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The aim of this study was to assess and contrast the ability of discrete point, functional 
principal component analysis (fPCA) and analysis of characterizing phases (ACP) to 
describe a dependent variable (jump height) from vertical ground reaction force curves 
captured during the propulsion phase of a countermovement jump. A stepwise multiple 
regression analysis was used to assess the ability of each data analysis technique. The 
order of effectiveness (high to low) was ACP, fPCA and discrete point analysis. Discrete 
point analysis was not able to generate strong predictors and detected also erroneous 
variables. FPCA and ACP detected similar factors to describe jump height. However, ACP 
performed better than fPCA because it considers the time and magnitude domain separately 
and in combination and it examines key-phases, without the influence of non-key-phases. 
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INTRODUCTION: While discrete point analysis has significant limitations, the majority of studies 
in biomechanics almost exclusively use discrete point analysis. Limitations in discrete point 
analysis are the need to pre-select discrete measures (e.g. maximums, minimums, overall 
duration) and the loss of possibly extremely important information (Donoghue et al., 2008, Doná 
et al., 2009, Richter et al., 2012). In recent years, researchers have sought new ways to analyze 
data as a continuous signal rather than discrete measures; introducing techniques originating 
from a variety of fields - e.g. computer science, psychology, cognitive science, physics and 
engineering (Chau 2001a; Chau 2001b; Kelso 1995). One of the most promising techniques is 
functional principal component analysis (fPCA), which reduces the dimensionality of a set of 
signals while preserving the information needed to describe a data set (Jolliffe 2002). FPCA is 
part of the functional data analysis family, and treats a signal as a single function rather than as 
a series of individual data points (Ramsay 2006). However, fPCA: (a) can mask important 
features of the data because functions are analyzed as a whole rather than as key-phases, with 
the non-key-phases of the functions inappropriately altering results, (b) cannot identify the 
specific phase of features (subjective visual inspection is needed), and (c) cannot examine the 
combined magnitude-time domain, which can hold important information. To overcome these 
limitations, Analysis of Characterizing Phases (ACP) has been recently proposed (Richter et al. 
2012). The idea behind ACP is to detect key-phases (phases of variance) within a sample of 
curves, which are used to examine differences between populations or a relationship to a 
dependent variable (i.e. performance determining factor) in the time, magnitude and magnitude-
time domain. To date, no study has directly measured and compared the performance of 
discrete point analysis, fPCA and ACP to evaluate their ability to identify those variables 
explaining the movement outcome. 

In order to compare the performance of the abovementioned analysis techniques it is necessary 
to examine a movement signal that fully determines the movement outcome. This criterion is 
met in countermovement jumps by examining jump height in relation to the vertical ground 
reaction force (force) trace of the propulsion phase (impulse momentum relationship).  

The aim of this study was to measure and contrast the performance of discrete point analysis, 
fPCA and ACP to describe jump height (dependent variable) using the propulsion phase of the 
force-time history of a countermovement jump. 
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METHODS: A stepwise multiple regression analysis was used to assess the ability of discrete 
point analysis, fPCA and ACP to explain a dependent variable. 

Dependent Variable: The jump height of a countermovement jump (CMJ) was chosen as the 
dependent variable. Force curves of 60 athletes captured during CMJs were used for data 
analysis. All athletes were free from any injury and experienced in performing a CMJ. The 
University Ethics Committee approved the study and all subjects were informed of any risk and 
signed an informed consent form before participation. Prior to data collection, every subject 
completed a standard warm-up routine. The subjects performed 15 maximum effort CMJs 
without an arm swing, standing with each foot on a force platform, and rested for 30 seconds 
between the trials. Two force plates (BP-600900, AMTI, MA, USA), each with a frequency of 
250Hz, recorded the produced force. Jump height was calculated by the impulse momentum 
relationship. Based on jump height, the best jump performance of each subject was chosen for 
data analysis. All curves were normalized to body mass and only the propulsion phases were 
used for analysis.  

Discrete Point Analysis: Based on previous literature (Cormie et al., 2009;Dowling et al., 1993; 
Sheppard et al., 2008; Petushek et al., 2010, Newton et al. 1999) the following discrete features 
were identified and used for statistical analysis: a) initial force, b) maximum force, c) initial-to-
maximum rate of force development, d) time from initial-to-maximum force, e) position maximum 
force (in %), f) time from maximum force to take-off, and g) propulsion phase duration. The 
initial-to-maximum rate of force development was calculated (Equation 1) from the initial force to 
the point 𝑖 at which the maximum force occurred (Cormie et al., 2009). The mean force was not 
included in the selected variables. Mean force was discarded because it reflects the impulse 
momentum relationship in jumps and does not easily relate to the underlying neuromuscular 
control nor can it indicate specific training interventions to enhance performance.  

   𝑅𝑜𝐹𝐷(𝑖) = (𝑓𝑜𝑟𝑐𝑒(𝑖) − 𝑓𝑜𝑟𝑐𝑒(1))/ ∆𝑡𝑖𝑚𝑒   Eq. (1) 

Functional Principal Component Analysis: FPCA was performed to generate principal 
component scores, which were used for statistical analysis (Ramsay 2006). The used principal 
component scores retained 99% of the variance of the data and were VARIMAX rotated to 
optimize their interpretability (Ramsay 2006).  

Analysis of Characterising Phases: ACP was applied to detect key-phases within the captured 
force curves. Key-phases were used to calculate participant scores capturing the time, 
magnitude and magnitude-time domain (Richter et al., 2012). VARIMAX rotated functional 
principal components (retaining 99% of the data’s variance) were used to identify key-phases 
(Richter et al., 2012). Participant scores were used for statistical analysis and generated by 
calculating the area between a participant’s curve (p) and the mean curve across the data set 
(q) for every point (i) within a key-phase (Equation 2 and 3).  

     𝑠𝑐𝑜𝑟𝑒 =  ∫ 𝑝𝑖 −  𝑞𝑖      Eq. (2) 

  𝑠𝑐𝑜𝑟𝑒 =  ∫ 0.5 ∗ (Δ
𝑡𝑖𝑚𝑒

𝑝𝑖,𝑖+1 +  Δ𝑡𝑖𝑚𝑒𝑞𝑖,𝑖+1) ∗  Δ𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑝𝑖𝑞𝑖  Eq. (3) 

The separated force features (discrete points, principal component scores and participant 
scores) were input into a stepwise multiple regression analysis to assess the ability of discrete 
point analysis, fPCA and ACP to explain jump height. Data processing was performed in 
MATLAB and statistical analyses were performed using SPSS 20. 

RESULTS: The discrete point analysis was able to explain 26.3% of the variance in jump height 
(Table 1). Predictor variables were peak force and phase duration. FPCA explained 82.8% of 
the variance in jump height using principal component scores generated from four principal 
components as predictor variables (Table 1). ACP explained 99.3% of the variance in jump 



height using five key-phases as predictor variables utilizing information from the time domain, 
magnitude domain and the magnitude-time domain (Table 1). 

Table 1:  Generated regression models using features generated by discrete point analysis, fPCA and 
ACP 

Discrete point analysis 
Functional principal component 

analysis 
Analysis of  

Characterizing Phases 

feature 
standardized 

coefficient 
feature  

estimated phase 
standardized 

coefficient 
feature 

domain | phase 
standardized 

coefficient 

peak force 0.73 PCscore5  80-88% -0.74 phase 5     comb.| 82-87% 0.52 

phase duration 0.50 PCscore1    1-13% 0.33 phase 2     comb.| 28-42% 1.28 

  
PCscore2  24-46% -0.39 phase 3       time | 91-94% 1.95 

PCscore3  90-95% -0.32 phase 4     comb.| 57-69% 0.71 

    phase 1     comb.| 1-9% 0.75 

    phase 3     comb.| 91-94% 0.38 

    phase 3     mag.| 91-94% -0.22 

r² = 0.263 r² = 0.828 r² = 0.993 

DISCUSSION: Direct comparison between discrete point analysis, fPCA and ACP indicates that 
discrete point analysis has the lowest ability to describe jump height. Discrete point analysis 
generated the lowest r²-values because it was not only incapable to generate strong predictors 
from the force curves, also it generated erroneous variables. For example, the predictor variable 
maximum force used in the regression model is erroneous because it does not describe a 
specific neuromuscular capacity. The force curves examined were non-, uni- or bi-modal, with 
maximum force potentially occurring at either peak1. Consequently, maximum force does not 
represent a consistent measure across subjects and has to be discarded. In contrast to 
predictor variables generated by discrete point analysis, predictor variables in fPCA and ACP 
are strong predictors and do relate to the underlying neuromuscular control. Therefore, findings 
of fPCA and ACP may help to indicate effective training interventions. fPCA identified forces at 
the beginning (ca. 1-13%) the middle (ca. 24-46%) and the end (ca. 80-88% and ca. 90-95%) of 
the movement cycle as predictor variables. Predictor variables used in the ACP regression 
model were phases in the beginning (1-9%) and the middle (28-42% and 57-69%) utilizing the 
force-time domain; and the end (91-94%) of the movement cycles utilizing the time, force and 
force-time domains (Table 1). The fPCA and ACP regression model out-perform the discrete 
point regression model in respect to (a) their ability to describe jump height, and (b) generate 
meaningful information to develop or improve training programs.  

The comparison of ACP to fPCA indicates that ACP has the greater ability to describe jump 
height then fPCA2. FPCA generated lower r²-value than ACP because it does consider only the 
magnitude domain, discarding both the time and magnitude-time domain. The time domain 
should always be included during an analysis as it holds important information – the 
standardized coefficient of the time domain was one of the largest in the discrete point and ACP 

                                                           
1  Mean maximum force position =  39%; standard deviation maximum force position =  29%; 
2  This was also the case when the number of predictor variables in the ACP model was reduced. An 

ACP regression model with four predictor variables already described 97.3% of the variance in the 
jump height.  



regression model. Consequently, including the variable ‘phase duration’ to the fPCA regression 
model increases its ability to explain variances in jump height by 12% (r² = 94.8%). This 
highlights the importance of the time domain. Further, the importance of examining the 
magnitude-time domain is indicated by the ACP regression model. Selected variables are 
frequently from the magnitude-time domain. Based on the fact that the regression analysis 
chose variables capturing the combined magnitude-time information rather than the magnitude 
information alone, highlights the need for examining the combined domain. 

CONCLUSION: FPCA and ACP showed a greater ability to describe jump height compared to 
discrete point analysis because FPCA and ACP: (a) analysed only related phases of the force 
curve and hence examine comparable neuromuscular capacities, (b) analysed the whole force 
curve rather than prior selected discrete data points, and (c) can identify features that occur 
solely as a phase. The comparison between fPCA and ACP highlighted a greater ability of ACP 
to describe jump height. ACP out-performed fPCA, because it (a) analyzes the time, magnitude 
and magnitude-time domain of a curve and, (b) examines specifically only key-phases rather 
than the full movement cycle. 
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