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Stroke affects 795,000 people yearly. Close to 85 percent of stroke survivors experience some 

degree of stroke-related upper extremity impairment due to spastic paresis (Nakayama, 

Jorgenson, Pedersen, Raaschou, & Olsen, 1994). Residual upper extremity impairments are 

associated with increased burden of care (Skidmore, Rogers, Chandler, & Holm, 2006) and 

decreased ability to garner gainful employment (Desrosiers et al., 2006). Current best evidence 

supports the use of a task-oriented practice regimen for the treatment of upper extremity 

impairment; however, many people have insufficient motor control to participate. It was the goal 

of this study to investigate the effect of the Myomo robotic upper extremity orthosis, a device 

that facilitates participation in a task-oriented practice regimen, on reach kinematic performance. 

Specifically, we examined two research questions: 

Question 1. What is the immediate effect of the Myomo orthosis on kinematic 

performance of reach? We predicted that before training, temporal (movement efficiency) and 

spatial characteristics (angular displacement, movement error, and acceleration cycles) of 

kinematic performance would be better with the Myomo orthosis than without the device. 

 Question 2. What is the training effect of the Myomo orthosis plus training kinematic 

performance? We predicted that temporal (movement efficiency) and spatial characteristics 

(angular displacement, movement error, and acceleration cycles) of kinematic performance 

without the Myomo orthosis would be better after 16 training sessions. 

THE EFFECT OF THE MYOMO ROBOTIC ORTHOSIS ON 
REACH PERFORMANCE AFTER STROKE 

 

Scott Michael Bleakley, PhD, PT 

University of Pittsburgh, 2013

 



  v 

 Findings suggest that the immediate effect of the Myomo orthosis on reaching 

performance (question 1) appears to be more attenuated than the training effect of the Myomo 

orthosis (question 2).All 6 participants demonstrated improvements in movement efficiency for 

one or more of three reaching targets. Five of the 6 participants demonstrated improvements in 

one or more of the spatial characteristics of kinematic performance. Effect size calculations 

suggest that the magnitude of the training effect was greatest for movement efficiency and 

angular displacement (medium effect size) and the least for movement error and acceleration 

cycles (small effect size). 
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INTRODUCTION 

Every 40 seconds someone in the United States has a stroke, resulting in more than 795,000 

strokes annually (American Heart Association, 2012). Given the prevalence of stroke, it is not 

surprising that stroke is the leading cause of long-term disability in the United States. Direct and 

indirect costs associated with stroke-related disability were $38.6 billion in 2009 (Go et al., 

2013). One major contributor to stroke-related disability is upper extremity impairment due to 

spastic paresis, occurring in approximately 85 percent of stroke survivors (Nakayama, Jorgenson, 

Pedersen, Raaschou, & Olsen, 1994). Residual upper extremity impairments are associated with 

increased burden of care (Skidmore, Rogers, Chandler, & Holm, 2006) and decreased ability to 

garner gainful employment (Desrosiers et al., 2006). Thus, interventions designed to reduce 

residual upper extremity impairment are likely to have a large impact on stroke-related disability. 

Current best evidence suggests that task-oriented practice is the most effective 

intervention to reduce the impairment associated with upper extremity spastic paresis (Dobkin, 

2005). Task-oriented practice requires individuals to perform functional upper extremity tasks 

with high repetition, otherwise referred to as massed practice (Morris & Taub, 2006). However 

individuals with severe upper extremity spastic paresis, particularly those with impaired motor 

planning, are often unable to participate in a task-oriented practice regimen due to the severity of 

their impairments (Barker, Brauer, & Carson, 2008). In addition, individuals with limited or 

absent distal function are frequently excluded from task-oriented practice programs because they 
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cannot independently perform the recommended tasks. Often these individuals are limited to 

interventions that address basic care of the upper extremity, including palliative interventions 

such as self-range of motion and stretching (O'Sullivan, 2006). Thus interventions that address 

the needs of these individuals, and allow them to participate in task-oriented practice programs 

have the potential to cause substantial clinical change. 

One intervention that shows promise for individuals with severe upper extremity spastic 

paresis is the Myomo orthosis. The Myomo orthosis is a robot-powered, electromyography 

(EMG)-driven device designed to address impairments in reach after stroke. The device is 

lightweight, wearable, and can be used to perform variety of static and dynamic tasks including 

unimanual and bimanual tasks such as reaching, lifting objects, and progressive exercise (Stein, 

Narendran, McBean, Kreb, & Hughes, 2007). 

Preliminary laboratory results suggest that the Myomo orthosis may significantly reduce 

upper extremity spasticity, improve motor planning and reverse progressive weakness, 

particularly in participants with limited distal function (Stein et al., 2007). Individuals with 

severe upper extremity spastic paresis who used the Myomo orthosis were able to participate in a 

variety of tasks including unimanual and bimanual reaching, manipulation and progressive 

strengthening. Furthermore, users of the Myomo orthosis demonstrated clinically meaningful 

improvements in upper extremity Fugl-Meyer Assessment scores (Stein et al., 2007). While 

these initial case studies have reported promising results, it is unclear whether these findings can 

be reproduced in a clinical setting. 

This dissertation examines the current state of science addressing the recovery of upper 

extremity function after stroke, and examines a new robotic intervention designed to improve 

upper extremity function after stroke. 
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1.0  UPPER EXTREMITY FUNCTION: OUR CURRENT UNDERSTANDING 

Given the importance of addressing upper extremity impairments after stroke it is essential to 

understand the components upper extremity function, current methods of measuring upper 

extremity function, and current methods of intervention to address upper extremity function after 

stroke. The following paragraphs address each of these topics in order. 

1.1 UPPER EXTREMITY FUNCTION: COMPONENTS 

Grossly, upper extremity function can be divided into three distinct but inter-related components: 

reach, grasp, and manipulation (Shumway-Cook & Woollacott, 2007). Together these three 

components combine to provide a person with a useful or “functional” upper extremity. Stroke 

frequently causes impairment in one or more of these components, often causing profound 

changes in upper extremity function. Among these components, reach is considered to be 

foundational, because the inability to reach precludes the ability to grasp or manipulate objects 

(Shumway-Cook & Woollacott, 2007). For this reason, rehabilitation designed to facilitate 

optimal upper extremity function, frequently focuses first on reach. 
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1.1.1 Reach: a critical component of upper extremity function 

Reach involves complex interactions between visual, somatosensory and motor systems working 

in coordination to accurately position the hand in space in proximity to any given target. As such, 

reach is a multifaceted foundational upper extremity skill that is critical to the performance of 

daily tasks such as dressing, shaving, eating or driving (Shumway-Cook & Woollacott, 2007). 

1.1.2 Reach following stroke 

Stroke alters motor control, and thus alters the ability to reach. Several authors have examined 

differences in reach between individuals who have and have not sustained stroke, and reported 

these findings. In essence, reach after stroke is characterized by poor inter-joint coordination as 

demonstrated by gross execution of elbow flexion and shoulder horizontal abduction compared 

to reach without stroke (Cirstea, Ptito, & Levin, 2006; Wu, Chen, Tang, Lin, & Huang, 2007). In 

addition, individuals with severe reach impairment after stroke demonstrate difficulty moving the 

elbow from flexion to extension and coordinating this movement with shoulder movement (Wu 

et al., 2007). 

Kinematic patterns of reach following stroke demonstrate a uniform abnormal pattern 

when compared to healthy participants in two ways. First, reach exhibits smaller amounts of 

movement at the shoulder, elbow, and wrist with increased compensatory trunk movement and 

reduced reach accuracy. Secondly, individuals following stroke exhibit decreased speed of hand 

movement with multiple starts and stops (Cirstea et al., 2006; Thielman, Dean, & Gentile, 2004; 

Wu et al., 2007). This is in contrast to the smooth speed of movement in individuals without 

stroke. 
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1.2 UPPER EXTREMITY FUNCTION: ASSESSMENT METHODS 

Since upper extremity reach is a critical component of upper extremity function, a variety of 

clinical and research tools and techniques have been developed to measure impairments in reach. 

Grossly, we can group these various methods into two categories: clinical and kinematic 

measures.  

1.2.1 Description of clinical measures 

Clinical measures assess reach through a series of laboratory-based or activity-based tasks. For 

example, the Fugl-Meyer Assessment contains a series of laboratory-based tasks that require 

individuals to move through a variety of active motions without a functionally relevant goal 

(e.g., placing their arm on a box). In contrast, the Chedoke Arm and Hand Activity Inventory 

(CAHAI) contain a series of activity-based tasks that require individuals to use the upper 

extremity to perform functionally relevant tasks (e.g., brushing their hair). In both cases, clinical 

assessments of reach provide the clinician and researcher with valuable clinical observations, but 

are limited in their ability to detect minute changes in the quality or quantity of reach (Culmer, 

Levesley, Mon-Williams, & Williams, 2009) 

1.2.2 Description of kinematic measures 

Kinematic measures quantify reach using a tracking system (video, magnetic, or light) that 

records the position of the limb and body in space in static and dynamic conditions. Analysis of 

the recorded data produces a precise characterization of movement including movement 
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efficiency, angular displacement, movement error, and acceleration cycles. Table 1 provides 

descriptions of kinematic variables relevant to reach. Thus kinematic measures allow clinicians 

and researchers to measure minute changes in the quality, quantity and skill during reaching 

tasks (Winter, 1990). 

1.2.3 Use of clinical and kinematic measures in stroke research 

To further examine the current state-of-the-art methods for measuring reach after stroke, we 

completed a focused review of the peer-reviewed literature published between January 1999 and 

December 2012. We began with a thorough search of electronic databases (Cochrane Database 

of Systematic Reviews, MEDLINE, and CINAHL) using the following search terms: stroke, 

rehabilitation, reach, upper extremity, arm, task-oriented practice, task practice, repetitive task 

practice, robotics, robot, and device. In addition, we gleaned additional articles from published 

systematic reviews and consultation with experts. These searches yielded 525 primary articles. 

We narrowed our search by reviewing abstracts and selecting articles that examined 

interventions for reach impairment after stroke, and examined some component of task-oriented 

practice, device-assisted intervention or robotic intervention for reach impairment after stroke. 

We excluded articles based on the following criteria: 1) reach was not a primary or secondary 

outcome of the study, 2) reach was only measured as an indicator of balance, and 3) data 

represented a single case study report. Figure 1 provides a description of this process and the 

delimitation of articles. After examining each abstract for these criteria 30 primary articles were 

selected for the review. A summary of these articles is provided in Appendix A. 
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Figure 1: Delimitation of Articles for Literature Review 

1.2.3.1  Use of clinical measures 

Within these 30 articles, 10 different clinical measures of upper extremity reach were 

used. Among these clinical measures, the most common measure was the upper extremity 

component of the Fugl-Meyer Assessment, which was used in 17 of the reviewed studies. The 

second most common measure was the Wolf Motor Function Test used in 4 studies.  

The Fugl-Meyer Assessment is a laboratory-based clinical measure that has long been the 

gold standard for upper extremity assessment following stroke. First published in 1975, the Fugl-

Meyer Assessment assesses the stage of motor recovery, patterned after Signe Brunnstrom’s 7 

stages (Fugl-Meyer, Jaasko, Leyman, Olsson, & Steglind, 1975). Fifty items yield a total score 

ranging from 100 (no motor impairment) to 0 (complete hemiparesis). Several studies have 

suggested that the Fugl-Meyer Assessment has adequate validity and reliability (Duncan, Propst, 

Key Word Search 
Yield = 525 articles 

Articles Retained after  
Review for Measure of Reach 

Yield = 43 articles 

Articles Retained after 
Abstract Review of Reach 

Yield = 122 articles 

Articles Retained after  
Review for Inclusion Criteria 

Yield = 30 articles 
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& Nelson, 1983). However, more recent reports have suggested that newer measures may be 

more inclusive and thorough without suffering from the ceiling effect present within the Fugl-

Meyer Assessment. It has also been suggested that the Fugl-Meyer Assessment is missing key 

components such as hand dexterity and the use of the extremities during a functional task, items 

which are predictive of a more complete stroke recovery (Gladstone, Danells, & Black, 2002). 

The Wolf Motor Function Testassesses upper extremity function (reach, grasp and 

manipulation) through a series of seventeen laboratory based tasks (Morris, Uswatte, Crago, 

Cook, & Taub, 2001). Items are scored on two scales, functional performance and time. Scores 

for functional performance are from 0 (does not attempt) to 5 (normal), yielding a total score of 

75 (no motor impairment) to 0 (severe motor impairment). The Wolf Motor Function Test has 

adequate validity and reliability, and has been used as the primary outcome measure in many of 

the constraint-induced movement therapy trials (Morris, Uswatte, Crago, Cook & Taub 2001). 

One limitation reported in the literature is that the inclusion of the timed component in scoring 

causes a floor effect with more severe stroke survivors. 

The Chedoke Arm and Hand Action Inventory, is a newer clinical measure designed to 

address some of the shortcomings of the previous measures. Unlike the Fugl-Meyer Assessment 

and the Wolf Motor Function Test, the Chedoke Arm and Hand Action Inventory uses activity-

based tasks to assess reach in the context of everyday functional activities. Published in 2004, the 

Chedoke Arm and Hand Action Inventory has 4 validated versions (13 item, 11 item, 9 item, and 

7 item versions; Barreca, Stratford, Masters, Lambert & Griffiths 2006). Nonetheless, the 13 

item version is the only version with demonstrated reliability (Barreca et al., 2004). Because the  
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Chedoke Arm and Hand Action Inventory measures the level of assistance for the items, not just 

pass / fail, it does not suffer from the floor effect present in the Fugl-Meyer Assessment and the 

Wolf Motor Function Test, specifically when measuring more impaired patients.  

1.2.3.2 Use of kinematic measures 

Compared to the variety of clinical measures used in the reviewed studies, there was less 

variability in the kinematic measures used to quantify change in upper extremity reach. Among 

the reviewed studies (Appendix A), 9 studies used kinematic measures. Of these 9 studies, all 

measured one or more of the following 4 variables: movement efficiency, angular displacement, 

movement error, and acceleration cycles. Table 1 provides a description of each of these 

variables. Together these measures have been used to characterize reach impairment and 

quantify treatment effects following stroke. 

 

Table 1.  Definitions of Kinematic Variables 

Variable Type Description 

Movement efficiency Temporal Total time to complete one reaching task 

from movement initiation to target contact 

Angular displacements Spatial Displacement of line segments defining 

the elbow 

Movement error Spatial Degree in which the path to target varies 

from the optimal, or most efficient path 

Acceleration cycles Temporal /Spatial Changes in direction along velocity curve 

(displacement/time) during the task 
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1.3 UPPER EXTREMITY FUNCTION: INTERVENTION METHODS 

Given the importance of reach for upper extremity function, interventions that address reach 

impairment have the potential to significantly impact upper extremity recovery following stroke. 

Using the same 30 studies, we examined the current state of the science for interventions 

addressing reach impairment. Based on our review of these 30 studies, there are 3 classes of 

interventions currently being used to address upper extremity reach impairment following stroke. 

These classes are: task-oriented practice, non-robotic devices, and robotic devices. 

1.3.1 Task-oriented practice 

A growing body of evidence demonstrates that task-oriented practice is one of the most effective 

interventions for reducing reach impairment and promoting upper extremity recovery following 

stroke (Kwakkel, 2008;). Task-oriented practice is a term that encompasses a broad variety of 

interventions including constraint-induced therapy and repetitive task practice (Birkenmeier, 

Prager, & Lang, 2010) (Wolf et al, 2006). Key elements of task-oriented practice are high 

repetition of motor task practice and shaping (Rensink, Schuurmans, Lindeman, & 

Hafsteinsdottier, 2009). High repetition usually involves concentrated motor task practice 

throughout the day (i.e., massed practice). Shaping involves grading motor task practice 

complexity according to the patient’s abilities and improvements over time. 
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A recent Cochrane review suggests that task-oriented practice is superior to other 

interventions (e.g., strength training, usual rehabilitation care exercises) for the reduction of 

upper extremity impairment following stroke (French et al., 2010).These reductions have been 

reported among participants who previously were thought to be outside the window of benefit 

from traditional therapies because they were 6 months or more after stroke (Kunkel, Kopp, 

Muller, Villringer, & Taub, 1999).Not only has task-oriented practice been associated with 

reductions in upper extremity impairment, but has also been associated with changes in cortical 

motor representation and activation patterns of the brain (Wittenberg et al., 2003). 

Despite the promise of task-oriented practice, there are many considerations that affect the 

indication for and implementation of task-oriented practice. First, task-oriented practice requires 

that individuals have a certain level of upper extremity function in order to be able to participate 

in and benefit from the intervention (Kunkel et al., 1999). For example, in order to be considered 

a candidate for a constraint induced therapy protocol, a patient must exhibit 20 degrees of finger 

flexion, components of upper extremity function many individuals with severe spasticity do not 

have. In fact, many persons with the inability to activate the hand are relegated to self-range of 

motion and muscle tone regulation exercises (O’Sullivan, 2006). 

Second, task-oriented practice requires a high-intensity of practice to yield results (Morris 

& Taub, 2006). These levels of practice are difficult to reproduce in clinical settings, requiring 

structured home exercise programs to augment existing clinical practice. This is problematic 

because many individuals require the assistance of a skilled therapist to assist in the completion a 

task-oriented practice regimen and may not have access to these. 
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Thus, task-oriented practice is an effective intervention for reach impairment following 

stroke for selected individuals. Specifically, individuals with a mild to moderate reach 

impairment, who have some hand functions, and who have the ability to carry-over intense 

practice programs at home without assistance are likely good candidates for task-oriented  

practice. However, for those with severe reach impairment (i.e., are unable to reach, grasp or 

manipulate without assistance or who require assistance to carry through with home practice 

programs), standard task-oriented practice programs may not be as effective. 

In response to these limitations, researchers have proposed a number of new technologies 

to serve as adjunctive therapies to task-oriented practice (Brewer, McDowell, & Worthen-

Chaudhari, 2007).We have grouped these technologies into two groups: non-robotic devices and 

robotic devices. 

1.3.2 Non-robotic devices 

Non-robotic training devices typically consist of an external structure that the hemiparetic arm is 

affixed to and applies external force (elastic bands, mechanical advantage, or sound limb) to 

increase the ease or amount of hand and arm motion. These devices are designed to be used in 

concert with task-oriented practice, assisting reaching in individuals with more severely impaired 

function. Among the reviewed studies, 5 examined non-robotic devices as an intervention to 

address reach impairment. 

The Bilateral Arm Training with Rhythmic Auditory Cueing (BATRAC) System. The 

BATRAC System was developed at Johns Hopkins University as a device that uses bilateral 

movement with auditory cueing to facilitate repetitive motion. This device consists of 2 T-bars 

that the patient either grasps with both hands or is assisted in grasp with strapping. The patient is 
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then asked to move the arms reciprocally forward and back along a fixed path oriented in the 

transverse plane perpendicular to the patient. In addition the device uses auditory cues to cue the 

patient and help improve feedback (Whitall, McCombe, Silver, & Macko, 2000). 

The BATRAC has been examined in 2 studies. Whitall et al. (2000) demonstrated 

statistically significant improvements in upper extremity Fugl-Meyer Assessment scores after a 

6-week intervention in chronic stroke survivors. When compared to a standard care condition, 

Luft and McCombe (2004) demonstrated no significant differences in function, as defined by 

upper extremity FMA scores following a 6-week BATRAC intervention between the two 

conditions. Nonetheless, Luft & McCombe did report significant increases in pre- and post-

central gyrus activation in the BATRAC condition compared to the standard care condition (Luft 

et al., 2004). 

The Sensorimotor Active Rehabilitation Trainer (SMART Arm). Developed by the 

University of Queensland, the SMART Arm is designed to treat the impairment associated with 

forward reach. The SMART Arm consists of a customizable thermoplastic splint that slides 

along an elevated linear track. Pulleys unload the limb as it slides along the track, and patients 

observe their reaching distance via a video display. If the patient is unable to meet a preset goal, 

the SMART Arm provides electrical stimulation to the triceps muscle. 

Only one selected study examined the Smart Arm. Barker and colleagues reported 

significant improvements in Motor Assessment Score (MAS), reaching force and reaching 

distance when using the SMART arm trainer with or without electrical stimulation, compared to 

standard practice (Barker, Brauer, & Carson, 2008). 
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The REHA Slide. Developed by researchers from Charite University of Medicine, Berlin, 

the REHA Slide is designed to assist patients with severe reaching impairment and give them the 

ability to participate in massed practice reaching activities. The design of the REHA Slide 

resembles a rolling pin on a track. The participant grasps both ends of the pin and is able to use 

the less involved arm to move the hemiparetic arm through reaching exercises with three degrees 

of freedom (Hesse, Werner, Pohl, Mehrholz, Puzich, & Krebs 2008). Visual feedback is also 

provided via a computer monitor. 

Initial case series studies using the REHA Slide reported marked improvements in upper 

extremity FMA and strength (Hesse et al., 2007). However, a later randomized controlled trial 

demonstrated no significant differences between the experimental group (REHA Slide plus 

standard care), and the control group (standard care plus electrical stimulation; Hesse et al., 

2008). 

Therapy Assistant Wilmington Robotic Exoskeleton (WREX). The WREX was initially 

developed at the Pediatric Engineering Research Lab in collaboration with Drexel University as 

an orthosis to assist children with muscular dystrophy (Rahman, Sample, Seliktar, Alexander, & 

Scavina, 2000). A gravity-compensating passive arm orthosis, the WREX was later adapted for 

use with adults with hemiparesis. The WREX consists of a stationary exoskeleton designed to 

un-weight the hemiparetic arm to promote increased upper extremity reaching. Un-weighted is 

achieved by a series of elastic bands.  

The WREX has been examined in one study. Iwamuro and colleagues reported 

significant improvements in reach kinematics and reduced EMG activity in bicep and triceps 

muscles when compared to reaching without the WREX (Iwamuro, Cruz, Connelly, Fischer, & 

Kamper, 2008). 
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1.3.3 Robotic training devices 

Among the reviewed studies, 7 examined robotic training devices as an intervention method for 

individuals with reach impairment after stroke. Similar to non-robotic devices, robotic devices 

function in such a way as to reduce the amount of strength, movement or motor control needed to 

participate in reaching tasks. In contrast to non-robotic devices, participation in reaching tasks is 

accomplished through one of several control mechanisms such as computer-controlled motor -

driven robotic arms or complex pulley systems. Among the reviewed studies, 7 unique robotic 

devices were described. 

1.3.3.1 Description of robotic devices and the evidence 

The following paragraphs provide a description of each of these 7 devices, and the 

evidence examining these devices. 

The MIT Manus. Sold commercially as the InMotion2, the MIT Manus is a haptic upper 

extremity robotic device designed to assist patients with reach impairment. The Manus is 

composed of a multi-axial industrial robotic arm, a haptic feedback system, and a patient 

interface. The MIT Manus aids the participant by guiding the impaired extremity toward a 

computer-generated target on a video screen. The MIT Manus varies the resistance to challenge 

the patient or in the case when the participant cannot assist, guides the arm passively to the target 

(Aisen, Krebs, Hogan, McDowell, & Volpe, 1997). 

Six studies have reported significant within group reductions in impairment in chronic 

stroke survivors (Aisen et al., 1997; Daly et al., 2005; Fasoli, Krebs, Stein, Frontera, & Hogan, 

2003; Krebs et al., 2008; Macclellan et al., 2005; Volpe et al., 2008).Of the three studies that 

have compared the MIT Manus to a separate intervention (e.g. MIT Manus vs. standard care) 
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(Aisen et al., 1997; Daly et al, 2005; Volpe et al., 2008) only one study reported significant 

improvement in upper extremity Fugl-Meyer Assessment scores when using the MIT Manus 

compared to a sham intervention (Aisen et al., 1997). 

Mirror Image Movement Enabler (MIME). Another robotic system designed to assist 

stroke patients with reach is the MIME. Similar to the Manus in design, the MIME is comprised 

of not one, but two industrial robotic multi-axial arms to which the user straps his/her arms via a 

grip style interface. The MIME is unique in that it emphasizes bilateral movements rather 

unilateral and allows participants to reach toward real objects. Similar to the Manus, the MIME 

has different modes whereby it can guide passively or actively assist the hemiparetic limb to the 

target (Lum, Burgar, Shor, Majmundar, & Van der Loos, 2002). 

Two studies investigated the MIME with chronic stroke survivors and reported 

significant improvement in reach as measured using kinematic measures of velocity and 

displacement for the group using the MIME (Lum, Burgar, & Shor, 2004; Lum et al., 2002). In a 

study of 30 sub-acute stroke participants, Lum et al., (2006) reported significant proximal FMA 

scores compared to standard care, though these differences did not persist at the 6-month follow 

up. 

Neurorehabilitation Robot (NeReBot). Another new technology, intended to reduce the 

upper extremity impairment following a stroke, is the NeReBot. This robotic device attaches to 

the users arm via a series of suspension wires and a rigid orthosis effectively acting as an un-

weighting system for the arm (Masiero, Celia, Rosati, & Armani, 2007). The NeReBot can be 

programmed to perform repetitive movements within the patient’s available range of motion as 

well as provide varied levels of assist. Feedback is provided both auditorally and visually  
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(haptic) throughout the exercise regimen. The NeReBot has been shown to improve proximal 

FMA and MRC strength in the bicep and deltoid when compared to standard care (Masiero et al., 

2007). 

GENTLE System. The GENTLE system is made up multi-axial robotic and a haptic visual 

computer feedback system. The user’s wrist is attached to the device via a free motion gimbal 

located on the wrist. This system is unique in that it utilizes un-weighting of the hemiparetic arm 

to improve free motion. Similar to the MIT Manus or MIME, the GENTLE system operates in 

passive, assistive, and resistive modes. One study reported improved Motor Assessment Scores 

and Modified Ashworth scores during the GENTLE intervention period compared to sling 

suspension only (Coote, Murphy, Harwin, & Stokes, 2008). 

The Assisted Rehabilitation and Measurement Guide (ARM). The ARM is another robotic 

system designed to aid reaching practice. The ARM consists of a linear track to which the 

participant’s hand and forearm are attached via a splint interface. The linear track can be adjusted 

to any orientation; however the participant is constrained to a linear reaching path. Computer 

controlled drive motors provide either resistance or assist during the reaching task with haptic 

feedback provided by a video monitor that shows the users progress toward a target(Kahn, 

Zygman, Rymer, & Reinkensmeyer, 2006).One study examined the ARM, comparing the ARM 

to conventional reach training program by (Kahn et al., 2006).There were no significant 

differences between groups. 

TheRobotic rehabilitation system for the upper limb motion therapy (REHABOB). The 

REHABOB consists of two industrial robots that together are able to provide ROM as the 

shoulder and elbow (Fazekas, Horvath, & Toth, 2006). This system was designed primarily to  
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supplement passive range of motion exercises. In a RCT of individuals with chronic stroke, no 

significant differences in upper extremity and self-care skills were detected between the 

REHABOB and standard care interventions (Fazekas, Horvath, Tronai, & Toth, 2007). 

My Own Motion E100 (Myomo). The Myomo orthosis is an externally powered EMG 

guided wearable upper extremity robotic orthosis. EMG guidance of the motor unit is provided 

by an electrode placed either over the biceps or triceps muscle belly. Motor output, and thus 

elbow movement, is proportional in velocity and distance to the intensity of the EMG signal. 

Elbow extension (or flexion if the EMG is placed on the triceps) is achieved thru a passive spring 

assist, though this can only be activated by inhibiting the agonist muscle (Stein et al., 

2007).Following a 6 week upper extremity intervention, 6 chronic stroke survivors demonstrated 

clinically important improvements in upper extremity FMA scores and decreases in Modified 

Ashworth Scores at the elbow and wrist (Stein et al., 2007). 

In order to more clearly compare and contrast the similarities and differences of the 7 

robotic upper extremity devices, it is useful to discuss them based on three clinically important 

properties: portability, control mechanisms, and training. Refer to Table 2 for a summary of 

robotic device characteristics. 
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Table 2.  Summary of Robotic Devices Characteristics 

 

 

 

1.3.3.2 Portability of robotic devices 

Examining the portability of devices is useful in that it helps to identify the clinical 

setting and activities that best match each device. Furthermore, portability is related to the size 

and cost of devices. Examining these robotic devices together, they can be grossly divided into 

three categories by portability: room-bound, clinic portable and wearable devices.  

Device Portability Activation 

Mechanism 

Training 

Protocol 

Feedback 

Mechanism 

MIT Manus Room bound Active Assist/ 

Passive 

Task-oriented 

practice 

Haptic 

MIME Room bound Active Assist/ 

Passive 

Task-oriented 

practice 

Visual 

Observation 

ARM guide Room bound Active Assist/ 

Passive 

Task-oriented 

practice 

Haptic 

NeReBot Clinic portable Active Assist/ 

Passive 

Task-oriented 

practice 

Haptic & 

Auditory 

GENTLE 

System 

Room Bound Active Assist/ 

Passive 

Task-oriented 

practice 

Haptic 

REHABOB Room Bound Passive  Range of 

Motion 

None 

Myomo Wearable EMG / Active 

assistive 

Task-oriented 

practice 

Visual 

Observation 
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Room-bound devices. The InMotion2 (commercial variant of the MIT MANUS), the 

MIME, REHABOB, and the GENTLE/s systems are examples of room-bound upper extremity 

robotic devices. In order to use the MANUS or MIME, patients sit stationary and are strapped to 

a multi-axis robotic arm. Similarly, the upper extremity is suspended by the GENTLE system. 

All three robotic systems provide variable levels of assistance depending on the level of 

weakness and ability. In patients with extremely limited upper extremity use, these devices revert 

to a guided passive mode and the limb is moved through therapist-selected patterns. Unique to 

the MIME, bilateral upper extremity tasks are possible or the device can be used in unilateral 

mode. With both devices the user is limited to a static position and therapy is based around 

reaching and targeting tasks. Because of the size and type of device, none of these devices can be 

easily incorporated into functional tasks. 

Clinic portability. The NeReBot was from inception designed to be a clinic portable 

robotic intervention. The NeReBot is housed on a wheeled frame that can be moved between 

treatment areas. Despite the advantages of portability compared to the room-bound devices such 

as the MANUS, the NeReBot clinical application is similarly limited by cost and a fixed 

treatment environment. 

  

Wearable devices. Currently there is only on commercially available wearable robotic 

upper extremity device, the Myomo e100. This device is a wearable exoskeleton that allows 

users to participate in functional reaching tasks in a variety of environments as well as assist in 

routine functional tasks such as sit to stand. In addition, due to its size the Myomo orthosis can 

be used in the home, unlike the other upper extremity robotic devices. 
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1.3.3.3 Activation mechanism of robotic devices 

Another way to differentiate between robotic devices is by the activation method. 

Robotic devices utilize three primary activation mechanisms. They are passive, active assistive, 

and EMG activation. Devices such as the MANUS, MIME, ARM guide and NeReBot can 

operate in either passive or active assistive mode (Brewer et al., 2007).Active assistive mode 

requires the patient to actively move the limb toward the goal before the system will assist the 

limb. This approach requires that users have volitional active motion of the upper extremity prior 

to being able to use the device. In the absence of active movement, these devices degrade to a 

passive guiding mode where the limb is passively moved through range of motion to variety of 

computer generated or user defined points. Therefore, these devices are best suited for use with 

individuals following stroke with active shoulder motion. Alternatively, the Myomo orthosis 

uses an EMG sensor to detect to and respond to sub-motor levels of muscular activity, thus 

allowing the user to actively flex and extend the elbow even during the very early stages of 

recovery following a stroke, or when other robotic devices would provide only passive motion. 

EMG activation may allow stroke survivors to begin a task-oriented practice earlier and 

minimize upper extremity impairment (Stein et al., 2007). 

1.3.3.4 Training with robotic devices 

Of the 7 devices reviewed, 6 used massed practice training protocols and 1(the 

REHABOB) used passive range and proprioceptive input. Though the training mechanisms are 

similar, differences in the type of practice, environment and context are marked. With all of the 

room-bound robotic devices, much of the training is limited to routine arm movements along 

predetermined paths. Reaching is toward either toward a computer-generated 2-dimensional 

target on a video screen or generic target such as a ball. Furthermore, because the devices are 
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room-bound, or clinic portable, in the case of the NeReBot, all training takes place either in the 

context of the lab, or therapy clinic. None of the devices, with the exception of the Myomo e100, 

provides for clients to train in the context of daily activities and to use the upper extremity in the 

context of function such as transfers, sit to stand, and sitting balance. 

1.3.3.5 Feedback mechanism 

Of the devices reviewed, two primary feedback mechanisms exist, haptic and direct 

visual observation. Haptic feedback, such as is used with the MIT MANUS, consists of a 

computer monitor that displays a representation of the users arm as well as the digital target and 

progress toward it. In the case of the Myomo orthosis and MIME, feedback is provided by direct 

visual observation of the user’s arm and its progress toward, or interaction with, the target. 

1.4 SUMMARY 

Impairment of upper extremity reach after stroke is common and associated with significant 

disability. Task-oriented practice is the intervention of choice for reducing upper extremity 

impairment. However, stroke survivors must possess some active range of motion to engage in 

task-oriented practice regimens. Several devices, mechanical and robotic, have been developed 

to facilitate use of the hemi-paretic extremity for participation in task-oriented practice regimens. 

However, only the Myomo e100 is portable, relatively inexpensive, and able to be used in a 

variety of settings, including the home. Also, unlike the other devices, the Myomo orthosis is 

able to detect and amplify sub-motor activity thus allowing earlier active motion. For this reason, 

we propose the following study to examine the clinical benefit of the Myomo orthosis. 
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2.0  SPECIFIC AIMS 

While the Myomo orthosis has shown promise in early feasibility studies, the clinical effects of 

the Myomo orthosis on reach have yet to be rigorously studied. One widely accepted method for 

evaluating the effect of interventions on reach is the assessment of kinematic performance. 

Assessment of kinematic performance provides accurate quantitative measures of reaching 

performance including movement efficiency, angular displacement, movement error, and 

acceleration cycles (Schmidt & Lee, 1999). The overall aim of this study was to examine the 

effect of the Myomo orthosis on kinematic performance of the upper extremity. More 

specifically, we examined two research questions that investigated the immediate effect of the 

Myomo orthosis and the training effect of the Myomo orthosis plus therapy (Figure 2). 

 Question 1.What is the immediate effect of the Myomo orthosis on kinematic 

performance of reach? We predicted that before training, temporal (movement efficiency) and 

spatial characteristics (angular displacement, movement error, and acceleration cycles) of 

kinematic performance would be better with the Myomo orthosis than without the device. 

 Question 2.What is the training effect of the Myomo orthosis plus training kinematic 

performance? We predicted that temporal (movement efficiency) and spatial characteristics 

(angular displacement, movement error, and acceleration cycles) of kinematic performance 

without the Myomo orthosis would be better after 16 training sessions. 
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Figure 2.  Overview of Planned Contrasts 
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3.0  RESEARCH METHODS 

3.1 PARTICIPANT RECRUITMENT 

Participants were recruited from UPMC Rehabilitation Institute and through local stroke support 

groups. All study procedures were approved by the University of Pittsburgh and HealthSouth 

Institutional Review Boards. 

All participants had a history of stroke for at least 3 months that resulted in upper 

extremity spastic hemiparesis. In addition all participants were able to follow three step 

commands with 80 percent success or greater and demonstrated the ability to recruit EMG 

activity in the biceps sufficient to activate the Myomo orthosis. Individuals were excluded if they 

had shoulder pain as defined by a Visual Analog Scale score of 5 or greater; contractures that 

limited full elbow extension; or skin lesions on the hemiparetic upper extremity. Individuals who 

were unable to tolerate the testing position were also excluded. 

3.2 INTERVENTION 

The Myomo orthosis is an FDA Class II externally powered EMG-guided upper extremity 

orthosis (Figure 3). The weight of the wearable portion of the unit is one pound 11 ounces. The 

motor unit was geared and capable generating torque equal to 14 Newton meters. EMG guidance 
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of the motor unit was derived from an electrode placed either on the biceps or triceps muscle but 

not both simultaneously. The input EMG signal is smoothed and filtered using a high bandwidth 

filter technique. Output from the motor is proportional in velocity to the input EMG signal. 

Extension or flexion of the elbow was achieved by an adjustable passive aid that works opposite 

of the muscle used to provide EMG control but was only active when agonist EMG is below pre 

-set value. Amplification of participants’ existing motion, though weak, allowed participants 

with absent or severely limited active elbow motion to move through full range of motion in a 

controlled proportional fashion (see Figure 3). 

 

 

Phase I: Familiarize participant with 
function of Myomo; Don/doff, customize fit, 
pad and adjust for comfort; Calibrate and 
determine optimum gain and spring settings; 
Routine elbow flexion/ extension;  

Phase II: Basic upper extremity exercise 
with the Myomo; Vary patient position and 
adjust gain as appropriate; High repetition of 
elbow flexion / extension in different 
positions; 

Phase III: Incorporate the Myomo into gross 
functional tasks such as transition from sit to 
stand, as a support during a reaching activity, 
guiding a wheeled walker; 

Phase IV: Use Myomo during bimanual 
tasks such as lifting and moving a laundry 
basket, and pushing/ pulling objects. 

 

Figure 3.  Myomo Orthosis and Intervention Phases 
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The intervention program was based in part on a protocol that has previously been piloted 

at a local rehabilitation hospital. Additional input into the development and validation of the 

intervention program was provided by experts within the University of Pittsburgh’s Department 

of Occupational Therapy. Participants were scheduled to complete 16 training sessions over a 4-

week period. Each session lasted approximately 1 hour. The protocol consisted of 4 phases with 

each phase progressively more difficult than the previous phase (Figure 3).All participants began 

at Phase 1 and proceed until they achieved the highest phase that matched their ability level. 

Phase progression was determined by achievement of select goal activities within the phase (see 

Appendix B for expanded description of the intervention program).Meeting the achievement 

criteria, 6 of 8 tasks with 75 percent success for example, allowed the participant to progress to 

the next phase. Not all participants achieved all phases. 

3.3 INSTRUMENTATION 

3.3.1 Descriptive measures 

Descriptive measures were administered to describe the sample. Following informed consent, 

age, chronicity, type of stroke, side, and pre-intervention function was obtained through 

participant interview. During the intervention phase, researchers kept a log indicating total time 

of Myomo orthosis use, phase of intervention program, and the settings and calibration of the 

Myomo orthosis. In addition participants were asked to report the start of or change in 

medications or interventions addressing spasticity (i.e., Botox injections). 
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3.3.2 Clinical measures 

Clinical measures were administered to describe the clinical characteristics of the sample. The 

Modified Ashworth Scale (MAS) was used to measure resistance to passive stretch in the 

affected elbow, wrist, fingers and thumb. The MAS is a valid and reliable tool that is the clinical 

standard for measuring changes in muscle tone after stroke (Bohannon & Smith, 1987).Upper 

extremity function was evaluated using the Chedoke Arm and Hand Activity Inventory 

(CAHAI).The CAHAI measures upper extremity function in the context of routine daily tasks. 

The CAHAI has both high inter-rater reliability and validity and is sensitive to clinically 

important change (Barreca, Stratford, Lambert, Masters, & Streiner, 2005).A 10-centimeter 

Visual Analog Scale (VAS) was used to measure participants’ levels of pain. The VAS has been 

shown to be valid and reliable measure of musculoskeletal pain (Katz, 1999). 

3.3.3 Kinematic performance measures 

Kinematic performance measures were used to test study hypotheses. One temporal and three 

spatial characteristics of reach were derived from the data collected using the motion analysis 

equipment. These variables were movement efficiency, angular displacement, movement error, 

and acceleration cycles. A detailed manual that describes the laboratory set-up and data 

collection methods is available from the first author.  

3.3.3.1 Temporal characteristics 

Movement efficiency was defined by the total time the participant took to reach from the 

starting position to each target and back to the starting position. 
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3.3.3.2 Spatial characteristics 

Angular displacement was defined as the angle between the two vectors that define the 

arm and forearm. Angular displacements represent the elbow range of motion during the 

reaching task. Movement error was the degree from which the path to the target varies from the 

optimum path, as indicated by the area of the distance between the hand and the optimum path, 

in three-dimensional space throughout the reaching task. Finally, acceleration cycles were 

measured by the change in velocity direction over a defined threshold level during the reaching 

task. A smooth reaching movement with fewer changes in velocity direction and decreased 

movement error is commonly associated with a more skilled or practiced movement. 

Prior to beginning the Myomo intervention, all kinematic performance data were 

collected using the NaturalPoint three-dimensional motion analysis system (OptiTrack system, 

Corvallis, OR). NaturalPoint is a three-dimensional passive infrared video based motion analysis 

system. This system is capable or resolving motion in Cartesian space with an error less than 1.0 

millimeter. Calibration was completed, both statically and dynamically, prior to each participant 

evaluation using standardized static and dynamic references. All data were collected and 

analyzed at 120 Hertz. 

Twelve cameras were placed around the participant to obtain multiple views to construct 

the 3D motion (Figure 4). Reflective spheres (5 millimeter) array were used to identify all targets 

and motion vectors of interest (Figure 4). 
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Figure 4.  Camera and Marker Arrangement 

3.4 PROCEDURES 

The principal investigator contacted individuals interested in the study to discuss the study and 

answer any questions. Once informed consent was obtained, participants were screened for 

inclusion and exclusion criteria.  If participants met criteria, they completed a clinical evaluation 

comprised of descriptive and clinical measures. The principal investigator, who is trained in 

administering and scoring each of these measures, administered all measures. 

The motion analysis testing was performed at the University of Pittsburgh Hand Motion 

Laboratory by personnel trained in operating the NaturalPoint kinematic motion analysis system. 

During motion analysis testing, participants were required to conduct 15 repetitions of reach to 

each of three targets for a total of 45 repetitions in two conditions: without and with the Myomo  
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Orthosis.. Participants then completed 16 one-hour interventions over 4 to 5 weeks. Upon 

competition of the intervention phase, participants completed their second motion analysis 

session, performing the same tasks under the same conditions in the same order (Figure 5). 

 

 
Figure 5.  Research Procedures 

3.5 DATA ANALYSIS 

Motion analysis data were analyzed in two steps: pre-processing analyses and post-processing 

analyses.  Together, these two steps produced the dependent variables that were analyzed using 

single participant design analysis methods. A manual with a detailed description of data 

processing methods is available from the first author. 

3.5.1 Motion analysis pre-processing 

Pre-processing was conducted using the Vicon Workstation software (Version 4.6, Los Angeles, 

CA).Each trial contained 15 repetitions of reaching to each of three targets. Pre-processing 

consists of several steps. First each trial is re-trajectorized (smoothed) using standard parameters 



  32 

for the motion capture system. Then a computer model that represented the participant’s scapula, 

humerus, forearm and hand was applied to re-trajectorized data points. Established guidelines 

were followed when correcting for the impact markers per the NaturalPoint manual (OptiTrack 

system, Corvallis, OR). 

All of the kinematic variables under study required that each trial consisting of 45 reaches 

be partitioned into individual reach events to each target. This was done using the Vicon 

Workstation software. Each trial was opened and the sequence of reach task identified. 

Movement efficiency was defined as the difference in time (measured here in frame numbers 

1/100 sec) from movement initiation to when the target was struck. Movement initiation was 

observed using a 5-frame trace function and visual inspection of the MET3 marker on the hand. 

When the participant began moving in the direction of the selected target, the first frame was 

movement initiation. The last frame was then recorded when the target was struck by the hand. 

Some participants were unable to reach all of the targets and in those cases the last frame was the 

point at which the MET3 marker was closest to the target marker. In addition to calculating 

movement efficiency, the time partitioned data were used to facilitate the post-processing 

analyses for angular displacement, movement error, and acceleration cycles. 

Angular displacement of the elbow was measured using the Vicon Workstation software. 

Angular displacement of the elbow was calculated by subtracting the starting angle of the elbow 

from the elbow position when the participant struck the target. We calculated this measure using 

the Vicon Workstation software to determine the angle of the elbow at the reach initiation and 

subtracted the angle when the participant reached the target. Positive numbers indicate that the 

elbow was more extended at target hit. During the task participants demonstrated a variety of  
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compensatory and adaptive techniques to reach the target, which at times resulted in the elbow 

being more flexed when the target was hit then at reach initiation. This is represented by negative 

numbers in the results. 

Movement error was calculated using the time partitioned movement segments used 

previously to calculate movement efficiency and a custom MatlabTM script developed by Doug 

Weber, Ph.D. The MatlabTM script calculated the average error based on a comparison of the 

optimal path (a straight line) of the hand marker to the target to the actual path. Results are 

reported as an average distance from the optimal path throughout the reach task. 

Acceleration cycles were calculated using the graphing functions available within the 

Vicon software. For each trial the acceleration of the MET3 (hand) marker was graphed against 

time. Each time the hand marker changed acceleration greater than 50 millimeters per second we 

counted one cycle. We chose 50 mm/s as a threshold by evaluating the acceleration curves and 

comparing them to velocity time curves. At 50 mm/s we felt that it eliminated changes in 

acceleration that occurred at a frequency that was inconsistent with motor control and more 

likely was caused by the interaction between the hand and the reach surface. 

3.5.2 Motion analysis post-processing 

Post-processing was done using Vicon Workstation software and MatlabTM Version R2007a 

(Natick, MA 2012). Movement efficiency, angular displacement and acceleration cycles were 

calculated using Vicon Workstation software. Movement error was calculated using a custom 

MatlabTM script developed by Douglas Weber, PhD for this study. 
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3.5.3 Hypothesis testing 

All data were analyzed using single participant design statistics recommended by Ottenbacher 

(1986) to test the study hypotheses. We began by examining all data for autocorrelation. If data 

were auto-correlated, we applied a transformation recommended by Ottenbacher (1986). If data 

were not auto-correlated, we proceeded with the single participant analyses. These tests 

evaluated individual participant changes over time and allowed for the evaluation of statistically 

significant changes between conditions.  

For each of the two research questions, the four dependent variables of kinematic 

performance were analyzed using descriptive measures as well as the C-statistic. We decided a 

priori that for each outcome (movement efficiency, angular displacements, movement error and 

acceleration cycles), the C-statistic must be statistically significant (critical level p < .05) for one 

or more of the targets in order to reject the null hypothesis of no difference. Contrasts for 

hypotheses associated with questions 1 and 2 are illustrated in Figure 6. 

 

Figure 6.  Hypothesis Tests 
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To better understand the overall training effect of the Myomo orthosis, we performed 

meta-analysis for each participant across all kinematic variables to one target. Target 3 

(contralateral target) was selected because among the majority of participants, reach performance 

to this target improved for at least one of the kinematic variables. Cohen’s d effect sizes were 

calculated for each kinematic variable (Lipsey and Wilson 2001), for each participant, comparing 

before and after intervention. Because the data collection methods and number of trials was 

consistent across all participants, no weighting or other transformations were required, thus the 

mean effect sizes reported are simple averages across all participants. 

Additionally, using the statistical techniques described in Lipsey and Wilson (2001) we 

generated forest plots for variables of interest. For each participant we calculated an effect size 

(r), standard error, and confidence intervals.  
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4.0  RESULTS 

4.1 PARTICIPANTS 

A total of 20 participants were referred to the study. Of these 13 provided written informed 

consent and were screened. Of the 13 participants, all but two met inclusion and exclusion 

criteria and were referred on for initial clinical and kinematic testing. One participant was 

excluded due to exceeding the minimal motor criteria (i.e., not enough motor impairment) and 

one had an elbow contracture. Of the remaining 11 participants, three withdrew due to concerns 

with travel and scheduling. The Principal Investigator withdrew an additional participant due to 

inability to tolerate the testing position. 

Seven participants began the intervention phase of the study and 6 completed the study 

(Figure 7). One participant (003) withdrew during intervention due to a new diagnosis of cancer. 

Participant characteristics are provided in Table 3. 
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Figure 7.  Study Flow Diagram 

 

  

Analyzed (n= 6) 

Started Training (n= 7) 

Referred (n=20) 

Enrolled (n= 7) 

Did not Consent (n= 7) 
Not interested in research (n=7) 

Consented (n=13) 

Consent 

Referral 

Intervention 

Analysis 

Did not complete training (n=1) 
New diagnosis of cancer (n=1) 

Did not start training (n=0) 

Enrollment 

Not eligible (n=6) 
Lived too far away (n=3) 
Insufficient motor impairment (n=1) 
Elbow contracture (n=1) 
Unable to tolerate test position (n=1) 
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Table 3. Participant Characteristics 

 001 003* 004 005 007 009 013 
Age 49 76 49 47 55 68 62 
Sex M M F M M F M 
Stroke onset 
(months) 84 24 12 144 12 72 12 

Side affected Left Right Right Right Right Right Right 
Dominant side No Yes Yes Yes Yes Yes Yes 
CAHAI score 13 24 12 13 1 18 0 
MAS Finger 2 1 2 3 3 2 3 
MAS Wrist 1+ 1 2 3 3 2 3 
MAS Elbow 2 2 1 1+ 2 1 3 
MAS Shoulder 3 2 1+ 2 2 1+ 3 
Visual Analog 4.6 cm 0 cm 1 cm 0 cm 0.1 cm 0.7 cm 0.1 cm 
*Participant withdrew after starting training due to new diagnosis of cancer (not study related). 
CAHAI=Chedoke Arm and Hand Activity Inventory. MAS=Modified Ashworth Scale. 

 

4.2 OUTCOMES: INTERVENTION PROGRESSION 

All participants started the intervention in phase 1 and progressed through all phases based on 

stated achievement criteria. Figure 8 illustrates the number of intervention sessions per phase for 

each participant. Participant 001 spent the most time in phase 1 with 4 visits, and participant 009 

spent the least time in phase 1, progressing out of phase 1 after one session. Though each 

participant varied in the amount of sessions spent in each phase, all participants progressed 

through all phases.   
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Figure 8.  Number of Sessions in Each Intervention Phase by Participant 

4.3 OUTCOMES: CLINICAL ASSESSMENT 

We used the Chedoke Arm and Hand Activity Inventory (CAHAI) prior to and after 16 training 

sessions. Table 4 provides the total pre-test and post-test scores for each participant who 

completed training. Appendix C provides a complete table of item scores for each participant. 

Table 4. Chedoke Arm and Hand Activity Inventory Scores 

Participant Pre-Test Post-Test Change 
001 13 16 3 
004 12 12 0 
005 13 15 2 
007 10 18 8 
009 18 19 1 
013 0 0 0 
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4.4 OUTCOMES: KINEMATIC ASSESSMENT 

We plotted each variable with and without the Myomo orthosis, before and after training, for 

each participant separately (see Appendices D, E, F, and G). 

4.4.1 Hypothesis 1: Immediate effect of Myomo on kinematic performance 

To assess the immediate effect of the Myomo orthosis on kinematic performance, we examined 

temporal and spatial characteristics of kinematic performance before and after applying the 

Myomo orthosis (prior to training). Table 5 summarizes the significant findings for hypothesis 1 

for each participant for each variable. For movement efficiency (temporal characteristic), we 

were able to reject the null hypothesis for 2 of 6 participants. For elbow angular displacement 

and movement error (spatial characteristics), we were able to reject the null hypothesis for 4 of 6 

participants. For acceleration cycles (spatial characteristic), we were unable to reject the null 

hypothesis for any of the 6 participants. 
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Table 5.  Hypothesis 1: Summary of Findings 

Hypothesis 1: Individuals will demonstrate improvements in kinematic performance with 
the use of the Myomo orthosis prior to training. 

Participant 

Temporal 
Characteristic 

Spatial  
Characteristics 

Movement  
Efficiency 

Elbow Angular 
Displacement  

Movement 
Error 

Acceleration 
Cycles 

Targets* Result Targets
* 

Result Targets* Result Targets* Result 

001 1 Reject 1,3 Reject 1 Reject No 
targets  

004 1 Reject 1,2 Reject 2,3 Reject No 
targets  

005 No 
targets  No 

targets  No 
targets  No 

targets  

007 No 
targets  2 Reject No 

targets  No 
targets  

009 No 
targets  3 Reject 1 Reject No 

targets  

013 No 
targets  No 

targets  1 Reject No 
targets  

Summary Reject 2/6 Reject 4/6 Reject 4/6 Reject 0/6 
* Statistically significant targets only. 1=Ipsilateral, 2= Midline, 3=Contralateral 

4.4.2 Hypothesis 2: Training effect of Myomo on kinematic performance 

Table 6 summarizes the significant findings for hypothesis 2 for each participant for each 

variable. For movement efficiency (temporal characteristic), we were able to reject the null 

hypothesis for 6 of 6 participants. At follow up all participants demonstrated significant 

improvements to at least one target when comparing pre-test movement efficiency without the 

Myomo orthosis to the same post-test condition. For elbow angular displacement (spatial  

characteristic), we were able to reject the null hypothesis for 4 of 6 participants. For movement 

error and acceleration cycles (spatial characteristics), we were able to reject the null hypothesis 

for 3 of 6 participants.   
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Table 6.  Hypothesis 2: Summary of Findings 

Hypothesis 2: Individuals will demonstrate improvements in kinematic performance 
without the use of the Myomo orthosis after 16 sessions of training. 

Participan
t 

Temporal 
Characteristic 

Spatial 
Characteristics 

Movement 
Efficiency 

Elbow Angular 
Displacement 

Movement 
Error 

Acceleration 
Cycles 

Targets
* 

Result Targets
* 

Result Targets
* 

Result Targets
* 

Result 

001 3 Reject 1,2,3 Reject 
No 

targets 
 

No 
targets 

 

004 2,3 Reject 1 Reject 1 Reject 2 Reject 

005 2,3 Reject 1,2 Reject 3 Reject 2 Reject 

007 3 Reject 
No 

targets 
 

No 
targets 

 3 Reject 

009 1 Reject 1 Reject 1 Reject 
No 

targets 
 

013 3 Reject 
No 

targets 
 

No 
targets 

 
No 

targets 
 

Summary Reject 6/6 Reject 4/6 Reject 3/6 Reject 3/6 
*Statistically significant targets only. 1=Ipsilateral, 2= Midline, 3=Contralateral. 

We computed effect sizes to examine the magnitude of change for each participant across 

each variable (Table 7). Movement efficiency and angular displacement demonstrated the 

medium effect sizes (d=0.52 and d=0.51, respectively). Acceleration cycles were associated with  

the smallest effect sizes (d=0.21). Participant 007 demonstrated the largest mean effect size 

(d=0.68) compared to participant 001 with the smallest (d=0.12). Overall the mean effect size 

across all variables and participants was small (d=0.37). 
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Table 7. Effect Sizes: Kinematic Performance by Participant 

Participant 

Temporal 
Characteristic 

Spatial 
Characteristics 

Mean Effect 
Size 

Movement 
Efficiency 

Angular 
Displacement 

Movement 
Error 

Acceleration 
Cycles 

001 0.22 0.61 -0.53 0.16 0.12 
004 0.84 0.68 0.91 0.10 0.63 
005 0.45 0.59 0.08 0.13 0.31 
007 0.24 0.38 -0.04 0.12 0.17 
009 0.79 0.69 0.88 0.35 0.68 
013 0.56 0.09 0.07 0.39 0.28 

Mean 0.52 0.51 0.22 0.21 0.37 
Note. Effect sizes are Cohen’s d. 

 

We generated a forest plot examining the training effect of the Myomo orthosis on 

movement efficiency when reaching to target 3 (Figure 9). We selected this variable and this 

target because there were significant findings for all participants, and because the plot helped to 

contrast the differences in effect sizes reaching to the contralateral target. Effect sizes (r) ranged 

from a strong effect size, r=0.71 (participant 5) to a negligible effect size, r=0.019 (participant 

2). The overall effect size was moderately strong (r=0.45; Lipsey & Wilson 2001). 
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Figure 9.  Forest Plot Movement Efficiency 

 

Finally, we generated a forest plot examining the training effect of the Myomo orthosis 

on angular displacement of the elbow when reach to Target 1 (Figure 10). We selected this 

variable and this target because there were significant findings for all participants sans one, and 

because the plot helped to elucidate the variability among participants. Effect sizes (r) ranged 

from a strong effect size, r=0.69 (participant 2) to a modest effect size, r=0.14 (participant 6). 

The overall effect size was moderately strong (r=0.54; Lipsey & Wilson 2001). 
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Figure 10.  Forest Plot, Elbow Angular Displacement Improvements 
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5.0  DISCUSSION 

We predicted that before training, the kinematic performance of movement efficiency, elbow 

angular displacement, movement error, and acceleration cycles would be better with the Myomo 

orthosis than without. This proved to be true for only 2 participants for movement efficiency 

(temporal characteristic), and 4 participants for elbow angular displacements and movement 

error (spatial characteristics).No participants demonstrated improvements in acceleration cycles. 

We also predicted that after 16 sessions of training with the Myomo orthosis, kinematic 

performance for each of the 4 variables would improve significantly. All 6 participants 

demonstrated improvements in movement efficiency for one or more targets. Five of the 6 

participants demonstrated improvements in one or more of the spatial characteristics of 

kinematic performance. These findings suggest that the immediate effect of the Myomo orthosis 

on reaching performance (hypothesis 1) appears to be more attenuated than the training effect of 

the Myomo orthosis (hypothesis 2). Effect size calculations suggest that the magnitude of the 

training effect was greatest for movement efficiency and angular displacement (medium effect 

size) and the least for movement error and acceleration cycles (small effect size). 

One of the benefits of multiple single subject design experiments using the same research 

paradigm is the opportunity to examine characteristics of individuals who demonstrated large 

and small responses to intervention. For example, individuals who had a little to no response to 

the intervention (low performers: 001, 007, 013) were characterized by high levels of spasticity, 
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as measured by the Modified Ashworth Scale. Though these participants did demonstrate 

statistically significant kinematic improvements, they each demonstrated a small magnitude of 

improvement, and consistently only with the contralateral target. We believe that this pattern is 

indicative of movements dominated by shoulder spasticity (i.e., shoulder internal rotation and 

horizontal adduction).These low performers demonstrated significant improvements on gross 

kinematic measures such as movement efficiency and elbow angular displacement, but not in 

more precise kinematic measures of skill such as movement error or acceleration cycles. Like the 

higher performers, these participants were able to progress through the staged intervention but 

generally required more time to reach phase IV and in general required a higher level of 

assistance from the Myomo device. 

Given the sensitivity of kinematic measures of performance, it may not be surprising that 

all participants demonstrated some statistically significant improvements in reach performance. 

Perhaps a more interesting finding would be whether or not the participants demonstrated more 

meaningful clinical outcomes. All participants enrolled in this study were not able to participate 

in more traditional task-oriented practice regimens prior to the study, due to moderate to severe 

motor impairment. Furthermore, all participants were considered to have achieved all benefits 

from therapy (none were currently receiving therapy).Yet, despite these impairments, all 

participants (save one, due to unrelated medical issues) were able to participate in and to 

progress through a phased task-oriented practice program using the Myomo orthosis. It is worth 

noting that without the addition of the Myomo orthosis, participants would not have been able to 

engage in these treatment tasks. 
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Participants progressed through the four intervention phases at different rates but all 

participants were able to complete the tasks in each phase of the intervention. In the first phase, 

intervention consisted of simple flexion and extension of the elbow that required the participant 

to actively contract and relax the biceps muscle, a task that for some required multiple visits to 

achieve. Participants 001, 007, and 013 all required several visits to meet the achievement 

criteria to move out of Phase I, much of this time spent learning how to reduce co-contraction 

and selectively control the biceps muscle. Some participants, such as 009 progressed thru the 

first 3 phases of intervention within the first 3 visits and progressed to phase 4, where she had to 

complete more complex bimanual tasks in both triceps and biceps modes while others, notably 

001 and 004 required 9 to 12 visits to reach the same intervention level of difficulty. Participants 

who progressed more slowly also, on average, required higher levels of assistance from the 

Myomo orthosis, indicating lower motor output. This is relevant and interesting in that it 

supports the idea that participants, even those with very low levels of upper extremity function 

can make measurable and clinically meaningful changes in upper extremity function.  

These are the first findings examining the immediate and training effect of the Myomo 

orthosis among individuals with chronic upper extremity hemiparesis. As such they are useful in 

informing the design of future, more rigorous studies examining the use of robotic technologies 

to support upper extremity recover after stroke. Nonetheless, the implications of these findings 

must be discussed in terms of the limitations present within the current study. Limitations 

attributed to kinematic and clinical measurement, as well as limitations attributed to the device 

used in this study, are discussed in the following sections. 
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5.1 LIMITATIONS: KINEMATIC MEASURES 

Elbow flexion and extension makes up only a portion of the mobility required to hit the targets in 

the three reaching conditions. The total movement of the hand to the target was comprised of 

varying degrees of trunk, shoulder, and elbow motions. During this study, no restraint was placed 

on the participant’s trunk and as such compensatory motions made up portions of many reaching 

trials. Future studies should consider either restraining the trunk to provide a more clear 

understanding of the contribution of the elbow and shoulder or model the trunk to better quantify 

the compensatory behaviors. 

5.2 LIMITATIONS: CLINICAL MEASURES 

The Chedoke Arm and Hand Activity Inventory was not sensitive enough to detect the level and 

degree of change observed in the sample, as was detected through kinematic measures of reach. 

We believe there were several issues that contributed to this: First, learned nonuse appeared to 

affect the participant’s ability to complete the CAHAI as indicated by 0 scores for one 

participant (013). This likely suggests that the participants had stopped using or incorporating 

their UE at any level in functional tasks. This was demonstrated by 0 scores through all 11 tasks 

for items for the pretest condition for one participant (013). A zero score indicates that the 

participant made no attempts or was unable to use the involved extremity in either a primary or 

stabilizing role. 
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Second, two participants (013, 004) demonstrated no difference in pre-test and post-test 

scores. However, these participants demonstrated significant differences for 3 or more of the 

kinematic measures. In addition, both participants progressed through the phased intervention 

program, demonstrating improvements in the execution of a task-oriented practice regimen.  

These two issues illustrate an apparent disconnection between the significant kinematic 

changes observed and the absence of change in the CAHAI. One potential explanation is that the 

kinematic measures are highly sensitive to small incremental changes in reaching performance. 

Another potential explanation is that clinical measures, such as the CAHAI, may be insensitive 

to meaningful changes in severely impaired upper extremities, as in this study. We believe that 

the evidence may support the second explanation, as all of the participants were able to progress 

through the phased intervention. However, further work needs to examine the relationship 

between kinematic changes and meaningful functional changes. 

5.3 LIMITATIONS: MYOMO E100 

The device used in this study, the E100 is the first commercially available upper extremity EMG 

operated robotic device. As such, further development is required to improve the utility of the 

e100 in future research and clinical interventions. One limitation of the Myomo e100 is the 

inability of the device to detect EMG on the biceps or triceps simultaneously. This limitation 

means that the interventionist must work on flexion and extension in isolation or spend a 

considerable amount of intervention time removing the device and changing the sensor location. 

The tethered control box caused a second limitation imposed by the device. At times, the cord  
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was an obstruction or obstacle to completing some tasks such as standing and reaching. Finally, 

some participants had difficulty achieving optimal fit and experienced intermittent issues due to 

binding and / or difficulty with the electrodes not making contact with the skin. 

Myomo has addressed some of these limitations through the development of next 

generation devices. The Mpower and Myopro both utilize simultaneous biceps and triceps 

sensors reducing down time and increasing flexibility and control options. In addition, the 

battery tether and controls and are now smaller and placed on the device. Both of the newer 

products address fit and electrode contact in different ways. The Mpower uses adhesive 

electrodes and the Myopro custom fit components to minimize fit and electrode contact issues as 

well as incorporates the improvements from the Mpower device. 

5.4 FUTURE STUDIES 

These data are useful in designing future phase I and II studies examining devices like the 

Myomo and their clinical applications. Future studies should investigate optimal measures for 

detecting clinically meaningful changes in reaching performance. Participants in this study 

demonstrated statistically significant improvements in kinematic performance but additional 

investigation examining the relationship between changes in kinematic performance and 

clinically meaningful changes in gross functional activities is warranted.  

In addition, future studies should examine optimal dosing of training needed to achieve 

maximum results with the Myomo orthosis. The dosing in the current study was based on 

previous reports, but the optimal dosing is yet unclear. Furthermore, the threshold at which the 

Myomo orthosis is no longer required is yet to be determined. Although anecdotal, some 
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participants in the current study progressed beyond a point where the Myomo orthosis was 

beneficial. In some cases, the Myomo orthosis actually hindered reaching performance, 

particularly with respect to movement efficiency, as participants approached the end of the study. 

Further investigators quantifying observations that indicate discharge of the Myomo orthosis will 

be useful to assist clinical translation. 

This study recruited only participants that were in the chronic phase of recovery. Based 

on the significant kinematic changes and the ability of these participants to perform a task-

oriented practice regimen, we believe further investigation examining the best timing of the 

intervention is warranted. It is unclear whether initiation of training of this nature in the acute or 

sub-acute phases of recovery would yield improved upper extremity recovery over the long-term, 

or if early initiation would be well tolerated. 

5.5 CONCLUSION 

Primary findings were two-fold. First, following 16 training sessions with the Myomo upper 

extremity robotic orthosis, significant improvements in reach performance existed for all 

participants across measured kinematic variables. Second, participants were able to participate in 

and progress through a phase-based task-oriented practice regimen. Without this device, 

participants likely would not have been able to complete these activities. As a result of these 

findings, we believe that devices such as the Myomo upper extremity robotic orthosis offer 

promising new technology that enhances participation in therapy for individuals with severe  
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impairments following a stroke. Future studies should focus on better understanding the 

mechanism of change as well as evaluating the effectiveness of this and similar technological 

applications for reducing the impairment associated with long-term upper extremity impairment. 
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APPENDIX A 

SUMMARY OF LITERATURE
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Table 8. Summary of Literature 

TASK-ORIENTED PRACTICE INTERVENTIONS 
Citation (Authors, 
Year) 

Intervention 
Characteristics 

Sample Characteristics Outcome Measures Significant Findings 

Kwakkel (1999) 
 
 

Protocol: 30 min. 5x week 
for 20 wks of Standard 
rehab + air splint restraint 
vs. Standard rehab + task 
specific training. 

101 acute (14 days post) 
severely disabled 
(Barthel below 9 and 
unable to ambulate) 
stroke patients 

Barthel; Functional 
Ambulation Categories; 
Action Research Arm 
Test 
(ARAT) 

Task specific training 
group demonstrated 
more improvements 
(ARAT) at weeks 12, 20, 
and 26. 

Langhammer (2000) 
 
 

Protocol: 40 min. 5 
days/week of either Bobath 
or motor control program 
for the duration of hospital 
stay.  

61 acute stroke patients 
with first stroke onset 
randomized to two 
groups.  
Motor Control (task 
practice) =33 
Bobath = 28 

Motor Assessment Scale  
Sodring Motor 
Evaluation  
Barthel ADL index 
Nottingham Health 
Profile 
Number of hospital days 
Discharge disposition 

Decreased # of hospital 
days in the Motor 
Control (MC) group 
compared to the Bobath 
group (BG). 
Improved Motor function 
in the MC group 
(Sodring Motor 
evaluation) 
Women in the MC group 
improved ADL vs. BG. 

Dromerick, Edwards 
& Hahn (2000) 

Protocol: 2hrs/day 5x week 
x2 weeks (20 hrs total) 

23 acute stroke survivors 
randomized into CIT 
group vs. standard care 
(SC) 

ARAT  
Barthel Index  
Pinch, grasp and gross 
motor 
Functional Independence 
Measure (FIM) 

CIT group had greater 
ARAT scores. Secondary 
analysis: CIT also 
increased pinch, and self 
care FIM score 
compared to SC. 
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  Table 8 (continued) 
   
Citation (Authors, 
Year) 

Intervention 
Characteristics 

Sample Characteristics Outcome Measures Significant Findings 

Winstein (2004) 
 
 

 

Protocol: 1hour/day *5 
days week/ 4 wks. (20 hrs 
total) for the Functional 
training (FT) and strength 
training (ST) group beyond 
the Standard Care (SC) 
group 

64 acute stroke 
admissions stratified into 
severity groups by the 
Orpington Prognostic 
Scale (OPS) then 
randomized into FT, ST, 
and SC groups 

Functional Test of the 
Hemi-paretic UE 
(FTHUE) 
Isometric torque  
Fugl-Meyer (FMA) UE 
Functional Independence 
Measure (FIM) 

No differences in 
FTHUE. FT and ST 
improved FMA at 6 wks 
and FT improved 
compared to ST at follow 
up. Both FT and ST 
increased Isometric 
torque compared to SC at 
all measurement points. 
Greatest improvement in 
the less severe group. 

Thielman (2004) Protocol: 1hour/session, 3x 
week for 4 wks of either 
Task related training (TRT) 
or Progressive resistive 
exercise (PRE).  

12 stroke survivors ≥ 6 
months, matched using 
the motor assessment 
scale (MAS) and 
randomly assigned to 
Task practice vs. 
Progressive resistive 
exercise 

Kinematic analysis 
Rivermead Motor 
Assessment (RMA) 
Motor Assessment Scale  
(MAS) 

Hand paths straightened 
in low level TRT group. 
Low level TRT group 
demonstrated more trunk 
substitution during 
kinematic reaching task 
at post test. RMA 
increased in low group. 

 
Blennerhassett & 
Dite (2004) 
 

Protocol: Both groups 
received additional 1hr/5 
days week/ 4 wks of either 
Task practice or Mobility 
training. 

30 subjects (chronicity 
not stated) randomized 
into 2 groups Task 
Practice vs. 
 Mobility training 

Motor Assessment Scale 
(MAS); Jebsen Taylor 
Hand Function Test 
(JTHFT); Timed up and 
go; 6min walk test; 

Both groups improved 
on the mobility measures 
TP group improved on 
the JTHFT and the MAS 

Yen, Wang, Chen & 
Hong (2005) 

Protocol: 2wk modified 
CIMT intervention 

30 subjects from acute 
rehab hospital 
randomized into control 
(17) or CIMT (13) 

Wolf Motor Function 
Test (WMFT) 

CIMT group improved 
scores on 6 items within 
the WMFT compared to 
control group 
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  Table 8 (continued)  
   
Citation (Authors, 
Year) 

Intervention 
Characteristics 

Sample Characteristics Outcome Measures Significant Findings 

Michaelsen, 
Dannenbaum, & 
Levin (2006) 

Protocol: 3x wk*5 weeks, 1 
hr each session. Both TR 
and C groups completed 
object related reach to 
grasp training in the home 

30 chronic stroke 
survivors randomized to 
either Task specific 
training with trunk 
restraint (TR) or without 
©  
Participants were 
stratified by FMA level 

Kinematic measures of 
reach, FMA 
TEMPA 
Box and Blocks 

TR decreased UE 
impairment (FMA), TR 
had increased reach 
(elbow extension) 
Secondary analysis: TR 
groups’ change in arm 
ability (TEMPA) was 
positively correlated with 
elbow extension while 
the C group was not. 

Higgins, Salbach, 
Wood-Dauphinee, 
Richards, Cote & 
Mayo (2006) 

Protocol: 90 
minutes/session, 3x 
/week/6 weeks (18 total 
sessions). 
TOP group: tasks designed 
to improve fine and gross 
UE movement 
Control: walking tasks 

91 ambulatory 
individuals within 1yr 
post stroke. Participants 
were randomly assigned 
to one groups and 
stratified in into high, 
medium and low 
impairment groups. 

Box and block 
9 hole peg 
TEMPA 
Stroke Rehabilitation 
Assessment of 
Movement 

No significant 
differences between 
groups at post-test 

DEVICE-ASSISTED INTERVENTIONS 
BATRAC TRAINER 
Whitall, McCombe 
– Waller, Silver, & 
Macko (2000) 

Protocol: 20 min. of 
BATRAC 3 times/ week for 
6 wks.  

16 adults with chronic 
hemiparesis (6 months 
or greater) 

(Pre/Post Intervention with 
retention test) 
Fugl-Meyer UE Motor 
Performance Test (FMA) 
Wolf Motor Function Test  
Purpose developed Use 
Questionnaire  

Pre vs. Post and Pre vs. 
Retention FMA & 
WMFT, improved. 
The Use Questionnaire 
showed increased use 
between pre and post and 
pre and retention. 
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Table 8 (continued) 
 

Citation (Authors, 
Year) 

Intervention Characteristics Sample Characteristics Outcome Measures Significant Findings 

Luft, McCombe-
Waller, Whitall, 
Forrester, Macko, 
Sorkin, Schulz, 
Goldberg, & Hanley 
(2004) 

Protocol: 1hour/session, 
3x/week for 6weeks for: 
1) BATRAC training 
2) Dose matched 
therapeutic exercise 
(DMTE) 

21 adults with chronic 
hemiparesis (>34 
months) randomly 
assigned into 2 groups 
BATRAC (9) 
DMTE (12) 

Functional MRI (fMRI) 
FMA 
WMFT 
University of Maryland 
Arm Questionnaire for 
Stroke 

BATRAC group had 
increased fMRI 
activation in the 
contralesional cerebrum 
and ipsilateral 
cerebellum. No 
significant between 
group functional 
differences. 

SMART ARM 
Barker, Brauer, & 
Carson (2008) 

Protocol: 1 hour/day, 3 
days/week, 4 weeks; 
1) SMART Arm, 2) 
SMART Arm + EMG-
stimulation, & 3) No 
Treatment Control 

33 adults with chronic 
hemiparesis (CVA) 
SMART Arm (n=13) 
SMART Arm+EMG-
stimulation (n=10) 
No Treatment (n=10) 

(Pre/Post 
Intervention/Week 12) 
Motor Assessment Scale 
(Item 6); Manual Muscle 
Testing (Triceps); 
Modified Ashworth Scale 
(MASS); Isometric 
Reaching Force; Reaching 
Distance; 

Both SMART Arm 
groups, but not the 
control group, showed 
significant improvements 
all measures post 
intervention and at Week 
12. Compared to the 
control group, both 
SMART Arm groups 
demonstrated greater 
improvements in Motor 
Assessment Score, 
MASS, Reaching Force 
and Reaching Distance. 
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  Table 8 (continued) 
      
Citation (Authors, 
Year) 

Intervention Characteristics Sample Characteristics Outcome Measures Significant Findings 

REHA SLIDE 
Hesse, Werner, 
Pohl, Mehrholz, 
Puzich, & Krebs 
(2008) 
 

Protocol: 20-30 
minutes/session,5days/week 
for 6weeks 
Treatment A: standard Care 
+ REHA SLIDE  
Treatment B: Standard 
care+ electrical stimulation 

54 sub-acute (4-8wk 
post stroke) subjects 
with severe UE 
impairment (FMA 
<18) 

(Multi-center RCT) 
UE Fugl-Meyer 
Box and Block test 
Medical Research Council 
Modified Ashworth Scale 
(MASS) 

No significant 
differences were found 
between the electrical 
stimulation and REHA 
SLIDE group for any of 
the outcome measures.  

THERAPY ASSISTANT WREX 
Iwamuro, Cruz, 
Connelly, Fisher, & 
Kamper (2008) 

Repeated measures with 3 
trials to reach to 12 objects 
both with and without the 
WREX. Use of WREX was 
randomized with at least 1 
day between trials. 

10 CVA subjects with 
chronic hemiparesis 
(>3mo) 
2 to stage 3 on the 
Chedoke-McMaster 
Stroke Assessment 
scale for the arm 

(Within-subjects repeated 
measures) 
Reaching Arm Kinematics 
(reach distance to target, 
peak velocity, peak 
velocity within the 
movement and mean jerk) 
Surface EMG of bicep, 
triceps and brachioradialis 

In subjects using the 
WREX: 
Reach distance increased 
Peak velocity, Peak 
velocity within the 
movement and mean jerk 
decreased compared to 
without the WREX. 
Bicep and Anterior 
Deltoid EMG activity 
reduced in the WREX 
group 

ROBOT-ASSISTED INTERVENTIONS 
MIT MANUS (Also known as Inmotion) 
Aisen, Krebs, 
Hogan, McDowell, 
& Volpe (1997) 

Protocol: unknown 
MIT-Manus with Standard 
Practice vs. Sham Manus 
with standard practice 

20 CVA subjects with 
acute hemiparesis from 
rehabilitation hospital 

FMA 
Motor Status Score 
Motor Power Score 
(shoulder) 

Significant decline in 
impairment in the 
experimental group 
compared to standard 
care. 
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  Table 8 (continued)  
    
Citation (Authors, 
Year) 

Intervention Characteristics Sample Characteristics Outcome Measures Significant Findings 

 Fasoli, Krebs, Stein, 
Frontera & Hogan 
(2003) 

Protocol: Robotic therapy 
3x/week for 6 weeks  

1. Sensory- motor (if 
unable to move arm) 

2. Progressive resistive 
(if able to reach) 

*Both groups used MIT 
MANUS 

20 participants with 
chronic stroke 1-5 
years post 
*Must have MPS 
between 2/4 

Modified Ashworth Scale 
(MASS) 
Fugl-Meyer (FMA) 
Motor Status Scale (MSS) 
Medical Research Council 
motor power score (MPS) 

Both groups improved 
in: FMA, MSS 
(shoulder, elbow, wrist 
and hand), MPS 
Secondary analysis of 
change found increased 
MSS (wrist and hand) for 
the progressive resistive 
group vs. sensory-motor 

Daly, Hogan, 
Perepezko, Krebs, 
Rogers & Goyal 
(2005) 

Protocol: 5hrs/day, 
5days/week for 12 weeks. 

1. 1.5 hrs/session of 
INMOTION reach 
training 

2. 1.5 hrs/session of 
Functional electrical 
stimulation (FES) 

12 participants with 
chronic stroke 
Must have 1/5 wrist 
ext and greater than a 
10 on the upper limb 
coordination measure 

Arm motor ability test 
(AMAT) 
FMA 
Kinematic measures 
recorded by Inmotion:  

1. Accuracy 
2. Smoothness 

 

No significant 
differences between 
groups. Within groups: 
the INMOTION group 
showed improvement in 
AMAT, FMA & 
Kinematic measures of 
Accuracy & Smoothness 

MacClellan, 
Bradham, Whitall, 
Volpe, Wilson, 
Ohlhoff, Meister, 
Hogan, Krebs & 
Bever (2005) 

Protocol: Pre-post: 2 
hours/day, 3days/week for 3 
weeks (18 session’s total) of 
goal directed reaching using 
the Inmotion Robot. 

30 chronic (>6mo) 
stroke with Motor 
Power Score of 3or 
less 
Participants were 
stratified by FMA: <15 
= severe 
FMA: 16 or < 
moderate 

Motor Status Score (MSS) 
Wolf Motor Function Test 
(WMFT) 
FMA (UE) 
 

Moderate group 
improvement in WMFT 
Severe group 
improvement in FMA, 
Motor power assessment,  
and WMFT.  At 3mo 
follow up compared to 
post-treatment: Moderate 
group improved FMA 
and severe group 
improved WMFT. 
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  Table 8 (continued)  
   
Citation (Authors, 
Year) 

Intervention Characteristics Sample Characteristics Outcome Measures Significant Findings 

Krebs, Mernoff, 
Fasoli, Hughes, 
Stein & Hogan 
(2008) 

Protocol: 3x/week, 6 weeks 
Robotic assist functioned in 
three different modes  
A) no grasp 
 B) grasp actual object  
C) grasp a virtual object 

47 chronic stroke 
community dwelling 
individuals with a 
Medical rehab council 
power score(MPS) of 1 
or greater sufficient 
cognition to participate 

FMA 
Kinematic measures 
(results not published) 

No significant difference 
between 3 modes 
 
Aggregate of 3 modes: 
FMA increased over 
time 
 

Volpe, Lynch, 
Ferraro, Galgano, 
Hogan, & Krebs 
(2008) 

Protocol: 1hr/session, 
3x/week for 6 weeks. 

1. Robotic training 
2. Standard care 

 

21 chronic stroke 
survivors with a FM 
score > 33.  

FMA (Shoulder &elbow) 
FMA (Wrist & hand) 
Motor Power Scale 
MAS 
Stroke Impact Scale  
Action Research Arm Test 
(ARAT) 

No differences between 
groups for all of the 
primary motor 
impairment measures. 

Mirror-Image Movement Enabler (MIME)  
Lum, Burgar, 
Majmundar, Van der 
Loos & Shor (2002) 

Protocol: 24 1hr. sessions 
over 2 months. 
1)Robotic assisted shoulder 
and elbow movements  
2)Traditional therapy(NDT) 

24 chronic stroke 
participants (> 6mos) 

Reach kinematics 
FMA 
 reach displacement 
 strength 

The robotic group 
increased reach extent, & 
strength (on the device) 
& FM (proximal 
movement component)  

Lum, Burgar & Shor 
(2004) 

Protocol: 24 1hr. MIME 
sessions over 2 months.  
Intervention involved 
reaching to 8 targets in 
active constrained mode. 
Targets placed table top and 
shoulder level, forward, 
lateral and between. 

13 chronic stroke 
participants (> 6mos) 
Mean FM score was 24  

Work output and 
Kinematic measures of 
Velocity and reach 
distance (measured by 
MIME) 
EMG activation patterns 
 

Increased work output 
Improved velocity of 
movement in high level, 
increase distance in low. 
Improved activation 
patterns in shoulder 
height reaching targets 
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  Table 8 (continued)  
    
Citation (Authors, 
Year) 

Intervention Characteristics Sample Characteristics Outcome Measures Significant Findings 

Lum, Burgar, Van 
der Loos, Shor, 
Majmundar & Yap 
(2006) 
 

Protocol: 1 hour/session, 15 
sessions over 4 weeks. 4 
groups: 

1.  MIME unilateral 
2. MIME bilateral 
3. MIME 

unilateral/bilateral 
4. Standard care  

*6 month follow up 

30 sub-acute stroke 
participants in 4 
groups. (3 robotic + 1 
standard care) 
 

Modified Ashworth Scale 
(MASS) 
FMA (proximal and distal) 
Motor Status Score (MSS) 
Motor Power 
Functional Independence 
Measure (FIM) self care 
and transfers 

In subjects in the 
bilateral/unilateral 
MIME group, FMA 
(proximal) improved. 
 
At the 6 month follow up 
no significant differences 
were reported. 
 
 

NeReBot (NEuroREhabilitation robot) 
Masiero, Celia, 
Rosati, & Armani 
(2007) 

Protocol: All participants 
received standard care 
(amount not reported) 

A) Standard care + 
NeReBot 20-30 min 
x2/day 5day/week, 
x5weeks. 

B) Standard care + 
sham NeReBot. 

*3 and 8 month follow up 
 

35 acute stroke 
participants 

A) 17 
B) 18 

FMA (upper extremity) 
Medical research council 
motor power score (MPS) 
FIM 
MAS 

NeReBot group showed 
greater improvement in 
FMA(proximal) and 
strength (MRC) in bicep 
and deltoid 
 
*Gains in FMA and 
deltoid strength were 
maintained at 3 and 8 
months follow up.  
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  Table 8 (continued) 
    
GENTLE/s Robot-Mediated Therapy System 
Citation (Authors, 
Year) 

Intervention Characteristics Sample Characteristics Outcome Measures Significant Findings 

Coote, Murphy, 
Harwin & Stokes 
(2008) 

Protocol: 30 min of either 
GENTLE or Sling 
supported UE therapy 3x 
week. Duration of each 
phase not stated. 
Single subject design with 
multiple baselines (ABC or 
ACB) where A=baseline, 
B=GENTLE, C=Sling 
suspension 
GENTLE intervention 
compared to sling 
suspension only 

20 subjects with 
varying time since 
stroke assigned to 2 
groups of 10 
 

ROM 
FMA 
Motor Assessment Scale 
(MC) 
MASS 

Group 2 (ACB) had 
improved Motor 
Assessment Score during 
the GENTILE 
intervention period and 
decrease MAS in Group 
1 during the GENTILE 
intervention period. 
 

Assisted Rehabilitation and Measurement (ARM) Guide 
Kahn, Averbuch, 
Rymer, & 
Reinkensmeyer 
(2006) 

Protocol: 45 minute/session, 
x24 sessions in an 8 wk 
period.  
2 groups:  

1) Robotic active 
assistive training using 
the ARM guide 

2) Free reach training: 
unassisted reaching 
exercises 

19 participants >1 year 
post 
Subjects were stratified 
by severity using the 
Chedoke-McMaster 
(CM) Stroke 
Assessment Scale 

Biomechanical measures 
derived from ARM guide: 

1. Reach distance 
2. Reach speed 
3. Stiffness 
4. Straightness 
5. Smoothness 

CM scale 
Ranchos Los Amigos 
Functional Test of Upper 
Extremity Function 
(FTHUE) 

Both groups improved 
over time in Reach 
distance, speed, 
straightness and CM 
score.  
 
The Free reaching group 
showed smoother reach  
 
The Robotic group 
demonstrated improved 
scores on the RLA. 
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  Table 8 (continued)  
    
REHABOB (robotic rehabilitation system for upper limb motion therapy for the disabled) Therapeutic System 
Citation (Authors, 
Year) 

Intervention Characteristics Sample Characteristics Outcome Measures Significant Findings 

Fazekas, Horvath, 
Troznai, & Toth 
(2007) 

Protocol: RCT with 2 
groups 

A.  Bobath therapy only 
(30 minutes/ day, 
x20 days) 

B. Robotic therapy plus 
Bobath (Additional 
30 minutes of 
REHABOB x20 
days 

30 participants with 
upper motor lesion 
secondary to head 
injury or stroke. 
Highly variable degree 
of acuity (1month – 87 
months post injury) 

Rivermead arm score 
MAS (shoulder) 
MAS (elbow) 
Fugl-Meyer (shoulder –
elbow) 
ROM 
FIM self-care 

No between group 
differences were present. 
Both groups showed 
improvement over time 
for most measures. 
The control (Bobath) 
group improved on FIM 
self care while the 
robotic group did not. 

Bi-Manu-Track  
Hesse , Werner , 
Pohl , Rueckriem, 
Mehrholz, Lingnau 
(2005) 

Protocol: Random 
assignment to two groups: 

A.  Bi-Manu-Track 
B. Electrical Stim 

Both groups received 
standard care plus 
intervention: (20 
minutes/day, 5days/week 
for 6 weeks (total of 30 
sessions) 

44 sub-acute 
participants with sub-
acute stroke and severe 
(FM<18) paresis 

FMA  
Secondary: 
Motor Power Score (MPS) 
MAS 

FM improved in both 
groups over time but 
improved significantly 
more in the robotic group 
vs. electrical stimulation 
Similarly the MPS 
improved in both groups 
over time and improved 
in the robotic group vs. 
electrical stimulation 

Myomo Myomo Myomo Myomo Myomo 
Stein, Narendran, 
McBean, Krebs, & 
Hughes (2007) 

Stein, Narendran, McBean, 
Krebs, & Hughes (2007) 

Stein, Narendran, 
McBean, Krebs, & 
Hughes (2007) 

Stein, Narendran, 
McBean, Krebs, & Hughes 
(2007) 

Stein, Narendran, 
McBean, Krebs, & 
Hughes (2007) 
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APPENDIX B 

INTERVENTION DOCUMENTATION AND FLOW SHEETS 

Phase I 

Goals:  To properly fit, adjust and calibrate the Myomo to the participant 
 
o Select appropriate size using guidelines from the Myomo handbook and certification 

course 
o Size__________ 
o Side__________ 
o Device number ________ 

o Adjust padding for comfort and free elbow motion 
o Notes on any additional padding or non-standard padding for comfort and fit 

_____________________________________________________________ 
o Calibrate the Myomo on biceps with participant’s arm in calibration position 

o Record resting calibration level _______________ 
o Set spring and assistance levels to 1(spring) and 4 (assistance) 

o Adjust spring and assistance levels until smooth motion is achieved 
o Record starting settings _______________ 
o Begin Phase 1 activities listed below in the flow sheet 
o Record information in the data collection tool  
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Table 9.  Phase I Flow Sheet 

PHASE I : Phase Goal: Don, calibrate, and gain familiarity with device 

Participant ID #___________Time in:_________Time out:__________ 

Activity Visit #__ Visit #__ 

 Date___ Date___ 

 Warm up** Warm up** 

Warm up: Table top self-
range of motion (2x10) for 
wrist, elbow and shoulder 

  
 

Seated weight-bearing 
through elbow; Seated 
weight-bearing through arm 
elbow extended 

  

Don and Calibrate 
Myomo(B) 

Settings / Repetitions Settings / Repetitions 

Passively flex elbow; 
participant actively relaxes 
biceps, extending elbow full 
range (2x10) 

  

REST  4 min 4 min 
Mid-range hand to chin with 
should internally rotated 
(2x10, rest between sets or 
until fatigued) 

  

REST 4 min 4 min 
Full range hand to mouth with 
should internally rotated; 
Visualize bringing a french 
fry to mouth(2x10 or until 
fatigued) 

  

IF participant is able to 
complete full range elbow 
flexion with 75% success (3 
out of 4 consecutive trials),  
progress to Phase II 

  
  

*(B) denotes Biceps, (T) triceps setup (P) = Participant**prior to putting on the Myomo 

 

  



67 

PHASE II  

 

Table 10.  Phase II Flow Sheet 

Phase Goal: Initiate and gain proficiency with basic elbow flexion and extension motions in a 
variety of planes and positions 

Participant ID #___________ Time in:_________Time out:__________ 

Activity Visit #__ Visit #__ 

 Date___ Date___ 
 Warm up** Warm up** 

Warm up: table top self-range 
of motion (2x 10) for wrist, 
elbow and shoulder 

  
 

Seated weight-bearing through 
elbow; Seated weight-bearing 
through arm elbow extended 

  

Don and Calibrate Myomo(B) Settings / Repetitions Settings / Repetitions 
Hand to chin with hand on 
beginning on opposite knee, 
flex and try to touch chin(2x10 
or until fatigued) 

  

REST 3 min 3 min 

Flex and extend elbow with 
shoulder in neutral orientation; 
Reach toward same shoulder; 

  

REST 3 min 3 min 
Flex shoulder to ~45 degrees; 
Repeat above; Reach toward 
same side ear to adjust glasses; 

  

Flex shoulder to 90 degrees but 
not beyond;Simulate bringing 
back a ball to throw and then 
release; 

  

Change EMG to triceps and 
recalibrate 

Settings / Reps  

(T) Resist elbow extension in 
partial range with shoulder in 
neutral (sit or stand) 
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 Table 10 (continued)  
 
(T)Full range elbow extension 
(sit or stand) 

  

REST 3 3 
(T) Elbow extension with 
shoulder flexed to 45 degrees 

  

(T) Elbow extension (dart 
throwing) with shoulder flexed 
to 90 degrees (standing), if no 
shoulder pain 

  

If able to complete 6 out of 8 
tasks with 75 percent success 
progress to Phase III 
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Phase III 

 

Table 11.  Phase III Flow Sheet 

Phase Goals: Add occupation and function to established motions 

Participant ID #___________ Time in:_________Time out:__________ 

Activity Visit #__ Visit #__ 
 Date___ Date___ 
 Warm up** Warm up** 

Warm up: Table top self range 
of motion (2x 10) for wrist, 
elbow, and shoulder 

  
 

Seated weight-bearing through 
elbow; Seated weight-bearing 
through arm elbow extended; 

  

Don and Calibrate Myomo(B) Settings / Repetitions Settings / Repetitions 
Warm up biceps in flexion and 
extension (2x10) 

  

Remove towels from elevated 
surface, flex elbow and place on 
table (B) or (T)sitting/standing 

  

Bilateral elbow flexion; Use a 
cane and flex and extend 
bilaterally (3x10) (B) 

3 min 3 min 

In standing, simulate dusting 
table top by flexing and 
extending elbow with internal 
rotation, cloth in hand 

  

REST 3 min 3 min 
In standing, simulate dusting 
table top by flexing and 
extending elbow with shoulder 
internally rotated, cloth in hand 

  

REST   
Bilateral elbow flexion; Use a 
cane and flex and extend 
bilaterally (3x10)  

  

If participant is able to complete 
6 out of 7 tasks with 75 percent 
success progress to Phase IV 

  



70 

Phase IV 

 

Table 12.  Phase IV Flow Sheet 

Phase Goals: Add increased complexity to bimanual tasks and motions 

Participant ID #___________ Time in:_________Time out:__________ 

Activity Visit #__ Visit #__ 

 Date___ Date___ 

 Warm up** Warm up** 

Warm up: Table top self range of 
motion (2x 10) for wrist, elbow 
and shoulder 

  
 

Seated weight-bearing through 
elbow; Seated weight-bearing 
through arm elbow extended; 

  

Don and Calibrate Myomo(B) Settings / Repetitions Settings / Repetitions 
Warm up biceps in flexion and 
extension (2x10) 

  

Remove towels from elevated 
surface, flex elbow and place on 
table(B) or (T) in sitting/standing 

  

In standing, work on bilateral 
elbow flexion; Move laundry 
basket from low to high surface 

3 min 3 min 

In standing, simulate sanding 
block activity using table top by 
flexing and extending elbow; 
Increase movements away from 
midline to increase difficulty; 

  

REST 3 min 3 min 
In sitting, complete unilateral 
and bilateral wheelchair 
propulsion (B) or (T) based on 
abilities 

  

REST   
Wheelchair pushups in sit-to-
stand in (T) mode; Sets of 5 
unless otherwise noted; 
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APPENDIX C 

CHEDOKE ARM AND HAND ACTIVITY INVENTORY SCORES 

Table 13.  Chedoke Arm and Hand Activity Inventory Scores 

Item 
001 004 005 007 009 013 

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 
1. 3 3 1 1 2 2 1 2 4 4 0 0 
2. 1 2 1 1 1 1 0 1 1 1 0 0 
3. 1 1 1 1 1 2 0 1 3 3 0 0 
4. 1 2 1 1 1 2 0 1 2 2 0 0 
5. 1 1 2 2 2 2 0 1 2 2 0 0 
6. 1 1 1 1 1 1 0 1 1 2 0 0 
7. 1 1 1 1 1 1 0 0 1 1 0 0 
8. 1 1 1 1 1 1 0 2 1 1 0 0 
9. 1 1 1 1 1 1 0 0 0 0 0 0 
10. 1 1 1 1 1 1 0 1 2 2 0 0 
11. 1 1 1 1 1 1 0 1 1 1 0 0 

Total 13 15 12 12 13 15 1 11 18 19 0 0 
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APPENDIX D 

MOVEMENT EFFICIENCY 
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Figure 11.  Movement Efficiency: Participant 001 
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Table 14.  Movement Efficiency: Participant 001 

 
  

Participant 001: Without Use of Myomo 
Target Auto-

Correlation 
Pre Mean  

Value 
Post Mean  

Value 
Z-Score P<.05 

Ipsilateral No 170.8 105.6  0.24 No 
Middle No 134.9   91.4  0.49 No 

Contralateral No   92.3   68.9 -3.48 Yes 
Participant 001: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 139.2 125.3 -0.43 No 
Middle No 140.5 125.1 -0.86 No 

Contralateral No 174.3 150.7 -0.65 No 
Participant 001: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 170.9 139.2 4.92 Yes 
Middle No 134.2 140.5 -0.09 No 

Contralateral No 92.3 174.3 -2.83 Yes** 
Participant 001: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 105.7 125.7  0.24 No 
Middle No 91.4 125.7  0.28 No 

Contralateral No 68.9 150.7 -2.96 Yes** 
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Figure 12.  Movement Efficiency: Participant 004 
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Table 15. Movement Efficiency: Participant 004 

 

Participant 004: Without Use of Myomo 
Target Auto-

Correlation 
Pre Mean  

Value 
Post Mean  

Value 
Z-Score P<.05 

Ipsilateral No 646.0 206.3 -3.33 Yes 
Middle No 340.3 109.8 -2.80 Yes 

Contralateral No 194.3 189.5   0.81 No 
Participant 004: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 374.8 188.9 -1.69 Yes 
Middle No 322.9 192.3 -2.32 Yes 

Contralateral No 231.5 168.3 -0.61 No 
Participant 004: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 646.0 374.8 -2.20 Yes 
Middle No 340.3 322.9 -0.26 No 

Contralateral No 194.3 231.5 1.32 No 
Participant 004: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 206.3 188.9 -0.68 No 
Middle No 109.8 192.3 -2.28 Yes 

Contralateral No 189.5 168.3   0.19 No 
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Figure 13.  Movement Efficiency: Participant 005 
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Table 16. Movement Efficiency: Participant 005 

 

Participant 005: Without Use of Myomo 
Target Auto-

Correlation 
Pre Mean  

Value 
Post Mean  

Value 
Z-Score P<.05 

Ipsilateral No 57.0 37.5 -1.28 No 
Middle No 77.0 39.1 -2.07 Yes 

Contralateral No 109.9 70.8 -2.51 Yes 
Participant 005: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 56.20 51.20 -0.87 No 
Middle No 65.20 55.80 -1.12 No 

Contralateral No 116.10 99.70 -0.55 No 
Participant 005: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 57.0   56.2 -0.41 No 
Middle No 77.0 65.2 -1.33 No 

Contralateral No 109.9 116.1 -0.61 No 
Participant 005: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 37.5 51.20 -1.16 No 
Middle No 39.1 55.80 -1.82 Yes 

Contralateral No 70.8 99.70 -1.80 Yes 
 
 



79 

 
 

Figure 14.  Movement Efficiency: Participant 009 
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Table 17. Movement Efficiency: Participant 009 

 
Participant 009: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 158.2 65.5 -2.73 Yes 
Middle No 118.5 69.6 -0.92 No 

Contralateral No 133.9 85.6 -1.24 No 
Participant 009: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 109.1 41.8 -2.90 Yes 
Middle No 129.1 47.4 -2.53 Yes 

Contralateral No 157.3 70.9 -3.56 Yes 
Participant 009: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 158.2 109.1 -1.60 No 
Middle No 118.5 129.1 -0.11 No 

Contralateral No 133.9 157.3 -0.60 No 
Participant 009: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 65.5 41.8 -1.87 Yes 
Middle No 69.6 47.4 -0.22 No 

Contralateral No 85.6 70.9 -1.92 Yes 
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Figure 15.  Movement Efficiency: Participant 013 
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Table 18. Movement Efficiency: Participant 013 

 
Participant 013: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 291.9 119.4 -1.10 No 
Middle No 391.3 195.3 -0.98 No 

Contralateral No 531.7 277.1 -1.90 Yes 
Participant 013: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 135.0 95.0 -0.41 No 
Middle No 205.9 90.2 -0.87 No 

Contralateral No 502.2 277.1 -2.06 Yes 
Participant 013: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 291.8 135.0 -0.69 No 
Middle No 391.3 205.9 -0.77 No 

Contralateral No 531.7 502.2   0.17 No 
Participant 013: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 119.4 95.0   0.44 No 
Middle No 195.3 90.2 -0.88 No 

Contralateral No 277.1 213.5 -0.53 No 
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APPENDIX E 

ELBOW ANGULAR DISPLACEMENT 
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Figure 16.  Elbow Angular Displacement: Participant 001 

  

Pa
rt

ic
ip

an
t 0

01
 

Before Training After Training 

Without the Use of the Myomo Orthosis 

 

Without the Use of the Myomo Orthosis 

 
With the Use of the Myomo Orthosis 

 

With the Use of the Myomo Orthosis 

 
 

-10

0

10

20

30

40

50

target 1 Target 2 Target 3
-10

0

10

20

30

40

50

target 1 Target 2 Target 3

-10

0

10

20

30

40

50

target 1 Target 2 Target 3
-10

0

10

20

30

40

50

target 1 Target 2 Target 3



85 

Table 19. Elbow Angular Displacement: Participant 001 

 
Participant 001: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No -0.43 5.53 -1.94 Yes 
Middle No 1.95 6.91 -0.46 Yes 

Contralateral No 2.58 8.53 -1.26 Yes 
Participant 001: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 23.21 16.77  0.30 No 
Middle No 24.47 15.51 -0.99 No 

Contralateral No 19.15 18.48 -1.27 No 
Participant 001: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No -0.43 23.21 -2.93 Yes 
Middle No 1.95 24.47 -0.27 No 

Contralateral No 2.58 19.15 -2.33 Yes 
Participant 001: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 5.53 16.77 -1.59 No 
Middle No 6.91 15.51 -1.55 No 

Contralateral No 8.53 18.48 -2.96 Yes 
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Figure 17.  Elbow Angular Displacement: Participant 004 
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Table 20. Elbow Angular Displacement: Participant 004 

 
Participant 004: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 5.00 29.42 -3.35 Yes 
Middle No 5.53 15.71 -1.35 No 

Contralateral No 22.63 17.72 2.17 Yes** 
Participant 004: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 40.94 72.10 -2.68 Yes 
Middle No 46.53 72.56 -2.40 Yes 

Contralateral No 26.87 64.33 -3.02 Yes 
Participant 004: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 5.00 40.94 -3.73 Yes 
Middle No 5.53 46.53 -3.18 Yes 

Contralateral No 22.63 26.87 -0.86 No 
Participant 004: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 29.42 72.10 -2.65 Yes 
Middle No 15.71 72.56 -1.35 No 

Contralateral No 17.72 64.33   2.16 Yes** 
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Figure 18.  Elbow Angular Displacement: Participant 005 
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Table 21. Elbow Angular Displacement: Participant 005 

 
Participant 005: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 7.51 10.75 -1.83 Yes 
Middle No 6.21 9.98 -2.54 Yes 

Contralateral No 7.04 8.01 -0.52 No 
Participant 005: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 3.77 0.59   0.35 No 
Middle No 1.36 1.82   0.26 No 

Contralateral No 0.79 6.77 -0.66 No 
Participant 005: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 7.51 3.77 -1.36 No 
Middle No 6.21 1.36 -1.71 Yes** 

Contralateral No 7.04 0.79 -2.03 Yes** 
Participant 005: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 10.75 0.59 -0.21 No 
Middle No 9.98 1.82 -2.12 Yes** 

Contralateral No 8.01 6.77 -0.71 No 
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Figure 19.  Elbow Angular Displacement: Participant 007 
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Table 22. Elbow Angular Displacement: Participant 007 

 
Participant 007: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 11.05 18.17 -0.55 No 
Middle No 10.95 16.98 -0.86 No 

Contralateral No 10.78 34.31 -0.26 No 
Participant 007: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 8.75 23.21 1.38 No 
Middle No 1.00 16.26 3.35 Yes 

Contralateral No 2.71 16.13 -1.18 No 
Participant 007: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 11.05 8.75 -1.07 No 
Middle No 10.95 1.00 -1.99 Yes 

Contralateral No 10.78 2.71 -0.31 No 
Participant 007: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 18.17 23.21 0.82 No 
Middle No 16.98 16.26 0.26 No 

Contralateral No 34.31 16.13 0.14 No 
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Figure 20.  Elbow Angular Displacement: Participant 009 
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Table 23. Elbow Angular Displacement: Participant 009 

 
Participant 009: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 12.89 22.26 -2.19 Yes 
Middle No 13.81 16.88 -0.34 No 

Contralateral No 12.08 26.07 -0.89 No 
Participant 009: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 14.2 10.81 -1.04 No 
Middle No 16.35 8.33 -2.39 Yes** 

Contralateral No 23.29 7.79 -3.07 Yes** 
Participant 009: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 12.89 14.2 -0.51 No 
Middle No 13.81 16.35 -1.02 No 

Contralateral No 12.08 23.29 -2.26 Yes 
Participant 009: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 22.26 10.81 -2.57 Yes** 
Middle No 16.88 8.33 -0.45 No 

Contralateral No 26.07 7.79 -1.48 No 
 
  



94 

 

 
 

Figure 21.  Elbow Angular Displacement: Participant 013 
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Table 24. Elbow Angular Displacement: Participant 013 

 
Participant 013: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 1.28 -0.23 -0.56 No 
Middle No 4.30 1.82 0.04 No 

Contralateral No 10.60 1.34 0.96 No 
Participant 013: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 6.38 14.01 -0.59 No 
Middle No 3.88 15.99 -1.22 No 

Contralateral No 5.13 19.19 -2.28 Yes 
Participant 013: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No   1.28 6.38 -0.41 No 
Middle No   4.30 3.88 -0.08 No 

Contralateral No 10.60 5.13 -0.23 No 
Participant 013: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No  -0.23 14.01 -3.45 Yes 
Middle No   1.82 15.99 -1.78 Yes 

Contralateral No   1.34 19.19 -2.64 Yes 
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MOVEMENT ERROR 
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Figure 22.  Movement Error: Participant 001 
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Table 25.  Movement Error: Participant 001 

 
Participant 001: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 19.93 35.33 -0.50 No 
Middle No 12.08 9.88 0.66 No 

Contralateral No 15.10 12.09 0.76 No 
Participant 001: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

1 No 8.52 15.07 -0.10 No 
2 No 6.44 11.10 -1.33 No 
3 No 14.19 19.74 0.01 No 

Participant 001: Before Training 
Target Auto-

Correlation 
Mean Value 

Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 19.93 8.52 -0.98 No 
Middle No 12.08 6.44 -2.96 Yes 

Contralateral No 15.10 14.19 -0.04 No 
Participant 001: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 35.33 15.07 -1.19 No 
Middle No   9.88 11.10 -0.14 No 

Contralateral No 12.09 19.74 0.48 No 
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Figure 23.  Movement Error: Participant 004 
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Table 26.  Movement Error: Participant 004 

 
Participant 004: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 48.63 9.33 -3.76 Yes 
Middle No 9.39 8.29 -0.48 No 

Contralateral No 12.42 25.86 -1.28 No 
Participant 004: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

1 No 20.84 16.42 -0.53 No 
2 No 24.24 18.35 -0.36 No 
3 No 27.96 10.86 0.27 No 

Participant 004: Before Training 
Target Auto-

Correlation 
Mean Value 

Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 48.63 20.84 -2.88 Yes 
Middle No   9.39 24.24 -2.03 Yes 

Contralateral No 12.42 27.96 -0.42 No 
Participant 001: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No   9.33 16.42 0.22 No 
Middle No   8.29 18.35 -2.28 Yes 

Contralateral No 25.86 10.86 -1.64 Yes 
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Figure 24.  Movement Error: Participant 005 
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Table 27.  Movement Error: Participant 005 

 
Participant 005: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 10.58 9.33 0.26 No 
Middle No 9.03 8.29 0.33 No 

Contralateral No 22.02 25.85 -2.04 Yes 
Participant 005: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

1 No 10.01 5.81 0.55 No 
2 No 11.90 13.52 -0.33 No 
3 No 16.98 19.22 1.87 Yes** 

Participant 005: Before Training 
Target Auto-

Correlation 
Mean Value 

Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 10.58 10.01 0.06 No 
Middle No   9.03 11.90 -0.28 No 

Contralateral No 22.02 16.98 -1.07 No 
Participant 005: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No   9.33   5.81 1.58 No 
Middle No   8.29 13.52 0.20 No 

Contralateral No 25.85 19.22 -1.85 Yes 
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Figure 25.  Movement Error: Participant 007 
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Table 28.  Movement Error: Participant 007 

 
 

Participant 007: With Use of Myomo 
Target Auto-

Correlation 
Pre Mean  

Value 
Post Mean  

Value 
Z-Score P<.05 

Ipsilateral No 11.71 12.49 1.17 No 
Middle No 10.25 20.00 -0.75 No 

Contralateral No 18.78 40.35 -1.43 No 
Participant 007: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 9.29 16.49 -0.52 No 
Middle No 11.72 17.84 -2.99 Yes** 

Contralateral No 19.29 24.42 -0.82 No 
Participant 007: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 11.71   9.29 0.34 No 
Middle No 10.25 11.72 -0.24 No 

Contralateral No 18.78 19.29 0.07 No 
Participant 007: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 12.49 16.49 0.33 No 
Middle No 20.00 17.84 -0.76 No 

Contralateral No 40.35 24.42 -1.17 No 
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Figure 26.  Movement Error: Participant 009 
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Table 29.  Movement Error: Participant 009 

 
Participant 009: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 47.02 15.11 -3.13 Yes 
Middle No 10.61 6.87 0.09 No 

Contralateral No 19.77 28.92 -1.69 Yes** 
Participant 009: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 13.35 17.89 0.25 No 
Middle No 14.14 21.55 -0.51 No 

Contralateral No 22.51 64.60 -2.42 Yes** 
Participant 009: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 47.02 13.35 -3.35 Yes 
Middle No 10.61 14.14 -0.11 No 

Contralateral No 19.77 22.51 0.57 No 
Participant 009: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 15.11 17.89 -0.51 No 
Middle No   6.87 21.55 -1.07 No 

Contralateral No 28.92 64.60 -1.97 Yes** 
 
  



107 

 

 
 
 

Figure 27. Movement Error: Participant 013 
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Table 30.  Movement Error: Participant 013 

 
Participant 013: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 8.74 7.92 -0.86 No 
Middle No 6.31 4.33 -0.05 No 

Contralateral No 10.35 16.50 -1.74 Yes** 
Participant 013: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 4.55 7.46 0.21 No 
Middle No 5.65 6.31 1.04 No 

Contralateral No 12.40 13.20 0.96 No 
Participant 013: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 8.74 4.55 -3.35 No 
Middle No 6.31 5.65 -0.11 Yes 

Contralateral No 10.35 12.40 0.57 No 
Participant 013: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 7.92 7.46 -0.51 No 
Middle No 4.33 6.31 -1.07 No 

Contralateral No 16.50 13.20 -1.97 Yes 
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APPENDIX G 

ACCELERATION CYCLES 
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Figure 28.  Acceleration Cycles: Participant 001 
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Table 31.  Acceleration Cycles: Participant 001 

 
Participant 001: Before Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 2.73 3.00 -0.11 No 
Middle No 1.80 2.60 -2.96 Yes** 

Contralateral No 1.47 3.33 -2.87 Yes** 
Participant 001: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 2.40 1.93 1.46 No 
Middle No 2.46 1.26 -1.83 Yes 

Contralateral No 2.40 1.40 -0.97 No 
Participant 001: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 2.73 2.40 -0.13 No 
Middle No 1.80 2.46 -2.47 Yes** 

Contralateral No 1.47 2.40 -2.69 Yes** 
Participant 001: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

1 No 3.00 1.93 -0.34 No 
2 No 2.60 1.26 -0.19 No 
3 No 3.33 1.40 -1.65 Yes 
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Figure 29.  Acceleration Cycles: Participant 004 
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Table 32.  Acceleration Cycles: Participant 004 

 
Participant 004: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No No trials 3.43 -3.19 No trials 
Middle No 3.25 1.53 -1.94 Yes 

Contralateral No 2.35 1.80 0.03 No 
Participant 004: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

1 No 3.80 2.21 -1.15 No 
2 No 3.53 1.80 -1.92 Yes 
3 No 3.00 1.87 -1.04 No 

Participant 004: Before Training 
Target Auto-

Correlation 
Mean Value 

Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No No trials 3.80 -2.96 No trials 
Middle No 3.25 3.53 -3.02 No 

Contralateral No 2.35 3.00 -0.45 No 
Participant 004: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 3.43 2.21 -0.62 No 
Middle No 1.53 1.80 1.63 No 

Contralateral No 1.80 1.87 0.34 No 
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Figure 30.  Acceleration Cycles: Participant 005 
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Table 33.  Acceleration Cycles: Participant 005 

 
Participant 005: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 1.27 1.13 -1.08 No 
Middle No 1.33 1.00 -2.15 Yes 

Contralateral No 2.00 1.53 -1.16 No 
Participant 005: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

1 No 1.00 1.07 0.15 No 
2 No 1.20 1.07 0.06 No 
3 No 1.73 1.47 0.84 No 

Participant 005: Before Training 
Target Auto-

Correlation 
Mean Value 

Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 1.27 1.00 -1.50 No 
Middle No 1.33 1.20 -0.93 No 

Contralateral No 2.00 1.73 -0.04 No 
Participant 005: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 1.13 1.07 0.48 No 
Middle No 1.00 1.07 0.15 No 

Contralateral No 1.53 1.47 0.56 No 
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Figure 31.  Acceleration Cycles: Participant 007 
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Table 34.  Accerlation Cycles: Participant 007 

 
Participant 007: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 1.87 2.13 -0.07 No 
Middle No 2.06 3.53 -1.33 No 

Contralateral No 2.13 4.40 -1.87 Yes 
Participant 007: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

1 No 1.93 1.67 0.40 No 
2 No 1.53 2.40 -0.30 No 
3 No 2.00 2.93 -1.61 No 

Participant 007: Before Training 
Target Auto-

Correlation 
Mean Value 

Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 1.87 1.93 -0.88 No 
Middle No 2.06 1.53 -1.07 No 

Contralateral No 2.13 2.00 -0.54 No 
Participant 007: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 2.13 1.67 0.52 No 
Middle No 3.53 2.40 -0.42 No 

Contralateral No 4.40 2.93 -0.76 No 
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Figure 32.  Acceleration Cycles: Participant 009 
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Table 35.  Acceleration Cycles: Participant 009 

 
Participant 009: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 2.60 1.80 1.36 No 
Middle No 1.33 1.40 -1.67 No 

Contralateral No 2.40 2.13 0.28 No 
Participant 009 With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

1 No 2.00 1.20 -2.05 Yes 
2 No 1.60 1.40 0.65 No 
3 No 2.47 1.86 -1.67 Yes 

Participant 009: Before Training 
Target Auto-

Correlation 
Mean Value 

Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 2.60 2.00 0.61 No 
Middle No 1.33 1.60 0.86 No 

Contralateral No 2.40 2.47 -0.37 No 
Participant 009: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 1.80 1.20 -1.16 No 
Middle No 1.40 1.40 -1.14 No 

Contralateral No 2.13 1.86 -0.69 No 
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Figure 33.  Acceleration Cycles: Participant 013 
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Table 36.  Acceleration Cycles: Participant 013 

 
Participant 013: Without Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

Ipsilateral No 1.60 1.47 -0.91 No 
Middle No 1.79 1.80 -0.32 No 

Contralateral No 2.24 3.20 0.66 No 
Participant 013: With Use of Myomo 

Target Auto-
Correlation 

Pre Mean  
Value 

Post Mean  
Value 

Z-Score P<.05 

1 No 1.20 1.06 -0.96 No 
2 No 1.73 1.13 -0.39 No 
3 No 1.93 2.27 -0.63 No 

Participant 013: Before Training 
Target Auto-

Correlation 
Mean Value 

Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 1.60 1.47 -0.33 No 
Middle No 1.79 1.80 -0.07 No 

Contralateral No 2.24 3.20 -0.84 No 
Participant 013: After Training 

Target Auto-
Correlation 

Mean Value 
Without 
Myomo 

Mean Value 
With Myomo 

Z-Score P<.05 

Ipsilateral No 1.20 1.06 -0.54 No 
Middle No 1.73 1.13 -0.69 No 

Contralateral No 1.93 2.27 0.90 No 
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