
Omega 40 (2012) 283–293

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Stirling Online Research Repository
Contents lists available at ScienceDirect
Omega
0305-04

doi:10.1

n Corr

E-m

tec@cs.n

rxq@cs.
journal homepage: www.elsevier.com/locate/omega
The falling tide algorithm: A new multi-objective approach for complex
workforce scheduling
Jingpeng Li n, Edmund K. Burke, Tim Curtois, Sanja Petrovic, Rong Qu

School of Computer Science, The University of Nottingham, Nottingham NG8 1BB, United Kingdom
a r t i c l e i n f o

Article history:

Received 23 June 2009

Accepted 8 May 2011
Processed by Associate Editor Smith
constraints. By employing a goal programming model with different parameter settings in its objective

function, we can easily obtain a coarse solution where only the system constraints (i.e. hard

Available online 14 May 2011

Keywords:

Scheduling

Goal programming

Heuristics

Multi-criteria
83/$ - see front matter & 2011 Elsevier Ltd. A

016/j.omega.2011.05.004

esponding author. Tel.: þ44 7879865914.

ail addresses: jpl@cs.nott.ac.uk (J. Li), ekb@cs.

ott.ac.uk (T. Curtois), sxp@cs.nott.ac.uk (S. P

nott.ac.uk (R. Qu).
a b s t r a c t

We present a hybrid approach of goal programming and meta-heuristic search to find compromise

solutions for a difficult employee scheduling problem, i.e. nurse rostering with many hard and soft

constraints) are satisfied and an ideal objective-value vector where each single goal (i.e. each soft

constraint) reaches its optimal value. The coarse solution is generally unusable in practise, but it can act

as an initial point for the subsequent meta-heuristic search to speed up the convergence. Also, the ideal

objective-value vector is, of course, usually unachievable, but it can help a multi-criteria search method

(i.e. compromise programming) to evaluate the fitness of obtained solutions more efficiently. By

incorporating three distance metrics with changing weight vectors, we propose a new time-predefined

meta-heuristic approach, which we call the falling tide algorithm, and apply it under a multi-objective

framework to find various compromise solutions. By this approach, not only can we achieve a trade off

between the computational time and the solution quality, but also we can achieve a trade off between

the conflicting objectives to enable better decision-making.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Employee scheduling is an essential part of everyday business
processes. A robust and powerful decision support system, which
automates the scheduling of personnel has the potential to make
significant savings in time and costs, as well as improving staff
satisfaction. The challenge of building such a system has represented
a series of demanding research questions, which have cut across
operational research and artificial intelligence for over 40 years.

Nurse rostering represents a key challenge in healthcare personnel
scheduling. Compared with some other types of employee scheduling
problems, nurse rostering is often regarded as being more compli-
cated due to the fact that hospitals operate 24 h a day and 7 days a
week. This introduces more variables and extra constraints on
night and weekend shifts. Of course, it is not the only problem
with such characteristics but it still represents a particularly
challenging problem where high quality solutions lead to high
impact benefits. Also, unlike the rostering problems for many
other service industries, nurse rostering needs to satisfy a range of
different staff requirements (e.g. skills and shortage) on different
ll rights reserved.

nott.ac.uk (E.K. Burke),

etrovic),
days and shifts. In addition, when compared with many other
rostering problems, nurse rostering usually has a longer planning
horizon (e.g. one month) and more shift types (e.g. early, day, late
and night shifts).

A survey was published in 2004, which presented a critical
analysis of the important papers in the field of nurse scheduling
[13]. Since then many more articles dealing with various nurse
rostering problems have appeared in the literature [19].
It is clear that the field has generated significant international
research interest in recent years.

The approaches in the literature range from traditional mathe-
matical programming methods (e.g. [24]) to artificial intelligence
methods such as constraint programming (e.g. [28]), expert systems
[17] and knowledge based systems [5]. Particularly successful
approaches to the problem are presented by meta-heuristic meth-
ods, which include genetic algorithms [21], simulated annealing [8],
tabu search [11], memetic algorithms [2,10], variable neighbouhood
searches [12] and component-based heuristics [27]. In very recent
years, there has been an increasing level of interest in the study of
mathematical programming based heuristics [3,6] and the study of
hyper-heuristics for the problem [14]. However, most of the papers
that have appeared in the literature have addressed simplified
versions of the problem. The goal of developing methodologies that
can handle the complexity of real world scenarios represents a
major scientific challenge.

https://core.ac.uk/display/16505357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/ome
dx.doi.org/10.1016/j.omega.2011.05.004
mailto:jpl@cs.nott.ac.uk
mailto:ekb@cs.nott.ac.uk
mailto:tec@cs.nott.ac.uk
mailto:sxp@cs.nott.ac.uk
mailto:rxq@cs.nott.ac.uk
dx.doi.org/10.1007/s10479-009-0590-8

J. Li et al. / Omega 40 (2012) 283–293284
Nurse scheduling can be regarded as a type of resource
allocation problem, in which the workload needs to be assigned
to nurses periodically, taking into account a number of hard
constraints (often generated by physical resource restrictions and
legislation) and soft constraints (normally referred to as staff
preferences). After obtaining a feasible solution which satisfies all
the hard constraints, it is necessary to edit it for practical use by
satisfying the soft constraints as much as possible. Hence, the
nurse scheduling problem is inherently a multi-objective combi-
natorial problem, with each objective, possibly in conflict with
other objectives, corresponding to a soft constraint.

In real situations, it is normally unrealistic to find a solution
that satisfies all the soft constraints. Thus, it is possible to assign
each constraint a weight and then seek a single optimal solution
in the classical sense, by employing either goal programming or
heuristic approach. However, the way of attaching a fix weight
distribution is quite subjective and varies from person to person.
A robust personnel scheduling system should be able to address
the problem and to generate more alternatives for better deci-
sion-making. An efficient way for achieving such a task is to
generate an approximate set of Pareto-optimal solutions auto-
matically. The hospital administrator then imposes some general
priority rules as a filter to significantly reduce the number of the
schedules in the set. Those highly preferable remaining schedules
are finally presented to the relevant nurses, who then select their
favourite.

In this paper, we propose a new multi-objective approach that
combines goal programming with a time-predefined search to
solve real world nurse rostering problem instances in a Dutch
hospital. The major difficulty of the problem lies in its large
number of hard and soft constraints that reflect the real situation
in a modern hospital. In the goal programming model, we
formulate the hard constraints as system constraints and the soft
constraints as individual goals. Due to the computational com-
plexity, we do not use goal programming to solve the entire
problem. Instead, we solve a partial problem to obtain two
solutions: an ideal objective-value vector where each single
objective under consideration achieves its optimal value and a
coarse solution where only hard constraints are satisfied. The
ideal objective-value vector acts as the reference point for a
multi-criterion optimization technique called compromise pro-
gramming [33] to efficiently evaluate the quality of obtained
solutions, while the coarse solution acts as a starting point for the
next meta-heuristic search to speed up the convergence.

We then propose a new global optimization algorithm, called
the falling tide algorithm, to find an approximated Pareto set of
the problem. It inherits the time-predefined feature from its
predecessor, the great deluge algorithm [20], but has achieved a
number of extensions that make its search more efficient and
more effective.

This paper is organized in the following way. Section 2
presents a 0–1 goal programming model for the specific nurse
rostering problem with many hard and soft constraints. Our
multi-objective falling tide approach is described in Section 3. In
Section 4, we discuss our results on 12 real-world data instances
and in Section 5 we give some concluding remarks.
2. A goal programming model for nurse rostering with hard
and soft constraints

The nurse rostering problem tackled here is derived from the
real world situations of intensive care units in a Dutch hospital. It
involves assigning four types of shifts (i.e. shifts of early, day, late

and night) within a planning period of one month to 16 nurses of
different working contracts in a ward. The problem has a number
of constraints that can be categorized into two groups: hard
constraints and soft constraints. Hard constraints are the ones
that must be satisfied under any circumstances. Solutions that
satisfy the hard constraints are called feasible solutions. Soft
constraints are those that refer to desirable but not obligatory
requirements. This problem can be formulated as a 0–1 goal
programming model as follows.
2.1. Definition of parameters and variables

Goal programming is a branch of multi-objective search, which
has been widely applied in multiple-criteria decision-making [31].
It can be thought of as an extension of linear programming to
cope with multiple, normally conflicting objectives. To design our
goal programming model, firstly we need to define the para-
meters and decision variables. Our definitions are outlined as
follows.

Parameters:

I¼set of nurses
J¼set of days during the planning period
W¼set index of weeks contained in the planning period
K¼set of shift types represented as {1(early), 2(day), 3(late),
4(night)}

Decision variables:

xijk¼1 if nurse i is assigned shift type k for day j, 0 otherwise

Additional parameters and variables will be introduced later in
appropriate context.
2.2. Formulation of system constraints

System constraints of a goal programming model are the ones
that can be expressed as linear equations or inequations that only
consist of the decision variables. As hard constraints are the ones
that must be satisfied absolutely, they can be treated as system
constraints. Hence, we formulate each of the system constraints
as follows.

Constraint 1: daily coverage demand (i.e. the number of
nurses) of each shift type needs to be fulfilled.X
iA I

xijk ¼ djk, 8jAf1,. . .,9J9g, kAK , ð1Þ

where djk is the coverage demand of type k on day j.
Constraint 2: a nurse should not work more than one shift on

each day.X
kAK

xijkr1, 8iA I, jAf1,. . .,9J9g: ð2Þ

Constraint 3: a nurse must not work more than a certain
number of working days during the planning period.

XJj j

j ¼ 1

X
kAK

xijkrmi, 8iA I, ð3Þ

where mi is the maximum number of working days for nurse i.
Constraint 4: a nurse must receive at least two weekends off

duty during the planning period. Note that the first day in the
planning period is a Monday, and so the 6th and 7th days are
weekend days.X
wAW

X
kAK

ðxið7w�1Þkþxið7wÞkÞr29W9�4, 8iA I: ð4Þ

J. Li et al. / Omega 40 (2012) 283–293 285
Constraint 5: a nurse must not work more than three night

shifts during the planning period.

XJj j

j ¼ 1

xij4r3, 8iA I: ð5Þ

Constraint 6: there is no night shift between two non-night

shifts.

xiðj�1Þ4�xij4þxiðjþ1Þ4Z0, 8iA I, jAf2,. . .,9J9�1g: ð6Þ

Constraint 7: there should be at least two holidays following a
night shifts, i.e. no sequences of ‘N01’, ‘N10’ and ‘N11’, where ‘N’
denotes a night shift, ‘0’ a holiday and ‘1’ a working day.

xiðj�1Þ4�
X3

k ¼ 1

xijkþ
X3

k ¼ 1

xiðjþ1Þkr1, 8iA I, jAf2,. . .,9J9�1g, ð7Þ

xiðj�1Þ4þ
X3

k ¼ 1

xijk�
X3

k ¼ 1

xiðjþ1Þkr1, 8iA I, jAf2,. . .,9J9�1g, ð8Þ

xiðj�1Þ4þ
X3

k ¼ 1

xijkþ
X3

k ¼ 1

xiðjþ1Þkr2, 8iA I, jAf2,. . .,9J9�1g: ð9Þ

Constraint 8: there is an upper limit for the number of
consecutive night shifts of each nurse.

Xrþn1

j ¼ r

xij4rn1, 8iA I, rAf1,. . .,9J9�n1g, ð10Þ

where n1 is such an upper limit value.
Constraint 9: there is an upper limit for the number of

consecutive working days of each nurse.

Xrþn2

j ¼ r

X
kAK

xijkrn2, 8iA I, rAf1,. . .,9J9�n2g, ð11Þ

where n2 is such an upper limit value.
Constraint 10: a particular nurse i1 cannot work late shifts.

xi1ðjÞ3 ¼ 0, 8jAf1,. . .,9J9g: ð12Þ

2.3. Formulation of goals

Goal programming is an extension of the linear programming
technique that treats some constraints of the linear programming
problem as the goals. To each goal, slack or surplus variables
are introduced to represent the positive or negative deviations
from the goal. Hence, we can formulate the goals, with each goal
corresponding to a soft constraint, as follows.

Goal 1: This attempts to establish complete weekends, i.e. it
aims to have either no shifts or two shifts in weekends, during the
planning period. It can be represented asX
kAK

ðxið7w�1Þk�xið7wÞkÞ�d1iw ¼ 0, 8iA I, wAW , ð13Þ

where d1iw is the amount of deviation from goal 1 for nurse
i working in week w.

Goal 2: This tries to avoid any stand-alone shift, i.e. a working
day between two free days, during the planning period. It can be
formally specified as follows:X
kAK

ðxiðj�1Þk�xijkþxiðjþ1ÞkÞþd2�ij Z0, 8iA I, jAf2,. . .,9J9�1g, ð14Þ

where d2�ij is the amount of negative deviation from goal 2 for
nurse i working on day j.
Goal 3: This attempts to allocate a minimum of two consecu-
tive holidays at a time. It can be formally outlined as follows:X
kAK

ðxiðj�1Þk�xijkþxiðjþ1ÞkÞ�d3þij r1, 8iA I, jAf2,. . .,9J9�1g, ð15Þ

where d3þij is the amount of positive deviation from goal 3 for
nurse i working on day j.

Goal 4: This attempts to allocate no more than a certain
number of consecutive days on a particular shift type. It can be
formally represented as

Xrþ3

j ¼ r

xijk�d4þirkrck, 8iA I, rAf1,. . .,9J9�3g, kAf1,3g, ð16Þ

where ck is the maximum number of consecutive shifts of type k,
and d4þirk is the amount of positive deviation from goal 4 for nurse i

of shift type k working on day j.
Goal 5: This aims to allocate no less than two consecutive

shifts of a particular shift type (i.e. early and late) during the
planning period. It can be formally represented as follows:

xiðj�1Þk�xijkþxiðjþ1Þkþd5�ijkZ0, 8iA I, jAf2,. . .,9J9�1g, kAf1,3g,

ð17Þ

where d5�irk is the amount of negative deviation from goal 5 for
nurse i of shift type k working on day j.

Goal 6: This attempts to allocate no more than a certain
number of weekly working days to each nurse with a specific
type of working contract. A formal representation is

X7w

j ¼ 7w�6

X
kAK

xijk�d6þtiwrgt , 8tAf1,2,3g, iA It , wAW , ð18Þ

where It is the subset of nurses working on the tth contract
satisfying I¼{I1 (full time), I2 (short part time), I3 (long part
time)}, gt is the maximum number of weekly working days of
nurses in subset It, and d6þtiw is the amount of positive deviation
from goal 6 for nurse i of contract type t working in week w.

Goal 7: This aims to allocate no less than a certain number of
weekly working days to each nurse with different working
contract. It can be formally outlined as

X7w

j ¼ 7w�6

X
kAK

xijkþd7�tiwZht , 8tAf1,2,3g, iA It , wAW , ð19Þ

where ht is the minimum number of weekly working days of
nurses in subset It, and d7�tiw is the amount of positive deviation
from goal 7 for nurse i of contract type t working in week w.

Goal 8: This attempts to allocate a maximum of three
consecutive working days for part-time nurses during the plan-
ning period. A formal representation is

Xrþ3

j ¼ r

X
kAK

xijk�d8�ir r3, 8iA I1, rAf1,. . .,9J9�3g, ð20Þ

where d8�ir is the amount of negative deviation from goal 8 for
nurse i working on day r.

Goal 9: This avoids certain shift type successions, e.g. a day

shift followed by an early shift, during the planning period. It can
be formally represented as follows:

xijk1
þxiðjþ1Þk2

�d9�ijkr1, 8iA I, jAf1,. . .,9J9�1g, ðk1,k2ÞAK 0, ð21Þ

where K0 is the set of undesirable shift type successions repre-
sented as {(2,1), (3,1), (3,2), (1,4)}, and d9�ijk is the amount of
negative deviation from goal 9 for nurse i of shift type k working
on day j.

Table 1
A breakdown of the total number of variables and constraints for a typical

problem.

A typical problem

(9I9¼16, 9J9¼35, 9K9¼4)

Number of

variables

Number of

constraints

System constraints 2257 3816

Goal 1 80 80

Goal 2 528 528

Goal 3 528 528

Goal 4 1040 1040

Goal 5 819 819

Goal 6 67 67

Goal 7 64 64

Goal 8 1120 1120

Goal 9 2192 2192

Total 8695 10,254

J. Li et al. / Omega 40 (2012) 283–293286
2.4. Objective function

The objective of goal programming is to minimize the sum of
the weighted deviations from individual goals. For each goal,
there is a weight that reflects the relative importance of this goal
compared to the others. Let wt be the weight of goal t. The
objective function of our problem can be formulated as

Minimize Z ¼w1

X
iA I

X
wAW

ðd1iwÞþw2

X
iA I

X9J9�1

j ¼ 2

d2�ij þw3

X
iA I

X9J9�1

j ¼ 2

d3þij

þw4

X
iA I

X9J9�3

r ¼ 1

X
kA f1,3g

d4þirkþw5

X
iA I

X9J9�1

j ¼ 2

X
kA f1,3g

d5�ijk

þw6

X
tA f1,2,3g

X
iA It

X
wAW

d6þtiwþw7

X
tA f1,2,3g

X
iA It

X
wAW

d7�tiw

þw8

X
iA I1

X9J9�3

r ¼ 1

d8�irþw9

X
iA I

X9J9�1

j ¼ 2

X
kAK 0

d9þijk: ð22Þ

We have attempted to solve the above goal programming
problem by employing ILOG CPLEX 10.0. However, compared
with the results of other approaches on the set of benchmark
problems that we study, the results of goal programming are
unsatisfactory even if we allow an additional overnight runtime
for each problem. Studying a typical problem of scheduling 16
nurses of 4 shift types during a 5-week period, we find that the
computational complexity is mostly brought about by the goals as
they comprise 74% of the variables and 63% of the constraints (see
Table 1). Hence, to better handle these goals, we need to seek a
new approach that employs a simplified model of goal program-
ming but is hybridized with an extra (meta-)heuristic search.
In addition, unlike a classical goal programming method that
produces a single final solution towards a user’s specific pre-
ference setting, the new approach should be able to produce a set
of non-dominated solutions in one go for the decision maker’s
evaluation. A number of multi-objective approaches have been
developed to determine such a set [1,4,22,27,32,34].
3. A time-predefined multi-objective approach to nurse
scheduling

In this section, we present an alternative time-predefined
approach to deal with the multi-objective nurse scheduling
problem.
3.1. Objective functions of individual goals

We formulate the objectives of our meta-heuristic model as
function ft(x), t¼1, y, 9, where x denotes a decision variable
vector of 9I9� 9J9� 9K9 and ft corresponds to the tth goal
described in Section 2.3 as follows:

Minimize f1ðxÞ ¼
X
iA I

X
wAW

X
kAK

ðxið7w�1Þk�xið7wÞkÞ

�����
�����, ð23Þ

Minimize f2ðxÞ ¼
X
iA I

X9J9�1

j ¼ 2

max 0,
X
kAK

ð�xiðj�1Þkþxijk�xiðjþ1ÞkÞ

()
,

ð24Þ

Minimize f3ðxÞ ¼
X
iA I

X9J9�1

j ¼ 2

max 0,
X
kAK

ðxiðj�1Þk�xijkþxiðjþ1ÞkÞ�1

()
,

ð25Þ

Minimize f4ðxÞ ¼
X
iA I

X9J9�3

r ¼ 1

X
kA f1,3g

max 0,
Xrþ3

j ¼ r

xijk�ck

8<
:

9=
;, ð26Þ

Minimize f5ðxÞ ¼
X
iA I

X9J9�1

j ¼ 2

X
kA f1,3g

maxf0,�xiðj�1Þkþxijk�xiðjþ1Þkg,

ð27Þ

Minimize f6ðxÞ ¼
X3

t ¼ 1

X
iA It

X9W9

w ¼ 1

max 0,
X7w

j ¼ 7w�6

X
kAK

xijk�gtg

8<
:

3
5,

2
4 ð28Þ

Minimize f7ðxÞ ¼
X3

t ¼ 1

X
iA It

X9W9

w ¼ 1

max 0,ht�
X7w

j ¼ 7w�6

X
kAK

xijkg

8<
:

3
5,

2
4

ð29Þ

Minimize f8ðxÞ ¼
X
iA I1

X9J9�3

r ¼ 1

max 0,
Xrþ3

j ¼ r

X
kAK

xijk�3

8<
:

9=
;, ð30Þ

Minimize f9ðxÞ ¼
X
iA I

X9J9�1

j ¼ 1

X
ðk1 ,k2ÞAK 0

maxf0,xijk1
þxiðjþ1Þk2

�1g: ð31Þ

3.2. The Pareto set

With the above nine goals, we regard the nurse scheduling
problem as a multi-objective optimization problem represented as

Minimize f ðxÞ ¼ ðf1ðxÞ,. . .,f9ðxÞÞ
T , ð32Þ

subject to xAS, where x represents a decision variable vector and S is
the set of candidate solutions defined by the hard constraints 1–10.

In real world nurse rostering with many hard and soft
constraints, due to the conflicting nature of some objectives, it
is impossible to find a solution at which the objective functions
would achieve their minimal values simultaneously, and thus, the
classical concept of a commonly optimal solution does not apply.
Under this circumstance, the concept of a Pareto-optimal solution
is explained. When comparing two solutions for a minimization
problem, a solution x is said to dominate another solution y if
(tAf1,. . .,9g9ftðxÞo ftðyÞ, and 8t0Af1,. . .,9g, and t0at9ft0 ðxÞr ft0 ðyÞ.
A solution is called a Pareto-optimal solution of the problem if
there are no other solutions that can dominate it, or in other
words, it represents an optimal trade off between conflicting
objectives. The set of all Pareto-optimal solutions is called the

A

B

f1

f2

w

Fig. 1. The generation of efficient solutions by the L1 metric.

A

B

f1

f2

w

v

Fig. 2. The generation of efficient solutions by the La metric.

J. Li et al. / Omega 40 (2012) 283–293 287
Pareto set. The image f(xn) of a Pareto-optimal solution xn is called
the efficient solution, and the set of all the efficient solutions is
called the Pareto front. Note in this paper, as we apply meta-
heuristic search to address the problem, the Pareto set we
generate can only be regarded as an approximation to the true
Pareto set.

3.3. Fitness evaluation by compromise programming

A number of approaches have been developed to search for the
Pareto set of a multi-objective problem, among which a class of
approaches uses a value function to aggregate multiple objectives
into one. Due to the existence of conflicting objectives, properly
expressing the user’s preferences by a single-objective function is
difficult. Solutions produced by such methods must not be domi-
nated by any other solution and must reconcile the various conflict-
ing objectives to represent an appropriate expression of the user’s
preferences. Such solutions are regarded as compromise solutions.

Compromise programming is a multiple-criteria decision-
making technique initially proposed by Zeleny [32] to obtain
compromise solutions. Its basic idea is firstly to identify an ideal
solution as a point where each single objective under considera-
tion achieves its optimal value, and then the approach seeks a
solution that is as close to the ideal point as possible. For our
nurse rostering problem, we apply the above 0–1 goal program-
ming solver 9 times, once for each goal (or objective) without the
consideration of other goals. Hence, what we have after solving
the problem 9 times is an ideal objective-value vector, that is
v¼(f1(u1), f1(u2), y, f9(u9)) where ut is the optimal solution with
respect to the objective t. That can then be used to measure the
deviation of candidate solutions. With the power of CPLEX, the
optimum value of each objective (i.e. ft(ut)) can be easily found as
the solution space is significantly reduced (see Table 1).

After generating an ideal objective-value vector v that is gen-
erally unreachable in practise, we apply compromise programming
with the Lp-metric to measure the fitness of a current solution x

(i.e. we calculate the weighted distance between v and x) as

LpðxÞ ¼
X9

t ¼ 1

½wtðftðxÞ�ftðutÞÞ�
p

()1=p

, ð33Þ

where w¼ ðw1,. . .,w99wt 40, t¼ 1,. . .,9ÞT is a weight vector with
each wi corresponding to the importance of a particular objective,
and pAf1,2,. . .g [fpg defines the type of metric.

The parameter wt characterizes a users’ preference. It repre-
sents the relative importance of one objective against another.
Simply stated, it places emphasis on the objective that the user
deems to be important. The parameter is needed because differ-
ent users in the decision-making process would have different
viewpoints concerning the important objectives.

The parameter p represents the importance of the maximal
deviation from the ideal point. Typically, as p increases, the
weighting of the deviations also increases. Varying the parameter
from 1 to infinity enables one to move from having a high level of
compensation among the objectives to having no compensation
at all. Three values of parameter p are of particular importance:

p¼ 1,2,p. When p¼1, the definition of L1ðxÞ ¼
P9

t ¼ 1

½wtðftðxÞ�

ftðutÞÞ� yields the so-called Manhattan metric, by which all devia-
tions are weighted equally. When p¼2, the definition of

L2ðxÞ ¼

ffiX9

t ¼ 1

½wtðftðxÞ�ftðutÞÞ�
2

vuut
yields the so-called Euclidean metric, by which the deviations are
weighted in proportion to their magnitude. When p¼p, the
definition of Lp ¼ max
t ¼ 1,...,9

fwt½ftðxÞ�ftðutÞ�g yields the so-called

Tchebycheff metric, by which only the maximal deviation is
considered.

Compromise programming with L1 is equivalent to the
weighted-sum method, which works very well for convex pro-
blems, i.e. problems whose objective functions are convex and
whose solution spaces are convex sets. Geoffrion [23] shows that
for every efficient solution of a convex problem there exists a
positive weight vector. However, there is a problem for the L1

metric to deal with concave problems as there may not exist a
weight vector such that a given efficient solution can be found. To
help the understanding, we use Fig. 1 to illustrate the Pareto front
of a bi-objective problem in the objective space. The efficient
solutions found by the L1 metric can be geometrically identified as
the contacting points between the curve and the line supporting
the curve and perpendicular to the weight vector w. From Fig. 1,
we can see that the L1 metric fails to generate the efficient
solutions located on the arc between contact points A and B, as
for some w40, it always achieves a better (smaller) weighted-
sum value by supporting the Pareto curve outside of the arc rather
than at any point along the arc.

On the other hand, compromise programming with La is very
useful in generating Pareto solutions for both convex and concave
problems. Bowman [7] shows that for every Pareto-optimal
solution there exists a positive weight vector. Fig. 2 shows the
same Pareto front illustrated in Fig. 1. For a given ideal point v and
a weight vector w, the efficient solutions found by the La metric
can be geometrically identified as the contacting points between
the Pareto front and the corresponding iso-value curve of La.
Hence, by keeping the point v the same but changing the vector
w, we may achieve all the efficient points located on the arc
between points A and B.

J. Li et al. / Omega 40 (2012) 283–293288
Hence, in order to effectively generate an approximated Pareto
set for our nurse rostering problem, we should incorporate both
metrics L1 and La in measuring the fitness of obtained solutions. In
addition, in order to achieve a better compensation among the
objectives, we should incorporate at least one nonlinear metric of
Lp where pA ½2,pÞ. Due to its simplicity, in this paper we only
consider the situation of p¼2.
3.4. A falling tide algorithm for multi-objective optimization

The great deluge algorithm is presented in [20]. It is so called
because it can be illustrated by visualizing a solution landscape
which is subject to a ‘‘deluge’’ which ‘‘forms’’ the search mechan-
ism towards potential solutions. In this section, we propose a new
approach which is inspired by the great deluge algorithm and
which we have called the falling tide algorithm. This basic idea
can be illustrated by considering a hypothetical situation where
someone is collecting shells on a beach during a falling tide period
and is wanting to stay out of the water. The person moves by a
random walk on the beach while the tide is falling. During this
period, the sea level will become lower and lower. However, big
waves will hit the beach causing the sea level to temporarily rise
again. The wave could bring on new shells from the ocean and
take them back into the sea with it. The person stays as close to
the sea as possible (moving back and forth with the waves). When
the falling tide ceases or the time has run out, the person stops
collecting shells. If the person is unhappy with the gains, then it
would be possible to come back again during the next falling tide
period.

More technically, the steps of our basic falling tide algorithm
can be summarized as follows:
1.
 Let Nrun be the number of runs (i.e. the number of tides), Nwav

the number of waves defined in each run, and Nlev the number
of levels defined in each wave regression.
2.
 Set the initial solution x0 and calculate its cost by function f

(x0).

3.
 Set the current solution x to be x0. Further set the initial level

B¼ f(x)/a(x), where the restart coefficient a(x) (i.e. a random
variable corresponding to the child’s arriving time or
searching region) is generated as a random number between
0 and 1.
4.
 Set the regression rate DB¼(B� f(u))/Nlev, where u represents
the ideal solution.
5.
 Define the neighbourhood N(x) and randomly select a candi-
date solution xnANðxÞ.
6.
 Calculate f(xn). If f(xn)rB or f(xn)r f(x), then accept xn as x.
7.
 Lower the level B¼B�DB.

8.
 Repeat steps 5–7 until the number of Nlev levels is carried out.

9.
 Reset B¼(b(xn)þ1)f(xn)), where the water-rerising rate b(xn)

(i.e. a random variable corresponding to the unpredictable
wind direction) is generated as a random number between
0 and 1.
10.
 Repeat steps 4–9 until the number of Nwav waves is
carried out.
11.
 Repeat steps 3–10 until the number of Nrun runs is carried out.

12.
 Output the best solution found.
As mentioned above, our falling tide algorithm can be viewed
as an extension to the great deluge algorithm, which was first
proposed by Dueck as an alternative to simulated annealing. Like
the great deluge algorithm, a falling tide algorithm may accept
worse solutions during its run if their cost values are no larger
than a level value, which is lowered at each iteration by a given
rate. However, our falling tide approach has achieved the
following three distinct improvements that make its search more
efficient and more effective.

Firstly, taken as a whole, the granularity of level reduction
with the falling tide approach will change adaptively and tend to
be finer and finer after more and more waves, although the
‘‘level’’ reduction within each wave is still kept at a fixed rate. This
characteristic may result in a quicker convergence within the
solution space.

Secondly, the great deluge algorithm lacks the ability to jump out
of local optima, although it can accept worse solutions and has
achieved certain success in a wide variety of areas (e.g. exam time-
tabling [9,31] and channel assignment [25]). The drawback is caused
by the fact that, at each of its iterations, the region containing the
solutions with cost values above the current level (i.e. those under
the current wave level in the ‘‘deluge’’ analogy) can never be
explored. Burke et al. [9] revised the great deluge algorithm by
accepting all downhill moves during the search, as well as making
an additional local improvement after its search. Superior results
were reported on some benchmark problems due to the larger
region explored and the longer execution time allowed, but unfor-
tunately those revisions do not alter the fact that the method is
vulnerable to converging too quickly. For a falling tide algorithm, the
situation is alleviated by its scheme of regularly raising the water
level when a new wave regression starts.

Thirdly, for an algorithm that only uses a ‘‘rising’’ water
scheme, solutions with sufficiently large cost increases will still
not be accepted. However, these larger increases may be required
in order for the algorithm to proceed to a global optimum. Thus,
no matter how small the water decay rate is and how often the
waves are raised, from a certain point on, the algorithm may be
‘‘closed off’’ from finding a global optimum. In our falling tide
algorithm, this issue is addressed by occasionally restarting the
search and using the same initial solution but with a different
initial level value generated at random.

The major advantage of the great deluge algorithm lies in its
time-predefined feature, that is, throughout the search there is
only one controlling parameter of Nlev (i.e. the number of levels).
Being an extension of the great deluge algorithm, our falling tide
algorithm inherits this feature by introducing two more time-
related parameters: Nrun (i.e. the number of runs) and Nwav

(i.e. the number of waves). As the CPU time consumed in each
level on the same machine is roughly the same, this feature
provides users with a straightforward way to define a certain
amount of time in which the algorithm should run: the larger
these three parameter values, the better the solution quality will
be. Based on this consideration, we apply the falling tide algo-
rithm under a multi-objective framework to solve our nurse
rostering problem as follows:
1.
 Let Nrun be the number of runs, Nwav the number of waves
defined in each run, and Nlev the number of levels defined in
each wave regression.
2.
 Apply the goal programming model (described in Section 2)
with different settings of pt values in function (22) to obtain
an initial solution x0 and an ideal objective-value vector
v¼(f1(u1), f1(u2), y, f9(u9)): x0 is obtained by setting
pt ¼ 098tAf1,. . .,9g, while v is obtained by running a goal
programming solver nine times and at the tth time setting
pt0 ¼ 098t0Af1,. . .,9Þ,t0at.
3.
 Let D be the set of potentially non-dominated solutions, set
D¼{x0}.
4.
 Randomly express user’s preference on each objective (i.e. the
weight vector w¼ ðw1,. . .,w9Þ

T), and randomly select an Lp

metric where pAf1,2,pg.

5.
 Set the current solution x to be x0, calculate the fitness of x as

LpðxÞ ¼ f
P9

t ¼ 1 ½wtðftðxÞ�ftðutÞÞ�
pg

1=p
, and define the initial level

J. Li et al. / Omega 40 (2012) 283–293 289
as B¼Lp(x)/a(x), where the restart coefficient a(x) is a random
number between 0 and 1.
6.
 Set the regression rate DB¼Lp(x)/Nlev.

7.
 Construct a new solution y, yANðxÞ, in the following way: first

generate a random number n between one and the length of
the planning period, then randomly locate n days (which need
not represent a continuous sequence), and then vertically
swap the shifts of those n days between a randomly selected
pair of nurses in solution x.
8.
 If y violates at least one of the hard constraints, go to Step 7.

9.
 Calculate the fitness of y as LpðyÞ ¼ f

P9
t ¼ 1 ½wtðftðyÞ�

ftðutÞÞ�
pg1=p.
10.
 If Lp(y)rLp(x) or Lp(y)rB, accept y and replace x with y.

11.
 If y is accepted, update set D with y in the following way:

check y for Pareto dominance among all the solutions in D,
add y to D if it is non-dominated, and remove the solutions
originally in D that are dominated by y.
12.
 Lower the level B¼B�DB.

13.
 Repeat steps 7–12 until the number of Nlev levels is

carried out.

14.
 Reset B¼(b(y)þ1)f(y), where the water-rerising rate b(y) is a

random number generated between 0 and 1.

15.
 Repeat steps 6–14 until the number of Nwav waves is

carried out.

16.
 Repeat steps 4–15 until the number of Nrun runs is carried out.

17.
 Output set D as an approximation of the Pareto-optimal set.
Table 2
Costs of previous approaches after 1-h runtime.

Data Hybrid GA Hybrid VNS IP-based VNS

Jan 775 735 460

Feb 1791 1866 1526

Mar 2030 2010 1713

Apr 612 457 391

May 2296 2161 2090

Jun 9466 9291 8826

Jul 781 481 425

Aug 4850 4880 3488

Sept 615 647 330

Oct 736 665 445

Nov 2126 2030 1613

Dec 625 520 405

Ave.n 2225 2145 1809

Ave.n: the average value.

Table 3a
Results of 10 independent runs under a weighted-sum objective function.

Data Initial solution 60 s (Nrun¼10, Nwav¼10, Nlev¼4�105)

Cost Time (s) Min Dn (%) Mean Dn (%) Dev

Jan 29,025 16 410 10.9 504.2 �9.6 51.6

Feb 17,467 11 1520 0.4 2424.4 �58.9 978.3
Generally, two strategies are very important in the design of a
meta-heuristic algorithm: they are diversification (i.e. driving the
search into new promising regions) and intensification (i.e. focus-
ing on the search into attractive regions). Our falling tide algorithm
reflects these two strategies in the following three ways.

Firstly, within each wave regression, at the earlier stage when
the current water level is high, the diversification mechanism is
mainly performed by accepting most of the generated solutions.
At later stages when the current water level becomes lower and
lower, the intensification mechanism is mainly performed by only
accepting the small-perturbed solutions.

Secondly, within each falling tide, a number of waves are
defined, and the search between two consecutive waves focuses
more on the intensification aspect, although the search within a
single wave regression still implements gradually from diversifi-
cation to intensification. In general, the search from a new wave
within the same tide can be regarded as a continuation of
the search from the previous wave, because the initial level of
the new wave is mainly determined by the current solution and
the effect of a random variable b (corresponding to the unpre-
dictable wind direction) is minor.

Thirdly, for an entire run of our falling tide algorithm, a number of
tides are defined, and the search between two consecutive tides
focuses more on the diversification aspect. For each new tide, its
initial search point is reshuffled because the initial water level of the
first wave regression in the tide is mainly determined by another
random variable a that corresponds to the starting search region.
Mar 40,558 12 1530 10.7 1596.7 6.8 53.8

Apr 43,360 15 280 28.4 794.3 �52.0 794.4

May 39,627 21 870 58.4 1338.8 35.9 795.5

Jun 44,737 26 8906 �0.9 9068.7 �2.7 97.0

Jul 30,376 16 290 31.8 744.0 �75.1 787.9

Aug 36,911 17 1345 61.4 1803.8 48.3 796.5

Sep 38,791 20 210 36.4 464.8 �40.8 580.2

Oct 41,127 21 485 �9.0 744.1 �67.2 592.8

Nov 34,238 22 1560 3.3 1623.3 �0.6 49.0

Dec 35,501 19 190 53.1 626.8 �54.8 782.9

Ave.n 35,977 18 1466 19.0 1811.2 0.8 530.0

Dn: relative percentage deviation from the previously best known solution;

Ave.n: the average value.
4. Computational results

In this section, we present the results of extensive experiments
on 12 real data instances, with each instance corresponding to a
calendar month from January to December in 2003. These instances
are provided by ORTEC, an international consultancy company
specializing in planning, optimization, and decision support solu-
tions. We first compare our approach with others in the literature by
using the same weighted-sum objective function. Then, we present
the results under the multi-objective framework.
4.1. Results under a traditional weighted sum objective function

Table 2 lists the benchmark results of three previous
approaches. They are a hybrid genetic algorithm [29] denoted as
‘‘Hybrid GA’’, a hybrid variable neighbourhood search denoted as
‘‘Hybrid VNS’’, and an integer programming based variable neigh-
bourhood search [16] denoted as ‘‘IP-based VNS’’. These three
approaches use the same weighted-sum objective function to
aggregate all the objectives, which is:

Minimize f ðxÞ ¼
X9

t ¼ 1

wtftðxÞ, ð34Þ

where vector w¼[1000,1000,100,10,10,10,10,10,5]. These values
are set based on the following priority ordering after consultation
with the hospital: [goals 1–2]g[goal 3]g[goals 4–8]g[goal 9],
where ‘g’ denotes ‘‘more preferred than’’.

The hybrid GA and the hybrid VNS were coded in Delphi 5 and
run on a Pentium 1.7 GHz PC under Windows 2000. The IP-based
VNS was run on a 2.0 GHz PC under Windows XP, of which the IP
part was solved by CPLEX 10.0 and the VNS part was coded in Java
2. In general, the IP-based VNS has produced better results than the
other two approaches.

Our proposed falling tide algorithm is implemented under
the same environment as the IP-based VNS. For each data
instance, we set the runtime (corresponding to a fixed number

Table 3b
Results of 10 independent runs under a weighted-sum objective function.

Data 300 s (Nrun¼10, Nwav¼10, Nlev¼2�106) 1200 s (Nrun¼10, Nwav¼20, Nlev¼4�106)

Min Dn (%) Mean Dn (%) Dev Min Dn (%) Mean Dn Dev

Jan 405 12.0 440.8 4.2 16.7 335 27.2 381.6 17.0 26.5

Feb 1455 4.7 1524.2 0.1 34.0 1426 6.6 1505.3 1.4 50.9

Mar 1440 15.9 1540.9 10.0 46.8 1435 16.2 1488.0 13.1 26.9

Apr 240 38.6 301.3 22.9 55.2 181 53.7 232.4 40.6 51.6

May 790 62.2 1264.6 39.5 822.5 756 63.8 807.8 61.3 22.9

Jun 8965 �1.6 9053.3 �2.6 63.5 8890 �0.7 8962.2 �1.5 49.1

Jul 210 50.6 461.6 �8.6 603.0 160 62.4 238.7 43.8 41.9

Aug 1265 63.7 1507.0 56.8 594.0 1225 64.9 1259.3 63.9 32.1

Sept 90 72.7 538.7 �63.2 798.2 80 75.8 109.6 66.8 22.3

Oct 395 11.2 833.4 �87.3 802.3 345 22.5 389.4 12.5 21.3

Nov 1486 7.9 1561.4 3.2 44.6 1456 9.7 1505.1 6.7 24.6

Dec 92 77.3 334.9 17.3 611.2 65 84.0 95.2 76.5 17.6

Ave.n 1403 22.4 1613.5 10.8 374.3 1363 24.7 1414.6 21.8 32.3

Dn: relative percentage deviation over the previously best known solution; Ave.n: the average value.

Fig. 3. Comparison of a great deluge algorithm and our falling tide algorithm

(with Nrun¼3 for the Mar instance).

J. Li et al. / Omega 40 (2012) 283–293290
of iterations) after the initial solution to be 60, 300, and 1200 s.
Each resulting solution is evaluated by the same function given in
equation (34). To test the robustness of our approach, each
instance was run ten times with different pseudo random seeds.

Table 3a lists the solution cost of each initial solution and the
CPU time for CPLEX 10.0 to achieve it. Table 3b lists the summary
results of 10 runs for each group of experiments with a different
runtime. To study the distribution of results, the indices of min,
mean, and standard deviation are applied.

The computational results in Tables 3a and 3b reveal that the
performance of our approach is as expected: the longer the
runtime, the better the solution quality and the smaller the
variation of values between the runs. Compared with the
IP-based VNS, which was the previous best performing method,
our new approach has achieved significantly better results on 11
out of the 12 instances within much shorter runtime. In terms of
the best results and the average results, on average our approach
improves the previous best results (obtained after 1 hour’s
runtime) by 19.0% and 0.8% after 60 s, 22.4% and 10.8% after
300 s, and 24.7% and 21.8% after 1200 s.

Fig. 3 depicts the searching process employed by the great
deluge algorithm and the falling tide algorithm (with Nrun¼3,
Nwav¼4, and Nlev¼7000) for the Mar instance. The x-axis repre-
sents the number of iterations (with each iteration corresponding
to one change of the level value), and the y-axis represents the
solution cost. ‘‘Falling Tide-1’’ corresponds to the first run of the
falling tide algorithm while a(x)¼1.0 and b(x)¼0, ‘‘Falling Tide-2’’
represents the second run of the falling tide algorithm while
a(x)¼0.9 and b(x)¼0.5, and ‘‘Falling Tide-3’’ describes the third
run of the falling tide algorithm while a(x)¼0.8 and b(x)¼1.0.
This figure clearly shows that search by our falling tide algorithm
is more efficient and more effective. Regarding the other
instances, the characteristic shapes of the curves are very similar
although their actual values may differ.

4.2. Results under a multi-objective framework

For multi-objective problems, there are various performance
metrics to measure individual algorithms in terms of convergence
and diversity, among which the four metrics of error ratio,
generational distance, spacing and two set coverage are com-
monly used. The error ratio metric indicates the percentage of
solutions (from the non-dominated vectors found) that are not
members of the true Pareto set. The generational distance metric
introduces a way of estimating how far the elements in the Pareto
front produced by an algorithm are from those in the true Pareto
front. The spacing metric proposes a way of measuring the
distance variance of neighbouring vectors in the known Pareto
front. The two set coverage metric defines the percentage of the
solutions in one approximation of the Pareto front that are
dominated by at least one solution in another approximation of
the Pareto front.

The first three metrics need to know the true Pareto set/front in
advance, which is unachievable in our situation as no existing
method can solve such a nine-objective large size problem to Pareto
optimality. Thus, none of them can be applied to assess the
performance of our proposed approach under a multi-objective
framework. With regard to the last metric, it requires the approxi-
mated Pareto set produced by another approach, and paper [15] is
the only one in the literature that tackles the same problem by a
different multi-objective method. Hence, we use the two set cover-
age metric to compare the results of those two approaches.

Assume A denotes the approximated Pareto set generated by
the falling tide algorithm, and B denotes the approximated Pareto
set reported in [15]. The two set coverage metric maps the
ordered pair of sets (A,B) to the interval [0,1] using the following
equation (34):

CðA,BÞ ¼
9fbAB; (aAA : aZbg9

9B9
: ð35Þ

Table 4
Results of a multi-objective comparison.

Data Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

C(A,B) 0.85 0.71 0.80 0.92 0.86 0.74 0.93 0.84 0.90 0.76 0.78 0.94

Table 5
Results of multi-objective optimization.

Data Initial solution 100 runs with different wi and p values in Lp metrics (60 s per run) 200 runs with different wi and p values in Lp metrics (60 s per run)

Vio % 9D9 Min % Mean % Dev 9D9 Min % Mean % Dev

Jan 518 5.6 543 50 0.5 115.8 0.5 68.8 500 42 0.5 76.5 0.8 19.4

Feb 285 3.4 1190 160 1.9 227.8 1.9 52.8 1325 156 1.8 245.4 2.9 54.4

Mar 716 7.9 1125 159 1.8 254.8 1.8 62.6 1093 154 1.7 237.4 2.6 53.8

Apr 578 6.6 544 34 0.4 172.6 1.3 210.5 321 29 0.3 49.1 0.6 9.2

May 669 7.3 1029 89 1.0 135.8 2.5 22.6 878 87 0.9 130.7 1.4 25.4

Jun 337 3.8 686 201 2.3 244.0 2.9 38.1 631 196 2.2 229.2 2.6 21.5

Jul 495 5.5 540 31 0.3 173.7 1.9 190.7 354 23 0.3 46.5 0.5 11.3

Aug 670 7.2 1819 133 1.4 198.4 1.5 34.3 1625 128 1.4 202.1 2.2 43.9

Sept 546 6.3 279 17 0.2 40.6 2.8 9.5 242 17 0.2 33.5 0.4 8.6

Oct 595 6.5 495 50 0.6 78.0 1.9 16.8 549 41 0.4 81.8 0.9 25.4

Nov 636 7.0 1078 163 1.8 221.7 2.2 50.2 1011 157 1.7 231.3 2.6 61.3

Dec 534 5.9 286 19 0.2 37.2 0.5 7.7 255 15 0.2 33.1 0.4 8.9

Ave.n 548 6.1 801 92 1.0 158.4 1.8 63.7 732 87 0.9 133.0 1.5 28.6

Ave.n: the average value.

J. Li et al. / Omega 40 (2012) 283–293 291
The value C(A,B)¼1 means that all solutions in B are weakly
dominated by A while C(A,B)¼0 represents the situation when
none of the solutions in B are weakly dominated by A. Table 4
displays the values of C(A,B) for all the data instances. We can see
that the falling tide algorithm performs much better as all the
C(A,B) values are larger than 0.7.

For future reference, Table 5 gives the summary results of 100
and 200 runs with different weight vectors and Lp metrics.
Column ‘‘Vio’’ lists the total number of goal violations existing
in the initial solution, and column ‘‘%’’ lists the percentage of
violations with regard to the total number of soft constraints.
Column ‘‘9D9’’ lists the size of an obtained Pareto set (i.e. the
number of non-dominated solutions it contains). Columns ‘‘Min’’,
‘‘Mean’’ and ‘‘Dev’’ list the statistical results (in terms of the
number of violations) for all the non-dominated solutions con-
tained in our approximated Pareto set.

According to the results in Table 5, we can infer that the set of
non-dominated solutions generated by our approach should be a
good approximation to the true Pareto set. For example, studying
the results after 100 runs (i.e. Nrun¼100), the percentages of goal
violations are on average 1.0% in terms of ‘‘Min’’ and 1.8% in terms
of ‘‘Mean’’, which implies that the solution set is a good approx-
imation to the true Pareto set. In addition, the average number of
non-dominated solutions in our Pareto set is as many as 801,
which means that those solutions are more likely to spread over
the whole Pareto solution space. Table 5 also reveals the time-
predefined feature of our approach under the multi-objective
framework: if we simply run the algorithm for 200 runs, the
indices of ‘‘Min’’, ‘‘Mean’’, and ‘‘Dev’’ are all improved further. As a
result, the size of our obtained Pareto set (i.e. 9D9) has reduced
from 801 to 732, which means that at least 70 (¼801�732þ1)
non-dominated solutions that were previously obtained are now
dominated by the newly replenished solutions.

In modern hospital situations, there is normally a general
preference ordering over the individual goals. For example, the
Dutch hospital under this study regards that the satisfaction of
Goals 1–3 is more important than the others. Hence, in real
implementation, the hospital administrator may simply use this
priority rule as a filter to remove all the solutions that cannot
satisfy these three goals. Under this circumstance, the number
of solutions in the approximate Pareto set reduces from several
hundred to less than one hundred. The number would further
reduce to less than 40 if Goal 4 is also included in the filter.
The highly-preferable remaining schedules are finally presented
to the relevant nurses, who then select their favourite. Obviously,
such filtering rules may also be placed in the actual optimization
phase to reduce the size of the solution space. However, the rules
applied will be different for different hospitals and potentially for
different wards so there will not be a single answer.

To have a better understanding of the plotting of our estimated
Pareto set, one would naturally want to ‘see’ this measurement
visually. For a bi-objective problem, it is easy to draw a 2-D graph to
show the measure. When the number of objectives increases to
three, it becomes harder to determine from a 3-D graph whether the
Pareto set is a good one. When the number of objectives is larger
than three, there is no way to draw such a graph. For our problem,
that has as many as nine objectives, one possible solution is to select
pairs of conflicting objectives and draw their 2-D graphs. Fig. 4
displays the plots of the non-dominated solutions in terms of
objectives 7 and 8, after 200 runs with changing weights and
different Lp metrics for all the test instances. The reason we choose
these two objectives is that objective 7 can never be fully satisfied
for any data instances according to the results of goal programming,
and objective 8 is in conflict with objective 7 according to our
observations. From Fig. 4, we can see that, for most instances, the
Pareto fronts of these two objectives do exist and the non-domi-
nated solutions do spread evenly over the surrounding area of these
Pareto fronts. Note that in Fig. 4, some points appear to be
dominated by the others, but this does not mean that they are
dominated solutions because they do not necessarily dominate each
other by any objectives other than 7 and 8.
5. Conclusions

This paper presented a new approach called the falling tide
algorithm for the multi-objective optimization of nurse rostering.
It employs a goal programming model to produce an ideal

Fig. 4. Plots of the non-dominated solutions in terms of objectives 7 and 8.

J. Li et al. / Omega 40 (2012) 283–293292
objective-value vector and an initial solution as its inputs. The
ideal objective-value vector acts as a reference point in a com-
promise programming based function to evaluate the quality of
resulting solutions more efficiently, while the initial solution acts
as a good seed for the falling tide algorithm to speed up the
convergence.

Experimental results confirm that our approach can give an
insight that is not provided by existing approaches. Apart from

J. Li et al. / Omega 40 (2012) 283–293 293
another multi-objective approach developed by Burke et al. [15],
we do not compare our proposed multi-objective approach to
other nurse rostering approaches because the measures used to
evaluate the quality of solutions are incomparable. However, we
do compare our approach to the others by using the same single
weighted cost function, and we achieve significantly better results
for 11 out of 12 test instances with less computational time.
Hence, we can conclude that our multi-objective approach pro-
vides not only high quality solutions, but also enough flexibility in
handling different types of constraints that is not possible when
using a single objective function.

The major advantage of our approach lies in its ease of imple-
mentation and its use of a small number of intuitive parameters that
are easy to understand for users. For many types of NP-hard
problems, the great deluge algorithm is regarded as a faster and
superior variant of simulated annealing. It employs a threshold-
based deterministic criterion when accepting/rejecting a non-
improved candidate solution compared to the probabilistic one used
in simulated annealing. Another important feature of the great
deluge algorithm is that it is governed by a single parameter unlike
simulated annealing. By inheriting those advantages but overcoming
some drawbacks of the great deluge algorithm, we propose a new
heuristic search algorithm. This algorithm is easy to understand and
flexible to run, and is particularly suitable for various decision
support systems where the users prefer to adjust the balance
between the execution time and the solution quality in a straightfor-
ward manner.

This paper opens up a wide area for further research. In terms
of algorithmic improvement, we are looking at other more
advanced reductions to achieve more robust performance as our
proposed algorithm, in its current form, still uses a linear reduc-
tion of the level as the simplest variant.

In terms of potential adaptability, we would evaluate our
proposed algorithm in other domains with different types and a
different number of constraints. Although the work presented in
this paper is on nurse rostering, we anticipate that our proposed
approach could be easily adapted to other employee scheduling
problems (e.g. audit staff scheduling, call centre rostering, tour
scheduling, airline crew scheduling, and transportation driver
scheduling) by replacing the current constraints and objective
function with the new problem-specific ones. In addition, we
anticipate that our approach could be applied to a wider range of
other problems (e.g. educational time-tabling problems and
resource allocation problems) that are defined by a large number
of constraints. When we have many constraints, we often have
situations where it is more appropriate to present a user with a
range of multi-objective solutions rather than one solution that
represents a weighted sum of the objectives. Of course, this is not
always the case, but it very often can be.
Acknowledgements

The work was funded by the UK’s Engineering and Physical
Sciences Research Council (EPSRC), under grant GR/S31150/01.

References

[1] Abraham A, Jain L, Goldberg R. Evolutionary multiobjective optimization.-
Springer; 2005.

[2] Aickelin U, Burke EK, Li J. An estimation of distribution algorithm with
intelligent local search for rule-based nurse rostering. Journal of the Opera-
tional Research Society, 10.1007/s10479-009-0590-8, 2009.
[3] Bard J, Purnomo HW. A cyclic preference scheduling of nurses using a
Lagrangian-based heuristic. Journal of Scheduling 2007;10:5–23.

[4] Barker TJ, Zabinsky ZB. Multicriteria decision making model for reverse
logistics using analytical hierarchy process. Omega—International Journal
of Management Science 2011;39:558–73.

[5] Beddoe G, Petrovic S, Li J. A hybrid metaheuristic case-based reasoning
system for nurse rostering. Journal of Scheduling 2009;12:99–119.

[6] Beliën J, Demeulemeester EL. Building cyclic master surgery schedules with
leveled resulting bed occupancy. European Journal of Operational Research
2006;176:1185–204.

[7] Bowman VJ. On the relationship of the Tchebycheff norm and the efficient
frontier of multiple-criteria objectives. Lecture notes in economics and
mathematical systems, vol. 135, Springer, 1976. p. 76–85.

[8] Brusco MJ, Jacobs LW. A simulated annealing approach to the cyclic staff-
scheduling problem. Naval Research Logistics 1993;40:69–84.

[9] Burke EK, Bykov Y, Newall J, Petrovic S. A time-predefined local search
approach to exam timetabling problems. IIE Transactions on Operations
Engineering 2004;36:509–28.

[10] Burke EK, Cowling P, De Causmaecker P, Berghe GVanden. A memetic
approach to the nurse rostering problem. Applied Intelligence 2001;15:
199–214.

[11] Burke EK, De Causmaecker P, Vanden Berghe G. A hybrid tabu search
algorithm for the nurse rostering problem. Lecture notes in artificial
intelligence, Springer, vol. 1585, 1999. p. 187–94.

[12] Burke EK, De Causmaecker P, Petrovic S, Berghe GVanden. Variable neighbor-
hood search for nurse rostering problems. In: Resende MGC, De Sousa JP,
editors. Metaheuristics: computer decision-making (combinatorial optimiza-
tion book series). Kluwer; 2004. p. 153–72.

[13] Burke EK, De Causmaecker P, Vanden Berghe G, Landeghem H. The state of
the art of nurse rostering. Journal of Scheduling 2004;7:441–99.

[14] Burke EK, Kendall G, Soubeiga E. A tabu-search hyperheuristic for timetabling
and rostering. Journal of Heuristics 2003;9:451–70.

[15] Burke EK, Li J, Qu R. A Pareto-based search methodology for multi-objective
nurse scheduling. Annals of Operations Research 2009, doi:10.1007/s10479-
009-0590-8.

[16] Burke EK, Li J, Qu R. A hybrid model of integer programming and variable
neighbourhood search for highly-constrained nurse rostering problems.
European Journal of Operational Research 2010;203:484–93.

[17] Chen JG, Yeung T. Hybrid expert system approach to nurse scheduling.
Computers in Nursing 1993;11:183–92.

[19] Curtois T. Novel heuristic and metaheuristic approaches to the automated
scheduling of healthcare personnel. PhD thesis, School of Computer Science,
University of Nottingham, 2007.

[20] Dueck G. New optimization heuristics: the great deluge algorithm and the
record-to-record travel. Journal of Computational Physics 1993;104:86–92.

[21] Easton FF, Mansour N. A distributed genetic algorithm for deterministic and
stochastic labor scheduling problems. European Journal of Operational
Research 1999;118:505–23.

[22] Geldermann J, Bertsch V, Treitz M, French S, Papamichail KN, Hämäläinen RP.

Multi-criteria decision support and evaluation of strategies for nuclear
remediation management. Omega - International Journal of Management
Science 2009;37:238–51.

[23] Geoffrion AM. Proper efficiency and the theory of vector optimization.
Journal of Mathematical Analysis and Application 1968;41:491–502.

[24] Jaumard B, Semet F, Vovor T. A generalised linear programming model for
nurse scheduling. European Journal of Operational Research 1998;107:
1–18.

[25] Kendall G, Mohamad M. Channel assignment in cellular communication
using a great deluge hyper-heuristic. In: Proceedings of the 12th IEEE
international conference on networks, 2004. p. 769–73.

[27] Li J, Aickelin U, Burke EK. A component-based heuristic search method with
evolutionary eliminations for hospital personnel scheduling. INFORMS
Journal on Computing 2009;21:468–79.

[28] Meyer auf’m Hofe H. Solving rostering tasks as constraint optimization.
In: Proceedings of the 3rd international conference on practice and theory of
automated timetabling. Springer lecture notes in computer science,
vol. 2079, 2001. p. 191–212.

[29] Post G, Veltman B. Harmonious personnel scheduling. In: Proceedings of the
5th international conference on practice and automated timetabling, 2004.
p. 557–9.

[31] Steuer RE. Multiple criteria optimization: theory, computation and applica-
tion. New York: John Wiley; 1986.

[32] Zeleny M. Compromise programming. In: Cochrane JL, Zeleny M, editors.
Multiple criteria decision making. Columbia: University of South Carolina
Press; 1973. p. 262–301.

[33] Zitzler E. Evolutionary algorithms for multi-objective optimization: methods
and applications. PhD thesis, Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland, 1999.

dx.doi.org/10.1007/s10479-009-0590-8
dx.doi.org/10.1007/s10479-009-0590-8

	The falling tide algorithm: A new multi-objective approach for complex workforce scheduling
	Introduction
	A goal programming model for nurse rostering with hard and soft constraints
	Definition of parameters and variables
	Formulation of system constraints
	Formulation of goals
	Objective function

	A time-predefined multi-objective approach to nurse scheduling
	Objective functions of individual goals
	The Pareto set
	Fitness evaluation by compromise programming
	A falling tide algorithm for multi-objective optimization

	Computational results
	Results under a traditional weighted sum objective function
	Results under a multi-objective framework

	Conclusions
	Acknowledgements
	References

