstract while the other subjects define it as abstract

* The A d d R e s o u r c e subject specifies that a R e s o u r c e instance must be

s t o r e d l n one L o c a t i o n The O r d e r R e s o u r c e subject uses the

R e s o u r c e class for ordering information, and does not consider the

implications o f its relationship with L o c a t i o n , as it does not concern

ordering

* A d d R e s o u r c e and O r d e r R e s o u r c e both have operations called s e t -

C o u r s e () , that are different

Each o f these issues may or may not have been noticed by the composition

designer For the purposes o f this study o f the subject-oriented design model

we assume that the likelihood o f differences in the specifications o f elements

has been considered To cater for it, the composition designer assigns a p r e c

237

Case Study and Evaluation Design with Structural Matching to Requirements

attachment to the composition relationship, as illustrated in Figure 128 This

specifies that the specifications o f elements in A d d R e s o u r c e take prece

dence in the event o f a conflict The remaining two issues are discussed in

the examination o f the output o f this composition specification

Figure 128 Specify Composition of Resource Management Subjects

The composition relationship defined in Figure 128 states that the

A d d R e s o u r c e , R e m o v e R e s o u r c e , S e a r c h R e s o u r c e and O r d e r R e -

s o u r c e subjects are to be merged Elements with the same name are corre

sponding, and element specifications in A d d R e s o u r c e take precedence in

the event o f a conflict This specification yields the output illustrated in F ig

ure 129

«subject*
AddResQurceRsmoveRMOurcsOrderftesourcaSearcft

Copy

♦ i dN um ber String
+ onLoan Boolean

+ ofiLoanO

* vendor String
♦ cteieûrdered Date
+ numberOretered mt

♦ numtwr Siring ordatRsquiBd

t

addBookO
+ addPenodicalj)
+ remcrveResource{Resouroe)
+ ad&»Resource<ResQurce)
+ ontef8<x>kü
+ orderPenodKalQ
+ search))

R e s o u r c e

+ titte Strino
pu Wisher Siring 1 «in hA

+ date Data

+ setLocaion(LôC«tlon) stores '

+ setCourse[Course)
+ addCopy(Copy)
+ deleteCopiesO
+ setOròer(Order)
U AddResource_setCourse(Course)
U OrderResource_setCourse(Course)

‘f

Location

- room a m g
- shelf Sfnng

Cop^No Generator

- (pWnlrjjeNijmbeit)

Book Periodical

♦ author Strng
+ ISBN String

edtor Stnng
penod Enumeration

Figure 129 Output of Composition of Resource Management Subjects

An examination o f this output shows that the operations s e t C o u r s e ()

have been merged That means, they have been deemed to correspond (based

on the m a t c h [n a m e] attachment to the composition relationship) and there-

238

Case Study and Evaluation Design with Structural Matching to Requirements

fore an execution o f either one results in the execution o f both The composi

tion process specifies this behaviour with the interaction diagram illustrated

in Figure 130

«subject*
Add ResourQeRerTKn/eRgsourceOrdorResource Search_________________

CoilflD_s«Course 9
Resource

selCwrse(couse) 1
T~l Ad®eaxrce_setCojrse(coira)

<----

J~1 OrairResxrre_sffCauree(cixr9e) ,

Figure 130 Generated Interaction

As discussed previously, however, these operations are different, and should

not be considered to correspond The subject-oriented design provides a

means to specify exceptions to a general name-matching correspondence

specification It can be achieved by adding a relationship, with a d o n t -

M a t c h attachment, between the two operations This is illustrated in Figure

131

Figure 131 Specifying Exception to General Matching

The final previously identified issue relates to the cardinality constraint

between R e s o u r c e and L o c a t i o n , specified in the A d d R e s o u r c e sub

ject, that states that a resource must be s t o r e d l n one location This con

straint causes a problem when A d d R e s o u r c e is composed with

O r d e r R e s o u r c e It is not appropriate that such a cardinality constraint is

put on resources that are only on order This problem currently cannot be

solved using composition relationships, and requires domain knowledge to

identify In such a case the designer must solve the problem as appropriate

in the output subject Alternatively, the designer may design a separate sub

ject defining the appropriate association between R e s o u r c e and L o c a

t i o n , and override the association in the composed subject in Figure 129

239

Case Study and Evaluation Design with Structural Matching to Requirements

Composing Bor
rowing Subjects

A final observation may be made on the output o f this composition The

semantics for merging subjects states that the name o f the output subject is

the concatenation o f each o f the input subjects In this case, the output sub

je c t ’ s name o f A d d R e s o u r c e R e m o v e R e s o u r c e O r d e r R e s o u r c e -

S e a r c h is not ideal While it is possible to see at a glance which subjects

were included in the composition process, it is nonetheless a very long name

to work with This may not be an issue for some domains, but research is

required to assess whether it is appropriate to provide a facility to the compo

sition designer to specify the name o f the output subject

The design subjects appropriate to borrowing and returning books are B o r -

ro w B o o k , R e t u r n B o o k and P a y F m e Merge integration is appropriate

for composing these subjects, as all o f the structure and behaviour for each

subject is required in the composed subject In addition, a look at the separate

designs shows that each designer generally used names from the require

ments specification, and so, generally, the same names were used for the

same base concepts Therefore, a m a t c h [n am e] attachment is appropriate

for establishing correspondence between elements

« subjects»
Borrowüook

y

/
Copy |

+ s0tOntoan(Boolesn\

Copy
fcSBtOnLoan(Bcolean)

\

m d chinarne]
«subject«
Pagine

Figure 132 Specify Composition of Borrowing Subjects

One interesting issue for the subject-oriented design was previously raised in

the description o f the design o f these subjects The R e t u r n B o o k subject

and the B o r r o w B o o k subject both reference s e t O n L o a n (b o o l e a n)

operations, which are the same As previously discussed in “Return Library

B ook” on page 234, neither merge integration nor override integration is con

ceptually appropriate as the integration strategy However, the end result the

composition designer wants is one s e t O n L o a n (b o o l e a n) operation in the

output This end result can be achieved using a composition relationship with

override integration as illustrated in Figure 132 The composition designer

arbitrarily nominates one o f the operations as the one to be overridden, and

240

Case Study and Evaluation Design with Structurai Matching to Requirements

Composition
with Synchroni
zation Pattern

the other as the overriding one As required, and as illustrated in Figure 133,

only one s e t O n L o a n (b o o l e a n) operation appears in the result

«subject*
RehjmBookSorrowQookPayFirie

Figure 133 Output of Composition of Borrowing Subjects

While the required end result has been achieved, this nonetheless highlights a

gap within the subject-oriented design model which reinforces the need for

additional integration strategies

The output o f a composition process is itse lf a design subject, and so the out

put o f the composition o f the resource management subjects may be com

posed with the S y n c h r o n i z e composition pattern subject For

convenience, the output from the resource management composition is named

R e s o u r c e M g m t in this section

Specifying how to compose the R e s o u r c e M g m t design subject with the

S y n c h r o n i z e composition pattern is achieved with the definition o f a com

position relationship between the two The b i n d attachment denotes which

c lass(es) are to be supplemented with synchronization behaviour, and which

read and write operations are to be synchronized As illustrated in Figure

134, R e s o u r c e M g m t ’ s R e s o u r c e M a n a g e r class replaces the pattern

class m the output, a d d B o o k () , a d d P e r i o d i c a l () and r e m o v e R e -

s o u r c e O operations are defined as write operations, and s e a r c h () is

defined as read

I <SynchrcnrzaûCiass _wnte() _read()» i
 <

Synchronie IS s
t

«subject»
ResourceMgmt

bJn«Î<Rc*ourt«MEnû08r {addBock0 addPcrlodlcaiQ remcweRwourcoO} »archQ >]

Figure 134 Specify Composition with Synchronization

241

Case Study and Evaluation Evolving the LMS

In the output subject illustrated in Figure 135, only the class impact by syn

chronization is illustrated All the other classes and relationships are added

unchanged

«subject»
S yn dirontze RgsourceMgmt

Synchron«eWntePaüem removeResourcsO

SynchromzeWmePatiem «WPeriodicalO

Syndi rwiEoWrt ePatte m addB»k()

RescurceManager
addBookOj 1 YvaitWnterfteadersQ

p Y v a i f)

E p mcremertWriersfo

F
ĵ l ResajrceMgm_add9ook()

r-
dacremsnWYrterstì

:

Syn c h ran ceRee¡Pattem a

RescurceMarapef

seerchQ _ I w atWnterO

<()

rch()

increnentReaders()

ResourceMgnt_search(>

cecrementReadersO

Resource Manager

flctrveRaadefS int
a ctive Writers int

+ addBooK)
ReswjrceMgmt_addBook()
+ addPeriodicalO
a ResourceMgrrt_addPenodical()
+ removeResourceO
Resourc6Mgrrt_remcveR&souce(]
de(eteResource()
orderBookt]
+ orderPerrodicdO
+ searchO
ResourceMçrnLsearch()
Ü waitWriierReaòers() {concurrent}
#wa*V\M«t) {concurrent^
#wai() {concurrent}
increments eedensQ
deer emert Readers!)
mcrementWntersO
decremenWirtersü

Figure 135 Output of Composition with Synchronization

This section has demonstrated how the initial design o f a system may be

decomposed based on the requirements specifications, and how each design

model may be designed separately, and composed later “ 10 4 Evaluation”

on page 247 a ssesses this design based on the criteria for assessing design

techniques used to motivate this work, described in “ Chapter 2 Motivation”

on page 11 We now look at how to use the subject-oriented design model for

designing changes to a system

1 0 . 3 . E v o l v i n g t h e L M S

One o f the benefits o f using the subject-oriented design model stated in this

thesis is that its use eases the extensibility o f software designs In this sec

tion, we examine the impact o f extension requirements on the library man

agement system, and assess the assertion that the subject-oriented design

model eases their inclusion into the software design One requirement is

received as a result o f the change to the business process associated with bor

rowing rules The second requirement arose as a result o f a problem with the

existing design identified in system test

Business process change

• The rule relating to the borrowing o f books is changed In the current

design, there is a maximum number o f books each borrower may borrow

A change to this rule states that, in addition to the maximum limit, a bor-

242

Case Study and Evaluation Evolving the LMS

row may not borrow a book i f there is a fine outstanding from the previ

ous loan o f a book to that borrower

System test problem

• During system test, it is found that there is no defined behavioural rela

tionship between the adding o f resources to the system, and the mainte

nance o f order information Once a resource is received and added to the

system, a check against the order information o f that resource should be

made, with receipt o f the order recorded

S u b je c t s As supported by the subject-oriented design model, the project manager may

decide to assign the two new requirements to different design teams, working

on different design subjects The C h e c k B o r r o w subject handles the new

rules for borrowing books The O r d e r R e c e i v e d subject handles updating

order information

Changed Rules
for Borrowing

The C h e c k B o r r o w subject defines a new operation called c h e c k () to han

dle checking that the borrower has not reached its maximum limit, and that

there are no fines outstanding This is illustrated in Figure 136 There are no

interesting issues relating to the subject-oriented design model

«subject»
CheckBorrow

Borrower

■ currentOnLoan int
•maxOrLoan int

ct^ck() Boolean

fina
F tte

1 ______________

action Borrower choclcO
fxxt ra*utt - maxOnLoai < currentOnLoan

and tbit fi ns->a Empty = trua

Figure 136 Updating rules for borrowing

Update Order Figure 137 illustrates the design for updating order information based on
Information ,

information based on the receipt oi resources

This design does not explicitly refer to any o f the add resource properties,

but knowledge o f the subsequent composition o f this subject with the design

for adding resources does have some influence In particular, merge integra

tion semantics for integrating operations applies, and therefore, the scope o f

the lifeline o f adding resources is relevant for the specification o f the param

eters to the b o o k R e c e i v e d () operation As described in “ Impact o f

Merge on Operations” on page 188, merging operations with parameters is

243

Case Study and Evaluation Evolving the LMS

only possible with compatible parameter lists In other words, in order for

b o o k R e c e i v e d () to execute, the information it requires through its

parameters must be available from the operation first called in the execution

combination, which, in this case, is a d d B o o k () More details are illustrated

in their composition specification in Figure 140

«subjects
OrderReceh'etil

Figure 137 Order Received

C o m p osit ion The design subjects to be composed to include the new rules for borrowing

books are the C h e c k B o r r o w subject and the R e t u r n B o o k B o r r o w -

B o o k P a y F m e subject Override integration is appropriate for composing

these subjects, as the R e t u r n B o o k B o r r o w B o o k P a y F i n e subject con

tains design which is now obsolete because o f the new requirement, and the

C h e c k B o r r o w subject contains a design for the new requirement A

m a t c h [n a m e] attachment specifies how to identify corresponding ele

ments One exception to this is that the new c h e c k () operation is designed

to override the old c h e c k M a x () operation, and this must be explicitly spec

ified with a composition relationship This composition specification is illus

trated in Figure 138

«subjsct*
Checkßorrower

mäch[name]

a subjects
ReiumBookSorrowSooM^ayFine

■ check() Boolean^ _ JrcheckMaxf) Boolean

Figure 138 Specify Composition of Borrow Checking Update

The ability to simply override one operation with another operation with a

different name depends on the forwarding semantics discussed throughout

244

Case Study and Evaluation Evolving the LMS

this thesis The c h e c k M a x () operation forwards to c h e c k () in the output,

and therefore any references to now c h e c k M a x () reference c h e ck ()

The output from this composition, illustrated m Figure 139, is the same as

output from Figure 133 except for its name, and that the c h e c k M a x () oper

ation has been overridden The interaction calling c h e c k M a x () is changed

to call c h e c k () (not illustrated), as defined by forwarding semantics

c subject* |
Check Borrow Bo rrowBookRgtLimBookAjjdFng 1 _______________

Copy

on Loan boolean
♦ borrowCæ Date
+ bonow(Borrower)
+ setOn Loan (Boolean)
+ setBof rower (Bor rower)
seSwroKDat^Dste)

+ retumBooK)

Book
m m -

v>
1 + borrcx̂ Borrower Stnng]

+ retLimBockf9rrgi
+ search(Smng)

1 wemmBook
1 be rcwai

Borrower

♦ currentOrLoan mt♦ mmOnLoan fit
+ IncrsmertOnLoanO
♦ check()
+ calcTimeBorrowed!) + sddRne[>
+ dec reme ntOn Loan [)
+ payFineft

Fine

+ overmnStart Date
1

+ setOvenunBook(Copv)

Figure 139 Output of Composition of Borrow Checking

The design subjects to be composed to include the updating o f order informa

tion on addition o f resource information are the O r d e r R e c e i v e d subject

and the composed resource management subjects As before, and for conven

ience, the output from the resource management composition is named

R e s o u r c e M g m t in this section

Specification o f how to compose the O r d e r R e c e i v e d subject with the

R e s o u r c e M g m t subject is achieved with a composition relationship with

merge integration (see Figure 140) Merge is chosen as the integration strat

egy as this is additional behaviour, designed to enhance already existing

245

Case Study and Evaluation Evolving the LMS

behaviour A m a t c h [n a m e] attachment specifies how to identify corre

sponding elements

There are two exceptions to this general matching case The b o o k R e -

c e i v e d {) operation and the a d d B o o k () operat/on are considered corre

sponding as they as to be executed together Similarly for the

p e n o d i c a l R e c e i v e d () operation and the a d d P e r i o d i c a 1 () opera

tion The composition designer dictates the order o f execution o f these two

corresponding sets by attaching interactions to the appropriate composition

relationships This order conforms to the rules associated with merging oper

ations o f different signatures described in “ Impact o f Merge on Operations”

on page 188 The calling operation must have the information to support the

calls to subsequent operations in the corresponding set

246

Case Study and Evaluation Evaluation

The output o f the composition specification in Figure 140 is illustrated in

Figure 141

«subject»
OrderResouroeResourceMorrt

Copy
* nasumtwr String
on Lo an Boolean

onLoanfl

+ number String

Order
♦ vendor Strng
+ dateOrdered Date
+ nunnberOrdered mt
+ ûateRecerved Dete
+ noCoptesRecaîved im

♦ setCe4sR9caved(Date)
♦ setNoCapi&sRacer/gtj(>nt)

ResoLtceManager

♦ addBooW)
U ResourceMgrri_atJcBoc4̂)
+ addPenodicalO
♦ ResourcsMgmt_adcPer»dical[)
+ orderReeetved(int dete)
+ removeResourcetResource)
+ dsfeteRescuncefRasource)
♦ orderBookO
+ orderPfiriodtcal()
+ saarchO

R*toufc#
+ title Strng
+ publisher String

♦ setLocaion(Location)
+ addCopyfCopri
+ tósteCopiesO
+ AddResourcs_setCours9(Coursô;
+ Orderfìesource_setCajrse(Dxir5e)

x

■ room Serro
■ shelf Stnng

Book Pertodcd

+ author String
♦ ISBN String

* edfcor String \
+ period Enumeration

CopyNoGenerdor

■ gHUrtqueNumfiero

Figure 141 Output of Composition with Receiving Orders

This section has demonstrated how the subject-oriented design model sup

ports the evolution o f existing software designs Changes may be designed

independently in separate design models, and subsequently composed with

the existing designs We now evaluate the model against the criteria motivat

ing this work described in “ Chapter 2 Motivation” on page 11

1 0 . 4 . E v a l u a t i o n

The criteria motivating this research described in “ Chapter 2 Motivation” on

page 11 were product flexibility, comprehensibility, and managerial con

cerns We now look at the experience o f designing and evolving the library

management system case study against these criteria

P rod u ct Flex- As discussed in “ Chapter 2 Motivation” , product flexibility is the i(possibil-
ity of making drastic changes to one part of the system, without the need to
change others’ Here, it was illustrated that scattering and tangling o f design

elements within traditional object-oriented models was an impediment for

ease o f change In this case study, the subject-oriented design model’ s sup

port for decomposition based on structural matching with requirements

showed itse lf to considerably reduce the negative effects scattering and elim

inate tangling entirely From a scattering perspective, support for a require

ment still needs a design across multiple c lasses and design elements This is

247

Case Study and Evaluation Evaluation

C o m p re h en
sibility

M anagerial

the nature o f object-oriented design However, the negative impact o f scatter

ing, where it is difficult to find all the appropriate design elements for a par

ticular requirement, is reduced This is because all the design elements in a

particular subject are pertinent for the requirement under design, and all the

design elements required to support that requirement are contained in the

particular subject This is the case for each o f the design subjects in the

library management system From a tangling perspective, this property is

eliminated, as for each o f the library design subjects, only one requirement’ s

design is contained in that subject This is the case even where one o f the

requirements, the concurrency one, impacts other requirements The use o f

composition patterns, such as the synchronization composition pattern in the

library management system, supports the clean separation o f such cross-cut-

ting behaviour

As regards traceability and evolvability, the ability to decompose design

models to structurally match requirements makes this easier For each o f the

library management system design subjects, it is clear which requirement is

supported For each requirement, it is clear which design subject supports it

The changes to the library design proved no more difficult to design sepa

rately than did the original requirements However, the case study did illus

trate that the composition designer needed to be careful when merging

corresponding operations Merging the recording o f order receipt information

with the adding o f resources to the system (Figure 140 on page 246) required

careful specification o f the order o f execution o f corresponding operations

As discussed in “ Chapter 2 Motivation” , comprehensibility is the “possibil
ity of studying one part of the system at a time The whole system can there
fore be better designed because it is better understood” The subject-oriented

design model does not guarantee that a design will be easy to understand

Where a requirement is complex, it is likely its design will be complex, and

any designer not familiar with the details o f such a requirement may find its

design details difficult to understand What has been achieved with the sub

ject-oriented design model, as illustrated in the library management system,

is that the design can be studied “ one part at a time” The reduction o f the

negative impact o f scattering, and the removal o f tangling, both support the

study o f the system one requirement at a time

As discussed in “ Chapter 2 Motivation” , managerial issues concern the

‘length of development time, based on whether different groups can work on

248

Case Study and Evaluation Evaluation

C o m m en t

different parts of the system with little need for communication ” This case

study has not proved that the length o f development time using the subject-

oriented design model is less than the length o f development time using tra

ditional object-oriented approaches To do this requires timing different

teams, o f similar design experience, and with similar levels o f familiarity

with the library management domain, creating two separate designs What the

case study has illustrated though, is that “ different groups can work on dif

ferent parts o f the system with little need for communication” Without sub-

ject-onented design, the project manager is faced with the situation

illustrated in Figure 114 on page 228, where designer access to classes must

be managed, requiring communication amongst designers As illustrated in

the case study, each o f the design teams may work independently o f the oth

ers, without communication

Not surprisingly, the subject-oriented design model performs well against the

stated criteria, since it was designed to do exactly that However, this case

study identified some problems outside these criteria First, conflicting con

straints are not readily recognisable, and cannot be handled with composition

relationships As illustrated in Figure 129 on page 238, the cardinality con

straint imposing one location for each resource conflicts with resources only

on order, which do not yet have a location As discussed, the designer must

notice this in order to fix it It is likely that using traditional object-oriented

methods this problem would not occur Whether it was the designer adding

orders to resources after the location was associated, or the designer assoc iat

ing locations to resources after the orders were associated, in either case, the

problem is likely to have been resolved Further research is required to assess

whether this problem can be ameliorated with subject-oriented design

Another problem identified is the limitations in the integration strategies cur

rently supported As illustrated in Figure 132 on page 240, there are times

when neither override nor merge is appropriate In this particular case, a

workaround is achieved within the current subject-oriented design model, but

it is likely that other cases might not be so readily worked around This pos

sibility has been identified and catered for in the metamodel for subject-ori-

ented design described in “ Chapter 5 Composition Relationship An

extension to the UM L Metamodel” on page 109 where the I n t e g r a t i o n

metaclass is abstract, supporting its extension by additional integration strat

egies

249

Case Study and Evaluation Chapter Summary

In addition, we must recognise that the approach has not been applied to a

large project, and therefore, unforeseen difficulties are possible For exam

ple, what might be the sociological impact o f separating team s7 Will teams

welcome the narrowing o f design focus to a single requirement, as it may be

less challenging9 Is it reasonable to assume that composition relationship

designers will have sufficient skill to assess the impact o f composing design

subjects7 All the implications o f using subject-oriented design will only

become clear with its application to a large project

Notwithstanding these issues and uncertainties, the benefits against the spec

ified criteria are sufficiently encouraging for continuing research into this

area, and extending the model as described in “ 11 2 Future Work” on page

253

1 0 . 5 . C h a p t e r S u m m a r y

This chapter illustrates and evaluates the design o f a library management sy s

tem using the subject-oriented design model Decomposition into design sub

jects is based on a one-to-one mapping with the requirements specifications

This approach to identifying design subjects is taken both for the initial sy s

tem, and for the new requirements received after the design o f the initial sy s

tem is in place Composition specifications using composition relationships

are demonstrated, with the output o f each illustrated

The design o f the case study is evaluated against the criteria motivating this

research product flexibility, comprehensibility, and managerial concerns

Subject-oriented design structurally matches design models with the struc

ture o f requirements specifications As a result, it is illustrated that each cri

teria benefits from the considerable reduction m the negative impact o f

scattering properties, and from the removal o f tangling properties However,

some issues are raised with the model Composing separate design models

may lead to the existence o f conflicting constraints in the composed design

model This problem is currently not solvable within the subject-oriented

design model, and so the designer must be vigilant in investigating and solv

ing such problems In addition, the currently available integration strategies

are not sufficient to cater for all possibilities This possibility was addressed

in the specification o f the metamodel for subject-oriented design discussed in

Chapter 5 Composition Relationship An extension to the UM L Meta

model” on page 109

250

C h a p t e r 1 1 : S u m m a r y , C o n c lu
s io n s a n d F u t u r e W o r k

This thesis has addressed a number o f issues relating to the current limita

tions with object-oriented design techniques While there are benefits to the

approach described as it is in this thesis, much work remains to be done This

chapter summarises the research to date as defined in this thesis, draws con

clusions as to its benefits and limitations, and details the current view o f

remaining work in this area

1 1 . 1 . S u m m a r y

This thesis described a new approach to object-oriented design, which

addresses issues relating to the modularisation and composition capabilities

o f existing approaches

First, the thesis illustrates and highlights the problems caused by limitations

in the existing modularisation capabilities o f the current object-oriented

design paradigm At the root o f the problems is the fundamental structural

difference between the way requirements are specified and the way object-

oriented designs are specified Because o f this structural difference, design

for a single requirement is scattered across the design elements o f an object-

oriented model, and a single design element is tangled with support for mul

tiple requirements This leads to difficulties in model comprehension, and

difficulties relating to the ease o f extensibility and re-use o f object-oriented

design models

The thesis then proposed a new approach to designing object-oriented sy s

tems that removes the structural mismatch with requirements by extending

the decomposition capabilities o f object-oriented models This extension sup

ports the direct decomposition o f object-oriented models to match the struc

ture o f a requirements specification In other words, design models may be

defined separately for each requirement in a requirements specification The

thesis illustrates how potential overlaps in the design o f core concepts for

251

Summary Conclusions and Future Work Summary

different requirements are catered for Cross-cuttmg requirements are also

supported within the model

Decomposition in this manner requires supporting composition capabilities

Therefore, the thesis defined a new kind o f design relationship, called a com

position relationship that supports the specification o f how design models

may be composed With composition relationships, areas o f overlap in differ

ent design models to be composed may be identified, along with specifying

how models should be integrated The syntax and semantics o f composition

relationships relative to the UML Metamodel are defined in detail This is

achieved with meta-class models illustrating the constructs associated with

composition relationships, well-formedness rules denoting constraints on the

specification o f composition relationships, and a detailed description o f the

semantics o f composition as defined by composition relationships

The composition relationship metamodel is designed to support seamless

addition o f integration strategies The thesis illustrates how this may be

achieved by defining two integration strategies within the context o f the

composition relationship metamodel These strategies are override integra

tion and merge integration

The impact o f override integration on the UM L design elements supported in

this thesis is described in detail Override integration essentially replaces

elements in one design model with corresponding elements in another design

model Merge integration is also defined in detail, and entails the com posi

tion o f design models where all o f the design elements are relevant for inclu

sion m the composed model

For merge integration, the thesis also demonstrates how sophisticated merg

ing o f behaviour is possible by enabling the attachment o f interaction dia

grams to a composition relationship In this manner, the behaviour o f

corresponding operations may be explicitly defined as part o f the composi

tion specification The thesis further expounds on this theme by supporting

the specification o f patterns o f composition, based on and extending the

notions o f templates and binding that is already supported within the UML,

combined with the power o f composition as defined within this thesis The

thesis illustrates how composition patterns support the specification o f how

cross-cutting behaviours, which impact design elements in a uniform manner,

may be composed wherever required Merge integration also requires strate

gies for reconciling possible conflicts between design elements This thesis

defines a number o f different possible strategies - subject precedence, default

252

Summary Conclusions and Future Work Future Work

specification, explicit value specification, and transform functions - and

includes these strategies in the context o f the UML metamodel

The thesis then illustrated how the subject-oriented model changes the design

for the motivating example, and asserts that the design is easier to under

stand, illustrates the ease with which it may be extended, and asserts that the

design subjects are easier to reuse in different compositions

1 1 . 2 . F u t u r e W o r k

The work described in this thesis represents the initial “ proof-of-concept” o f

the subject-oriented design model For a subset o f the constructs in one

design language (the U M L), the subject-oriented design model proves itself

to be valuable against some standard software engineering quality criteria -

comprehension, extensibility and reuse However, much work remains to be

done to make the subject-oriented design model a formally sound and com

mercially viable option for large projects This section categorises the areas

where work is required as follows

• Supporting Technologies This section examines what is required for tool

support, and alignment with other technologies at the programming level

• Additional Features and Rules This section considers additional features

which would extend the capabilities o f the subject-oriented design model

• Software Development Process Support This section discusses how some

work into examining the impact o f the availability o f capabilities such as

those defined within the subject-oriented design model might change a

software development process

• Formal Foundations The description o f the semantics o f the subject-ori

ented design model is non-formal This section discusses the possible

need for a more mathematical foundation for the model

Su p p ort in g There are two main areas in which supporting technologies are required to

T e c h n o lo g ie s majce use 0f subject-onented design model viable for large projects sup

porting C A SE tool environments at the design level, and automation o f a link

from this design approach to supporting programming models

First, C A SE tool support for the design phase Ideally, in order to make the

subject-oriented design model a commercially viable option, support would

need to be included in the major commercial CA SE tools - for example,

Rational Rose or Together It currently seems unlikely that this will occur

unless the extensions to the UM L described in this language become part o f

253

Summary Conclusions and Future Work Future Work

the standard language Therefore, future work in this area will be focused on

including support for the model in an open source C A SE tool, called Argo/

UM L Argo/UML was originally developed by a small group o f people as a

research project, and this group now provides the source code for Argo/UML

publicly on the internet for review and customisation The UM L metamodel

is directly supported, and therefore, we intend to include extensions to the

tool to support subject-oriented design in a public manner that conforms to

the vision and publication standards o f any other extension to the tool

Secondly, links to supporting technologies at the programming level should

be considered The most closely related programming model to subject-ori

ented design is the subject-oriented programming model currently imple

mented in a tool called Hyper/J [Tarr & Ossher 2000] There are two parts to

linking the design model described in this thesis with the subject-oriented

programming model programming the individual design subjects into sepa

rate Java code subjects, and generating composition rules (the means for

specifying how programs should be composed) from composition relation

ships Programming code subjects from design subjects is the same process

as standard programming from a design Generating composition rules from

composition relationships requires some investigation to determine the d if

ferences between composition relationships and composition rules, and to

assess the exact mapping from composition relationship constructs to compo

sition rules An actual generation implementation is also required Genera

tion o f composition rules from composition relationships should be

implemented within the context o f the Argo/UML tool

Another programming approach that is related to the subject-oriented design

model is the work on aspect-oriented programming currently implemented in

a tool called AspectJ [K iczales & Lopes 1999] Aspect-oriented program

ming supports the separate implementation o f cross-cutting requirements

from base programs implementing the core problem domain In AspectJ,

aspect programs contain the implementation o f methods for the cross-cutting

requirement, and an indication o f the places within the base programs where

these methods should be included Composition is achieved with an aspect

weaver that adds the cross-cutting methods to the base program as appropri

ate An interesting piece o f future work is the extent to which composition

patterns, as defined in the subject-oriented design model may be used as a

means to design cross-cutting aspects It is conceivable that the combination

o f a design subject containing placeholders for corresponding design ele

ments, and composition relationships binding other subjects to a cross-cut

254

Summary Conclusions and Future Work Future Work

Additional
F e a tu re s and
R u le s

ting subject specification (i e the combination that defines a composition

pattern) may be used to design aspect programs

The most important extension required to the subject-oriented design model

as described in this thesis is to analyse and include support for all UML

design models The scope o f the work for this thesis was essentially class and

interaction models Support for object, state, activity, use case, component

and deployment models is required

Another interesting area that could extend the subject-oriented design model

is consideration o f different kinds o f relationships between design subjects

These relationships could constrain the kinds o f composition relationships

possible For example, i f two subjects support two mutually exclusive

requirements, then this relationship could be specified between the subjects,

thereby constraining their composition - that is, only one o f the two subjects

may be involved in a particular composition context As described in “ Fea

ture Interaction Problem” on page 106, investigation into this area might

yield interesting results in how to support the design o f features whose inter

actions are constrained Relationships between subjects may also necessitate

that compositions are ordered in a particular way - that is, it is appropriate

for one set o f subjects to be composed prior to composition with another (set

of) subject(s) This area needs to be investigated further, and if required, sup

port for ordering o f compositions included in the model

From an integration perspective, some additional features could be included

to extend the capabilities o f the model For example

• Override integration, as currently specified, replaces (some) design ele

ments in one subject with corresponding design elements in another In

some cases, there may also be design elements in the overridden subject

that are no longer required, but are not explicitly replaced by correspond

ing elements in the overriding subject An additional feature to support

this requirement is to provide a means to identify elements in the overrid

den subject that are to be deleted as a result o f composition - that is, not

explicitly integrated with corresponding elements, but nonetheless not

appearing in the output o f the composition

• Two kinds o f integration strategies are defined in this thesis - override

and merge There may be other kinds o f integration strategies that are use

ful for composing models For example, a select integration strategy,

where a dynamic selection o f the appropriate design elements from differ

ent subjects is made based on the values o f environment variables, is an

255

Summary Conclusions and Future Work Future Work

interesting additional feature which should be considered A complete

investigation into requirements for different integration strategies is an

interesting area for future work

• An area not considered in this thesis is the possibility o f additional prop

erties arising for the output o f the composition These are not defined in

any input subject, but arise as a result o f the composition itself This area

has not been investigated, but is included in future work

• In both override integration and merge integration, it is possible that

cycles may be created in the output subject Currently, this is treated as a

breakage o f the well-formedness rules, and must be fixed by the designer

A more helpful approach may be possible, using ideas from [Walker

2000]

The composition patterns model, discussed in “ Chapter 8 Composition Pat

terns” on page 198, a lso presented interesting opportunities for development

These are

• In the current model, a composition designer specifies pattern classes and

template parameters that are fully replaced on composition with those ele

ments defined for replacement on the composition relationship As d is

cussed in “ Further Potential for Template Rule Specification” on

page 205, there is considerable scope for extending the capabilities o f the

composition patterns designer in the area o f specifying constraints on the

replacing elements

• Related to the previous item, there is also scope to broaden the capabili

ties o f the composition relationship defining the elements that replace

templates with its b i n d [] attachment For example, sophisticated wild

card matching is possible

• In the current model, there is a restriction that only one o f the subjects in

a single composition context is a composition pattern Further investiga

tion into whether there is a need to remove this restriction is required I f it

should be removed, an examination o f the impact o f its removal on the

model must be done

From a more detailed perspective, there are other areas within the subject-

oriented design model’ s features and rules that may be extended to expand

the usefulness o f the model Those areas are

• In “ Forwarding o f References” on page 96, there is a discussion on how

references to elements which may have changed as a result o f composition

may be forwarded to refer to the changed elements in the output subject

256

Summary Conclusions and Future Work Future Work

Within the current model, a single specification o f forwarding covers all

elements within a particular subject An area worth investigating is the

need for, and usefulness of, supporting separate forwarding options for

individual elements

• Also related to forwarding, there is a discussion, in “ Merged Operations

and Forwarding o f References” on page 195 , o f how the process for crea

tion o f operations to define the delegation to corresponding, merged oper

ations might be refined to only require one such operation, to which all

the input corresponding operations forward This area requires investiga

tion to determine any possible impact on the semantics o f forwarding in

general

• In “ Incompatible Elements” on page 100, there is a discussion on how the

current subject-oriented design model restricts composition o f operations

with any conflicting properties (excluding parameter lists) Further work

is required to define a full set o f appropriate rules guarding, on the one

hand, against loss o f any input subject constraints in the composed model,

while not being overly restrictive

• In “ Merged Operations with Return Types” on page 194, there is a d iscus

sion relating to the difficulties associated with return values from merged

operations Support, similar to that provided in Hyper/J, for allowing a

designer to work with the return values o f all executed operations to pro

vide the most appropriate result should be included in the subject-oriented

design model

• Within the current subject-oriented design model, a rule has been defined

restricting corresponding elements to being o f the same type An interest

ing area for future work is to analyse whether this rule is too restrictive

Within the database schema integration field, some different kinds o f

fields may be integrated An analysis o f the impact o f removing this rule

on integration o f subjects is included in future work for the subject-ori-

ented design model

• More flexible means for general specification o f matching for correspond

ing elements needs to be included in the model Currently, general match

ing is supported based on a name-match o f elements Other possibilities

need to be examined, and i f appropriate, included in the model

257

Summary Conclusions and Future Work Future Work

Softw are
D eve lo p
m en t Pro
c e s s S u p p o r t

Formal F o u n
d a t io n s

The impact o f the subject-oriented design model on the software develop

ment process has not been explored in this thesis This is an important area

requiring examination Some o f the areas in which a software process may

aid the subject-oriented design model are

• in the initial selection o f the appropriate design subjects based on the

requirements specification For example, further guidelines beyond “ one

requirement, one subject” may be appropriate as to whether there should

be a separate subject designed for a particular problem versus whether the

design should be included as part o f another subject

• in the decision as to whether to design a change/update to a particular sub

ject as a separate subject in its own right (and use composition with over

ride integration), or whether to simply change the subject directly Work

into assessing the impact o f maintaining multiple subjects versus making

some small changes directly will assist in the development o f a set o f

guidelines to assist such a decision

• in the decision as to the extent o f the autonomy o f separate design teams

for separate overlapping subjects Where there is no communication

between teams on overlapping elements, conflicts may require complex

composition relationships for the specification o f composition Where

there is some communication, composition relationships may be less com

plex Guidelines to find the most appropriate balance for a particular

project are required

A complete assessment o f the impact o f the subject-oriented design model on

the full software development process is required

Another major area that has not been addressed in this thesis is the possib ili

ties associated with the “ harvesting” o f design subjects from design models

not designed using the subject-oriented design model Object-oriented design

has been around for some time, and therefore there may be many models

which contain the design for problems/requirements that could potentially be

reused elsewhere An interesting area for future work is to analyse whether it

is possible to extract design subjects from legacy design models, that contain

the complete design for only one problem/requirement

The specification o f the subject-oriented design model in this thesis is infor

mal, and therefore it has not been proven that it is mathematically sound A

formal, mathematical foundation for the model might therefore be useful

Work in this area will align itse lf with any formalisation o f the UM L itself

258

Summary Conclusions and Future Work Conclusions

An interesting extension to such a formal foundation is the scope for defining

an algebra relating to subject composition This could include the specifica

tion o f a composition operator, on which properties such as associativity,

commutativity, and'transitivity might be defined

1 1 . 3 . C o n c l u s i o n s

The objective o f this thesis was to realise more o f the benefits o f object-ori

ented software design than are currently evident with existing approaches

For small scale examples, with a subset o f the UM L language, this is

achieved with the addition o f a decomposition capability supporting the

structuring o f object-oriented designs with requirements specifications

Within this scope, design models are easier to understand, extend and reuse

Understanding the design o f a single requirement necessitates understanding

the design o f only one design model, without having to consider elements not

relevant for that requirement Alternatively, understanding a particular

design model necessitates understanding only one requirement Changing a

design is simpler, as any change may be made separately, to be integrated

later, as specified with a composition relationship Re-use o f design models

is more achievable because o f the lack o f tangling o f design elements sup

porting multiple requirements With composition patterns, reuse o f cross-cut

ting requirements is supported

Though no evidence is presented to prove the same results are achievable for

large-scale commercial projects or for all kinds o f design models, the results

illustrated are sufficiently encouraging to warrant further focus As a prior

ity, all the UML design models must be examined to assess the impact o f

composition on them Another priority, without which the subject-oriented

design model is arguably not usable, is the inclusion o f support for the model

in a C A SE tool that is sufficient to handle large-scale projects When these

two areas have been handled, then the subject-oriented design model may be

tested for its effectiveness in achieving the required benefits o f software

design Results illustrated in this thesis lend encouragement and hope that the

toolbox o f the software engineer is considerably strengthened when the sub

ject-oriented design model is included

259

B i b l i o g r a p h y

[Aksitetal 1992]

[Alencaretal 1996]

[Andersen & Reen-
skaug 1992]

[Atkinson et al 1990]

[Batini et al 1986]

[Bell & Grimson 1992]

[Bertino & Illarra-
mendi 1996]

[Booch 1994]

[Boochetal 1998]

Mehmet Aksit, Lodewijk Bergmans, Sinan Vural “An Object-Oriented Lan

guage-Database Integration Model The Composition-Filters Approach ’ In

proceedings o f European Conference on Object-Oriented Programming

(ECOOP) 1992

Paolo Alencar, Donald Cowan, Torsten Nelson, Carlos Lucena “Towards a

formal link between viewpoints in analysis and implementation’ In proceed

ings o f Object-Oriented Programming Systems, Languages and Applications

(OOPSLA) Workshop on Subjectivity, 1996

Egil Andersen, Trygve Reenskaug ‘ System Design by Composing Struc

tures of interacting Objects In proceedings of European Conference on

Object-Oriented Programming (ECOOP) 1992

Malcolm Atkinson, François Bancilhon, David DeWitt, Klaus Dittnch,

David Maier, Stanley Zdonik “The Object-Oriented Database System Man

ifesto” Deductive and Obkect-Onented Databases, Elsevier Science Publish

ers, 1990

C Batini, M Lenzenm, S B Navathe “A Comparative Analysis of Method

ologies for Database Schema Integration ’ ACM Computing Surveys, Voi

18, No 4, 1986

David Bell, Jane Grimson “Distributed Database Systems’ Addison-Wes-

ley, 1992

Elisa Bertino, Arantza Illarramendi “The Integration of Heterogeneous

Data Management Systems Approaches Based on the Object-Oriented Par

adigm’ In Object-Oriented Multidatabase Systems - A solution for

Advanced Applications, Eds Bukhres, Elmagarmid Prentice-Hall 1996

Grady Booch “Object-Oriented Analysis and Design with Applications ”

2nd Edition, The Benjamin/Cummings Series in Object-Oriented Software

Engineering, 1994

Grady Booch, James Rumbaugh, Ivar Jacobson “ The Unified Modeling

Language” The Object Technology Series, Addison-Wesley, 1998

260

[Bright et al 1992]

[Bright et al 1994]

[Carmichael 1994]

[Chambers 1993]

[Chiba & Masuda
1993]

[Clarke 2000a]

[Clarke 2000b]

[Clarke 2000c]

[Clarke etal 1999a]

[Clarke etal 1999b]

[Clarke etal 1999c]

M W Bright, A R Hurson, Simin H Pakzad “A Taxomony and Current

Issues in Multidatabase Systems’ IEEE Computer, March 1992

M W Bright, A R Hurson, Simm H Pakzad "Automated Resolution of

Semantic Heterogeneity in Multidatabases ” ACM Transactions on Database

Systems, Voi 19, No 2, June 1994

Andy Carmichael (Editor) ‘ Object Development Methods” SIGS Books,

1994

Craig Chambers “Predicate Classes ” In proceedings of European Confer

ence on Object-Oriented Programming (ECOOP) 1993

Shigeru Chiba, Takashi Masuda ‘ Designing an Extensible Distributed Lan

guage with a Meta-Level Architecture” In proceedings of European Confer

ence on Object-Oriented Programming (ECOOP) 1993

Siobhan Clarke “Extending UML Metamodel for Design Composition ’ In

proceedings of the International Conference on Software Engineering

(ICSE) Workshop on Multi-Dimensional Separation o f Concerns m Object-

Oriented Systems, 2000

Siobhan Clarke “Composing Design Models An extension to the UML ’ In

proceedings o f the 3rd Unified Modeling Language (UML) conference,

2000

Siobhán Clarke "Designing Reusable Patterns of Cross-Cutting Behaviour

with Composition Patterns” In proceedings o f Object-Oriented Program

ming Systems, Languages and Applications (OOPSLA) Workshop on

Advanced Separation of Concerns, 2000

Siobhán Clarke, William Harrison, Harold Ossher, Pen Tarr “Subject-Ori

ented Design Towards Improved Alignment of Requirements, Design and

Code” In proceedings o f Object-Oriented Programming Systems, Lan

guages and Applications (OOPSLA) 1999

Siobhán Clarke, William Harrison, Harold Ossher, Peri Tarr "The Dimen

sion of Separating Requirements Concerns for the Duration of the Develop

ment Lifecycle ” In proceedings o f Object-Oriented Programming Systems,

Languages and Applications (OOPSLA) Workshop on Multi-Dimensional

Separation o f Concerns in Object-Oriented Systems, 1999

Siobhan Clarke, William Harrison, Harold Ossher, Peri Tarr "Subject-Ori

ented Design Support for Evolution from the Design Stage” In proceedings

o f the Workshop on Software and Organisation Co-Evolution (SOCE) 1999

261

[Clarke et al 1999d]

[Clarke et al I999e]

[Clarke & Murphy
1998a]

[Clarke & Murphy
1998b]

[Clarke & Murphy
1998c]

[Clarke & Murphy
1997]

[Coleman et al 1994]

[Collet et al 1991]

[Cook & Daniels 1994]

[deChampeaux & Faure
1992]

[D’ Souza & Wills
1998]

Siobhan Clarke, William Harrison, Harold Ossher, Peri Tarr "Separating

Concerns Throughout the Development Lifecycle ” In proceedings of Euro

pean Conference on Object-Oriented Programming (ECOOP) Workshop on

Aspect-Oriented Programming, 1999

Siobhan Clarke, William Harrison, Harold Ossher, Peri Tarr “Designingfor

Evolution with Subjects' In proceedings o f the International Conference on

Software Engineering (ICSE) Workshop on Software Change and Evolution,

1999

Siobhan Clarke, John Murphy " Composition of UML Design Models A

tool to support the resolution of conflicts’ In proceedings of Object-Ori

ented Information Systems (OOIS) 1998

Siobhan Clarke, John Murphy “Developing a Tool to Support Aspect-Ori-

ented Programming principles at the Design Phase” In proceedings of the

International Conference on Software Engineering (ICSE) Workshop on

Aspect-Oriented Programming, 1998

Siobhan Clarke, John Murphy “ Verifying Components under development

at the design stage A tool to support the composition of component design

models’ In proceedings o f the International Conference on Software Engi

neering (ICSE) Workshop on Component-Based Software Engineering,

1998

Siobhan Clarke, John Murphy “Developing a Tool to support Composition

of the Components in a Large-Scale Development” In proceedings of

Object-Oriented Programming Systems, Languages and Applications (OOP-

SLA) Workshop on Object-Oriented Behavioural Semantics, 1997

Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena

Gilchrist, Fiona Hayes, Paul Jeremes “Object-Oriented Development The

Fusion Method Prentice Hall 1994

Christine Collet, Michael Huhns, Wei-Min Shen ‘ Resource Integration

Using a Large Knowledge Base in Carnot ” IEEE Computer, December

1991

Steve Cook, John Daniels “Designing Object Systems Object-Oriented

Modelling with Syntropy ” Prentice-Hall, 1994

Dennis de Champeaux, Penelope Faure “A Comparative Study of Object-

Oriented Analysis Methods” Journal of Object-Oriented Programming,

March/April 1992

Desmond D ’Souza, Alan Cameron Wills " Objects Components and

Frameworks with UML The Catalysis Approach” Addison-Wesley, 1998

262

[Engels & Groenewe-
gen 2000]

[Gamma etal 1994]

[Garcia-Solaco et al
1996]

[Gosling etal 1996]

[Gotthard et al 1992]

[Gowing & Cahill
1996]

[Graham 1993]

[Grissetal 1998]

[Hailpern & Ossher
1990]

[Härder etal 1999]

[Hamson & Ossher
1993]

[Easterbrook 1991]

[Harrison etal 1996]

Steve Easterbrook “Elicitation of Requirements from Multiple Perspec

tives ' Ph D thesis, Department of Computing, Imperial College, London

1991

Gregor Engels, Luuk Groenewegen “Object-Oriented Modeling A Road

map” In proceedings of “The Future of Software Engineering 2000” , Editor

Anthony Finkelstein, International Conference on Software Engineering

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides ' Design Pat

terns Elements of Object-Oriented Software1 Addison-Wesley 1994

Manual Garcia-Solaco, Felix Saltor, Malu Castellanos “Semantic Heteroge

neity in Multidatabase Systems” In Object-Oriented Multidatabase Systems

- A solution for Advanced Applications, Eds Bukhres, Elmagarmid Pren-

tice-Hall 1996

James Gosling, Bill Joy, Guy Steele “ The Java™ Specification Language ”

Addison-Wesley 1996

Willi Gotthard, Peter C Lockemann, Andrea Neufeld “System-Guided

View Integration for Object-Oriented Databases' IEEE Transactions on

Knowledge and Data Engineering, Vol 4, No 1, February 1992

Brendan Gowing, Vmny Cahill “Meta-Object Protocols for C + + The

Iguana Approach" In proceedings of Reflection’96, San Francisco, USA,

1996

Ian Graham “Object Oriented Methods Addison-Wesley, 1993

Martin Griss, John Favaro, Massimo d’Alessandro “Integrating Feature

Modeling with the RESB ” In proceedings of International Conference on

Software Reuse (ICSR) 1998

Brent Hailpern, Harold Ossher “Extending Objects to Support Multiple

Interfaces and Access Control” IEEE Transactions on Software Engineering

16(11), pp 1247-1257, 1990

Theo Harder, Gunter Sauter, Joachim Thomas “The intrinsic problems of

structural hetergeneity and an approach to their solution ” The VLDB Jour

nal, 8 25-43, Springer-Verlag, 1999

William Harrison, Harold Ossher “Subject-Oriented Programming (a cri

tique of pure objects) ’ In proceedings o f Object-Oriented Programming

Systems, Languages and Applications (OOPSLA) 1993

William Harrison Haim Kilov Harold Ossher, Ian Simmonds ‘ From

dynamic supertypes to subtypes A natural way to specify and develop sys

tems’ IBM Systems Journal, 35, 244-256, 1996

263

[Holland 1992]

[Hutt 1994]

[IBMa 2000]

pBMb 2000]

[Jackson & Zave 1998]

[Jacobson 1994]

[Jacobsonetal 1999]

[Jacobsonetal 1992]

[Kiczales et al 1991]

[Kiczales et al 1997]

[Kiczales & Lopes
1999]

[Kilov & Ross 1994]

[Kim & Seo 1991]

[Helmetal 1990] Richard Helm, Ian Holland, Dipayan Gangopadhyay “Contracts Specifying

Behavioral Compositions in Object-Oriented Systems’ In proceedings of

Object-Oriented Programming Systems, Languages and Applications (OOP-

SLA) 1990

Ian Holland "Specifying Reusable Components Using Contracts’ In pro

ceedings of European Conference on Object-Oriented Programming

(ECOOP) 1992

Andrew Hutt (Editor) “Object Analysis and Design Comparison of Meth

ods” Object Management Group, John Wiley & Sons, 1994

"IBM Business Management Workbench ' IBM Corporation, 2000

“Worldwide Project Management Method” IBM Corporation, 2000

Michael Jackson, Pamela Zave “Distributed Feature Composition A Vir

tual Architecture for Telecommunications Services’ IEEE TSE Special

Issue on Feature Interaction, 1998

Ivar Jacobson “Time for a Cease-Fire in the Methods War” Panel on

“Methodology Standards Help or Hindrance7” In proceedings of Object-

Oriented Programming Systems, Languages and Applications (OOPSLA)

1994

Ivar Jacobson, Grady Booch, James Rumbaugh 'The Unified Software

Development Process” Addison-Wesley, 1999

Ivar Jacobson, Magnus Christerson, Patnk Jonsson, Gunnar Overgaard

“Object-Oriented Software Engineering A Use-Case Driven Approach”

Addison-Wesley, 1992

Gregor Kiczales, Jim des Rivieres, Daniel G Bobrow “ The Art of the

Metaobject Protocol” Massachusetts Institute o f Technology 1991

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, John Irwin “Aspect-Oriented Programming’

In proceedings of European Conference on Object-Oriented Programming

(ECOOP) 1997

Gregor Kiczales, Cristina Lopes “Aspect-Oriented Programming with

AspectJ ™ ” http //www aspectj org

Haim Kilov, James Ross “Information Modeling An object-oriented

approach ” Prentice-Hall 1994

Won Kim, Jungyun Seo Classifying Schematic and Data Heterogeneity in

Multidatabase Systems’ IEEE Computer, December 1991

264

[Klas et al 1996]

[Kristensen & 0ster-
bye 1996]

[Kristensen 1997]

[Kuno & Runden-
stemer 1996]

[Lieberherr 1995]

[Lopes & Kiczales
1997]

[Lunau 1997]

[Maughan & Durnota
1994]

[Minsky & Rozensh-
tein 1987]

[Mowbray & Zahavi
1995]

[Mulet et al 1995]

[Navathe & Savasere
1996]

Wolfgang Klas, Peter Fankhauser, Peter Muth, Thomas Rakow, Erich Neu

hold ‘ Database Integration Using the Open Object-Oriented Database Sys

tem VODAK” In Object-Oriented Multidatabase Systems - A solution for

Advanced Applications, Eds Bukhres, Elmagarmid Prentice-Hall 1996

Bent Bruun Kristensen, Kasper 0sterbye "Roles Conceptual Abstraction

Theory and Practical Language Issues” Theory and Practice o f Object Sys

tems, Volume 2(3), 143-160, 1996

Bent Bruun Kristensen “Subject Composition by Roles’ In proceedings of

Object-Oriented Information Systems (OOIS) 1997

Harumi Kuno, Elke Rundenstemer " The MultiView OODB View System

Design and Implementation” Theory and Practice o f Object Systems, Vol

ume 2(3), 203-225, 1996

Karl Lieberherr “Adaptive Object-Oriented Software The Demeter Method

with Propagation Patterns” PWS Publishing Company, 1995

Costina Lopes, Gregor Kiczales “D A Language Framework for Distrib

uted Programming * Technical Report Number SPL97-010 P9710047,

Xerox Parc, 1997

Charlotte Pn Lunau “A Reflective Architecture for Process Control Appli

cations” In proceedings of European Conference on Object-Oriented Pro

gramming (ECOOP) 1997

G Maughan, B Durnota MON An object relationship model incorporat

ing roles, classification, publicity and assertions’ In proceedings of Object-

Oriented Information Systems (OOIS) 1994

Naftaly Minsky, David Rozenshtein “A Law-Based Approach to Object-

Oriented Programming” In proceedings of Object-Oriented Programming

Systems, Languages and Applications (OOPSLA) 1987

Thomas Mowbray, Ron Zahavi “The Essential CORBA Systems Integra

tion Using Distributed Objects ” Object Management Group, John Wiley &

Sons, 1995

Philippe Mulet, Jacques Malenfant, Pierre Comte “Towards a Methodology

for Explicit Composition of MetaObjects’ In proceedings o f Object-Ori

ented Programming Systems, Languages and Applications (OOPSLA) 1995

Shamkant Navathe, Ashoka Savasere “A Schema Integration Facility Using

Object-Oriented Data Model’ ln Object-Oriented Multidatabase Systems -

A solution for Advanced Applications, Eds Bukhres, Elmagarmid Prentice-

Hall 1996

265

[Nierstrasz &
Tsichntzis 1995]

[Nuseibeh 1994]

[Nuseibeh et al 1994]

[OED 1989]

[Okamura & Ishikawa
1994]

[Ossheretal 1996]

[Parnas 1974]

[Pedersen 1989]

[P61ya 1957]

[Reenskaug et al 1995]

[Rumbaugh et al 1991]

[Shaw & Garlan 1996]

[Sheth & Larson 1990]

[Shethetal 1993]

Oscar Nierstrasz, Dennis Tsichntzis ‘Object-Oriented Software Composi

tion’ Prentice-Hall 1995

Bashar Nuseibeh “A Multi-Perpsective Framework for Method Integra

tion” PhD thesis, Department o f Computing, Imperial College, London

1994

Bashar Nuseibeh, Jeff Kramer, Anthony Finkelstein “A Framework for

Expressing the Relationships Between Multiple Views in Requirements Spec

ification” IEEE Transactions on Software Engineering, 20(10) 760-773,

October 1994

The Concise Oxford Dictionary

Hideaki Okamura, Yutaka Ishikawa “Object Location Control Using Meta-

Level Programming’ In proceedings of European Conference on Object-

Oriented Programming (ECOOP) 1994

Harold Ossher, Matthew Kaplan, Alexander Katz, William Harrison, Vin

cent Kruskal ‘ Specifying Subject-Oriented Composition ’ Theory and Prac

tice o f Object Systems, Volume 2(3), 179-202, 1996

D L Parnas " On the criteria to be used in decomposing systems into mod

ules’ Communications o f the ACM, 15(12) 1053-1058, December 1972

Claus Pedersen “Extending Ordinary Inheritance Schemes to Include Gen

eralization” In proceedings of Object-Oriented Programming Systems, Lan

guages and Applications (OOPSLA) 1989

George Pölya, “How to Solve It A New Aspect of Mathematical Method ”

2nd edition, NY, USA, Doubleday, 1957

Trygve Reenskaug, Per Wold, Odd Anld Lehne “Working with Objects

The OOram Software Engineering Method” Manning Publications Co 1995

James Rumbaugh, Michael Blaha, William Premerlam, Frederick Eddy,

William Lorensen “Object-Oriented Modeling and Design” Prentice-Hall,

1991

Mary Shaw, David Garlan “Software Architecture Perspectives on an

Emerging Discipline” Prentice Hall, 1996

Amit Sheth, James Larson “Federated Database Systems for Managing

Distributed, Heterogeneous, and Autonomous Databases” ACM Computing

Surveys, Vol 22, No 3 1990

Amit Sheth, Sumt Gala, Shamkant Navathe “On Automatic Reasoning for

Schema Integration” International Journal of Intelligent and Cooperative

Information Systems, Vol 2 No 1 1993

266

[Shilling & Sweeney
1989]

[Shlaer & Mellor 1988]

[Siegel 1996]

[Smith & Ungar 1996]

[Spaccapietra & Parent
1994]

[Spaccapietra et al
1992]

[Stonebraker et al
1991]

[Stroustrup 1991]

[Szyperski 1998]

[Tarretal 1999]

[Tarr & Ossher 2000]

[Turner 1999]

[Turner et al 1999]

[Ungar & Smith 1987]

John J Shilling, Peter F Sweeney “Three steps to views Extending the

object-oriented paradigm ’ In proceedings of Object-Oriented Programming

Systems, Languages and Applications (OOPSLA) 1989

Sally Shlaer, Stephen Mellor “Object-Oriented Systems Analysis Modeling

the World in Data” Yourdon Press Computing Series, 1988

Jon Siegel "CORBA Fundamentals and Programming” Object Manage

ment Group, John Wiley & Sons, 1996

Randall Smith, David Ungar “A Simple and Unifying Approach to Subjec

tive Objects Theory and Practice o f Object Systems, Volume 2(3), 161-

178, 1996

Stefano Spaccapietra, Christine Parent “View Integration A Step Forward

in Solving Structural Conflicts’ IEEE Transactions on Knowledge and Data

Engineering, Vol 6, No 2, April 1994

Stefano Spaccapietra, Christine Parent, Yann Dupont “Model Independent

Assertions for Integration of Heterogeneous Schemas ” VLDB Journal, 1,

81-126 1992

Michael Stonebraker, Lawrence Rowe, Bruce Lindsay, James Gray, Michael

Carey, Michael Brodie, Philip Bernstein, David Beech “Third-Generation

Database System Manifesto' Object-Oriented Databases Analysis, Design

& Construction, Elsevier Science Publishers, 1991

Bjarne Stroustrup uThe C++ Programming Language Second Edition”

Addison-Wesley 1991

Clemens Szyperski “Component Software Beyond Object-Oriented Pro

gramming * Addison-Wesley, 1998

Peri Tarr, Harold Ossher, William Harrison, Stanley Sutton “N Degrees of

Separation Multi-Dimensional Separation of Concerns ” In proceedings of

the International Conference on Software Engineering (ICSE) 1999

Pen Tarr, Harold Ossher “Hyper/J™ User and Installation Manual”

http //www research ibm com/hyperspace

C Reid Turner “Feature Engineering of Software Systems’ PhD Thesis,

Department of Computer Science, University of Colorado, 1999

C Reid Turner, Alfonso Fuggetta, Luigi Lavazza, Alexander L Wolf “A

Conceptual Basis for Feature Engineering” In the Journal o f Systems and

Software December 1999

David Ungar, Randall Smith Self The Power of Simplicity In proceed

ings of Object-Oriented Programming Systems, Languages and Applications

(OOPSLA) 1987

267

[UML 1999]

[Vlissides 1998]

[Walker 2000]

[Warmer & Kleppe
1999]

[Wienngaetal 1996]

[Wirfs-Brock et al
1990]

[Zave 1997]

[Zave 1999]

“OMG Unified Modeling Language Specification (draft) ” Version 1 3 beta

R7, June 1999

John Vlissides “Pattern Hatching Design Patterns Applied” Software Pat

terns Series, Addison-Wesley 1998

Robert J Walker 'Eliminating Cycles in Composed Class Hierarchies’

Technical Report TR-00-07, Department o f Computer Science, University

of British Columbia, 2000

Jos Warmer, Anneke Kleppe “The Object Constraint Language Precise

Modeling with the UML Addison-Wesley, 1999

Roel Wieringa, Wiebren de Jonge, Paul Spruit “Using Dynamic Classes

and Role Classes to Model Object Migration’ Theory and Practice o f Object

Systems, Volume 1(1), 61-83,1995

Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener “Designing Object-

Oriented Software" Prentice-Hall 1990

Pamela Zave “Classification of Research Efforts in Requirements Engineer

ing’ ACM Computing Surveys XXLX(4) 315-321, 1997

Pamela Zave ' FAQ Sheet on Feature Interaction ’ available from htttp //

www research att com/~pamela/faq html

268

A p p e n d i x A : P a r t i a l I l l u s t r a t i o n s
o f U M L M e t a m o d e l

This appendix presents a reproduction o f the class models that represent the

UM L metamodel from a different perspective to how they are described in

[UML 1999] Here, each construct that is interesting for composition (gener

ally, all composable elements) is presented from its own perspective

P a c k a g e

Figure 142 illustrates the part o f the UM L metamodel that refers to Packages

The definition o f Subject for the purposes o f this thesis is as specified in

“ Scope o f Work” on page 72, and is that

“a subject is a stereotyped Package, stereotyped for the purposes
of restricting its contents to subjects, classifiers, associations, gener
alizations, dependencies, constraints and collaborations”

.. 6 . K | Model Element
Subsystem — Psdaoo -----P>| Namespace 0 1 ^ name Name

Model

0 1 namespace j +(WfnedEie[Tient

GeneralizableBement
isRoot Boolean
isLeaf Boolean
IsAJDsiract Boolean

ElementOwnership
visibility- VtslbilrtyKmd
isSpeafication Boolean

Figure 142 Partial UML Metamodel for Package

This stereotype definition restricts the kinds o f model elements that may be

“ owned elements” (see Figure 142) Further scoping restrictions for these

elements are discussed with their detail

269

C l a s s i f i e r

Figure 143 illustrates the part o f the UML metamodel that refers to C la ss i f i

ers For the purposes o f scoping this work, the only classifiers considered in

this thesis are Class, Interface and Datatype

UML Metamodel for "Classifier"

n>rClass
isAcbve Boolean

Interface

Dateitype _

Classifier

T -

N ModelElement
Namespace

. . H name Name
♦

+ownedElemenl

{ordered}

GeneralizaH e Element

is Root Boolean
is Leaf Boolean
isAbstract Boolean

+ feature

Feature

ownerScope ScopeKind
visibility VisibilityKind

Figure 143 Partial UML Meta model for Classifiers

A t t r i b u t e

Figure 144 illustrates the part o f the UML Metamodel that refers to

Attributes

Figure 144 Partial UML Metamodel for Attributes

O p e r a t i o n

Figure 145 illustrates the part o f the UM L Metamodel that refers to Opera

tions

UML Metamodel for “Operation

concurrency CalConcunrtncyKind
tsRoot Bootosn
IsLeaf Boofcan
IsAbstract Boolean
specification String

1 | + specific®»!

isQuay Boolean

Peaturo
ownarScope ScopeKind
vtsfcltty VlsbUtyCkid

— i

{crderwJ}
defaJlVflluB Expression
ktid ParamMMQractloriQnd

Figure 145 Partial UML Metamodel for Operations

270

R e l a t i o n s h i p

Figure 146 illustrates the part o f the UM L Metamodel that refers to Relation

ships

UML Metamodd for Relaltonshtps1 ModoElwnert

£
RslaJtorwNp

I ♦ nenerail ration

Gwurdturtton
dtsotmiTUtor Nan*
+ pc'rveftype Range

+ IwwwlypeType

OeneraiediloEbmenl
IsRoot Boolean
isLeaf Boolean
isAbstract- Boolsoi

±

Attribute
tnitotfVilu# Exprwtaon'

quniifier

ClassKtar i AssocHforEnd 2 AssocBtunisfisvteatitB Boolean ordering Ordering Knd aggregation Ag(j«oatitinKrcl
-----------♦+ connection+ specification z v

ragetSeope ScopeKlnd
mufcipdciiy Multiplicity
change abi Sty ChanoeableKnd
visitty VisibityKmd

{□rdeied}
Class

tsActM Boolaon

Figure 146 Partial UMI Metamodel for Relationship

D e p e n d e n c y

Figure 147 illustrates the part o f the UML Metamodel that refers to Depend

ency

Figure 147 Partial liML Metamodel for Dependency

271

f C o n s t r a i n t

Figure 148 illustrates the part of the UML Metamodel for Constraint

UML Metamodel for Constraint"

Constraint K ModelBement[y
body Boolean Expression l • name Name

(ordered)
♦constrart +constrainedt:tem0nt

Tjm-- r̂r — nr'"--r---- SifrT,,~‘irr"" "

Figure 148 Partial UML Metamodel for Constraint

C o l l a b o r a t i o n

Figure 149 illustrates a partial specification o f Collaboration as defined by

the UML

Figure 149 Partial UML Metamodel for Collaborations

Collaborations also provide a context for participants playing different roles

within the collaborations Figure 150 illustrates a partial meta-model for col

laborations that shows the metaclasses that represent roles for associations

and classifiers These roles are in the context o f sending and receiving mes

sages

272

Figure 150 Partial UML Meta mod el for Collaboration Roles

273

