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Proof is the mathematical way of convincing oneself and others of the truth of a claim for all 

cases in the domain under consideration.  As such, reasoning-and-proving is a crucial, formative 

practice for all students in kindergarten through twelfth grade, which is reflected in the Common 

Core State Standards in Mathematics.  However, students and teachers exhibit many difficulties 

employing, writing, and understanding reasoning-and-proving.  In particular, teachers are 

challenged by their knowledge base, insufficient resources, and unsupportive pedagogy. 

The Cases of Reasoning and Proving (CORP) materials were designed to offer teachers 

opportunities to engage in reasoning-and-proving tasks, discuss samples of authentic practice, 

examine research-based frameworks, and develop criteria for evaluating reasoning-and-proving 

products based on the core elements of proof.  A six-week graduate level course was taught with 

the CORP materials with the goal of developing teachers’ understanding of what constitutes 

reasoning-and-proving, how secondary students benefit from reasoning-and-proving, and how 

they can support the development of students’ capacities to reason-and-prove.  Research was 

conducted on four participants of the course during either their first or second year of teaching.  

The purpose of the research was to study the extent to which the participants selected, 

implemented, and evaluated students’ work on reasoning-and-proving tasks.  The participants’ 

abilities were examined through an analysis of answers to interview questions, tasks used in 

class, and samples of student work, and scoring criteria.  The results suggest that: 1.) participants 
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were able to overcome some of the limitations of their insufficient resource by modifying and 

creating some reasoning-and-proving exercises; 2.) participants were able to maintain the level 

of cognitive demand of proof tasks during implementation; and 3) participants included some if 

not all of the core elements of proof in their definition of proof and in their evaluation criteria for 

student products of reasoning-and-proving products. 
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1.0  STATEMENT OF PROBLEM 

1.1 INTRODUCTION 

Every discipline has a method for verifying conclusions drawn from observations, data, and 

analysis.  The method mathematicians use to draw valid conclusions from conjectures is proof 

(Hanna & Jahnke, 1993).  Proof is the mathematical way of convincing oneself and others that an 

idea is absolutely true for all cases in the domain under consideration.  According to the three 

major sets of standards for mathematics education (NGA Center & CCSSM, 2010; NCTM, 1989, 

2000), proof is a crucial, formative practice for all students in kindergarten through twelfth 

grade.  The Principles and Standards for School Mathematics (NCTM, 2000) states that 

mathematics education should help students see that claims must be validated by the community 

at hand, experimentation and conjectures can lead to discovery, and arguments must be clearly 

communicated.  The more recent Common Core State Standards for Mathematics (NGA Center 

& CCSSO, 2010) incorporates proof slightly differently in its Standards for Mathematical 

Practice: mathematically proficient students can “reason abstractly and quantitatively; construct 

viable arguments and critique the reasoning of others; and look for and make use of structure” (p. 

6-8).  Both sets of standards advocate incorporating reasoning and proving across the curriculum.  

Since students learn at different rates (Senk, 1985) and the curricular development of proof does 



 27 

not need to be linear (Hoyles, 1997; Knuth, 2002c), the habit of reasoning mathematically should 

be developed consistently over time in many contexts (NCTM, 2000; Senk, 1985).   

1.2 STUDENT DIFFICULTIES WITH PROOF 

Student understanding of mathematical proof can be described in terms of the types of 

connections that students have formed between definitions, theorems, and procedures (Hiebert et 

al., 1997).  Research has shown, however, that secondary and post-secondary students of all 

ability levels and courses have a difficult time coordinating definitions, theorems, and procedures 

in order to make connections and construct valid arguments (Bell, 1976; Coe & Ruthven, 1994; 

Galbraith, 1981; Healy & Hoyles, 2000; Ko & Knuth, 2009; Senk, 1985).  Proof-making is a 

very cognitively demanding task.  Yackel and Hanna (2003) explained these demands: 

By its very nature, mathematical proof is highly sophisticated and seems to be much 

more challenging intellectually than many other parts of the school mathematics 

curriculum.  To a large extent this is so because the kind of reasoning required in 

mathematical proof is very different from that required in everyday life.  Reasoning in 

everyday life does not require the rigor of mathematical proof nor the careful attention to 

process demanded by the mathematical proof, which seeks, for example, to make clear 

distinctions among assumptions, theorems, and rules of inference. (p. 231). 

In addition to making distinctions between and making connections among assumptions, 

definitions, theorems, etc., students must also be able to access relevant background knowledge, 

maintain the integrity of the concept of proof, and craft a convincing argument (Harel & Sowder, 

2007; Healy & Hoyles, 2000).   
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Students also struggle with deductive reasoning skills.  Consider the two branches of 

reasoning: induction and deduction.  In inductive reasoning, a hypothesis is made, phenomena 

are observed, and a conclusion is stated which applies to all cases that are defined for the 

observed phenomena.  Since every instance of a case cannot be actually observed, the conclusion 

is based on a discerned pattern from the phenomena.  As such, inductive reasoning may be a step 

in the proving process but does not constitute a proof itself.  Deductive reasoning, however, is a 

logical process in which the conclusion does not contain more information than the collection of 

premises stated in the beginning of the process; an argument based on deductive logic may 

constitute a proof.  Even with this knowledge, however, students tend to favor empirical 

arguments based on inductive reasoning (Chazan, 1993; Coe & Ruthven, 1994; Healy & Hoyles, 

2000).  This could be because outside of mathematics, “proof” is synonymous with evidence 

(Harel & Sowder, 2007; Healy & Hoyles, 2000; Hersh, 1993; Yackel & Hanna, 2003),  or 

students’ limited mathematical knowledge (e.g., distinguishing theorems, accessing relevant 

knowledge, precisely defining terms) makes writing deductive proofs a generally unsuccessful 

endeavor (Bell, 1976; Chazan, 1993; Chazan & Lueke, 2009; Coe & Ruthven, 1994; Galbraith, 

1981; Healy & Hoyles, 2000; Moore, 1994; Senk, 1985).  Deductive reasoning requires strict 

attention to precise definitions and stated postulates and theorems.  Students’ ability to 

successfully launch into a deductive proof depends on their intuition (Chazan, 1993; Yackel & 

Cobb, 1996), investigation techniques (Coe & Ruthven, 1994; Senk, 1985), and ability to chain 

logical inferences (Bieda, 2010; Galbraith, 1981; Hanna & Jahnke, 1993; Harel & Sowder, 2007; 

Senk, 1985).  Another possibility is that the goal of a practical person is to be efficient 

(Balacheff, 1991; Coe & Ruthven, 1994; Schoenfeld, 1985) and achieving rigor and 

systematization are generally not efficient processes.  Students do appear to be better at choosing 
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correct proofs than constructing their own (Healy & Hoyles, 2000), perhaps because generating a 

sequence of steps demands different cognitive skills than understanding someone else’s proof 

(Moore, 1994).   

Choosing a reasonable format for a proof further complicates the process for students.  

Some students forgo a format that clarifies and communicates an argument for them in favor of a 

formal, abstract argument that they believe the teacher desires (Chazan, 1993; Healy & Hoyles, 

2000; Hoyles, 1997; Knuth, 2002b; Küchemann & Hoyles, 2001).  Unfortunately, when form is 

seen as paramount, students can create or accept arguments that are illogical or fail to convince 

or explain an argument (Balacheff, 1991).   

Students also frequently misunderstand the role of proof in secondary mathematics.  

Since proof is the mathematical way of convincing oneself and others that an idea or concept is 

absolutely true for all cases in the domain under consideration, students must see the need for 

convincing in order to see the need for proof.  Some students assume that every theorem 

encountered in a textbook has already been proven and is thus to be blindly accepted; therefore, 

there is no need for the students themselves to prove the theorem (Chazan & Lueke, 2009; Hanna 

& Jahnke, 1993; Tinto, 1990).  There is no need for a proof if everyone is convinced of the truth 

of a statement.  According to some students, only investigations require proof, and that is only 

because teachers expect them (Harel & Sowder, 2007; Hoyles, 1997; Mariotti, 2000).  Healy and 

Hoyles (2000) found that 50% of surveyed students thought the purpose of proof was to obtain 

truth, 35% thought the purpose was to explain a concept, 1% thought proof was about discovery 

or systematizing, and a full 28% thought proof had no purpose or could not think of one.  Even 

when students accept a proof task and are able to construct a valid argument, many students fail 

to see the generality of the proof (Chazan, 1993; Chazan & Lueke, 2009; Galbraith, 1981; 
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Martin, McCrone, Bower, & Dindyal, 2005) or hesitate in accepting the proof because it was 

based on assumptions (Chazan, 1993), which loops the students back to misunderstanding the 

role of proof in mathematics.  In summary, students have difficulty with rigor, process, and 

purpose of proofs, coordinating assumptions, definitions, and theorems, accessing relevant 

background knowledge, crafting a convincing argument in a reasonable format, and using 

deductive reasoning. 

1.3 TEACHER DIFFICULTIES WITH PROOF 

Teachers have a responsibility to help students with all of these difficulties, but research has 

shown that many teachers exhibit some of the same difficulties as their students. Some teachers 

have limited knowledge of proof (Knuth, 2002b; Stylianides, A. J. & Stylianides, G. J., 2009), 

their resources are insufficient (Johnson, Thompson, & Senk, 2010; Senk, 1985; Stylianides, G. 

J., 2009), and their pedagogy does not generally support students’ development of reasoning-

and-proving (Bieda, 2010; Chazan & Lueke, 2009; Ellis, 2011; Lampert, 1990).   Knuth (2002b) 

found that like students, some teachers misunderstood the generality of a completed proof.  

Unlike mathematicians, some teachers thought that a proof merely verified the truth of a theorem 

rather than explained why the theorem was true.  In addition, some teachers exhibited weak 

deductive reasoning skills.  When presented with a list of arguments, the teachers in Knuth’s 

study rated 33% of non-proofs as proofs, some by focusing on the algebraic manipulations rather 

than on the logical validity of the argument.  Unfortunately, curricula materials offer little help 

(Johnson, Thompson, & Senk, 2010; Senk, 1985; Stylainides, G. J., 2007).  Johnson, Thompson, 

and Senk (2010) found in their study of selected chapters of algebra and precalculus textbooks 
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that only 5.5% of textbook problems required reasoning and 46% of proof-related reasoning 

problems were based justifications on a single case.  It is worthwhile to note that this study 

looked at textbooks in wide circulation a full ten years after NCTM’s Principles and Standards 

for School Mathematics. 

In many classrooms the teacher—expert or not—is the sole validation authority (Chazan 

& Lueke, 2009).   When an authoritative proof scheme is created in a classroom (Harel & Rabin, 

2010), students expect to be told information rather than work to construct information for 

themselves, resulting in helpless students who are reluctant to question assertions (Harel & 

Sowder, 1998).  In such a system, “Doing mathematics means following the rules laid down by 

the teacher; knowing mathematics means remembering and applying the correct rule when the 

teacher asks a question, and mathematical truth is determined when the answer is ratified by the 

teacher” (Lampert, 1990, p. 31).  Bell (1976) wrote that proof is a public activity, and “pupils 

will not use formal proof with appreciation of its purpose until they are aware of the public status 

of knowledge and the value of public verification” (p. 25).   

 Beliefs, knowledge, instruction, and classroom management all impact a teacher’s ability 

to provide reasoning-and-proving opportunities to students.  Research suggests that what 

students learn depends greatly on the beliefs and actions of the teacher (Harel & Sowder, 2007; 

Yackel & Cobb, 1996).  If a teacher believes that all students can learn, then the teacher 

structures classroom interactions to include all students.  If a teacher believes that only the best 

mathematical students can learn deductive logic, then the teacher grapples with the tension of 

helping enculturate students into the field of mathematics while lowering expectations to 

accommodate perceived abilities (Martin et al., 2005; Bell, 1976).  This in turn conveys 

expectations to students for how knowledge is communicated (Herbst, 2002).  Students 
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experience mathematics through the tasks, methods, and instructional strategies that the teacher 

chooses (Harel & Sowder, 2007; Martin et al., 2005).  For example, when teachers communicate 

that an efficient way to solve problems or construct proofs is to remember the work of others or 

reduce the problem into computational rather than logical terms (called smoothing out the 

curriculum by Doyle in 1988), opportunities for students to develop autonomous learning 

capabilities are limited and should be avoided.  Clearly, teachers need to make careful 

pedagogical decisions in order to promote the development of reasoning-and-proving skills 

(Stylianides, G. J. & Stylianides, A. J., 2009). 

1.4 PROFESSIONAL DEVELOPMENT 

Since an emphasis on developing connections and communicating discoveries is vastly different 

than how most teachers were trained (Ball, 1988b), professional development is essential in 

helping teachers develop their subject-matter knowledge so that they can support their students’ 

development of reasoning-and-proving understanding and skills.  Professional development with 

a focus on enacting reasoning-and-proving should help teachers overcome difficulties with their 

knowledge of proof, insufficient resources, and unsupportive pedagogy.  The materials 

developed by the NSF-funded Cases of Reasoning-and-Proving (CORP) project were designed 

to provide teachers with exactly these types of opportunities.  The CORP work utilizes Ball and 

Cohen’s (1999) work on grounding teachers’ professional development in tasks and problems of 

practice.  Specifically, the CORP materials provide teachers with research-based frameworks on 

tasks and reasoning-and-proving, opportunities to create criteria for evaluating proof, samples of 

student work to analyze, rich narrative cases to discuss, and proof tasks on which to work.  
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Through the use of these types of materials, teachers develop their knowledge of mathematics for 

teaching (Ball, Thames, & Phelps, 2008).   

The participants in the study that will be described herein are teachers who completed a 

reasoning-and-proving course based on the CORP materials while they were preservice teachers.  

The teachers were followed into their classrooms to see the extent to which they engaged their 

students in reasoning-and-proving through the tasks the teachers selected and implemented and 

the extent to which the teachers evaluated their students’ reasoning-and-proving products with 

the core elements of proof. 

Hiebert et al. (1997) wrote about five dimensions that help define classrooms in terms of 

the learning opportunities for students: nature of tasks, role of teacher, social culture of the 

classroom, availability of mathematical tools, and participation of all.  The reason this study 

focused on tasks is that tasks influence students’ opportunities to learn more than any other 

dimension (Lappan & Briars, 1995).   “A mathematical task is defined as a classroom activity, 

the purpose of which is to focus the students’ attention on a particular mathematical idea” (Stein, 

Grover, & Henningsen, 1996, p. 460).  Mathematical tasks have the potential to clarify students’ 

concept of proof and help them engage in reasoning-and-proving.  When selecting tasks, teachers 

should consider the problematic aspects of the task, the developmental state of their students, and 

the mathematical goals (Hiebert et al., 1997).  The tasks must be interesting enough for students 

to want to solve and discuss the tasks (Hiebert et al, 1997), and sets of tasks should allow 

students to build their knowledge through different points of view (Simon, 1995). 

Teachers must strike a balance between maintaining the high-cognitive demand of good 

tasks and providing necessary help.  Stein et al. (1996) identified four levels of cognitive 

demands associated with a task: memorization, use of procedures and algorithms (with or 
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without understanding), and complex thinking and reasoning strategies.  The researchers also 

found three distinct phases in enacting tasks in classrooms: set-up by the teacher, implementation 

by the teacher and students, and resulting student learning.  The set-up was influenced by teacher 

goals, subject-matter knowledge, and knowledge of students.  The implementation was 

influenced by classroom norms, task conditions, teacher instructional habits and dispositions, and 

student learning habits and dispositions.  Rich learning experiences occurred for students when: 

(a) tasks were cognitively demanding and built on students’ prior knowledge, (b) teachers 

provided scaffolding and an appropriate amount of time as well as modeled high-level 

performance, maintained pressure for explanations and meaning, and drew conceptual 

connections, and (c) students self-monitored.  All of these activities help students coordinate 

competencies and see the value of proof. 

When a teacher has a good grasp of the mathematical ideas involved in the proof, the 

teacher is in a better position to provide information such as mathematical conventions for 

recording ideas and alternate solution paths and to highlight important mathematical ideas in 

students’ work (Hiebert et al., 1997).  Teachers who provide this information are acting as a 

conduit between learners and the professional mathematics community; they are not smoothing 

out the curriculum.   G. J. Stylianides (2008) created an analytical framework for the learning 

activities involved in reasoning-and-proving which can help teachers plan a learning trajectory 

for their students.  Stylianides described a hierarchy of activities which start with reasoning 

(identify a pattern then make a conjecture) and end with providing support for mathematical 

claims (non-proof arguments or proof-arguments).  For instance, an Algebra 2 teacher may want 

to incorporate reasoning-and-proving into her lesson on transformations of functions.  The task 

selected from the textbook might merely ask students to sketch |x+2|.  The teacher, with 
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Stylianides’ framework in mind, might modify the task to “what can you say about functions of 

the type ?  How do you know?”  The student could choose a function, such as the 

absolute value function, explore several instances of the type |x+a|, make a conjecture, then seek 

to prove that the conjecture works for any type of function.   The student should be left with 

some knowledge of mathematical practice (such as proof) beyond the solution of the task, an 

idea called “residue” (Davis, 1992).  Residue could be an insight into the structure of 

mathematics (Cobb, Wood, Yackel, Nicholls, Wheatley, Trigatti, & Perlwitz, 1991; Fuson & 

Briars, 1990; Hiebert & Wearne, 1993) or strategies or methods for crafting proofs (Fennema, 

Franke, Carpenter, & Carey, 1993; Hiebert and Wearne, 1993; Wearne & Hiebert, 1989).   

There is no question that reasoning-and-proving is an essential practice of mathematics.  

There is also a large body of empirical research that shows many areas of weakness among 

students and teachers when it comes to proof.  Unless teachers receive training or professional 

development on how to better teach reasoning-and-proving by implementing cognitively-

demanding sets of proof tasks, offering appropriate and quality help, and creating a classroom 

culture in which everyone shares authority, students will probably remain impoverished in their 

understanding of proof and reasoning. 

1.5 PURPOSE OF THIS STUDY 

The purpose of this study was to investigate the extent to which teachers who participated in 

professional development related to reasoning-and-proving are able to select, modify, 

implement, and evaluate the student products of reasoning-and-proving tasks.  The teachers’ 
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abilities will be examined through answers to interview questions, tasks used in class, and 

student work packets with accompanying rubrics. 

1.6 RESEARCH QUESTIONS 

This study analyzed the opportunities teachers gave their students to engage in reasoning-and-

proving, after the teacher received professional development targeting reasoning-and-proving.  

The targeted professional development involved learning about the importance of reasoning-and-

proving in mathematics, using frameworks and criteria to examine and evaluate student work, 

and implementing reasoning-and-proving tasks.  This study sought to learn how the teachers 

used this knowledge in the context of their classrooms.  In particular, this study examined the 

following questions: 

1. To what extent did teachers select reasoning-and-proving learning opportunities in 

the form of tasks? 

a. To what extent did the textbook include tasks that had the potential to engage 

students in reasoning-and-proving? 

b. To what extent did the teacher select tasks for instruction that had the potential to 

engage students in reasoning-and-proving? 

c. To what extent did the teacher modify tasks to affect the tasks’ potential to engage 

students in reasoning-and-proving? 

d. What were the sources of the tasks that teachers selected for instruction? 

2. To what extent were teachers able to maintain the level of cognitive demand of the 

reasoning-and-proving task during implementation? 
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3. To what extent were teachers able to accurately evaluate their students’ reasoning-

and-proving products? 

a. To what extent did teachers’ criteria for judging the validity of their students’ 

reasoning-and-proving products contain the core elements of proof? 

b. To what extent did teachers apply the core elements of proof in evaluating their 

students’ reasoning-and-proving products? 

c. In what ways did teachers communicate expectations regarding what was required 

to produce a proof to students? 

1.7 SIGNIFICANCE 

This study assumed that students develop reasoning-and-proving skills and understanding 

through the learning opportunities provided to them by their classroom teachers.  This study 

hypothesized that teachers were better able to engage their students in reasoning-and-proving 

after participating in targeted professional development that used problems of practice.  If 

teachers can improve their ability to recognize, select, modify, and implement cognitively 

demanding reasoning-and-proving tasks and evaluate the products of those tasks by focusing on 

the core elements of proof, then their students will experience quality learning opportunities.  

The results of this study contribute to the body of knowledge from research on teacher education 

and reasoning-and-proof.  It has the potential to suggest how teachers internalize professional 

development and use those skills and knowledge in the context of their classroom. 
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1.8 LIMITATIONS 

This study has several limitations.  The four participants in the study constituted a small sample 

of convenience; the participants were not intentionally different.  The participants who 

volunteered for this study were from a pool of former preservice teachers who participated in the 

reasoning-and-proving course at a tier-one research university.  All four students had similar, but 

not exactly the same, course experience.  Two of the participants took the course in the summer 

of 2011 with one instructor, and the other two participants had the course in the summer of 2012 

with a different instructor (the primary researcher in the current study).  Both instructors of the 

course were members of the curriculum development team who also modified the course slightly 

between the two courses, although the portion of the course involved with the current study was 

largely stable between the two years. 

Because the primary researcher in the current study was an instructor of the course, the 

primary researcher knew two of the participants and maintained a professional relationship with 

them as they began their teaching careers.  Despite that relationship, the primary researcher 

established protocols for interviews and collecting data that were applied across all parts of the 

data collection and analysis. 

The data was collected remotely over the course of two months and was not sampled 

across the year.  The data collected could under- or over-sample the participants’ activities 

involving reasoning-and-proving.  Because data was collected remotely and no observations 

were made of the participants with their students in their schools, some aspects of the 

participants’ practice—such as lesson plans or classroom discourse—could not be reliably 

studied due to the high rate of inference that would be required by evaluating these through 

selected tasks, evaluation rubrics, and student work. 
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1.9 OVERVIEW 

This document is organized into five chapters.  This chapter argued the need for targeted 

professional development to help teachers overcome their difficulties with reasoning-and-proof 

and offer their students learning opportunities in the form of tasks to develop their reasoning-

and-proving skills and understanding.  The second chapter reviews research conducted on the 

nature of proof, obstacles teachers face with respect to reasoning-and-proving, professional 

development, and tasks.  Chapter Three describes the data sources, coding, and analysis of the 

methodology of this study.  Chapter Four describes the results of the analysis, and Chapter 5 

discusses the findings, conclusions, and outlines suggestions for future research. 
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2.0  LITERATURE REVIEW 

 

As proof is a critical aspect of mathematics, it should not be divorced from secondary 

mathematics education (Schoenfeld, 1994; Wu, 1996).  Recent standards documents (NGA 

Center & CCSSO, 2010; NCTM, 2000) have acknowledged proof’s place in the study of 

mathematics and have provided some guidance, but teachers still struggle with offering their 

students opportunities to develop a conceptual understanding of proof and to develop skills for 

constructing proof (Knuth, 2002b).  Teaching proof puts high demands on teachers (Chazan, 

1993; Herbst, 2002), not only because there is no consensus in the field of mathematics about the 

definition or role of proof in secondary mathematics education (Weber, 2008), but also because 

many teachers1 struggle with constructing proof themselves (Knuth, 2002b) and students find the 

study of proof difficult (Bell, 1976; Chazan, 1993; Healy & Hoyles, 2000; Senk, 1985).  The 

study described herein focused on aspects of proof that makes the teaching of proof challenging.  

As such, student difficulties with proof will only be discussed in relation to the work that 

teachers need to do to provide learning opportunities for their students to meet some of those 

challenges.  In this chapter, the role and nature of proof, an analytical framework for reasoning-

                                                 

1 Throughout this chapter, the term “teachers” refers to practicing secondary teachers.  The term “students” refers to 
middle school, high school, or undergraduate (non-specific, math major, preservice elementary or secondary 
mathematics) learner of mathematics.  Longer labels (e.g., undergraduate student who is a preservice elementary 
mathematics teacher) will only be used if the longer label contributes something specific to the sentence.  For a list 
of empirical studies and the studies’ subjects as labeled by their authors, see Appendices A and B.  



 41 

and-proving, aspects of proof that challenge teachers, professional development, and examining 

practice are discussed. 

 

2.1 THE NATURE OF PROOF 

 

2.1.1 The Nature of Mathematics and Definitions of Proof 

The nature of mathematics has evolved over time.  For centuries, the deductive reasoning and 

axiomatic system of the ancient Greeks reigned and was considered sufficient (Harel & Sowder, 

1998; Hanna & Jahnke, 1993).  During the sixteenth through eighteenth centuries, however, 

mathematicians relaxed their rigorous standards for validating theorems until the mathematicians 

developed the techniques of new fields such as algebra, analytical geometry, and calculus.  This 

allowed them to resolve issues with all classes of numbers (e.g., irrational numbers) and some 

Greek paradoxes (e.g., Euclid’s fifth postulate) (Boyer, 1991; Hanna & Jahnke, 1993; Harel & 

Sowder, 2007).  In the nineteenth century, mathematicians had made enough progress to allow 

the return of rigorous axiomatic systems.  Soon afterwards, the field experienced a crisis in 

philosophy regarding the nature of mathematics (Boyer, 1991).  David Hilbert—a formalist—

“considered mathematical objects to be symbolic entities which owe their existence only to the 

fact that they satisfy the rules by which they are axiomatically linked” (Hanna & Jahnke, 1993, 

p. 425).  In such a field of objects, some derived theorems were incomprehensible until 
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applications could be found (Davis & Hersh, 1981; Hanna & Jahnke, 1993).  In contrast, Henri 

Poincare—who approached mathematics from a practical perspective—preferred to think of 

mathematics as being led by intuition and exploration (Schoenfeld, 1986).  Currently, most 

mathematicians describe the field of mathematics as embracing a deductive system with clearly 

stated assumptions, using variables free from real or imagined referents, and with constructs that 

are open to interpretation (Harel & Sowder, 2007). 

 Since the role of proof evolved in conjunction with the philosophy of mathematics without 

the fusion of theoretical and practical mathematics (Boyer, 1991; Davis & Hersh, 1981; Hanna & 

Jahnke, 1993; Harel & Sowder, 2007; Schoenfeld, 1986), the field accepts three different 

perspectives on the definition of proof (Weber, 2008).  The first (and most rigorous) definition 

described proof as a formal structure whose test of validity includes checking against well-

defined, stated rules and conventions (Griffiths, 2000).  A second definition was provided by 

Davis and Hersh (1981), who described a proof as a mathematician-convincing argument, 

although Davis and Hersh acknowledged that the reputation of the author may influence the 

acceptance of the proof.  Finally, others (Balacheff, 1987; Manin & Zilber, 2010; Thurston, 

1994) described proof as an argument to be negotiated socially.  The last definition seems the 

most reasonably within the grasp of students who do not usually have the knowledge of or access 

to professional mathematicians (Balacheff, 2010).  Regardless, most researchers agree that a 

mathematical proof at any level must be concerned with the truth of a statement, convey insight 

into why the underlying mathematics is true, and is part of an organized system of axioms, 

theorems, and results (Bell 1976; Coe & Ruthven, 1994; de Villiers, 1999; Harel & Sowder, 

1998; Raman, 2003; Van Dormolen, 1977). 
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As an example of the third perspective on proof, Hanna & Jahnke (1993) defined proof as a 

“finite sequence of formulae within a given system, each formula being either an axiom or 

derivable from earlier formula by a rule in the system” (p. 423).  Hersh (1993) agreed with this 

definition of a rigorous proof, but he stated that in reality, “proof is just a convincing argument, 

as judged by competent judges.”  Hersh continued by contrasting the two branches of 

mathematics: pure and applied.  In pure mathematics (i.e., Hilbert’s way of thinking), proofs are 

all about the rigor without regard to the usefulness of the result.  In applied mathematics (i.e., 

Poincare’s way of thinking), proof is all about the practicality of the result, which is based on 

compelling experimental evidence.  Given the limited knowledge students have about the field of 

mathematics, it is unreasonable to expect that students will develop an abstract, axiomatic system 

in algebra, geometry, probability, statistics, and calculus during the time they are in high school.  

From this perspective, the purpose of proof should be to explain why results are true (Hersh, 

1993) while giving students practice with deductive reasoning.  In particular, students should 

develop some sort of proof scheme, which is the process for removing doubt about the truth of a 

statement for oneself (ascertaining) and removing the doubt for another person (persuading) 

(Harel & Sowder, 1998).  How a student chooses to convince anyone about the truth of a claim 

depends on the student’s conception of the field of mathematics (Harel & Sowder, 1998).  “To 

construct a proof requires an essential shift in the learner’s epistemological position: passing 

from a practical person (ruled by a kind of logic of practice) to a theoretical position (ruled by 

the intrinsic specificity of a theory)” (Balacheff, 2010, p. 118). 

A. J. Stylianides (2007) took the main ideas from mathematicians’ definitions of proof and 

framed them in a way that is useful for K-12 mathematics education.  He defined proof as a 
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“mathematical argument, a connected sequence of assertions for or against a mathematical claim, 

with the following characteristics (p. 291): 

• It uses statements accepted by the classroom community (set of accepted 

statements) that are true and available without further justification; 

• It employs forms of reasoning (modes of argumentation) that are valid and known 

to, or within the conceptual reach of, the classroom community; and 

• it is communicated with forms of expression (modes of argument representation) 

that are appropriate and known to, or within the conceptual reach of, the 

classroom community”  

His definition removes the apparent discontinuity in the transition from elementary to high 

school by referring to the “classroom community” and provides criteria that is accessible and 

instructive to teachers providing opportunities to their students to reason-and-prove.  For the 

purposes of the study described herein, A.J. Stylianides’ definition of proof will be used.   

2.1.2 An Analytical Framework of Reasoning-and-Proving 

G. J. Stylianides (2008, 2010) described an analytical framework (Figure 2.1) that captured many 

of the activities described by researchers involved in reasoning-and-proving.  In these papers, 

Stylianides stated that he wanted to integrate reasoning with proving to remove the isolationist 

stigma attached to proofs in school mathematics.  He also wanted to provide a tool for studying 

reasoning-and-proving activities among students.  Stylianides argued that since new knowledge 

in mathematics frequently passes through four stages—identifying patterns, making conjectures, 

providing non-proof arguments, and providing proofs—students should be afforded the same 
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scaffolding as they learn mathematics in school.  The framework contains each of these stages.  

Stylianides termed the “overarching activity that encompasses these four activities” in an 

integrated way as reasoning-and-proving (p.9).  Stylianides also argued that the three 

components (mathematical, psychological, and pedagogical) of the framework “can…provide 

the means to connect research findings from different investigations, thereby supporting the 

development of integrated knowledge across different domains” (Stylianides, 2008, p. 9).    

 

 Reasoning-and-proving 

 
Mathematical 
Component 
 

What are the major activities involved in reasoning-and-proving? 

Making generalizations Developing arguments 

Identifying a 
pattern (plausible 
or definite) 

Making a 
conjecture 

Developing a 
proof (generic 
argument or 
demonstration) 

Developing a non-
proof argument 
(empirical argument 
or rationale) 

Learner 
component 

What are the students’ perceptions of the mathematical nature of a pattern 
/conjecture / proof / non-proof argument? 

 
Pedagogical 
component 

How does the mathematical nature of a pattern / conjecture / proof / non-proof 
argument compare with students’ perceptions of this nature? 
How can teachers help their students reconsider and change (if necessary) their 
perceptions to better approximate the mathematical nature of a pattern / 
conjecture / proof / non-proof argument? 
 
Stylianides, G. J. (2010). Engaging secondary students in reasoning-and-
proving. Mathematics Teaching, September, 39-44. 

 

Figure 2.1 G. J. Stylianides’ analytic framework for the components and activities of reasoning-and-proving. 

The mathematical component describes a hierarchy of reasoning-and-proving activities: 

identifying a pattern, making a conjecture, providing a non-proof argument, and providing a 

proof.  The key to identifying a pattern is that students learn to see structural generalizations 
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(linking patterns with features of the task) over empirical generalizations (just plausible patterns, 

no conviction for others).  A conjecture is a reasoned hypothesis that has yet to be proven but 

extends the mathematics beyond the “domain of the cases that gave rise to it.”  Arguments that 

do not validate conjectures fall into two categories: empirical arguments and rationales.  An 

empirical argument is based on the examination of a few tested cases that fit the proposed 

generalization with no attempt to extend the argument to cover all cases in a domain.  A rationale 

is a partial proof; that is, an argument that is insufficient in some way, such as containing 

undefined terms or improper logical inferences.  Using A. J. Stylianides (2007) definition of 

proof, G. J. Stylianides separates proof into two categories: generic examples and 

demonstrations.  A generic example uses a particular case as an instance of the general case, 

while a demonstration uses formally established modes of mathematical proof, such as 

counterexamples, contradiction, and mathematical induction. 

 The psychological component of reasoning-and-proving pertains to the subjective nature 

of proof from a learner’s perspective.  For instance, intuition plays a part in the construction of a 

proof (Fischbein, 1999).  It was Fischbein’s opinion that intuition both helped and hindered 

students.  While intuitions are necessary for discovering new strategies and models, the 

formalities in mathematical proof are so foreign to students that the process contradicts their 

natural intuitions.  Fischbein described five possible situations in proof-making that are 

influenced by intuition: 

1. a statement is so obvious that it is accepted without proof (e.g., two right angles make a 

straight line) 

2. a statement is accepted but is also mathematically proven to support the intuition (e.g., 

vertical angles are congruent) 
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3. a statement is not intuitive and requires mathematical proof before acceptance (e.g., the 

sum of the angles in a triangle is 180 degrees) 

4. a statement is intuitively accepted as probable but then is contradicted by a proof 

5. two conflicting intuitions may appear 

From a teaching perspective, “the requirement to prove a statement which appears 

[intuitively] obvious may strengthen the student’s feeling that mathematics is an arbitrary, 

useless, whimsical game” (Fischbein, 1999, p. 22).  Teachers, however, still need to encourage 

students to prove even seemingly obvious properties because properties do not always work the 

same way for every operation or context (e.g., commutative property holds for addition but not 

for subtraction).   Fischbein recommended teachers helping students see that when intuition 

conflicts with formal mathematical evidence or proof, the formal proof is the authority, and since 

every aspect of mathematics does not lend itself to intuition (e.g., imaginary numbers), students 

need to accommodate the notion of mathematics as an abstract, deductive system of knowledge.   

Balacheff (2010) tackled another aspect of the learner component in Stylianides’ 

framework: the bridge between knowing and proving.   

The difficulty students may have [with trusting representations] relates not to their lack of 

mathematical knowledge but to a general human inclination not to question their knowledge 

and their environment unless there is a tangible contradiction between what is expected after 

a given action and what is obtained. (Balacheff, 2010, p. 123)  

Balacheff described student knowledge and behavior in terms of adapting to an increasingly 

complex environment (formal mathematics).  Initially, a student exists in equilibrium with his or 

her knowledge and understanding; the student does not encounter any conflicts with the 

mathematics being studied.  Once a disturbance in the form of a contradiction or uncertainty is 
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detected—throwing the student into cognitive disequilibrium—the student interacts with the 

environment within prescribed rules (perhaps by creating a proof) in order to return to a new 

state of safe equilibrium.   Balacheff suggested that conceptions (instance of situated knowing) 

are validation-dependent and that the action of proving is a visible sign of the intellectual activity 

of validation.   

The pedagogical component of reasoning-and-proving in Stylianides’ analytic framework 

describes teachers teasing out student conceptions of proof and forming plans to align student 

conceptions with the field of mathematics.   For example, teachers can help students “transition 

from knowing in action to knowing in discourse” (Balacheff, 2010, p. 131) by modeling 

conviction beyond solutions, giving status to students’ arguments, and by helping students shift 

from the practical to the theoretical.  According to Balacheff (2010), a claim has to be explicitly 

expressed and shared to even be considered for validation.   

Another challenging aspect of reasoning-and-proving pedagogy is how to help students 

learn strategic knowledge.  Weber (2001) investigated strategic knowledge by exploring the 

questions:  

Suppose we had a student who knew what a proof was, could reason logically, and was 

aware of and could apply the important facts, concepts, and theorems of a mathematical 

domain.  Would this student necessarily be able to use that knowledge to construct proofs in 

that domain?  If not, why not? (Weber, 2001, p. 102) 

In other words, had this student developed intuition about reasoning-and-proving that suggested 

a path toward a proof?  Weber found that when the undergraduate mathematics majors in his 

study failed to produce a proof, it was because they did not apply syntactic knowledge or recall 

basic facts.  He found that students struggled when there was a large number of possible 
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inferences or possible approaches to a proof.  In contrast, the graduate mathematics students in 

Weber’s study used their knowledge of a particular mathematical domain to increase their 

efficiency by choosing techniques commonly used in that domain, had a firmer grasp of 

important theorems, and were able to see when to use procedural or symbol manipulations and 

when to use conceptual or semantic knowledge. 

In summary, as the field of mathematics evolved, so did the concept and role of proof, 

which influenced how mathematicians defined proof.  A. J. Stylianides (2007) formulated a 

definition of proof that offers accessible and reasonable criteria for teachers that acknowledges 

their students (community of learners).  G. J. Stylianides (2008, 2010) took the four scaffolded 

activities already used in the field of mathematics and three components important to 

mathematics education—mathematical, learner, and pedagogical—to devise an analytic 

framework for reasoning-and-proving that supports the development of knowledge for 

researchers, students, and teachers.  In the next section, three aspects of teaching proof that 

challenge secondary teachers are discussed: knowledge base, insufficient resources, and 

unsupportive pedagogy. 

2.2 ASPECTS OF TEACHING PROOF THAT CHALLENGE SECONDARY 

TEACHERS 

There have been many empirical studies about secondary students, undergraduate students, and 

secondary teachers’ conceptions of proof and ability to do proof (see Appendices A and B for 

summaries of empirical studies).  The studies on practicing secondary teachers reveal that many 

teachers have a spotty knowledge of proof.  On the successful side, most of the teachers in 
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Knuth’s (2002c) study thought the role of proof in secondary school was to develop logical 

thinking skills, defined proof as a logical or deductive argument that demonstrates the truth of a 

claim, and believed that proof was a social act for communication.  In evaluating proofs, the 

teachers choose mathematically grounded criteria and were able to correctly choose valid proofs 

with a success rate of 93% (Knuth, 2002a).  Tabach, Levenson, Barkai, Tsamir, Tirosh, & 

Dreyfus (2011) found that practicing teachers had sufficient knowledge to construct proofs in 

elementary number theory.  On the unsuccessful side, the studies revealed areas of weakness in 

the teachers’ knowledge base and pedagogy. 

2.2.1 Knowledge Base 

In his landmark study on practicing secondary teachers’ conceptions of proof, Knuth (2002b, 

2002c) found that teachers had weaknesses with respect to understanding of the role of proof, 

concept of proof, rigor in proof, validation of proof, and ability to generalize.  Knuth interviewed 

sixteen practicing secondary school mathematics teachers for his study.  The teachers—who 

volunteered for the study—had a wide range of experience in the classroom (3 to 20 years, 

courses from pre-algebra to Advanced Placement calculus) and used a selection of reform-based 

and traditional curricula.  Since the teachers sought reform-based professional development, 

Knuth assumed that the teachers were familiar with reform documents such as NCTM’s 

Principles and Standards for School Mathematics (2000). 

Knuth (2002c) compiled several author’s views (e.g., Bell, 1976; de Villiers, 1999; Hanna, 

1983; Schoenfeld, 1994) on the roles of proof to create a framework from which he designed his 

research questions.  The framework described five roles of proof in mathematics (and school 

mathematics) (p. 63):  
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• To verify that a statement is true 

• To explain why a statement is true 

• To communicate mathematical knowledge 

• To discover or create new mathematics, or  

• To systematize statements into an axiomatic system  

The practicing teachers in Knuth’s study were interviewed twice.  The first interview 

probed the teachers’ conception of proof from the perspective of individuals who understand 

mathematics.  The second interview probed the teachers’ conceptions of proof as it pertained to 

secondary school mathematics.  In the second interview, Knuth asked questions such as “what 

constitutes proof in secondary school mathematics?  Why teach proof in secondary 

mathematics?” and “what do you think about the recommendations for proof set forth in the 

NCTM Principles and Standards for School Mathematics?” (p. 67).  In order to clarify the 

teachers’ responses, Knuth offered a series of constructed arguments—valid and invalid, 

explanatory and obtuse—and asked the teachers to describe whether or not they would use that 

particular argument “to convince students of a statement’s truth” (p. 68).  Tasks around which 

the arguments were constructed included: “Prove: The sum of the first n positive integers is 

n(n+1)/2” (2002b, p. 384) and prove that the sum of the angles in any triangle is 180 degrees 

(2002c). 

Knuth (2002c) found that the teachers distinguished between “formal” proofs and 

“informal” proofs.  The formal proofs were expected to use very specific language (“congruent” 

as opposed to “equal”), a specific format (e.g., two-column), and a particular method (e.g., proof 

by induction).  The teachers accepted “less formal” proofs as long as the proof presented a 

sound, general, convincing argument, a view which was shared by Hersh (1993) (when the proof 
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is also explanatory).  The informal proofs consisted of non-rigorous explanations and empirical 

arguments.  While the practicing teachers recognized these as invalid arguments in Knuth’s 

(2002b) study, they did accept them as important stepping stones along the path from reasoning 

to proof and used specific examples as valuable illustrations of underlying mathematical 

concepts.  Knuth (2002b) found that some teachers even judged some empirical arguments as 

acceptable proofs for high school students; 33% of the nonproof arguments shown to teachers 

were evaluated as “valid” proofs.  What is not clear is whether the teachers regularly 

communicated to their students that non-proof arguments are instructive but insufficient.  In light 

of the large body of research revealing students’ preference and acceptance of empirical 

arguments (Chazan, 1993; Coe & Ruthven, 1994, Edwards, 1999; Goetting, 1995; Hadas, 

Hershkowitz, & Schwarz, 2000; Healy & Hoyles, 2000; Knuth, Choppin, Slaughter, & 

Sutherland, 2002; McCrone & Martin, 2009; Porteous, 1990; Schoenfeld, 1989; Stylianides, G. 

J. & Stylianides, A. J., 2009; Williams, 1979), students do not understand what constitutes a 

valid proof.  One might imagine that if students hold external conviction proof schemes 

(authoritarian proof scheme, ritual proof scheme, or non-referential symbolic proof scheme) 

(Harel & Sowder, 2007) and their teacher tacitly or openly accepts empirical arguments, the 

student’s conception of valid proofs will include empirical arguments (Chazan & Lueke, 2009).   

The criteria practicing teachers used in evaluating proof-arguments included correct 

algebraic manipulations, sufficient detail, using an established method (e.g., proof by 

contradiction), and steps that were easy to follow (Knuth, 2002b).  The arguments that teachers 

found the most convincing used a familiar method, showed insight into the underlying 

mathematics, proved the general case, and relied on specific examples or provided a visual 

reference.  Through the interviews, Knuth realized that the teachers revealed some hesitancy in 
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evaluating the logic of an argument, which could indicate a perceived weakness.  The teachers 

instead focused on the correctness of symbolic manipulations or the selection of a valid proof 

method.  If teachers tend to teach the way they were taught, examining the results of reasoning-

and-proving studies on students might suggest why the practicing teachers have reasoning-and-

proving knowledge base difficulties, such as with logic (see Table 2.1).    For example, some 

undergraduate student studies point to students’ difficulty with supporting warrants (Alcock & 

Weber, 2005; Inglis & Alcock, 2012; Ko & Knuth, 2009).  Alcock and Weber (2005) reported 

the results of a study that looked at mathematics majors’ ability to assess the logic in arguments, 

specifically, could the students distinguish between true statements and true statements that were 

warranted from previous statements in the proof?  Alcock and Weber found that students were 

much better at catching unwarranted final statements in a proof than unwarranted statements 

within the body of the proof.  In a different study of mathematics majors, Selden and Selden 

(2003) found that students with a “static” view of mathematics thought that mathematical 

competence implied knowing a large body of algorithms; in order to construct a proof, a student 

merely needs to select an appropriate algorithm and correctly implement the steps instead of 

building a deductive argument with logical validity.  These studies indicate that practicing 

teachers and undergraduate mathematics majors have difficulty with evaluating the logic used in 

arguments, with the logical flow of arguments, and with the role of logic in proof. 
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Table 2.1 Summary of Empirical Studies: Difficulties in Knowledge Base across Subjects 

  
Students: 
secondary Students: Undergraduate Teachers    

Area of Difficulty 6-8 9-12 
non-
specific 

math 
majors 

preservice 
elementary 

preservice 
secondary secondary Empirical Studies 

Concept of Proof  
 

X X X 
  

X 
Fischbein (1982), Knuth (2002c), 
Moore (1994), Selden & Selden 
(2003), Williams (1979) 

Empirical 
Arguments 

X X X 
 

X X X 

Chazan (1993), Coe & Ruthven 
(1994), Edwards, L. D. (1999), 
Gotting (1995), Hadas, 
Hershkowitz & Schwarz (2000), 
Harel & Rabin (2010), Knuth & 
Sutherland (2004), Martin & 
Harel (1989), Morris (2002), 
Schoenfeld (1989), Simon & 
Blume (1996), Stylianides, G. J. 
& Stylianides, A. J. (2009), 
Williams (1979) 

Generalization 

X X 
 

X X X X 

Chazan (1993), Ellis (2011), 
Fischbein (1982), Galbraith 
(1981), Knuth (2002b), Knuth & 
Sutherland (2004), Martin, et al, 
(2005), Morris (2002), Porteous 
(1990), Schoenfeld (1986), Selden 
& Selden (2003), Stylianides, 
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Stylianides & Philippou (2007), 
Williams (1979) 

Logic (chaining 
inferences) 

 
X 

    
X 

Galbraith (1981), Knuth (2002b), 
Selden & Selden (2003), Senk 
(1985) 

Logic (lack 
understanding) 

 
X X X 

  
X 

Alcock & Weber (2005), Hadas, 
Hershkowitz & Schwarz (2000), 
Knuth (2002b),  Ko & Knuth 
(2009), Selden & Selden (2003), 
Williams (1979) 

Rigor X X 
    

X 

Fischbein (1982), Healy & Hoyles 
(2000), Knuth (2002b, 2002c), 
Kuchemann & Hoyles (2002), 
McCrone & Martin (2009) 

Role of Proof (to 
understand) 

 
X 

  
X 

 
X 

Knuth (2002b), Mingus & Grassl 
(1999), Simon & Blume (1996), 
Tinto (1991) 

Role of proof (to 
create an axiomatic 
system) 

 
X 

     

McCrone & Martin (2009), Tinto 
(1990) 

Validation 
   

X 
  

X 
Knuth (2002b), Selden & Selden 
(2003) 

Validation (based 
on format) 

 
X X 

 
X 

  

Inglis & Alcock (2012), McCrone 
& Martin (2009), Stylianides, 
Stylianides & Philippou (2004) 

Validation 
(authority?) 

 
X 

  
X 

  

Edwards, L. D. (1999), Galbraith 
(1981), Simon & Blume (1996) 
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Another weakness Knuth (2002b) found in teachers was misunderstanding the generality of 

proof (the true power of deductive proofs).  Morris (2002) and Selden and Selden (2003) 

conducted studies on undergraduate students that revealed problems with creating or 

understanding a proof that holds for all cases in a particular domain.  Morris (2002) reported that 

students felt that since any axiomatic system is based on definitions (which may change) and 

postulates (which may or may not be true), an argument could not possibly prove the validity of 

a concept within a system.  These students exhaustively checked cases even after they 

constructed a proof.  The students seemed to think that there is ONE axiomatic system for ALL 

of mathematics, rather than separate axiomatic systems for different branches of mathematics.  

For example, in hyperbolic and spherical geometries, Euclid’s Fifth Postulate (regarding a 

parallel line through a point not on another line) is false, but in Euclidean geometry, the Fifth 

Postulate is true.  Students do not always realize that each geometry has its own axiomatic 

system, that statements which have been proven to hold for all cases in a domain are true and 

accepted within each system.  Morris (2002) posited that the single axiomatic system view may 

be the case why 40% of the undergraduate students in her study accepted at least one inductive 

argument (note: 47% did reject all inductive arguments).  Similarly, while ten practicing teachers 

in Knuth’s (2002b) study demonstrated understanding of possible invalidity of a proof when 

moving to another axiomatic system, six teachers (almost a third) thought that even within a 

single axiomatic system, it might be possible to find a counterexample that would change a proof 

from valid to invalid. 
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2.2.1.1 Appropriateness of proof in secondary mathematics classrooms 

Although many mathematicians and mathematics educators have called for proof to be a central 

idea throughout every level of school mathematics (Harel & Sowder, 1998; NGA Center & 

CCSSM, 2010; NCTM, 1989, 2000; Schoenfeld, 1994), empirical evidence suggests that some 

practicing secondary teachers disagree (Haggarty & Pepin, 2002; Knuth, 2002c).  The teachers in 

Knuth’s study thought that formal proof is beyond the grasp of many students and should only be 

taught to the most advanced students.  One teacher stated that if she was asked to pare down the 

quantity of topics covered in her curriculum, she would jettison proof.  Another teacher stated 

that he thought the authors of NCTM’s Principles and Standards for School Mathematics (2000) 

were “smoking crack” (Knuth, 2002c, p. 75) when suggesting that all students learn to develop 

and evaluate proofs.  Other teachers interpreted policy documents to fit their own beliefs: 

informal proofs were important and appropriate for all students but formal proofs were only 

appropriate for upper level mathematics students, and then perhaps restricted to Euclidean 

geometry courses (Knuth, 2002c).  It is possible that these views were influenced by the 

challenges of teaching proof to all students.  There is a strong connection between a teacher’s 

beliefs and a teacher’s practice (Schoenfeld, 1998).  If a teacher does not believe that most 

students are capable of learning formal proof, the teacher will probably not spend much time 

teaching students how to construct valid arguments. Research indicates that secondary students 

do not get a strong foundation in proof (Hoyles, 1997).  Several researchers described multiple 

conceptual errors in proof-making that could be the result of insufficient preparation and 

experience in secondary school.  Selden & Selden (2003) found that undergraduate students 

made basic errors including beginning proofs with the conclusion, employing circular reasoning, 

leaving gaps in logic, making locally unintelligible arguments, and weakening the statement to 
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be proven.  Edwards and Ward (2004) and Moore (1994) described undergraduate students’ 

difficulties with using definitions.  Coe and Ruthven (1994) found undergraduate students unable 

to verbalize their thoughts, handle abstraction, and employ the context of the problem.  All of 

these issues can be worked on in high school if a teacher believes them to be important and 

within the grasp of students. 

In conclusion, teachers’ own conceptual understanding of proof, their views on the role 

of proof and rigor, their understanding of generality, and their weak knowledge of logic describe 

a shaky knowledge base that effects teachers’ ability to successfully engage themselves and their 

students in proof.  One way to overcome some of these obstacles is through support offered to 

teachers via their curriculum.  The next section describes several studies that investigated the 

reasoning-and-proving tasks offered in textbooks and the educative materials available to 

teachers in one textbook series. 

2.2.2 Insufficient Resources: Textbooks 

Teachers’ reliance on their textbooks has been well documented in the United States, Sweden, 

Norway, Spain, England, and Germany (Battista & Clements, 2000; Grouws & Smith, 2000; 

Grouws, Smith, & Sztajn, 2004; Haggarty & Pepin, 2002; Horizon Research, Inc., 2003; 

Robitaille & Travers, 1992; Schmidt, McKnight, & Raizen, 1997; Tyson-Bernstein & 

Woodward, 1991).  Tarr, Chavez, Reys, & Reys (2006) recently studied 39 teachers from eleven 

middle schools in the United States.  Seventeen of the teachers used a reform-based curriculum 

and twenty-two of the teachers used traditional texts from major publishers.  Tarr et al. found 

that regardless of curriculum type, teachers rarely added additional topics not covered by the 
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textbooks and frequently culled some topics.  61-67% of the content the teachers chose was 

greatly influenced by the textbook and 41-52% of the ways the content was presented by the 

teachers was suggested by the textbook.  Frequently skipped content focused on geometry, 

measurement, data analysis, and probability.  Love and Pimm (1996, p. 402) wrote: 

The book is still by far the most pervasive technology to be found in use in mathematics 

classrooms.  Because it is ubiquitous, the textbook has profoundly shaped our notion of 

mathematics and how it might be taught.  By its use the of ‘explanation-example-

exercises’ format, by the way in which it addresses both teacher and learner, in its linear 

sequence, in its very conception of techniques, results and theorems, the textbook has 

dominated both the perceptions and the practices of school mathematics. 

When interviewed about their reliance on their textbooks, the teachers responded with comments 

such as “[The textbook] is like my bible.  It is the basis for most of my instruction…source of 

homework, learning tool” (Tarr et al., 2006, p. 9), and “I use [the textbook] as a crutch—my 

curriculum.  I’m letting [it] dictate what I teach” (Tarr et al., 2006, p. 8).  These comments 

suggest that the teachers are allowing the textbook authors to make decisions regarding 

sequencing of material, content selection, available activities, and instructional techniques (Tarr 

et al., 2006).   

 Teachers’ reliance on textbooks would not be problematic except that research also 

suggests that textbooks are insufficient resources for teachers who are attempting to transform 

their classrooms into standards-based environments.  As early as 1983, the National Commission 

on Excellence in Education (NCEE) called for a reform of textbooks in their report A Nation at 

Risk (NCEE, 1983).  The NCEE felt that publishers had responded to perceived market pressure 

to water down the reading level and content of their texts, and the NCEE called for more rigor 
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and teacher input into the development of texts.  In the next few decades, publishers attempted to 

meet the demands of individual state standards.  The publishers gathered teacher feedback, 

revised texts, and sent samples to schools; however, all of these actions were expensive and hard 

to maintain (Reys, Reys, & Chavez, 2004; Seely, 2003).  As a result, large states with approved-

textbook lists, notably Texas and California, had disproportionate influence over the structure 

and content of the published textbooks (Seely, 2003).  The market pressures eventually forced 

mergers of several publishing companies into three powerhouses: Holt McDougal, Pearson, and 

McGraw-Hill.   

By this time, two versions of the NCTM Standards had been published (NCTM, 1989, 

2000).  The powerhouse publishers produced cross-walk guides that appeared to demonstrate the 

inclusion of NCTM content standards in their materials, but the fidelity was debatable.   In an 

attempt to reach more teachers and students with the reforms suggested in the NCTM Standards, 

the National Science Foundation funded several reform-curriculum projects (e.g., the Connected 

Mathematics Project (CMP) and the Interactive Mathematics Project), some of which were 

purchased and distributed by one of the powerhouse publishers.   

Regardless of publishers’ efforts to produce standards-based curriculum (in reality or in 

appearance), research indicates that teachers filter the textbook author’s intentions through their 

own belief systems and take-up or override reform suggestions (Knuth, 2002c; Lithner, 2004; 

Putnam, 1992; Remillard, 2005; Seely, 2003; Stein, Grover & Henningsen, 1996).  As a result, 

there is a danger that an intended curriculum (topics and pedagogy) might not be implemented 

with fidelity due to teachers’ filters, especially topics that barely surface, such as reasoning-and-

proof?  Content, organization, and sequencing of topics all contribute to students’ conceptions of 

proof (Battista & Clements, 2000; Chazan, 1993; Healy & Hoyles, 2000; Hoyles, 1997), but 



 

61 

 

without systematic attention to reasoning-and-proving, it is unlikely that students will understand 

mathematical proof or become proficient at it (Yackel & Hanna, 2003).  In his study of 

mathematics teaching in eighteen high schools, Porter (1993) found that on average, no 

instructional time was devoted to offering students opportunities to reason-and-prove.  The 

exposure hypothesis suggests that topics that receive the most exposure lead to the highest 

achievement (Mayer, Tajika, & Stanley, 1991).  For example, elementary students in the United 

States are exposed to a higher ratio of language-based qualitative reasoning skills to 

computation-based reasoning skills than students in Japan.  While the Japanese students showed 

higher achievement on computation-based questions, the U.S. students outperformed the 

Japanese students on problem-solving problems (Mayer et al., 1991).  Thus, if students are not 

exposed to reasoning-and-proof, students will have little opportunity to develop any skills in this 

area.  If textbooks—which have great influence on what is taught—do not attend to reasoning-

and-proof, it is unlikely that students will receive the necessary exposure. 

Even in situations where a textbook offers a great deal of exposure to reasoning-and-proving 

tasks and a teacher faithfully implements many tasks designed to offer students opportunities for 

reasoning-and-proving, the students’ ability to interpret a text can pose problems.  In general, 

students can approach a text two different ways: with a text-centered model (readers are 

receivers of meaning) or with a reader-centered model (readers are makers of meaning) 

(Weinberg & Wiesner, 2011).  Reader-centered students are more likely to be successful at 

reasoning-and-proving because their learning characteristics include questioning, making 

connections, taking new perspectives, and constructing meanings socially (Borasi & Siegel, 

1990).   Text-centered students may not work to interpret the delimiters in proofs and thus fail to 
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understand the logical arguments presented in proofs (Konior, 1993; Weinberg & Wiesner, 

2011). 

Recently there have been a few studies that created analytical methods to study reasoning-

and-proving opportunities in curricula. The next section will discuss the coding and results from 

G. J. Stylianides (2009) study of the middle school Connected Math Project (CMP) curriculum, 

Thompson, Senk, and Johnson’s (2012) study of high school mathematics texts from various 

publishers, and Lithner’s (2004) study of undergraduate calculus texts. 

2.2.2.1 G. J. Stylainides’ (2009) study of the Connected Math Project 

As discussed earlier, G. J. Stylianides (2008, 2010) designed an analytic framework that captured 

some of the major activities involved in reasoning-and-proving: making mathematical 

generalizations (identifying patterns and making generalizations) and providing support to 

mathematical claims (non-proof and proof arguments).  Stylianides distinguished between two 

types of patterns: plausible and definite.  A student might identify several plausible relationships 

between data, structures, properties, or variables.  When the student selects one of the plausible 

patterns by comparing the patterns to the context of the problem, the pattern becomes definite.  

For example, the pattern suggested by  could be modeled with the either the 

function or the function .  Both functions are plausible.  To become a 

definite pattern, the data could be linked to a particular context, such as cutting a piece of paper 

in half, stacking the pieces, and cuting in half again.  Repeat and determine how many pieces 

result from each cut.  The definite pattern associated with this process is (G. J. 
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Stylianides, 2009).  The student’s next step is to generalize the definite pattern by making a 

reasoned hypothesis (subject to testing and verification) extending beyond the data that was 

presented to the student.  As with the patterns, these conjectures can be plausible or definite. 

 From the hypothesis, two types of arguments can be made: non-proof arguments and 

proof arguments.  The weakest argument is an empirical argument, which is based on inductive 

reasoning.  In this case, a student moves from the specific to the general; the evidence offered is 

validating that the conjecture holds true for a discrete collection of cases.  Most arguments that 

are based on several examples are non-proof arguments but there are two exceptions: proof by 

exhaustion and proof by contradiction.  Proof by contradiction only requires one example that 

shows the falseness of a conjecture.  Proof by exhaustion, on the other hand, requires listing 

every possible case with each case supporting the conjecture.  For instance, if young students are 

asked how many combinations of coins are possible given a penny, 2 nickels, and a dime, the 

students could actually generate every case, thus proving their answer is correct by exhausting all 

of the possibilities.  In contrast, if an older student is asked to prove that the median of an 

isosceles triangle is always the perpendicular bisector from the same vertex, it would not be 

possible for the student to test every isosceles triangle because there are an infinite number of 

such triangles.  Therefore, moving from an empirical argument into a proof by exhaustion is not 

possible in this case.   

Stylianides called the next level of argument a rationale.  A rationale is an argument that is 

almost a proof but is insufficient in some way, such as an argument that does not define the 

terms in the proof or back up statements with reasons.  While rationales are not valid proofs, they 

do constitute an important type of activity in which students should engage because they 

represent good method choices, accessible thinking, and generally accurate conceptions of 
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proofs.  Frequently, students who pose rationales simply need a nudge in the correct direction to 

transform their arguments into proofs. 

 The ultimate reasoning-and-proving activity is constructing a proof argument.  As 

defined by A. J. Stylianides (2007), “A proof is defined as a valid argument based on accepted 

truths for or against a mathematical claim that makes explicit reference to key accepted truths 

that it uses.” G. J. Stylianides distinguished types of proof by “generic examples” and 

“demonstrations.”  A generic example is a specific case that is representative of the general case.  

For example, a student may generally represent an odd number as a series of paired dots with one 

left over without specifically mentioning the actual odd number the diagram represents.  

Stylianides suggested that students who have not learned specific, sophisticated proof methods 

can create generic examples to ascertain and persuade.  The more sophisticated proofs are called 

demonstrations.  Demonstrations are valid arguments by methods such as contradiction, 

exhaustion, and induction.  It is difficult, however, for students to possess, access, and coordinate 

the content and proof knowledge required to construct demonstrations (Ko & Knuth, 2009, 

Moore, 1994, Weber, 2001).  Sometimes students fall back on relying on heuristic methods 

(Raman, 2003) which work well for problem-solving but perhaps not so well for proof.  Students 

relying on heuristic methods think that proof-making is about choosing the appropriate algorithm 

and faithfully following the steps of that algorithm (Selden & Selden, 2003).  For example, 

Stylianides, A. J. , Stylianides, G. J., and Philippou (2004) and Stylianides, G. J., Stylianides, A. 

J.,  and Philippou (2007) found that preservice teachers in Cyprus had great difficulty with the 

methods of mathematics induction and contraposition, partly because the teachers did not fully 

understand the methods, as evidenced by their mistakes. 
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Stylianides (2007, 2009) applied his analytic framework to the opportunities designed in the 

Connected Mathematics Project (Lappan, Fey, Fitzgerald, Friel, & Philips, 1998/2004) for 

students and teachers to engage in reasoning-and-proving.  Stylianides chose the CMP 

curriculum because as a reform-based curriculum, it was designed to “embody the 

recommendations of the NCTM (1989, 2000) Standards” (p. 260), and CMP was the most 

popular reform-based middle school mathematics textbook series in the United States when 

Stylianides worked on his study. 

Stylianides coded tasks from the algebra, number theory, and geometry units in the CMP 

curricula from sixth, seventh, and eighth grade.  He assessed every task along the actions 

required of the student and the purpose for that action.  To make his decisions, Stylianides 

considered the knowledge (i.e. theorems, definitions, mathematical conventions, and methods) 

students should have learned by that unit and the approaches suggested by the student and 

teachers’ editions of the textbook.  For example, Figure 2.2 shows a task from the CMP unit 

Looking for Pythagoras (p. 44).  Stylianides considered the predicted student answer in coding 

part b of the task.  Since a student could answer the question correctly without needing to explain 

why the diagonal line bisects the corners of the square, the task only requires an answer to be a 

rationale, not a proof.  Thus, part b of this task was coded as a rationale.   
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 Stylianides found that 38% of the tasks in the CMP algebra, number theory, and 

geometry units offered students some opportunities to reason-and-prove.  Of these reasoning-

and-proving tasks, 24% expected students to identify a pattern, 2% expected empirical 

arguments, 62% expected rationales, and 12% expected demonstrations (1% in seventh grade but 

32% in eighth grade).  There was a variety of reasoning-and-proving opportunities across content 

and grade levels.  Students were offered the most opportunities for conjectures and proof in sixth 

grade, and the eighth grade curriculum contained the highest percentage of opportunities for 

students to create rationales.   The fact that only 2% of the tasks were designed for empirical 

arguments speaks well for the CMP curriculum.  Students may still provide empirical 

justifications for proof tasks, but these types of non-proof arguments are neither suggested nor 

encouraged by the textbook.  Looking at this data by topic, number theory problems had the most 

number of making generalizations and proofs (see Table 2.2).  Algebra had the fewest number of 

proofs, followed closely by geometry. 

 

Square ABCD has sides of length 1.  Draw a diagonal, dividing the square into two 

triangles.  Cut out the square and fold it along the diagonal. 

a.) How do the two triangles compare? 
b.) What are the measures of the angles of one of the triangles?  Explain how you 

found each measure. 

Expected Formulation for part b (Teachers’ Edition, p. 44): 

The angle measures in each triangle are , , and .  The diagonal line divides the 

corner angles into two equal angles, so the small angles must each be half of , or . 

   

  
Figure 2.2 A Task from the CMP unit Looking for Pythagoras 
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Table 2.2  Reasoning-and-proving Tasks in the CMP Number Theory, Algebra, and Geometry Units 

Number of 
Opportunities 

Identifying Patterns/ 
Making Conjectures 

Non-Proof Arguments 
(Empirical / Rationales) Proofs 

High 
Number 
Theory 

(16%) Algebra (27%) 
Number 
Theory 

(14%) 

Medium Algebra (12%) Geometry (24%) Geometry (7%) 

Low Geometry (11%) 
Number 
Theory 

(24%) Algebra (3%) 

 

Stylianides summarized the four major findings of his CMP study according to desirable 

and undesirable features of a curriculum.  The low percentage of tasks suggesting empirical 

arguments was desirable, but the low percentage of tasks requesting conjectures was undesirable.  

The high percentage of tasks designed to promote rationales was desirable, but the near absence 

of generic examples was undesirable. 

2.2.2.2 Thompson, Senk, and Johnson’s (2012) study of High School Mathematics 

Textbooks 

Thompson, Senk, and Johnson (2012) took a broader look at reasoning-and-proving in curricular 

materials than did G. J. Stylianides (2009).  Thompson, Senk, and Johnson called making and 

investigative conjectures, developing and evaluating deductive arguments, finding 

counterexamples, and correcting mistakes in logical arguments proof-related reasoning because 

these activities are “foundational elements of mathematical reasoning” (2012, p. 258).  The 
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researchers looked at exponential, logarithmic, and polynomial chapters in twenty contemporary 

high school mathematics textbooks.  The topics were chosen because they contain a higher-than-

average number of reasoning-and-proving tasks.  Thompson, Senk, and Johnson further focused 

on exponential, logarithmic, and polynomial properties that are within the reach of high school 

students to justify.  Both the narratives and the exercises of the textbooks were considered.  For 

the narrations, Thompson, Senk, and Johnson coded how properties were justified.  For the 

exercises, Thompson, Senk, and Johnson coded actions and whether the action was for a general 

or specific case.  A list of their coding scheme and examples of each can be found in Appendices 

C and D. 

Thompson, Senk, and Johnson examined 9742 tasks and found the overall percentage of 

tasks with reasoning-and-proving opportunities was very small (3.4% for Algebra 1, 5.2% for 

Algebra 2, and 7.6% for Precalculus).  Thompson, Senk, and Johnson also aggregated the data by 

publisher and course.  Separated by publisher, the results show that 14.7% of the exercises in 

Core Plus and 8.0% of the exercises in Key Curriculum Press offer students opportunities to 

practice reasoning-and-proving.  The other publishers offer opportunities in only 3.5 – 6.3% of 

their tasks.  Separated by course, the results show that students were offered about twice as many 

opportunities to reason-and-prove in precalculus courses as they were in the Algebra 1 course, 

and the opportunities in precalculus involved more general cases than the opportunities Algebra 

1 which were largely focused on specific cases.  The results of Thompson, Senk and Johnson’s 

study indicated that textbooks did not off many opportunities for students to develop specific 

skills for reasoning-and-proving (see Table 2.3). 
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Table 2.3 Opportunities to Practice the Skills Involved in reasoning-and-proving in 20 Textbooks 

 

2.2.2.3 Lithner’s (2004) study of calculus books 

 

Lithner (2004) conducted a study of reasoning in undergraduate calculus textbook exercises, 

using randomly chosen topics in textbooks from the publishers Addison-Wesley, Prentice Hall, 

and Wiley.  The Addison-Wesley text was chosen because it had been used by subjects in a 

previous study and no reason was given for choosing the latter two publishers.  While three 

textbooks constitute a small sample, Weinberg and Wiesner (2011) found that undergraduate 

calculus books have remarkably similar features, so the sample Lithner chose arguably 

represented the experiences offered to undergraduates in most calculus books.  Lithner coded 

exercises according to how closely related the exercises were to examples in the narration of the 

text.  The exercises with superficial reasoning allowed students to merely match surface features, 

Topic 
% Tasks 
with 
Reasoning 

Make 
Conjecture 

Investigate 
Conjecture 

Develop 
Argument 

Evaluate 
Argument Other General/Specific 

Exponents 5.1% 0.8% 1.6% 2.2% 0.1% 0.5% 1.7 / 3.4% 

Logarithms 7.0% 0.6% 3.4% 2.5% 0% 0.7% 3.4 / 3.3% 

Polynomials 5.0% 0.8% 1.1% 2.5% 0.1% 0.5% 2.8 / 1.9% 

Overall 5.4% 0.8% 1.7% 2.4% 0.1% 0.6% 2.6 / 2.5% 
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achieving an answer by mimicking the procedures in a sample problem in the narration (IS).  The 

next level of exercise also involved matching some procedural features to a worked problem but 

required the students to modify some components by employing local plausible reasoning (LPR).  

The exercises that required students to consider, understand, and use the intrinsic mathematical 

properties of the exercise were coded as global plausible reasoning (GPR).  Table 2.4 lists the 

results for Lithner’s study. 

 

Table 2.4  Lithner’s Results for Calculus Textbooks 

Publisher: topics IS LPR GPR 

Addison-Wesley: limits and continuity 57% 29% 14% 

Prentice Hall: polynomials and algebraic functions 85% 8% 7% 

Wiley: applications of derivatives and integrals 56% 16% 28% 

 

If a teacher assigned every exercise in Prentice Hall’s polynomials and algebraic functions 

section, the students would merely be copying procedures in 85% of the tasks and engaging in 

novel reasoning in only 7% of the tasks.  If a teacher assigned all of the problems in Wiley’s 

applications of derivatives and integrals section, students would be forced to consider 

mathematics and reasoning in more than a quarter of the tasks.  Of course, it is entirely possible 

for a teacher to assign no exercises that engage students in reasoning—over half of the tasks in 

each of the textbook sections Lithner considered only asked students to replicate procedures.  As 

Selden and Selden (2003) claim, a large number of these superficial reasoning types of problems 
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can lead students to a static view of mathematics, in which mastery of algorithms represents 

knowledge of the field. 

Clearly, current textbooks do not generally offer students many opportunities to engage in 

Reasoning-and-Proving, regardless of whether the textbooks are traditional or reform-based, 

middle school or high school, Algebra 1 or calculus.  If the exposure hypothesis (Mayer et al., 

1991) is true, then neither teacher nor students will learn more about reasoning-and-proof 

through the resources at their disposal. 

2.2.2.4 Educative Materials 

Even if the opportunities to reason-and-prove are sparse in textbooks, research suggests that it is 

possible for curriculum materials to support teachers’ learning in addition to student learning.  In 

their seminal paper on the role of curriculum materials in teacher learning, Ball and Cohen 

(1996) called for textbook authors to consider curriculum enactment as well as curriculum 

content.  The enactment of a lesson is influenced by the students, community, and school policy; 

by the teacher’s understanding of the material, instructional design, and task selection; and by 

how the teacher foregrounds the intellectual and social environment of the class.   Ball and 

Cohen suggested five ways that curriculum materials can help educate teachers by addressing 

these influences: 

1. Help teachers prepare for the “unexpected” in the classroom by offering student    

   artifacts which show a wide range of contextual student work 

2. Help teachers learn content by highlighting multiple representations and their  

   connections 

3. Help teachers hear their students’ ideas by discussing specific content revealed by  
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    students’ responses 

4. Help teachers relate different units throughout the year by addressing the development of 

content 

5. Help teachers plan for presentations by analyzing particular designs and considering 

students’ understanding 

Remillard (2000) also suggested providing samples of discourse and collections of 

nonstandard tasks for teachers to try.  The major difference between educative materials and 

teacher guides is that educative materials help teachers develop general knowledge and learn to 

apply this knowledge flexibly in new situations (Davis & Krajcik, 2005).  Nine years after Ball 

and Cohen (1996) published their work, Davis and Krajcik (2005) massaged Ball and Cohen’s 

suggestions into a list of heuristics for developing educative curriculum materials (although 

Davis and Krajcik cautioned that their work needed further empirical testing).  Each heuristic 

included three features: what the materials should provide to teachers, how the materials could 

reveal rationales for recommendations, and how teachers could take up those ideas.   

The challenge of embedding educative material into curricula is to design the educative 

materials to meet the needs of teachers at a variety of levels, some of whom want a lot of detail 

and prescription and some of whom just need or want big ideas (Brown & Edelson, 2003; Davis 

& Krajcik, 2005).  Educative materials that merely highlight or only address some of Ball & 

Cohen (1996) or Davis and Krajcik’s (2005) recommendations may not be sufficient for teachers 

with impoverished understanding of proof.  Educative curriculum materials that are too extensive 

run the risk of being ignored because teachers may not have the time to study the materials 

(Schneider & Krajcik, 2002).   
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Growing out of the concept of educative curriculum materials is the notion of pedagogical 

design capacity.  This is the “teachers’ ability to perceive and mobilize existing resources in 

order to craft instructional contexts” (Brown & Edelson, 2003, p. 6).  While curriculum materials 

may influence and constrain teachers’ actions, teachers also evaluate and enact curriculum 

through the lenses of their own experiences, intentions, and abilities (Brown & Edelson, 2003); it 

is virtually impossible to implement a curriculum with fidelity according to all of the author’s 

intentions.  “Teaching by design is not so much a conscious choice but an inevitable reality” 

(Brown & Edelson, 2003, p. 1).  Thus, educative curriculum materials should be developed to 

promote teachers’ pedagogical design capacity. 

Theoretically, educative curriculum materials could help teachers design learning 

opportunities for their students to engage in reasoning-and-proving by helping teachers increase 

their pedagogical content knowledge and subject matter knowledge of proof (Yackel & Hanna, 

2003).  As defined by Shulman (1986), pedagogical content knowledge is an understanding of 

likely prior knowledge, misconceptions, and learning trajectories of students.   G. J. Stylianides 

(2007) studied the CMP materials for guidance offered to teachers.  It should be noted that CMP 

did not explicitly claim to contain educative materials that developed teachers’ pedagogical 

design capacity, however, one of the program goals is to “help students and teachers develop 

mathematical knowledge, understanding, and skill” (Lappan et al., 2002, p. 1) and develop 

students’ reasoning skills, meaning “bringing to any problem situation the disposition and ability 

to observe, experiment, analyze, abstract, induce, deduce, extend, generalize, relate, and 

manipulate in order to find solutions or prove conjectures involving interesting and important 

patterns” (Lappan et al., 2002, p. 6).   
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Stylianides (2007) evaluated every task in the CMP algebra, number theory, and geometry 

units for expected non-proof or proof arguments according to the approaches suggested by the 

student and teacher’s editions and the student’s expected knowledge to that point.  Stylianides 

then separated the proof tasks into “solution only” and “solution with guidance” categories.  The 

forms of additional guidance (educative materials) Stylianides considered were based in research 

(Ball & Cohen, 1996; Davis & Krajcik, 2005; Remillard, 2000, 2005; Stein & Kim, 2006) 

(Stylianides, 2007, pp. 197-198): 

• Explanations about why students’ engagement in a proof task matters 

• Cautious points on how to manage student approaches to a proof task 

• Discussions that support teachers’ content knowledge of proof 

Stylianides coded about 5% of the tasks in the algebra, number theory, and geometry 

units as proof tasks.  Of these, only 10% were educative in some way, and not always in a 

positive way.  For example, Stylianides described several issues with the forms of additional 

guidance attached to the topic of equivalence of symbolic expressions, from inaccurate use of 

mathematical language to issues with equivalence between different representations.  However, 

this does not mean that the entire body of educative material was suspect, although the guidance 

offered was so little it was probably insufficient to help an impoverished teacher reform personal 

views and knowledge about proof. 

2.2.3 Unsupportive Pedagogy 

The research discussed so far indicates that some teachers’ base knowledge and beliefs about 

reasoning-and-proving make it difficult for teachers to offer their students opportunities to 
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develop their reasoning-and-proving skills and that some curricular materials provide insufficient 

models of justification, practice problems, and useful guidance.  This section explores research 

about how teachers enact reasoning-and-proving activities in their classrooms.  Some of the 

difficulties students and teachers have with proof can be addressed with supportive pedagogy or 

training (see Table 2.5).  If teachers were using supportive pedagogy to help students develop 

their reasoning-and-proving knowledge, one would expect the trajectories of difficulties to be 

arrested between secondary students, undergraduate students, and teachers.  This does not appear 

to be the case.   A small collection of studies (e.g., Ellis, 2011; Lampert, 1990; Mariotti, 2000; 

Yackel & Cobb, 1996) provide insight into how teachers might successfully break some of the 

cycles of difficulty with reasoning-and-proving.  The first collection of studies—Lampert (1990), 

Mariotti (2000) and Yackel & Cobb (1996)—involves issues of authority and axiomatic systems, 

Ellis’ (2011) study involves generalization, and Bieda’s (2010) study involves discourse.
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Table 2.5 Summary of Empirical Studies: Difficulties with Reasoning-and-Proving that can be addressed with Supportive Pedagogy 

 
Students: 
secondary Students: Undergraduate Teachers  

Area of Difficulty 6-8 9-12 non-
specific 

math 
majors 

preservice 
elementary 

preservice 
secondary secondary Empirical Studies 

Context  X X     
Coe & Ruthven (1994), 
Küchemann & Hoyles (2001) 

Definitions  X X X    

Bell (1976), Edwards & Ward 
(2004), Moore (1994), Williams 
(1979) 

Diagrams  X      Senk (1985) 

Generalization X X  X X X X 

Chazan (1993), Ellis (2011), 
Fischbein (1982), Galbraith 
(1981), Knuth (2002b), Knuth & 
Sutherland (2004), Martin et al. 
(2005), Morris (2002), Porteous 
(1990), Schoenfeld (1986), Selden 
& Selden (2003), Stylianides, 
Stylianides & Philippou (2007), 
Williams (1979) 

Launching  X X     Moore (1994), Senk (1985) 

Notation and 
Symbols   X X   X Moore (1994), Selden & Selden 

(2003), Tabach, et al. (2011) 
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Students: 
secondary Students: Undergraduate Teachers  

Area of Difficulty 6-8 9-12 non-
specific 

math 
majors 

preservice 
elementary 

preservice 
secondary secondary Empirical Studies 

Role of proof (to 
create an axiomatic 
system) 

 X      McCrone & Martin (2009), Tinto 
(1990) 

Techniques (types 
of proof)  X X X X X  

Chazan (1993), Knuth & 
Sutherland (2004), Ko & Knuth 
(2009), Stylianides, Stylianides & 
Philippou (2004, 2007), Weber 
(2001), Williams (1979) 

Validation 
(authority?)  X   X   

Edwards, L. D. (1999), Galbraith 
(1981), Simon & Blume (1996) 
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2.2.3.1  Pedagogical issues of sharing authority and conveying axiomatic systems 

Moderating mathematically productive discourse is challenging, and common didactical teaching 

patterns will not bring empirical arguments closer to deductive arguments (Harel & Sowder, 

1998; Hoyles, 1997; Weber, 2001).  Chazan and Lueke (2009) found that when teachers follow a 

common demonstrate/practice instructional loop, they tend to guide students to the teachers’ 

preferred method, act as the sole judge in disputes, and lecture with minimal student interaction.  

Suddenly asking students to explain why a process works makes the students question the 

validity of the process; it does not help the students develop reasoning skills.  Teachers using 

these authoritative proof schemes (Harel & Rabin, 2010) in their classrooms do not encourage 

students to debate and resolve disagreements among themselves or probe their students’ 

reasoning 

Yackel and Cobb (1996) studied elementary classrooms to determine the factors that 

accounted for the development of mathematical beliefs and values in students.   They pinpointed 

several aspects of classroom culture that influenced the beliefs and values which they termed 

sociomathematical norms.  One of the goals of teaching reasoning-and-proof in classrooms is to 

foster the ability to convince and critique, so students need to understand “what counts as 

mathematically different, mathematically sophisticated, mathematically efficient, and 

mathematically elegant in a classroom” (Yackel & Cobb, 1996, p. 461).  Yackel and Cobb found 

that when teachers asked their students for mathematically different solutions to problems, they 

effectively shifted authority away from themselves and towards students, thus empowering the 

students.  While searching for mathematically different solutions, students participated in 
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cognitively demanding work that allowed them to develop their reasoning ability.  As students 

learned to use mathematics instead of status to validate arguments, the teachers’ belief of the 

capabilities of students evolved.  Yackel and Cobb described a reflexive relationship between 

students giving a “variety of explanations when different solutions are emphasized and 

developmentally sophisticated solutions are legitimized” (p. 466) and “teachers’ evolving 

notions of what is sophisticated and efficient for the children” (p. 467).  The students’ 

explanations became objects of reflection themselves.   

Lampert’s (1990) description of her work with elementary school students is a good 

example of the benefits of setting sociomathematical norms.  In her class, Lampert gave her 

students a sophisticated number theory problem to replace what could have been a procedure-

driven lesson on exponents.  In providing her students with a cognitively challenging task and 

removing herself as the sole mathematical authority in the room, Lampert gave her students 

opportunities to explore and negotiate meaning for themselves.  Her students practiced 

convincing and persuading with an interesting task worthy of their time.  In this way, Lampert’s 

students used proof the way mathematicians use proof—to develop and extend knowledge.   

Teachers’ choices of activities and modes of discourse can impact students’ mathematical 

beliefs and values (Martin et al., 2005; Yackel & Cobb, 1996).  This is not to say that teachers do 

not have responsibility to lead students in developing their reasoning-and-proving skills 

(Balacheff, 1991).  For example, Mariotti (2000) found that teachers can use discussion to foster 

their students’ transition from intuitive to deductive reasoning.   Mariotti conducted a design 

experiment over two years in Italy with secondary geometry students using Cabri geometry (a 

dynamic geometry environment) to develop an understanding of mathematical proof by 

developing an axiomatic system.  During the year-long experiment, students were given figures 
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to construct.  In order to construct a figure whose features are preserved under “dragging tests”, 

the students had to understand the relationships among hierarchies of properties.  For example, if 

a student was asked to construct a right triangle, the student could simply draw a segment, draw 

a connected segment that looked perpendicular to the first, and then connect the initial and final 

endpoints of the segments.  This triangle would only look like a right triangle before dragging.  

A student who wanted to construct a right triangle whose 90 degree angle was preserved under 

dragging would have to pay attention to the order of the properties used in the construction.  The 

student might construct an initial segment, then use a perpendicular command to construct a line 

perpendicular to the first segment through one of its endpoints.  The student would truncate the 

line into a segment and connect the two free segment endpoints with the third segment of the 

triangle.  Because the first angle was constructed with a perpendicular line, it will always remain 

a right angle, even if the triangle is stretched or moved.  When the student records the steps and 

the reasons for the construction, the student is effectively writing a proof of why the triangle is a 

right triangle.   

The secondary students in Mariotti’s (2000) study were given many such figures with 

specific and increasingly sophisticated properties to construct during class.  While attempting to 

construct a figure, students were required to record the procedure they used and also why that 

procedure was correct.  The procedure allowed students to impose an ordering on the sequence 

of axioms, definitions, and theorems they used, and collective revisions made during class 

discourse allowed students to connect and refine their thinking.  The students’ classroom teacher 

helped students link constructing and dragging figures with conditional statements; in this way, 

students learned how to transform their empirical arguments into theoretical arguments.  The 

teacher required students to justify their procedures according to rules which had been negotiated 
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and accepted in class; the rules included previous constructions because each construction was 

shared, revised, and collectively accepted by the class.  The teachers avoided authoritarian proof 

schemes by allowing their students to debate and resolve disagreements during collective 

revision time and by probing students’ thinking during group construction time.  Teachers further 

helped students develop an axiomatic system (Euclidean geometry) by providing the students 

with initial information (primitive entities, basic definitions, postulates) and requiring them to 

keep track of the negotiated and accepted rules (e.g., definitions and theorems) they subsequently 

developed.  By the end of the course, the students had developed, recorded, and used the 

axiomatic system of Euclidean geometry. 

 

2.2.3.2 Pedagogical issues with generalization 

Ellis (2011) examined a different problem associated with reasoning-and-proving: 

generalization.  While students may recognize a pattern, they struggle to use generalized 

language to express that pattern in an algebraically useful way (Chazan, 1993; Fischbein, 1982; 

Galbraith, 1981; Knuth & Sutherland, 2004; Martin et al., 2005; Porteous, 1990; Schoenfeld, 

1986; Williams, 1979).  Students tend to focus on creating data tables and identifying 

covariational patterns rather than on generalizing to the nth case (English & Warren, 1995; Pegg 

& Redden, 1990; Stacey & MacGregor, 1997; Szombathely & Szarvas, 1998).  In her study, Ellis 

conducted a 15-day teaching experiment on a mixed-ability group of six 8th graders.  The 

students were interviewed both before and after a daily intervention during which the students 

changed the dimensions of a rectangle to study the effects on area and perimeter and link those 
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changes to the parameter in the quadratic equation .  Ellis wanted to know what types of 

student/teacher actions and interactions worked together to promote and foster generalizing.  

Ellis found seven categories of actions and interactions that resulted in generalizations much of 

the time (Ellis, 2011, p. 316): 

• Publically generalizing (linking or expanding on an idea) 

• Encouraging generalizing (prompting search for pattern beyond case) 

• Encouraging sharing of a generalization or idea (formal or informal request) 

• Publicly sharing a generalization or idea (revoicing or publically validating or 

rejecting idea) 

• Encouraging justification or clarification (ask student to describe origins of idea, 

restate, or explain) 

• Building on an idea or generalization (refine or use idea to create a new idea) 

• Focusing attention on mathematical relationships (between features) 

By using these actions and interactions, the teacher set the sociomathematical norms for 

reasoning-and-proving, and the students in the study shared ownership in creating a culture that 

encouraged justification in their classroom.  The rich, cognitively demanding nature of the task 

chosen by the intervention teacher contributed to the opportunities students had to make multiple 

conjectures and justifications.  The teacher also revised activities over the course of the 

experiment to accommodate the student-led nature of the inquiry (albeit teacher influenced).  The 

set of the activities, actions, and interactions led Ellis to describe the type of generalization 

displayed by the students and teacher-researcher as collective generalizing, similar to collective 

proving (Blanton & Stylianou, 2002) and collective abstraction (Cobb, 2005 as cited in Ellis, 
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2011).  In other words, for students to develop their generalization understanding and skills, a 

teacher needs to establish and promote public discourse in the classroom.  To prepare teachers 

for this type of work, Ellis suggested professional development that “would foster teachers’ 

abilities to (a) encourage justifying and clarifying, (b) publicly share students’ contributions, (c) 

explicitly encourage generalizing, and (d) refocus students’ attention on mathematical 

relationships” (Ellis, 2011, p. 336).  

2.2.3.3 Pedagogical issues with discourse 

Bieda (2010) conducted research similar to Ellis (2011), seeking to learn the nature of Middle 

School students’ and teachers’ actions and discourse during justifying and proving.  Unlike Ellis, 

Bieda recruited participants from middle schools that had been using the CMP curriculum 

because the units contain opportunities for students to engage in reasoning-and-proving.  Bieda 

referenced the results of G. J. Stylianides’ CMP studies (2007, 2009), which indicated that 38% 

of the tasks in the algebra, number theory, and geometry units in CMP were written to offer 

reasoning-and-proving opportunities for students.  Bieda selected participants from a middle 

school which had been using the CMP curriculum for six years.  The seven teachers in the study 

(3 sixth grade, 2 seventh grade, and 2 eighth grade) had also participated in district-mandated 

professional development for CMP, which included daylong workshops to discuss research on 

mathematics education.  Bieda noted that the experienced teachers were invested in promoting 

research-based, high quality mathematics education but had not focused their previous 

professional development on reasoning-and-proving.  Still, with the selection of these teachers 

and this curriculum, Bieda had controlled for teachers’ knowledge base, insufficient curriculum, 
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and pedagogy (at least in part).  With these major challenges minimized, would teachers be able 

to successfully implement reasoning-and-proving activities in their classrooms? 

Bieda observed 49 investigations across the grade levels.  All of the observed investigations 

contained tasks that offered students opportunities to reason-and-prove.  The observations were 

supplemented by teachers’ responses to pre- and post-observation interviews.  The pre-

observation writing prompts asked teachers about goals, task modifications, and ideal student 

responses.  The post-observation interview questions asked teachers about the implementation of 

the investigation, about the teacher’s responses to student thinking about reasoning-and-proving, 

and about the information that was “taken-as-shared” in the class.  The answers to the pre- and 

post-observation questions allowed Bieda to check her interpretations of the class discourse.   

Bieda found that teachers were able to help students make mathematical generalizations, but 

the teachers struggled to help students support their mathematical claims.  Bieda found that 

teachers provided inadequate feedback: the feedback was neither sufficient to sustain discussions 

nor sufficient to establish criteria for proof.  At times any justification was accepted, even for 

empirical arguments.  As seen in Ellis’ (2011) study, pressing students for generalized arguments 

is quite difficult. The teachers in Bieda’s study did not devote enough class time to “establish 

standards for proof-related activity” (Bieda, 2010, p. 378), which resulted in a decrease of 

cognitive demand of the reasoning-and-proving learning opportunities.  The teachers felt 

constrained by the limitations of their schedules and by trying to avoid authoritarian proof 

schemes.  Regardless of constraints, teachers still need to set sociomathematical norms, and this 

includes expectations for justifications.  Chazan and Ball (1999) suggested that teachers can 

stimulate, manage, and use disagreement as a source of “intellectual ferment” (a time for ideas to 

“bubble and effervesce” (p. 7)), during which teachers monitor and manage disagreement so that 
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the argument remains centered on the mathematics and not on a particular student.  If a 

disagreement spins out of control, students are unlikely to devote mental resources to reflection, 

which disrupts the goal of getting students to think deeply about the mathematics at hand and 

reconsider their mathematical positions.   

In conclusion, even when teachers have a solid base of knowledge, use a reform-based 

curriculum with ample opportunities to reason-and-prove, and make good pedagogical decisions 

regarding authority and discourse, instruction intending to support students’ development and 

understanding of proof is still challenging and can be superficial.  “This suggests that greater 

emphasis is needed for middle school teacher preparation, professional development, and 

curricular support to make justifying and proving a routine part of middle school students’ 

opportunities to learn” (Bieda, 2010, p. 380). 

2.3 PROFESSIONAL DEVELOPMENT 

2.3.1 Stability in the Education system 

Teaching is a remarkably stable cultural activity, and teachers tend to teach the way they were 

taught (Ball, 1988b; Ball & Cohen, 1999; Stigler & Hiebert, 1999).  When a teacher does take up 

an initiative—such as expecting students to listen and respond to each other’s ideas—the 

initiative is difficult to sustain because the “education system” will try to restabilize itself (Ball, 

1988b; Ball & Cohen, 1999; Stigler & Hiebert, 1999). It is not enough for a teacher to know 

subject matter, pedagogy, and students; a teacher also needs to be able to self-analyze teaching in 
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order to consider change (Ball & Cohen, 1999; Little, 1993; Smith, 2001).   If the teacher’s 

vision of good teaching is not aligned with the desired vision of good teaching, the teacher needs 

to experience situations that contrast with the teacher’s mental picture of good teaching (Ball & 

Cohen, 1999; Little, 1993; Loucks-Horsley & Matsumoto, 1999).  The teacher needs to grapple 

with what it means to “know and understand mathematics, the kinds of tasks in which [her] 

students should be engaged, and finally, [her] own role in the classroom” (Smith, 2001, p. 3-4). 

In order to destabilize a practice such as an authoritative proof scheme, teachers would 

need to be convinced that a new practice would provide better learning opportunities for 

students.  Transformative professional development inspires changes in stable beliefs held by 

teachers about effective mathematical teaching and learning (Thompson & Zeuli, 1999).  

However, professional development is generally not designed to be transformative.  Many 

administrators and policy-makers perceive professional development as a way to “update” 

teachers, so the learning opportunities presented to teachers tend to be discontinuous. Teachers 

are rarely offered a long-range professional development curriculum (Ball & Cohen, 1999; Little, 

1993) that helps them learn in and from practice.  Such piecemeal and limited professional 

development does not help teachers deepen their expertise and understanding of subject matter, 

both of which make a huge difference in how students learn (Loucks-Horsley & Matsumoto, 

1999). 

2.3.2 Transforming professional development 

If reform is to happen in United States mathematics classrooms, professional development must 

be reformed as well.   The focus should be on teaching—not teachers—to help students achieve 
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learning goals (Stigler & Hiebert, 1999).  Teachers need learning opportunities that help them 

study the big ideas of the discipline (Loucks-Horsley & Matsumoto, 1999), develop flexible 

understandings of the mathematics that they will teach (Ball & Cohen, 1999; Thompson & 

Thompson, 1996), practice making complex and subtle decisions about teaching (Little, 1993), 

learn self-monitoring and analysis (Ball & Cohen, 1999; Loucks-Horsley & Matsumoto, 1999; 

Stigler & Hiebert, 1999), and do all of this external to real classrooms in real time (Ball & 

Cohen, 1999).  According to Ball and Cohen (1999): 

To learn anything relevant to performance, professionals need experience with the tasks and 

ways of thinking that are fundamental to the practice.  Those experiences must be 

immediate enough to be compelling and vivid.  To learn more than mere imitation or 

survival, such experiences also must be sufficiently distanced to be open to careful scrutiny, 

unpacking, reconstruction, and the like (p. 12).   

The key is to study and learn from practice without being in the middle of practice.   

In addition, the mathematics education research community has expressed interest in 

professional learning tasks, which are “complex tasks that create opportunities for teachers to 

ponder pedagogical problems and their potential solutions through processes of reflection, 

knowledge sharing, and knowledge building” (Silver, Clark, Ghousseini, Charalambous, & 

Seely, 2007, p. 262).  These tasks employ artifacts of practice—what Smith (2001) calls 

“samples of authentic practice”—in the service of professional development (ICMI, 2004, as 

cited by Silver et al., 2007).  Many effective professional development models use professional 

learning tasks and research frameworks, as well as guiding principles based on the frameworks 

and related tools (Boston & Smith, 2009). 
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Smith (2001) explains the reasons why samples of authentic practice, such as tasks used in a 

classroom, pieces of student work, and cases of teaching episodes help teachers transform their 

practice.  Real artifacts can help teachers discuss abstract and complex ideas (such as 

generalizing), show the constant dilemmas of teaching (such as how to sequence student proof 

arguments during a whole class discussion), and reveal students’ thinking about mathematics 

(such as whether or not empirical arguments are sufficient).  When the teachers’ talk is focused 

on authentic classroom experiences, the talk is less about personal opinion and preference and 

more about what signifies good teaching, what qualifies as acceptable work, and which 

responses show understanding (Ball & Cohen, 1999).  Teachers can develop mathematical 

learning theories from examining these artifacts if they are taught to abstract generalities from 

particular situations (Smith, 2001).   

A task chosen as a sample of authentic practice must be a task worthy of discussion; it must 

be a task from which teachers can advance their knowledge of mathematics and help them think 

about classroom practice.  Stein and Lane (1996) found that cognitively-demanding tasks have 

more potential for student learning than low-level tasks; thus, cognitively-demanding tasks are 

worthy tasks for study in professional development.  The teachers learn from solving tasks, 

discussing strategies and approaches, determining necessary prior knowledge, relating methods 

and representations, predicting residue, and determining how the task fits into their curriculum 

(Ball & Cohen, 1999; Doyle, 1988; Hiebert et al., 1997; Smith, 2001).  As will be described in 

the next section, one focus of the Enhancing Secondary Mathematics Teacher Preparation 

program was transforming teachers’ classroom practice with respect to learning opportunities 

afforded by cognitively-demanding tasks. 
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Analyzing actual student responses to tasks allows teachers to move beyond prediction of 

what students are likely to do on a given task—which is based on the beliefs of the teacher—to 

what students can actually do.  This can reveal new information about strategies and 

misconceptions (Ball & Cohen, 1999; Carpenter, Fennema, & Franke, 1996; Stylianou & Smith, 

2000).  According to Smith (2001): 

Examining students’ work can help teachers realize that children’s ways of interpreting, 

representing, and solving problems are different from the teacher’s, but their methods 

may be equally valid.  In addition, it can help teachers develop the ability to interpret or 

make sense of students’ solution strategies and forms of representations. (pp. 14-15) 

As will be discussed shortly, the Cognitively Guided Instruction project used videos of 

elementary students solving problems.  Because the students were young, video tapes of the 

students were used to capture the students’ thinking and provided opportunities for rich 

discussion among the teachers in the study. 

Case studies can help teachers see how to translate professional development into practice 

(Stein, Smith, Henningsen, & Silver, 2009).  Carpenter et al. (1996) argued that teachers’ 

informal knowledge of students’ strategies and thinking is “not well organized, and it generally 

has not played a prominent role as teachers make instructional decisions” (p. 5).   Teachers need 

frameworks to help them attend to aspects of students’ thinking, interpret meaning, and 

incorporate their new understanding into their practice.  According to Barnett (1991), teachers 

need contextualized knowledge (as seen in narrative cases) in order to implement changes in 

their complex mathematical education practice.  Cases can be presented to teachers in either 
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written or video form.  Smith (2001) champions written cases over video cases because it allows 

the author to focus the reader’s attention on a specific aspect of practice; other elements can be 

dropped or minimized.  There is, however, evidence in the literature of teacher learning from 

both types of cases.  For example, teachers in Barnett’s (1991) study read cases focused on 

multiplication of fractions and then grappled with questions such as should discrete or 

continuous models be used to introduce multiplication of fractions?  Another question revolved 

around the source of students’ confusion: was it language or was the topic developmentally 

inappropriate?  In a different study, Friel and Carboni (2000) used video-based cases to help 

preservice teachers see the learning opportunities offered to students in a student-centered 

classroom.  The cases used by Friel and Carboni allowed the preservice teachers to focus on the 

students and the students’ responses, which facilitated the preservice teachers’ reconstruction of 

their beliefs (i.e., teaching does not have to be didactical).  A third study—the BI:FOCAL project 

from the University of Michighan—that used narrative cases will be discussed in detail later in 

this section.   

Ball (as cited in Smith, 2001) does provide some cautions about professional development 

employing samples of authentic practice.  First, the professional development cannot be a stand-

alone session; a curriculum needs to be formed around the samples.  Second, samples should be 

chosen that are relevant and compelling but do not actually represent a teacher’s personal 

situation.  Finally, teachers need to look beyond the rich detail contained in the sample of 

practice and generalize what they are learning.  Otherwise, professional development around 

samples of authentic practice becomes merely an exercise in analyzing. 
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2.3.3 Special Case: Preservice Teacher Education 

According to Grossman, Hammerness, and McDonald (2009b), teachers need to possess more 

than a quiver of skills; they need to be “decision-makers and reflective practitioners” (p. 274).  In 

this light, helping preservice teachers learn the core practices involved with making decisions 

and reflecting on practice is a necessity.  Core practices are high-leverage actions, such as 

engaging students in choral counting, providing clear instructional explanations, leading 

classroom discussions, and developing professional relationships with colleagues and students.  

In general, core practices for preservice teachers are (Grossman et al., 2009b, p. 277): 

• Practices that occur with high frequency in teaching; 

• Practices that novices can enact in classrooms across different curricula or instructional 

approaches; 

• Practices that novices can actually begin to master; 

• Practices that allow novices to learn more about students and about teaching; 

• Practices that preserve the integrity and complexity of teaching; and 

• Practices that are research-based and have the potential to improve student achievement. 

Currently, typical preservice teacher education programs offer a disjointed experience of 

learning knowledge, skills, and professional identity through separate foundation and method 

courses and separate settings (university and K-12 schools) (Grossman et al., 2009b).  Grossman 

and her colleagues argued that preservice teachers should experience a curriculum that places 

core practices squarely in the center, a curriculum that decomposes the complex nature of 

teaching into focused, research-based bites of practice on which preservice teachers can 
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deliberately focus on their attention.  With the help of teacher educators, the preservice teachers 

can connect their accumulated knowledge into effective instructional routines.   Preservice 

teachers can learn abstract theories, concrete skills, and professional identity in context through a 

fluid and connected process of learning to practice with conceptual and practical tools.  In order 

to accomplish this shift in teacher education programming, Grossman recommends employing 

pedagogies of reflection and enactment. 

Pedagogies of reflection involve learning opportunities that help teachers develop a 

purposeful and deliberate way for thinking through problems of practice (Jay & Johnson, 2002).  

According to Zeichner and Liston (1996, p. 20), “reflective teaching entails a recognition, 

examination, and rumination over the implications of one’s beliefs, experiences, attitudes, 

knowledge, and values as well as the opportunities and constraints provided by the social 

conditions in which the teacher works.”   Teachers can and should reflect on how their practice 

will lead to change (Zeichner & Liston, 1996).  Reflective teachers have the ability to focus on a 

single aspect of their pedagogy, use reframing and reflective listening to view that aspect from 

different perspectives, and discuss that aspect with other teachers in order to act on a “thorough 

and reflective understanding of events, alternatives, and ethics” (McKenna, 1999, as cited by Jay 

& Johnson, 2002).  Jay and Johnson (2002) describe a framework which delineates dimensions 

of reflection (descriptive, comparative, and critical) and can be used as an instructional tool for 

preservice teachers.  For instance, comparative reflection “reframe[s] the matter for reflection in 

light of alternative views, others’ perspectives, research, etc;” preservice teachers can ask: “If 

there is a goal, what are some other ways of accomplishing it?” (Jay & Johson, 2002, p.  78). For 

example, a preservice teacher might be asked to reflect on possible sequencing of student work 

for whole-class discussion that has a high potential for student learning. 
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Pedagogies of enactment are learning “opportunities for novice teachers to ‘practice’ the 

various instructional routines that are central to core practices of teaching” (Grossman et al., 

2009b, p. 283).  These opportunities go beyond watching models of practice; they put the 

preservice teacher in the position of a decision-making teacher who can try a routine and receive 

feedback.  For example, one part of preparing to orchestrate a classroom discussion is to 

anticipate student responses to a task.  A preservice teacher can approximate this practice by self-

generating all of the student solutions of which the teacher can think, “teach” the lesson to 

preservice peers to generate further solutions, then practice the lesson in a K-12 school 

placement and receive feedback from observers.  In this model of teacher preparation, the teacher 

educator shifts roles from a provider of knowledge to a skilled instructional coach who offers 

opportunities to practice aspects of the complex practice of teaching and regular, specific 

feedback which allows novices to develop conceptual and practical tools. 

In pedagogies of enactment, representations of practice are the ways the complex practice 

of teaching is portrayed to preservice teachers, including the focus of the representation and what 

that focus makes visible to novices.  Examples of representations of practice include what Smith 

(2001) calls samples of authentic practice, such as student work and narrative accounts of an 

instructional episode (Grossman, Compton, Igra, Ronfeldt, Shahan, & Williamson, 2009a).  A 

teacher educator can choose to show a video of a student working out a problem and ask 

preservice teachers to imagine that they are the student’s teachers and to write assessing and 

advancing questions.  In this way, the preservice teachers would not have to attend to other 

students, classroom management, or curriculum.  The preservice teachers can focus solely on 

evidence of the student’s thinking and on enacting the core practice of asking questions.  The 

preservice teachers could watch the tape multiple times for various core practices because the 
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episode is not happening in real time.  When the teacher educator orchestrates a whole-class 

discussion about the preservice teachers’ noticings about the student’s mathematical 

understanding and their assessing and advancing questions, then the teacher educator would be 

offering the preservice teachers an opportunity to reflect.  Because the teaching episode was not 

analyzed in real time, it was only an approximation of practice, but an appropriate one for 

helping preservice teachers develop conceptual and practical skills with minimal risk.  While 

divorcing the learning opportunity from authentic practice in classrooms, the teacher educator 

can prioritize the skill acquisition of their preservice teachers, so when the preservice teachers 

transition from approximations of practice to authentic practice in classrooms, the preservice 

teachers will be prepared for success with a quiver of developed core practices. 

Practicing teachers do not need approximations of classrooms because they are already 

immersed in their own classrooms.  However, teachers need samples of other teacher’s 

classrooms in order to dissect and analyze practice.  With compelling and relevant samples of 

authentic practice, teachers—like preservice teachers—can develop deeper understandings of the 

mathematics they teach, analyze and practice making careful decisions, and learn self-

monitoring.  Three projects that used samples of authentic practice and pedagogies of reflection 

and enactment in professional development for teachers are discussed in detail in the remainder 

of this section.  Each of the projects had results that connected the professional development to 

changes in teachers’ practice.  The projects are: Enhancing Secondary Mathematics Teaching 

Preparation Project at the University of Pittsburgh, Cognitively Guided Instruction at the 

University of Wisconsin-Madison, and the BI:FOCAL project at the University of Michigan.  



 

95 

 

Each project used a different type of sample of authentic practice to help transform teachers’ 

practice. 

2.3.4 Connecting changes in teachers’ practice to professional development 

2.3.4.1 Enhancing Secondary Mathematics Teacher Preparation (ESP) Project 

The Enhancing Secondary Mathematics Teacher Preparation (ESP) project was a NSF-funded 

project designed to provide mentor teachers with professional development.  The reason for the 

professional development was to provide consistent experiences of quality mathematics 

instruction between their preservice teachers’ university and field experiences.  The professional 

development was designed to support teachers’ improvements in their instructional practices, 

develop their capacity to mentor beginning teachers and preservice teachers, and develop a 

shared vision of effective mathematics teaching consistent with the preservice teachers’ 

university coursework (Boston & Smith, 2009). 

The focus of the work was on cognitively-demanding tasks.  The teachers were provided 

with a research framework, samples of authentic practice, and tools to guide their work in their 

classrooms.  The research framework was the Mathematical Tasks Framework (MTF) (Figure 

2.3), a framework that models the progression of a task from selection to implementation (Stein 

et al., 1996).  Stein and her colleagues also developed the Task Analysis Guide (TAG) to help 

teachers identify the level of cognitive demand associated with a task (see Appendix E).  The 

levels in the TAG are: memorization (lowest), procedures without connections, procedures with 

connections, and doing mathematics (highest).  The tasks with the highest cognitive demand 

involve complex thinking and reasoning strategies, such as justifying reasoning to someone else 
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by using proof by contradiction.  No path is suggested by the problem, and the task focuses the 

student on the mathematical structure of the problem, not irrelevant surface features.    

 

Figure 2.3 The Mathematical Tasks Framework (Stein et al., 2000). 

 

The first year of the ESP project focused on improving the practice of the mentor teachers.  

The teachers analyzed samples of authentic practice, such as opportunities to solve, compare, 

discuss, adapt and categorize high-level tasks.  They examined tasks with respect to the Task 

Analysis Guide (Stein et al., 1996), read and discussed cases, examined research about the factors 

and patterns of maintenance and decline of high-level tasks, analyzed student work, and wrote 

lesson plans.  Throughout the training, the teachers reflected on their learning.  In addition, 

teachers were provided with a lesson-planning tool. 

To assess changes in teacher practice throughout the first year, Boston (2006) periodically 

collected classroom artifact packets (instructional tasks and student work) and performed related 

lesson observations.  As hypothesized, the teachers showed an increase over time in their ability 

to select and implement cognitively-demanding instructional tasks. Boston argued that the high-

level tasks offered by the teachers provided opportunities for students to develop their 
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understanding of the underlying mathematics.  This led to the teachers valuing high-level tasks 

and the impact high-level tasks have on students’ learning more than before the professional 

development, which, in turn, led to the teachers selecting and implementing high-level tasks in 

their classrooms.  This argument is in concert with Remillard’s (2005) framework that suggests 

the participatory relationship between teachers and curriculum materials influences the planned 

curriculum and subsequently the enacted curriculum. 

2.3.4.2 Cognitively Guided Instruction (CGI) 

The CGI project was designed to help bridge research-based models of children’s thinking and 

early elementary teacher’s views of their own students’ thinking.  Carpenter and his colleagues 

hypothesized that providing teachers with knowledge about differences in problems, offering 

examples of students’ strategies for solving those problems, and showing how those strategies 

evolve over time would directly affect teachers’ classroom practice (Carpenter, Fennema, 

Peterson, Chiang, & Loef, 1989).  Carpenter, Fennema, and Franke (1996) later proposed that 

“understanding students’ mathematical thinking can provide a unifying framework for the 

development of teachers’ knowledge” (p. 4).  The architects of CGI did this by asking teachers to 

reflect on and interpret the research-based models of students’ thinking with respect to the 

teacher’s own students and reflect on and interpret videos of students solving problems.   

Carpenter et al., (1996) described a project based on early elementary students’ intuitive 

knowledge about the four basic operations in mathematics: addition, subtraction, multiplication, 

and division, as seen in word problems.  The CGI team created videos of students solving and 

explaining their processes for different types of required actions: joining action, separating 
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action, part-part-whole relations, and comparison situations.  The students’ work illustrates 

different student strategies, such as counting all, counting on, and derived fact strategies.  The 

CGI team also captured examples of students’ solution strategies for multiplication, 

measurement-division, partitive division, rate problems, and array problems.  The videos showed 

differences in strategies over time.  “As they develop increasingly efficient ways to solve these 

problems, their understanding…increases concurrently with an understanding of how to apply 

this knowledge.…children can acquire the skills and concepts required to solve problems as they 

are solving the problems” (p. 10).  In addition, some examples of students’ work revealed 

combinations of strategies and relations between strategies.  The collection of student work 

samples provided the basis for rich reflection among teachers about understanding students’ 

intuitive strategies and developing understanding of whole-number concepts and operations, 

leading to a well-developed framework of understanding for the teachers.  Teachers could then 

employ this “clearly delineated knowledge” (p. 16) in the classroom by offering students specific 

tasks to assess the students’ understanding, to focus on different types of strategies, and to 

identify errors by listening carefully to the students’ explanations of their solutions. 

CGI studies (e.g., Carpenter et al., 1989) collectively indicate a positive correlation 

between considering students’ thinking with changes in teachers’ practice.  The types of changes 

seen were incorporating more classroom time to problem-solving, expecting multiple solution 

strategies, and listening to children’s explanations.  The researchers also investigated the long-

term impact of these changes (Fennema, Carpenter, Franke, Levi, Jacobs, & Empson, 1996).  In 

this study, the teachers who participated in the CGI workshops were assessed with respect to 

their instruction and beliefs along a 5-level scale.  The instruction scale ran from describing 
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teachers who provided little opportunity to children to solve problems or share thinking (low) to 

teachers who provided many opportunities and whose instruction was driven by knowledge of 

individual students and was adapted based on what was shared.  The belief scales ran from 

teachers believing that direct instruction was necessary (low) to teachers who believed that 

children can solve problems without direct instruction and that the teacher’s understanding about 

children’s thinking should drive her decision making.  After the CGI training, almost every 

teacher changed the bulk of their instructional time to various problem-solving opportunities.  

The teachers were not bound to their textbooks, did not emphasize rote procedures, and spent 

more time listening to students than talking.  A similar change was seen levels of beliefs.  

Virtually all of the teachers showed positive change in beliefs (children could and would learn 

mathematics by solving problems and discussing solutions).  There was, however, no 

consistency in which change drove the other: did a change in beliefs cause a change in 

instruction or was it the other way around?  It was also not clear why there was variety in the 

amount of change in teachers’ instruction and beliefs.  What was clear, though, was that an 

increase in students’ performance was directly related to changes in teachers’ instruction.   

2.3.4.3 Silver and Mills: BI:FOCAL Project 

The Beyond Implementation: Focusing on Challenge And Learning (BI:FOCAL) project was 

designed to offer middle school mathematics teachers practiced-based professional development 

(Silver, et al., 2007).  The problem addressed in the BI:FOCAL project was that teachers 

implementing an innovative curriculum steeped in cognitively-demanding tasks sometimes hit a 

“curriculum implementation plateau,” which is when trained teachers become comfortable with 
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some new practices but the professional development stops before the teachers have adopted all 

of the new practices advocated in the innovative curriculum (Silver, Mills, Castro, & Ghousseini, 

2006).  The BI:FOCAL project was designed to help teachers fill in these gaps (mathematical 

knowledge, use of student thinking, and proficiency with pedagogical strategies) to become 

maximally effective.   

The twelve teachers who participated in the BI:FOCAL project were teaching with the 

CMP curriculum (Lappan, Fey, Fitzgerald, Friel, & Philips, 1996) and met monthly for a day of 

professional learning tasks, consisting of modified lesson study and narrative case analysis and 

discussion.  The lesson study helped teachers attend to general instructional goals and issues, 

asked teachers to adopt an analytical stance towards teaching in general, and treated an 

instructional episode as a unit of analysis (Silver et al., 2006).  These activities connected aspects 

of teacher knowledge (e.g., understanding how students learn) to each other and to classroom 

practice.  The narrative case analysis made classroom practice public, asked teachers to adopt an 

analytic stance towards their practice, and treated an instructional episode as a unit of 

improvement.  The narrative cases (developed originally under the auspices of the Qualitative 

Understanding: Amplifying Student Achievement and Reasoning project and the Cases of 

Mathematics Instruction to Enhance Teaching project) used in the professional learning tasks 

were designed to focus the teachers’ attention on particular, important aspects of mathematics 

teaching and learning.  The narrative cases described the implementation of a task and showed 

the interactions among the students, task, and teacher during an instructional episode.  Not only 

did the narrative cases help teachers see the connections between content and practice, but the 

cases helped teachers develop their understanding of mathematics education ideas: problem-
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solving, pedagogical dilemmas, student learning, and planning.  The teachers were asked to solve 

a challenging task, read a narrative case illustrating the implementation of a similar task, discuss 

the case, and then reflect on their own practice as they collaboratively planned lessons.  The 

teachers were thus afforded learning opportunities from three perspectives: as a mathematician 

solving problems, as an observer of teaching and learning, and as a facilitator of student learning.  

Each activity with its perspective had the potential to draw out misconceptions, impoverished 

understanding, or opposing viewpoints.  As such, there were many opportunities for teachers’ 

learning and consequently a transformation of their practice. 

To assess the impact of the BI:FOCAL project, Silver and his colleagues (2007) collected 

and analyzed videos of the professional development sessions, written reflections of the 

participants, and semi-structured interviews with participants.  Some of the ideas teachers 

noticed from a narrative case were the case subject’s encouraging multiple representations, using 

questioning strategies, highlighting connections among solutions, and the sequencing of student 

solutions during whole-group discussions.  Similar to the ESP and GCI projects, the teachers 

participating in BI:FOCAL’s professional learning tasks were presented with such a full 

experience of exploration of these pedagogical ideas that the teachers could organize their 

thinking about content, pedagogy, and student learning into a framework that would help them 

be more effective teachers. 

The results of the analysis of the project indicated that teachers had opportunities to build 

connections among mathematical ideas, connect these ideas to their practice, and consider a 

range of pedagogical actions and decisions with respect to student opportunities to learn.  The 

narrative case analysis “generated a number of insights that provoked [teachers] to modify their 
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instruction” (Silver, Ghousseini, Gosen, Charalambous, & Strawhun, 2005, p. 299).  Silver et al. 

found evidence of transformation in the teachers’ practice: using multiple solutions as a 

pedagogical tool to help advance the mathematical instructional goals of a lesson.  The narrative 

cases had allowed teachers to unpack this nuanced, complex practice and view it as a means to 

make connections between mathematical ideas. 

The three projects described in this section all sought to help teachers make connections 

between teachers’ actions and student learning: use of high-level tasks in the ESP project, use of 

frameworks to guide problem selection and discussion in the CGI project, and using an analytical 

stance towards teaching in the BI:FOCAL project.  Each project employed samples of authentic 

practice to engage teachers in transformative professional development, including narrative and 

video cases, cognitively-demanding tasks and samples of student work, research-based 

frameworks, and modified lesson study.  The result of each project was a change in teachers’ 

beliefs about the inherent potential of students and what learning opportunities can maximize 

that potential.  In summary, transformative professional development is needed to help teachers 

overcome obstacles to providing opportunities for students to learn, including opportunities for 

students to learn reasoning-and-proving.  Targeted professional development should be steeped 

in authentic teacher practice, utilizing research, case studies, samples of students’ work, and an 

opportunity to grapple with content. 
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2.4 EXAMINING PRACTICE 

2.4.1 Ways to investigate instructional practices 

Stein, Baxter & Leinhardt (1990, p. 640) argued that in order to make the link between subject-

matter knowledge and teachers’ instructional practice, educational researchers “need to develop 

and draw upon detailed, qualitative descriptions of how teachers know, understand, and 

communicate their subject matters.”  This line of research coincided nicely with the publication 

of the first NCTM Standards (1989) which advocated developing connections, flexibly using 

multiple representations, and communicating discoveries which would lead to student 

competencies such as solving complex, multi-step problems.  Since the NCTM Standards 

advocated teacher practices that were vastly different than how teachers were trained (Ball, 

1988b), professional development was essential in helping teachers develop their subject-matter 

knowledge so that they could support their students’ learning.  The stream of research advocated 

by Stein et al. (1990) would help inform the type of professional development that was needed. 

Case studies of individual teachers allow researchers to gather extensive amounts of data 

and perform a fine-grained analysis of the instructional practice of those teachers.  For instance, 

the Stein et al. (1990) study described the subject-matter knowledge of a seasoned fifth grade 

teacher in an urban school by examining the teacher’s practice via videotaping instructional 

episodes, interviewing, and gathering background knowledge.  Stein and her colleagues defined 

subject-matter knowledge as “a combination of beliefs and knowledge about both mathematical 

content and content-specific pedagogy” (1990, p. 642).  For this particular study, the 

mathematics content was functions and graphing.  To assess the teacher’s mathematical 
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knowledge base, a card sort task was given to the teacher and a mathematics educator and the 

results were compared.  The cards contained samples of representations, mathematical 

relationships and definitions of functions.  The videotaped lessons served to reveal how the 

teacher’s subject-matter knowledge influenced the teacher’s presentation of main concepts, 

procedures, and relationships. 

The researchers found that the teacher’s limited subject-matter knowledge affected his 

instruction by not offering enough groundwork to his students for future lessons, 

overemphasizing concepts that were only partially correct (e.g., definition of a function), and 

missing opportunities to help students see connections among representations and concepts.  

Consequently, the teacher’s actions implied a goal of factual fluency over conceptual fluency for 

functions, which was counter to the goals stated in reform documents (NCTM, 1989).  

Case studies of individual teachers provide deep exploratory information but are are time-

consuming, labor-intensive, and not necessarily generalizable.  A different avenue for 

researchers to study instructional practices is analyzing the information gathered from a survey.  

While surveys are cost-effective and useful for gathering coarse, generalizable contrasts and 

similarities among teachers in large systems, surveys can contain inaccurate responses due to 

teachers misunderstanding terms and described situations described.  For instance, a survey 

might ask teachers if they provide instruction on proof-making.  If a teacher has an impoverished 

understanding of the core elements of proof, the teacher might respond that he or she is 

“teaching” proof without actually doing so.   Classroom artifact packets, in contrast, provide 

more detailed information than surveys without the cost of observing teachers for case studies, 

making them an ideal vehicle for examining practice at scale. 
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2.4.2 Classroom artifact packets 

Classroom artifact packets, as described by Boston (2006), include an instructional task, a 

description of the instructions given to students and the structure of the work, and samples of 

student work labeled high, medium, and low according to the teacher’s evaluation criteria.   The 

task, student work, and labels inform researchers about the teachers’ values, expectations for 

student learning, and the cognitive processes for which students are held accountable. In the 

remainder of this section, three studies will be described that explored the use of classroom 

artifact packets: Clare and Aschbacher (2001), Borko, Stecher, Alonzo, Moncure, and McClam 

(2005), and Boston (2006). 

2.4.2.1 Clare and Aschbacher (2001) 

Clare and Aschbacher (2001) investigated using teachers’ assignments (tasks) to gather 

information about teachers’ practice in the classroom.  Clare and Aschbacher argued that the 

collection and analysis of teacher’s assignments were more cost-effective than observing practice 

directly, would yield more accurate results than surveys, and were better indicators of the 

learning opportunities teachers gave students to produce high-quality work.  In their 2001 study, 

Clare and Aschbacher examined and reported the technical quality of using teacher assignments 

to assess instructional quality. 

To create the rubrics needed to assess the teacher assignments, Clare and Aschbacher 

drew on research which indicated that teachers who offered high-quality learning opportunities 

to their students were knowledgeable about their content, set clear instructional goals, aligned 

instructional goals with lessons and assessments, focused on metacognitive strategies in their 
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curriculum, communicated their expectations, provided feedback, and provided opportunities for 

students to share their knowledge.  Six rubrics were then created: cognitive challenge of the task, 

clarity of the learning goals, clarity of the grading criteria, alignment of goals and task, alignment 

of goals and grading criteria, and overall quality.   The created rubrics were used to assess the 

match of instructional quality between teachers’ assignments with classroom observations for 32 

third and seventh grade language-arts teachers working in an urban district.  The teachers 

submitted four assignments, each containing an information cover sheet, four samples of what 

they deemed to be high-quality student work, and four samples of medium-quality work.  Two 

classroom observations and interviews were made to allow comparison with the classroom 

artifact packets. 

After training raters with anchor papers and other samples, Clare and Aschbacher had 

three raters score each assignment according to the rubrics (the reported inter-rater reliability was 

acceptable at about 83%).  The student work was scored by two raters using established rubrics 

on organization, content, and mechanics.  The classroom observations were made by trained and 

seasoned researchers and graduate students; the instructional quality of each lesson was assessed 

according to the cognitive challenge of the lesson activities, the quality of the classroom 

discussions, the level of student participation in classroom discussions, the quality of 

instructional feedback, the level of student engagement in the lesson, the lesson 

implementation/classroom management, the clarity of the learning goals, and the alignment of 

goals and lesson activities.  Clare and Aschbacher found that the teacher’s observation scores 

from the quality of classroom discussions rubric, the level of student participation in classroom 

discussion rubric, the quality of instructional feedback, and the cognitive challenge of the lesson 

activities correlated well with the quality of the teacher’s assignments.  The researchers also 
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found a significant correlation between the quality of student work and the quality of teacher’s 

assignments.  In addition, most of the variation in the scores was due to actual differences across 

teachers, not raters.  On the other hand, the teacher’s observation scores from the level of student 

engagement rubric, the clarity of the learning goals, and the alignment of the goals and lesson 

activities were not significantly correlated with the quality of the teacher’s assignments.  In 

addition, reading comprehension and writing assignments were more correlated with the rubric 

scores than content-area writing assignments and challenging major projects.  Clare and 

Aschbacher also found that the rubrics produced scores that were significantly correlated with 

each other, indicating that some rubrics could be eliminated, but not which ones.  The 

researchers did not test for the influence of the quality of the teacher’s assignments on the quality 

of the students’ work, nor did they claim their results—from a small sample of urban districts—

could be generalized. 

2.4.2.2 Borko et al. (2005) 

Borko and her colleagues (2005) addressed two of the unresolved issues of Clare and 

Aschbacher’s (2001) study: generalizability and type of assignment correlation.  Borko et al. 

looked mathematics and science to address generalizability and gathered all of the student work 

for an assignment (instead of just four samples) to address the type of assignment correlation.  

Thirteen middle school math and science teachers from California and Colorado participated in 

the study.  The teachers taught in different types of schools (urban, suburban, and rural) and used 

either reform curriculum or traditional curriculum.   

Each teacher submitted artifact packets representing their classroom practice for one week 

and each teacher was observed for 2-3 days during the same week.  The five middle school 
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science teachers constituted the pilot study.  The classroom packets contained artifacts that 

represented a scoop of a teacher’s practice: instructional materials, assignments, quizzes and 

tests, student work, feedback, wall displays, lesson plans, and teacher reflections.  Teachers were 

directed to separate the artifacts into three categories: materials created in preparation for class 

(e.g., scoring rubrics), created during class (e.g., student work), and created after class (e.g., 

student homework).  They were also directed to submit samples of high and medium quality 

student work. 

The researchers used the National Science Education Standards (National Research Council, 

1996), the Principles and Standards for School Mathematics (NCTM, 2000), and the experts in 

the Mosaic II project (Stecher et al., 2002 as cited in Borko et al., 2005) as guides in developing 

the scoring rubrics for quality science and mathematics teaching.  The resulting science 

dimensions were: collaborative grouping, materials, assessment, scientific discourse, structure of 

instruction, hands-on, minds-on, cognitive depth, and inquiry, plus an overall rating.  The 

resulting mathematics dimensions were: collaborative grouping, structure on instruction, 

multiple representations, hands-on, cognitive depth, mathematical communication, explanation 

and justification, problem solving, assessment, and connections-applications, plus an overall 

rating.  The teacher quality score from the classroom observations was determined by applying 

the scoring rubrics to the observer’s field notes.  To increase inter-rater reliability, each observer 

was trained on videotaped lessons; discussion regarding the lesson and scores occurred until 

consensus was reached.  The classroom artifact packets were scored by a team of researchers, 

both those who collected the data and discussed the scoring rubrics and the packets and those 

who had not collected data (to check the validity of scoring an artifact packet without the benefit 

of classroom observation).  Unlike the method used in the Clare and Aschbacher (2001) study, 
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average rater scores of teaching quality from the classroom practice artifacts were combined with 

the teacher quality scores of the classroom observation ratings and the interview questions to 

create the truest, most complete picture of teaching quality possible. 

Borko and her colleagues found that the inter-rater reliability for the science classroom 

artifacts packets was “substantially higher than one would expect by chance alone” (2005, p. 86).  

As in the Clare and Aschbacher (2001) study, Borko et al. found that the rater agreement varied 

across the dimensions; the agreement was good for the dimensions minds-on, cognitive depth, 

inquiry, and overall, but not as good for materials (sufficient quantities of materials allowed 

access to information and support investigations) and assessment (formative).  Interestingly, 

Borko and her colleagues noted that classroom artifact packets from traditional classrooms had a 

lower score (as expected for the rubric dimensions being used in the study) but a higher inter-

rater reliability than packets from reform classrooms.  Similar results were found for the 

mathematics artifact packets. 

The correlation in scores of teaching quality between the mathematics artifact packets was 

moderate and varied across dimensions (higher for hands-on, cognitive depth, and overall ratings 

and lower for collaborative grouping and assessment) but not type of instruction; the differences 

in correlation was not related to reform or traditional curriculum.  However, there was a 

difference in average score of instructional quality between reform (higher) and traditional 

(lower) curriculum.  In addition, Borko and her colleagues found that mathematical practices that 

are difficult to capture with artifact packets—notably connections/applications and structure of 

instruction—had low inter-rater reliability when the classroom packets were considered by 

themselves.  Subsequent discussions indicated that information about school context was 

necessary to determine whether the classroom instruction helped students connect what they 
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were learning in mathematics with their environment.  Similarly, when the artifact packet score 

in isolation was compared to the packet/observation/interview score, the dimensions 

collaborative grouping and multiple representations had lower reliability than the other 

dimensions.  

In general, though, Borko and her colleagues found that teacher quality can be reasonably 

assessed via classroom artifact packets, regardless if the classroom content was science or math, 

the type of school was urban, suburban, or rural, and the type of instruction was reform or 

traditional.  Inconsistencies in ratings were attributed to raters’ inferences when presented with 

incomplete information or mixed messages from teachers transforming their practice from 

traditional to reform curricula, or to the ability of classroom artifact packets to describe 

interactive practices of teaching such as classroom discourse, or disagreement of what reform-

oriented classroom practices look like. 

2.4.2.3 Boston (2012) 

While Borko and her colleagues looked mathematics and science to address generalizability and 

type of assignment correlation, Lindsay (Clare) Matsumura continued her work on rubrics to 

assess instructional quality through observations and student work samples.  By 2006, 

Matsumura and her team had developed the Instructional Quality Assessment (IQA) 

(Matsumura, Slater, Junker, Peterson, Boson, Steele, & Resnick, 2006).  The same year, team 

members Boston and Wolf (2006) published a paper that described the development and field 

testing of the IQA for mathematics, called the IQA Academic Rigor in Mathematics rubric (IQA 

AR:Math).   The IQA Mathematics rubrics indicate the quality of teaching and student learning 

opportunities based on the teacher practices of selecting and implementing cognitively 
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challenging tasks, providing opportunities for students to share their mathematical thinking, and 

sharing expectations for students’ learning.  The rubrics—which evaluate the cognitive demands 

in each practice—are based on the Mathematics Tasks Framework and the Task Analysis Guide 

from the QUASAR project (Stein, et al., 1996).  Because all of the evaluations look at some form 

of cognitive demand, comparisons across the teaching practices can be made, providing 

researchers with a picture of the quality of instruction in a particular classroom.   In the study 

conducted by Boston and Wolf (2006), inter-rater reliability was consistent (60-67.3%) for all 

four measures of student work samples (classroom artifact packets).  The IQA AR:Math rubrics 

showed significant differences in mathematics instruction and learning between teachers who 

had received professional development around academic rigor, accountable talk, clear 

expectations, and self-management of learning and teachers who had not received training.  The 

mathematics instruction and learning included understanding, sense-making, and the use of 

multiple representations.   This initial study also reinforced Clare and Aschbacher’s (2001) 

finding that classroom artifact packets can be used as stable indicators of classroom practice. 

Over time, the collection of rubrics designed to assess instructional quality in language arts 

and mathematics was refined and renamed as the Instructional Quality Assessment (IQA) Toolkit 

(Boston & Wolf, 2006; Matsumura et al., 2006).  Some of the rubrics are designed to be used for 

lesson observations and some for student work sample packets.  The rubrics for mathematics 

specifically evaluate the quality of instruction based on four indicators and include: the Potential 

of the Task rubric for the cognitive demands of the task prior to instruction, the Implementation 

of the Task rubric for the students’ engagement and thinking evident in the majority of students 

during the lesson, the Rigor in Students’ Written Responses rubric for the use of multiple 
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representations, etc., and a collection of three rubrics (Rigor of Teacher’s Expectations, Clarity 

and Detail of Expectations, and Student Access) for teachers’ expectations for students’ learning 

and are based on information provided by the teacher, such as directions given to the student 

(Boston, 2012).   The evaluation of the quality of instruction from the IQA Mathematics Toolkit 

was found to correlate well with student achievement (Matsumura, Garnier, Slater, & Boston, 

2008; Quint, Akey, Rappaport, & Willner, 2007). 

The recent study published by Boston describes her efforts to determine the “aspects of 

teachers’ ability to enact high-quality mathematics instruction [that] are captured by the IQA 

Mathematics rubrics for lesson observations and collections of students’ work” (p. 77).  Boston 

collected data during the 2004-2005 school year on 13 middle school teachers who had 

participated in professional development in preparation for teaching a standards-based 

curriculum.  The professional development encouraged the use of cognitively-demanding tasks 

and provided support for task implementation and classroom discourse.  Boston collected 26 

lesson observations (problem-solving lessons with class discussion around students’ work) and 

35 classroom artifact packets which contained challenging problem-solving tasks, six samples of 

student work, description on cover sheet.  The IQA Mathematics Toolkit was used to assess the 

lesson observations and the classroom artifact packets.  To ensure reliability, each lesson was 

observed by two raters and the classroom artifact packets were independently scored by three 

raters who resolved discrepancies with consensus.   

The results of the lesson observations indicated that the trained teachers struggled with 

selecting cognitively-demanding tasks and implementing them at a high-level (median score of 2 

out of 4 for Potential of the Task and Implementation of the Task).  The classroom mathematical 

discussions were found to be weak as well; while many students participated, there was very 
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little rigor, linking or press in the discussion around mathematical understanding.  Only 27% of 

the lessons were considered to be high-level.  Not surprisingly, the Rigor of Teacher’s 

Expectations rubric indicated that teachers generally expected students to engage at the level of 

memorization or procedures without connections to meanings and no further. 

The classroom artifact packets were not for the lessons that were observed and evaluated.  

For these separate assignments, the IQA Mathematics results were much different.  The written 

assignments showed a higher quality of instruction; the rubrics for Potential of the Task, 

Implementation of the Task, Rigor of Students’ Responses, and the collection for Teachers’ 

Expectations had a median scores of 3 out of 4.  80% of the assignments were considered to be 

high-level.  Thus, it appeared from the results of the IQA Mathematics Toolkit that teachers were 

better able to engage students in high-level mathematical thinking with written assignments than 

with classroom discussion.  Boston conjectured that “supporting students to produce high-quality 

written work may be less pedagogically demanding than maintaining students’ high-level 

engagement throughout an instructional episode” (pp. 96-97).   

Note that Boston was not studying the correlation between classroom artifact packets and 

classroom observations for measuring instructional quality.  Evidence of that correlation can be 

found in one of Matsumura’s studies.  Matsumura and her colleagues (2008) found that the IQA 

Mathematics Toolkit results from classroom observations and classroom artifact packets to be 

highly correlated for their study. 

Since the IQA Mathematics rubrics are designed to only capture and assess certain 

instructional practices, Boston cautioned that the rubrics “are best suited for assessing reform-

oriented instructional practices for use in implementation studies or curriculum or professional 

development, or to identify changes in the nature of school- or district-wide instructional practice 
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over time (Boston, 2012, pp. 96-97).  Other types of instructional practices (e.g., direct 

instruction) would not receive high scores on the IQA Mathematics rubrics.  Boston also 

cautions that student work may not capture certain instructional moves, such reducing the 

cognitive demand of the task by smoothing the curriculum.  The lesson observation rubrics 

capture these moves well, but not the student work rubrics. 

In summary, a valid and reliable examination of a mathematics teacher’s practice can be 

made through classroom artifact packets.  These student work sample packets allow for the 

examination of classroom practice at scale because it is less time consuming than observations 

and more reliable than surveys. 

This chapter described literature from four areas of mathematics research: the nature of 

proof, aspects of proof that challenge secondary teachers, professional development, and 

examining practice.  Recent sets of mathematics content and practice standards (NGO Center & 

CCSSM, 2010; NCTM, 1989, 2000) captured the current views on the nature of proof, and the 

Stylianides have provided us with an accessible definition of proof for secondary students (A. J. 

Stylianides, 2007) and a scaffolded framework of reasoning-and-proving activities (G. J. 

Stylianides, 2008, 2010).  Regardless of these standards, definitions, and framework, teaching 

reasoning-and-proof remains a complex activity due to teachers’ weak knowledge base, 

insufficient resources, and unsupportive pedagogy.  Transformative professional development 

which uses authentic artifacts of practice (e.g., tasks, student work, narrative cases) has been 

shown to help teachers improve their practice.  In particular, teachers who have had this type of 

transformative professional development are capable of selecting, implementing and assessing 

the work from cognitively-demanding tasks. 
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The current study seeks to understand this transformative process with a focus on reasoning-

and-proving. Do teachers who have participated in professional development with a focus on 

reasoning-and-proving (a subset of cognitively-demanding tasks) enact reasoning-and-proving 

tasks more often and more skillfully than the teachers described in the literature who did not 

have similar opportunities?  In the next chapter, the research questions, data, coding, and analysis 

is described that seek to answer this broad question. 
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3.0  METHODOLOGY 

The goal of this study was to determine how secondary teachers who have experienced targeted 

professional development enact reasoning-and-proving in their classrooms.  This study 

investigated the ability of teachers who participated in a reasoning-and-proving course to select, 

implement, and evaluate the student products of reasoning-and-proving tasks.  The teachers’ 

abilities were examined through answers to background interview questions, logs of tasks used in 

class, textbook exercise analysis, and classroom artifact packets. 

Because this study was about a particular phenomenon (enacting reasoning-and-proving) 

in a specific context (the teachers’ classrooms), a qualitative research design was appropriate 

(Bogdan & Biklen, 2007; Erickson, 1986).  The nature of the study was descriptive rather than 

causal and was bounded by four cases; therefore, the specific type of qualitative study was a 

descriptive multiple-case design (Merriam, 1998; Miles & Huberman, 1994; Yin, 1993).  Since 

all of the teachers in the study received a similar professional development (CORP course), Yin 

(1993) suggested the study follow a replication logic, which is when consistent results over 

multiple cases are considered to be robust findings with confidence. 

My intention was not to generalize how all teachers enact reasoning-and-proving in their 

classrooms, but to offer information about how these particular teachers selected, enhanced, 

implemented, and evaluated tasks in order to offer their students reasoning-and-proving learning 
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opportunities.  The choices the teachers made should have revealed what they understood and 

valued about reasoning-and-proving and how they integrated mathematical reasoning-and-

proving into their curriculum.  This study highlighted the complex nature of enacting reasoning-

and-proving in secondary classrooms, especially for early-career teachers.  As such, it was not 

my intention to evaluate the teachers in this study.  It is my hope that this study contributes to our 

understanding of how trained teachers offered reasoning-and-proving learning opportunities by 

the way of tasks. 

Stein et al.’s (1996) Mathematical Tasks Framework provides direction in selecting, 

launching, and implementing cognitively-demanding mathematical tasks.  Tasks that provide 

students opportunities to develop their understanding of reasoning-and-proving are cognitively-

demanding tasks (Stein & Smith, 1998; G. J. Stylianides, 2010).  Since students come to 

understand the field of mathematics by working on cognitively-demanding tasks (Doyle 1983, 

1988), studying the extent to which teachers select, implement, and evaluate the products of 

tasks after focused professional development was an appropriate lens through which to 

investigate the teachers’ ability to engage students in reasoning-and-proving.  The research 

questions were: 

1.) To what extent did participants select reasoning-and-proving learning opportunities 

in the form of tasks? 

a.) To what extent does the textbook include tasks that have the potential to engage 

students in reasoning-and-proving? 

b.) To what extent did the participants select tasks for instruction that have the potential 

to engage students in reasoning-and-proving? 
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c.) To what extent did the participant modify tasks to affect the tasks’ potential to engage 

students in reasoning-and-proving? 

d.) What were the sources of the tasks that participants selected for instruction? 

2.) To what extent were participants able to maintain the level of cognitive demand of 

the reasoning-and-proving task during implementation? 

3.) To what extent were participants able to accurately evaluate their students’ 

reasoning-and-proving products? 

a.) To what extent did participants’ criteria for judging the validity of their students’ 

reasoning-and-proving products contain the core elements of proof? 

b.) To what extent did participants apply the core elements of proof in evaluating 

their students’ reasoning-and-proving products? 

c.) In what ways did participants communicate expectations regarding what was 

required to produce a proof to students? 

The following sections detail the reasoning-and-proving course in which the teachers 

participated, what data was be collected, how the data was be coded, and how the data was 

analyzed.  The first section describes the context of the reasoning-and-proving course in which 

the teachers participated and a description of those teachers who participated in this research 

study.  The next section explains the data collected in the study, specifically tasks (available, 

selected, enhanced, and sources), classroom artifact packets, and pre-and post- interview 

questions.  The third section details the coding systems and methods of analyzing the data as 

related to the research questions.  Validity and generalizability are briefly discussed in the final 

section. 
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3.1 PROFESSIONAL DEVELOPMENT: THE REASONING-AND-PROVING 

COURSE 

 

The goal of the NSF-funded Cases of Reasoning-and-Proving (CORP) project was to create 

professional development materials that would develop teachers’ knowledge of mathematics for 

teaching (KMT) reasoning-and-proving, such as the ability to modify tasks or make connections 

between representations.  The specific KMT contained in the CORP materials came out of the 

research that revealed obstacles to implementation, insufficient of resources, and the pedagogical 

difficulties of high school teachers offering reasoning-and-proving learning opportunities to their 

students.  Common obstacles to implementation are: weak concept of proof, ability to generalize, 

understand rigor in proof, understand the role of proof, misunderstanding format (Knuth, 2002a, 

2002b) and preference and acceptance of empirical arguments (e.g., Chazan, 1993).  Although 

teachers rely heavily on their textbooks (Love & Pimm, 1996), studies have shown that the 

number of reasoning-and-proving tasks available in textbooks is small (Lithner, 2004; G. J. 

Stylianides, 2009; Thompson, Senk, & Johnson, 2012).  Studies have also revealed three issues 

with teachers’ pedagogy: misplaced authority (Lampert, 1990; Yackel & Cobb, 1996), 

understanding generalization (Ellis, 2011), and discourse that lowers the cognitive demands of 

reasoning-and-proving tasks (Bieda, 2010).  The CORP materials address all of these issues.  

The topics contained in the CORP materials are: motivating the need for proof (limitations of 

empirical arguments), exploring the nature of proof with a particular focus on the core elements 

of proof, supporting the development of students’ capacities to reason-and-prove through tasks, 
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tools, and talk, modifying tasks to increase their reasoning-and-proving potential, and making 

connections between tools (using problem contexts and using visual representations). 

The intended outcomes of the CORP course for teachers were an understanding of what 

constitutes reasoning-and-proving, an understanding of how secondary students benefit from 

engaging in reasoning-and-proving, and an understanding of how they can support the 

development of students’ capacities to reason-and-prove.  Initial evidence from pilots conducted 

at three large research universities suggest that teachers engaged with the materials, believe that 

what they learned in the course had the potential to impact their teaching practice, and that the 

cases helped teachers think about instructional issues related to reasoning-and-proving.  In 

addition, the tasks-tools-talk structure was a useful framework for supporting teachers’ analysis 

and discussion of the cases (Smith, Arbaugh, Steele, Boyle, Fulderson, Knouck, & Vrabel, 

2012).   

3.1.1 Course Activities 

The delivery of the CORP content was grounded in elements of teachers’ practice, as suggested 

by Ball & Cohen (1999).   Table 3.1 lists the specific activities in which the participants engaged 

related to the major topics of the course.  The participants in the professional development 

discussed the mathematical ideas, explored the pedagogical ideas, solved tasks, analyzed student 

work on tasks, analyzed narrative cases, and connected all of this work to their teaching practice.  

In preparation for discussing mathematical ideas, the participants read published research articles 

on the topics: analytical framework for reasoning-and-proving (G. J. Stylianides, 2010), tasks, 

tools, and talk (Chapin, Anderson & O’Conner, 2003; Hiebert et al., 1997), reasoning-and-
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proving tasks in high school textbooks (Johnson, Thompson & Senk, 2010), the value of 

connecting representations (Clements, 2004), and proof as a tool to learn mathematics (Knuth, 

2002a).  The student work and cases contained common errors and opportunities to practice 

writing proofs; the discussions, presentations, and reflections helped participants develop their 

pedagogy and correct misunderstandings regarding reasoning-and-proving.   
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Table 3.1  CORP Course Participant Activities by Chapter 
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In the beginning of the course (column one in Table 3.1), participants explored the 

mathematical concept of proof, how to recognize when a claim has been proven, and how proof 

can be studied in the context of education.  The participants then addressed one of the common 

misconceptions about proof-making: empirical arguments do not constitute valid proofs but 

deductive arguments do constitute valid proofs (e.g., Chazan, 1993).  The participants worked 

through a three-task sequence chosen by G. J. Stylianides and A. J. Stylianides (2009) to force 

participants who had accepted empirical arguments into cognitive conflict, which helped them 

see the limits of inductive reasoning.  

A main goal of the second chapter (column 2 in Table 3.1) was to have participants develop 

criteria for proof which contained the core elements of a valid proof: the argument must show 

that the conjecture or claim is (or is not) true for all cases, the statements and definitions that are 

used in the argument must be true and accepted by the community because they have been 

previously justified, and the conclusion that is reached from the set of statements must follow 

logically from the argument made (based on A. J. Stylianides, 2007).  Additionally, the 

participants needed to become aware that the type of proof, form of the proof, the representation 

used, and the explanatory power of the proof can vary for a valid proof.  The participants arrived 

at these criteria by examining samples of student work around the task “prove that the sum of 

two odd numbers is even.” The samples of student work varied with respect to format, level of 

sophistication, and validity; the variety provided opportunities for the participants to determine 

what is necessary and what was optional for a valid proof.  The CORP materials provided the 

course instructor with sample questions and suggestions about massaging the participants’ 

criteria into a focused list.  After examining student work on different tasks throughout the 

course, participants were asked to refine their criteria.  By the end of the course, participants had 
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practiced using a refined criteria to evaluate proof products that contained the core elements of 

proof. 

Another goal of the second chapter was to have participants explore different reasoning-and-

proving activities.  While current curriculum standards advocate infusing mathematics 

curriculum with reasoning (NGA Center & CCSSO, 2010; NCTM, 2000), specific types of 

reasoning activities help students develop their mathematical proving skills (Lakatos, 1976; G. J. 

Stylianides, 2008).  These activities-- searching for patterns, making conjectures, and providing 

non-proof and proof arguments—are reflected in G. J. Stylianides’ (2010) analytical framework 

for reasoning-and-proving (see Figure 2.1).  Stylianides argued that mathematicians process new 

knowledge through the four stages of the framework and students should be afforded the same 

scaffolding in school.  His framework contains each of these stages.  Stylianides also argued that 

the three components of the framework (mathematical, psychological, and pedagogical) 

“can…provide the means to connect research findings from different investigations, thereby 

supporting the development of integrated knowledge across different domains” (Stylianides, 

2008, p. 9).    

The participants next focused on three major aspects of teaching, namely tasks, tools, and 

talk.  In introducing the task, tools, and talk lens in Chapter 3 (third column in Table 3.1), the 

architects of the CORP materials provided a concrete way for the participants to consider, 

anticipate, and incorporate reasoning-and-proving into their classrooms.  The participants were 

first asked to anticipate the challenges of integrating reasoning-and-proving into their practice, 

such as communicating valid criteria for proof to their students and fostering a classroom culture 

that supported students’ development of reasoning-and-proving skills.  Next the participants 

read, discussed, and summarized readings on tasks, tools, and talk (Chapin, Anderson & 
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O’Conner, 2003; Hiebert et al., 1997).  The two narrative cases—The Case of Vicky Mansfield 

and The Case of Nancy Edwards—asked the participants to tease out different ways teachers can 

support their students’ understanding of reasoning-and-proof.   The participants then combined 

their observations into a list of pedagogical moves that might address the anticipated classroom 

challenges, a list to which they added throughout the rest of the course.   

Throughout the course, participants wrote reflections.  In Chapter 3, the participants wrote 

about selecting tasks that allowed all students to develop their understanding of reasoning-and-

proving and about implementing those tasks with a focus on tools and talk.  All the participants 

were preservice teachers who had already studied the Math Tasks Framework (Stein et al., 

1996), levels of cognitive demand of mathematical tasks as described in the Task Analysis Guide 

(Stein & Smith, 1998), and the Five Practices for Orchestrating Mathematical Discussions (Stein, 

Engle, Smith, & Hughes, 2008) in previous courses.  Participants brought this information as 

well as the course readings on tasks, tools, and talk into their reflection responses.  For example, 

some participants noticed that the teachers in the Chapter 3 cases selected good tasks (Task 

Analysis Guide), fostered collaboration by allowing students to think and talk, continually 

pressed students for justification, sequenced student presentations of solutions (three of the Five 

Practices), and launched the task effectively (Math Tasks Framework).   

The fourth chapter of the course (column four in Table 3.1) addressed the lack of good 

reasoning-and-proving tasks in published curriculum material (Lithner, 2004; G. Stylianides, 

2009; Thompson, Senk, and Johnson, 2012). Since many teachers rely heavily on their textbooks 

(Battista & Clements, 2000; Grouws & Smith, 2000; Grouws, Smith, & Sztajn, 2004; Haggarty 

& Pepin, 2002; Horizon Research, Inc., 2003; Robitaille & Travers, 1992; Schmidt, McKnight, 

& Raizen, 1997; Tyson-Bernstein & Woodward, 1991) the teachers need to learn to modify tasks 
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in order to increase learning opportunities for reasoning-and-proving for their students.  After the 

teachers searched their own textbooks for good reasoning-and-proving tasks, the teachers read 

about Johnson, Thompson, and Senk’s (2010) efforts to identify reasoning-and-proving tasks and 

property justifications in many popular, commercially-available textbooks.  Armed with very 

specific knowledge of verbs that encourage reasoning-and-proving actions from the article they 

read (e.g., write a convincing argument, determine the error in reasoning), the participants then 

explored ways to modify insufficient tasks.  After examining several sets of tasks and suggested 

modifications, the participants created a list of strategies for modifying tasks to increase their 

reasoning-and-proving potential.  Teachers then practiced using these strategies to modify 

additional tasks. 

The final two chapters of the CORP materials (columns five and six in Table 3.1) focused 

on using the problem context to generalize a solution and the explanatory power of visual proofs.  

The material in these chapters, while important, was not directly related to the current study. 

3.1.2 The Participants 

In the summers of 2011 and 2012, 10 and 8 preservice teachers, respectively, participated in the 

CORP course on reasoning-and-proving as part of their teacher certification program.  From 

these 18 preservice teachers, four agreed to participate in this study.  All of the participants in the 

CORP course were asked to participate in the study, but not every teacher had secured a full-time 

teaching job at the time of the study, which effectively shrunk the pool of potential participants.  

A few others who did secure teaching positions were concerned about taking on any additional 

responsibilities so early in their careers.  Five teachers originally agreed to participate; one was 
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removed due to the timing of the study.  Two of the study participants experienced the 

professional development in 2011 and completed a full year of teaching prior to the study.  The 

other two study participants experienced the professional development in 2012 and were in their 

first year of teaching during the study (see Table 3.2).  The value in asking early-career teachers 

to participate in a study in which an important mathematical topic (reasoning-and-proving) is 

poorly represented in textbooks but is largely represented in curriculum standards is that early 

career teachers tend to pay more attention to planning and have fewer instructional routines 

(Sleep, 2009) than experienced teachers, and can thus better accommodate new ideas into their 

curriculum.   

 

Table 3.2  The Participants in the Current Study 

Participant 

Name 
School 

# of Yrs. 

Teaching 
Subject Curriculum Materials 

Sidney 
Suburban Middle School in 

Virginia 
1 Algebra 1 

Prentice Hall Algebra 1, 

VA edition 

Jonathan 
Urban Charter School in 

Pennsylvania 
1 Algebra 1 

Prentice Hall Algebra 1, 

Common Core edition 

Karen 
Urban Magnet High School 

in Pennsylvania 
2 Geometry CME Geometry 

Uma 
Urban High School in 

Virginia 
2 Geometry 

Glencoe Geometry, VA 

edition 
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3.2 DATA COLLECTION 

 

Four data sources were used to answer the research questions: the class textbook or curriculum 

guide, task log sheets of relevant tasks, classroom artifact packets, and pre- and post-data 

collection interviews.  The class textbook or curriculum guide indicated which tasks were 

available to the teacher and students.   The task log sheets indicated what tasks were selected, 

which tasks were modified and how, the sources of the tasks, and the purpose of the tasks.  The 

classroom artifact packets provided information on how students engaged with the task and 

about how the teacher evaluated students’ reasoning-and-proving products.  The background 

(pre-) interview questions intended to capture the freedom the participant had in selecting, 

implementing, and evaluating tasks and any prior work the participants’ students had done on 

reasoning-and-proving.  The post-data collection interviews were driven by the data analysis.  

The research questions, grouped with the data that was collected, the coding system, and the 

analysis is shown in Table 3.3 (note: “RP” in Table 3.3 means “reasoning-and-proving”). 

 

Table 3.3  The Research Questions, Related Collected Data, Coding Systems, and Analysis 

1.) To what extent did participants select reasoning-and-proving learning opportunities in the 

form of tasks? 
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Question Data Coding Analysis 

To what extent does the 
textbook include tasks 
that have the potential 
to engage students in 
reasoning-and-proving? 

The tasks in the 
portion of the  
textbook that will be 
implemented during 
the data collection 
period 

All tasks were coded 
using the Thompson, 
Senk and Johnson 
(2012) framework.  
Tasks that did not fit 
the framework were 
coded as non-RP. 
Appendix C 

The percent of textbook 
tasks that had the 
potential to engage 
students in reasoning-
and-proving were 
calculated.  In addition, 
the percentage of 
textbook tasks in each 
category (Thompson, 
Senk and Johnson 
(2012) was calculated.   

To what extent did the 
participant select tasks 
for instruction that had 
the potential to engage 
students in reasoning-
and-proving? 

All of the tasks that 
the teacher selected 
(used during or 
outside of class) 
during the data 
collection period 
Appendix F 
Appendix G 

All tasks were coded 
using the Thompson, 
Senk and Johnson 
(2012) framework.  
Tasks that did not fit 
the framework were 
coded as non-RP. 
Appendix C 

The percentage of RP 
tasks out of the selected 
tasks were calculated.  In 
addition, the percentage 
of tasks used in each 
category (Thompson, 
Senk and Johnson 
(2012)) were calculated.   

To what extent did the 
participant modify tasks 
to affect the tasks’ 
potential to engage 
students in reasoning-
and-proving? 

Any task that was 
modified with respect 
to reasoning-and-
proving from any 
source, used during 
the data collection 
period. 
Appendix F 
Appendix G 
 

Modified tasks were 
coded for changes in 
reasoning-and-
proving potential. 
Appendix H 
 

The number of tasks that 
were modified was 
reported.  In addition, 
the rationales provided 
by the participants 
regarding the 
modifications were 
reported. 

What were the sources 
of the tasks that 
participants selected for 
instruction?  

The Reasoning-and-
Proving Task Log 
Sheet that lists the 
source of all 
reasoning-and-
proving tasks used 
during the data 
collection period 
Appendix G 

The tasks were coded 
as: (1) taken directly 
from the textbook; (2) 
modified from the 
textbook; (3) used in 
the CORP course: (4) 
taken or adapted from 
ancillary resources; or 
(5) created by the 

The percents of tasks 
used in each category 
were calculated.  In 
addition, the number of 
reasoning-and-proving 
tasks taken directly from 
the textbook were 
compared to the number 
of tasks in the textbook 
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teacher that have the potential to 
engage students in 
reasoning-and-proving.   

 

2.) To what extent were participants able to implement reasoning-and-proving tasks? 

Question Data Coding Analysis 
To what extent were 
participants able to 
maintain the level of 
cognitive demand of 
the reasoning-and-
proving task during 
implementation? 

Three classroom 
artifact packets of 
students’ work on 
reasoning-and-
proving tasks (one 
which asks students to 
show that something 
is “always true”) and 
completed student 
work cover sheets for 
each of the three 
class-sets of work. 
Appendix I 
Appendix J 

The three tasks were 
coded using the IQA 
rubrics for task 
potential and 
implementation. 
Appendix K 
 
 

Each pair of codes for 
task potential and task 
implementation was 
reported. 
 
Average scores from 
each IQA rubric 
across the three tasks 
for each teacher were 
calculated. 

 

3.) To what extent were participants able to accurate evaluate their students’ reasoning-and-

proving products? 

Question Data Coding Analysis 
To what extent did 
participants’ criteria 
for judging the 
validity of their 
students’ reasoning-
and-proving products 
contain the core 
elements of proof? 

The completed 
classroom artifact 
packet cover sheets 
(which included the 
rubrics the teacher 
used to evaluate the 
students’ work) for 
each of the three class 
sets of work. 
Appendix J 

The rubrics submitted 
with the classroom 
artifact packets cover 
sheets were coded 
using the IQA rubric 
for clarity and detail 
of expectations. 
Appendix K 

The quality (judged 
by clarity and detail of 
expectations) of the 
rubrics used by the 
teachers was reported. 
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To what extent did 
participants apply the 
core elements of proof 
in evaluating their 
students’ reasoning-
and-proving products? 

The student work on 
reasoning-and-
proving tasks which 
asked students to 
show that something 
is “always true” and 
completed classroom 
artifact packet cover 
sheets (which 
included the rubrics 
the teacher used to 
evaluate the students’ 
work) for each of the 
three class-sets of 
work. 
Appendix J 
Appendix K 

The students’ 
reasoning-and-
proving products were 
scored using the core 
elements for proof 
(which is listed in the 
IQA rubric for clarity 
and detail of 
expectations). 
Appendix K 
 
 
 
 
 

A comparison was 
made between the 
teacher’s and 
researcher’s scores of 
the students’ work. 

In what ways did 
participants 
communicate 
expectations 
regarding what was 
required to produce a 
proof to students? 

Background Interview 
question 3 and the 
classroom artifact 
packet cover sheet 
question 2. 
Appendix J 
Appendix N 

The combination of 
the background 
interview questions 
and the classroom 
artifact packet cover 
sheet were coded 
using the IQA rubric 
for communication of 
expectations. 
Appendix K 

The pattern of 
communication of 
expectations was 
examined (i.e. did the 
communication of 
expectations increase 
across the tasks?). 

 

 

3.2.1 Classroom textbook or curriculum guide 

The participants in the study were asked to select a second semester unit that included reasoning-

and-proving activities.  From the selected unit, the participants were asked to select a 15-day 
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contiguous task collection period in consultation with the researcher.  While the 15 day period 

was arbitrary, it should have provided a reasonable section of time in which to get an accurate 

picture of the instruction provided by each participant (assuming the modes of instruction 

fluctuate throughout a unit).   This study examined four aspects of how participants selected 

reasoning-and-proving learning opportunities in the form of tasks: the availability of reasoning-

and-proving tasks in the participants’ textbook, the reasoning-and-proving tasks selected by the 

participant, the modifications the participant made to the selected tasks, and the source of the 

reasoning-and-proving tasks selected by the participant. 

The Reasoning and Proof Standard in Principles and Standards for School Mathematics 

(NCTM, 2000) recommends that secondary students are given opportunities to make and 

investigate mathematical conjectures, develop and evaluate mathematical arguments and proofs, 

and select and use various types of reasoning and methods of proof.  Any published curriculum 

that claims to incorporate the NCTM Standards (2000) should contain explicit evidence of these 

types of activities offered to students. The Standards also recommend that the curriculum and 

instruction offered to students helps them recognize reasoning-and-proof as a fundamental aspect 

of mathematics, but it is difficult to infer that recommendation from a textbook.   Even with 

lesson plans, the level of inference regarding how the participant engaged students in discussions 

about properties would be too high to be accurate without observations.   While Thompson, Senk 

and Johnson (2012) examined both the properties in the narrative portions and the exercises in 

the textbook chapters they studied, only the exercise portions of the textbook that were used 

during the collection period were examined in the study described herein.   

This study assumed that each participant had been assigned or had selected a primary 

textbook to use in the classroom.  The portion of the textbook that was used during the 15-day 
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data collection period was identified by the participant.  Any task that appeared in the exercise 

portions of the textbook—as opposed to the teacher’s edition or the narrative portion of the 

student edition—was coded.  In order to code these tasks, a copy of the student edition of the 

textbook was obtained by the primary researcher. 

3.2.2 Task log sheets of relevant tasks 

The tasks that the participants selected provided information about the extent to which the 

participants recognized and valued reasoning-and-proving.  Before the start of the data-collection 

period, participants were asked to select a unit that involved reasoning-and-proving.  During the 

15-day data collection period, the participants filled out a task log sheet every day (Appendices F 

and G).  In addition to listing every task used during class or assigned for homework, the 

participants listed the source of the task, identified whether or not the task was modified, 

determined if the task was a reasoning-and-proving task, recorded how much time was spent on 

the task, and recorded the purpose the task. 

It was expected that the number of reasoning-and-proving tasks in the participants’ 

textbooks was small (Lithner, 2004; G. J. Stylianides, 2009; Thompson, Senk & Johnson, 2012), 

which increased the likelihood of the participant having to modify tasks to increase (or create) 

the tasks’ reasoning-and-proving potential during the data collection period.  In order to examine 

how and why a participant modified a task, the participants were asked to provide the original 

task, the modified task, and their rationale for modifying the task. 

It was also sometimes necessary for participants to search for additional sources for 

reasoning-and-proving tasks.  Five sources of tasks were possible: taken directly from the 
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textbook, modified from the textbook, used in the CORP course, taken or adapted from ancillary 

resources, and created by the participant.  The data collected was the participants’ identification 

of the sources of the tasks they selected for instruction as listed on the task log sheet each day 

during the data collection period.  For tasks that were sourced beyond the textbook, the 

participant was to attach a copy of the task to the task log sheet for the relevant day.   

3.2.3 Classroom artifact packets 

The quality of instruction students receive in their classes is the most important school factor 

impacting student learning (Sanders & Horn, 1994).  The directions and work the teacher assigns 

is a window into what instruction actually occurred in the classroom (Matsumura et al., 2006).  

Matsumura listed several reasons for collecting samples of teachers’ assignments along with 

samples of student work: assignments offer information about an entire instructional cycle 

(communicate, practice/enact skills, feedback), they provide insight into the opportunities 

students have to produce individual work, and they provide further checks on the rigor of enacted 

tasks.  These reasons frame the argument that collecting samples of teachers’ assignments with 

corresponding work and evaluating the sets with the Instructional Quality Assessment (IQA) 

(Matsumura et al., 2006) provides a reasonable measure of instructional quality.  The IQA is 

discussed in more detail in the data coding and analysis section.   

The directions for the collection of these items were adapted from the directions for the 

collection of data from the IQA (see Appendix K). The adaptations were made to fit the needs of 

the current study (focus on reasoning-and-proving) and do not affect the validity of the 

instrument (M. Boston, personal communication, November 16, 2012).  The classroom artifact 
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packets contained a task, grading criteria recorded on the student work cover sheet, and 6 

samples of student work (see Appendix I and J).  At least one of the tasks was to have required 

students to construct a proof (i.e., show that something was “always true”).    From each set of 

student work, the participants were asked to identify six samples: two samples that exceeded 

expectations, two samples that met expectations, and two samples that failed expectations.   

The participants were asked to complete a cover sheet for each classroom artifact packet 

(see Appendix J).  The cover sheet questions provided information about the nature of that task 

(typical or not), the directions and expectations for the task work shared with the students, 

implementation, and criteria for evaluation.  Thus, the data collected from the classroom artifact 

packets informed the extent to which teachers were able to maintain the level of cognitive 

demand of the reasoning-and-proving tasks during implementation and the extent to which the 

participants were able to accurately evaluate their students’ reasoning-and-proving products from 

those tasks. 

3.2.4 Interview Questions 

The background interview questions fell into three categories: school descriptive information, 

freedom to choose curriculum, and prior reasoning-and-proving work with students (Appendix 

N).  The school descriptive information provided information about the size of the school, 

teacher-to-pupil ratio, setting, and which mathematics class was chosen for this study.  Such 

information helped identify the challenges that each participant faced in engaging their students 

in reasoning-and-proving activities.  Data on the freedom to choose curriculum data provided 

insight into how the participants in the current study approached incorporating reasoning-and-
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proving into their first- and second-year classrooms.  No teacher acts completely independently 

in a school system; not only is a teacher’s practice influenced by his own beliefs, goals, content 

and pedagogical content knowledge (Schoenfeld, 1998), but it is also influenced by collaboration 

with other teachers (Sadri, 2008), students (Raudenbush, Rowan, & Cheong, 1993), curriculum 

(Remillard, 2000), and the leadership structure of the school (Sather, 1994).  If a participant was 

surrounded by supportive teachers who also wish to incorporate reasoning-and-proving into their 

classes or who have already engaged students in reasoning-and-proving in a course prior to the 

participants’ course, the extent to which the participants selected, implemented and evaluated 

reasoning-and-proving tasks would probably be different than a participant who was isolated or 

surrounded by unsupportive students.   

In order to examine how the participants shared their expectations for quality reasoning-and-

proving work with their students, information on reasoning-and-proving activities on which 

students worked prior to the data collection period was gathered.  Ideally, the participants would 

have already helped students develop class criteria for proof that contained the core elements and 

that criteria would be readily available to students for reference.  If students worked on a 

succession of reasoning-and-proving tasks throughout the year, there should be evidence of the 

students’ deepening understanding of reasoning-and-proof.  The third set of background 

interview questions coupled with the classroom artifact packets informed the pattern of how the 

teacher communicated her expectations throughout the data collection period (and possibly the 

course). 

Follow-up interviews were done after the initial analysis of the data contained on the task 

log sheets and classroom artifact packets.  The questions were designed to further probe the 

participants’ thinking and reflections of the reasoning-and-proving activities and to clarify any 
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questions that arose from the analysis.  Each interview also asked participants how they would 

define proof to a colleague and to a student. 

The four sources of data—textbooks, task log sheets with relevant tasks, classroom artifact 

packets, and interview questions—provided enough information to determine the extent to which 

the participants are able to select, implement, and evaluate student products of reasoning-and-

proving tasks.  In the next section, the coding systems and analysis are described for each source 

of data and how the collection will inform each research question.   

3.3 DATA CODING AND ANALYSIS 

Four coding systems were used to analyze the data in the current study.  The reasoning-and-

proving task codes used by Thompson, Senk and Johnson (2012) were used to determine 

whether or not a task is a reasoning-and-proving task.  The IQA rubrics were used to assess the 

potential and implementation of tasks, the clarity and detail of expectations of the participants, 

and the communication of those expectations to students.  The other coding systems were for 

determining the changes in reasoning-and-proving potential of modified tasks and a simple 

system for categorizing the sources of tasks that the participants selected. 

3.3.1 Selecting reasoning-and-proving tasks (Research Question 1) 

Two sources of data—the classroom textbooks and the task log sheets with relevant tasks—were 

used to answer the four sub-questions of the research question, “to what extent did participants 
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select reasoning-and-proving learning opportunities in the form of tasks.”  The data were from 

the 15 days of instruction selected by the participant.  The coding and analysis were identical for 

determining the results of the availability of reasoning-and-proving tasks in the classroom 

textbook and of the selection of reasoning-and-proving tasks by the participant to be used for 

instruction.  For the task modifications and the sources of tasks, only the task log sheets of 

relevant tasks were used for coding and analysis. 

When Thompson, Senk, and Johnson (2012) conducted their study of reasoning-and-

proving learning opportunities in textbooks, they chose to use exercises as their unit of analysis 

instead of tasks.  Stein, Grover, & Hanningsen (1996) defined a mathematical task as  

a classroom activity, the purpose of which is to focus the students’ attention on a 

particular mathematical idea.  An activity is not classified as a different or new task 

unless the underlying mathematical idea toward which the activity is oriented changes.  

Thus, a lesson is typically divided into two, three, or four tasks rather than into many 

more tasks of shorter duration (p. 460). 

Because Thompson, Senk, and Johnson (2012) intended to compare the amount of available 

reasoning-and-proving available in textbooks from different publishers and each publisher 

labeled sets of exercises in different ways, the researchers counted the “total number of exercises 

when all the labeled parts were counted separately” (p. 264).  In other words, if a textbook 

practice problem had parts a-c, Thompson, Senk, and Johnson (2012) counted this problem as 

three exercises in order to standardize the different formats used by different publishers.  Since 

the study described herein compares the amount and types of available reasoning-and-proving 

opportunities in textbooks to the amount and types of selected reasoning-and-proving 

opportunities, this study will use exercises for the coding and analysis used to answer the first 
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research question for the remainder of this document.  From this point forward, the first research 

question will be “to what extent did participants selected reasoning-and-proving learning 

opportunities in the form of exercises.” 

3.3.1.1 Available and selected exercises 

Both the exercises from the practice portions of the textbook and the selected exercises as listed 

on the task log sheet will be coded using Thompson, Senk & Johnson’s (2012) categories.  The 

category codes relate to the task action required on the student’s part: make a conjecture, 

investigate a conjecture, develop an argument, evaluate a given argument, find a 

counterexample, determine the error in reasoning in a given solution, and create the outline of an 

argument.  These categories map onto G. Stylianides’ mathematical components of his analytical 

framework of reasoning-and-proving (see Appendix C), and examples of each type of action can 

be found in Appendix D.  Any task that does not fit into one of these categories will be coded as 

“non-reasoning-and-proving” (non RP). 

The first analyses informed whether the participant capitalized on all of the available 

reasoning-and-proving learning opportunities in the textbook.  The analysis of this coded data 

took the form of four calculations.  To answer the sub-question “to what extent does the textbook 

include exercises that have the potential to engage students in reasoning-and-proving,” the 

overall percentage of textbook exercises that have the potential to engage students in reasoning-

and-proving was calculated: 
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To determine the types of reasoning-and-proving activities available to students in these 

selected sections of the textbook, the percentage of textbook exercises in each of the categories 

make a conjecture, investigate a conjecture, develop an argument, evaluate a given argument, 

find a counterexample, determine the error in reasoning in a given solution, or create the outline 

of an argument was also calculated.  For instance, to determine the percentage of reasoning-and-

proving tasks in the textbook that directed students to develop a general argument, the following 

expression was used:  

 

Similar calculations were used to answer the second sub-question, “to what extent did the 

participants select exercises for instruction that have the potential to engage students in 

reasoning-and-proving?”  For this calculation, however, the percent of reasoning-and-proving 

exercises out of the selected exercises used in instruction was found instead of the available 

textbook exercises: 

 

If the percentage of reasoning-and-proving tasks available in the textbook was lower than the 

percentage of reasoning-and-proving exercises selected by the participant, then the participant 

increased the potential of reasoning-and-proving learning opportunities to students.   

The types of selected reasoning-and-proving exercises were examined by calculating the 

percentage of selected exercises in each category out of the selected reasoning-and-proving 

exercises.  For example, the percentage of selected exercises that asked students to develop a 



 

141 

 

general argument out of the total number of selected reasoning-and-proving exercises was found 

with the following expression: 

 

Ideally, the participants selected an assortment of reasoning-and-proving types of tasks, 

providing students with well-rounded learning experiences for reasoning-and-proving.  On the 

task log sheet, the participants were asked to record the time spent on the exercise and the 

purpose of the exercise.  If reasoning-and-proving activities commanded the lion’s share of the 

instructional time (both in and out of class), it was assumed that the participant highly valued 

reasoning-and-proving activities.  If very little time was spent on reasoning-and-proving, 

especially during a 15-day cycle in which the participant claimed to be working on reasoning-

and-proving, it suggests that the participant did not value reasoning-and-proving, was not 

prepared to select and implement reasoning-and-proving tasks, or had no control over the daily 

curriculum. 

3.3.1.2 Changes in the reasoning-and-proving potential of exercises 

 

During the CORP course, the participants studied several sets of tasks (original and modified 

versions) and created a list of strategies they could use to make their own modifications to tasks.  

One type of modification involved stripping away unnecessary scaffolding from a task and 

instead asking students to investigate the task’s concept by generating some examples, making 

observations, and making their own conjectures.  For example, a teacher could remove the 

structure of a fill-in-the-blank geometry proof template and ask seasoned geometry students to 
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practice writing proofs for conjectures in the format of their choosing.  Another type of 

modification involved changing the verbs in the prompts from only making generalizations 

(identifying a pattern, make a conjecture) to making an argument (non-proof or proof).  

Participants were reminded to modify only the task’s directions and not the task’s mathematics.  

In other words, take a task that asks students to make a conjecture about parallel lines and a 

transversal and modify the direction to include “show that your conjecture is always true” but do 

not change the mathematics of the task to focus only on alternate interior angles.   

While the modification work in the fourth chapter of the CORP course was intended to 

help participants increase the reasoning-and-proving learning opportunities of tasks, it is possible 

to modify a task to decrease the reasoning-and-proving potential.  According to G. J. Stylianides 

(2010), there is a hierarchy of reasoning-and-proving activities.  From low to high they are: 

identify a pattern, make a conjecture, provide a rationale, and construct a proof (see Figure 2.1).  

For the study reported herein, any transition from a lower level to a higher level was considered 

an increase in reasoning-and-proving potential.  For example, a geometry textbook task might 

direct students to investigate the conjecture, “the sum of the angles in a triangle is 180 degrees.”  

If the participant modified the task to direct the students to “investigate the conjecture…and 

show that the claim is always true,” then the participant increased the level of reasoning-and-

proving of the task. On the other hand, if a participant watered down a proof task by asking 

students to stop at a conjecture, then the participant modified the task to lower the reasoning-and-

proving potential of the task.  Any exercise that a participant modified was self-identified on the 

task log sheet (see Appendix G).  The changes in exercises were identified by comparing the 

original and modified versions of the exercises as well as considering the rationale for the 

modification (see Appendix F). 



 

143 

 

A teacher can have many reasons for modifying exercises.  The teacher may wish to 

increase the reasoning-and-proving potential of the exercise, or decrease the number of 

representations of an exercise in order to focus on a particular skill.  Not all modifications 

involve reasoning-and-proving potential, and not all of the exercises selected by the participant 

in this data collection period were reasoning-and-proving exercises.  The only exercises that 

were counted and analyzed were exercises that either started as reasoning-and-proving exercises 

(as assessed by the raters) and were modified, or exercises that were not originally reasoning-

and-proving and were modified to include reasoning-and-proving (as assessed by the raters). 

As such, four modification possibilities exist.  First, an exercise that had the potential to engage 

students in reasoning-and-proving could be modified to lower the reasoning-and-proving 

potential of the exercise.  These exercises were assigned the code -1 (see Appendix H).  An 

exercise that had the potential to engage students in reasoning-and-proving could modified, but 

not in a way that affects the reasoning-and-proving potential of the exercise.  For instance, a 

participant may change the wording of the problem to ask students to record specific 

information, such as formulas or definitions.  A reasoning-and-proving exercise that was 

modified in such a way that the modification had a neutral effect on the reasoning-and-proving 

potential of the exercise was assigned the code 0.  Exercises that had the potential to engage 

students in reasoning-and-proving that were modified to increase the reasoning-and-proving 

potential were assigned the code +1.  Finally, it is possible that an exercise originally did not 

have the potential to engage students in reasoning-and-proving but the participant modified the 

task to provide such potential.  It was the researcher’s assumption that transforming a non-

reasoning-and-proving task into a reasoning-and-proving task is more complicated and takes 

more skill than merely changing the directions of a task already primed for reasoning-and-
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proving; as such, these transformed tasks were assigned the code +2.  If a mixture of all of these 

types of modifications was made by a participant, the sum of the modification codes was 

reported.  This sum indicated whether the participant generally increased or decreased the 

reasoning-and-proving potential of exercises through modifications.   

The researcher did not expect the participants to modify many of the tasks, therefore, the 

ways exercises were modified was described in Chapter 4.  In many cases, the original and the 

modified versions of exercises were also provided in Chapter 4.  This evidence, coupled with the 

modification code scores, informed the extent to which the participants modified exercises to 

affect the exercises’ potential to engage students in reasoning-and-proving. 

3.3.1.3 Sources of Exercises 

 

On the task log sheet (Appendix G), participants were asked to record the source of the tasks 

they selected for instruction.  The sources of the tasks coded in one of the following ways: taken 

directly from the textbook, modified from the textbook, used in the CORP course, taken or 

adapted from ancillary resources (such as the internet or a fellow teacher), or created by the 

participant.  The percentage of tasks used from each source was then calculated: 
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The extent to which participants are able to find exercises in their own curriculum materials, 

mine outside sources (including fellow teachers), or create exercises themselves spoke to the 

extent to which the participants were able to offer reasoning-and-proving learning opportunities 

to their students. 

 

3.3.2 Implementing reasoning-and-proving tasks (Research Question 2) 

The quality of instruction students receive in their classes is the most important school factor 

impacting student learning (Sanders & Horn, 1994).  Cognitively rigorous activities offer 

students potentially challenging tasks that require complex and non-algorithmic thinking, engage 

students in creating mathematical meanings, are implemented at a similarly high level, and 

require responses that explain the validity of strategies.   Reasoning-and-proving tasks, as 

defined by G. J. Stylianides (2010), are cognitively rigorous.  The data used to inform the 

question, “to what extent were teachers able to maintain the level of cognitive demand of the 

reasoning-and-proving task during implementation?” were the three classroom artifact packets, 

each containing a task, six samples of student work (2 labeled exceeded expectations, 2 labeled 

met expectations, and 2 labeled failed expectations), and the student work cover sheet.  Each 

packet was selected, gathered, and generated by the participant. 
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In order to determine if a participant maintained the level of cognitive demand of a task 

during implementation, both the original level and the implemented level of cognitive demand of 

the task had to be determined.  Since some of the IQA Mathematics Toolkit rubrics were 

designed to measure instructional quality without observations but instead with classroom 

artifact packets, the classroom artifact packet rubrics were used as a tool for measuring level of 

cognitive demand.  According to Matsumura and her colleagues, the directions and work the 

teacher assigns is a window into what instruction actually occurred in the classroom (Matsumura 

et al., 2006).  Specifically, the IQA Mathematics Toolkit looks at the cognitive rigor in tasks, the 

rigor in the implementation of the tasks, the rigor in the student responses to the tasks, and the 

clear and detailed expectations that have been communicated to students (See Appendix K).  

Since reasoning-and-proving activities are cognitively demanding, the results of the IQA rubrics 

informed the extent to which participants are able to implement reasoning-and-proving tasks.  

The IQA rubrics were applied to the three tasks, cover sheets, and accompanying student work 

from the classroom artifact packets. 

The first IQA rubric—task potential—helped determine if the tasks selected by the 

participants had the potential to engage students in reasoning-and-proving (see Appendix K).  No 

participant selected a task for their classroom artifact packets that was not a reasoning-and-

proving task.  According to the task potential rubric, a reasoning-and-proving task that has the 

highest potential to engage students in cognitively demanding work cannot be predictable and 

directs the students to do some or all of the following: identify patterns and form generalizations 

based on those patterns, make or investigate conjectures and support conclusions with 

mathematical evidence and/or create a proof or find a counterexample, and evaluate an argument 

or explain how to outline an argument of a particular type. 
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A task that directed students to identify patterns but not to form generalizations or directed 

students to make conjectures but not support conclusions with mathematical evidence or create 

proofs received a score of 3 on the task potential rubric.  A code of 3 was also be used for tasks 

that were well beyond the conceptual reach of the students (e.g., required techniques or concepts 

not yet learned, such as proof by contradiction for an Algebra 1 student).  A code of 2 was 

assigned to formulaic tasks that were unambiguous and focused on producing correct answers 

rather than mathematical understanding. Any task that did not require students to make 

connections or develop meanings (e.g., reproduce memorized facts) received a code of 1.  A 

sample of tasks for each of the codes in the task potential rubric can be found in Appendix L. 

The second IQA rubric—task implementation—closely mirrors the rubric for task potential.  

The codes for this rubric inform whether the students were held to the cognitive demand of the 

task and then indicate the level of implementation.  In other words, if a task directed students to 

make a conjecture and support their conclusions with a proof or counterexample, did the 

students’ work show evidence that the students made conjectures and supported their 

conclusions?  If so, then the participant implemented the reasoning-and-proving in a way that 

maintained the task’s original level of cognitive demand.  Examples of each level of task 

implementation can be found in Appendix M.  Information about the task implementation was 

requested on the classroom artifact packet cover sheet (Appendix J) in the form of two questions: 

was the task implemented differently than planned, and what was the implementation successful?  

The answers to these questions provided additional information regarding the participants’ 

implementation of the reasoning-and-proving tasks. 

In qualitative research, reliability is defined as a fit between what the researcher recorded as 

data and what actually occurred in the setting under study, rather than the literal consistency 
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across different observations (Borgen & Biklen, 2003).  The IQA has already met this standard 

of reliability because the data used will be selected and sent by the participants themselves and as 

such accurately reflect their practice (Clare & Aschbacher, 2001; Matsumura, Garnier, Pascal, & 

Valdés, 2002).  To ensure reliability in coding, two raters who were familiar with both the IQA 

and reasoning-and-proving applied the IQA rubrics to every classroom artifact packet.  Any 

discrepancies were resolved by consensus, and additional information was gathered from the 

participants when necessary.   

For each task in the classroom artifact packet, the pair of task potential and task 

implementation codes was reported, which revealed trends in maintaining or declining cognitive 

demands.  This provided an overall picture as to the participants’ extent to which they were able 

to implement reasoning-and-proving tasks. 

3.3.3 Evaluating students’ reasoning-and-proving products (Research Question 3) 

3.3.3.1 Core elements of proof 

The core elements of proof are: the proof’s argument must show that the conjecture or claim is 

(or is not) true for all cases, the statements and definitions that are used in the argument must be 

ones that are true and accepted by the community (because they have been previously justified), 

and the conclusion that is reached from the set of statements must follow logically from the 

argument made.  The following aspects of proof are not core elements: type of proof, form of the 

proof, the representation used, and the explanatory power of the proof.  If the participants 

internalized the core elements of proof during the CORP course, one would expect the core 

elements to be the largest factor in the participants’ criteria for judging the validity of a proof and 
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that the participants applied those core elements of proof in evaluating their students’ reasoning-

and-proving products.  In order to determine the extent to which this happened, the classroom 

artifact packets were examined.  The classroom artifact cover sheet (see Appendix J) included 

directions for the participants to submit their scoring rubric for the student work, and the 

classroom artifact packets were each to contain six pieces of student work: two evaluated as 

exceeding expectations, two evaluated as meeting expectations, and two evaluated as failing 

expectations.  Participants were also asked how they would define proof to a colleague and to a 

student.  These definitions were reported verbatim and were analyzed for the core elements of 

proof.  Any additional criteria (non-essential) was also reported. 

 According to Boston and Wolf (2006), instructional quality depends on the academic rigor 

in a teacher’s expectations and the clarity, detail, and communications of those expectations.  As 

such, the evaluation criteria (rubrics) that the participants used to evaluate their students’ work 

were coded using the fifth IQA rubric: clarity and detail of expectations (see Appendix K).  An 

evaluation system that contained clear and elaborated expectations for the quality of student 

work was coded as 4.  For proof tasks, the expectations must include the core elements of proof 

for a 4.  Expectations that were less clear or treated non-core elements of proof as essential (i.e. 

format of the proof) received a code of 3.  Unelaborated expectations or no expectations 

specified in the evaluation system received a code of 2 or 1, respectively.  The results of the 

rubrics were reported and examined for trends regarding the extent to which the participants’ 

criteria for judging the validity of their students’ reasoning-and-proving products contained the 

core elements of proof.   

 To determine the extent to which the participants applied the core elements of proof in 

evaluating their students’ reasoning-and-proving products, only tasks from the artifact packets 
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which asked students to prove (or “show that this is always true”) were coded in this section.  

The six pieces of student work from each classroom artifact packet that the participant labeled 

“exceeded expectations”, “met expectations”, and “failed expectations” were also scored by the 

two raters (the primary researcher and a trained graduate student).  The raters scored each sample 

of student work for each proof task according to the core elements of proof.  Both the 

participant’s and the raters’ assessment of each student proof was reported.   The comparison of 

the researcher’s rating (based on the core elements of proof and the participant’s rating revealed 

the extent to which the participants applied the core elements of proof in evaluating their 

students’ reasoning-and-proving products. 

3.3.3.2 Communication of Expectations 

Communicating expectations to students is a mark of instructional quality (Boston & Wolf, 

2006).  As such, the participants’ classroom artifact packet cover sheets and the background 

interview questions were mined in order to determine if and how participants developed or 

shared the criteria for proof with their students (see Appendices J and N).  Evidence of 

developing or sharing would include posters of proof criteria, reference sheets in the students’ 

notebooks, or a description of an actual lesson in which students developed criteria for proof 

based on the core elements of proof.  Such evidence was requested in the participants’ 

background interview questions and in the student work cover sheet (“please explain any 

expectations you relayed to your class”). 

The IQA rubric for communication of expectations was based on when the participant 

shared the criteria and whether or not high-quality work was modeled.  Participants who 

discussed their expectations (i.e. criteria for proof) and modeled high-quality work in advance of 
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the task received a communication code of 4.  Participants who discussed the criteria but 

provided no models were assigned a 3, and participants who presented the criteria to their 

students without discussion were assigned a 2.  Participants who did not share their expectations 

at all or shared them after the task was completed were assigned a 1. 

This analysis provided insight into the teachers’ sense of the potential of recognized and 

selected tasks, how the tasks were implemented, and the standards of rigor to which the teachers 

held the students accountable.  The three classroom artifact packets allowed for the assessment 

of the academic rigor, clarity, detail, and communication of the teachers’ expectations for their 

students regarding proof tasks.  The resulting detailed picture of the participants’ enactment of 

reasoning-and-proving in their classrooms allowed for the observation of trends across 

participants with respect to what they internalized from the CORP course (following Yin’s 

(1993) replication logic).   

The findings for each participant was described as separate cases.  Participants taught 

different courses in different contexts and it was assumed that they internalized the CORP course 

information in different ways.  Describing the extent to which each participant selected, 

modified, sourced, and evaluated the products of tasks in separate cases was appropriate.  Once a 

rich description of each participant has been provided, the trends across participants were 

described. 
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3.4 VALIDITY AND GENERALIZABILITY 

The purpose of this study was not to evaluate the effectiveness of the CORP course or to assess 

the effectiveness of particular beginning teachers (Bogdan & Biklen, 2003; Merriam, 1998). 

However, I do hope that this study contributes to our understanding of how early-career teachers 

who experienced targeted professional development enact reasoning-and-proving tasks in their 

classrooms.  To ensure the validity of the conclusions drawn in this study, standards for 

collecting tasks and student work were adopted from peer-reviewed research (Clare & 

Aschbacher, 2001; Matsumura et al., 2002) and the major coding systems were also from peer-

reviewed research (G. J. Stylianides, 2010; Thompson, Senk & Johnson, 2012).   

While this study is not designed to be generalized to all teachers in all districts, the fact that 

the participants taught in different types of schools in two different states suggests that any 

trends across all cases can be transferred to new settings (Stake, 1978 cited in Schofield, 2002; 

Lincoln and Guba, 1985).  Although my study contained only four participants, the limited 

number of participants allowed me to provide rich detail about how the participants enacted 

reasoning-and-proving in their classrooms.   

 Two raters coded each of the exercises in the textbook and on the participants’ task log 

sheets with respect to reasoning-and-proving potential and then type of reasoning-and-proving.  

The incident of discrepancies was small, and most discrepancies were resolved through 

consensus.  2,295 textbook exercises were coded; there was agreement on 2,285 exercises 

(99.6% agreement).  Of the ten tasks on which there was no agreement, seven were exercises that 

one rater judged to have the potential to engage students in reasoning-and-proving while the 

other three were disagreements as to the type of reasoning-and-proving (e.g., make a conjecture 
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or the combination of make a conjecture and develop an argument).  For the 1,453 exercises 

selected by participants, the few discrepancies were resolved by consensus (100% agreement).   

Thus, overall, there was a 99.7% agreement on the exercises available in the textbook or selected 

by the participant.  There was 100% agreement on the IQA rubric scores, once discrepancies 

were resolved by consensus. 
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4.0  DATA AND ANALYSIS 

This chapter shares the data and analysis which was described in Chapter Three and was used to 

answer the three research questions of this study.  The data and analysis is organized in four case 

studies, one for each participant.  The first two case studies are Karen and Uma, both second-

year educators teaching geometry in urban districts, the former with a reform curriculum and the 

latter with a traditional curriculum.  The second two case studies are Sidney and Jonathan, both 

first-year educators teaching Algebra 1, the former in an affluent suburban district and the latter 

in a start-up charter school with urban students.  These cases provide details about how these 

participants selected, implemented, and evaluated the student work products from reasoning-and-

proving exercises.  The final section of the chapter pulls data together from all four cases and 

analyzes the data for trends. 

Throughout this chapter, the word “exercise” denotes a single activity.  Thompson, Senk, 

and Johnson (2012) used this method to standardize the different ways textbook publishers label 

practice problems.  Thus, a problem with subparts (e.g., #4a, 4b, 4c, and 4d) was counted as four 

separate exercises; each part was evaluated on its reasoning-and-proving potential.  The 

exercises selected by the participants were also counted in this way.    

As a reminder, this study analyzes the opportunities teachers who participated in a 

university course focused on reasoning-and-proving gave their students to engage in reasoning-
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and-proving.  The course included opportunities to learn about the importance of reasoning-and-

proving in mathematics, use frameworks and criteria to examine and evaluate student work, and 

consider how to implement reasoning-and-proving tasks.  This study sought to learn how the 

teachers used knowledge gained in the course in the context of their classrooms.  In particular, 

this study examines the following questions: 

1.) To what extent did participants select reasoning-and-proving learning opportunities in 

the form of exercises? 

a. To what extent does the textbook include exercises that have the potential to 

engage students in reasoning-and-proving? 

b. To what extent did the participants select exercises for instruction that have 

the potential to engage students in reasoning-and-proving? 

c. To what extent did the participants modify exercises to affect the exercises’ 

potential to engage students in reasoning-and-proving? 

d. What were the sources of the exercises participants selected for instruction? 

2.) To what extent were participants able to maintain the level of cognitive demand of the 

reasoning-and-proving tasks during implementation? 

3.) To what extent were participants able to accurately evaluate their students’ reasoning-

and-proving products? 

a. To what extent did participants’ criteria for judging the validity of their 

students’ reasoning-and-proving products contain the core elements of proof? 

b. To what extent did participants apply the core elements of proof in evaluating 

their students’ reasoning-and-proving products? 



 

156 

 

c. In what ways did participants communicate expectations regarding what is 

required to produce a proof to students? 

The case studies and trend section present and analyze data for each of these questions, in the 

order that the questions are listed in this paragraph. 

4.1 KAREN 

Karen was a second-year teacher at a science and technology magnet school in a large urban 

district in Pennsylvania when this study was conducted.  The school is fairly new and includes 

grades 6-12.  There are about 60 students in a graduating class; the school has a capacity for 

about 100 students per grade in 9th-12th grades.  Karen teaches both a semester long geometry 

class for average students and two full-year geometry classes for struggling students.  Each class 

period is 80 minutes long except on Wednesdays, when students lose 15 minutes per class in 

order to make professional development time available to teachers.   

Karen selected her second semester geometry class for this study.  According to Karen, 

her semester students have better math skills, work ethic, and behavior than her full-year 

geometry students, and are willing to come in for extra help when necessary.  The curriculum 

used by Karen’s district is the Center for Mathematics Education (CME) Project which was 

created by the Education Development Center, Inc. with partial funding by the National Science 

Foundation.  This is the second year that the district (and Karen) has used CME’s Geometry 

(2009); the district also adopted CME Algebra this past year.  Karen reported that her district’s 

focus on the Common Core standards, CME’s focus on mathematical understanding, and the 
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collaborative nature of her department all resonate with her university training (personal 

communication, February 20, 2013). 

4.1.1 Selecting exercises (RQ1: To what extent did participants select reasoning-and-proving 

learning opportunities in the form of exercises?) 

4.1.1.1 Available in textbook (RQ1a: To what extent does the textbook include exercises that 

have the potential to engage students in reasoning-and-proving?) 

Karen selected part of CME’s Geometry: Congruence and Proof unit for her 15-day data 

collection.  Unlike a traditional textbook, Karen’s reform textbook did not structure lessons with 

a distinct content description and explanation section followed by a distinct practice problem 

section, therefore, all exercises were counted regardless of intent.  Also unlike most curricula, 

CME’s Geometry: Congruence and Proof is full of reasoning-and-proving tasks.  Out of the 436 

textbook exercises available to Karen during her 15-day data collection period, 329 (75.5%) of 

them were coded as reasoning-and-proving.  The tasks spanned all of the types of reasoning-and-

proving listed by Thompson, Senk, and Johnson (212), with concentrations in Investigate a 

Conjecture and Develop an Argument (see Table 4.1).  Depending on the directions of the 

exercises, some of the exercises were coded as more than one type (e.g., make a conjecture and 

develop an argument); therefore, the numbers in Table 4.1 is greater than 436.   All of the 

textbooks and task log sheets of each participant contained exercises that were double- and 

triple-coded. 
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Table 4.1  Available Types of Reasoning-and-proving Exercises in Karen's Textbook 

Type of RP Exercise Available in Textbook* 

Make a Conjecture 56 (12.8%) 

Investigate a Conjecture 141 (32.3%) 

Evaluate an Argument 4 (0.9%) 

Correct a Mistake 4 (0.9%) 

Develop an Argument 150 (34.4%) 

Counterexample 14 (3.2%) 

Principles of Proof 24 (5.5%) 

Non-Reasoning-and-Proving 107 (24.5%) 

*Exercises may be coded as more than one type of reasoning-and-proving, so the percentages 

may not sum to 100%. 

 

Karen’s unit was the only unit of any participant in the study to contain “Principles of 

Proof” exercises.  For example, students were asked “why is poof so important in mathematics?” 

(CME Geometry, Unit 2, p. 112, #5) and “Draw a square and divide it into four equal parts.  

Write an argument that convinces a classmate that each part has the same area.  Share your 

argument with a classmate.  Is your argument convincing?” (CME Geometry, Unit 2, p. 115, #1).  

The latter exercise was coded as both Develop an Argument for “write an argument” and 

Principles of Proof for “is your argument convincing?” 
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4.1.1.2 Selected by Teacher (RQ1b: To what extent did the participant select exercises for 

instruction that had the potential to engage students in reasoning-and-proving?) 

Karen did not assign every exercise available in her textbook, but she did create or find 

additional exercises to select; in total, she offered more reasoning-and-proving exercises to her 

students than were available in her textbook.  Out of the 335 exercises assigned to her students, 

256 (76.4%) of them were reasoning-and-proving and 79 were not, as rated by the coders.  The 

exercises were largely from her curriculum and included explorations, practice exercises, 

maintaining skills exercises, mathematical reflections, discussion questions, exit slips to check 

understanding, chapter reviews, and chapter tests.   

Of the 256 reasoning-and-proving exercises she selected, Karen labeled 243 of them as 

reasoning-and-proving and did not label the remaining 12 as reasoning-and-proving.  Of the 

latter 12 exercises, 4 asked students to make a conjecture and 8 were Principles of Proof 

exercises.  The Principles of Proof exercises were from Day 6 of Karen’s data collection period 

(Problem 2.10: What Does a Proof Look Like?).  For example, the exercise “why might it be 

important to have several different styles of writing proofs?” (Karen’s Lessons Day 6, Wrap-up 

question 3) is a Principles of Proof exercise.   Of the 79 exercises rated as non-reasoning-and-

proving by the coders, Karen labeled 2 exercises as not reasoning-and-proving but labeled the 

remaining 77 as reasoning-and-proving.  This data is reported with some caution, however, 

because on her Task Log Sheets, Karen sometimes grouped collections of exercises together and 

labeled the entire set as “reasoning-and-proving.”  For instance, Karen labeled the entire unit 

review (Day 14) and chapter exam (Day 15) as reasoning-and-proving, but the coders only rated 

some of the exercises in these collections as reasoning-and-proving.  Close examination of 

Karen’s labels on smaller sets of exercises does reveal some consistent patterns, however.  
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Exercises that asked students to find multiple angles in a figure (by applying properties such as 

the Alternate Interior Angle Theorem for parallel lines), record or apply definitions, identify the 

hypothesis and conclusion of a statement, or provide an explanation were labeled as reasoning-

and-proving by Karen.  While these skills are useful in reasoning-and-proving, alone they do not 

qualify as the type of reasoning that can lead to proof as identified by Thompson, Senk, and 

Johnson (2012).  Figure 4.1 shows one example of an exercise that requires students to explain 

why four figures are not quadrilaterals; certainly knowing and being able to use definitions are 

part of the reasoning-and-proving process but only applying a definition is not sufficient to 

engage students in a reasoning-and-proving activity.   

 

 

Figure 4.1 A non-reasoning-and-proving exercise mislabeled by Karen. 

 

Table 4.2 lists the types of reasoning-and-proving exercises in which Karen engaged her 

students.  Similar to what was available in the textbook, Karen offered a range of types with a 

concentration on Investigate a Conjecture (37.9%) and Develop an Argument (37.3%).  These 

percentages are a little higher than the types available in Karen’s textbook (32.3% and 34.4%, 

respectively).  Figure 4.2 represents this comparison graphically. 
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Table 4.2  Selected types of reasoning-and-proving exercises by Karen. 

Type of RP Exercise Selected by Teacher* 

Make a Conjecture 24 (7.2 %) 

Investigate a Conjecture 127 (37.9 %) 

Evaluate an Argument 1 (0.3%) 

Correct a Mistake 2 (0.6 %) 

Develop an Argument 125 (37.3 %) 

Counterexample 16 (4.8 %) 

Principles of Proof 18 (5.4 %) 

Non-Reasoning-and-Proving 79 (23.6 %) 

 

*Exercises may be coded as more than one type of reasoning-and-proving, so the percentages 

may not sum to 100%. 

 

Figure 4.2  Comparison of available and selected types of reasoning-and-proving exercises for Karen. 
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4.1.1.3 Exercise modifications (RQ1c: To what extent did the participant modify exercises to 

affect the exercises’ potential to engage students in reasoning-and-proving?) 

Karen modified 29 exercises during her data collection period.  The modifications were mainly 

to direct her students’ mathematical behavior rather than change the exercises’ reasoning-and-

proving potential; thus, the modifications had a neutral effect on students’ opportunities to 

engage in reasoning and proving (see Table 4.3).  The types of exercise modifications made by 

Karen were: 

• Karen constructed figures in GeoGebra that students used to lead 5 class explorations 

• Karen added scaffolding to 3 exercises to help students think through the reverse proof 

process  

• Karen directed her students to draw pictures and explain 21 Investigate a Claim-type 

exercises (fill-in-the-blank with always, sometimes, or never; see Figure 4.3) 

 

Table 4.3 Frequency of Exercise Modifications Made by Karen 

Original Exercise (any source) Exercise as assigned by teacher Code Frequency 

Reasoning-and-Proving Exercise 
Exercise assigned, modified to 

LOWER RP 
-1 0 

Reasoning-and-Proving Exercise 
Exercise assigned, neutral effect of 

modification 
0 29 

Reasoning-and-Proving Exercise 
Exercise assigned, modified to 

INCREASE RP 
+1 0 

Non-Reasoning-and-Proving 

Exercise 

Exercise assigned, modified to 

INCLUDE RP 
+2 0 
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Figure 4.3 Original and modified exercise from Karen’s Lesson Day 12. 

 

Karen did not lower the reasoning-and-proving potential of any exercise.  In fairness, 

over three-quarters of the exercises selected by Karen were already reasoning-and-proving 

exercises.  One could argue that no modifications were necessary to increase the amount of 

reasoning-an-proving that was available in the curriculum.   

4.1.1.4 Exercise sources (RQ1d: What were the sources of the exercises that participants 

selected for instruction?) 

Of the 335 exercises assigned by Karen, 77.3% were taken directly from the CME Geometry 

Unit 2.  This was no surprise given the focus of this unit and the district curriculum guide 

provided to Karen.  The district curriculum guide details the goals of each investigation (subunits 

of the CME curriculum), lists overarching questions, objectives, Common Core standards, 

Original Exercise: 

For Exercises 9-28, complete each sentence with always, sometimes, or never 

to make the statement true. 

9.  A parallelogram __?__ has two congruent sides. 

17. A quadrilateral with one right angle is __?__a parallelogram. 

(CME’s Geometry, Unit 2, p.154 #9 and p. 155 #17) 

 

Karen’s Modification:  

Draw pictures and explain for full credit. 
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provides assessing and advancing questions, and suggests assignments.  All of these are closely 

aligned to the CME curriculum, which was tailored by the publisher for Karen’s large urban 

district.  The district curriculum guide is written for a year-long course; Karen had to modify it to 

fit her semester course, but her decisions were largely based on time constraints (the semester 

course did not have the same number of instructional hours as full-year, non-blocked courses 

taught in other buildings in the district) and a concern that her students needed more skill 

practice than the curriculum provides (personal communication, February 20, 2013). 

When Karen did take or adapt exercises from ancillary sources, she used district exams 

from previous years or the RegentsPrep.org website, a repository of tasks designed to help New 

York secondary students prepare for their state assessment exams.  Table 4.4 details the number 

of exercises (out of 335) from each type of source selected by Karen, and the percentage of 

exercises from each source that were labeled as reasoning-and-proving by the coder.  It is notable 

that of the exercises taken or adapted from ancillary resources or created by Karen, 41 out of 49 

(83.7%) were reasoning-and-proving exercises, indicating that when Karen did stray from her 

textbook, she choose exercises that would engage her students in reasoning-and-proving. 

Table 4.4 Sources of Exercises Selected by Karen 

Source All Exercises 
Frequency 

Reasoning-and-
Proving Exercises 
Frequency 

Taken Directly from Published 
Textbook/Curriculum 259 188 (72.6%) 

Modified from Textbook/Curriculum 27* 27 (100%) 

Used in the CORP Course 0 0 (0 %) 

Taken or Adapted from Ancillary Resources 38 32 (84.2%) 

Created by Teacher 11 9 (81.8%) 
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*An additional 6 exercises were labeled as modified by Karen on her Task Log Sheet for Day 7, 

but the modifications were just reminders to students to draw pictures, decide the truth or falsity 

of a statement, and back up their decisions with an argument or counterexample.  These were the 

same directions that were with the exercises in the textbook.  The “modification” label was 

removed from these 6 items by the primary researcher.  

4.1.2 Implementation of reasoning-and-proving exercises (RQ2: To what extent were 

participants able to maintain the level of cognitive demand of reasoning-and-proving tasks 

during implementation?) 

All of the exercises chosen by Karen for her student work samples had the potential to engage 

her students in proof (see Figures 4.4, 4.5, and 4.6).  In the IQA Rubric for Potential of the Task, 

a task that scores 4 “must explicitly prompt for evidence of students’ reasoning and 

understanding.  For example, the task MAY require students to…create a proof or find a 

counterexample” (see Appendix K).  An implementation score of 4 indicates that “there is 

explicit evidence of students’ reasoning and understanding.  For example, students may 

have…created a proof or found a counterexample” (see Appendix K).  Karen’s first classroom 

artifact task asked students to create their first proof; while not every sample of student work that 

Karen labeled “exceeded” or “met” expectations was rated as proof by the coders, the students’ 

samples showed that Karen maintained a high level of cognitive demand for the task.  According 

to Boston and Smith (2009), score levels 3 and 4 on the IQA Rubrics for Potential of the Task 

and Implementation of the Task “represent high-level cognitive demands in which the 
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connections to meaning and understanding are implicitly (score level 3) or explicitly (score level 

4) required by the task” (p.153). 

 

Figure 4.4 First classroom artifact packet task assigned by Karen (Day 1). 

 

 

Figure 4.5 Second classroom artifact packet task assigned by Karen (Day 7). 

 

 

Figure 4.6 Third classroom artifact packet task assigned by Karen (Day 11). 
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Figure 4.7 shows an example of a piece of student work for the third classroom artifact 

packet task (Figure 4.6).  The proof is complete and is essentially in a two-column format; the 

task required a proof and this student (“Karen 3-1”) produced a proof.  Karen’s third classroom 

artifact packet contained a collection of three exercises; Karen labeled this student’s work as 

“exceeding expectations.”  Karen maintained the level of cognitive demand for all of her 

classroom artifact packet tasks.  Table 4.5 summarizes the IQA rubric scores for the potential of 

the task and the implementation of the task for Karen’s classroom artifact packets.  All of 

Karen’s scores were 3 or 4, indicating that she successfully chose tasks with the potential to 

engage her students in reasoning-and-proving and she maintained the level of cognitive demand 

through the implementation of those tasks. 

 

 

Figure 4.7  Classroom artifact sample Karen 3-1 showing a valid proof. 
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Table 4.5 Potential and Implementation of Karen's Tasks for Cognitive Demand 

Classroom Artifact 
Packet Potential of Task Implementation of 

Task 
Maintained Cognitive 

Demand? 

First 4 3 Maintained 

Second 4 4 Maintained 

Third 4 4 Maintained 

 

4.1.3 Evaluation students’ reasoning-and-proving products (RQ3: To what extent were 

participants able to accurately evaluate their students’ reasoning-and-proving products?) 

The core elements of proof used in the reasoning-and-proving course in which Karen, Uma, 

Sidney, and Jonathan participated were: 

• The argument must show that the conjecture or claim is (or is not) true for all cases. 

• The statements and definitions that are used in the argument must be ones that are true 

and accepted by the community because they have been previously justified. 

• The conclusion that is reached from the set of statements must follow logically from the 

arguments made. 

When asked how she would define proof to a colleague, Karen responded, “Make a claim 

and list statements with accompanying justification in a logical order to prove your goal 

statement” (personal communication, May 27, 2013).  When asked how she would define proof 

to a student, Karen responded slightly differently:  

[Proving is when you construct] a valid argument where you are listing what you are 

given, where you use what you know (e.g., definitions and theorems) to reach a goal.  
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The goal is a statement that you are trying to prove.  For the proof, each statement you 

list has to be backed up (justification).  A reader has to be able to follow your argument 

because the reader is not inside your head; you have to put down enough detail so that the 

reader can understand your process and argument. (personal communication, May 27, 

2013) 

Comparing these definitions to the core elements of proof (see Table 4.6), Karen captured using 

true and validated statements to justify claims and the logical flow of the argument, but she was 

vague about the “goal statement.”  It is possible that she understands a “goal statement” must 

apply to all cases in a particular domain, but she did not voice that either initially or under 

probing.   

 

Table 4.6 Comparison of the Core Elements of Proof with Karen's Definition of Proof 

Core element of proof Karen 

The argument must show that the conjecture or claim is (or is not) true for all cases. Partial 

The statements and definitions that are used in the argument must be ones that are 

true and accepted by the community because they have been previously justified. 
Present 

The conclusion that is reached from the set of statements must follow logically 

from the argument made. 
Present 

Additional Criteria None 

 

4.1.3.1 Criteria for judgment (RQ3a: To what extent did participants’ criteria for judging the 

validity of their students’ reasoning-and-proving products contain the core elements of proof?) 

Karen’s expectations for her students included the idea of “formal proof,” although she did not 

define proof until her post-interview.  Based on that information and the classroom artifact 
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packet tasks themselves, it is clear that Karen expected her students to show that a particular 

conjecture was true for all figures with the given characteristics, the statements and definitions 

used must have been defined by the classroom community (students keep a list of these in tan 

composition books in Karen’s classroom), and the conclusion reached by the students must 

follow logically from the argument made (core elements of proof). In addition, Karen delineated 

level of quality.  For example, the rubric for the first sample student work was described by 

Karen as follows (Karen’s first classroom artifact packet Cover Sheet):    

• “Exceeded expectations” for students who wrote a formal proof with no errors 

• "Met expectations" for students who stated and justified some claims but not all, or made 

some errors in terminology but overall were able to justify their claims; note that this is 

the first proof the students had attempted 

• "Failed expectations" for students who wrote a postulate or made assumptions without 

justification 

Karen’s rubric for the second student work exercise was virtually identical to the first rubric 

(there were some minor changes in wording in “met” and “failed” expectations).   

The third rubric covered three exercises on a quiz, was holistic for the entire quiz, and 

was based on completeness and correctness (see Table 4.7).  A score of 4 on the IQA rubric for 

Clarity and Detail of Expectations means that “the expectations for the quality of students’ work 

are very clear and elaborated.  Each dimension or criterion for the quality of students’ work is 

clearly articulated.  Additionally, varying degrees of success are clearly differentiated” and proof 

evaluations must be based on the core elements (see Appendix K).  The raters agreed that Karen 
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scored a 4 (highest level) on all three tasks for her clarity and detail of expectations (see Table 

4.8). 

Table 4.7 Karen's Rubrics for Her Classroom Artifact Packets 

Rubric Level First Rubric Second Rubric Third Rubric 

Exceeded 
expectations 

Formal proof with no 
errors 

Formal proof with no 
errors 

Mastery: 
10 points: no errors 
 
8-9 points: one or two 
small errors while 
writing out the proof, 
but not an error in logic 
 
Not Mastered: 
6-7 points: Wrote a 
proof for one of the 
problems but not both 
(including justification) 
OR wrote statements 
and reasons for parts of 
both proofs but did not 
complete either 
accurately 
 
5 points or below: 
Incomplete, little or no 
correct statements with 
justification 

Met 
expectations 

Stated and justified 
some claims but not 
all, or made some 
errors in terminology 
but overall were able 
to justify their claims 

Formal proof but with 
one or two minor errors 

Failed 
expectations 

Wrote a postulate or 
made assumptions 
without justification 

Assumed that segments 
and angles were 
congruent without 
justification or did not 
provide justification for 
statements 
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Table 4.8 Quality of Karen's Rubrics Used to Judge Student Work 

Classroom Artifact 
Packet Rubric 

Clarity and Detail 
of Expectations Comment 

First 4 
Used core elements of proof and levels of 
expectations 

Second 4 
Used core elements of proof and levels of 
expectations 

Third 4 
Used core elements of proof and levels of 
expectations 

Average 4  
 

4.1.3.2 Application of core elements of proof (RQ3b: To what extent did participants apply 

the core elements of proof in evaluating their students’ reasoning-and-proving products?) 

Karen agreed with the coders in identifying which of her students’ reasoning-and-proving 

products qualified as proof with one exception: student sample Karen 1-1 (see Figure 4.8).  At 

first glance, this students’ work looks complete and logical; it is easy to miss that the student 

mislabeled one of the angles.  When this was discussed with the second coder, the second coder 

felt that the error was minor and since the student had correctly marked the drawing, the work 

still qualified as proof.  The primary researcher asked Karen to render an opinion about this 

error, and while she missed it the first time she scored the work, Karen agreed with the primary 

researcher that the work—while still exceeding expectations for the student’s first proof 

attempt—did not actually qualify as a proof due to the error.  Karen explained that she did not 

expect students to list the given statements in this first proof attempt (personal communication, 

May 27, 2013).  Student work sample Karen 1-2 did qualify as a proof because it contained the 

core elements of proof, showed no errors, and included the given statements (see Figure 4.9). 
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Figure 4.8  Classroom artifact packet sample Karen 1-1 showing a non-proof argument due to the mislabeling 

of an angle. 

 

Figure 4.9  Classroom artifact packet sample Karen 1-2 showing a valid proof rated "exceeded expectations". 

The scores of all of the student work samples in the classroom artifact packets are 

displayed in Table 4.9.  As mentioned before, Karen did not completely base her expectation 

score on the core elements of proof; she judged expectations on the developmental progress of 

her students.  The information contained in the column for whether or not Karen judged each 

sample of student work to be a proof was obtained during her post-interview on May 27, 2013, 

which was conducted in person so Karen could review the samples of student work she had 

collected. 
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Table 4.9 Karen's Application of the Core Elements of Proof in Evaluating Student Work 

Classroom 
Artifact Packet 

Sample 

Participant 
Score 

Participant 
Evaluation: 

Proof? 

Researcher 
Evaluation: 

Proof? 
Comments 

 First task:  Prove that two triangles are congruent (first solo proof exercise attempted by 
students; see Figure 4.4) 

Karen 1-1 
Exceeded 

expectations 
Nonproof Nonproof 

Given statement missing; 
angle mislabeled in vertical 
angles (should be angle DMA 
is congruent to angle CMB) 

Karen 1-2 
Exceeded 

expectations 
Proof Proof 

 

Karen 1-3 
Met 

expectations 
Nonproof Nonproof 

Did not state which segments 
were congruent in two-
column proof; congruent 
sides were labeled in drawing 

Karen 1-4 
Met 

expectations 
Nonproof Nonproof 

Stopped after listing given 
and two pairs of congruent 
sides; marked congruent 
vertical angles in drawing 

Karen 1-5 
Failed 

expectations 
Nonproof Nonproof 

Series of incorrect claims; did 
state SAS but without 
coherent justification except 
to label two pairs of 
congruent sides in drawing 

Karen 1-6 
Failed 

expectations 
Nonproof Nonproof 

Drawing correctly labeled 
and SAS stated but no series 
of statements and 
justifications 

 Second task: Prove that two triangles are congruent (see Figure 4.5). 

Karen 2-1 
Exceeded 

Expectations 
Proof Proof 

Statements and justifications 
used are those accepted by 
the community but needs to 
justify the first statement as 
“given” 
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Karen 2-2 
Exceeded 

Expectations 
Proof Proof 

 

Karen 2-3 
Met 

Expectations 
Nonproof Nonproof 

Did not state the given 
statement 

Karen 2-4 
Met 

Expectations 
Nonproof Nonproof 

First statement is unclear—
might say “  is shared” 

implying  is congruent to 

itself by the reflexive 
property; include the given 
statement; replace “they” in 
the fourth statement with 
specific triangles 

Karen 2-5 
Failed 

Expectations 
Nonproof Nonproof 

No justifications; argument 
based on SSS triangle 
congruence which is not 
possible here 

Karen 2-6 
Failed 

Expectations 
Nonproof Nonproof 

No mention that AC = CD 
and an incorrect justification 
for the congruent angles. 

 
Third task: Prove that two corresponding parts of two (congruent) triangles are congruent 
(see Figure 4.6). 

Karen 3-1 
Exceeded 

Expectations 
Proof Proof 

 

Karen 3-2 
Exceeded 

Expectations 
Proof Proof 

 

Karen 3-3 
Met 

Expectations 
Proof Proof 

 

Karen 3-4 
Met 

Expectations 
Proof Proof 

Minor error by not labeling 
the vertical angles with three 
points (only used the vertex) 

Karen 3-5 
Failed 

Expectations 
Nonproof Nonproof 

No justifications or 
organization; SSS was 
incorrectly used as the type of 
triangle congruence 
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Karen 3-6 
Failed 

Expectations 
Nonproof Nonproof 

Congruent parts of the 
triangles were labeled on the 
diagram but no justifications 
or type of triangle 
congruence was provided 

 

When initially examining the second set of student work samples, the primary researcher 

thought that students had not properly dissected the implications of the given statement, “  is a 

perpendicular bisector of .”  She expected the proofs to include a series of statements and 

justifications (or some of them) such as shown in Figure 4.10.  When asked why her students did 

not include these lines in their proofs, Karen showed the primary researcher the definition of 

“perpendicular bisector” as recorded by students in their tan composition notebooks: "A line 

perpendicular to a segment's midpoint" (from a student's notes).  The definition was 

accompanied by a picture that showed a triangle split by a perpendicular bisector with two right 

angles and two labeled, congruent segments on either side of the midpoint.  Not every 

perpendicular bisector splits a triangle in half (this only works for isosceles and equilateral 

triangles), but the labeled picture in the students’ notes matched the conditions in the triangle in 

the second classroom artifact packet task, so students could take as shared by their community 

that a perpendicular bisector with this configuration (segment passes through the opposite vertex) 

creates two congruent right angles and two congruent segments on either side of the midpoint.  

Thus, the steps expected by the primary researcher were not necessary for proof in Karen’s class.  

Figure 4.11 shows a valid proof and Figure 4.12 shows an insufficient argument for the second 

student work sample proof. 



 

177 

 

 

Statement Justification 

 is a perpendicular bisector of . Given 

 and  are right angles Definition of perpendicular segments 

 and m  Definition of right angles 

 
Transitive property or substitution 

   Definition of Congruent Angles 

C is a midpoint of  Definition of bisector 

 
Definition of midpoint 

 

Figure 4.10 Expected lines in the beginning of the second classroom artifact packet proof 

 

Figure 4.11 Second classroom artifact packet sample Karen 2-1 showing a proof. 
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Figure 4.12 Second classroom artifact packet sample Karen 2-4 showing an insufficient argument. 

4.1.3.3 Communication of expectations (RQ3c: In what ways did participants communicate 

expectations regarding what is required to produce a proof to students?) 

One way to assess how a teacher communicates expectations to students is to ask the students.  

On Day 11 of Karen’s data collection period, she gave the students a mastery assessment so that 

she could adjust her lesson plans.  Her first question was, “why is proof so important in 

mathematics?”  The responses from six students were as follows (Karen’s comments are in 

italics): 

• "To obtain accurate results in problem solving by explaining the logic that went into a 

solution" (Karen 3-1) 

• "So you can prove that something is true.  You can prove that your answer works.  If you 

didn't prove then you could say anything you wanted." Great point! Justification is key! 
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(Karen 3-2) 

• "Proof is so important because it extends the knowledge of a subject, based on a proven 

previous subject.  Also that allow for further explanation into a theorem." Nice! Why is 

justification such an important part of proof writing? (Karen 3-3) 

• "If someone just gives an answer with no proof then it is basically useless for other 

problems.  If someone prooves [sic] something once then they know it is true for the next 

and future problems." Great point! We often use things that we prove as justification in 

other proofs! (Karen 3-4) 

• "Proof is important in mathematics because without it, yourself and nobody else will 

actually know if your answer is right." I agree.  Why is justification so important? (Karen 

3-5) 

• "To get the right answer and to find who is right or wrong." Absolutely! Why is providing 

justification so important? (Karen 3-6) 

The students’ comments indicate that Karen conveyed the idea that proof is a logical argument 

used to develop a verified body of knowledge which can be applied or used to further 

mathematical understanding.  Karen’s notes on the classroom artifact packet cover sheets also 

indicate that she discussed her expectations for student work and her lesson plans indicated that 

students saw many examples of proofs.  By the third classroom artifact packet task, students 

were given written directions to “prove the following statements, using any of the styles and 

methods you have learned” and were reminded orally to justify and organize their arguments in a 

way that their audience could understand clearly.  The IQA rubric for Communication of 

Expectations states that teachers who discuss their expectations or criteria for student work with 

students in advance of their completing the assignment and model high-quality work are rated 4 
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on the rubric (see Appendix K).  When shown the IQA rubric for Communication of 

Expectations for the purpose of member checking, Karen agreed with the primary researcher and 

the second coder that she should be rated a 4 (highest level) for each task (see Table 4.10).  In 

addition, Karen reinforced her expectations by the feedback she provided her students on their 

work (see Figure 4.13). 

Table 4.10 Karen's Communication of Expectations Rubric Scores 

Classroom Artifact 
Packet 

Communication Score 

First 4 

Second 4 

Third 4 

Average Score 4 
 

 

Figure 4.13 Classroom artifact packet sample Karen 3-5 showing an insufficient argument and Karen's 

comments. 
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In conclusion, Karen’s district uses a reform curriculum that supports reasoning-and-

proving to a high degree in the geometry course.  For the pages of CME’s Geometry, Unit 2 that 

Karen covered during her 15-day data collection period, 75.5% of the exercises had the potential 

to engage students in reasoning-and-proving.  Of the 335 exercises Karen selected from all 

sources, Karen offered her students 256 opportunities to engage in reasoning-and-proving 

(76.4%).  About two-thirds of the reasoning-and-proving exercises Karen selected were of the 

types Investigate a Claim or Develop an Argument.  While Karen did not modify any exercises 

to include more reasoning-and-proving, she did not lower the potential of any of the exercises.  

Although she mainly used exercises from her CME Geometry curriculum, when Karen did adopt 

from ancillary sources or modify curriculum tasks, she choose reasoning-and-proving exercises.  

Finally, Karen’s student work samples indicate that she can recognize and implement a 

cognitively-demanding task, construct clear and detailed expectations based on the core elements 

of proof, evaluate students’ work based on the core elements, and communicate those 

expectations to her students. 

4.2 UMA 

Uma also teaches geometry in an urban district which has a racially mixed population of students 

with low socio-economic status.  Unlike Karen, though, Uma teaches in Virginia which is a state 

that did not adopt the Common Core State Standards and places very little emphasis on 

reasoning-and-proving.  For example, the district pacing guide given to Uma for her geometry 

class does not include triangle congruence proofs, a mainstay of geometry proofs (personal 
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communication, May 29, 2013).  To make sure teachers follow the district pacing guide, students 

are given a district-created benchmark assessment every nine weeks and the Virginia Standards 

of Learning (SOL) test at the end of the year.  Uma reports that about half of her teaching 

evaluation is based on her students’ performance on the SOLs.   

Uma’s school is one of four high schools in her district and has about 2,000 students in 

grades 9-12.  Uma reported that most of the other mathematics teachers in her school are 

experienced and teach in a traditional manner that does not resonate with her university training. 

Since the district insists that all teachers with the same subject participate in Professional 

Learning Communities (PLC), follow the same pacing guide, and administer common exams, 

Uma has difficulty assessing her students in the way that she would like (e.g., open-ended 

questions).  Uma teaches two geometry classes and two Algebra 2 inclusion classes.  She 

selected a geometry class for this study because she taught geometry last year and had a sense of 

where she could include reasoning-and-proving tasks and still follow the district pacing guide.   

4.2.1 Selecting exercises (RQ1: To what extent did participants select reasoning-and-proving 

learning opportunities in the form of exercises?) 

4.2.1.1 Available in textbook (RQ1a: To what extent does the textbook include exercises that 

have the potential to engage students in reasoning-and-proving?) 

The textbook used by Uma’s class was Glencoe’s Geometry, Virginia edition (Boyd, Cummins, 

Mallow, Carter, & Flores, 2005).  In the fifteen days of data collection, Uma’s class studied areas 

of circles, quadrilaterals and polygons and surface area of solids (chapters 11 and 12 in the 

textbook).  The textbook exercises consisted of guided practice, practice and apply, mixed 
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review, getting ready for the next lesson, practice quizzes, chapter study guides and reviews, and 

practice chapter tests.  There were 783 exercises spanning area and surface area; 41 one of them 

were coded as reasoning-and-proving exercises which represents 5.2% of the available exercises.   

Uma’s textbook exercises favored making generalizations rather than developing 

arguments.  Over three-quarters of the exercises asked students to make or investigate 

conjectures; less than a quarter of the exercises asked students to develop an argument or find a 

counterexample (see Table 4.11).  As a reminder, some exercises were coded as more than one 

type so the sum of the exercises listed in Table 4.11 does not sum to 41. 

 

Table 4.11 Available Types of Reasoning-and-proving Exercises in Uma's Textbook 

Type of RP Exercise Available in Textbook* 

Make a Conjecture 15 (1.9%) 

Investigate a Conjecture 18 (2.3%) 

Evaluate an Argument 4 (0.5%) 

Correct a Mistake 0 (0%) 

Develop an Argument 5 (0.6%) 

Counterexample 2 (0.3%) 

Principles of Proof 0 (0%) 

Non-Reasoning-and-Proving 743 (94.8%) 

 

*Exercises may be coded as more than one type of reasoning-and-proving, so the percentages 

may not sum to 100%. 
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4.2.1.2 Selected by Teacher (RQ1b: To what extent did the participant select exercises for 

instruction that had the potential to engage students in reasoning-and-proving?) 

Uma’s lessons included warm-up exercises, some exploratory and practice exercises, chapter 

reviews, and exams.  In the 15-day data collection period, Uma assigned 291 exercises to her 

students, 10 of which were reasoning-and-proving exercises (3.0%), which is lower than the 

percentage contained in the textbook (5.2 %).  In her interviews, Uma cited time constraints as 

the reason she did not engage her students more in reasoning-and-proving.  In her district, all 

geometry teachers must give the same chapter exams which model the Virginia SOL exam and 

are written by experienced teachers not focused on reasoning-and-proving. In order to prepare 

her students for their exams, Uma feels that she must devote much of her teaching to conveying 

procedures instead of offering opportunities to engage students in reasoning-and-proving. 

Of the 10 exercises assigned by Uma that the coders judged to be reasoning-and-proving, 

Uma labeled 9 of them to be reasoning-and-proving and one not reasoning-and-proving (a claim 

investigation from the chapter review game created on Day 13).  Of the 281 exercises selected by 

Uma that were not rated as reasoning-and-proving by the coders, Uma labeled 32 as reasoning-

and-proving and 249 as not reasoning-and-proving.  This analysis may under- or over-represent 

Uma’s ability to recognize reasoning-and-proving tasks because Uma collectively gave large 

groups of exercises one label on her Task Log Sheets.  For example, Uma labeled the entire Day 

13 chapter review game as “not reasoning-and-proving,” and indeed 23 of the 24 exercises were 

not, but one asked students to investigate a conjecture.  Similarly, Uma considered the exercises 

shown in Figure 4.14, Figure 4.15, and 12 practice exercises from Day 4 as a set and wrote that 

“some questions” were reasoning-and-proving.  In contrast, the coders thought that the 

scaffolding and the lack of other regular polygons prevented the first four exercises in Figure 
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4.14 from rising to the level of reasoning-and-proving.  The fifth exercise, however (“What is the 

relationship between the perimeter of the regular hexagon and its area?”) was rated as reasoning-

and-proving because students were asked to make a conjecture. 

 

 

Figure 4.14 Developing the formula for the area of a regular polygon (Uma's Lessons, Day 4). 
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Figure 4.15 Developing the formula for the area of a circle (Uma's Lessons Day 4; Boyd et al., 2005, p. 611). 

 

Uma’s Day 4 lesson also focused on the area of a circle.  This task used in this lesson was 

taken from her textbook, and it shows a pattern of polygons with increasing number of sides.  

From the information provided to students in the table, students can make a conjecture about the 

formula for the area of a circle.  Because of the pattern, the two exercises in this task were rated 

as reasoning-and-proving (see Figure 4.15). 

Describing Uma’s reasoning-and-proving engagement opportunities in terms of the 

number of exercises she offered may under-represent what her students experienced.  A more 

accurate representation may be to look at the time her students spent on reasoning-and-proving 

exercises.  On Day 1, Uma’s students spent part of 40 minutes developing the formulas for the 

areas of parallelograms, trapezoids, and rhombi.  On Days 3 and 4, students spent a total of 40 

minutes proving or disproving the statement “If two polygons have the same area, then they are 

congruent” (this was also Uma’s first classroom artifact packet task).  On Day 4 students also 

spent part of 50 minutes developing formulas for areas of regular polygons and circles (see 
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Figures 4.14 and 4.15).  On Day 8 students spent the entire 90 minute class on a fencing task 

(third classroom artifact packet task), and on Day 11 students spent 20 minutes developing a 

formula for the surface area of a regular pyramid.  If the time spent on reasoning-and-proving on 

Day 1 (part of 40 minutes) and Day 4 (part of 50 minutes) is estimated to be 20 minutes and 25 

minutes, respectively, then students spent an estimated 195 minutes out of 1215 minutes of class 

time over 15 days potentially engaging in reasoning-and-proving.  This measure-16 % of class 

time—indicates a much higher focus on reasoning-and-proving than the number of exercises 

suggests. 

Similar to the textbook, more of Uma’s reasoning-and-proving exercises focus on making 

generalizations than on developing arguments; 10 exercises involved making or investigating a 

conjecture, while 6 exercises asked students to develop an argument or find a counterexample (6 

of the exercises were coded for more than one action).  Table 4.12 provides the details. 

Table 4.12 Uma's Selected Types of Reasoning-and-proving Exercises 

Type of RP Exercise Selected by Teacher* 

Make a Conjecture 8 (2.8%) 

Investigate a Conjecture 2 (0.7%) 

Evaluate an Argument 0 (0%) 

Correct a Mistake 0 (0%) 

Develop an Argument 5 (1.7%) 

Counterexample 1 (0.3%) 

Principles of Proof 0 (0%) 

Non-Reasoning-and-Proving 274 (94.5%) 
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*Exercises may be coded as more than one type of reasoning-and-proving, so the percentages 

may not sum to 100%. 

 

In comparing the available exercises in the textbook with the exercises that Uma offered 

her students (see Figure 4.16), it is clear that Uma offered more Make a Conjecture exercises 

(2.8% compared to 1.9%) and Develop an Argument exercises (1.7% compared to 0.6%) than 

were available in the textbook.  Almost all of the Develop and Argument exercises were created 

by Uma (one for the Student Work packets and three in Day 1 Lessons about developing 

formulas for the areas of parallelograms, trapezoids, and rhombi).   

 

Figure 4.16 Comparison of available and selected types of reasoning-and-proving exercises for Uma 
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4.2.1.3 Exercise modifications (RQ1c: To what extent did the participant modify tasks to 

affect the tasks’ potential to engage students in reasoning-and-proving?) 

According to Uma, virtually all of her modifications involved simplifying the wording of a 

problem or adding extra questions, such as asking students to identify a shape, write down a 

formula, or explain their thinking.  Figure 4.17 shows an example from Uma’s textbook that she 

modified to include extra practice for her students with vocabulary and formulas (see Figure 4.18 

for the modified exercises).  In total, Uma labeled 131 exercises as “modified,” but this label was 

applied to collections of exercises, not individual exercises.  Regardless, only 3 modified 

exercises had the potential to engage students in reasoning-and-proving, and this section will 

focus on these three exercises.  In the first modified exercise, Uma took a textbook presentation 

of the development of the formula for the area of a regular polygon and modified it into the 

collection of exercises shown in Figure 4.14.  The fifth question is a make-a-conjecture exercise, 

and is coded as a non-reasoning-and-proving exercise modified to include reasoning-and-

proving.  Uma made a similar modification in her lesson from Day 11 for the surface area of a 

regular pyramid (see Figure 4.19 for the textbook presentation and Uma’s modification in Figure 

4.20).   The third modified reasoning-and-proving exercise is the claim investigation from the 

chapter review on Day 13.  This exercise, which asks students to determine if the inverse of the 

statement “if a polygon has four sides then it is a quadrilateral” is true or false is similar to 

exercises found in Uma’s textbook on p. 79.  Those exercises were already reasoning-and-

proving exercises, so Uma’s wording modification has a neutral effect.  This data is summarized 

in Table 4.13. 
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Figure 4.17 Original exercise: Determining the area of a trapezoid (Boyd et al., 2005, p. 603). 

 

 

Figure 4.18 Modified exercise: Determining the area of a trapezoid (Uma's Lesson Day 2). 



 

191 

 

 

Figure 4.19 Original exercise: Determining formulas for the lateral and surface areas of regular pyramids 

(Boyd et al., 2005, p. 662) 
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Figure 4.20 Modified exercise: Determining formulas for the lateral and surface areas of regular pyramids 

(Uma's Lessons Day 11). 

 

Table 4.13 Frequency of Exercise Modifications Made by Uma 

Original Exercise (any source) Exercise as assigned by teacher Code Frequency 

Reasoning-and-Proving Exercise 
Exercise assigned, modified to 
LOWER RP 

-1 0 

Reasoning-and-Proving Exercise 
Exercise assigned, neutral 
modification effect 

0 1 

Reasoning-and-Proving Exercise 
Exercise assigned, modified to 
INCREASE RP 

+1 0 

Non-Reasoning-and-Proving 
Exercise 

Exercise assigned, modified to 
INCLUDE RP 

+2 2 
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4.2.1.4 Exercise sources (RQ1d: What were the sources of the exercises that participants 

selected for instruction?) 

About two-thirds of the exercises selected by Uma were taken directly or modified from her 

textbook and accompanying workbook (see Table 4.14).  Out of the exercises modified from the 

curriculum, three of them were reasoning-and-proving: make a conjecture from the area of a 

regular polygon lesson (#5 in Figure 4.14), make a conjecture and develop an argument for the 

formula for the surface area of a regular pyramid (see Figure 4.20 for both modifications), and 

investigate a conjecture from the chapter review exercises.  The 61 exercises taken from 

ancillary resources were from two chapter exams written by Uma’s department and given to all 

geometry students.     

 

Table 4.14 Sources of Exercises Selected by Uma 

Source All Exercises 
Frequency 

Reasoning-and-
Proving Exercises 
Frequency 

Taken Directly from Published 
Textbook/Curriculum 

64 2 

Modified from Textbook/Curriculum 129 3 

Used in the CORP Course 0 0 

Taken or Adapted from Ancillary Resources 61 0 

Created by Teacher 36 5 

 

Half of the reasoning-and-proving exercises Uma gave to her students were created by 

Uma herself.  Two of these were exercises used in the first and third classroom artifact packets 

(investigate a claim/find a counterexample and make a conjecture/develop an argument, 
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respectively) and three were for making conjectures and developing arguments for the areas of 

parallelograms, trapezoids, and rhombi.  In her post-interview, Uma expressed a desire for a 

resource book of proof tasks.  She did not identify any other sources of tasks that might currently 

exist, although her textbook contained 41 reasoning-and-proving exercises that Uma could have 

selected; either Uma was unaware that these exercises had the potential to engage her students in 

reasoning-and-proving or she felt too constrained by time to offer them to her students. 

4.2.2 Implementation of reasoning-and-proving exercises (RQ2: To what extent were 

participants able to maintain the level of cognitive demand of reasoning-and-proving tasks 

during implementation?) 

Of the three classroom artifact packets submitted by Uma, two were judged to contain a 

reasoning-and-proving task by the raters.  These tasks were: 

• “Prove or disprove. If two polygons have the same area, then they are congruent”  (first 

classroom artifact packet, Day 3) 

• “You have 36 feet of flexible fencing to build me the largest pen for all of my animals.  

You must determine what shape will give me the largest area, label the shape with its 

dimensions, and explain how you know that your shape has the largest area” (third 

classroom artifact packet, Day 8) 

The task in the second student work sample involved a series of irregular shapes with 

scaffolded directions on how to dissect and calculate the area of the shapes (see Figure 4.21 for 

an example).  Even though Uma asked her students to present their solutions and look for trends, 

the directions were so specific that there was little ambiguity about how to proceed (see the IQA 
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rubric for Potential of the Task in Appendix K), so the task was rated by the coders to be a low-

level task which did not involve reasoning-and-proof (scoring a 2 on Potential of the Task and a 

2 on Implementation of the Task). 

 

Figure 4.21 Uma's second classroom artifact packet task (Uma’s Lessons, Day 5). 

 

Because the claim in Uma’s first classroom artifact packet (“If two polygons have the 

same area, then they are congruent”) is false, all that was required of the students was to find a 

counterexample.  This still qualifies the potential of this task to be rated as a 4, since the IQA 

rubric states that “the task MAY require students to…find a counterexample” (see Appendix K).   

Student Sample Uma 1-1 first claims (correctly) that two figures with the same area can have 

different shapes (circle and square), then provides an example of two different quadrilaterals 

(parallelogram and rectangle) that have areas of 32 square units (see Figure 4.22).  Student 

sample Uma 1-2 took a similar approach, approximating the square root of 12 as 3.5 to create a 
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square and a triangle with the same area (see Figure 4.23).  Student sample Uma 1-3 took a 

minimalist approach, and merely claimed that a square and a triangle can have the same area, but 

did not demonstrate this fact (see Figure 4.24).  The last sample of student work that Uma judged 

to exceed or meet her expectations was Uma 1-4.  This student’s work indicates a lack of 

conviction or perhaps weak communication skills (see Figure 4.25).  Since the task in this first 

classroom artifact packet asked students to prove or disprove a statement and all four samples 

that exceeded or met Uma’s expectations disproved the statement to varying degrees, Uma 

maintained the high cognitive demand of this reasoning-and-proving exercise (scoring a 4 on the 

IQA rubric for Implementation of the Task). 

 

Figure 4.22 First classroom artifact packet sample Uma 1-1. 
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Figure 4.23 First classroom artifact packet sample Uma 1-2. 

 

 

Figure 4.24 First classroom artifact packet sample Uma 1-3. 

 

 

Figure 4.25 First classroom artifact packet sample Uma 1-4. 
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The third task required more of the students: they had to determine that a circle encloses 

more area than any polygon for a given circumference (perimeter) and they had to explain why.  

While most students calculated a series of areas of rectangles and squares (see Figure 4.2.13) and 

some students calculated the area of a circle (see Figure 4.2.14), only one student in the sample 

attempted to explain why a circle had the maximum area: “The circle is bigger because whatever 

shape you make it basically stretches the perimeter to the max because it has no corners” (sample 

Uma 3-2).  The student then calculated some sample areas to reinforce the argument.  Because 

this task required students to make explicit their reasoning but Uma did not hold students to 

determining and explaining why a circle encloses the maximum area for a fixed perimeter, this 

task was rated a 4 for task potential and 3 for task implementation (“students made conjectures 

but did not provide sufficient mathematical evidence or explanations to support conclusions”; see 

Appendix 3.9 for IQA Rubric 2: Implementation of the Task).  A summary of these scores is 

shown in Table 4.2.5. 

 

Figure 4.26 Third classroom artifact packet sample Uma 3-3, showing an insufficient argument. 
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Figure 4.27 Third classroom artifact packet sample Uma 3-1 showing three calculations of area. 

 

Table 4.15 Potential and Implementation of the Cognitive Demand of Uma's Tasks 

Student Work 
Sample 

Potential of 
Exercise 

Implementation of 
Exercise 

Maintain Cognitive 
Demand? 

First 4 4 Maintain 

Second 2 2 Maintain 

Third 4 3 Maintain 
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4.2.3 Evaluation students’ reasoning-and-proving products (RQ3: To what extent were 

participants able to accurately evaluate their students’ reasoning-and-proving products?) 

When asked to define reasoning-and-proving to a student and a colleague, Uma said she would 

give the same response: “A proof is a mathematical argument to illustrate some type of fact.  

You can use pictures, formulas, explanations in words to explain why your idea is true or not.  It 

has to be something that will always work” (personal communication, May 29, 2013).  Uma’s 

definition loosely contains the first two core elements of proof (the argument must show that the 

conjecture or claim is—or is not—true for all cases and the statements and definitions that are 

used in the argument must be ones that are true and accepted by the community) but it does not 

contain any statement about the logic of the argument, which is another core element (see Table 

4.16).  Uma’s definition did not mention type or form of proof, the representation used, or 

explanatory power, none of which are core elements and were correctly absent from Uma’s 

definition of proof. 

 

Table 4.16 Comparison of the Core Elements of Proof with Uma's definition of Proof 

Core element of proof Uma 

The argument must show that the conjecture or claim is (or is not) true for all cases. Present 

The statements and definitions that are used in the argument must be ones that are 
true and accepted by the community because they have been previously justified. 

Present 

The conclusion that is reached from the set of statements must follow logically 
from the argument made. 

Missing 

Additional Criteria None 
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4.2.3.1 Criteria for judgment (RQ3a: To what extent did participants’ criteria for judging the 

validity of their students’ reasoning-and-proving products contain the core elements of proof?) 

Uma’s rubrics for evaluating her students’ work contained little information about what 

distinguished high, medium, and low performance.  For instance, Uma provided the following 

scoring guide for the first student work packet task (“Prove or disprove that polygons with the 

same area are congruent”): 

• A: picture (evidence), definition, neat and convincing 

• B/C: correct answer with explanation, no pictures, not a good enough job convincing 

• D/F: incorrect answer, no explanations 

While this scheme is loosely based on the core elements of proof (disprove with a 

counterexample, correct formulas to calculate areas, decision is based on counterexample), it 

also contains a reliance on representation, which is not a core element of proof.  The third 

student work sample contained a scoring guide that was vaguer than the first guide: “You will be 

graded on your correctness, explanations and diagrams, [and] behavior and participation in the 

conversation that compares each group’s work.”  Uma’s rubrics are summarized in Table 4.17.  

It was assumed by the raters that Uma considered “correctness” in the third rubric to mean that 

the students correctly determined that a circle would enclose the largest area.  It should also be 

noted that students’ behavior, neatness and presentations factored into the clarity and detail of 

Uma’s expectations.  Because the coder was not present in the classroom during these 

presentations, the remotely-gathered data may over- or under-represent the standard to which 

Uma held her students with respect to making their reasoning explicit during the presentations.  

The core elements of proof should have been present in the rubrics for the first and third exercise 
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(the first exercise directs the students to “prove or disprove” and the third exercise directs student 

to “explain how you know that your shape has the largest area”).   The presence of the core 

elements of proof for a proof task is a requirement to earn a 4 on the IQA rubric Clarity and 

Detail of Expectations (see Appendix K).  In her post-interview, Uma stated that the class 

struggled in the third exercise with determining a circle to be the correct shape which inspired a 

lengthy discussion (personal communication, May 29, 2013), The IQA Clarity and Detail of 

Expectations rubric scores are in Table 4.18. 

 

Table 4.17 Uma's Rubrics for Her Classroom Artifact Packets 

First Rubric Second Rubric Third Rubric 

A: Picture (evidence), definition, 

neat, convincing 

B/C: Correct answer with 

explanations, no pictures, not a 

good enough job convincing 

D/F: Incorrect answer, no 

explanations 

Correctness, neatness, 

presentation, behavior, 

and answers to 

questions on the back 

 

(Note: all groups met 

expectations) 

Correctness, explanation 

and diagrams, behavior and 

participation in the 

conversation that compares 

each group’s work 

 

Table 4.18 Quality of Uma's Rubrics Used to Judge Student Work 

Classroom Artifact 

Packet Rubric 

Clarity and Detail 

of Expectations 
Comment 

First 3 Vague differentiation between levels 

Second 3 Vague differentiation between levels 

Third 2 Broadly stated and unelaborated 

Average 2.7  
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4.2.3.2 Application of core elements of proof (RQ3b: To what extent did participants apply 

the core elements of proof in evaluating their students’ reasoning-and-proving products?) 

Uma’s expectation scores for her students’ work somewhat aligned with her evaluation of 

whether or not the work qualified as a proof, disproof, or non-proof argument.  In one case (Uma 

1-3; see Table 4.19), Uma’s evaluation of her students’ disproof attempt was not the same as the 

primary researcher’s evaluation.  The primary researcher thought that stating that a “square and a 

triangle can have the same area” was sufficient evidence to disprove the claim that if two 

polygons have the same area, then the polygons are congruent.  Uma’s evaluation required that 

students provide pictures as evidence.  It may be that Uma—with her knowledge of her students’ 

abilities and requirements for evidence—thought that the only way students could convincingly 

justify their decision was to provide contrasting examples (burden of proof depends on the 

classroom community who is the audience for the argument).  On the other hand, representation 

is not one of the core elements of proof. 
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Table 4.19 Uma's Application of the Core Elements of Proof in Evaluating Student Work 

Classroom 
Artifact Packet  

Sample 

Participant 
Score 

Participant 
Evaluation: 

Proof? 

Researcher 
Evaluation: 

Proof? 
Comments 

  
First task:  Prove or disprove.  If two polygons have the same area, then the polygons are 
congruent. 
 

Uma 1-1 
(Figure 4.22) 

Exceeded 
expectations 

Disproof Disproof 
Drew a parallelogram and a 
rectangle with an area of 32 
units2 

Uma 1-2 
(Figure 4.23) 

Exceeded 
expectations 

Disproof Disproof 
Drew a rectangle and a 
triangle with an area of 12 
units2 

Uma 1-3 
(Figure 4.24) 

Met 
expectations 

Nonproof Disproof 
“No. A square and a triangle 
can have the same area.” (no 
pictures or examples) 

Uma 1-4 
(Figure 4.25) 

Met 
expectations 

Nonproof Nonproof 

“I don’t believe that because I 
don’t. The shapes although 
may have the same area, they 
might be completely different 
sides & lengths & height & 
everything!” (no pictures or 
examples…no “polygons”) 

Uma 1-5 
Failed 

expectations 
Nonproof Nonproof 

Student drew two 5x5 squares 
and two irregular hexagons of 
different sizes. 

Uma 1-6 
Failed 

expectations 
Nonproof Nonproof 

“This is true if they have the 
same side and angles then they 
are congruent because all the 
sides will be equal and the 
angles will be the same also so 
yes this is very true.  Even if 
they don’t look like the 
pictures above [two 3 x 4 
rectangles], they could look 
like this [4 x 3 rectangle and a 
3 x 4 rectangle]. 
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Second task: Calculate the areas of irregular shapes 
 

Uma 2-1 
Met 

expectations 
 n/a 

Not a proof task 

Uma 2-2 
Met 

expectations 
 n/a 

 

Uma 2-3 
Met 

expectations 
 n/a 

 

Uma 2-4 
Met 

expectations 
 n/a 

 

Uma 2-5 
Met 

expectations 
 n/a 

 

Uma 2-6 
Met 

expectations 
 n/a 

 

  
Third task: You have 36 feet of flexible fencing to build me the largest pen for all of my 
animals.  You must determine what shape will give me the largest area, label the shape with 
its dimensions, and explain how you know that your shape has the largest area. 
 

Uma 3-1 
(Figure 4.27) 

Exceeded 
expectations 

Nonproof Nonproof 
Empirical (calculated a circle, 
a rectangle, and a square 
area) 

Uma 3-2 
Exceeded 

expectations 
Proof Proof 

Provided reason for why circle 
contains the maximum area 

Uma 3-3 
(Figure 4.26) 

Met 
expectations 

Nonproof Nonproof 
Empirical (calculated a square 
and two rectangle areas) 

Uma 3-4 
Met 

expectations 
Nonproof Nonproof 

Empirical (calculated 10 
rectangles and one square) 

Uma 3-5 
Failed 

expectations 
Nonproof Nonproof 

“irregular is bigger than 
regular (octagon)” 

Uma 3-6 
Failed 

expectations 
Nonproof Nonproof 

Drew a “T” shaped area and 
counted boxes for area 
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4.2.3.3 Communication of expectations (RQ3c: In what ways did participants communicate 

expectations regarding what is required to produce a proof to students?) 

Uma’s written descriptions of how she communicated her expectations to her students were a 

little vague, as reported on the classroom artifact packet cover sheets.  In her post-interview, 

Uma clarified that for each classroom artifact packet task, she did discuss (but did not model) her 

expectations for her students in advance of their completing the assignment.  These results and 

comments are in Table 4.20. 

 

Table 4.20 Uma's Communication of Expectations 

Classroom 

Artifact Packet 

Communication 

Score 
Comments 

First 3 

Printed on task: “You may use pictures, words, formulas 
to help you explain your answer.  You may use graph 
paper, high-lighters, rulers etc. to help you explain.”  
Verbal instructions: “Must first work alone then 
collaborate with group.  Group answer to be graded.” 

Second 3 

Printed on task: “Break up the shapes…color code the 
areas of sub-shapes…explain” (see Figure 4.2.8).  Verbal 
instructions: “With group must determine area, then 
present to class.  As they are presenting, other groups 
take notes, ask questions.  Graded on work and 
behavior.” 

Third 3 

Printed on task: “You must determine what shape will 
give me the largest area, label the shape with its 
dimensions, [and] explain how you know that your shape 
has the largest area.  You will be graded on your 
correctness, explanation and diagrams, behavior and 
participation in the conversation that compares each 
group’s work.”  

Average Score 3  
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The geometry class that Uma selected for this study is a daily double-block class, 

designed for struggling students.  Uma reported that she had the lowest-level students in the 

school; many had already failed geometry once but needed to pass geometry to earn their 

diploma (personal communication, February 24, 2013).  On her first classroom artifact packet 

cover sheet, Uma wrote that her students typically did one proof task per chapter, “but it is not a 

skill they practice often.”  For the task of the third classroom artifact packet, Uma wrote that the 

pen task was “much more open ended than most tasks I give.”  Uma reported that she was “still 

working on trying to get my students to work on high-level tasks in groups” but since she was 

not afforded much time due to her districts strict pacing guide, her students did not have a chance 

to routinize their behavior in groups (personal communication, February 24, 2013 and May 29, 

2013).  This could explain why much of her communication of expectations to students involved 

behavior as opposed to core elements of proof. 

In summary, Uma offered 10 reasoning-and-proving exercises to her students over the 

course of 15 instructional days during which students studied the area of two-dimensional shapes 

and the surface area of three-dimensional shapes.  While 10 exercises represents a low 

percentage of exercises, it does represent about 16% of the time students spent in class.  The 

textbook contained 41 reasoning-and-proving exercises (only 5 of which were selected by Uma).  

Most of the available and selected exercises asked students to make or investigate a conjecture, 

with a smaller number of exercises asking students to develop an argument.  Uma modified 133 

exercises but largely to include scaffolding rather than to increase the exercises’ reasoning-and-

proving potential.  In two cases, however, Uma modified a formula presentation in the textbook 

into a discovery lesson which created opportunities to engage her students in reasoning-and-

proving. In another exercise, Uma asked students to investigate a conjecture but did not label this 
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particular exercise as reasoning-and-proving (she had labeled the entire chapter review game as 

non-reasoning-and-proving). 

Two of the student work sample exercises had the potential to engage students in 

cognitively challenging reasoning-and-proving work; Uma maintained the cognitive demands 

during implementation.  In evaluating her student’s reasoning-and-proving products, Uma did 

not specifically refer to the core elements of proof in her rubrics but her ratings on her student 

work with respect to proof, disproof, and non-proof arguments generally agreed with the primary 

researcher and second coder ratings.  Finally, Uma shared and discussed her expectations for 

work with her students prior to their work on each exercise in the student work packets. 

4.3 SIDNEY 

Sidney teaches in a middle school in a district just outside of a major metropolitan area in 

Virginia.  His school serves 1200 students in grades 7 and 8 and is situated in an affluent area 

with academically-inclined parents.  Many of his students test into a nationally-ranked high 

school known for its science and technology program.  Unlike Uma’s school, the Virginia 

Standards of Learning represent an easy bar for Sidney’s students to pass.  Sidney’s school uses 

Prentice Hall’s Algebra 1 textbook, Virginia edition (Charles, Hall, Kennedy, Bellman, Bragg, 

Handlin, Murphy, & Wiggins, 2012), but each student is not assigned a textbook.  Therefore, 

Sidney’s department creates and shares lesson note sheets and assignments which are distributed 

to the students. Sidney can also generate worksheets with an online database from Prentice Hall 

or from Kuta software.   
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This was Sidney’s first year teaching.  He was assigned Math 7 and Algebra I; he chose 

Algebra 1 for the current study.  Sidney was encouraged by the other members of his department 

to use the shared repository of notes and assessments to prevent “backlash” (personal 

communication, February 26, 2013).  Sidney reported that while his district’s pacing guide does 

not include much reasoning-and-proving, the members of his department and district realize the 

need for more reasoning-and-proving in their curriculum.  During one in-service day this winter, 

Sidney was assigned to an all-day session with other math teachers from across the district to 

discuss reasoning-and-proving.  Sidney says the intention of his department this summer is to 

combine less complicated learning standards (which are currently taught one per day) in order to 

free up more time for reasoning-and-proving. 

4.3.1 Selecting exercises (RQ1: To what extent did participants select reasoning-and-proving 

learning opportunities in the form of exercises?) 

4.3.1.1 Available in textbook (RQ1a: To what extent does the textbook include exercises that 

have the potential to engage students in reasoning-and-proving?) 

Sidney’s 15-day data collection spanned a unit on polynomials.  The textbook offered 643 

exercises (practice and problem solving, lesson check, mixed review, and standardized test prep) 

in the sections covered by Sidney’s district standards; it was not possible to count and code the 

exercises available in the online or Kuta software exercise generators.  33 of the 643 exercises 

were reasoning-and-proving exercises.  This represents 5.1% of the exercises.  Students had the 

opportunity to make 14 conjectures, investigate 6 statements, correct 9 mistakes, develop 7 

arguments, and find 1 counterexample in the 643 exercises (see Table 4.21). 
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Table 4.21 Available Types of Reasoning-and-Proving Exercises in Sidney's Textbook 

Type of RP Exercise Available in Textbook* 

Make a Conjecture 14 (2.2%) 

Investigate a Conjecture 6 (0.9%) 

Evaluate an Argument 0 (0%) 

Correct a Mistake 9 (1.4%) 

Develop an Argument 7 (1.1%) 

Counterexample 1 (0.2%) 

Principles of Proof 0 (0%) 

Non-Reasoning-and-Proving 610 (94.5%) 

 

*Exercises may be coded as more than one type of reasoning-and-proving, so the percentages 

may not sum to 100%. 

4.3.1.2 Selected by Sidney (RQ1b: To what extent did the participant select exercises for 

instruction that had the potential to engage students in reasoning-and-proving?) 

Over the course of the 15 days, Sidney engaged his students in 657 exercises.  These included 

227 exercises done during instruction, 402 homework exercises, and 28 assessment exercises. 

Any exercise generated by the online textbook resource or Kuta software and was used by 

Sidney was counted as selected by Sidney. It should be noted that the homework worksheets 

offered by Sidney to his students contained between 17 and 72 exercises each and his students’ 

homework is not collected and graded (thus making 61.1% of the exercises Sidney selected 

optional).  Of the 657 exercises that Sidney selected, 14 were reasoning-and-proving exercises 
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(2.1%).  On Day 1, Sidney opened his lesson on classifying, adding and subtracting polynomials 

(20 exercises in 23 minutes) with a make a conjecture/develop an argument exercise about the 

cost of m people in n cars visiting a museum and/or an aquarium.  On Days 8/9 (17 exercises in 

92 minutes), Sidney asked his students to “come up with some type of conjecture that explains 

how to divide with [sic] these kinds of polynomials” (binomials and trinomials by a monomial).  

On Day 11 (9 exercises in 23 minutes), Sidney asked his students to “write a conjecture that 

describes [how to factor a quadratic trinomial].”  On Day 13 (18 exercises in 23 minutes), Sidney 

asked his students to write conjectures on procedures to factor perfect-square trinomials and the 

difference of two squares, then he asked his students to test his conjectures on four examples 

(investigate a conjecture).  In addition, the optional homework contained 5 reasoning-and-

proving exercises (4 correct a mistake and one develop an argument). In total, Sidney selected 5 

make a conjecture, 4 investigate a conjecture, 2 develop an argument, and 4 correct a mistake 

exercises (see Table 4.22 and Figure 4.23); one of these exercises was double-coded because it 

asked students to make a conjecture and develop an argument. 
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Table 4.22 Selected Types of Reasoning-and-proving Exercises by Sidney 

Type of RP Exercise Selected by Sidney* 

Make a Conjecture 5 (0.8%) 

Investigate a Conjecture 4 (0.6%) 

Evaluate an Argument 0 (0%) 

Correct a Mistake 4 (0.6%) 

Develop an Argument 2 (0.3%) 

Counterexample 0 (0%) 

Principles of Proof 0 (0%) 

Non-Reasoning-and-Proving 643 (97.9%) 

 

*Exercises may be coded as more than one type of reasoning-and-proving, so the percentages 

may not sum to 100%. 

 

Figure 4.28 Comparison of Available and Selected Types of Reasoning-and-proving Exercises for Sidney 
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 Of the 14 reasoning-and-proving exercises selected by Sidney for his lessons, Sidney 

labeled 10 of them as reasoning-and-proving and did not label 4 of them (the four investigate a 

conjecture exercises from Day 13).  Of the 643 selected lesson exercises rated as non-reasoning-

and-proving by the coders, Sidney labeled 19 of them as reasoning-and-proving and 624 as not 

reasoning-and-proving.  Like Uma, however, Sidney collectively labeled large groups of 

exercises as either reasoning-and-proving or not on his Task Log Sheets.  Fortunately, the 

primary researcher was able to meet with Sidney to get a more accurate picture of how Sidney 

viewed each exercise.  The 19 mislabeled exercises represent exercises Sidney believed to have 

the potential to engage his students in reasoning-and-proving.  Figure 4.29 is an example of one 

such exercise.  The exercise asks students to explain their reasoning but it is not the type of 

reasoning that leads to proof.  Figure 4.30 is another example that shows a set of related 

exercises (from Sidney’s Lessons Day 13) but only the last exercise (part d) asks for a 

conjecture; Sidney labeled the entire set as having the potential to engage students in reasoning-

and-proving. 

 

Figure 4.29 Mislabeled exercise from Sidney's lessons Day 13 (Charles et al., 2012a, p. 511). 
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Figure 4.30 Collection of exercises Sidney labeled as "reasoning-and-proving." 

4.3.1.3 Exercise modifications (RQ1c: To what extent did the participant modify exercises to 

affect the exercises’ potential to engage students in reasoning-and-proving?) 

In the 15-day data collection period, Sidney modified 19 tasks.  Three of the modifications 

involved reasoning-and-proving exercises.  In these three modifications, Sidney asked his 

students to make conjectures about procedures.  On Day 11, Sidney asked his students to 

represent the quadratic expression  with algebra tiles.  He then wrote,  

Now, your goal is to work backwards to get the two binomials that form this trinomial.  

Go ahead and using the picture you just drew, write the two binomials along the sides of 

the model.  Write a conjecture that describes about [sic] how to return back to the original 

two binomials (Sidney’ Lessons Day 11).   

Sidney’s answer key had the target response: “You want the sum to equal the middle term and 

the product of these numbers equal constant [sic].”  The other two modifications regarding 

conjectures occurred on Day 13, when students were studying factoring special cases of 

quadratic expressions (e.g., difference of squares).  Sidney added, “write a conjectures [sic] on 

how we can accopmlish [sic] this every time” to the notes on factoring perfect square trinomials 
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(see Figure 4.30).  Sidney made a similar modification in his lesson notes regarding factoring a 

difference of two squares. 

Sidney’s modifications are summarized in Table 4.23.  None of the remaining 16 

modifications were on reasoning-and-proving problems so they are not represented in the table, 

however, the modifications are described here.  Of these 16, six modifications to exercises 

occurred because Sidney lost a day of instruction due to standardized testing and he created a 

video lesson to replace instructional time.  Another 3 modifications provided scaffolding to his 

students (e.g., “record two key aspects of…”, “review the process of long division…”, and 

“write down everything you know about…”).  Sidney also switched the numbers or signs in three 

exercises in the department notes, asked students to model factoring with Algebra Tiles twice, 

and asked students to choose or invent a method to accomplish a goal twice.   

 

 

Table 4.23 Frequency of Exercise Modifications Made by Sidney 

Original Exercise (any source) Exercise as assigned by teacher Code Frequency 

Reasoning-and-Proving Exercise 
Exercise assigned, modified to 

LOWER RP 
-1 0 

Reasoning-and-Proving Exercise 
Exercise assigned, neutral effect of 

modification 
0 0 

Reasoning-and-Proving Exercise 
Exercise assigned, modified to 

INCREASE RP 
+1 0 

Non-Reasoning-and-Proving 

Exercise 

Exercise assigned, modified to 

INCLUDE RP 
+2 3 
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4.3.1.4 Exercise sources (RQ1d: What were the sources of the exercises that participants 

selected for instruction?) 

Sidney took over half of his exercises from his textbook or the online exercise generator, about a 

fifth from Kuta software, and about a sixth from other teachers (which included lesson exercises, 

the mid-chapter assessment, and homework exercises).   Specifically, the “taken directly from 

published textbook/curriculum” exercises consisted of printed textbook problems and those 

selected by Sidney from the publisher’s problem generator, and the ancillary resource exercises 

consisted of 105 exercises from other teachers and 135 exercises selected by Sidney from Kuta 

software.  Sidney based his lessons on the lessons found in the shared departmental repository; 

many of the exercises in the other teachers’ lessons came from the published textbook.  Sidney 

used the online teacher resource center exercise generator to create worksheets used for 

homework (338 exercises, about half of all of the exercises), so those problems were selected by 

Sidney but not created by Sidney.  The data is summarized in Table 4.24. 

 

Table 4.24 Sources of Exercises Selected by Sidney 

Source All Exercises 

Frequency 

Reasoning-and-

Proving Exercises 

Frequency  

Taken Directly from Published 

Textbook/Curriculum 
390 (59.3%) 10 

Modified from Textbook/Curriculum 7 (1.1%) 2 

Used in the CORP Course 0 0 

Taken or Adapted from Ancillary Resources 240 (36.5%) 0 

Created by Teacher 20 (3.0%) 2 
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4.3.2 Implementation of reasoning-and-proving exercises (RQ2: To what extent were 

participants able to maintain the level of cognitive demand of reasoning-and-proving tasks 

during implementation?) 

Sidney’s 15-day data collection period covered the mathematical content polynomials: 

definitions and classification, operations, factoring, and simplifying a function with radicals in its 

denominator by rationalization.  Sidney’s first classroom artifact packet task is shown in Figure 

4.31. 

 

Figure 4.31 Sidney's first classroom artifact packet task (Day 2). 

 

In this task (the collection of exercises shown in Figure 4.31), students were asked to 

determine a method for multiplying a polynomial by a monomial (the hope was that students 

would apply the Distributive Property).  Students had already studied the distributive property 

and simplifying exponents with the same base earlier in Algebra 1 and in a previous course 
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(Math 7), and most of the students solved the first exercise in the same way.  Thus, while this 

task could have had the potential to engage some students in cognitively demanding work, it was 

not demanding for most of the students.   In the four samples of student work Sidney submitted, 

his students explained their method in these ways: 

• “multiply everything by 2x = distributive property” (Sidney 1-1, exceeded 

expectations) 

• “I know the distributive property works” (Sidney 1-2, met expectations) 

• No response (Sidney 1-3, failed expectations) 

• “I had to multiply the linear monomial by each term of the linear binomial, 

through the distributive property” (Sidney 1-4, failed expectations) 

Interestingly, the student labeled Sidney 1-4 offered the most complete and clear 

explanation of her process, but because she did not finish the worksheet, she received a “failed 

expectations” evaluation.  Since the students’ work suggests that “there is little ambiguity about 

what needs to be done and how to do it” (IQA Rubric for Potential of the Task; see Appendix K), 

it was rated a 2 for potential and implementation by the coders. 

In Sidney’s second student work sample task (see Figure 4.32), students are asked to 

determine how to write the lengths of the reduced piece of paper (6 – x) and then find an 

expression for the area of the resulting invitation.  This task was a little more complicated than 

the first student work sample task because students had to create an expression for the new 

lengths and then substitute their expression into the formula for the area of a square.  In Sidney’s 

notes from Days 2 and 3 (combined), students worked on a similar problem involving the 

extension of a patio door.  Because the students had recently seen a similar problem and had 
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already practiced multiplying binomials, the task potential was not rated as a 4 (“there is not a 

predictable, well-rehearsed approach or pathway explicitly suggested by the task”; IQA Rubric 

Potential of the Task).  Neither is it a 2 (“there is little ambiguity about what needs to be done 

and how to do it”; IQA Rubric Potential of the Task; see Appendix K) because the students still 

had to write an expression for the new sides of the invitation.  Thus, the coders rated the potential 

of this task as 3.  The similarity in the students’ answers, however, suggested that “students 

engaged in using a procedure [whose]…use was evident based on prior instruction, experience, 

or placement of the task” (IQA Rubric Implementation of the Task level 2; see Appendix K).  

Notice that the task does not suggest a form of the expression for the area; a student reporting 

 would have been correct.  The lesson for this day was, however, about multiplying 

special cases and most of the student work samples (see Figures 4.33 and 4.34) show that 

students did convert their expressions for area into standard form by multiplying the expression 

for side length (  by itself.   

 

Figure 4.32 Sidney's second classroom artifact packet task (Day 5) (Charles et al., 2012a, p. 492). 
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Figure 4.33 Second classroom artifact packet sample Sidney 2-1. 

 

 

Figure 4.34 Second classroom artifact sample Sidney 2-5. 

 

In the middle of his third student work sample task (see Figure 4.35), Sidney asked 

students to write a conjecture that described how to factor a trinomial with a leading coefficient 

of 1.  While this is a conjecture, it is not a conjecture that would lead to a proof.  The task is 

about creating a procedure or algorithm and thus is not considered a reasoning-and-proving task.  
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Since the task prompts students to use algebra tiles (which students had practiced using for 

multiplying binomials), the “task does not explicitly prompt for evidence of students’ reasoning 

and understanding” (IQA Rubric Potential of the Task, score 3; see Appendix K).  For these 

reasons, the potential of the task was rated as a 3 by the coders. 

 

Figure 4.35 Sidney's third classroom artifact packet task (Day 11) (adapted from Charles et al., 2012a, p. 

506). 

 

Sidney’s students wrote the following conjectures for this procedure: 

• “I am looking for a number when you multiply them you get the constant (c) and when 

you add them you get the middle term (b)” (Sidney 3-1) 
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• “You look for numbers that when you multiply them together, you get the constant and 

when you add them you get the middle term (b)” (Sidney 3-2) 

• “I am looking for numbers that, when multiplied together, I get the constant (c), and 

when I add them, I get the middle-term coefficient (b)” (Sidney 3-3) 

• “I am looking for numbers, when I multiply them, I get the constant (c), and when I add 

them, I get the middle term (b).” (Sidney 3-4)  

• No conjectures recorded (Sidney 3-5 and Sidney 3-6) 

These conjectures are remarkably similar in their wording and notation, especially after only two 

examples (lesson Getting Ready! Problem: divide   by  and demonstrate with 

algebra tiles the expression ; Sidney Lesson Day 11).  This suggests that students 

had already seen this procedure prior to this lesson or it was discussed in class before the 

conjectures were recorded.  Table 4.25 summarizes the potential and implementation of each of 

Sidney’s student work sample tasks. 

 

Table 4.25 Potential and Implementation of Cognitive Demand of Sidney's Tasks 

Classroom Artifact 
Packet 

Potential of 
Exercise 

Implementation of 
Exercise 

Maintain Cognitive 
Demand? 

First 2 2 Maintained 

Second 3 2 Declined 

Third 3 2 Declined 
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4.3.3 Evaluation students’ reasoning-and-proving products (RQ3: To what extent were 

participants able to evaluate their students’ reasoning-and-proving products?) 

When asked how Sidney would define proof to a colleague or student, Sidney replied, “Proof is 

when you are able to show beyond a reasonable doubt that something is true, using previous 

knowledge that is already known.  Proof is not just using examples showing something works, 

but why it works” (personal communication, May 26, 2013).  In comparing Sidney’s definition 

with the core elements of proof, Sidney’s definition came close to the first core element of proof 

(that the argument must show that the conjecture or claim is—or is not—true for all cases), but 

left out “all cases.”  His definition also included statements and definitions that are used in the 

argument must be ones that are true and accepted by the community when he included “using 

previous knowledge that is already known.” He did not include anything about a logical flow to 

the argument, and he included explanatory power, which is not a requirement of a valid proof 

(see Table 4.26). 

 

Table 4.26 Comparison of the Core Elements of Proof with Sidney's Definition of Proof 

Core element of proof Sidney 

The argument must show that the conjecture or claim is (or is not) true for all cases. Partial 

The statements and definitions that are used in the argument must be ones that are 

true and accepted by the community because they have been previously justified. 
Present 

The conclusion that is reached from the set of statements must follow logically 

from the argument made. 
Missing 

Additional Criteria partial 
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Since none of Sidney’s classroom artifact packet tasks asked students to construct a 

proof, none of the samples of student work were evaluated with respect to whether or not the 

students’ argument counted as proof.  It should be noted that Sidney confirmed that he intended 

these tasks to be proof tasks, but his students did not give him “the result that [he] was looking 

for” (personal communication, July 5, 2013).   In the CORP course, Sidney and his fellow 

participants spent time creating and comparing different types of proofs (visual, algebraic, etc.).  

Many of the tasks for which participants were asked to create a proof were pattern tasks.  For a 

pattern task, participants generated data and drew figures, then made a conjecture which was a 

generalized statement about the observed pattern (e.g., a formula).  For instance, the first proof 

task in which the participants engaged was the “Squares Problem,” where participants were 

asked to determine how many different 3-by-3 squares there are in a 60-by-60 square and why 

their answer was correct.  Most participants created formulas (conjectures) to determine the 

answer; the course instructor then led a rich discussion which helped participants link elements 

of their formulas with the context of the problem and engaged participants in comparing and 

contrasting different versions of the formula.  It was through this discussion that participants 

persuaded each other that their answers were correct (thus, proving their conjecture would hold 

true for a N-by-N square).  Thus, it is possible that when Sidney asked his students to create 

“multiple methods” and model with algebra tiles he was trying to help them ascertain and 

persuade as was done in the CORP course.   
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4.3.3.1 Criteria for judgment (RQ3a: To what extent did participants’ criteria for judging the 

validity of their students’ reasoning-and-proving products contain the core elements of proof?) 

Sidney’s criteria for judging his students’ work products “was more general” (third classroom 

artifact packet cover sheet) and included the following elements: 

1. Where [sic] they able to reach the goal? 

2. Did they use the algebra tiles or just drawings? 

3. Did they do something completely on there [sic] own? 

4. Did they explain why or just provide answers? 

5. Were they able to come up with a conjecture and use it? 

Sidney said that he used the same criteria for all three classroom artifact packets.  When pressed 

for differentiation between exceeded, met, and failed expectations, Sidney provided the 

following information on levels he used for each sample of student work (personal 

communication, May 26, 2013): 

• Low: didn’t finish, errors, misconceptions 

• Medium: did not exceed; did only what was necessary 

• High: used multiple ways, no errors or fixed errors 

Initially, the primary researcher assigned Sidney a Clarity and Detail of Expectations rubric score 

of 2, but after asking Sidney for more details about his distinctions between low, medium, and 

high scores, the coders raised Sidney’s Clarity and Detail of Expectations score to a 3 (see Table 

4.27).  
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Table 4.27 Quality of Sidney's Rubrics Used to Judge Student Work 

Classroom Artifact 
Packet Rubric 

Clarity and Detail 
of Expectations Comment 

First 3 
“Able to explain thoroughly, their conjecture 
worked, use previous knowledge” 

Second 3 

“Did students try another way, was their 
reasoning sound? Did the [sic] pull past 
knowledge or ask a neighbor? Did they just wait 
and copy it down” 

Third 3 

“Where [sic] they able to reach the goal, did they 
use the algebra tiles or just drawings, they do 
something completely on there [sic] own, did 
they explain why or just answers, where [sic] 
they able to come up with a conjecture and use 
it?”  

Average 3  
 

4.3.3.2 Application of the core elements of proof (RQ3b: To what extent did participants 

apply the core elements of proof in evaluating their students’ reasoning-and-proving 

products?) 

As previously mentioned, none of Sidney’s classroom artifact packet tasks asked students to 

construct a proof, so it is not possible to assess Sidney’s application of the core elements of proof 

from the samples of student work he provided.  In addition, while Sidney considered the tasks in 

the classroom artifact packets proof tasks, his rubrics did not contain the core elements of proof. 
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4.3.3.3 Communication of expectations (RQ3c: In what ways did participants communicate 

expectations regarding what is required to produce a proof to students?) 

Sidney did not provide much detail on his student work sample cover sheets with respect to how 

he communicated his expectations to his students: 

• “Just explain that they needed to solve the Solve It! Question any way they felt that they 

should” (Sidney’s first classroom artifact packet Cover Sheet, question #2) 

•  “1st page—work through the task, thinking of ways to solve or answer the questions.  

Once you have solved it one way, try another” (Sidney’s second classroom artifact packet 

Cover Sheet, question #2) 

• “Try to see what they learn to work backwards.  The goal was them to see the transition 

visually to understand what was going on” (Sidney’s third classroom artifact packet 

Cover Sheet, question #2) 

When probed for more detail during his post-interview, Sidney said that he did not share his 

scoring scheme with his students prior to their work on the first and second task, but that he had 

discussed his expectations in more detail on the third task.  This new information was used to 

adjust the rubric scores for Sidney’s Communication of Expectations, as shown in Table 4.28. 

 

Table 4.28 Communication of Sidney's Expectations 

Classroom Artifact Packet Communication Score 
First Sample 1 

Second Sample 1 
Third Sample 3 
Average Score 1.6 
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In summary, it was Sidney’s perspective that he was hampered in his efforts to engage his 

students in reasoning-and-proving by the content of this unit (polynomial operations), the 

traditional textbook he was assigned, and by the unsupportive shared lesson plans of his 

colleagues.  There might have been other constraints in play, such as weak content knowledge.  

In addition, Sidney did not engage his students in proof tasks for his polynomial unit, nor did his 

definition of proof contain all of the core elements.  Even if he had found or created a proof task, 

it is not likely that he would have evaluated his students’ products based on all three core 

elements of proof.   

Of the 643 exercises available to Sidney in his textbook for the sections covered in the 

15-day data collection period, 33 exercises were reasoning-and-proving exercises (5.1%).  

Sidney selected 657 exercises during this time period: 227 exercises were done during class, 402 

were optional homework exercises, and 28 were assessment exercises.  2.1% of the 657 exercises 

were reasoning-and-proving exercises, and there is no evidence that Sidney’s students spent a 

significant time on these 14 reasoning-and-proving exercises.  Of these 14 exercises, four asked 

students to make conjectures, two of which were created by Sidney and two of which were 

modified from the textbook by Sidney.  Four of the 14 exercises asked students to correct a 

mistake in the optional homework. 

The tasks in Sidney’s classroom artifact packets had the potential to engage some 

students in novel conjecture-making with respect to developing procedures for factoring and 

foiling, but the similarity among the students’ responses suggested that the students were already 

familiar with these concepts.  Sidney maintained the low-level of cognitive demand between the 

task potential and implementation for the first task, he showed a decline in the other two tasks 

which began as high-level. 
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Sidney’s definition of proof was partially based on the core elements of proof.   From the 

work he gave his students, Sidney focused more on the making generalizations rather than on the 

developing arguments.  He communicated some expectations of work to his students. Sidney’s 

rubrics for evaluating his students’ work contained elements such as used previous knowledge, 

sound reasoning, explained why, and completed task individually. 

4.4 JONATHAN 

Jonathan was a first-year mathematics teacher in a start-up charter school in central Pennsylvania 

during the study described herein.  While the physical location of his school is in a suburban 

area, the 158 enrolled students come from nine surrounding urban districts and are enrolled in 9th 

or 10th grade.  By the year 2015 the school plans to have ninth through twelfth grades.  Jonathan 

was the only mathematics teacher in the school, but in the 2012-2013 school year the chemistry 

teacher and a learning support teacher each taught one section of math.  Jonathan had complete 

control over the standards, curriculum, and assessments for mathematics in his school.  During 

his interview, Jonathan expressed that he “spend[s] a lot of hours teaching my fellow math 

teachers how to teach math, which takes away from my own planning and prep time.  But they 

just have no experience” (personal communication, February 28, 2013). 

Jonathan acknowledged the pros and cons of having complete control—but no 

guidance—over his curriculum (personal communication, February 28, 2013).  He chose 

CCSSM to guide his curriculum and selected Pearson’s Algebra 1: Common Core (Charles, Hall, 

Kennedy, Bellman, Bragg, Handlin, Murphy, & Wiggins, 2012) as the textbook for his Algebra 1 
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course.  This is a slightly different version of the same book Sidney used in his Algebra 1 class in 

Virginia.  Because Jonathan’s students were new to the school this year, they were not 

responsible for passing the Keystone Exam (Pennsylvania’s state assessment exam), but 

Jonathan took the content of the Keystone Exam into consideration when he designed his 

curriculum.   

Throughout the year, Jonathan was able to restructure the mathematics courses in his 

school to accommodate what he described as the shockingly low ability level and lack of 

mathematical experience of his students.  By February, Jonathan reported that his students were 

still below grade level but were making progress.  With respect to engaging his students in 

reasoning-and-proving, Jonathan reported: 

So it’s taken a really long time for me to get them to realize that you have to justify your 

answers, but we still really struggle, um, with even doing like pattern tasks.  They can 

take two or three days to do just one of them, which I have done just to get them to 

realize that I’m not just going to give you the answer.  So, um, I try to incorporate 

reasoning-and-proving, but for them right now, reasoning-and-proving is just being able 

to say why and that’s been a huge boundary. (personal communication, February 29, 

2013) 

In his post-interview on May 29th, 2013, Jonathan was asked how his expectations of 

engaging his students in reasoning-and-proving had changed in the past year.  He reported: 

In the [CORP] class, I loved the idea of giving the students a task and giving the students 

time to explore in small groups and coming up with something almost entirely on their 

own.  It was my intention to do this at least once a week.  With my population this year, 

that was challenging (no prior work with reasoning-and-proving, no prior independent 
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exploratory work).  I spent a lot of time running around to each group.  Throughout the 

year, I’ve had to scaffold a lot of the problems.  Going forward next year, we will be 

ready to have a discussion about what it means to reason-and-prove and then take another 

step in that direction… Ideally, [next year I would] have more tasks where students are 

reasoning-and-proving on their own.  Now students have a shared language and are much 

more engaged and proud of themselves when working on a task (they don’t view this 

type of activity as a chore, like drill-and-practice work). 

The unit Jonathan chose for the current study was linear functions. His 15-day data 

collection period included the topics rate of change and slope, direct variation, slope-intercept 

form, point-slope form, standard form, and parallel and perpendicular lines. 

4.4.1 Selecting exercises (RQ1: To what extent did participants select reasoning-and-proving 

learning opportunities in the form of exercises?) 

4.4.1.1 Available in textbook (RQ1a: To what extent does the textbook include exercises that 

have the potential to engage students in reasoning-and-proving?) 

Jonathan’s textbook contained 433 exercises in the sections spanned by Jonathan’s curriculum 

during his 15-day data collection period.  The textbook offered students exercises to check their 

understanding of the lesson, exercises for practicing and problem-solving, standardized test 

preparation exercises, mixed review exercises, and a mid-chapter quiz.  Of 433 exercises, 30 had 

the potential to engage students in reasoning-and-proving, which represents 6.9% of the 

exercises.  Half of the exercises asked the students to investigate a conjecture, and the remainder 
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of the reasoning-and-proving exercises asked students to make a conjecture, correct a mistake, or 

develop an argument (see Table 4.29).   

 

Table 4.29 Available Types of Reasoning-and-Proving Exercises in Jonathan's Textbook 

Type of RP Exercise Available in Textbook* 

Make a Conjecture 7 (1.6%) 

Investigate a Conjecture 15 (3.5%) 

Evaluate an Argument 0 (0%) 

Correct a Mistake 4 (0.9%) 

Develop an Argument 5 (1.2%) 

Counterexample 0 (0%) 

Principles of Proof 0 (0%) 

Non-Reasoning-and-Proving 403 (93.1%) 

 

*Exercises may be coded as more than one type of reasoning-and-proving, so the percentages 

may not sum to 100%. 

4.4.1.2 Selected by Jonathan (RQ1b: To what extent did the participant select exercises for 

instruction that had the potential to engage students in reasoning and proving?) 

Jonathan reported 170 exercises on his Task Log Sheet, 11 of which were judged to be 

reasoning-and-proving by the coders, representing 6.5% of the exercises.  However, if the time 

spent on these tasks is estimated from Jonathan’s Task Log Sheets, Jonathan’s students spent 

about 27% of their class time engaged in reasoning-and-proving.  The percentage of reasoning-
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and-proving exercises selected by Jonathan closely matches the percentage of exercises available 

in Jonathan’s textbook (6.9%), but Jonathan offered a more narrow reasoning-and-proving 

experience than was offered by the textbook (see Figure 4.36).  Jonathan offered his students 

opportunities to make 8 conjectures and investigate 3 conjectures, but did not offer any correct a 

mistake or develop an argument exercises (see Table 4.30).  Notice that Jonathan did not engage 

his students in any proof exercises during the 15-day data collection period. 

 

Figure 4.36 Comparison of available and selected types of reasoning-and-proving exercises. 
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Table 4.30 Selected Types of Reasoning-and-proving exercises by Jonathan 

Type of RP Exercise Selected by Jonathan* 

Make a Conjecture 8 (4.7%) 

Investigate a Conjecture 3 (1.8%) 

Evaluate an Argument 0 

Correct a Mistake 0 

Develop an Argument 0 

Counterexample 0 

Principles of Proof 0 

Non-Reasoning-and-Proving 159 (93.5%) 

 

*Exercises may be coded as more than one type of reasoning-and-proving, so the percentages 

may not sum to 100%. 

 

Of the 11 exercises rated as reasoning-and-proving by the coders, Jonathan labeled 9 as 

reasoning-and-proving and 2 as not reasoning-and-proving.  One exercise he missed labeling as 

reasoning-and-proving was a modified textbook exercise from Day 1 (Charles et al., 2012, p. 

295) involving making a conjecture about linear slopes being constant (see Figure 4.37).  The 

other mislabeled exercise asked students to investigate a conjecture from Day 15 (Charles et al., 

2012, p. 330) which is shown in Figure 4.38. 
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Figure 4.37 Mislabeled make a conjecture exercise from Jonathan's lessons (Day 1) (adapted from Charles et 

al., 2012b, p. 295). 
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Figure 4.38 Missed investigate a conjecture exercise from Jonathan's lessons (Day 15) (Charles et al., 2012b, 

p. 330). 

 

There were 159 lesson exercises rated as non-reasoning-and-proving by the coders.  

Jonathan labeled 33 of these as reasoning-and-proving and 126 as not reasoning-and-proving.  

Like Uma, however, Jonathan labeled two entire collections of exercises constituting two 

explorations from Day 5 and Day 15 as “reasoning-and-proving” while the coders separated the 

exercises and evaluated them individually.  On Day 15, for example, Jonathan asked his students 

to define parallel lines, find the slopes of four pairs of parallel lines, and then make a conjecture 

regarding when two lines were parallel; the second half of the lesson asked similar questions for 

perpendicular lines with one additional calculation (products of the slopes).  When the 12 

exercises in the exploration were rated individually, only the two conjectures counted as 

reasoning-and-proving.   Considering this, Jonathan was consistently able to identify exercises 

with the potential to engage students in reasoning-and-proving. 
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4.4.1.3 Exercise modifications (RQ1c: To what extent did the participant modify exercises to 

affect the exercises’ potential to engage students in reasoning-and-proving?) 

Figure 4.37 shows one example of an exercise modification made by Jonathan to increase its 

reasoning-and-proving potential.  In the course of the 15-day data collection period, Jonathan 

modified 13 exercises, all from his textbook.  Only 2 of the modifications affected the reasoning-

and-proving potential of the exercise (see Table 4.31).  Both modifications occurred on the first 

day of data collection; one conjecture involved the fact that linear slopes are constant regardless 

of where along the line a student determines its value, and the second conjecture was to 

determine a formula for slope when only given two points (Jonathan did not recognize the first 

conjecture and reasoning-and-proving but did recognize the second). 

 

Table 4.31 Frequency of Exercise Modifications Made by Jonathan 

Original Exercise (any source) Exercise as assigned by teacher Code Frequency 

Reasoning-and-Proving Exercise 
Exercise assigned, modified to 
LOWER RP 

-1 0 

Reasoning-and-Proving Exercise 
Exercise assigned, neutral effect of 
modification 

0 0 

Reasoning-and-Proving Exercise 
Exercise assigned, modified to 
INCREASE RP 

+1 0 

Non-Reasoning-and-Proving 
Exercise 

Exercise assigned, modified to 
INCLUDE RP 

+2 2 

 

Jonathan made the following kinds of modifications to the exercises he selected: 

• Asked students to explore how to determine slope from any point and explore how to 

determine slope without counting grid lines (develop a formula for slope when given two 

points) 
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• Asked students to determine how to write the equation of a graphed line 

• Asked students to determine how to sketch a line from an equation 

• Asked students to compare different forms of a line 

• Asked students to write the equation of a line in both slope-intercept form and point-slope 

form and show how to transform one equation into the other 

4.4.1.4 Exercise sources (RQ1d: What were the sources of the tasks that participants selected 

for instruction?) 

Jonathan largely used his textbook for inspiration and exercises during the 15-day data collection 

period.  Of the exercises taken directly from the textbook, three asked students to investigate a 

conjecture.  The 13 exercises modified from the textbook included the two making conjectures 

previously described from Day 1.  Jonathan used a website once to download a function 

matching game involving the four representations of linear functions (no reasoning-and-proving 

present).  Finally, Jonathan created over a third of his exercises; six of these offered 

opportunities for his students to make conjectures.  This data is summarized in Table 4.32. 

Table 4.32 Sources of Exercises Selected by Jonathan 

Source All Exercises 
Frequency 

Reasoning-and-Proving 
Exercises Frequency  

Taken Directly from Published 
Textbook/Curriculum 99 (58.2%) 3 

Modified from Textbook/Curriculum 13 (7.1%) 2 

Used in the CORP Course 0 (0%) 0 

Taken or Adapted from Ancillary Resources 1 (0.6%) 0 

Created by Teacher 58 (34.1%) 6 
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4.4.2 Implementation of reasoning-and-proving exercises (RQ2: To what extent were 

participants able to maintain the level of cognitive demand of the reasoning-and-proving tasks 

during implementation?) 

The tasks Jonathan selected for his classroom artifact packets were student explorations of: 

slope, slope-intercept form, and parallel and perpendicular lines.  Figure 4.39 shows the slope 

exploration from Day 2 of Jonathan’s lessons.  The goal was for students to connect the value of 

the slope of a line with the direction of the graph of the line (positive, negative, horizontal, and 

vertical).  Since students were asked to observe a pattern and make a generalized statement, the 

raters coded this task a 4 for potential of the task.  The level of cognitive demand was maintained 

during implementation, as evidenced by the classroom artifact packet student work samples 

Jonathan submitted.  In these, students made statement such as “Pink: down from left to right; all 

[slopes] are negative; all negative slopes go down” (sample Jonathan 1-1).   
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Figure 4.39 Jonathan's first classroom artifact packet task (Day 2). 
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In the second student work sample task (Day 5), students were asked to “investigate and 

explain the behavior of the linear equations in slope-intercept form, , as  and  

vary” (see Figure 4.40).  Students were given series of lines to graph and were asked to record 

observations and make conjectures about slopes and y-intercepts, then make predictions about 

the appearance of four new lines.  Jonathan was careful to ask students to consider different 

kinds of values for slope (e.g.,, positive, negative, fraction, whole number).  Students recorded 

conjectures such as, “Positive: line goes up left to right; Negative: line goes down right to left; 

The bigger the number is the steeper the slope is” (sample Jonathan 2-3).   
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Figure 4.40 Jonathan's second classroom artifact packet task (Day 5). 
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The third task of the student work samples was the parallel and perpendicular line task on 

Day 15 that was previously described.  The task (shown with student work in Figures 4.41 and 

4.42) contains prepared examples of perpendicular and parallel lines; students did not have to 

create their own examples.  However, as in Jonathan’s other student work samples, students were 

asked to identify patterns and make conjectures.  They were not asked to support their 

conclusions with mathematical evidence (other than what was provided for them in the tasks) or 

create a proof.   While this level of scaffolding may have been appropriate for the ability level of 

Jonathan’s students, it did make the students’ reasoning less explicit.  If students had been able to 

choose their own lines to graph and then see a pattern and group positive slopes together, et 

cetera, with an explanation for mathematical evidence, then the task would have been rated by 

the coders as a 4 for potential and a 4 for implementation.  On his classroom artifact packet cover 

sheet for the third task, Jonathan wrote: 

I implemented this task as planned, but I was surprised at how many students did not 

recognize that the slopes of perpendicular lines have a product of -1.  Many students 

quickly found the slopes, but stopped when they had to do multiplication involving a 

fraction. 

I believe this task definitely allowed my students to reach the day’s objective 

(parallel lines have equal slopes and perpendicular lines have slopes that are negative 

reciprocals/have a product of -1). However, I do not think it took a lot of reasoning on the 

part of the students.  If I implement this again, I may make the worksheet less guided. 

Jonathan’s reflection indicates an awareness of both his students’ current abilities (avoiding 

multiplication of fractions) and the over-scaffolded nature of the task.  It seems that Jonathan had 

to walk a fine line between accommodating his students’ computation needs and developing their 
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reasoning skills.  A summary of the potential and implementation of Jonathan’s student work 

samples is shown in Table 4.33.  

 

Figure 4.41 Jonathan's third classroom artifact packet task, front page (Day 15). 
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Figure 4.42 Jonathan's second classroom artifact packet, back page (Day 15). 
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Table 4.33 Potential and Implementation of Cognitive Demand of Jonathan's Tasks 

Classroom Artifact 
Packet 

Potential of 
Exercise 

Implementation of 
Exercise 

Maintain Cognitive 
Demand? 

First 4 4 Maintain 

Second 3 3 Maintain 

Third 3 3 Maintain 

 

4.4.3 Evaluation students’ reasoning-and-proving products (RQ3: To what extent were 

participants able to accurately evaluate their students’ reasoning-and-proving products?) 

None of the tasks Jonathan offered to students in his classroom artifact packets were proof tasks, 

so Jonathan’s evaluation of student proof products cannot be assessed.  However, Jonathan’s 

post-interview description of proof (personal communication, May 29, 2013) can be compared to 

the core elements of proof.  Jonathan defined proof to a colleague in this way: 

You have this task in front of you, you are trying to come up with an answer.  In order to 

prove something is true, we need to be able to show that it is true in multiple ways and 

with multiple representations.  Be able to tell where all aspects of the formula comes 

from…connect different representations.  Use procedures that have been shown true 

previously. 

Jonathan’s description of proof to a student is a little different: 

What does it mean to prove something in an argument (step away from math)?  You need 

evidence that you know your answer is correct.  How do you know your evidence is 
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valid?  The evidence must be something you couldn’t question.  We need to rely on 

previous definitions and theorems and procedures… if we use those things that we 

already KNOW are true, then everything we use going forward must also be true.  An 

example is the steps (procedures) in solving an equation; we use the order of operations. 

Jonathan captured using statements previously accepted by the community but did not 

mention a logical flow to the argument.  He came close to saying that a mathematical proof must 

show that a conjecture or claim is (or is not) true for all cases but he did not explicitly connect 

truth and domain under which the statement is true (see Table 4.34). 

 

Table 4.34 Comparison of the Core Elements of Proof with Jonathan's Definition of Proof 

Core element of proof Jonathan 

The argument must show that the conjecture or claim is (or is not) true for all 

cases. 
Partial 

The statements and definitions that are used in the argument must be ones that are 

true and accepted by the community because they have been previously justified. 
Present 

The conclusion that is reached from the set of statements must follow logically 

from the argument made. 
Missing 

Additional Criteria: showing a statement is true in multiple ways with multiple 

representations 
Partial 
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4.4.3.1 Criteria for judgment (RQ3a: To what extent did participants’ criteria for judging the 

validity of their students’ reasoning-and-proving products contain the core elements of proof?) 

Jonathan’s expectations for his students work were very clear, detailed, and delineated across all 

three classroom artifact packets (see Table 4.35).  In addition, Jonathan wrote on his student 

work sample cover sheets that the most important aspect of the scoring guide was the quality of 

the students’ conjectures.  Jonathan’s IQA rubric scores for clarity and detail of expectations are 

listed in Table 4.36. 
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Table 4.35 Jonathan's Classroom Artifact Packet Rubrics 

Rubric Level First Rubric Second Rubric Third Rubric 

Exceeded 
expectations 

All graphs drawn accurately, 
specifically describes the 
relationship between the lines in 
each box by describing the 
direction, correctly describes the 
type of slope that each box has in 
common (positive, negative, zero, 
or undefined), makes generalized, 
detailed statements about how the 
direction of a linear graph is 
related to its slope. 

All questions answered completely 
and accurately, makes observations 
about how both m and b effect the 
graph of the line and uses these 
observations to make generalized 
conjectures about the variables, 
conjectures state how m effects the 
slope and b effects the y-intercept of 
the graph, and both “predict what 
the graphs will look like” questions 
are answered with only 0-1 errors. 

Parallel and perpendicular lines are 
defined correctly, slopes of all 8 lines 
on both sides of the sheet are 
calculated correctly, conjectures are 
made stating that parallel lines have 
the same slope and perpendicular 
lines’ slopes have a product of -1, 
conjectures are accurate, concise, and 
use appropriate vocabulary (e.g., uses 
“product of -1” as opposed to 
“multiplied together equals -1”). 

Met 
expectations 

All graphs drawn accurately, 
generally describes the direction 
of the lines in each color, 
correctly describes the type of 
slope that each box has in 
common (positive, negative, zero, 
or undefined), makes generalized 
statements about how the 
direction of a linear graph is 
related to its slope, but the 
statements are lacking detail 
 

Most questions answered completely 
and accurately with the exception of 
1 or 2, makes a few, brief 
observations about how both m and 
b effect the graph of the line and 
uses these observations to make a 
generalized conjecture about at least 
one of the variables, conjectures 
state how m effects the slope and b 
effects the y-intercept of the graph, 
but proper vocabulary is not always 
used (e.g., “where it goes through 
the y-axis” instead of “the y-
intercept of the graph”, and both 

Parallel and perpendicular lines are 
defined correctly, slopes of all 8 lines 
on both sides of the sheet are 
calculated correctly, conjectures are 
made stating that parallel lines have 
the same slope and perpendicular 
lines’ slopes have a product of -1, 
conjectures are accurate, but may be 
a bid wordy and may not use 
appropriate vocabulary. 
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“predict what the graphs will look 
like” questions are answered with 
only 2-4 errors. 

Failed 
expectations 

Most graphs are drawn accurately, 
does not accurately describe the 
relationship between the lines 
from each box, does not make 
accurate statements about the type 
of slope each box has in common, 
does not make generalized 
statements about how the 
direction of a linear graph is 
related to its slope 
 

Many questions are not answered or 
are partially answered, makes a few 
observations about how m and/or b 
effect the graph of the line, but 
observations are vague and/or 
inaccurate, conjectures are not 
provided or are incorrect, and 
students are unable to complete the 
“predict what the graphs will look 
like” questions, or they complete 
them incorrectly. 

Parallel and perpendicular lines are 
defined, but definitions are not 
entirely correct, slopes are not all 
found or are not all correct, there is 
no evidence of conjectures made, or 
the conjectures are incorrect. 
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Table 4.36 Quality of Jonathan's Rubrics Used to Judge Student Work 

Classroom Artifact Packet 
Rubric 

Clarity and Detail 
of Expectations Comment 

First 4 
Detailed, clear, delineated, and 

emphasis on quality of conjecture 

Second 4 
Detailed, clear, delineated, and 

emphasis on quality of conjecture 

Third 4 
Detailed, clear, delineated, and 

emphasis on quality of conjecture 
Average 4  

 

4.4.3.2 Communication of expectations (RQ3c: In what ways did participants communicate 

expectations regarding what is required to produce a proof to students?) 

Jonathan described his communication of expectations both in terms of students’ behavior and 

mathematical products.  In the first classroom artifact packet, he wrote, “Students were instructed 

to work in pairs.  In regards to the ‘analyze your graphs’ questions, I prompted students to be as 

descriptive as possible in their descriptions.”  For the second student work sample, Jonathan 

wrote,  

Before beginning the task, I walked them through the process of graphing on this 

calculator. I also reinforced ‘A good explanation is one that provides a sense of why 

things work as they do,’ which is included in the task directions on the worksheet. 

(Jonathan’s second classroom artifact packet Cover Sheet) 

Jonathan was less clear about his communication of expectations for the third task on the 

classroom artifact packet cover sheet, stating only that he helped the class come to a collaborated 

definition of parallel and perpendicular lines.  Since Jonathan’s students completed open-ended 

tasks of this type about once a week, it was assumed that the students were familiar with 
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Jonathan’s expectations of high-quality work and had seen many examples in previous class 

sessions.  Therefore, Jonathan received a communication score of 4 for discussing and modeling 

his expectations to his students (see Table 4.37).  

 

Table 4.37 Communication of Jonathan's Expectations 

Classroom Artifact Packet Communication Score 

First 4 

Second 4 

Third 4 

Average Score 4 

 

In summary, Jonathan offered his students a similar proportion of reasoning-and-proving 

opportunities as did his traditional Algebra 1 textbook (6.5% compared to 6.9%).  He showed a 

good recognition of reasoning-and-proving exercises, and he created 58 of the 159 exercises he 

offered to his students.  These created exercises included 6 of the 11 reasoning-and-proving 

exercises with which he engaged his students.  Jonathan’s reasoning-and-proving exercises were 

limited to making and investigating conjectures.  

 Jonathan maintained the cognitive demand of the three tasks he submitted with his 

classroom artifact packets and showed an awareness of the level of scaffolding included in the 

problems that prevented his students from truly engaging in cognitively-demanding reasoning-

and-proving work.  However, Jonathan’s scoring rubrics for his students’ work were focused on 

the core mathematical content of the task and showed a high level of detail. 
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4.5 TRENDS—LOOKING ACROSS THE FOUR CASES 

4.5.1 Selection of Exercises (RQ1: To what extent did participants select reasoning-and-

proving learning opportunities in the form of exercises?) 

The data in Table 4.38 shows a sharp contrast between the percent of reasoning-and-proving 

exercises available in the reform curriculum (75.5%) compared to any of the traditional curricula 

(average 5.7%) and a contrast among the participants with respect to the number of and time 

spent on selected reasoning-and-proving exercises.  There was not a comparable difference 

between the traditional geometry and the traditional algebra 1 curricula (5.2% average compared 

to 6%).    Some of these differences could be attributed to the content which was selected for the 

15-day data collection period.  Karen chose a unit on proof and congruence, while Uma chose a 

unit on area and surface area.  Sidney chose a unit on polynomial operations, while Jonathan 

chose a unit on linear functions.  Obviously, a unit devoted to proof and congruence should 

contain a high percent of reasoning-and-proving exercises.   

 

Table 4.38 Percentage of Available and Selected Reasoning-and-proving Exercises 

Participant Course / 
Curriculum Type 

Percentage of 
RP Exercises 
Available in 
Textbook 

Percentage of 
RP Exercises 
Selected by 
Participant 

Estimated Time 
Spent on RP 
Exercises 
during Lessons 

Karen Geometry/reform 75.5% 76.4% 76% 

Uma Geometry/traditional 5.2% 3.4% 16% 

Sidney Algebra 1/traditional 5.1% 2.1% 4% 

Jonathan Algebra 1/traditional 6.9% 6.5% 27% 



 

254 

 

 

The types of reasoning-and-proving exercises available in the textbooks used by 

participants during their 15-day data collection period is represented in Figure 4.43.  Looking 

across all of the available reasoning-and-proving exercises, most asked students to investigate 

conjectures or develop arguments (averages of 43.9% and 38.6% respectively).  Making 

conjectures were represented in 21.2% of the exercises, but very few exercises asked students to 

evaluate arguments (1.8%), find counterexamples (3.9%), or think about the principles of proof 

(5.5%). If Karen’s curriculum is removed, the type available most frequently is still investigate a 

conjecture (37.5%), followed by make a conjecture (34.6%), develop an argument (16.3%), 

correct a mistake (12.5%), evaluate an argument and find a counterexample (3.8% and 2.9% 

respectively), and principles of proof (0%).   
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Figure 4.43 Types of reasoning-and-proving exercises in textbooks used by participants during their 15-day 

data collection period. 

 

 The types of reasoning-and-proving exercises selected by participants show a preference 

towards making and investigating conjectures and developing arguments (see Table 4.39). With 
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the exception of Karen, no one selected any Evaluate an Argument or Principles of Proof 

exercises.  Correct a Mistake and find a Counterexample types of exercises were poorly 

represented as well.  This trend is similar to the types of reasoning-and-proving available in the 

participants’ textbooks. 

 

Table 4.39 Types of Reasoning-and-proving Exercises Selected by Participants During Their Data Collection 

Period 

 
Reasoning-and-Proving 

Type 
Karen Uma Sidney Jonathan 

Make a Conjecture 7.2% 2.8% 0.8% 4.7% 

Investigate a Conjecture 49.6% 0.7% 0.6% 1.8% 

Evaluate an Argument 0.4% 0.0% 0.0% 0.0% 

Correct a Mistake 0.8% 0.0% 0.6% 0.0% 

Develop an Argument 48.8% 1.7% 0.3% 0.0% 

Counterexample 6.3% 0.3% 0.0% 0.0% 

Principles of Proof 7.0% 0.0% 0.0% 0.0% 

 

Table 4.40 shows the core elements of proof in the participants’ definition and the total 

number of exercises in the participants’ lessons compared to the number of these exercises that 

were reasoning-and-proving, the number of exercises that were correctly identified as reasoning-

and-proving, and the number of exercises that were mislabeled.  Karen correctly identified 

94.9% of her reasoning-and-proving exercises, while Uma identified 90% of hers, Sidney 71.4% 

of his, and Jonathan 81.8 % of his exercises.  The participants’ ability to identify reasoning-and-
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proving tasks does not appear to be correlated with how many core elements of proof were in 

their definition of proof. 

 

Table 4.40 Frequency and Identification of Reasoning-and-proving Exercises Selected by Participants 

Participant 

Number of 
Core 

Elements of 
Proof 

(maximum of 
three) 

Number 
of 

Exercises 
in 

Lessons 

Number of 
RP 

Exercises 
in Lessons 

Number of RP 
Lesson 

Exercises 
Labeled by the 
Participant in 

Lessons 

Number of 
Lesson Exercises 
Labeled by the 
Participant as 
RP that Were 

Not RP 

Karen 2.5 335 256 243 77 

Uma 2 290 10 9 32 

Sidney 1.5 657 14 10 19 

Jonathan 1.5 170 11 9 33 
 

The number of exercises that participants mislabeled as reasoning-and-proving can 

largely be explained by labeling collections of exercises rather than individual exercises.  In Uma 

and Jonathan’s cases, the mislabeled exercises were parts of larger tasks that would be labeled 

collectively as reasoning-and-proving tasks.  In other words, some of the subparts of the tasks, 

such as generating data in order to find a pattern, would not individually be labeled as reasoning-

and-proving exercises but they were in the service of helping students see patterns and make 

conjectures.  Otherwise, Karen and Sidney seemed to mislabel exercises that involved reasoning 

about definitions or procedures but not the kind of reasoning that leads to proof.   

The small number of reasoning-and-proving tasks available and selected by participants 

makes it difficult to identify trends in types of exercises that are difficult to recognize by 
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participants (see Table 4.41).  If a type of reasoning-and-proving was not selected by the 

participant, the participant did not have the opportunity to label it reasoning-and-proving or not, 

so “not applicable” was entered in the data table.  Correct a Mistake, Develop an Argument, and 

Counterexample types of exercises appear to be easily identifiable as reasoning-and-proving 

because none of the participants missed labeling them.  Making a Conjecture and Identifying a 

Conjecture appear to be more difficult to recognize, especially for Karen (although she correctly 

identified 20 other Make a Conjecture exercises) and Sidney (missed all four Investigate a 

Conjecture exercises he selected).  Principles of Proof only applied to Karen; this type must be 

unexpected or difficult to recognize because Karen missed identifying half of these types of 

reasoning-and-proving exercises.  

  

Table 4.41 Types of Reasoning-and-Proving Exercises that Participants Missed Identifying 

Reasoning-and-Proving 
Type Missed Karen Uma Sidney Jonathan 

Make a Conjecture 4 0 0 1 

Investigate a Conjecture 0 1 4 1 

Evaluate an Argument 0 n/a n/a n/a 

Correct a Mistake 0 n/a 0 n/a 

Develop an Argument 0 0 0 n/a 

Counterexample 0 0 n/a n/a 

Principles of Proof 9 n/a n/a n/a 
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Table 4.42 shows the modifications participants made on reasoning-and-proving 

exercises or on exercises that were modified to include reasoning-and-proving.  Note that 

participants made modifications to non-reasoning-and-proving exercises in their lessons, but 

those modifications are not represented here unless the exercise became a reasoning-and-proving 

exercise with the modification.  No participant lowered the reasoning-and-proving potential of an 

exercise through modification.  A total of 29 modifications were made to the wording in 

reasoning-and-proving exercises which did not affect the exercises’ potential to engage students, 

and 7 modifications resulted in an increase in an exercises reasoning-and-proving potential.  The 

burden of increasing the potential of exercises fell to Uma, Sidney, and Jonathan, the three 

participants using traditional textbooks.  In addition, Sidney and Jonathan—Algebra 1 teachers—

modified 5 exercises which were not originally reasoning-and-proving at all.  These represent 

26.3% of the reasoning-and-proving exercises in which they engaged their students. 

 

Table 4.42 Frequency and Effect of Modifications Made to Exercises by Participants 

Original 
Exercise (any 
source) 

Exercise as assigned by 
participant 

Frequency of Modifications 

Karen Uma Sidney Jonathan 

Reasoning-and-
Proving Exercise 

Exercise assigned, modified to 
LOWER RP 

0 0 0 0 

Reasoning-and-
Proving Exercise 

Exercise assigned, neutral effect 
of modification 

27 1 0 0 

Reasoning-and-
Proving Exercise 

Exercise assigned, modified to 
INCREASE RP 

0 0 0 0 

Non-Reasoning-
and-Proving 
Exercise 

Exercise assigned, modified to 
INCLUDE RP 

0 2 3 2 
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The data in Table 4.43 shows that Uma and Jonathan created half of the reasoning-and-

proving exercises with which they engaged their students.  Uma created 5 of the 10 reasoning-

and-proving exercises she selected and Jonathan created 6 of the 11 reasoning-and-proving 

exercises he selected.  Sidney created 2 exercises; the other 12 reasoning-and-proving exercises 

he selected came directly from the textbook or from a modified version of a textbook exercise.  

Karen, who had 330 reasoning-and-proving exercises available in her textbook, still created 10 

reasoning-and-proving exercises on her own. 

 

Table 4.43 Sources of Reasoning-and-proving Exercises Selected by Participants 

Source 

Frequency of Reasoning-and-Proving Exercises 

Karen Uma Sidney Jonathan 

Taken Directly from Published 
Textbook/Curriculum 

188 2 10 3 

Modified from Textbook/Curriculum 27 3 2 2 

Used in the CORP Course 0 0 0 0 

Taken or Adapted from Ancillary 
Resources 

32 0 0 0 

Created by Teacher 9 5 2 6 
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4.5.2 Implementation of reasoning-and-proving exercises (RQ2: To what extent were 

participants able to maintain the level of cognitive demand of reasoning-and-proving tasks 

during implementation?) 

Table 4.44 summarizes the average potential and implementation scores for the classroom 

artifact packets each participant submitted.  Karen, Uma, and Jonathan were able to successfully 

select and implement cognitively-challenging reasoning-and-proving tasks.   Karen’s first 

classroom artifact packet contained the first proof activity her students were asked to complete; it 

is no surprise that some statements (e.g., givens) were missing in some students’ proof attempts 

and these minor omissions did not prevent students’ attempts from exceeding Karen’s 

expectations.  Such omissions, however, prevented those arguments from being assessed as 

proofs (her implementation was thus rated a 3 rather than a 4, which is still considered 

maintaining the level of cognitive demand of the task).  Jonathan recognized that his tasks were 

overly scaffolded with respect to the level of cognitive demand and plans to remove some 

scaffolding next year to provide his students with more opportunity to grapple with reasoning-

and-proving.  Uma’s tasks were the most different from each other; her classroom artifact packet 

tasks spanned a statement to disprove (requiring only a counterexample), an irregular area task 

(which left little ambiguity about what needed to be done), and a maximum area for a fixed 

perimeter exercise for which students were supposed to justify why a circular animal pen was the 

correct answer. 
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Table 4.44 Average Potential and Implementation Scores for Cognitive Demand of Tasks in Participants' 

Classroom Artifact Packets 

Participant Average Exercise 
Potential Score 

Average Exercise 
Implementation Score 

Average 
Maintenance 

Karen 4 3.6 Maintained 

Uma 3.3 3 Maintained 

Sidney 2.7 2 Declined 

Jonathan 3.3 3.3 Maintained 

 

4.5.3 Evaluation of students’ reasoning-and-proving products (RQ3: To what extent were 

participants able to accurately evaluate their students’ reasoning-and-proving products?) 

All four participants described proof as using statements, definitions, and theorems that had been 

previously validated or accepted by the students in the classroom.  The participants also 

described proof as a way to validate a claim, but in most cases, omitted any reference to the 

domain under which this truth holds.  Only one participant (Karen) mentioned anything about the 

logical flow of the argument, perhaps because her unit focused on teaching students how to write 

proofs.  Table 4.45 summarizes these results. 
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Table 4.45 Comparison of the Participants' Definition of Proof with the Core Elements of Proof 

Core Elements of Proof Karen Uma Sidney Jonathan 
The argument must show that the 
conjecture or claim is (or is not) true for all 
cases. 

Partial Present Partial Partial 

The statements and definitions that are 
used in the argument must be ones that are 
true and accepted by the community 
because they have been previously 
justified. 

Present Present Present Present 

The conclusion that is reached from the set 
of statements must follow logically from 
the argument made. 

Present Missing Missing Missing 

Additional Criteria None None Partial Partial 

 

Participants were consistent in their clarity and detail of expectations (see Table 4.46).  

Karen and Jonathan focused on delineating mathematical understanding in their levels.  

Specifically, Karen used the core elements of proof to distinguish performance for her students, 

and Jonathan placed emphasis on the quality of his students’ conjectures.  Uma and Sidney 

broadly based high, medium, and low performance partially on behavior.   

 

Table 4.46 IQA Rubric: Clarity and Detail of Expectations Scores 

Student Work Sample Karen Uma Sidney Jonathan 
First 4 3 3 4 

Second 4 3 3 4 
Third 4 2 3 4 

Average 4 2.7 3 4 
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Participants were largely consistent with how they communicated their expectations to 

their students as well (see Table 4.47).  Karen’s students regularly discussed and attempted proof 

tasks, and Karen orally and in writing reminded students of her specific expectations with respect 

to their behavior and mathematical work.  Uma’s expectations were clear but her students did not 

practice these kinds of tasks very often, so they did not have many models of high-quality work.  

Sidney said that he did not share his expectations with his students until the third task, before 

which he engaged his students in conversation about expectations.  Jonathan claimed he did not 

model high-level work for each task prior to students engaging in the tasks, but he also wrote that 

his students work on exploratory tasks once a week, which implies that students had indeed seen 

models. 

 

Table 4.47 IQA Rubric: Communication of Expectations Scores 

Classroom Artifact Packet Karen Uma Sidney Jonathan 

First 4 3 1 4 

Second 4 3 1 4 

Third 4 3 3 4 

Average 4 3 1.7 4 

 

This chapter addressed the three main research questions for this study (selection, 

implementation, and evaluation of student work products of reasoning-and-proving exercises by 

participants) using the analyses presented in Chapter Three.  The results and analysis were 

presented in the form of a narrative case for each participant, followed by a trend analysis.  

Chapter Five explores the possible reasons why some teachers were more successful than others 



 

265 

 

in selecting, implementing, and evaluating the student work products of reasoning-and-proving 

exercises and tasks by participants. 
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5.0  DISCUSSION 

In this chapter, a discussion of this investigation and how the results inform the extent to which 

trained teachers selected, implemented, and evaluated tasks in order to offer their students 

reasoning-and-proving learning opportunities in their classes is presented.  The chapter begins by 

describing the importance of this study.  This is followed by a discussion of each of the main 

research questions, then a discussion of the possible reasons for the results.  The chapter closes 

with concluding remarks and suggestions for future research. 

5.1 IMPORTANCE OF THE STUDY 

This study examined the extent to which four early career teachers selected, implemented, and 

evaluated reasoning-and-proving tasks and products in their classrooms after having received 

training in the form of a preservice university course on reasoning-and-proving.  The CORP 

course content helped participants learn about the need for proof, the core elements of proof, 

ways to support students, and the connections between tools in an effort to address common 

problems associated with the implementation of reasoning-and-proving (concept of proof, 

insufficient resources, and pedagogical challenges).  The intended outcomes of the course 

included an understanding of what constitutes reasoning-and-proving, an understanding of how 
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secondary students benefit from engaging in reasoning-and-proving, and an understanding of 

how they can support the development of students’ capacities to reason-and-prove.  Initial 

evidence from pilots conducted at three large research universities suggest that preservice 

teachers engaged with the materials, believe that what they learned in the course had the 

potential to impact their teaching practice, and that the cases helped preservice teachers think 

about instructional issues related to reasoning-and-proving.  In addition, the results suggest that 

the tasks-tools-talk structure was a useful framework for supporting preservice teachers’ analysis 

and discussion of the cases (Smith et al., 2012).  The importance of the study reported herein is 

that it follows teachers who participated in the course into their classrooms, where external 

pressures such as district curricula and live students effect the teachers’ ability to enact 

reasoning-and-proving.  This study provides an opportunity to see how teachers operationalized 

their content knowledge and pedagogical content knowledge of reasoning-and-proving. 

5.2 SELECTION, IMPLEMENTATION, AND EVALUATION OF REASONING-

AND-PROVING TASKS AND PRODUCTS 

5.2.1 Selection of reasoning-and-proving tasks 

The results of this study suggest that the participants were able to select and create exercises that 

had the potential to engage students in reasoning-and-proving.  In the CORP course, participants 

solved many reasoning-and-proving tasks that offered a variety of learning opportunities.  

Participants also learned to modify insufficient tasks to improve the tasks’ potential to engage 
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students in reasoning-and-proving.  G. J. Stylianides’ (2010) analytical framework of reasoning-

and-proving (see Figure 2.1) helped participants to situate tasks along a continuum of scaffolded 

activities that help students develop the notion of and ability to create proofs.  This body of 

knowledge that the participants learned in the CORP university course is particularly important 

due to the lack of reasoning-and-proving found in most textbooks (Lithner, 2004; Stylianides, G. 

J., 2009; Thompson, Senk, & Johnson, 2012). 

 Uma, Sidney, and Jonathan’s textbooks contained few exercises designed to engage 

students in reasoning-and-proving.  The small number of reasoning-and-proving exercises 

available in their traditional textbooks mirrored Thompson, Senk, and Johnson’s (2012) study.  

Not only were the number of exercises small, but the types of reasoning-and-proving exercises 

were not evenly represented.  Very few exercises asked students to evaluate an argument, correct 

a mistake, find a counterexample, or think about principles of proof.  The only textbook which 

had a significant number of reasoning-and-proving exercises and spanned all types was Karen’s 

CME Geometry: Unit 2: Congruence and Proof book.  However, based on Karen’s description 

of the reasoning-and-proving opportunities offered to her students beyond this unit, it appears 

that CME treated proof as a stand-along topic rather than a practice that spanned the entire 

course. 

 Despite the limitations of their textbooks, Karen, Uma, and Jonathan spent a significant 

amount of time engaging students in reasoning-and-proving (76%, 16%, and 27%, respectively).  

Sidney spent the least amount of time on reasoning-and-proving (4%) and offered the fewest 

number of opportunities (2.1%).  All of the participants were able to recognize and create 

reasoning-and-proving exercises, with Karen and Sidney taking a broad view of reasoning-and-

proving and over-labeling some exercises.  This finding is significant because research has 
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shown that secondary students spend very little instructional time on reasoning-and-proving 

(Porter, 1993).  What is still unclear is the extent to which the time spent on reasoning-and-

proving is typical for the participants or atypical because they were asked to choose a unit in 

which they would be asking their students to engage in reasoning-and-proving. 

 Knuth (2002c) described five roles of proof: to verify that a statement is true, to explain 

why a statement is true, to communicate mathematical knowledge, to discover or create new 

mathematics, or to systematize statements into an axiomatic system.  The four teachers in the 

study described herein were asked to submit three classroom artifact packets of reasoning-and-

proving tasks, one of which had to be a proof task.  The results varied; Karen selected three two-

column geometry proofs, Uma selected one disproof (find a counterexample to prove a statement 

false), one procedure-type activity, and one geometry proof (not two-column); Sidney selected 

three activities that asked students to make conjectures about polynomial operations; and 

Jonathan asked students to explore and write conjectures about slopes and intercepts of lines. 

 If all of the activities students completed during the 15-day data collection period are 

examined, it seems that Karen selected proof tasks to help communicate knowledge and help her 

students verify truth.  Her textbook states, “mathematical proof is a method that relies on certain 

assumptions, precise definitions, and logical deductions to prove new facts” (CME Geometry: 

Unit 2, p. 71).  Karen’s students explored congruence, angle relationships in sets of parallel lines 

cut by a transversal, generalizing a conjecture which was based on empirical evidence, writing 

proofs, and quadrilateral properties.  While the CME authors approached developing an 

axiomatic system by the order of the topics in this unit, it is unclear whether that was a focus of 

Karen’s instruction.  Most of the proofs that Karen’s students completed were in a two-column 

format, historically used to make grading easier and not necessarily to foster understanding 
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(Herbst, 2002).  Students’ two-column proofs are sometimes evidence of learning trivial and 

uninteresting propositions (Herbst, 2002).  Herbst suggested that this type of proof-making has 

limited ability to construct knowledge for the student.  Since Karen’s students did not create 

formal proofs after the completion of this unit (personal communication, February 20, 2013), it is 

possible that Karen’s students did not see proof as a vehicle for sense-making.  The types of 

proof—triangle congruence—in Karen’s selected unit were somewhat limited in their ability to 

explicitly reveal students’ reasoning.  Geometry students frequently cut their teeth on triangle 

congruence proofs because they are small and manageable.  A simple proof can provide students 

with three givens, and the students just have to list these givens and select the type of triangle 

congruence that fits the givens (e.g.,, side-angle-side, angle-angle-side, side-side-side, or angle-

side-angle).  Consequently, many of these proofs when written in two-column format are four 

lines long and everyone’s proof looks the same.  Therefore, a teacher runs the risk of 

misinterpreting student proofs as indicating understanding as opposed to mimicking a formulaic 

procedure.  That being said, a student still has to choose which type of triangle congruence fits 

the situation and has to know to list the givens first in setting up the logical argument.  So despite 

the fact that Karen’s students were able to successfully complete three proofs, it is difficult to 

assess what Karen knows and understands about the value of proof and her students’ abilities to 

construct proof from the three classroom artifact packets she submitted. 

 Uma admitted that she did not spend much time on reasoning-and-proving in her 

geometry class because she is constrained by her state curriculum and the other teachers in her 

building.  Based on her classroom activities, it appears that Uma used proof to verify truth, 

explain why something was true, and communicate knowledge.  Her students developed 

formulas for the areas of may two-dimensional shapes and the surface areas of many three-
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dimensional shapes; these formulas were always based on previously learned formulas (e.g., the 

surface area of a prism was based on the areas of triangles and polygons), but with the amount of 

scaffolding in her lessons, it is questionable how much reasoning and critiquing her students 

learned to do on their own.  However, Uma’s two proof tasks do reveal that she can create tasks 

that reveal understanding of congruence and counterexamples and require students to write 

persuading arguments. 

Jonathan also had students who historically struggled in mathematics like Uma.  He did 

not use proof tasks but he did consciously helped his students foster reasoning skills in 

explaining why something was true and to communicate new knowledge.  Jonathan was the only 

participant who articulated that he was laying the groundwork for his students to develop 

reasoning-and-proving skills that would be used in the future.  In Jonathan’s case—as the only 

mathematics teacher in his school—he was guaranteed to teach the same students the following 

year and could continue his work.  As such, Jonathan had investment opportunities with his 

students that the other participants did not.  Jonathan gave his students opportunities to work in 

groups, explore open-ended tasks, develop a shared vocabulary, view mathematics as something 

beyond a set of procedures, and make conjectures.  By encouraging and holding students 

accountable for using specifics in their descriptions and conjectures, Jonathan was refining his 

students’ attention to detail which should serve them well as they develop their ability to reason-

and-prove. 

Sidney is an interesting case.  It appears that he engaged his students in the fewest 

number of reasoning-and-proving exercises and spent the least amount of time on them.  The 

coding system used to analyze Sidney’s classroom activities was from Thompson, Senk, and 

Johnson (2012), who looked separately at the narrative and practice sections of textbooks.  Since 
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observations of the four participants were not conducted, the coding system for exercises (e.g., 

make a conjecture, evaluate an argument) was applied to the in-class activities and the 

homework activities of the participants in the 15-day data collection period.  Through this lens, 

Sidney’s students had little opportunity to engage in reasoning-and-proving.  Through the 

narrative lens of Thompson, Senk, and Johnson—which examines the non-practice descriptions 

of content in textbooks—the picture of Sidney’s class changes.  Thompson, Senk, and Johnson 

“believe that the narrative [portion of textbooks] provides opportunities for teachers to introduce 

reasoning and proof to students” (p. 255) and chose to code how textbooks justified properties 

according to (p. 261): 

• The property is justified with a proof 

• The property is justified using a deductive argument based on a specific case or cases 

• A justification of the property in the exercises for which a justification of some type is 

required 

• There is no justification provided and no explicit mention is made of leaving the 

justification to the student 

The researchers listed properties which warranted justification for exponents, logarithms, and 

polynomials in Algebra 1, Algebra 2, and Precalculus textbooks.  Sidney helped his students 

justify the following properties listed by Thompson, Senk, and Johnson: multiplying binomials, 

squaring a binomial, multiplying to get the difference of squares, factoring quadratic trinomials, 

factoring perfect square trinomials and the difference of two squares, and finding binomial 

factors.  Thus, how Sidney engaged his students in justifying polynomial properties merits 

consideration. 



 

273 

 

 

Figure 5.1 Multiplication of two binomials from Sidney's lessons (Day 2/3). 

 

When Sidney originally submitted his Task Log Sheets, he listed each lesson that 

contained a polynomial property (with related practice problems) collectively as one “task” and 

label them as “reasoning-and-proving” or “maybe” or “some” reasoning-and-proving.  During 

his second interview (in person), Sidney was asked to rate the reasoning-and-proving potential of 

each individual exercise.  At that time he labeled each exercise in the lesson shown in Figure 5.1 

as non-reasoning-and-proving, which matched the rating of the coders.  In retrospect, however, 

while these exercises do not fall under one of Thompson, Senk, and Johnson’s exercise codes, 
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the exercises in the lesson shown in Figure 5.1 do try to justify a property for multiplying 

binomials in the manner of Thompson, Senk, and Johnson’s narrative codes.  In this case, 

because the lesson is so scaffolded, there is little opportunity for students to engage in reasoning, 

but the property is justified with a specific case using an area model and the distribution method. 

 Figure 5.2 shows Sidney’s factoring quadratic trinomials lesson (the italicized words are 

Sidney’s answers).  There is only one example and a suggested drawing before students are 

asked to write a conjecture about factoring.  It feels more like a review than a novel concept for 

students.  However, it is possible that Sidney led a rich discussion about how to write a general 

statement for this property and justify it with a deductive argument.  Without observational data, 

we have no evidence either way. 

 

Figure 5.2 Factoring a perfect square trinomial from Sidney's Lessons (Day 11). 
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Because the research on the availability of reasoning-and-proving tasks in textbooks clearly 

indicates the limitation of this resource (e.g., Thompson, Senk, & Johnson, 2012), the CORP 

course included a chapter on modifying tasks to further equip participants to offer reasoning-and-

proving opportunities to their students.  The participants looked at several versions of tasks—

unmodified textbook tasks and modified versions—and created a strategy list to help them 

modify tasks in the field.  The strategies included engaging students in investigations and 

conjectures instead of just giving answers, provide all students with access to a task by making 

initial observations, require students to provide a mathematical argument or proof, remove 

unnecessary scaffolding, and ask students to generate empirical examples and look for patterns.  

The participants in the study reported herein, though, modified very few exercises to improve 

their potential to engage students in reasoning-and-proving (only 7 exercises out of the 1,453 

exercises selected by the participants).   

 Karen’s modifications had a neutral effect on the reasoning-and-proving exercises in her 

lessons.  Uma inserted two conjectures into lessons (see Figure 4.14 and Figure 4.20) and 

included an investigate-a-claim question from a previous chapter (with a neutral effect) into her 

chapter review packet.  In addition, though, Uma created a disproof and a proof question for her 

classroom artifact packets and asked her students to present and justify their work from her 

second classroom artifact packets (see Figure 4.21).  If one combines the modified exercises with 

the exercises Uma created, Uma used many of the strategies discussed in the CORP university 

course.  The only strategy she reversed was “remove scaffolding.”  Like Jonathan, Uma at times 

inserted more scaffolding into a problem than was in the original exercise.  Jonathan cited the 

ability level of his students for the reason he had the scaffolding; it was assumed Uma had the 
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same reason.  Like Uma, Jonathan inserted two conjectures into lessons (see Figure 4.37).  In 

looking at all of his exercises and modifications, Jonathan appeared to focus on the strategy of 

providing all students with access to the task by first making observations about a situation 

before moving on to more focused work.  Finally, Sidney inserted three conjectures into his 

lessons on polynomial operations (e.g., Figure 4.30), but he did not engage his students in much 

exploration (sometimes only a single example) before the students made their conjectures.  There 

is some evidence (in the similarity of students’ answers) that the students had seen this content 

already. 

During her interview, Uma expressed a desire for a book of proof tasks to use as a 

resource.  The data shows that none of the participants used any proof activity from the CORP 

course, nor did they make much use of the internet or other books as ancillary resources.  The 

tasks in the CORP course included 6 pattern tasks, 6 number theory tasks, 4 geometry tasks (1 

linear pair/vertical angles, 1 parallel line proof, 1 Pythagorean identify, and one constructing a 

parallelogram), and 2 algebra tasks (graphing a line with intercepts and A Sticky Gum problem).  

Only Karen’s curriculum overlapped with an activity in the CORP course during her 15-day data 

collection period, and there were already similar proof tasks in her textbook.  That being said, 

Thompson, Senk, and Johnson (2012) suggest that it is useful for students to look at examples 

and nonexamples, correcting mistakes, and evaluating arguments as they develop their ability to 

prove.  A teacher could take a traditional curriculum and modify some existing exercises to 

include these types of reasoning activities.  However, there is no evidence that the four 

participating teachers in the current study did so. 
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5.2.2 Implementation of reasoning-and-proving tasks 

The results of this study suggest that the participants were able to implement cognitively-

demanding reasoning-and-proving tasks at a high level.  Throughout the CORP university 

course, participants read and discussed narrative cases which described teachers engaging their 

students in varying degrees of reasoning-and-proving.  The cases illustrated the challenges 

teachers face in their own classrooms.  The teachers in the cases supported the capacity of their 

students to reason-and-prove by the tasks, tools, and talk used in their classrooms.  In particular, 

the pre-service teachers examined how the narrative case teachers’ instructional decisions helped 

or hindered their ability to implement high-level reasoning-and-proving tasks.  The finding that 

the participants in this study were able to maintain the high level of cognitive demand of their 

reasoning-and-proving tasks between potential and implementation is significant because high-

level tasks usually decline during implementation (Stein, Grover, & Henningsen, 1996; Stigler & 

Hiebert, 2004). 

According to the IQA rubrics for potential and implementation of tasks, a high-level task 

asks students to make their reasoning explicit or implicit.  As such, reasoning-and-proof tasks 

that ask students to identify patterns and form generalizations on those patterns, make or 

investigate conjectures and support conclusions with mathematical evidence and/or create a 

proof or find a counterexample, or evaluate an argument or explain how to outline an argument 

of a particular type are cognitively-demanding tasks.  The participants of the study described 

herein asked students to create proofs, find counterexamples, identify patterns and make 

generalizations and conjectures. 
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Only Karen selected three proof tasks to implement and for which to collect classroom 

artifact packets; the other participants selected 2 proof tasks (Uma) and no proof tasks (Sidney 

and Jonathan, although Sidney thought he was implementing proof tasks).  Asking students to 

make a conjecture is still considered to be a high-level task, however, and making conjectures 

accounted for all of Sidney’s and Jonathan’s tasks in their student work samples.  Thus, all of the 

participants selected tasks for their classroom artifact packets that were cognitively demanding. 

Most of the participants maintained the level of cognitive demand between the potential 

of the tasks and the implementation.  Karen asked for proofs and got them.  The question with 

Karen’s students’ work is whether or not students were making their reasoning explicit with two-

column proofs or whether they were merely mimicking a procedure.  Uma used a creative 

assortment of tasks (disproof, procedure, and proof), and her students’ work suggests that they 

understood how to disprove a statement (by finding a counterexample) but had trouble proving a 

statement (animal pen task).  Uma reported that she had a conversation with her students about 

why a circular pen enclosed the maximum area, but without student interview data, it is 

impossible to know what each student learned about proof from the conversation (more will be 

said about this later).  Sidney’s tasks seemed to be a little inappropriate for the level of some of 

his students, which might account for the decline of the high-level cognitive demands of his tasks 

(Stein, Grover, & Henningsen, 1996).  Finally, Jonathan asked for conjectures and got them from 

his students, although the amount of scaffolding in his tasks prevented the tasks from having the 

highest-level of cognitive demand. 

Uma presents an interesting implementation case in her third student work sample (find 

the shape of an animal pen that will maximize the area enclosed if the perimeter is fixed).  She 

labeled her first student work sample (Uma 3-1) as “exceeding expectations” but also “nonproof” 
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because the student used an empirical argument (see Figure 4.27).  Uma 3-2 was labeled 

“exceeding expectations” and proof, because the student provided a reason for why a circular-

shaped pen would enclose the maximum area (“The circle is bigger because whatever shape you 

make it basically stretches the perimeter to the max because it has no corners.”).  Uma 3-3 had a 

typical response, which was to calculate the areas of a square and two rectangles (see Figure 

4.26).  This student received a rating from Uma of “met expectations” and “nonproof.”  On her 

classroom artifact packet Cover Sheet for her third task, Uma wrote:  

Many students were stuck with only using squares and rectangles; we had much more 

conversation than anticipated.  I was impressed with how we discussed the task and all 

the possible shapes.  I wish I could have been more organized in conversation and had 

students record all answers. 

Without observational data, it is difficult to tell whether Uma held all students to the standard of 

proving that a circle would enclose the maximum area (by a method appropriate to her level of 

students) or not.  The way she rated her expectations of the student work indicates that she did 

not, but her comments about the implementation imply that she did.  It could be that proving that 

a circle was the best shape did not matter to Uma.  Knuth (2002b) found that some practicing 

teachers recognized informal proofs (based on empirical arguments) as invalid but acceptable 

stepping stones on the way to proof.  However, Chazan and Lueke (2009) found that when 

teachers tacitly accept empirical arguments, their students’ conception of valid proofs include 

empirical arguments.   
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5.2.3 Evaluation of reasoning-and-proving products 

The results of this study suggest that participants were able to articulate and use criteria for proof 

that included most if not all of the core elements of proof.  In solving a sequence of tasks 

described by G. J. Stylianides (2009) and examining samples of student work for the task “prove 

that the sum of two odd numbers is an even number,” participants reviewed the limits of 

empirical arguments and constructed a list of the core and auxiliary elements in mathematical 

proof.  Research has shown that an “empirical proof scheme” is common among students and 

teachers (e.g., Chazan, 1993; Harel & Rabin, 2010; Knuth, 2002b; Stylianides, G. J. & 

Stylianides, A. J., 2009) and that teachers have difficulty making decisions about rigor when 

engaging students in reasoning-and-proving (Knuth, 2002b, 2002c; Stylianides, A. J., 2007).  

The fact that the participants in this study included most of the core elements in their definition 

of proof and in their rubrics is significant. 

 From the discussion in the CORP course regarding what constitutes reasoning-and-

proving for secondary students, the participants generated a list of core elements of proof (with 

guidance from the course instructor who had A. J. Stylianides’ 2007 definition of proof, see 

Figure 5.3).  When asked for their definitions of proof, each participant included that the 

statements and definitions that area used in the argument must be ones that are true and accepted 

by the community because they have been previously justified.  This was not a surprise, because 

this core element of proof (“accepted by the community”) was something new for the 

participants.  This core element resonated with the participants as they imagined teaching proof 

to students.  All of the participants stated that a proof shows a claim is true or not true, but not 

everyone addressed the domain under which the statement is true.  Only one participant—
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Karen—included logic in her definition of proof.  Of all the core elements, “logical flow” got the 

least explicit attention in the CORP course.  It is possible that an apparent lack of attention to the 

logical flow of an argument accounts for the participants not modifying or creating tasks to 

correct a mistake or evaluate an argument. 

 

Figure 5.3 Criteria for a valid proof as developed by Sidney's and Jonathan's CORP class on May 22, 2012. 

 

The only measure explicitly used to evaluate student work samples of proofs in the CORP 

university course was the core elements of proof.  In Karen’s rubrics for her student work 

samples, she included “formal proof” in her expectations, which she defined roughly as a 

detailed, understandable argument that uses statements and theorems with justification to arrive 

at a goal.  Based on her rubrics, Karen was focused on justification.  In contrast, Uma’s rubrics 

for her student work samples seemed to be more focused on correctness of the answer with 
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explanations and pictures that were convincing.  Uma did not specify who the argument should 

convince (the teacher?  other students?) in her written rubrics.  While Uma included the auxiliary 

element “pictures” in her rubric, it is likely that Uma was suggesting a way for students to 

support their arguments. 

Jonathan did not assign any proof tasks to his students during the 15-day data collection 

period, but it is worth noting that his rubrics focused on the quality of the students’ conjectures 

and included “makes generalized, detailed statements.”  He also expected his students to use 

correct mathematical vocabulary (a help when communicating).  Jonathan stated that he was 

laying the ground work for engaging his students in proof next year; his attention to generalized, 

detailed, correct mathematical conjectures implies an awareness of the core elements of proof. 

In communicating expectations, no participant developed a list of the core elements of proof 

with his or her students.  Consequently, students had no reference material to help them construct 

proofs.  The only participant who came close was Karen, who had her students keep a tan 

composition book with definitions and theorems.  Informally, however, all of the participants 

held their students to justifying their mathematical statements in class, and Karen’s and 

Jonathan’s students had many examples of graded work to use as models of expectations. 

5.3 REASONS FOR THE RESULTS 

While the results of this study are encouraging, the study does raise some questions as to why 

there was inconsistency among the participants regarding the extent to which they were able to 



 

283 

 

select, implement, and evaluate the products of reasoning-and-proving tasks.  The CORP course 

likely changed the participants in some way, but the fact that the participants came into the 

course with different skill sets, abilities, and understandings suggests that the participants were 

not likely to leave the course with the same skills set, abilities, and understandings.  Since the 

participants were preservice teachers during the CORP course, it was not possible to assess their 

ability to engage their own students in reasoning-and-proving before the course.  This research 

project did not assess the mathematical ability of the participants before or after the course, 

either.  It is not the intention of the CORP course to help participants fine tune their 

understanding of logic, explore common proof techniques in specific mathematical domains, or 

develop their classroom management techniques.  The early-career teachers who participated in 

this study are—like all teachers—on a continuum of skills and beliefs.  The research discussed in 

Chapter 2 listed numerous studies which revealed that in general, teachers in the United States do 

not engage their students in reasoning-and-proving, and when they do, the work tends to be 

formulaic, limited in scope, and offers few opportunities to develop understanding.  Regardless 

of the personal understandings of mathematics or ability to teach, each participant in the study 

described herein engaged their students in some reasoning-and-proving learning opportunities, 

even if the level of potential and implementation was unequal. 

Another strong possibility is that the constraints of the school systems in which the 

participants work had an overwhelming influence on the extent to which the participants engaged 

their students in reasoning-and-proving.  Table 5.1 lists the perceived constraints discussed 

during the interviews with the participants, and Table 5.2 captures the perceived facilitating 

elements the participants’ districts offer.  In looking at the constraints data, it appears that 

traditional curriculum, daily pacing guides and state and district testing hamper the extent to 
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which participants engaged their students in reasoning-and-proving.  This is not to suggest, 

however, that every constraint and facilitator has equal influence.  For instance, both Karen and 

Sidney are partially evaluated as teachers based on their students’ test scores (see Table 5.3).  

Therefore, Karen and Sidney have to take the state and district exams seriously if they want to 

keep teaching in their districts.  Also, while Karen was using a reform curriculum which devoted 

an entire unit on proof (and congruence), the curriculum took a quasi-traditional approach with 

respect to the types of statements students were asked to prove and to the containment of formal 

proof to one unit. 

 

Table 5.1 Constraints Faced by the Participants 

Constraint Karen Uma Sidney Jonathan 

Years of experience   X X 

Below-grade level students  X  X 

Instructional Time X  X  

Professional Development Time     

Beliefs and attitudes of other teachers  X (X)  

Behavior Issues    X 

Traditional curriculum (X) X X X 

Scripted curriculum (daily pacing guide) X X X  

State and District Testing X X X  

Learning support X    

Algebra 1 vs. Geometry   X X 
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Table 5.2 Facilitating Elements for Engaging Students in Reasoning-and-proving 

Facilitators Karen Uma Sidney Jonathan 

Years of Experience X X   

At or above grade-level students X  X  

Instructional Time  X   

Professional Development Time X  X  
Collaborative work with department 
members 

X  (X)  

Curriculum promotes students’ reasoning X    

Freedom to Design Curriculum    X 

CCSSM (adopted) X   X 

Geometry vs. Algebra 1 X X   
 

 

Table 5.3 Evaluative Measures for Participants by Their School Districts 

Evaluative Measure Karen Uma Sidney Jonathan 

Observations (with pre-and post-conference) X  X  

Observations (walk-through) X X X X 

Student Test Scores X  X  

Student Perception Surveys X X   

Lesson Plans ?   X 

Teacher portfolio (self-improvement plan)   X  

 

Notice that working with other teachers is listed under both constraints and facilitators.  

Karen shared that her department members are “pretty good about getting together and sharing 

ideas” (personal communication, February 20, 2013).  Uma, on the other hand, chafed against 
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the chapter exams her traditional, fellow teachers constructed.  She stated, “if people would 

actually teach their students for the way that they learn, we wouldn’t have [poor SOL exam 

scores]” (personal communication, February 24, 2013).  Sidney was more neutral about the 

influence of his fellow teachers.  On one hand, he was grateful for their support and shared 

resources (which he was strongly encouraged to use to keep consistency in the department), but 

on the other hand, they did not give much attention to reasoning-and-proving.  Jonathan had no 

one to help or hinder him as he tried to engage his students in reasoning-and-proving. 

There might be other constraints and facilitators present for each participant of which 

they were unaware or did not vocalize in the interviews.  For instance, Sidney struggled in his 

university mathematics courses and with the mathematics in his methods courses; his 

understanding of mathematics probably influenced his ability to enact reasoning-and-proving.  

Another unvoiced constraint or facilitation might be classroom norms.  No participant 

volunteered that by the time data was collected, negative student behavior diverted participant’s 

attention away from reasoning-and-proving or that the participants’ beliefs about reasoning-and-

proving influenced their desire to offer reasoning-and-proving learning opportunities with the 

students.  While the CORP course did not simply tell participants that reasoning-and-proving 

was important, it is unclear the extent to which the course activities situated reasoning-and-

proving in the participants’ internal hierarchy of important mathematical practices and content 

for students.  These unvoiced or unrecognized constraints and faciliators could have influenced 

the participators’ decision-making with respect to reasoning-and-proving. 

Another question raised by this study is why the participants did not modify more 

exercises to increase the exercises’ reasoning-and-proving potential.  Did the CORP course offer 

insufficient training?  According to several lines of research, transformative professional 
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development that can reform teaching should include opportunities for teachers to study the big 

ideas of the discipline (Loucks-Horsley & Matsumoto, 1999), develop flexible understandings of 

the mathematics they will teach (Ball & Cohen, 1999; Thompson & Thompson, 1996), practice 

making complex and subtle decisions about teaching (Little, 1993), learn self-monitoring and 

analysis (e.g., Stigler & Hiebert, 1999), and do this external to real classrooms and in real time 

(Ball & Cohen, 1999).  The CORP course contained all of these elements.  The participants 

studied the importance of proof and the core elements, how to select, modify, and implement a 

reasoning-and-proving task, and how to evaluate an argument.  Participants discussed using 

tasks, tools, and talk to enact reasoning-and-proving.  The participants also used samples of 

authentic practice, such as classroom tasks, samples of student work, and cases of teaching 

episodes.  These samples of authentic practice were intended to help teachers discuss abstract 

and complex ideas, the dilemmas of teaching, and reveal students’ thinking about mathematics 

(Smith, 2001).  Finally, the participants studied reflection and practiced presenting a few 

solutions which helped preservice teachers develop core practices (Grossman et al., 2009b).  

Participants did not spend much time rehearsing orchestrating discussions, though, or rehearsing 

conveying the importance of reasoning-and-proving as a core mathematical practice.  According 

to the results of research on successful professional development for preservice teachers, the 

CORP course should have prepared teachers to enact reasoning-and-proving tasks in their 

classrooms, but perhaps the course could have included additional opportunities to enact 

teaching reasoning-and-proving.  The study described herein does suggest that the participants of 

the CORP course did indeed select, implement, and evaluate the products of reasoning-and-

proving tasks far more than most teachers do (Porter, 1993).  It is possible, though, that early 
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career teachers need more, continuing, and differentiated support to apply the knowledge they 

learned in the CORP course.  

5.4 CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH 

During their university pre-service training, the four participants in this study learned how 

important reasoning-and-proving was for every student in mathematics education; an entire 

course was devoted to this topic and it is in the major standards (NGA Center & CCSSM, 2010; 

NCTM, 1989, 2000).  Much time was devoted in the course to the core elements of proof.  Once 

the participants were in the field, most of the participants engaged their students in more 

reasoning than formal proving.  Each participant stated that they “push kids to justify” (Karen, 

personal communication, February 20, 2013), back up statements, explain the origin of ideas, 

and share why statements are true.  As previously mentioned, teachers might need more support 

during the school year as they engage their students in reasoning-and-proving.  Future iterations 

of the CORP course could be offered during the school year rather than in the summer so that 

teachers could continually make connections to their practice. 

In the winter, Sidney’s department chair sent him to a district professional development 

meeting on reasoning-and-proving because he did not think anyone else would want to go.  

Sidney shared the thinking of the other teachers in the room (personal communication, February 

26, 2013): 

So one thing we talked about…we can do proof and reasoning in our classes but if they 

aren’t going to be using it next year or using it in high school there’s no point, and they 
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don’t have any experience in high school, they’re not going to be used to it and it’s going 

to cause more problems again. 

These comments point to a need for systematic attention to reasoning-and-proving throughout 

the mathematics education curriculum, K-12.  Recently, one large urban district addressed this 

need with a pilot of all of their practicing secondary teachers.  The teachers attended monthly 

sessions on reasoning-and-proving then returned to their classrooms to try what they learned.  

This model merits attention and could be studied. 

The insufficient attention to reasoning-and-proving in textbooks and the participant’s 

minimal exercise modifications point to a need for more reasoning-and-proving resources for 

participants.  If such resources are already available, then the participants are unaware of the 

resources’ existence or the participants did not have the time or inclination to find them.  It is 

also possible that the available resources on the market or on the internet are not tied closely 

enough to a participants’ curriculum to make the resources convenient and efficient choices, or 

that there is not enough support attached to the resources to make then an attractive option.  

Teachers need more resources that are educative and provide teachers with convenient and 

relevant materials to use as well as support for using them.  

Research suggests that many teachers do not understand key aspects of reasoning-and-

proving or why it matters (Harel & Rabin, 2010; Knuth, 2002c; Porter, 1993).  This study—

while it represents a very narrow slice of the practice and understanding of participants—

provided an analysis of four trained teachers that makes salient that while there are individual 

differences, the teachers appear to understand why reasoning-and-proving is important, can 

articulate the core elements of proof, and can identify and implement tasks that get at the key 

aspects of reasoning-and-proving.  Clearly additional work is needed to understand the level of 
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support teachers need and what form that support should take to be maximally effective.       

Follow–up studies could paint a more detailed picture of the participants’ content knowledge, 

beliefs about reasoning-and-proving, and classroom norms.    Subsequent research could study 

the impact of the CORP materials on established, practicing teachers, and collect initial 

information (content knowledge, reasoning-and-proving understanding and beliefs, and 

classroom norms), data on enactment during the professional development (observations, 

classroom artifact packets, student interest surveys and formative assessments), and post-

professional development information (content knowledge and understanding of reasoning-and-

proof), in order to get a more complete picture.  This additional information could help 

researchers determine which elements of the CORP materials have an impact on specific aspects 

of practice.
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Appendix A 

EMPIRICAL STUDIES OF REASONING-AND-PROVING 

Article Date subjects Major Findings 

Alcock & Weber 2005 

students, 
undergraduate, 
British 

Students had difficulty with assessing the logic of an entire argument, not 
just the last line.  Statements in an argument need to be warranted from 
previous statements. 

Bell 1976 

students,  
high school, 
British Students had difficulty with using precise definitions 

Bieda 2010 
teachers, 
middle school 

Teachers' feedback to students was insufficient to establish standards of 
mathematical proof. 
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Chazan 1993 

students,  
high school, 
geometry 

Students did not trust arguments based on deductive reasoning so preferred 
empirical reasoning, or blended the two methods while proving.  Students 
still thought counterexamples were still possible even after a concept was 
proven.  In addition, Chazan found that a person's beliefs about a 
mathematical object may affect their perception of the truth of a proof's 
conclusion based on that object. 

Coe & Ruthven 1994 

students, 
undergraduate, 
successful 

Students had trouble verbalizing their thoughts and abstracting concepts; 
they also abandoned the context of the task and preferred empirical 
arguments. 

Doyle 1988 
teachers, 
middle school 

Teachers find classroom management difficult when students work on 
novel tasks, which sometimes led to a smoothing of the curriculum. 

Edwards & Ward 2004 

students, 
undergraduate, 
math majors 

Students have difficulty with definitions; authors make suggestions about 
coordinating definitions and theorems in proofs.  

Edwards 1999 

students,  
high school,  
algebra 1 

A student will only seek justification for a claim if he believes the 
statement to be true in general.  Students prefer empirical justification and 
look to the teacher as an external authority.  Students were able to generate 
counterexamples for false statements.  Edwards suggests eliciting students' 
own formal arguments and justifications and using those for class 
discussion. 
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Ellis 2011 
teachers, 
middle school 

Teachers had difficulty enacting reasoning-and-proving tasks that required 
generalization.  Ellis suggests prompting students to predict the outcome of 
an experiment or hypothesis. 

Fischbein 1982 
students,  
high school 

Students have a difficult time with the concept of proof, specifically with 
respect to generality (only 24.5% of the students accepted that no further 
checks were necessary after proving a claim).  Fischbein also found that 
students' beliefs about mathematical objects may affect the perception of 
truth of a proof's conclusion.   

Fischbein 1999 
students,  
high school 

When students' intuition is in conflict with a formal proof, make sure the 
formal proof wins.  Fischbein recommends pushing students to prove even 
apparently trivial properties because properties are not automatically 
applicable to every math operation. 

Galbraith 1981 

students,  
high school, 
Australian 

One-third of students did not understand the role of counterexamples in 
refuting general statements; students also had difficulty with chaining 
inferences in deductive arguments, generality, and external authority. 

Goetting 1995 

students, 
undergraduate, 
preservice 80% of the preservice teachers studied preferred empirical arguments. 

Hadas, Hershkowitz, 
& Schwarz 2000 

students,  
high school, 
Israeli 

Students found empirical arguments (created with Dynamical Geometry 
Environments) convincing because they believed in technology over 
reason, however, the students did use deductive reasoning to explain 
contradictions. 
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Harel & Rabin 2010 
teachers,  
high school 

Teachers favored empirical arguments, employed an authoritative proof 
scheme, and used the instructional sequence: present a rule, provide an 
illustration, and provide examples.  To combat authoritative proof 
schemes, Harel & Rabin suggest that the teacher responds to students’ 
questions by probing their reasoning or asking them to check correctness 
for themselves.  The teacher should allow students to debate and resolve 
disagreements and the teacher could offer deductive justifications. 

Healy & Hoyles 2000 

students, 
high school, 
successful 

Students had difficulty constructing proofs and they favored empirical 
arguments.  Students perceived that teachers favored formality over 
communication.  Students were able to identify valid proofs, knew that 
empirical arguments were limited, and understood generality.  When 
students believed in the truth of a statement, they accepted empirical 
arguments as sufficient. 

Healy & Hoyles 2001 

students,  
high school, 
successful Students linked properties--and their place in proofs--with constructions. 

Inglis & Alcock 2012 
students, 
undergraduate 

Students focused on format rather than checking warrants for assessing the 
validity of an argument. 
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Knuth 2002c 
teachers,  
high school 

4/17 teachers thought the role of proof was to display students' thinking, 
and 7/17 thought the role of proof was to explain why a statement was true.  
13/17 teachers thought proof helped students develop logical thinking 
skills.  10/17 considered proof a social act, used to communicate 
mathematical thinking.  The teachers thought that proof was a logical or 
deductive argument that demonstrated the truth of a claim.  However, 
14/17 teachers thought that proof was not appropriate for all students, and 
17/17 teachers thought that even though empirical arguments are not valid 
proofs, empirical arguments were fine for lower-level students.  4/17 
teachers tied "formal" proofs to the two-column format.  The type of 
curriculum (reform or traditional) or course-load had no effect on the 
teachers' answers.  The teachers interpreted the curriculum author's use of 
"proof" to fit the teacher's conception of proof. 

Knuth 2002b 
teachers,  
high school 

Teachers were better able to identify correct proofs than incorrect proofs 
(93% of teachers correctly identified valid proofs.  One-third of non-proofs 
(some empirical) were as proofs.)  Teachers thought that proof is a social 
act, that the role of proof was to explain procedures, not to promote 
conceptual understanding.  Teachers had difficulty with generalization 
(similar to Fischbein and Martin & Harel).  If a teacher recognized a 
particular method he considers as valid (even if the teacher did not 
understand the method but the mechanics of the argument were correct) or 
recognized sound mathematics, the teacher found the posed proof as 
convincing.  Teachers used mathematically grounded criteria for accepting 
an argument as proof while using qualitatively grounded criteria for 
making distinctions among proofs. 
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Knuth & Sutherland 2004 
students, 
middle school 

40% of students favored empirical arguments over deductive arguments; 
30% selected deductive arguments over empirical arguments.  Some 
students had difficulty with generality and did not see the difference 
between proof-by-exhaustion and empirical arguments, but other students 
produced and selected general arguments, recognized the limitation of 
empirical arguments, and correctly used proof-by-exhaustion.  Question: 
do students rely on empirical arguments because they are unable to 
produce a general proof?  Healy and Hoyles 2000 made a similar 
observation.   

Ko & Knuth 2009 

students, 
undergraduate, 
Taiwanese 

Students had difficulty with coordinating mathematical knowledge (e.g., 
continuity with limits of functions), counterexamples, and producing 
proofs.  Students also manipulated symbols without understanding and did 
not support warrants. 

Küchemann & Hoyles 2001 

Students,  
high school, 
successful 

Students may be influenced by teaching and textbooks; students had 
difficulty with using context and generating patterns and seemed to use 
their perceptions rather than theorems in writing proofs. 

Laborde 2000 
students,  
high school 

Dynamic geometry environment fostered interaction between construction 
and proof, between doing on the computer and justifying by means of 
theoretical arguments. 

Mariotti 2000 

students,  
high school, 
geometry, 
Italian 

Students were able to move from empirical to formal justifications by the 
organization of tasks and dynamic geometry environment. 

Mariotti 2001 

students,  
high school, 
geometry, 
Italian 

Students developed an axiomatic system by using technology to build 
constructions, collectively revised the constructions during class 
discussion, and then the relationship between axioms, definitions, and 
theorems and use of tools emerged. 
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Marrades & Guttierez 2000 

students,  
high school, 
geometry, 
Spanish 

Students progressed from empirical to formal justifications over 30 weeks; 
this was helped by the organization of tasks and a dynamic geometry 
environment; notebooks were kept for record of theorems, etc.   

Martin & Harel 1989 

students, 
undergraduate, 
preservice 
mathematics, 
elementary Students thought empirical proofs were valid. 

Martin, McCrone, 
Bower & Dindyal 2005 

students,  
high school, 
geometry 

Students had difficulty with generality.  Authors suggested posing open-
ended tasks and engage students in verbal reasoning.  

McCrone & Martin 2009 
students,  
high school 

Students no concept that building an axiomatic system was one of the 
reasons for proof; students thought that empirical arguments were fine for 
students but not preferred by teachers.  While students thought a logical 
flow to the argument was important, they focused on checking the format 
rather than checking warrants. 

Mingus & Grassl 1999 

students, 
undergraduate, 
preservice 
mathematics 
teachers 

Preservice elementary teachers thought that proof was to demonstrate or 
confirm relationships and proof made students question why things work 
the way they do.  The preservice elementary teachers said that high school 
geometry was the last time they saw proof.  Preservice secondary teachers 
thought proof was explanatory, logical, and convincing, and the role of 
proof was to maintain and advance the structure of mathematics.  Only 
17% of preservice elementary teachers thought proof should be taught in 
grades K-6; 63% of preservice secondary teachers thought proof should be 
taught in grades K-6. 
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Moore 1994 
students, 
undergraduate 

Students had difficulty with the concept of proof, understanding 
definitions, language, and notation, and they had trouble launching into a 
proof.  Moore suggested that teachers generate and use examples, apply 
definitions, and use definitions to structure proofs.  

Morris 2002 

students, 
undergraduate, 
preservice 
mathematics, 
elementary and 
middle school 

40% of the students accepted at least one inductive argument and 47% 
thought exhaustive checks were necessary regardless of the proof (e.g., 
problems with empirical arguments and generality).  On the other hand, 
47% of the students rejected inductive arguments and 30% said exhaustive 
checks were unnecessary after proof.  Students recognized that 
mathematics is not infallible (historical reasons) and any axiomatic system 
is based on primitives (definitions, postulates which may or may not be 
true)…but no one gave this as a reason to mistrust generality.  What a 
person understood/believed about the premise effected what type of 
argument they considered sufficient and what they trusted. 

Porteous 1990 

students, 
middle and 
high school 

Students favored (but somewhat mistrusted) empirical arguments and had 
difficulty with generality.  48/50 students correctly used counterexamples.  
When presented with a particular case, over half empirically checked it 
rather than appealing to the proof of the general case that they had 
previously been shown and had presumably accepted (note: 75% of the 
students accepted the premise as true from the beginning).  

Porter 1993 teachers There is little time to teach proof and not much gets taught. 

Raman 2003 
students, 
undergraduate 

Students had difficulty accessing relevant knowledge and relied on 
heuristic ideas while constructing proofs.  Arguments grounded in 
empirical data gave sense of understanding but not conviction. 

Schoenfeld 1986 

students,  
high school, 
geometry 

Students had difficulty with generality (made conjectures that contradicted 
already proven statements). 
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Schoenfeld 1989 

students,  
high school, 
geometry 

Students had difficulty with the concept of proof and preferred empirical 
arguments.  Students contradicted the conclusion of a proof they had 
constructed. 

Selden & Selden 
2003, 
August 

students, 
undergraduate, 
math majors 

Students exhibited the following difficulties in proof-making: 
generalization, use of theorems, notation and symbols, nature of proof, and 
quantification.  Students had a static view of mathematics (correctness of 
an answer depends entirely on selecting the right algorithm and on 
implementing its steps correctly; knowing algorithms means mathematical 
competence)--this view made constructing proofs difficult.  Students also 
had difficulty with conservation of relationships and thought real number 
laws were universal.  Students began proofs with the conclusion, left holes 
in their reasoning, and employed circular reasoning.  At times their proofs 
were locally unintelligible (format was fine and correct symbols were used 
but the assertions were incomprehensible or incorrect).  Sometimes 
students proved a weakened version of a theorem, and sometimes the 
students failed to notice restrictions on variables.  Students also substituted 
with abandon and at times viewed non-real statements (e.g., cos x = 3) as 
existing because the statement was written.  Students also overextended 
symbols and failed to adapt notation from one context to another.  Students 
used information out of context.  At times students used the converse of 
theorems without verifying its validity (e.g., used "if, then" when "if and 
only if" is meant). 

Selden & Selden 2003 

students, 
undergraduate, 
preservice 
mathematics, 
secondary 

Students had difficulty with validating proofs: students attended to 
global/structural errors, such as proving the converse of the statement, 
attended to frameworks, and reflection during interviews. 
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Senk 1985 

students,  
high school, 
geometry 

Students used circular reasoning and had difficulty launching proofs, 
adding auxiliary lines to diagrams, and making multiple deductions.  
Students had a 50-77% success rate with fill-in-the-blank proofs and proofs 
with figures.  Senk suggested teaching the meaning of proof, teach when, 
why, and how to transform a diagram, and teach chains of deductive 
reasoning. 

Simon & Blume 1996 

students, 
undergraduate, 
preservice 
mathematics, 
elementary 

Students had difficulty with understanding proof as a means to understand 
mathematics.  Students preferred empirical arguments and questioned who 
has the authority to validate a proof. 

Stylianides, A. J., & 
Stylianides, G. J. 2009 

students, 
undergraduate, 
preservice 
mathematics, 
elementary 

Students recognized that empirical arguments were insufficient but still 
used them. 

Stylianides, A. J., 
Stylianides, G. J. , & 
Philippou 2004 

students, 
undergraduate, 
preservice 
mathematics, 
Cyprus 

Preservice elementary students had difficulty with contraposition 
equivalence rule in symbols but were fine if the statement was made 
verbally (if p = q, then not q = not p) and used format as the method to 
judge the validity of a proof.  Preservice secondary students did not have 
difficulty with the contraposition equivalence rule in symbols or verbal. 

Stylianides, G. J., 
Stylianides, A. J. , & 
Philippou 2007 

students, 
undergraduate, 
preservice 
mathematics, 
Cyprus Doing: trouble with mathematical induction 

Tabach, et al. 2011 

teachers, 
secondary, 
Israeli 

Teachers over-value generality of symbolic mode of representation and 
under-value verbal modes of representation. 
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Tinto 1990 

students,  
high school, 
geometry 

Theorems, definitions, axioms, and geometry had no significance as an 
axiomatic system for students.  The goal of textbook exercises of proofs 
appears to be efficiency. 

Varghese 2009 

students, 
undergraduate, 
preservice 
mathematics, 
secondary  

Students thought proof only applied to certain content areas and was only 
appropriate for the best students.  Students thought proof was for verifying 
something already known (9 out of 17 students), derivation (2/17), logical 
argument (2/17) and justification (2/17).  Students thought the best way to 
teach proof was step-by-step demonstration (13/17 students), constructivist 
approach (3/17), and social interaction (1/17).  Students recognized that 
their discomfort with proof will impact their students' opportunities to learn 
proof. 

Weber 2001 

students, 
undergraduate, 
math majors 

Students lacked strategic knowledge of a domain's proof techniques, 
choosing theorems, and applying theorems; students had difficulty 
accessing relevant knowledge. 

Williams 1979 
students,  
high school 

Students had difficulty with the concept of proof, definitions, empirical 
arguments, indirect proof, and logically equivalent statements.  Less than 
20% of students understood indirect proofs.  Students questioned why they 
had to prove intuitively obvious statements.  20% of students did not 
realize what a general proof meant, but 31% did understand. 
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Appendix B 

SUMMARY OF EMPIRICAL STUDIES ON REASONING-AND-PROVING BY AREA OF DIFFICULTY  

 

Subjects Students: 
Secondary 

Students: Undergraduate Teachers Empirical Studies 

Area of Difficulty 6-8 9-12 Non-
specific 

Math 
major 

Preservice 
elementary 

Preservice 
secondary 

Secondary  

Audience 
(appropriate for?) 

    X X X 
Knuth (2002c), Mingus & Grassl 
(1999), Varghese (2007) 

Concept of Proof  X X X   X 

Fischbein (1982), Knuth 
(2002c), Moore (1994), Selden 
& Selden (2003), Williams 
(1979) 

Context  X X     
Coe & Ruthven (1994), 
Küchemann & Hoyles (2001) 

Coordinate 
knowledge 

  X     Ko & Knuth (2009) 



 

 2 

Subjects Students: 
Secondary 

Students: Undergraduate Teachers Empirical Studies 

Area of Difficulty 6-8 9-12 Non-
specific 

Math 
major 

Area of 
Difficulty 

6-8 9-12 Non-specific 

Definitions  X X X    
Bell (1976), Edwards & Ward 
(2004), Moore (1994), Williams 
(1979) 

Diagrams  X      Senk (1985) 

Empirical Arguments X X X  X X X 

Chazan (1993), Coe & Ruthven 
(1994), Edwards, L. D. (1999), 
Goetting (1995), Hadas, 
Hershkowitz & Schwartz (2000), 
Harel & Rabin (2010), Knuth & 
Sutherland (2004), Martin & 
Harel (1989), Morris (2002), 
Schoenfeld (1989), Simon & 
Blume (1996), Stylianides & 
Stylianides (2009), Williams 
(1979) 

Format       X 
Knuth (2002c), Tabach et al. 
(2012) 

Language   X     Moore (1994) 

Launching  X X     Moore (1994), Senk (1985) 

Logic (chaining 
inferences) 

 X      
Galbraith (1981), Selden & 
Selden (2003), Senk (1985) 
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Subjects Students: 
Secondary 

Students: Undergraduate Teachers Empirical Studies 

Area of Difficulty 6-8 9-12 Non-
specific 

Math 
major 

Area of 
Difficulty 

6-8 9-12 Non-specific 

Logic (lack 
understanding) 

 X X X    

Alcock & Weber (2005), Hadas, 
Hershkowitz & Schwarz (2000), 
Ko & Knuth (2009), Selden & 
Selden (2003), Williams (1979) 

Nature of Proof    X    
Selden & Selden (2003), Weber 
(2001) 

Notation and 
Symbols 

  X X   X 
Moore (1994), Selden & Selden 
(2003), Tabach et al. (2011) 

Pedagogy      X X 
Bieda (2010), Doyle (1988), 
Harel & Rabin (2010), Porter 
(1993), Varghese (2007) 

Rigor X X     X 

Fischbein (1982), Healy & 
Hoyles (2000), Knuth (2002b, 
2002c), Küchemann & Hoyles 
(2002), McCrone & Martin 
(2009) 

Role of Proof (to 
understand) 

 X   X  X 
Knuth (2002b), Mingus & Grassl 
(1999), Simon & Blume (1996), 
Tinto (1990) 

Role of Proof (to 
create an axiomatic 
system) 

 X      
McCrone & Martin (2009), 
Tinto (1990) 
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Subjects Students: 
Secondary 

Students: Undergraduate Teachers Empirical Studies 

Area of Difficulty 6-8 9-12 Non-
specific 

Math 
major 

Area of 
Difficulty 

6-8 9-12 Non-specific 

Technique (choosing, 
using, and misusing 
theorems and 
converses) 

   X    
Selden & Selden (2003), Weber 
(2001) 

Technique (types of 
proof) 

 X X X X X  

Chazan (1993), Knuth & 
Sutherland (2004), Ko & Knuth 
(2009), Stylianides, Stylianides 
& Philippou (2004, 2007), 
Weber (2001), Williams (1979) 

Validation    X   X 
Knuth (2002b), Selden & Selden 
(2003) 

Validation (based on 
format) 

 X X  X   

Inglis & Alcock (2012), 
McCrone & Martin (2009), 
Stylianides, Stylianides & 
Philippou (2004) 

Validation 
(authority?) 

 X   X   
Edwards, L. D. (1999), Galbraith 
(1981), Simon & Blume (1996) 
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Appendix C 

SUMMARY OF THOMPSON, SENK, AND JOHNSON (2012) CODES FOR REASONING-AND-PROVING TASKS 

Type of RP Definition Type of Case Code 
Connection to G. Stylianides’ RP 
Framework (2010) 

Make a conjecture 
Use a pattern to generate a 
conjecture 

General case (nth term) MG 

Make a Conjecture 
Specific case (100th term) MS 

Investigate a conjecture 
Determine if a conjecture or 
assertion is true or false and 
provide a rationale 

General case  IG 

Specific case  IS 

Develop an argument  
Write a proof of a statement 
(might have explain, explain 
why, show or show that) 

General case DG Develop a proof (demonstration) 

Specific case DS Develop a proof (generic argument) 

Evaluate an argument 
Determine whether a stated 
argument is valid or not 

General case EG Develop a proof (demonstration) 

Specific case ES Develop a proof (generic argument) 
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Counterexample 
Find a counterexample/ 
disprove a statement 

 CX Develop a proof 

Correct or identify a 
mistake 

A mistake is presented and 
student is asked to determine 
the error in reasoning. 

General case CG 
Develop a non-proof argument 

Specific case CS 

Principles of Proof 
Explain how to outline an 
argument of a particular type, 
but not write a full proof. 

 PP 
Develop an argument (proof or non-
proof) 
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Appendix D 

EXAMPLES OF THOMPSON, SENK, AND JOHNSON (2012) CODES FOR 

REASONING-AND-PROVING TASKS 

Taken from Johnson, G. J., Thompson, D. R., & Senk, S. L. (2010). Proof-Related reasoning in 

high school textbooks. Mathematics Teacher, 103 (6), 411-418. 

Make a conjecture 

Powers of have an interesting property.  Using the fact that  

rewrite each power of  in simplest form and look for a pattern that would allow you to 

quickly rewrite powers like  or . 

(Core Plus, Course 4, 2001, p. 401) 

Investigate a conjecture 

You decide.  Brittany tells Isabel that if  is a factor of the polynomial function , 

then     .  Isabel argues that if  is a factor of , then .  Who 

is correct?  Explain. 

(Glencoe, Precalculus, 2004, p. 226) 
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Develop an argument 

Extended Response.  Write a convincing argument to show why  using the 

following pattern.  , , , , … 

(Glencoe, Algebra 1, 2004, p. 423) 

 

Evaluate an argument 

An algebra class has this problem on a quiz: “Find the value of  when .”  Two 

students reasoned differently.  Student 1: Two times three is six.  Six squared is thirty-six.  

Student 2: Three squared is nine.  Two times nine is eighteen.  Who was correct and 

why? 

(Key Curriculum Press, Discovering Algebra, 2007, p. 353) 

 

Counterexample  
If c is a real number and n an odd positive integer, give an example to show that  

may not be a factor of  . 

(Holt, Rinehart, and Winston, Precalculus, 2004, p. 250) 

From Precalculus. Copyright 2004 by Holt, Rinehart, and Winston.  All rights reserved.  

Reprinted by permission of the Houghton Mifflin Harcourt Publishing Company. 

 

Correct or identify a mistake 

 Find the error in the following “proof” that .  Proof: 
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(UCSMP, Advanced Algebra, 1996, p. 592) 
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Appendix E  

TASK ANALYSIS GUIDE (STEIN ET AL., 2000) 

Low-Level Cognitive Demands High-Level Cognitive Demands 

Memorization Tasks 

• Involve either producing previously learned 
facts, rules, formulae, or definitions or 
committing facts, rules, formulae, or 
definitions to memory. 

• Cannot be solved using procedures because 
a procedure does not exist or because the 
time frame in which the task is being 
completed is too short to use a procedure. 

• Are not ambiguous—such tasks involve 
exact reproduction of previously seen 
material and what is to be reproduced is 
clearly and directly stated. 

• Have no connection to the concepts or 
meaning that underlay the facts, rules, 
formulae, or definitions being learned or 
reproduced. 
 

Procedures Without Connections Tasks 

• Are algorithmic.  Use of the procedure is 
either specifically called for or its use is 
evident based on prior instruction, 
experience, or placement of the task. 

• Require limited cognitive demand for 
successful completion.  There is little 
ambiguity about what needs to be done and 
how to do it. 

• Have no connection to the concepts or 

Procedures With Connections Tasks 

• Focus students’ attention on the use of 
procedures for the purpose of developing 
deeper levels of understanding of 
mathematical concepts and ideas. 

• Suggest pathways to follow (explicitly or 
implicitly) that are broad general 
procedures that have close connections to 
underlying conceptual ideas as opposed to 
narrow algorithms that are opaque with 
respect to underlying concepts. 

• Usually are represented in multiple ways 
(e.g., visual diagrams, manipulatives, 
symbols, problem situations). Making 
connections among multiple 
representations helps to develop meaning. 

• Require some degree of cognitive effort.  
Although general procedures may be 
followed, they cannot be followed 
mindlessly.  Students need to engage with 
the conceptual ideas that underlie the 
procedures in order to successfully 
complete the task and develop 
understanding. 

 

Doing Mathematics Tasks 

• Require complex and non-algorithmic 
thinking (i.e., there is not a predictable, 
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meaning that underlie the procedure being 
used. 

• Are focused on producing correct answers 
rather than developing mathematical 
understanding. 

• Require no explanations or explanations 
that focus solely on describing the 
procedure that was used. 

well-rehearsed approach or pathway 
explicitly suggested by the task, task 
instructions, or a worked-out example). 

• Require students to explore and to 
understand the nature of mathematical 
concepts, processes, or relationships. 

• Demand self-monitoring or self-regulation 
or one’s own cognitive processes. 

• Require students to access relevant 
knowledge in working through the task. 

• Require students to analyze the task and 
actively examine task constraints that may 
limit possible solution strategies and 
solutions. 

• Require considerable cognitive effort and 
may involve some level of anxiety for the 
student due to the unpredictable nature of 
the solution process required. 
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Appendix F 

DIRECTIONS FOR TASK COLLECTION 

• Identify a unit in which students will have opportunities to develop their reasoning-and-

proving understanding and skills between the beginning of February and the end of April.  

If the unit is longer than three weeks, identify a 15-day consecutive stretch of days to use 

for this study. 

• Please submit all of the mathematical tasks you use for any purpose during the 15 

consecutive days of instruction.  Please also indicate which tasks are reasoning-and-

proving mathematical tasks. 

o A photocopy of a textbook page with the tasks used is fine.  

o “Mathematical tasks” include any mathematical problems, exercises, examples, or 

individual or group work that students encounter, either in class or out of class.  

o If you modified any task, please provide both the original task and the modified 

task, and describe your rationale for modifying the task. 

o If you pulled a task from another source, identify the source. 

• Please place the copies of the tasks in the file marked for the appropriate day, separating 

class work from homework.  For each day, number the tasks according to their order in 

the day’s lesson.  On the log sheet provided in each day’s folder, indicate the source of 

the task, approximately how much time was spent on the task and what purpose the task 

served in the lesson.  For example, the task might have been used: 

o As a “warm-up” or “problem of the day” 
o To introduce the math ideas in the day’s lesson 
o As independent or group work during class 

mss68
Typewritten Text

mss68
Typewritten Text

mss68
Typewritten Text

mss68
Typewritten Text

mss68
Typewritten Text

mss68
Typewritten Text

mss68
Typewritten Text

mss68
Typewritten Text

mss68
Typewritten Text
 o As a homework assignment

mss68
Typewritten Text
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Appendix G 

REASONING-AND-PROVING TASK LOG SHEET 

Day ______________     Teacher’s Initials: ________________ 

“RP” means “reasoning-and-proving” and “HW” means “homework” 

TASK 
# 

SOURCE of the task 
Was the task 
MODIFIED? 
 

Is 
this a 
RP 
Task? 

TIME 
SPENT on 
the task (or 
label HW) 

PURPOSE of the task 
in the lesson 
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Appendix H 

MODIFYING TASKS 

Modification codes for tasks that the participant assigned an identified as reasoning-and-proving 

Original Task (any source) Task as assigned by teacher Code 

RP task Task assigned, modified to LOWER RP -1 

RP task Task assigned, NEUTRAL effect of modification 0 

RP task Task assigned, modified to INCREASE RP +1 

Non-RP task Task assigned, modified to INCLUDE RP +2 

 

Reasoning-and-proving activities follow a hierarchy, from lowest to highest (G. Stylianides, 

2010):  Identify a pattern….make a conjecture…..provide a rationale….construct a proof (show 

“always true”) 

• A reasoning-and-proving textbook task could be modified by the teacher to decrease the 

reasoning-and-proving potential (e.g., written as make a conjecture, modified to only 

identify a pattern). 
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• Similarly, a reasoning-and-proving textbook task could be modified by the teacher to 

increase the reasoning-and-proving potential (e.g., written as make a conjecture, modified 

to construct a proof). 
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Appendix I 

DIRECTIONS FOR STUDENT WORK (CLASSROOM ARTIFACT PACKET) 

COLLECTION 

• Collect 3 class-sets of student work on reasoning-and-proving tasks.  At least one of the 

tasks must require the students to show that something is “always true” (to write a proof).  

The “student work” is the written work from each student or group of students.  Please do 

not include students’ tests or quizzes. 

• Please make copies of the students’ work with the students’ names removed (you can cut 

off the corners of the papers with their names). 

• Please make a copy of the task as it was presented to the students. 

• Complete a Student Work Cover Sheet for each class-set of student work. 

• From each class-set of student work, identify: 

o 2 samples of work that exceeded expectations (mark with the GREEN stickers) 

o 2 samples of work that met expectations (mark with the YELLOW stickers) 

o 2 samples of work that failed expectations (mark with the RED stickers) 

• Please place each set of student work, the task, and the Student Work Cover Sheet in the 

files marked for Student Work 1, Student Work 2, and Student Work 3. 
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Appendix J 

STUDENT WORK (CLASSROOM ARTIFACT PACKET) COVER SHEET 

Task # _______ on Day ________ 

1. Indicate if this assignment is typical (  yes   /  no  ).  If not, please explain: 

 

 

2. Describe any directions—oral or written—you gave to the students that are not included 
on the task itself.  Please explain any expectations you relayed to your class (e.g., work in 
groups, expectations for grading). 

 

 

3.  Did you implement the task differently than you had planned?  If so, what changes did 
you make and why?  What, if anything, surprised you during the enactment? 

 

4.  Explain your overall reaction to your implementation of this task (what do you believe 
your students and you learned, would you use this task again, etc.). 

 

 

5.  How did you assess students’ work on the task?  Please attach the specific or general 
criteria that you used. 
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Appendix K 

IQA MATHEMATICS TOOLKIT RUBRICS 

RUBRIC 1: Potential of the Task 

4 

The task has the potential to engage students in exploring and understanding the 
nature of mathematical concepts, procedures, and/or relationships, such as: 
Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a 
predictable, well-rehearsed approach or pathway explicitly suggested by the task, task 
instructions, or a worked-out example); OR 
Procedures with connections: applying a broad general procedure that remains closely 
connected to mathematical concepts. 
 
The task must explicitly prompt for evidence of students’ reasoning and understanding. 
For example, the task MAY require students to: 
Solve a genuine, challenging problem for which students’ reasoning is evident in their work 
on the task; 
Develop an explanation for why formulas or procedures work; 
Identify patterns and form generalizations based on these patterns; 
Make or investigate conjectures and support conclusions with mathematical evidence 
and/or create a proof or find a counterexample 
Evaluate an argument or explain how to outline an argument of a particular type. 
Make explicit connections between representations, strategies, or mathematical concepts and 
procedures. 
Follow a prescribed procedure in order to explain/illustrate a mathematical concept, process, 
or relationship 
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3 

The task has the potential to engage student in complex thinking or in creating 
meaning for mathematical concepts, procedures, and/or relationships.  However, the 
task does not warrant a “4” because: 
The task does not explicitly prompt for evidence of students’ reasoning and understanding. 
 
Students may be asked to engage in doing mathematics or procedures with connections, but 
the underlying mathematics in the task is not appropriate for the specific group of students 
(i.e., too easy or too hard to promote engagement with high-level cognitive demands); 
 
Students may need to identify patterns but are not pressed for generalizations; 
Students may need to make conjectures but are not asked to support conclusions with 
mathematical evidence or create a proof 
Students may be asked to use multiple strategies or representations but the task does not 
explicitly prompt students to develop connections between them; 
Students may be asked to make conjectures but are not asked to provide mathematical 
evidence or explanations to support conclusions 

2 

The potential of the task is limited to engaging students in using a procedure that is either 
specifically called for or its use is evident based on prior instruction, experience, or 
placement of the task.  There is little ambiguity about what needs to be done and how to 
do it.  The task does not require students to make connections to the concepts or meaning 
underlying the procedure being used.  Focus of the task appears to be on producing correct 
answers rather than developing mathematical understanding (e.g., applying a specific 
problem solving strategy, practicing a computational algorithm). 
 
OR   The task does not require students to engage in cognitively challenging work; the task 
is easy to solve. 

1 

The potential of the task is limited to engaging students in memorizing or reproducing 
facts, rules, formulae, or definitions.  The task does not require students to make 
connections to the concepts or meaning that underlie the facts, rules, formulae, or definitions 
being memorized or reproduced. 
 
OR     The task requires no mathematical activity. 

 
 
 
 
RUBRIC 2: IMPLEMENTATION OF THE TASK 
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4 

Students engaged in exploring and understanding the nature of mathematical concepts, 
procedures, and/or relationships, such as: 
Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a 
predictable, well-rehearsed approach or pathway explicitly suggested by the task, task 
instructions, or a worked-out example); OR 
Procedures with connections: applying a broad general procedure that remains closely 
connected to mathematical concepts. 
There is explicit evidence of students’ reasoning and understanding. 
For example, students may have: 
Solved a genuine, challenging problem for which students’ reasoning is evident in their work 
on the task; 
Developed an explanation for why formulas or procedures work; 
Identified patterns and formed generalizations based on these patterns; 
Made or investigated a conjectures and supported conclusions with mathematical 
evidence and/or created a proof or found a counterexample 
Evaluated an argument or explained how to outline an argument of a particular type. 
Made explicit connections between representations, strategies, or mathematical concepts and 
procedures. 
Followed a prescribed procedure in order to explain/illustrate a mathematical concept, process, 
or relationship 

3 

Students engaged in complex thinking or in creating meaning for mathematical concepts, 
procedures, and/or relationships.  However, the implementation does not warrant a “4” 
because: 
There is no explicit evidence of students’ reasoning and understanding. 
Students engaged in doing mathematics or procedures with connections, but the underlying 
mathematics in the task was not appropriate for the specific group of students (i.e., too easy or 
too hard to sustain engagement with high-level cognitive demands); 
Students identified patterns but did not make generalizations; 
Students made conjectures but did not provide sufficient mathematical evidence or 
explanations to support conclusions (e.g., students provided an non-proof argument in the 
form of an empirical argument or rationale) 
Students used multiple strategies or representations but connections between different 
strategies/representations were not explicitly evident; 

2 

Students engaged in using a procedure that was either specifically called for or its use was 
evident based on prior instruction, experience, or placement of the task.  There was little 
ambiguity about what needed to be done and how to do it.  Students did not make 
connections to the concepts or meaning underlying the procedure being used.  Focus of the 
implementation appears to be on producing correct answers rather than developing 
mathematical understanding (e.g.,, applying a specific problem solving strategy, practicing a 
computational algorithm). 
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OR   Students did not engage in cognitively challenging work; the task was easy to solve. 

1 

Students engaged in memorizing or reproducing facts, rules, formulae, or definitions.  
Students do not make connections to the concepts or meaning that underlay the facts, rules, 
formulae, or definitions being memorized or reproduced. 
 
OR     Students did not engage in mathematical activity. 

 
RUBRIC 5: CLARITY AND DETAIL OF EXPECTATIONS 

4 
 

The expectations for the quality of students’ work are very clear and elaborated.  Each 
dimension or criterion for the quality of students’ work is clearly articulated.  Additionally, 
varying degrees of success are clearly differentiated.   
 
For a proof, the following criteria was used: 
The argument must show that the conjecture or claim is (or is not) true for all cases. 
The statements and definitions that are used in the argument must be ones that are 
true and accepted by the community because they have been previously justified. 
The conclusion that is reached from the set of statements must follow logically from 
the argument made. 
 
The validity of the proof should NOT depend on: 
Type of proof (e.g., demonstration, generic example, exhaustion, induction) 
Form of the proof (e.g., two-column, paragraph, flow chart) 
Representation used (e.g., symbols, pictures, words) 
Explanatory power (e.g., how well the proof itself serves to explain why the claim is true) 

3 
 

The expectations for the quality of students’ work are clear and somewhat 
elaborated.  Levels of quality may be vaguely differentiated for each criterion (i.e., little 
information is provided for what distinguishes high, medium, and low performance). 

2 The expectations for the quality of students’ work are broadly stated and 
unelaborated. 

 
1 

The teacher’s expectations for the quality of students’ work are unclear. 
 
OR  The expectations for quality work are not shared with students. 

 
RUBRIC 6: COMMUNICATIONS OF EXPECTATIONS 

4 
Teacher discusses the expectations or criteria for student work (e.g., scoring guide, 
rubric) with students in advance of their completing the assignment and models high-
quality work. 
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3 
Teacher discusses the expectations or criteria for student work (e.g., scoring guide, 
rubric) with students in advance of their completing the assignment. 

2 
Teacher provides a copy of the criteria for assessing student work (e.g., scoring guide, 
rubric) to students in advance of their completing the assignment. 

1 

Teacher does not share the criteria for assessing students’ work (e.g., scoring guide, 
rubric) with the students in advance of their completing the assignment (the teacher may 
provide a copy of the scoring rubric to students when giving them their final grade). 
 

N/A Reason: 
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Appendix L 

SAMPLES OF TASKS FOR IQA RUBRIC 1: POTENTIAL OF THE TASK 

Code 4: A Sticky Gum Problem 

A Sticky Gum Problem 

Ms. Hernandez came across a gumball machine one day when she was out with her twins.  
Of course, the twins each wanted a gumball.  What’s more, they insisted on being given 
gumballs of the same color.  The gumballs were a penny each, and there would be no way 
to tell which color would come out next.  Ms. Hernandez decides that she will keep putting 
pennies until she gets two gumballs that are the same color.  She can see that there are only 
red and white gumballs in the machine. 
 

1.) Why is three cents the most she will have to spend to satisfy her twins? 
2.) The next day, Ms. Hernandez passes a gumball machine with red, white, and blue 

gumballs.  How could Ms. Hernandez satisfy her twins with their need for the same 
color this time?  That is, what is the most Ms. Hernandez might have to spend that 
day? 

3.) Here comes Mr. Hodges with his triplets past the gumball machine in question 2.  
Of course, all three of his children want to have the same color gumball.  What is 
the most he might have to spend? 

4.) Generalize this problem as much as you can.  Vary the number of colors.  What 
about different size families?  Prove your generalization to show that it always 
works for any number of children and any number of gumball colors. 

 
Fendel, D., Resek, D., Alper, L., & Frazer, S. (1996). Interactive Mathematics Program 
Year 1—Unit 2: The Book of Pig (p. 99). Emeryville, CA: Key Curriculum Press. 
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Comments: The students are provided with scaffolding that will help them identify a pattern, and 

they are asked to form a generalization based on that pattern.  Additionally, the students are 

asked to construct a proof that shows their generalization holds for any number of children and 

any number of gumball colors. 

 

Code 3: Toy Stack 

 

Comments: A student may need to identify a pattern in order to determine the number of rows 

that can made with 100 blocks, but the student is not pressed for a generalization for any number 

of blocks nor is the student pressed to justify an answer with mathematical evidence. 

 

Code 2: Simplifying an Expression 

Simplify [the] expression, assuming that no variable equals zero.  Write your answers 

with positive exponents only:  

 

 (Holt, 2004, Algebra 2, pg. 99, #27) 
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From Algebra 2. Copyright 2004 by Holt, Rinehart, and Winston.  All rights reserved.  

Reprinted by permission of the Houghton Mifflin Harcourt Publishing Company. 

 

 

Comments:  On page 94 of the text, the students were presented with the following “definition” 

of a negative exponent:  “If  is a natural number, then ”.  Thus, students only have to 

apply this procedure to complete this task.  The students are not asked to explain why the 

negative exponent flips the fraction or provide any other evidence that their answer is correct. 

 

Code 1: Name that Property 

 

From Algebra 2. Copyright 2004 by Holt, Rinehart, and Winston.  All rights reserved.  

Reprinted by permission of the Houghton Mifflin Harcourt Publishing Company. 

 

Comments:  Since the students were presented with a list properties and matching examples on p. 

87 of the textbook, there is little ambiguity about what needs to be done.  Students just need to 

choose the correct property from the list.  The focus of the task appears to be to choose correctly; 

State the property that is illustrated in the statement.  All variables represent real 

numbers:   

 

(Holt, 2004, Algebra 2, p. 81, #54) 
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the students are not asked to explain the commutative property of multiplication or explain, for 

instance, why there is no commutative property of subtraction.   
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Appendix M 

SAMPLES OF TASKS FOR IQA RUBRIC 1: IMPLEMENTATION OF THE TASK 

The task used in this appendix was taken from the CORP course materials. 

Task: Prove that when you add any two odd numbers your answer is always even. 

Code 4 

If I take the numbers 5 and 11 and organize the counters as shown, you can see the pattern. 

 
You can see that when you put the sets together (add the numbers), the two extra blocks will 

form a pair and the answer is always even.  This is because any odd number will have an 

extra block and the two extra blocks for any set of two odd numbers will always form a pair. 

 
 

Adapted from: Coxford, A. F., Fey, J. T., Hirsch, C. R., Schoen, H. L., Burrill, G., Hart, E. 

W. (2003).  Contemporary mathematics in context: A unified approach: Course 3. New 

York, NY: Glencoe McGraw-Hill. 
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Comments: The students are clearly asked for a proof, and this student presented a general proof 

of the form generic example (“This is because any odd number will have an extra block…”) 

 

Code 3 

 

Comments:  Unlike the previous student, this student did not present a general argument; rather, 

the student presented an empirical rationale because the only numbers used were 5 and 11.  The 

student did state that the answer will “always” be even, but it is unclear whether the sum of five 

and eleven will always be even or if the sum of two odds in general will always be even. 

 

Code 2 

If I take the numbers 5 and 11 and organize the counters as shown, you can see the 

pattern.  5  +  11 

 
 

You can see that when you put the sets together (add the numbers), the two extra blocks 

will form a pair and the answer is always even. 

 

 
 

Adapted from: Coxford, A. F., Fey, J. T., Hirsch, C. R., Schoen, H. L., Burrill, G., Hart, 

E. W. (2003).  Contemporary mathematics in context: A unified approach: Course 3. 

New York, NY: Glencoe McGraw-Hill. 
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Comment:  The student was not held accountable for developing mathematical understanding; 

the student was allowed to produce a series of examples, present them in a way that does not 

clearly communicate thinking, and base the answer on one test case. 

 

My answer 

Add 1 (a) Add 2 (b) a + b 
1 
7 

11 
21 

113 
1111 
1003 

3 
9 

13 
23 
97 

1111 
10003 

4 
16 
24 
44 

210 
2222 

11006 
 

I noticed all the sums will be an even number.  a + b = c 

Test: a = 35, b = 73  35 + 73 = 108  108 is also even so it is true. 

 
Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for 
Research in Mathematics Education, 31(4), 396-428. 
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Code 1 

 

Comments:  It does not appear that the student engaged in mathematical activity.  The student 

does not appear to have understood the task, nor are properties being used so the student’s 

conclusion is invalid.  

 

 

 

 

 

 

 
An even number of odd numbers make an even answer but an odd number of odd numbers 
makes an odd answer: 
 

Odd Even 

 
Odd  Even Odd 

 
Odd  Even Odd Even 

 
Odd Even Odd Even Odd 

 

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra.  Journal for 

Research in Mathematics Education, 31(4), 396-428. 
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Appendix N 

BACKGROUND INTERVIEW QUESTIONS 

(Teachers were sent these questions prior to the first phone interview) 
 

1. School descriptive information: 

a. Is your school urban, suburban, or rural?   

b. What grade levels are contained in your school? 

c. How many students are in your school?   

d. For what class did you select the unit for this study?  How many students are in 

the class?   

e. How many classes and preparations do you have?  How many total students do 

you have? 

f. How many math teachers work in your school?   

2. Freedom to choose curriculum 

a. How do you select what you will teach (i.e. day-to-day curriculum or do you have 

flexibility in determining the curriculum for your students)? 

b. Is reasoning-and-proving an important feature of your curriculum?  How often do 

you engage students in such activity? 
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c. How are you evaluated as a teacher?  Who evaluates you? 

3. Prior Reasoning-and-proving work with students  

a. Please describe any opportunities to develop students’ understanding/skills for 

reasoning-and-proving you provided to your students prior to the unit you 

selected for this study. 

b. Do students have reference material (i.e. posters on the walls of the classroom, 

lists in their binders) available to them to help them engage in reasoning-and-

proving tasks?  If so, please send me pictures/copies of these materia



 

 1 



 

 1 



 

 1 
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