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Abstract 

 

Three epitope-mapping procedures were used to identify B-cell epitopes on 

Betanodaviruses: neutralisation escape mutant sequence analysis, phage display, and pepscan. 

Betanodaviruses have emerged as major pathogens of marine fish. These viruses are the 

aetiological agents of a disease referred to as viral nervous necrosis (VNN), which affects 

many species of fish that are economically valuable to the aquaculture industry. The 

identification of betanodavirus B-cell epitopes will facilitate the rational development of 

vaccines to counter VNN.  

A panel of mouse monoclonal antibodies (MAbs) was produced using hybridoma 

methodology for use in each of the epitope mapping procedures. These antibodies were 

characterised in Western blotting, ELISA, and virus neutralisation tests. Rabbit polyclonal 

sera, and serum samples from nodavirus-infected fish were also used for pepscan analyses. 

Attempts to produce betanodavirus neutralisation escape mutants, using plaque assay 

or limiting dilution based methods, were not successful. 

Two phage libraries expressing random peptides of seven (Ph.D.7™) or twelve 

(Ph.D.12™) amino acids in length as fusions to the coat protein were used to identify the 

ligands recognised by MAbs directed against betanodavirus. Neither of these phage libraries 

yielded conclusive results. Phage clones containing tandem inserts were obtained after MAb 

selection from library Ph.D.7™. Extensive screening and nucleotide sequence analysis of 

MAb-selected clones from library Ph.D.12™) failed to yield a consensus sequence.  

Pepscan analyses were performed using the recently developed suspension array 

technology (SAT). This was used to map the recognition sites of MAbs and serum samples 

onto a panel of overlapping synthetic peptides (12mers) that mimicked the betanodavirus coat 

protein. The results of pepscan analyses required careful interpretation due to the binding of 

antibodies and serum samples to multiple peptides. However, three regions of the nodavirus 

coat protein were identified as containing B-cell epitopes: amino acids 1-50, 141-162, and 

181-212. These results are discussed in relation to previous studies of immune responses to 

betanodaviruses, and to the future development of betanodavirus vaccines and diagnostic 

reagents. 
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Sea bass IgM Anti-European sea bass IgM monoclonal antibody 
SC Subcutaneous Injection 
SDV Sleeping Diseases Virus 
SJNNV Striped Jack Nervous Necrosis Virus 
SPDV Salmon Pancreatic Disease Virus 
SNP Single Nucleotide Polymorphism 
SNN-1 Striped Snakehead (Ophicephalus  striatus ) cell line 
SVE Sea bass Viral Encephalitis 
TPNNV  Tiger Puffer Nervous Necrosis Virus 
TRO Total Residual Oxidants 
UV Ultra-Violet  
VER Viral Encephalopathy and Retinopathy 
VHSV Viral Hemorrhagic Septicaemia Virus 
VNN Viral Nervous Necrosis 
YGNNV Yellow Grouper Nervous Necrosis Nodavirus  
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Chapter 1 - Introduction 
 

1.1 -  Betanodavirus  

1.1.1 - History of the disease  
 

 

Within the last 20 years a disease with distinct pathological features comprising 

vacuolation of the encephalon and retina has affected the marine fish-farming industry. The 

aetiologic agent of this disease has been identified as a virus belonging to the Nodaviridae 

family. Nodavirus infection is now recognised as a major problem for the marine aquaculture 

industry in many parts of the world. Nodavirus-associated disease can cause extensive 

mortalities (up to 100 % in larvae) in affected stocks. 

Nodavirus disease in marine fish is neuropathogenic and for this reason it was first 

named SVE (Sea bass Viral Encephalitis) by Bellance and Gallet de Saint-Aurin (1988). Since 

then it has been referred to as Viral Nervous Necrosis (VNN) (Yoshikoshi and Inoue, 1990), 

Viral Encephalopathy and Retinopathy (VER) (Munday et al. 1992), and Fish Viral 

Encephalitis (FVE) (Comps et al. 1994). The disease is officially denominated Viral 

Encephalopathy and Retinopathy by the OIE (Office International des Ėpizooties), based on 

the histopathological signs that accompany infection (Munday et al. 2002). Tanaka et al.  

(2004) suggested that the disease should be referred to as Viral Encephalitis and Retinitis 

based on histopathological studies. 

The first report of fish nodaviruses was made in Martinique where the production of 

sea-bass (Dicentrarchus labrax) alevins was completely halted by this virus in 1985 (Bellance 

and Gallet de Saint-Aurin, 1988, Breuil et al. 1991). Since then further disease outbreaks with 

similar symptoms have been reported with global distribution. More than 38 species 

belonging to 21 families of ten different orders have been affected (Table 1.1).  
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Table 1.1 - Fish species in which nodavirus infection has been reported 
 

 

 

 

 

 

Order Family Species Common name Country Reference 
Anguilliformes Anguillidae Anguilla anguilla L. European eel Taiwan Lai et al.  (2001b) 
Acipenseriformes   Acipenseridae Acipenser gueldenstaedtii Russian sturgeon Greece Athanassopoulou et al.  (2004) 
Cyprinodontiformes Poeciliidae Poecilia reticulata Guppy Singapore Hegde et al.  (2003) 

Gadiformes   Gadidae 

Gadus morhua 
 
Gadus macrocephalus 
Melanogrammus aeglefinus 

Atlantic cod 
 
Pacific cod 
Haddock 

United Kingdom 
Canada 
Japan 

 

 

Canada 

Starkey et al.  (2001) 
Johnson et al.  (2002) 
Arimoto et al.  (1993) 
Gagné et al.  (2004) 

Mugiliformes Mugilidae Mugil cephalus Black mullet Israel Ucko et al.  (2004) 

Perciformes   Carangidae   

Pseudocaranx dentex 
 
Seriola dumerili 
Trachinotus falcanus 

Striped jack 
 
Amberjack 
Yellow-wax pompano 

 
Japan 

 

 

Taiwan 

Mori et al.  (1992) 
Arimoto et al.  (1993) 

Nishizawa et al.  (1997) 
Lai et al.  (2001b) 

 Centropomidae Lates calcarifer Bloch Barramundi 

Australia 
Singapore 

Tahiti 

 

 

Israel 

Glazebrook et al.  (1990) 
Chew-Lim et al.  (1998) 

Renault et al.  (1991) 
Ucko et al.  (2004) 

 Lutjanidae Lutjarnus erythropterus  Taiwan Lai et al.  (2001b) 

 Moronidae Dicentrarchus labrax L. European sea bass 

Martinique 
France 
Italy 

 Israel 

Bellance and Gallet de Saint-Aurin (1988) 
Breuil et al.  (1991) 
Ucko et al.  (2004) 

 Rachycentridae Rachycentron canadum L. Cobia  Taiwan Lai et al.  (2001b) 

 Sciaenidae 
Umbrina cirrosa 
Atractoscion nobilis 
Sciaenops ocellatus 

Shi drum 
White sea bass 
Red drum 

 
Japan 
U.S.A 
Korea 
Israel 

Comps et al.  (1996) 
Nishizawa et al.  (1997) 

Curtis et al.  (2001) 
Oh et al.  (2002) 

Ucko et al.  (2004) 
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Order Family Species Common name Country Reference 

Perciformes  Serranidae 

Chromileptes altivelis 
Epinephelus 
    akaara 
 
    aeneus 
    awoara 
    fuscoguttatus 
    lanceolatus 
    malabaricus 
    moara 
    septemfasciatus 
    tauvina 
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Table 1.1 (continued)- Fish species in which nodavirus infection has been reported 

 

 

 

Humpback grouper 
 

Redspotted grouper 
 

White grouper 
Yellow grouper 

Black-spotted grouper 
Dragon grouper 

Brown-spotted grouper 
Kelp grouper 

Sevenband grouper 
Greasy grouper 

Indonesia 
 

Japan 
 

Israel 
Taiwan 
Taiwan 
Taiwan 

Thailand 
Japan 
Japan 

Singapore 

Zafran et al.  (2000) 
 

Mori et al.  (1991) 
Chi et al.  (1997) 

Ucko et al.  (2004) 
Lai et al.  (2001a) 
Chi et al.  (1997) 
Lin et al.  (2001) 

Danayadol and Direkbusarakom (1995) 
Nakai et al.  (1994) 

Fukuda et al.  (1996) 
Chua et al.  (1995) 

 Sparidae   Pagrus major Red seabream Japan Nishizawa et al.  (1997) 
 Oplegnathidae Oplegnathus fascinatus Japonese parrotfish Japan Yoshikoshi and Inoue (1990) 
Pleuronectiformes Paralichthyidae  Paralichthys olivaceus Japanese flounder Japan Nguyen et al.  (1994) 

 Pleuronectidae   

Hippoglossus hippoglossus 
 
Pleuronectes americanus 
Verasper moseri 

Atlantic halibut 
 

Winter flounder 
Barfin flounder 

Norway 
United Kingdom 

Canada 
Japan 

Grotmol et al.  (1997) 
Starkey et al.  (2000) 
Barker et al.  (2002) 

Nishizawa et al.  (1997) 
 Scophthalmidae  Scophthalmus maximus Turbot Denmark Bloch et al.  (1991) 
 Soleidae Solea vulgaris/Solea solea Dover sole United Kingdom Starkey et al.  (2001) 
Scorpaeniformes   Platycephalidae Platycephalus indicus Bartail flathead Japan Song et al.  (1997) 
Siluriformes Siluridae Parasilurus asotus Chinese catfish Taiwan Chi et al.  (2003) 
Tetraodontiformes Triodontidae Takifugu rubripes Tiger puffer Japan Nakai et al.  (1994) 
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Until very recently all fish nodavirus disease outbreaks were confined to marine 

species. The first indication that nodaviruses might infect freshwater fish was the occurrence 

of VER in barramundi, but this species is catadromous and part of the life cycle is in sea 

water. In 2000 the first occurrence of these viruses in a fresh water ornamental fish, guppy 

(Poecilia reticulata) was detected in Singapore (Hegde et al. 2003). In Greece two freshwater 

outbreaks of nodavirus disease have been described. One in sturgeon, (Acipenser 

gueldestaedi) and another in European sea bass (Dicentrarchus labrax) under production in 

freshwater (Athanassopoulou et al. 2003, Athanassopoulou et al. 2004). Mortalities over 70 % 

caused by VNN in European eel (Anguilla anguilla) were observed in fish-farms of Taiwan 

(Chi et al.  2003). 

The confirmation of nodavirus as the aetiological agent of VER in fulfilment of 

Koch’s postulates has been performed by experimental infection of several fish species 

including: Dicentrarchus labrax (Péducasse et al.  1999c, Skliris and Richards, 1999a), 

Epinephelus akaara (Mori et al. 1991), Epinephelus malabaricus (Boonyaratpalin et al.  

1996), Epinephelus septemfasciatus (Tanaka et al.  1998), Pseudocaranx dentex (Arimoto et 

al. 1993, Nguyen et al. 1996), Anarhicas minor (Amundsen and Sommer, 1999, Johansen et 

al.  2003, Sommer et al. 2004) Scophthalmus maximus (Húsgarð et al. 1999) and 

Hippoglossus hippoglossus (Grotmol et al. 1999).  

 

 

1.1.2 - Taxonomy  
 

Based on virion size and genome characteristics Mori et al. (1992) classified the virus 

isolated from striped jack as a member of the Nodaviridae family. The virus was designated 

Striped Jack Nervous Necrosis Virus (SJNNV). Comps et al. (1994), characterised a virus 

isolated from outbreaks of VNN in Dicentrarchus labrax and Lates calcarifer and obtained 

results similar to those reported by Mori et al. (1992). Comps et al. (1994) also concluded that 

the aetiological agent of VNN in these species was a nodavirus, and named the causative 
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agents Fish Encephalitis Viruses (FEV) to distinguish them from the previously described 

insect nodaviruses. 

Viruses with similar properties have been isolated from globally distributed outbreaks 

of VNN. In each instance, the virus particles isolated from diseased fish have exhibited 

physical and chemical properties characteristic of nodaviruses.  

The Nodaviridae were first identified from insects (Garzon and Charpentier, 1992), 

then from fish. More recently a nodavirus has been identified in a crustacean (Arcier et al.  

1999). 

Recently the viruses isolated from cases of VNN have been classified as belonging to 

the genus Betanodavirus within the Nodaviridae family to distinguish them from the insect 

nodavirus, which are classified as belonging to the genus Alphanodavirus (Ball et al. 2000). 

The lack of a permissive cell culture system for fish nodaviruses delayed the 

characterisation of the aetiological agent of VNN. The first studies described the agent of 

VNN as a "picorna-like virus" (Glazebrook et al. 1990, Breuil et al. 1991). 

 

 

1.1.3 - Characterisation of the virus 
 

Breuil et al. (1991) characterised virus particles isolated from European sea bass 

(Dicentrarchus labrax) larvae and juveniles as having a typical icosahedral shape and a 

diameter of 23 nm as determined by electron microscopy. After purification in CsCl gradients 

virus particles showed a diameter of 26 nm from side to side, 29 nm from point to point, and a 

buoyant density of 1.30 g per cm3 (Breuil et al. 1991). 

The nucleic acid and the structural proteins of striped jack nervous necrosis virus 

(SJNNV) were characterised by Mori et al. (1992). This study revealed that the virus 

associated with VNN consisted of non-enveloped particles about 25 nm in diameter, with two 

single-stranded positive-sense RNA molecules with molecular weights of 1.01 × 106 Da 

(RNA1) and 0.49 × 106 Da (RNA2), lacking a poly(A) sequence at the 3’ terminus. The same 
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authors identified two major polypeptides, one of approximately 100 kDa encoded by RNA1, 

and another of 42 kDa encoded by RNA2, which was deduced to represent the coat protein 

gene. Barramundi NNV, European sea bass NNV (DlNNV) and grouper NNV have the same 

major RNA2 polypeptide (42 kDa) (Comps et al. 1994, Hegde et al. 2002). 

The RNA1 genome segment encodes "protein A", which is the viral component of the 

RNA-dependent RNA polymerase (RdRp) (Nagai and Nishizawa, 1999). According to these 

authors, the nucleotide sequence of SJNNV RNA1 comprises 3081 bases and contains a 

single Open Reading Frame (ORF) encoding a protein of 983 aa (amino acids) of Mr 110 

kDa. However, the RNA1 segment from a nodavirus isolated from Atlantic cod, contains 

3100 nucleotides (nt), with one ORF between nt 79-3021 that encodes a 981 aa polypeptide 

(Sommerset and Nerland, 2004). In contrast, the greasy grouper NNV (GGNNV) RNA1 is 

3103 nt in length with one ORF (nt 79-3027) encoding a protein of 982 aa (Tan et al. 2001).  

Several studies of the RNA2 have indicated that this segment varies in length 

according to the virus strain analysed. The longest RNA2 was identified in GGNNV, 1433 nt, 

whereas SJNNV contained an RNA2 segment of 1410 nt, and that from SBNNV was only 

1406 nt long. Both GGNNV and SBNNV RNA2s encode coat proteins of the same size (338 

aa), while that from SJNNV is 2 amino acids longer. However all fish nodavirus coat proteins 

studied are of the same molecular weight (37 kDa) (Nishizawa et al. 1995a, Delsert et al. 

1997a, Tan et al. 2001). 

A nodavirus obtained from the freshwater fish species guppy (Poecilia reticulata) 

contained a shorter RNA2 (1367 base pairs) and the ORF coded for a protein of the same size 

as that found in sea water species – 338 amino acids (Hegde et al. 2003). 

The longer sequence length described for both GGNNV RNAs by Tan et al. (2001) 

have been attributed to the use of a different sequencing methodology involving  5’RACE. 

In alphanodavirus a subgenomic RNA3 is produced during RNA replication from the 

3’ terminus of RNA1. This transcript encodes one or two small proteins (B1 and B2) with 

unknown functions (Schneemann et al. 1998). A RNA3 transcript from a betanodavirus of 

approximately 400 base pairs was reported for the first time by Delsert et al. (1997b). Tan et 
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al. (2001) suggested that the RNA1 of GGNNV encoded two proteins designated B1 (111 aa) 

and B2 (75 aa). The B1 protein was translated in the same reading frame as the replicase 

protein A, whereas protein B2 was translated in the +1 reading frame and overlapped the C 

terminus of protein A. The amino acid sequence of Atlantic halibut RNA3 corresponded to nt 

2730-3100 of the RNA1 Atlantic halibut sequence (Sommerset and Nerland, 2004). The 

amino acid sequence indicated that only the B2 protein was expressed during virus 

replication. In flock house virus (FHV) the B2 protein has been identified as a potent RNA 

silencing inhibitor (Li et al. 2002). 

Protein α is the precursor of the capsid protein and is important for viral assembly 

(Guo et al. 2003). In alphanodaviruses, protein α is autocatalytically cleaved to form the 

mature coat protein subunits β and γ (Gallagher and Rueckert, 1988). With betanodaviruses 

this doublet formation does not occur as a result of autocatalysis, but instead results from the 

formation of an intramolecular disulfide bond between cystines 187 and 201 (Krondiris and 

Sideris, 2002). 

Analysis of the RNA2 genome segment from Atlantic halibut indicates that the 

deduced amino acid sequence contains two stretches of arginine residues that are found in all 

nodaviruses and are assumed to participate in the binding of the RNA genome to the internal 

capsid wall (Grotmol et al.  2000). An aspartic acid residue is present at position 75 that is 

also common to all nodaviruses This residue is believed to represent part of a catalytic site 

that is involved in capsid protein cleavage (Grotmol et al. 2000). 

The N-terminus of the coat protein is very rich in basic amino acids (nine arginines 

and six lysines), which might account for the observed irregularity in the mobility of this 

protein in SDS-PAGE (Sideris, 1997). The same pattern has been also observed in the coat 

protein of other insect nodaviruses and this region of the coat protein is thought to be involved 

in the coat protein-RNA interaction required for virus encapsidation (Schneemann et al. 

1998). 

Chi et al. (2001) demonstrated that the capsid proteins of GNNV is glycosylated  

based on their staining properties with periodic acid-silver. 
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1.1.4 - Clinical signs 

1.1.4.1  -  Signs 

 

The clinical signs of VNN include abnormal colouration, anorexia, and altered 

swimming in association with extensive mortalities that can approach 100 % (Table 1.2). In 

most cases the fish affected are larvae or juveniles, but there are a number of reports of VNN 

in adult fish. 

 

Table 1.2 - Clinical signs of nodavirus disease. 
 
Species Age Signs Reference 

Lates calcarifer 15-18 dph Lethargy, anorexia, pale-grey coloration, 
swimming in a darting or corkscrew fashion Glazebrook et al.  (1990) 

Epinephelus akaara  Whirling swimmimg pattern Munday and Nakai (1997) 

Pseudocaranx dentex  Abnormal swimming behaviour, swim 
bladder hyperinflation Munday and Nakai (1997) 

Hippoglossus hippoglossus  Lethargy, belly-up at rest, abnormal 
swimming, pale colour Grotmol et al. (1997) 

Scophthalmus maximus 50-100 mm 

Reduced feeding activity, dark colouration, 
lethargic, lying abdomen-up on the bottom, 

abnormal swimming such as rotating, 
spinning, horizontal looping 

Bloch et al. (1991) 

Oplegnathus fascinatus 6-25 mm TL Loss of swimming activity and equilibrium, 
Spiral swimming, dark colour Yoshikoshi and Inoue, (1990)

Paralichthys olivaceus 17-18 mm TL 
(35 dph) Whirling, abnormal swimming behaviour Nguyen et al. (1994) 

Epinephelus akaara 7-20 mm Listless swimming near the surface of the 
water, abrupt whirling, sinking to the bottom Mori et al. (1991) 

Epinephelus akaara 170-1850g Floating upside down around the surface of 
water Fukuda et al. (1996) 

Epinephelus tauvina Up to 40 mm Loss of equilibrium, corkscrew swimming Chua et al. (1995) 

Cromileptes altivelis 10-52 dph Twirling swimming, resting on the bottom, 
sluggish behaviour Zafran et al. (2000) 

 
TL – total length; dph - days post hatching 
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1.1.4.2  -  Tissue distribution and histopathology  

 

VNN is characterised by extensive necrosis of the central nervous system (CNS) with 

numerous virus particles present in the cytoplasm of affected nerve cells (Nishizawa et al.  

1995b). 

Glazebrook et al. (1990) observed extensive vacuolation and neuronal degeneration of 

the mid and hind brain and vacuolation of the retina in affected barramundi (Lates calarifer 

Bloch). Under electron microscopy, degeneration was evident in cells in the brain and retina. 

Virions were present within the cytoplasm of neurones, which showed margination of nuclear 

chromatin. In the retina, virions were either membrane bound by endoplasmic reticulum or 

free in the cytoplasm. Separation of the nuclear membrane was observed, and the inner cristae 

of mitochondria were disintegrated with only vestiges of the plasma membrane remaining. 

Under light microscopic examination, larvae of Oplegnathus fasciatus showed 

conspicuous vacuolation and pyknosis associated with marked shrinkage and basophilia in 

affected cells of the spinal cord and brain (Yoshikoshi and Inoue, 1990). Numerous virus 

particles were evident in the cytoplasm of neurones, and within inclusion bodies and nerve 

fibres of affected neurones. These included oligodendrocytes which formed the myelin sheath 

and probably astrocytes. The authors were able to differentiate two kinds of degenerative 

change – pyknosis and cell lysis. In pyknotic cells the virus particles were densely packed in 

the cytoplasm, which contained a few degenerating mitochondria. These cells appeared to be 

highly necrotic. Cell lysis occurred much more frequently and was closely associated with 

vacuolation (Yoshikoshi and Inoue, 1990). 

In larvae of Epinephelus akaara conspicuous vacuolation occurred in the nuclear 

layers of the retina and in various parts of the brain (Mori et al. 1991). When the same 

samples were observed by transmission electron microscopy, necrotic and lytic degeneration 

of neurons and other unidentified cells in the retina and brain, and numerous hexagonal virus 

particles in the heavily vacuolated cytoplasm and extracellular spaces were evident. 
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In the studies by Yoshikoshi and Inoue (1990) and Mori et al. (1991), lesions  were 

not found in tissue samples taken from the gills, heart, alimentary canal, liver, exocrine 

pancreas, kidney, spleen, skin and skeletal muscles. 

In nodavirus infected Lates calcarifer larvae Renault et al. (1991) described enlarged 

basophilic cells with a rounded shape, and inclusion bodies and cytoplasmic vacuolation in 

cells of the optic tectum, cerebellum, tegmentum, vagal lobes, medulla oblongata and spinal 

cord. The vacuoles were often very extensive and the resulting loss of neural substance gave a 

spongiform appearance to the tissue. A similar spongiform appearance was evident in the 

retina.               

Nguyen et al. (1997) studied the tissue distribution of virus replication in striped jack 

using Reverse Transcriptase – Polymerase Chain Reaction (RT-PCR) and Fluorescent 

Antibody Technique (FAT) and detected virus in the liver, kidney, stomach, intestine and 

gonadal fluid of 13 year old broodstock fish.  

 

 

1.1.5 - Route of infection 
 

Renault et al. (1991) reported that the cerebellum, the optic tectum and the retina were 

the primary sites of lesions in nodavirus-infected barramundi. The spinal cord and spinal 

ganglia were the primary sites of lesions in Japanese parrotfish (Oplegnathus fasciatus) 

(Yoshikoshi and Inoue, 1990). In striped jack, necrosis and vacuolation of nerve cells were 

first observed in the spinal cord, particularly in the area situated near to the swim bladder, 

with lesions occurring later in the brain and then in the retina (Nguyen et al. 1996). The 

authors suggested that one of the initial multiplication sites of the virus was the area of the 

spinal cord situated immediately above the swim bladder. From there the virus was postulated 

to spread in an anterior direction to the base of the spinal cord and forward to the brain 

terminating in the retina. 
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In a study performed in Atlantic halibut by Grotmol et al. (1999) the initial major 

focus of lesions in the central nervous system was the caudal part of the brain stem together 

with the stratified epithelium of the anterior intestine. The route of infection to the CNS may 

have been axonal transport to the brain stem through cranial nerves including the vagus nerve. 

Péducasse et al. (1999c) noted that after infecting Dicentrarchus labrax juveniles by 

subcutaneous injection, bath exposure, and caudal immersion, virus was first detected in the 

spinal cord, and then in the brain and in the retina. The infection appeared to progress from 

two major sites, the gills and skin and/or the lateral line to gain access to the central nervous 

system (Péducasse et al. 1999a). 

Possible nodavirus infection of the host through the nasal cavity has been suggested 

by Mladineo (2003) and Tanaka et al. (2004). These authors reported that the virus penetrates 

the nasal epithelium, disseminating through the olfactory nerve and olfactory bulb, to the 

aboral brain tissue, medulla oblongata, spinal cord and finally to the retina. 

Whereas there are histological differences according to the age of the host, there are 

no age related differences in tissue-distribution. Larvae exhibit heavy necrotization of the 

brain whereas juveniles and adults show higher concentrations of the virus in the brain but 

with lower necrotization of the tissue (Mladineo, 2003). 

 

 

1.1.6 - Transmission of disease 
 

Several outbreaks in fish larvae suggest that vertical transmission of VNN may occur. 

The detection of viral antigens in ovarian tissues, fertilised eggs and hatched larvae was 

achieved by Arimoto et al. (1992) and Breuil et al. (2002). The presence of Nodavirus in 

sperm and subsequent infection of eggs during fertilisation was demonstrated by Breuil et al. 

(2001). These authors infected sperm with Nodavirus and demonstrated infection of offspring.  

Nguyen et al. (1997) suggested that the broodstock can carry the virus in the gonads 

and several other organs (liver, kidney, stomach and intestine) and during the stress of 
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spawning virus replication occurred in these organs. Virus can then be shed from the gonads 

and digestive tract and infect eggs, sperm or larvae (Arimoto et al. 1992, Mushiake et al.  

1992). The carrier status of the broodstock was confirmed by the total absence of virus in 

nerve tissue (Nguyen et al. 1997).  

The infection of healthy fish by cohabitation with infected fish was demonstrated by 

Arimoto et al. (1993) in striped jack larvae. The survival of purified nodavirus particles and 

the ability to use water as a transmission vehicle has been demonstrated by Breuil et al. (2002) 

in a challenge of European sea bass larvae. 

Fish surviving natural infection can act as carriers. One year after infection, Atlantic 

halibut survivors were shown to carry betanodavirus (Johansen et al. 2004b). 

Horizontal transmission of VNN is problematic with respect to asymptomatic species 

and the use of polyculture systems. Skliris and Richards (1999b) demonstrated the presence 

and the viability of nodavirus in tilapia (Oreochromis mossambicus), and the absence of 

symptoms of the disease. For many years gilthead sea bream (Sparus aurata) was believed to 

be an asymptomatic carrier of VNN, but the carrier state was eventually demonstrated by 

Castric et al. in 2001.  

The transmission of VNN by contaminated equipment has been suggested with 

respect to the disease in sturgeon (Athanassopoulou et al. 2004).  

All marine fish larvae need to be fed with live food and this can act as a reservoir for 

many pathogens. Skliris and Richards (1998) assessed the susceptibility of the brineshrimp 

Artemia salina and the rotifer Brachionus plicatilis to nodavirus infection. Their results 

indicated that these invertebrates may act as a carrier for nodaviruses. No evidence was found 

for viral replication in the invertebrate hosts.  
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1.1.7 - Pathogenicity  
 

A number of factors have been found to influence the virulence of betanodavirus 

infections in marine fish. These include temperature, age and species of host. The genetic 

basis of virulence in betanodaviruses is currently poorly characterised, and this has impeded 

the development of effective vaccines. 

Betanodavirus virulence is associated with variation of water temperature. VNN-

associated mortalities tend to be more severe at elevated water temperatures (25-28°C). 

Mortality frequently decreases or ceases altogether at temperatures below 20-23°C (Mori et 

al.  1991, Le Breton et al. 1997). However, instances of VNN have occurred at low water 

temperatures (4-15°C) (Tanaka et al. 1998). 

The implication of elevated water temperatures as a factor influencing the severity of 

VNN was suggested by Fukuda et al. (1996) and Skliris and Richards (1997), who also noted 

high mortalities and relatively early disease signs in European sea bass held at elevated water 

temperatures (Skliris and Richards, 1999a). 

A relationship between water temperature and virulence in betanodaviruses was 

reported by Péducasse et al. (1999a) and Breuil et al. (2001). These authors found that a strain 

of DlNNV designated Sb2 was highly virulent at 25°C (Péducasse et al. 1999a) but less 

virulent at 14-15°C (Breuil et al. 2001).  

Based on in vitro studies utilising the GF-1 cell line, Chi et al. (1999b) proposed that 

in winter, nodaviruses enter a state of persistent infection within host cells, and do not cause 

necrosis or mortality in fish. These authors suggest that lower water temperatures delay the 

occurrence of mortalities in groupers. 

Betanodaviruses can replicate and cause disease with mortalities of 100 % in Atlantic 

halibut yolksac larvae at temperatures as low as 6°C (Grotmol et al. 1999). This high 

virulence may represent an adaptation to replication in cold-water fish, and may thus be a 

phenotypic feature of this virus strain compared to nodavirus pathogenic to warm-water 

species. 
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Significant differences in virulence between two nodavirus strains (striped jack and 

Atlantic halibut) in cross infections of their respective natural hosts were reported by Totland 

et al. (1999). However, the authors were unable to conclude whether the observed differences 

in mortality were an effect of water temperature or a result of the host specificity of the 

viruses studied. The inability of SJNNV to infect Atlantic halibut was also observed by 

Húsgarð et al. (2001).  

The susceptibility of European sea bass to nodavirus infection was shown to be age 

dependent (Breuil et al. 2001). A betanodavirus strain (Sb1) was pathogenic for larvae, but 

less to juveniles or adults. 

 

 

1.1.8 - Detection Methods 
 

The detection of fish nodaviruses can be achieved by several methods, including 

histology, FAT, in-situ hybridization, virus isolation in cell culture, enzyme linked 

immunosorbent assay (ELISA), immunohistochemistry, and molecular procedures such as 

RT-PCR. 

Histology using light and electron microscopy were the first techniques used for the 

identification of VNN (Yoshikoshi and Inoue, 1990). Recognition of the characteristic lesions 

of VNN in the brain and retina can easily be achieved by microscopy. 

Nguyen et al. (1996) used a fluorescent antibody technique (FAT) to detect 

betanodaviruses. It was possible to detect virus antigen in the nervous system with this 

technique. Since then this FAT has been used routinely to identify and confirm the presence 

of betanodavirus in outbreaks of VNN. 

 The detection of betanodaviruses with in situ hybridisation using probes labelled 

radioactively or DIG-labelled in DIEV infection was reported by Comps et al. (1996).  

The isolation of nodavirus in a cell line was reported for the first time by Frerichs et 

al. (1996), who used the SSN-1 cell line (derived from striped snakehead Ophicephalus 
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striatus) to isolate a nodavirus from a sample of D. labrax brain tissue. Nodavirus infected 

SSN-1 cells exhibited characteristic cytopathic effects. The GF-1 (derived from a grouper 

Epinephelus coioides) cell line has been used to successfully propagate GNNV (Chi et al.  

1999a, Chi and Lin, 1999). More recently, the cell line GB (Grouper Brain, derived from 

yellow grouper Epinephelus awoara) has also been used for propagation of betanodaviruses 

(Lai et al. 2001b). In other cell lines such as that from barramundi (Lates calcarifer) 

cytopathic effects are not obtained during primary culture, and blind passage is required (Chua 

et al.  1995). Cell lines of this type are less useful for betanodavirus detection. 

A major constraint of the above techniques is their requirement for lethal sampling of 

test fish. Consequently, they cannot be applied to the screening of broodstock fish. In these 

circumstances methods for detection of nodavirus antibody are advantageous, since they can 

be applied non destructively (Breuil and Romestad, 1999).  

The detection of SJNNV antibodies in broodstock of striped jack using indirect 

ELISA was achieved for the first time by Mushiake et al. (1992). Further attempts to detect 

nodavirus antibodies have been carried out in European sea bass, striped jack, barramundi and 

barfin flounder (Mushiake et al. 1992, Mushiake et al. 1993, Breuil and Romestad, 1999, 

Watanabe et al. 2000, Huang et al. 2001). Antibodies against betanodavirus can be detected 

one year after infection in halibut (Johansen et al. 2004b). 

Indirect ELISA was used for detection of nodavirus antigens in eggs, larvae and brood 

stock of striped jack (Arimoto et al. 1992), who used anti-nodavirus polyclonal antibodies 

produced in rabbits.  

Monoclonal antibodies represent useful diagnostic tools for betanodaviruses. 

Nishizawa et al. (1995b) succeeded in generating monoclonal antibodies (MAbs) against 

SJNNV that recognised the coat protein (42 kDa), and had neutralising activity as assessed in 

in vivo neutralisation assays. These MAbs did not react with other nodavirus strains 

suggesting different neutralising epitopes between SJNNV and other nodaviruses. Another 

panel of MAbs produced against Yellow Grouper Nervous Necrosis Nodavirus (YGNNV) 

exhibited in vitro neutralisation capacity and recognised the coat protein (42 kDa) (Lai et al.  
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2001a). MAbs against GNNV that were capable of neutralising several other strains of 

nodavirus isolated from grouper, tiger puffer, striped jack and barfin flounder were produced 

and characterised by Shieh and Chi (2005). 

Molecular diagnostic procedures have been applied to the detection of 

betanodaviruses. Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) was used to 

detect nodaviruses by Nishizawa et al. (1994), who tested combinations of five different 

primers (2 forward and 3 reverse). The most efficient amplification was achieved with primers 

designed to target a region designated T4 (592-1017 nt) (F2 - 5’ 

CGTGTCAGTCATGTGTCGCT 3’ and R3 3’ AGAAGTGGGCACAACTGAGC 5’). This 

primer pair generates a 426 bp fragment and has a detection limit of 0.1 fg of virus. 

Nested RT-PCR has proven to be more sensitive than single step RT-PCR for 

monitoring the presence of the nodavirus genome in asymptomatic carriers (Thiéry et al.  

1999, Gomez et al. 2004).  

 Recently a real-time Nucleic Acid Sequence Based Amplification (NASBA) 

procedure has been described for detection of betanodaviruses. NASBA is an isothermal 

nucleic acid amplification method. This method was found to be more sensitive than 

conventional RT-PCR (Starkey et al. 2004). 

 

 

1.1.9 - Phylogeny 

1.1.9.1  -  Fish nodavirus 

 

The genus Betanodavirus has been divided into seven lineages: Dicentrarchus labrax 

encephalitis virus (DlEV); tiger puffer nervous necrosis virus (TPNNV), Lates calcarifer 

encephalitis virus (LcEV); Japanese flounder nervous necrosis virus (JFNNV); striped jack 

nervous necrosis virus (SJNNV)), barfin flounder nervous necrosis virus (BFNNV) and red-

spotted grouper nervous necrosis virus (RGNNV) (Ball et al. 2000). 
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The first phylogenetic analysis of fish nodaviruses was carried out with isolates from 

Japan, Italy and Australia (Nishizawa et al. 1997). The Japanese isolates diverged into four 

major clusters: TPNNV type (Tiger Puffer Nervous Necrosis Virus), SJNNV type (Striped 

Jack Nervous Necrosis Virus), BFNNV type (Barfin Flounder Nervous Necrosis Virus) and 

RGNNV type (Red-Spotted Grouper Nervous Necrosis Virus). The isolates from Italy and 

Australia were found to belong to the RGNNV type (see Figure 1.1). 

 

Figure 1.1 – Betanodavirus phylogenetic tree (Johansen et al. 2004a). 
 

 

Phylogenetic analysis of nodaviruses from European sea bass from two different 

regions of France (Atlantic and Mediterranean areas) showed isolates from both geographic 

areas belonged to the RGNNV group, but the Mediterranean viruses were more closely related 

to the RGNNV type than the Atlantic viruses, which were more similar to the JFNNV group 

(Thiéry et al. 1999). The nucleotide sequence of the coat protein gene of the French 

Mediterranean SBNNV isolate was identical to nodaviruses isolated from Greece and Italy, 

suggesting that nodaviruses from the Mediterranean coast region are closely related (Thiéry et 

al. 1999). 

 17 
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Atlantic halibut nodavirus has been classified as belonging to the BFNNV clade, 

which also contains nodaviruses isolated from Pacific cod (Gadus macrocephalus) and barfin 

flounder (Verasper moseri) - both cold-water species  (Grotmol et al. 2000). The T2 region of 

the Atlantic halibut nodavirus RNA2 has a nucleotide sequence practically identical (98.4 %) 

to the T2 region of the BFNNV and the T4 nucleotide sequence showed identities of 97.9 % 

with barfin flounder and 98.2 % with Pacific cod (Grotmol et al. 2000). 

Betanodaviruses isolated from Atlantic halibut in Scotland show 98 % homology with 

viruses from Atlantic halibut in Norway (Starkey et al. 2000). This study also indicated that 

U.K. halibut nodavirus isolates belong to the BFNNV clade. Recently, nodaviruses from 

Atlantic cod and Dover sole farmed in the UK have also been found to cluster with the 

BFNNV nodaviruses (Starkey et al. 2001). 

Skliris et al. (2001), studied the phylogenetic relationship between a collection of 

nodaviruses isolated from Europe, Asia and Japan. The results of this work show that 12 of 

the 13 isolates (all the isolates from European sea bass, brownspotted grouper, barramundi, 

rock porgy and shi drum) were found to belong to the RGNNV genotype while a single isolate 

from striped jack was found to belong to the SJNNV type. 

A betanodavirus isolated from the guppy, a freshwater species, exhibited 98.2 % 

nucleotide identity with Epinephelus tauvina based on sequence analysis of the T4 region of 

RNA2, indicating that this virus belongs to the RGNNV clade (Hegde et al. 2003). 

In 2004 two other genetic groups of betanodavirus were proposed, one for turbot and 

another for Atlantic North nodaviruses (from Atlantic cod, haddock and winter flounder).  The 

designation of a new clade for turbot was based on relatively low sequence identity (77-78 %) 

between the turbot nodavirus and representatives of the other four phylogenetic groups 

(Johansen et al. 2004a). At the amino acid level, differences between the Atlantic North 

America viruses and Atlantic halibut NNV from Norway are not so pronounced (93 % 

identity), though Gagné et al. (2004) proposed that Atlantic Cod Nervous Necrosis Virus 

(ACNNV) represents a distinct phylogenetic group. 



Chapter 1 – General introduction 

 19 

Totland et al. (1999) claimed that genetic diversity among nodavirus strains reflects 

significant phenotypic differences, which may represent adaptation enabling infection of 

different host species and/or replication at different temperatures.  

The capacity for different strains of nodavirus to affect the same species, when 

considered with the diversity of species that can be infected, suggests that the host range of 

nodaviruses may reflect at least in part host availability as opposed to the consequences of 

coevolution between pathogen and host (Dalla Valle et al. 2001). The same authors suggested 

that the observed relatedness between nodaviruses from Australian and Mediterranean waters 

reflects a parallel or convergent evolution rather than an exchange of viruses between these 

geographical areas.  

 

1.1.9.2  -  Fish and other nodavirus 

 

The sequence identities between the RNA1 genome segments of SJNNV and the 

insect nodaviruses Black Beetle Virus (BBV) and Flock House Virus (FHV) were 

approximately 28.3 % at the nucleotide level and 27.6 % at amino acid level, although 

conserved motifs for the RNA-dependent RNA polymerase were located at almost identical 

positions within the deduced amino acid sequence of RNA 1  (Nagai and Nishizawa, 1999). 

The sequence similarities between the coat protein gene of SJNNV and other known 

insect nodavirus (nodamura virus (NOV), black beetle virus, flock house virus and boolarra 

virus (BOV)) are 28.6 % or less at the nucleotide level, 10.6 % or less at amino acid level. 

There is no conserved region of RNA2 between the fish and insect viruses (Nishizawa et al.  

1995a). This finding is supported by a sequencing study of the RNA2 segment of DlEV and 

other insect nodaviruses (Delsert et al. 1997a).  

The coat proteins of DIEV (338 amino acids) and SJNNV (340 amino acids) are 

shorter than those of the insect nodaviruses (399 to 407 amino acids) (Delsert et al. 1997a). 
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Based on nucleotide sequencing studies of SJNNV RNA1 and RNA2, Nagai and 

Nishizawa (1999) and Nishizawa et al. (1999) suggested that fish nodaviruses represent a new 

genus designated Piscinodavirus within the family Nodaviridae. 

In 2000 the Nodaviridae family was reclassified as having two genera: 

Alphanodavirus and Betanodavirus (Ball et al. 2000). The genus Alphanodavirus comprises 

insect nodaviruses and the genus Betanodavirus comprises fish nodaviruses. 

In 1997 a nodavirus was detected in the crustacean (Macrobrachium rosenbergii) 

(Arcier et al. 1999) in Guadeloupe, West Indies. To date Macrobrachium rosenbergii 

nodavirus (MrNV) has also been isolated in China and India (Hameed et al. 2004). Another 

unsually small virus named extra small virus (XSV) is invariably associated with MrNV 

infection in M. rosenbergii (Qian et al. 2003). MrNV has been characterised as a new type of 

nodavirus based on sequence analysis (Bonami et al.  2005) (Figure 1.2). 

 

 

 
Figure 1.2 – Phylogenetic tree of the Nodaviridae family 

(Thiéry et al. 2004). 
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1.1.10 - Control Measures 

1.1.10.1  -  Disinfection 

  

Attempts to control betanodaviruses in fish-farms are complicated by the relative 

stability of the nodavirus particle. These viruses are amongst the most stable of the fish viral 

pathogens (Frerichs et al. 1996).  

The implementation of effective disinfection procedures is one method that can be 

used to control VNN. To this end, studies have been performed to determine the susceptibility 

of betanodaviruses to physical and chemical inactivation. 

Striped jack NNV is completely inactivated at pH 12 so rubber shoes, plastic ware and 

nylon nets can be washed with an alkaline solution (pH 12) which can be neutralised with a 

hydrochloride solution (Arimoto et al. 1996). This betanodavirus strain is also inactivated by 

sodium hypochlorite, calcium hypochlorite, benzalkonium chloride and iodine. Heat treatment 

at 60°C for 30 min, ultra-violet light (UV) at an intensity of 410 μW per cm2 for 4 mins and 

ozone at 0.1 μg ml-1 also efficiently inactivate SJNNV. However, SJNNV viability was not 

reduced as efficiently by formalin, ethanol, methanol, ether or chloroform. 

The sensitivity of DlNNV to chlorine, iodine and peroxygen was noticeably different 

in the presence of organic matter (Frerichs et al. 2000). UV irradiation of 440 μW per cm2 for 

8 minutes reduced virus infectivity by 99.9%, and acid peroxygen also rapidly reduced the 

infectivity of DlNNV (Frerichs et al. 2000). 

 

1.1.10.2  -  Broodstock selection  

 

Vertical transmission represents one of the major obstacles to the control of VNN. 

Striped jack spawners have been identified as an important reservoir of infection, allowing the 

virus to propagate in the ovaries and to be subsequently released with the eggs into the 

environment (Arimoto et al.  1992). 
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As a first approach towards the control of vertical transmission, Mushiake et al.  

(1993) have suggested that broodstock should be screened for the presence of virus and that 

improvements should be made to the spawning induction method to minimise stress. The 

authors screened spawners using ELISA to detect nodavirus antibodies.  

However, VNN has occurred in offspring derived from spawners in which neither 

specific antibodies nor viral antigens were detected by ELISA (Mushiake et al. 1994). This 

illustrates the need for more sensitive screening methods for the detection of the virus. RT-

PCR has been shown to be more effective and sensitive than ELISA in the selection of the 

striped jack spawners (Mushiake et al. 1994). Dalla Valle et al. (2000) suggested that 

broodstock can be screened by analysing the blood, but nested RT-PCR needs to be used 

Watanabe et al. (1998) suggested that to prevent vertical transmission broodstock 

should be selected with ELISA titres less than 1:10 and subsequently reared in individual 

tanks. The eggs and sperm should be examined by RT-PCR in the spawning season, and only 

spawners that are negative by RT-PCR should be submitted to artificial fertilisation. Fertilised 

eggs should be disinfected with ozone and hatched larvae analysed by RT-PCR. 

The selection of brood stock by detection of serum antibodies and antigen detection in 

ovarian biopsies was also described by Breuil et al. (2000). 

Limiting the number of spawnings by broodstock fish to less than ten per season also 

reduces the incidence of vertical transmission, because nodavirus frequently occurs in larvae 

derived from eggs collected late in the spawning season (Mori et al. 1998). 

In striped jack and barfin flounders disinfection of eggs with ozone (0.5 μg l-1 of total 

residual oxidants (TROs) for 5 minutes) or with an oxidant (0.5 μg ml-1 TRO for a duration of 

30 sec generated by a corona discharge generator) has been shown to be effective (Mori et al. 

1998, Watanabe et al. 1998).  

The disinfection of the surface of Atlantic halibut eggs with 4 mg ozone per litre for 

30 seconds also reduces mortality from VNN (Grotmol and Totland, 2000). 
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1.1.10.3  -  Vaccines 

 

Aquaculture is a fast growing industry. However, approximately 10 % of the total 

production within this industry is lost due to infectious diseases (Benmansour and de 

Kinkelin, 1997).  

 Measures for the treatment and control of infectious diseases in aquaculture are 

inadequate, particularly in the case of viral diseases. Furthermore, the use of chemicals and 

antibiotics is associated with adverse environmental effects and potential risks to human 

health. For this reason, disease prevention is considered to be of increasing importance in the 

aquaculture industry.   

Vaccines can play a major role in disease prevention. They offer significant 

advantages over other methods of disease control as evidenced by the control of several 

important diseases like vibriosis, furunculosis and yersiniosis (Lillehaug, 1997).  Vaccines 

have facilitated a reduction in the use of antibiotics in Norway, of which 30 000 kg were used 

in 1987 and only 5 000 kg in 1995 (Markestad and Grave, 1997).  

Vaccination of fish can be performed by immersion, injection or by oral 

administration (Gudding et al. 1999). Immersion represents the only practical and economical 

technique for vaccinating fish fry, where efficacious protection is required at an early 

developmental stage. However, injection is preferred for mature fish since vaccination by this 

route offers better protection (Midtlyng, 1997).  

A viral vaccine should fulfil certain requirements (Leong and Fryer, 1993). These 

include: inexpensive production costs; the ability to confer protection in intensive aquaculture 

systems; the protection of fish at susceptible developmental stages; protection against all 

circulating types of a viral pathogen; induction of long lasting immunity; safety; and ease of 

administration. 

Since the early 1990s vaccination programs have been used in the aquaculture 

industry with promising results. Bacterial vaccines have proven to be easier to develop than 
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viral or parasitic vaccines. Some of the major bacterial diseases can now be controlled by 

vaccination programs.  

Different types of vaccines have been developed for the fish farm industry (live, 

attenuated, recombinant protein). More recently, special attention has focussed on the 

development of DNA vaccines as a result of the success obtained with experimental VHSV 

and IHNV DNA vaccines in rainbow trout (97 % survival for VHSV and 77 % survival for 

IHNV)  (Heppell et al. 1998, Corbeil et al. 2000, Lorenzen et al. 2000, LaPatra et al. 2001).  

There are several bacterial vaccines commercially available or in development 

including: vibriosis (Vibrio anguillarum, V.ordalii, V.salmonicida, V.vulnificus); bacterial 

kidney disease (BKD) (Renibacterium salmoninarum); furunculosis (Aeromonas 

salmonicida); enteric redmouth disease (ERM) (Yersinia ruckeri); edwardsiellosis 

(Edwardsiella ictaluri); piscirickettiosis (Piscirickettsia salmonis); pasteurella 

(Photobacterium damsela subspecie piscicida); several Flavobacterium strains (Bernardet, 

1997, Ellis, 1997, Kaattari and Piganelli, 1997, Romalde and Margariños, 1997, Smith et al. 

1997, Stevenson, 1997, Toranzo et al. 1997, Thune et al. 1997, Marsden et al. 1998, Kanellos 

et al. 1999). 

The development of efficacious viral vaccines has not lagged behind bacterial vaccine 

development. Some viral vaccines are currently available and others are in development 

including: infectious pancreatic necrosis (IPNV); spring viraemia of carp virus (SVC); grass 

carp haemorrhagic disease (GCHD); channel catfish virus disease (CCVD); several 

rhabdoviral diseases such as Hirame rhabdovirus (HIRRV), infectious hematopoietic necrosis 

(IHNV), viral hemorrhagic septicaemia virus (VHSV) (Heppell et al. 1995, Liao and Dobos, 

1995, Lorenzo et al. 1995, Christie, 1997, Dixon, 1997, Winton, 1997, LaPatra et al. 2001, 

Roche and Gaudin, 2001, Mas et al. 2002, Perez et al. 2002, Ronen et al. 2003, Takano et al. 

2004, Byon et al. 2005). 

There are four basic types of vaccines - live attenuated, whole inactivated (killed), 

purified proteins produced from cloned genes and purified subunits (Leong et al. 1997).  
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Live attenuated vaccines are produced by attenuating viruses in serial passage in cell 

culture or by isolating naturally occurring variants (Winton, 1998). These vaccines generally 

offer excellent protection and are cost-effective, but concerns exist regarding residual 

virulence, loss of attenuation, or consequential effects on other aquatic species, and thus 

licensing live attenuated vaccines can be problematic (Winton, 1998). The motivation for 

developing synthetic vaccines was driven by the need to overcome the drawbacks associated 

with live attenuated vaccines (Arnon and van Regenmortel, 1992). Synthetic vaccines offer 

major advantages over the other type of vaccines because they are: inexpensive; easy to 

produce; easily modified when needed; and stable not requiring preservation or  “cold-chain” 

supply. Multivalent vaccines can easily be produced by this means (Lorenzen, 1999, Heppell 

and Davis, 2000). 

Fully synthetic vaccines have been demonstrated to induce protective B-cell and T-

cell responses (Beck-Sickinger and Jung, 1993).  

Synthetic vaccines can be divided into two main groups; a) non-expression based and 

b) expression based. DNA vaccines are expression based vaccines, with the protein of interest 

being expressed in immunised fish after an injection in the form of a DNA plasmid containing 

an expression construct. DNA vaccines offer the advantage of conservation of the native 

structure of the protein and can elicit humoral immune response (Heppell et al. 1998, 

Lorenzen et al.  2002). However, DNA vaccines have not gained public acceptance as they are 

perceived to be a product of genetic manipulation. Consequently, their use in the aquaculture 

industry may confer adverse economic effects.  

Synthetic peptide based vaccines are an example of a non-expression based vaccine 

type. These are completely synthetic and thus relatively easy to licence. However there are 

also drawbacks with this type of vaccines. Firstly, they require the use of an adjuvant to 

increase their effectiveness, and secondly, knowledge of the antigenic structure of the target 

organism is required for their development (Winton, 1998). The use of synthetic peptides for 

immunisation of rainbow trout induced an antibody response against VHSV (Lorenzo et al. 

1995).  
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Both DNA and peptide vaccine offer the advantage of safety with respect to reversion 

to virulence, which is a critical factor in relation to environmental safety in aquaculture 

(Gudding et al. 1999). 

The potential advantages of synthetic vaccines has stimulated research aimed at an 

improved understanding of the molecular basis of the immunogenicity of proteins (Geysen et 

al. 1987b). 

Usually protein antigens contain several unique molecular structures, each of which 

can elicit an immune response (Lydyard et al. 2000). Antibodies produced against an antigen 

are not directed against the whole molecule but against a specific region of the molecule 

(immunogenic region) (Lydyard et al. 2000). 

The region of an antigen that is recognised by an antibody molecule is referred to as 

an epitope or an antigenic determinant (DeLisser, 1999, van Regenmortel, 2001). B-cell 

epitope mapping is the identification of the sites that are recognised by an antibody response 

to a defined antigen (Morris, 1996a).  

Viral epitopes have been classified into four categories (van Regenmortel, 1989b, van 

Regenmortel, 1990a, Arnon and van Regenmortel, 1992, van Regenmortel, 1992): 

cryptotopes, neotopes, metatopes and neutralisation epitopes. Cryptotopes are epitopes that 

can only be recognised when native virus particles are fragmented or denatured. Neotopes are 

epitopes that are only present when the quaternary structure of virus proteins is intact. 

Neotopes commonly occur in viral capsids. Epitopes present in both dissociated and 

polymerised forms of the viral coat proteins are designated as metatopes. Neutralising 

epitopes represent those epitopes that are recognised by neutralising antibodies.  

Neutralising epitopes are of great importance in the design of synthetic vaccines. 

Their identification can aid the rational design of vaccines by facilitating the induction of 

immune responses against relevant sites on pathogenic micro organisms (van Regenmortel, 

1989b). 

It is important to distinguish between antigenic and immunogenic epitopes. An 

antigenic epitope is the region of a protein molecule that an antibody can bind to, and an 
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immunogenic epitope is the region of a protein that can elicit an immune response (Geysen et 

al. 1984, Morris, 1996a). Immunogenicity is not solely a property of an antigen but is linked 

to features of the host immune system including B-cell and T-cell repertoires and the major 

histocompatibility complex (MHC)  (Benjamin et al. 1984). Residues involved in the high-

energy contacts between an antibody and its target epitope are called critical-binding residues 

(CBRs). Amino acid replacements at these sites usually reduce binding affinity greatly 

(Geysen et al. 1987b, Davies and Cohen, 1996). The CBRs located within a single contiguous 

polypeptide sequence are said to form a linear epitope, whereas CBRs comprised of residues 

from two or more distinct regions of a polypeptide that are brought together by protein folding 

form conformational epitopes (also referred to as discontinuous epitopes) (Barlow et al.  

1986). It is now widely believed that the majority of the protein epitopes are discontinuous 

(van Regenmortel, 2001). 

Structural studies (crystallography) reveal that 15-22 amino acids on the surface of a 

protein antigen make contact with a similar number of residues in an antibody binding site 

(Kuby, 1994). Contact involves ionic and hydrophobic interactions, and has between 75-120 

hydrogen bonds (Kuby, 1994). The surface area of this large complementary interface is 

between 650-900 Å2 (Kuby, 1994).  

Functional studies of antibody binding peptides have led to the general consensus that 

most of the binding energy of the epitope-antibody interaction results from the binding of 

between three and eight amino acid residues (Geysen et al. 1987a, van Regenmortel, 1989b). 

Clearly, there is a difference in the number of residues implicated in binding identified by 

structural and functional studies. This is believed to be due to the presence of residues on the 

antigen-antibody interface whose main contribution to the binding complex is the formation 

of complementary surfaces that act as a scaffold. These residues are identified by structural 

studies, wheras only critical binding residues influence functional studies (Scott, 2001).  

For the development of synthetic vaccines, efficient methods for epitope mapping are 

of considerable importance (Beck-Sickinger and Jung, 1993). Studies utilising monoclonal 

antibodies have been widely used to characterise viral epitopes (McCullough, 1986). The use 
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of monoclonal antibody based methods has allowed the delineation of antigenic structure at a 

level of precision not previously possible, because of their specificity for a single antigenic 

site (Benjamin et al. 1984). 

Several approaches have been used to characterise epitopes using MAbs:  

competitive antibody binding;  immunological screening of recombinant expression 

libraries of random cDNA fragments;  antibody binding to chemically synthesised 

overlapping peptides, or to fragments generated by proteolytic cleavage;  MAb binding to 

recombinant proteins using panels of deletion mutants or chimeric constructs composed of 

different species of the same molecule, or bacterially expressed fusion proteins or proteins 

generated by site-directed mutagenesis;  escape mutants (van Regenmortel, 1990a, Tzartos, 

1996, DeLisser, 1999). Some of the methods used for localisation of viral epitopes are 

described in Table 1.3. 

 

Table 1.3 – Methods used in localisation of viral epitopes (van Regenmortel, 1990a). 
 

Epitope mapping method Type of epitope recognised 
X-ray crystallography of antigen-Mab complex Discontinuous and linear epitope 
Synthetic peptides as probes: 
     free peptides 
     peptides adsorbed to a solid-phase 
     peptides conjugated to a carrier 
     peptides attached to a support used for synthesis 

Linear epitope 

Use of fusion proteins and peptides: 
     chimaeras 
     prokaryotic expression vectors (e.g.phage display) 

Linear epitope 

Use of anti-peptide antibodies Cross-reacting linear epitopes 

Viral escape mutants with MAb Neutralising epitopes, discontinuous 
epitopes 

 Topographic mapping by competitive MAb binding assay Only relative position of epitope is 
defined 

 

 

1.1.10.3.1 -  Betanodavirus vaccines  

 

Fish surviving betanodavirus infection have been found to produce neutralising 

antibodies, which is believed to explain their resistance to natural re-infection (Tanaka et al. 
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2001). This observation suggests that vaccination represents a logical and effective means of 

controlling VNN. 

Intensive research efforts have been directed towards the development of a vaccine 

against betanodaviruses. The most successful approach to date has utilised recombinant 

nodavirus coat protein as a protective antigen. This type of vaccine successfully induced 

neutralising antibodies and reduced mortalities in experimentally challenged grouper 

(sevenband grouper, humpback grouper) (Tanaka et al. 2001, Yuasa et al. 2002), turbot and 

Atlantic halibut (Húsgarð et al. 2001, Sommerset et al. 2001). However, the survival rates 

indicate that the vaccine was not suitable for commercial use. For example Tanaka et al. 

(2001) obtained a relative percent survival (RPS) of 88 when fish were challenged with 103.4 

TCID50/fish, but the RPS decreased to 35 when fish were challenged with 104.4 TCID50/fish. 

After vaccinating with recombinant protein and challenged the fish Yuasa et al. (2002) 

obtained a survival rate of 67.5 RPS. A similar RPS value (66) was obtained by Húsgarð et al. 

(2001) using as well a recombinant protein vaccine. 

Initial work aimed at the development of DNA vaccines for use in fish suggest that 

this approach may be applicable to the control of VNN. Sommerset et al. (2005) developed an 

Atlantic halibut NNV (AHNNV) DNA vaccine. In protection trials, this vaccine was unable to 

induce an immune response and protect challenged fish. The analysis of immunised fish 

muscle demonstrated that transcription and translation of the construct had occured in vivo. 

However, a humoral immune response was not induced.  

Rhabdovirus DNA vaccines can induce non-specific immune responses that confer 

protection against other viruses. Consequently, a DNA vaccine directed against the 

rhabdovirus VHSV has been investigated as a potential nodavirus vaccine. In challenge 

studies, this VHSV vaccine protected turbot against betanodavirus infection (Sommerset et al. 

2003). The best results (100 RPS) were obtained when the fish were challenged 8 days post-

vaccination. When the challenge was performed 35 days post-vaccination the RPS was 63. 

The encouraging results obtained after 8 days post-vaccination are a consequence of cross-

protective anti-viral defence mechanisms that are not of long duration. The same non-specific 
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immune response was observed by Lorenzen et al. (2002) with rainbow trout vaccinated 

against VHSV or IHNV.  
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1.2 -  Aim and objectives 

 

In the past fifteen years, Betanodaviruses have emerged as major pathogens of marine 

fish, affecting many species of economic value to the aquaculture industry. Despite advances 

in our understanding of betanodaviruses, the development of effective vaccines to counter 

these viruses remains elusive. The betanodavirus vaccines that have been produced to date 

have not afforded a high degree of protection. The regions of the betanodavirus particle that 

serve as targets of protective immune responses are currently poorly characterised. This lack 

of knowledge represents a barrier to the rational development of betanodavirus vaccines. The 

identification of the targets of protective immune responses against fish nodaviruses could be 

used to inform future vaccine development programmes. It would be possible to direct 

immune responses towards protective epitopes through the use of vaccine constructs 

administered either alone, or in conjunction with adjuvants or other immunostimulants.  

The goal of this thesis is to identify betanodavirus B-cell epitopes. The successful 

identification of these structures would represent a significant step towards the rational 

development of vaccines to counter VNN. The thesis is comprised of the following four 

specific objectives: 

 To produce antibodies against betanodaviruses for use in epitope mapping studies. 

This work involves:  

a) the production and characterisation of mouse monoclonal antibodies directed 

against betanodavirus using conventional hybridoma methodology. Monoclonal antibodies 

will be screened for antibody class/isotype and the ability to neutralise betanodavirus.  

b) the production of rabbit polyclonal antibodies against betanodavirus.  

c) the collection of serum samples from fish (European sea bass) naturally-

infected with betanodavirus.  

The antibodies obtained in this stage of the project will be used to identify 

betanodavirus epitopes using one or more of the epitope mapping procedures summarised 
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below in steps 2-4. In combination, these procedures permit the identification of both 

conformational and linear epitopes. 

 To produce and characterise betanodavirus neutralisation escape mutants. 

Monoclonal antibodies will be used to select betanodaviruses resistant to in-vitro 

neutralisation. Nucleotide sequence analysis of the coat-protein gene of isolated escape 

mutants will permit identification of the sequence changes conferring neutralisation 

resistance.  

 To identify the recognition sites of betanodavirus monoclonal antibodies using a 

random peptide library displayed on the surface of a filamentous bacteriophage. Phage clones 

binding to monoclonal antibodies will be isolated using conventional panning procedures. 

Nucleotide sequence analysis of isolated phage clones will permit identification of the amino 

acid sequence recognised by monoclonal antibodies.  

 To identify the recognition sites of antibodies using the "Pepscan" procedure. A 

series of short overlapping synthetic peptides mimicking the betanodavirus coat protein will 

be used to map the recognition sites of antibodies directed against betanodavirus. The recently 

developed suspension array technology will be used to quantitate the interaction between 

antibodies and synthetic peptides. This procedure will be used to identify regions of the coat 

protein recognised by mouse monoclonal antibodies, rabbit polyclonal antibodies, and serum 

samples from fish naturally infected with nodavirus.  
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Chapter 2 - General methods  

2.1 -  Virology 

2.1.1 - Cell culture 
 

Betanodaviruses were cultured in an SSN-1 cell line. This cell line was produced from 

whole fry tissue of Ophicephalus striatus (striped snakehead) at the Institute of Aquaculture, 

and is infected with an endogenous type C retrovirus (Frerichs et al. 1991). The optimal 

growth temperature for SSN-1 is 28°C. No supplementation with CO2 is required. 

The SSN-1 cell line was maintained in Leibovitz’s L-15 medium containing 

Glutamax-I (Gibco, Paisley, Scotland) supplemented with 10 % FBS (Foetal Bovine Serum, 

Gibco, Paisley, Scotland) (L-15/FBS). 

 SSN-1 cell monolayers were passaged every 4th to 7th day and were subcultured at a 

“split” ratio of between 1:3 and 1:4. This was chosen according to the degree of confluence of 

the monolayer and the anticipated cell growth period required for a given experiment 

To passage SSN-1 cells, the growth medium was removed and cells were washed 

twice with Dulbecco’s PBS without Ca and Mg (D-PBS, Gibco, Paisley, Scotland). Excess D-

PBS was removed prior to the addition of Trypsin-EDTA (1x concentrated, Gibco, Paisley, 

Scotland). Cell monolayers were then incubated until their appearance became white and 

opaque. Trypsin-EDTA solution was then removed and cells detached by gently tapping the 

flask. One third of the final volume of fresh L-15/FBS was added, and cells were resuspended 

and aliquoted evenly into new cell culture flasks (Nunc, Fisher Scientific, Leicestershire U.K.) 

containing fresh medium.  

The SSN-1 stock flasks were incubated at 28°C and split every 4-7 days. 

Volumes of D-PBS, Trypsin-EDTA and L-15/FBS medium used for each size of 

growth vessel are shown in Table 2.1. 
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Table 2.1  - Volumes of Dulbecco’s PBS, Trypsin-EDTA and L-15/FBS used 
for SSN-1 cell passage. 

 
Flask 
(cm2) 

Dulbecco’s PBS 
(ml per wash) 

Trypsin-EDTA 
(ml) 

New flask 
(final volume in ml) 

25 4 1 5-6 
75 10 2 18-20 

175 15 4 40-50 

 

 

2.1.2 - Virus culture 
 

During this study four betanodavirus isolates were used. These viruses were grouped 

depending on the temperature that the isolate can be propagated, 25°C and 20°C, respectively. 

All the betanodavirus strains details are listed in Table 2.2. 

 

Table 2.2 - Betanodavirus isolates used in this study. 
 

Propagation Strain reference Fish species Country 

25°C  Mt/01/Sba European sea bass 
(Dicentrarchus labrax L.) Malta 

 Jp/06/Sj Striped jack 
(Pseudocaranx dentex) Japan 

20°C GB/32/Cod Atlantic cod 
(Gadus morhua) United Kingdom 

 GB/30/Hal Halibut 
(Hippoglossus hippoglossus) United Kingdom 

 

 

2.1.2.1  -  Inoculation of SSN-1 cell monolayers with betanodavirus 

 

Betanodaviruses were propagated in either pre-formed SSN-1 monolayers or by 

simultaneous inoculation of SSN-1 cells. Both methods required highly confluent SSN-1 cell 

monolayers (typically seven days old).  

For infection of pre-formed monolayers, SSN-1 cells were split and incubated until 

the monolayer reached the required degree of confluence. Temperature and period of 

incubation varied according to the betanodavirus isolate propagated. The growth medium was 
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then removed, and virus and sufficient L-15/FBS to cover the cell monolayer were added and 

permitted to adsorb. The volume of medium and virus used varied according to the size of the 

tissue culture flask used (see Table 2.3). After adsorption, L-15/FBS medium was added and 

cells were incubated at appropriate temperatures until an extensive cytopathic effect (CPE) 

was observed. Adsorption and incubation temperature and period used were according to the 

isolate under propagation. Viral supernatant was harvested and clarified by centrifugation for 

15 mins at 1410 x g at 4°C (Eppendorf 5804R). 

Virus preparations were stored at 4°C for periods up to 30 days. For longer periods 

the virus was stored at -20°C or -70°C. 

For simultaneous inoculation SSN-1 cells were split and re-suspended in L-15/FBS as 

described in section 2.1.1. Virus was then added, and cells were incubated until an extensive 

CPE was evident. The amount of virus added was the same as used for infection of pre-

formed monolayers (Table 2.3). 

 

Table 2.3 – Volume of L15-FBS medium and virus used for 
infection of pre-formed monolayers. 

 
Size of flask 

(cm2) 
DMEM+ 

adsorption step (ml) 
Virus 
(ml) 

Final volume 
(ml) 

25 1 0.5 6 
75 2 1.5 20 

175 3 6.5 50 

 

 

2.1.2.2  -  Betanodavirus propagated at 25°C 

 

Two different strains of betanodavirus, European sea bass and striped jack were used 

during this study. A growth temperature of 25°C was found to be optimal for culture of these 

isolates of betanodavirus. SSN-1 cells were maintained at 28°C for 6-7 days prior to infection. 

For simultaneous inoculation, cells were split at a ratio of 1:3 and re-suspended in L-15/FBS. 

Hanks’ Balanced Salt Solution (HBSS, Gibco, Paisley, Scotland) was then added at a volume 
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necessary to decrease the FBS concentration to 5 % (v/v). Virus was added and mixed with 

the SSN-1 cells. Cells were incubated at 25°C until an extensive CPE was observed (typically 

4 – 7 days).  

For infection of pre-formed monolayers SSN-1 cells were split at a ratio of 1:3 and 

incubated at 28°C until monolayers attained 70 % of confluence (for growth of SJNNV) and 

80 % (for growth of DlNNV). Virus was added and allowed to adsorb for 60 mins at 25°C. 

Sufficient L-15/FBS and HBSS were then added in order to achieve a final concentration of 5 

% FBS. Cells were incubated at 25°C until an extensive CPE was observed (typically 4-7 

days).  

   

2.1.2.3  -  Betanodavirus propagated at 20°C 

 

During this study two isolates of betanodavirus that are propagated at lower 

temperatures were used – these were derived from Atlantic cod and Halibut. Optimal growth 

of these viruses was achieved at a growth temperature of 20°C and use of L-15/FBS. SSN-1 

stock cells were kept at either 28°C or 22°C, depending of the availability of the incubators, 

the amount of cells needed for the experiments and the type of virus inoculation to be 

performed (pre-formed monolayer or simultaneous inoculation).  

SSN-1 cells grown at 28°C were split at a ratio of 1:3 after 6-7 days growth and 

incubated overnight at 25°C. Cell monolayers exhibiting > 75 % confluence were then 

incubated at 22°C. Cells were used within 24 hours for infection experiments, or maintained 

at 22°C for up to 10 days for use as stock cells.  

SSN-1 cells maintained at 22°C required a different treatment. These cells were 

incubated for 7-10 days at 22°C. After this period the cells were split at a ratio of 1:2 and 

either used immediately or incubated for up to 10 days as stock cells. 
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Cells used for infection of Atlantic cod and halibut betanodavirus by simultaneous 

inoculation were maintained at 22°C. These cells were split at a ratio of 1:2, infected with 

betanodavirus and incubated until extensive CPE was observed.  

Infection of pre-formed SSN-1 monolayers was performed with the stock cells grown 

at 22°C or 28°C. Cells were infected when monolayers were > 85 % confluent. Virus was 

allowed to adsorb for 6 h at 20°C. L-15/FBS medium was then added and monolayers were 

incubated for 6-8 days until an extensive CPE was evident.  

 

 

2.1.3 - Virus quantification 
 

The concentration of the virus was determined by calculating the virus titre (number 

of infectious units per unit volume) by TCID50.  

The dilution of virus required to infect 50 % of inoculated cell cultures is defined as 

TCID50, and relies on the presence and detection of cytocidal virus particles (Burleson et al. 

1992). 

Infectivity titrations were performed in flat bottom 96 well plates (Nunc, Fisher 

Scientific Leicestershire U.K.) by adding 90 μl of diluent to each well. HBSS was used as 

diluent for warm-water betanodavirus isolates and L-15/FBS for cold-water isolates. Virus (10 

μl) or diluent (negative control) was added to the first well of each row. Virus samples were 

diluted ten-fold across the plate. Each individual dilution of virus was made with a new 

pipette tip to prevent carry-over. One 25 cm2 flask of highly confluent SSN-1 cells was 

harvested for each 96 well plate with betanodaviruses propagated at 25°C. For betanodavirus 

strains propagated at 20°C isolates from two 75 cm2 flasks of SSN-1 cells were used to 

prepare three 96 well plates.  Cells (100 μl) were added to each well of titration plates. These 

were sealed with Nescofilm (Bando Chemical Ind. Ltd, Japan, Fisher Scientific Leicestershire 

U.K.) and incubated at the appropriate temperature for 7 days, when monolayers were visually 
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assessed for cytopathic effects. Virus titres were calculated by the method of Spearman-

Karber (Hierholzer and Killington, 1996).  

 

Spearman-Karber formula:  Mean log TCID50 = ⎟
⎠
⎞

⎜
⎝
⎛Σ×−×+

n
rddX

2
1  

 
Where, X = log of the highest reciprocal dilution. 

                      d = log of the dilution interval. 
                            r = number of test subjects not infected at any dilution. 
                           n = number of test subjects inoculated at any dilution. 
 

 

2.1.4 - Virus purification 
 

A Beckman L-80 ultracentrifuge was used for ultracentrifugation of betanodavirus 

preparations. Two sizes of centrifuge tubes (Ultra-Clear™ tubes, Beckman, High Wymcombe 

U.K.) were used, depending on the type of rotor used. For clarification an SW28 rotor was 

used together with 38.5 ml centrifuge tubes. The pelleting step and purification by caesium 

chloride (CsCl) gradient centrifugation were performed in an SW41Ti rotor together with 13.2 

ml centrifuge tubes. 

Centrifuge tubes were disinfected prior to use with 70 % ethanol (Fisher Scientific, 

Leicestershire U.K.). 

 

2.1.4.1  -  High speed clarification   

 

The first stage of the purification procedure was a high-speed clarification step 

performed using a SW28 rotor. Disinfected and dry centrifuge tubes were placed on a scale 

and tared. Virus preparation (36 g) was added to each centrifuge tube, which was balanced 

prior to centrifugation. Tubes were centrifuged at 12 000 x g at 4°C for 35 mins. Virus 
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supernatants were collected in a clean flask. The virus supernatant (≈ 2 ml) near the bottom of 

the tube was discarded.  

 

2.1.4.2  -  Pelleting 

 

Virus pelleting was performed using an SW41Ti rotor. High-speed clarified virus 

supernatant (12 g) was added to disinfected centrifuge tubes. The weight of tubes was 

adjusted to 12 g when necessary with HBSS. Tubes were cenrifuge at 100 000 x g, at 4°C for 

95 mins. Supernatant was discarded, more high-speed clarified virus supernatant was added 

and spun. The procedure was repeated 3 or 4 times. 

After the repeated pelleted centrifugations the tubes were inverted. After the majority 

of the supernatant had drained, 50 μl of TNE buffer (RNase free pH 7.4, Appendix 1) was 

added to the pellet and mixed well. Tubes were sealed with Nescofilm and incubated for 20 

mins at 4°C. Supernatants were collected into a cryovial. A further 50 μl of TNE buffer was 

then added to tubes, which were then and incubated for 20 mins at room temperature. 

Supernatants were collected and stored at -20°C. For logistical reasons, tubes were on 

occasion harvested using an alternative method. TNE buffer (100 μl) was added to centrifuge 

tubes, which were then seased with Nescofilm and stored overnight at 4°C. Virus was then 

harvested as described above. 

An average of 500 ml of virus supernatant was pelleted and resuspended in 1 ml of 

TNE buffer. 

 

2.1.4.3  -  Purification using caesium chloride  

 

The use of isopycnic gradient centrifugation with a high density and low viscosity 

medium like caesium chloride for the purification of non-enveloped viruses is of great 
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advantage for obtaining a purer product and relatively high volumes of sample can be 

processed in each gradient (Easton et al. 2000). 

 

2.1.4.3.1 -  Caesium chloride gradient 

 

A 50 % w/w stock of caesium chloride in TNE buffer (pH7.4, RNase free) was used 

to prepare CsCl gradients. This stock solution was autoclaved. All glassware was RNase-free 

treated with DEPC (Appendix 1). 

A capillary tube was rinsed with RNase-free water. Solutions of 40 %, 35 %, 30 %, 25 

% and 20 % w/v caesium chloride were prepared by diluting the stock solution in TNE buffer. 

The refractive index (RI) of each solution was measured using a refractometer (Bellingham & 

Stanley ABBE60).  

Syringes (5 ml, Terumo Merseyside U.K.) were filled with different amounts of 

caesium chloride solutions: 1.5 ml of 20 %, 2.5 ml of 25 %, 2.5 ml of 30 %, 2.5 ml of 35 % 

and 2 ml of 40 %. 

The capillary tube was placed adjacent to the bottom of the centrifuge tube and held in 

place with tape. A needle (25G) was attached to the other end of the tube (Figure 2.1 ). 

The caesium chloride solutions were added in sequence from the lowest to the highest 

concentration. Each solution was added very slowly to avoid the formation of bubbles. Care 

was taken not to disturb the CsCl solutions to ensure that the gradient formed efficiently. 

With this method it was very difficult to avoid the formation of bubbles and the 

injection of air bubbles into the gradient. In order to avoid such problems an isopycnic 

gradient maker was used to make the caesium chloride gradient. 

 The gradient maker contains two chambers connected by a tap (Figure 2.1 ). One of 

the chambers is joined to the centrifuge tube by an outlet tube. This chamber was filled with 

7.25 ml of 20 % caesium chloride. The other chamber was filled with 6.75 ml of 40 % 

caesium chloride. 
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CsCl  

20% 

CsCl  

40% 

magnetic stirrer 

  

Figure 2.1-  CsCl gradient by syringe method;  CsCl gradient maker using a column maker. 
 

 

The gradient maker was placed over a stirring plate and a magnetic flea was placed in 

the chamber with the outlet tube (Minor, 1999). 

The tap of the outlet tube was opened and 1 ml of solution allowed to drain before the 

tap linking both chambers was opened. This allows the CsCl solution to mix. The gradient 

becomes progressively denser as the CsCl solutions mix and drain. 

Betanodavirus in TNE buffer (1 ml) was added to gradients prepared by either of the 

methods described above.  

Gradients were centrifuged in an SW41Ti rotor 150 000 x g, for 17 hours at 4°C. 

 

2.1.4.3.2 -  Harvesting purified virus  

 

To harvest virus samples the centrifuge tube was held in the fraction collector 

(Fraction Recovery System 270-331580, Beckman). Because SSN-1 cells are endogenously 

infected with a type C retrovirus (Frerichs et al.  1991) two bands are visible in CsCl gradients 

of betanodaviruses grown in these cells. The upper band is composed of retrovirus particles 

and the lower band of betanodavirus particles. In runs where these bands were visible, the 
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centrifuge tube was pierced with a 25G needle immediately below the band corresponding to 

betanodavirus particles. A 5 ml syringe was used to collect between 750-1000 μl of sample.  

When the bands were not visible fractions of the gradient were collected using a 

fraction collector. Prior to use, this collector was thoroughly rinsed with RNase-free water. 

Centrifuge tubes containing CsCl gradients were placed into the fraction collector holder and 

the top of the centrifuge tube was then closed to create a vacuum. The bottom of the tube was 

pierced, and the vacuum valve was used to control the release of 40 drop fractions which were 

stored at 4°C after collection. The RI of each fraction was measured using a refractometer. 

Betanodavirus particles were obtained from fractions with a RI between 1.365 and 1.355. 

The presence of betanodavirus in harvested bands or fractions was confirmed by 

titration in SSN-1 cells as described in section 2.1.3. CsCl was removed from these samples 

by re-centrifugation through TNE buffer at 100 000 x g for 1 h and 35 mins at 4°C. The 

resulting pellet was re-suspended in TNE buffer and stored at -20°C. 
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2.2 -  Monoclonal antibodies 

2.2.1 - Culture of cell lines 
 

Myeloma cells (SP2/0, Sigma, Dorset U.K.) and hybridomas were cultured in 

DMEM+ [(Dulbecco’s Modified Eagle Medium (DMEM) (Sigma, Dorset U.K.) 

supplemented with 5 ml sodium pyruvate (100 mM) (Sigma, Dorset U.K.), 5 ml L-glutamine 

(200 mM) (Sigma, Dorset U.K.), 2.5 ml streptomycin/penicillin (10000 units penicillin in 20 

ml; 10 mg ml-1 streptomycin) (Sigma, Dorset U.K.), and 10 % FBS (Sigma, Dorset U.K.)] at 

37° C with 5 % CO2 supplementation. 

The SP2 cells grew at a faster rate than the hybridoma cells and consequently needed 

to be split every 3-4 days. Hybridoma cells were passaged at weekly intervals. 

 

 

2.2.2 - Storage in liquid nitrogen 
 

Cells were cultured in 24 well plates (Nunc, Fisher Scientific, Leicestershire U.K.). 

The cells from two wells were pooled and centrifuged at 150 x g for 7 mins (Wifug 500E). 

The supernatant was discarded and the pellet re-suspended by gently flicking. 

DMEM+ (1.5 ml) containing DMSO (10 % v/v, Sigma, Dorset U.K.) was added and 

mixed smoothly. The content of each tube was then aliquoted into two cryovials, which were 

immediately wrapped in bubble wrap and transferred to a -70°C freezer. The following day 

the cryovials were stored in liquid nitrogen.   
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2.2.2.1  -  Thawing cells  

 

To thaw cells 9 ml of DMEM with additives (5 ml sodium pyruvate (100 mM), 5 ml 

L-glutamine (200 mM), 2.5 ml streptomycin/penicillin (10000 units penicillin in 20 ml; 10 mg 

ml-1 streptomycin)), were placed into a 15 ml centrifuge tube (Sterilin, Scientific Laboratories 

Supplies, Lanarkshire, Scotland). To the bottom of the centrifuge tube 1 ml of FBS was added 

very carefully in order not to mix with the DMEM and 2 layers of solution could be observed. 

 Cryovials were placed into a 37°C waterbath (Techne UB-8) until their contents 

thawed. Cells were carefully added to the top of the medium and centrifuged 150 x g for 7 

mins. The medium was then discarded and the cell pellet resuspended by gently flicking the 

bottom of the tube. Myeloma cells were resuspended in 10 ml of medium and transferred to a 

25 cm3 flask (Nunc, Fisher Scientific Leicestershire U.K.). Hybridoma cells were resuspended 

in 1 ml of DMEM+ and transferred to a single well of a 24 well plate. 

 

 

2.2.3 - Concentration of monoclonal antibodies 
 

The concentration of MAbs was achieved by using 20 ml Vivaspin (VivaScience, 

Epsom U.K.) columns. These columns have a membrane with molecular weight cut off of 10 

000. The MAbs samples were spun at 3 000 x g at 4°C. 

 

 

2.2.4 - Purification of monoclonal antibodies 
 

Monoclonal antibodies were purified with pre-packed Protein-G columns  (Hi Trap 

Protein G HP, Amersham, Bucks U.K.). These columns were purchased pre-packed with 
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protein G Sepharose™. This protein is used for purification of IgG antibodies and all the 

MAbs purified are IgG. 

Hybridoma supernatant (50 ml) was filtered twice through a 0.45 μm filter (Sartorius, 

Surrey U.K.) and then diluted 1:1 in binding buffer (Appendix 1). Buffers used were freshly 

prepared and filtered though a 0.45 μm filter (Appendix 1). 

A liquid chromatography system (Econo System of Bio-Rad, composed of a pump, 

UV monitor, system controller and 2110 fraction collector) was used for purification of 

monoclonal antibodies. Prior to use by passing approximately 20 ml of distilled water through 

the tubing system the liquid chromatography system was cleaned. Binding buffer was run 

through the system prior to adding the purification columns.  

The Hi Trap column was placed in the Econo System and washed with binding buffer 

(∼10 ml). After washing, the MAb sample was added and run through the column. The sample 

was added carefully to prevent the formation of bubbles. The column was washed with 

binding buffer until all unbound material was removed as assessed by UV spectrophotometric 

analysis of the effluent. 

Bound antibodies were eluted with Glycine-HCl (0.1 M, pH 2.7, Appendix 1) and 

collected using a fraction collector (Econo System - 2110 fraction collector, Bio-Rad). The 

low pH of the elution buffer promotes the disruption of the covalent bonds between the 

antibodies and the protein G Sepharose. Collection tubes were prepared by the addition of 130 

μl of Tris-HCl (1 M, pH 9, Appendix 1). This buffer raises the pH of the antibody solution. 

Thirty drops of column eluante were collected per tube. The elution step was performed until 

no unbound material was present in the effluent as assessed by UV spectrophotometric 

analysis of the column eluante. 

Columns were cleaned with 20 % v/v ethanol, and stored in the same solution at 4°C. 

All the procedures performed with the column were at a speed of 1 ml per minute, the 

maximum recommended for the column by the manufactures. 

The liquid chromatography system was washed with distilled water (∼50 ml) after 

use. 
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Spectrophotometric analysis (Cecil CE 2021) at a wavelength of 280 nm was 

performed to identify the fractions containing monoclonal antibodies. 

 

 

2.3 -  Determination of protein concentration  

 

The protein concentration of purified betanodavirus samples was determined with 

either the Bio-Rad protein assay kit (Bio-Rad, Hertfordshire U.K.) or the BCA protein assay 

(Pierce, Northumberland U.K.). The protein concentration of purified monoclonal antibody 

samples was determined using the BCA protein assay. 

 

 

2.3.1 - Bio-Rad protein assay kit 
 

The Bio-Rad’s protein assay is based on the Bradford method. The absorbance of 

acidic Coomassie Blue Brilliant G-250 shifts from 465 to 595 nm when bound to protein.  

A 250 μg ml-1 stock solution of BSA (bovine serum albumine, Sigma, Dorset U.K.) in 

TNE buffer (pH 7.6) was used to prepare a set of standards with concentrations ranging from 

2.5 and 25 μg ml-1. Virus samples were diluted in the same buffer.  

The dye reagent was filtered through Whatman (Fisher Scientific, Leicestershire 

U.K.) number 1 filter paper prior to use. 

The standard or virus sample (800 μl) were mixed with 200 μl of dye reagent and 

vortexed gently. After 35 mins incubation at room temperature the absorbance of 

samples/standards was determined at a wavelength of 595 nm (Cecil CE 2041). A standard 

curve was constructed from the absorbance values of the BSA standards, and this was used to 

calculate the protein concentration of virus samples.  
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2.3.2 - BCA protein assay kit  
 

The BCA protein assay reagent kit (Pierce) is based on the application of 

bicinchoninic acid (BCA) for colorimetric detection and quantification of total proteins. 

The procedure could detect input concentrations of protein ranging from 20-2000 μg 

ml-1. Samples and detection reagent were mixed (1:8 ratio) in 96 well plates. The detection 

reagent was prepared by the addition of 50 parts reagent A to 1 part of reagent B. 

A series of protein standards was prepared by dilution of albumin standard (Pierce, 

Northumberland. U.K.) in Glycine-HCl (for analysis of Monoclonal antibodies) or TNE (for 

betanodavirus samples). 

Twenty five μl of sample or standard were mixed with 200 μl of detection reagent and 

mixed gently with a pipette tip. The samples were microwaved for 30 seconds at 850 V and 

allowed to stand for 10 mins at room temperature. The absorbance of samples was then read 

in an ELISA plate reader (Dynex Technologies MRXII) at a wavelength of 540 nm.  A 

standard curve was constructed from the absorbance values of the protein standards, and this 

was used to calculate the protein concentration of virus or monoclonal antibody samples. 
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2.4 -  ELISA 

  

ELISA plates (Immulon® 4 HBS flat bottom, Thermo Labsystems, Middlesex U.K.) 

were coated with 50 μl well-1 of 0.01 % poly-L-lysine (Sigma, Dorset U.K.) and left to adsorb 

for 60 mins at room temperature. The plates were washed 3 times with LSWB (Low Salt 

Washing Buffer, Appendix 1), 100 μl well-1 of antigen was added and incubated at 4°C 

overnight. 

Virus supernatant, cell line supernatant and bacteria (suspension in PBS) were used as 

antigens for coating the ELISA plates. 

The following morning, 50 μl well-1 of 0.05 % gluteraldehyde (Sigma, Dorset U.K.) 

(Appendix 1) was added and incubated for 20 mins at room temperature. Plates were washed 

3 times with LSWB and 250 μl well-1 of blocking buffer (Appendix 1) was added and left to 

block for 2 hours at room temperature. The washing procedure was repeated. 

Antibodies (mouse and rabbit sera, MAbs or polyclonal antibodies) were added (100 

μl well-1) and incubated for 90 mins at room temperature. Polyclonal antibody was used as a 

positive control and antibody buffer (Appendix 1) as a negative control. When needed, the 

antibodies were diluted in antibody buffer.  

After this incubation the wells were washed 5 times with HSWB (High Salt Washing 

Buffer) and soaked for 5 mins in the last wash. 

Either 100 μl well-1 of anti-mouse IgG conjugated with HRP (Diagnostics  Scotland, 

Edinburgh Scotland) or anti-rabbit IgG conjugated with HRP (Sigma, Dorset U.K.) was 

added. The antibody conjugated with HRP was diluted 1:1000 v/v in conjugated buffer 

(Appendix 1) and incubated for 60 mins at room temperature. The washing procedure with 

HSWB was repeated. 

Substrate (100 μl well-1, Appendix 1) was added to each well and incubated for 10 

mins at room temperature. After this period 50 μl well-1 of stop solution (Appendix 1) was 

added.  
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The ELISA assay was read at 450 nm in ELISA Reader (Dynex Technologies 

MRXII). 

The average of the negative control was calculated. A sample was considered positive 

when its value was 3 times higher than the negative control average. 
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2.5 -  Molecular biology 

2.5.1 - Nucleotide Sequencing 

2.5.1.1  -  Cycle-Sequencing PCR 

 

The DYEnamic ET Terminator Cycle Sequencing Kit (Amersham Biosciences, Bucks 

U.K.) was used for nucleotide sequencing. 

The polymerase chain reaction (PCR) procedure was performed according to the 

manufacturer’s instruction. The premixed sequencing reagent was diluted 1:4 by addition of 

sequencing reagent buffer (Appendix 1). 

The PCR reaction solution was prepared by mixing 1 μl of primer (5 pmol), 2 μl 

sequencing reagent premix, 6 μl sequencing reagent buffer and 11 μl sample.  The DNA 

concentration was adjusted to between 0.1-0.2 pmol in nuclease-free water (Promega, 

Southamptan U.K.). The sequencing mix was briefly centrifuged (Heraus biofuge pico) prior 

to thermal cycling, which was performed in a Biometra Tgradient thermocycler.  

Cycling parameters were 25 cycles of:  

                     94°C, 10 seconds;  
                     50°C, 20 seconds;  
                     60°C, 1 minute.  
 

Samples were stored at at 4°C or -20° C according to the availability of an automated 

nucleotide sequencer 

 

2.5.1.2  -  Precipitation of sequencing-PCR reaction products 

 

Precipitation solution (52 μl, Appendix 1) was added to PCR reaction products which 

were vortexed briefly and incubated on ice for 5 mins. The tubes were then centrifuged at 13 

793 × g (Denville Scientific Inc. Micro 240A) for 20 mins at room temperature and the 

supernatant discarded. The pellet was washed with 190 μl of 70 % ethanol, then samples were 
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centrifuged at 13 793 × g for 5 mins at room temperature. The supernatant was discarded and 

samples were dried prior to addition of 2 μl of Formamide Loading dye (supplied with 

DYEnamic ET Terminator Cycle Sequencing Kit, Amersham, Bucks U. K.). 

Samples were stored at -20°C or analysed immediately. 

 

2.5.1.3  -   Sequencing  

 

Sequencing reactions were analysed on an ABI Prism™ 377 sequencer using 0.2 mm 

acrylamide gels of 36 cm length.  

Plates were washed with distilled water and allowed to air dry, then placed into the 

caster. A 0.2 mm thick spacers were placed between the 2 plates, aligned with the plates and 

clamped into the supporter. 

The acrylamide sequencing gel was prepared (Appendix 1), a 50 ml syringe was filled 

with the gel mix and immediately injected between the plates. This procedure was performed 

very carefully to prevent the formation of bubbles. The caster comb was then positioned on 

top of the gel, which was allowed to polymerise for 2 hours at room temperature. 

After this period the comb was removed and the upper surface of the gel was cleaned 

taking care to remove any gel debris. The area of the sequencing plates that are laser-scanned 

was cleaned with distilled water. 

Samples were loaded either manually or by the Ficoll method as explained below. 

Sequencing gels were electrophoresed at 3000 V, 50 mA, 150 W for 7 hours at 51°C. 

The power of the laser was 40 mW. ABI Prism® sequencing analysis software version 3.4.1 

(Applied Biosystems) was used to analyse electropherograms. Nucleotide sequences were 

compiled with BioEdit Sequence Alignment Editor software (Hall, 1999). The samples were 

analysed visually in order to establish if the sequence data could be further analysed or if the 

sample needed to be repeated. A sample was considered for further analysis when the graph 
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produced automatically by the program revealed clear peaks for each nucleotide. When some 

background occurred the reading was analysed and sequenced again if necessary.   

 

2.5.1.3.1 -  Manual loading method 

 

For manual loading a shark tooth comb (PE Biosystems, Cheshire U.K.) (48 or 62 

wells) was inserted into the gel to a maximum depth of 1mm. 

Sequencing gels were loaded into the sequencer and a plate check performed. The 

heating plate and the upper and lower buffer chambers were then clamped in position. The 

buffer chambers were filled with 1x TBE buffer (Appendix 1) and a pre-run was performed. 

When the gel reached a temperature of 48°C, the pre-run was stopped and the odd-numbered 

samples (0.8-1.3 μl) were loaded with Miniflex 0.2 mm tips (Sorenson™, Anachem, 

Bedfordshire U.K.). The gel was then run for 3-4 mins at 3 000 Volts and stopped before the 

even-numbered samples were loaded. When sample loading was complete, the gel was 

electrophoresed at 3 000 Volts for 7 hours. 

 

2.5.1.3.2 -  Ficoll loading method 

 

Plates were cleaned, loaded into the sequencer, and a plate check performed as 

described above. The lower buffer chamber and heating plate were positioned, and the 

chamber filled with 1x TBE buffer. A pre-run was performed until the gel reached a 

temperature of 51°C. To the top of the gel plate 400 μl of Ficoll loading buffer (Appendix 1) 

was added using 1 ml syringe with a 25G needle taking care to avoid the formation of 

bubbles. 

A loading tray was cooled down to 4°C and 0.8 μl of sample was added to the loading 

tray wells. Carefully a membrane comb (The Gel Company, Web Scientic Ltd, Cheshire 
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U.K.) was inserted into loading tray wells and allowed to absorb the samples for 10 seconds. 

The membrane was removed and immediately inserted into the sequencing gel. During this 

procedure the teeth of the comb slightly contacted the gel surface. 

The upper buffer chamber was positioned and filled with 1x TBE buffer. The gel was 

electrophoresed at 3000 Volts for 90 seconds, the membrane comb was removed and the gel 

rinsed thoroughly with 5 ml of TBE to remove the Ficoll solution. Electrophoresis was then 

continued for 7 hours.   
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Chapter 3 - Production of monoclonal and polyclonal antibodies 

against betanodavirus 
 

3.1 -  Introduction 

 

Immunity is defined as resistance to disease, especially infectious diseases. The 

collection of cells, tissues and organs involved in this resistance is the immune system, and 

the coordinated reaction of these cells and molecules to infectious microbes is the immune 

response (Abbas and Lichtman, 2001). The protective action of the immune system can range 

from simple biochemical and cellular defence mechanisms in invertebrates such as sponges 

and worms, to very complex networks of immune cells and molecules found in vertebrates 

like mammals and birds (Davey, 1989). 

The host defence mechanism consists of innate immunity and adaptive immunity. The 

first line of immune defence is the former being mainly responsible for the first stage of 

expulsion of microbes and it may provoke inflammation (Lydyard et al.  2000). The principal 

components of innate immunity are:  physical and chemical barriers, such as epithelial and 

antimicrobial substances produced at epithelial surfaces;  phagocytic cells (neutrophils and 

macrophages) and natural killer (NK) cells;  blood proteins, including components of the 

complement system and other mediators of inflammation;  proteins called cytokines such as 

IL-1 and TNFα that regulate and coordinate many of the activities of the cells involved in 

innate immunity (Abbas et al. 2000, Roitt and Rabson, 2000). The main characteristics of this 

type of immune response are the fact that is rapid, has some specificity and no memory 

(Lydyard et al. 2000). 

The second line of immune defence is adaptive immunity, comprising humoral and 

cell-mediated immunity. The former provides defence against extracellular microbes and is 

mediated by antibodies (Ab), which are produced by B-lymphocytes (Golub, 1981). The B-

cells have a high diversity, with the potential to generate ~ 108-1010 different antigen binding 
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antibodies (Kuby, 1994). The B-cell population matures under the influence of bone marrow 

and/or gut-associated tissue in mammals (Lydyard et al. 2000). Antibodies do not have access 

to intracellular microbes thus cell-mediated responses involving T-lymphocytes come into 

play (Abbas and Lichtman, 2001). The T-cells mature under the influence of the thymus (Bier 

et al. 1986). All humoral and cell mediated immune responses to foreign antigens have a 

number of fundamental properties (specificity, diversity, memory, specialization, self-

limitation and non-reactivity to self) that reflect the properties of the lymphocytes that mediate 

these responses (Table 3.1) (Abbas et al. 2000). 

 

Table 3.1 – Properties of the adaptive immune system (Abbas et al. 2000). 
 

Feature Function significance for immunity 

Specificity Guarantees that distinct microbes elicit specific 
responses 

Diversity Allow the immune system to respond to a large 
variety of microbes 

Memory Leads to enhanced responses to repeated 
exposures to the same microbe 

Specialization Generates responses that are optimal for 
defence against different types of microbes 

Self-limitation Allows immune system to respond to newly 
encountered microbes 

Non-reactivity to self Prevents injury to the host during response to 
microbes 

 

 

The adaptive immune response consists of sequential phases, each of them 

corresponding to a particular reaction of the lymphocytes and other components of the 

immune system (Figure 3.1).  

When a pathogen infects a host for the first time a primary response will develop 

within 4-5 days (Lydyard et al. 2000).  The response to this first exposure to an antigen is 

mediated by naïve lymphocytes and is called the recognition phase (Abbas and Lichtman, 

2001). For B-cells this response results in IgM being secreted initially and often followed by 

IgG (Kuby, 1994). Interaction of B-cells with antigen and the appropriate costimulatory 

signals leads to B-cell activation (activation phase) (Welsh et al. 2004). The B-cells are able 

to bind to both continuous and discontinuous sequences of amino acids, whereas the T-cell 
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recognises linear processed peptide epitopes bound to the major histocompatibility complexes 

(MHC) on molecules (Atabani, 2001). 

 

 
Figure 3.1 – Sequential phases of the adaptive immune response (Abbas and Lichtman, 2001). 

 

 

The activated B-cells proliferate and differentiate either into memory cells or plasma 

cells also known as effectors (effector phase) (Davey, 1989). The plasma cells may produce 

IgM or may undergo isotype switching and secrete IgG or IgA (Welsh et al. 2004).  When the 

antigen has been removed the antibody response will reach its peak; followed by a decrease in 

Ab concentration in the circulation (decline phase) as a result of the normal rate of catabolism 

of the antibody by the memory cells (memory phase) (Lydyard et al. 2000, Abbas and 

Lichtman, 2001). Subsequent encounters with the same antigen lead to immune responses that 

are usually faster, with higher affinity, reaching a greater magnitude and lasting longer (Kuby, 

1994). The characteristics of this secondary responses are the result of activation of memory 

lymphocytes, which are long-lived cells that were induced during the primary immune 
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response (Abbas and Lichtman, 2001) (Figure 3.2). Within humoral immunity this secondary 

response usually corresponds to the IgG class (Lydyard et al. 2000).   

 

 

Figure 3.2 – Primary and secondary humoral immune response (Abbas et al. 2000). 
 

 

Viruses may be extracellular before they enter host cells, or in the case of cytopathic 

viruses, when they are released from lysed infected cells (Abbas et al. 2000). Natural 

immunity to viral infections is associated with interferon type I (IFN) and NK cells. The 

interferons have a protective capacity before the virus infects a cell, by inducing resistance to 

viral multiplication (Roitt et al. 1985). Humoral immunity against viral infections is mediated 

by antibodies which block virus binding and entry into host cells (Abbas et al. 2000). Once a 

viral infection is established, cell mediated immune mechanisms are most important, with 

CD8+ cytotoxic T-cells and CD4+ TH1 cells being the main components involved (Kuby, 

1994). Both types of adaptive immunity interact with each other, with B-cells presenting 

peptide epitopes to CD4+ T-cells, and T-cells producing cytokines and other 

immunomodulators that provide help for antibody production and induction of memory B-

cells (Atabani, 2001). 
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Anti-viral antibodies are essential tools in the study of viruses and virus host 

interactions. B-cells can recognise a variety of viral proteins and glycoproteins, including 

components of the envelope and interior components of the nucleocapsid, which may be 

released from infected host-cells prior to complete viral assembly (Kuby, 1994).  

Viruses are often antigenically complex and one of the major problems associated 

with the use of antiviral antisera has been the difficulty of producing antisera of unequivocally 

defined specificity for individual viral components (Yewdell and Gerhard, 1981). The 

problems associated with polyspecificity of antisera are largely avoided by the use of 

monoclonal antibodies (MAbs). A monoclonal antibody is an antibody with a unique 

specificity derived from a single B-cell clone (Nelson et al. 2000). The production of 

monoclonal antibodies was achieved for the first time 30 years a go by Köhler and Milstein 

(1975). In 1986 these scientists were awarded the Nobel Prize for their contribution for the 

production of monoclonal antibodies. This award reflects the importance that this technique 

has had in the investigation, diagnosis and even treatment of diseases.  

Monoclonal antibodies against fish viruses have been developed against a variety of 

fish viruses including infectious haematopoietic necrosis virus (IHNV) (Schultz et al. 1985, 

Ristow and Arnzen, 1989), infectious pancreatic necrosis virus (IPNV) (Wolski et al. 1986), 

viral haemorrhagic septicaemia virus (VHSV) (Mourton et al. 1991), salmon pancreas disease 

virus (SPDV) (Todd et al. 2001), grouper iridovirus (Shi et al. 2003) and infectious salmon 

anaemia virus (ISAV) (Falk et al. 1998). The development of MAbs against nodavirus was 

already achieved by Nishizawa et al. (1995b) with the production of MAbs against striped 

jack betanodavirus strain (SJNNV). Lai et al. (2001a) also successfully obtained MAbs 

against yellow grouper betanodavirus strain (YGNNV). 

The exquisite specificity of MAbs is the main reason why they are so often considered 

superior to polyclonal antibodies (Peppard, 2000). Monoclonal antibodies have replaced 

polyclonal antibodies in most large-scale serology. In the basic science laboratory, however 

where smaller amounts of antibodies are required, conventional polyclonal antisera may still 

be preferable for many purposes (Yelton and Scharff, 1981). It usually takes four to six 
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months to generate a stable hybridoma cell line, if all goes well, whereas producing small 

amounts of antiserum requires less time, energy and expense. If an antigen does not yield a 

good antiserum it is often difficult to generate monoclonal antibodies to it (Yelton and 

Scharff, 1981). Any given MAb may be very sensitive to physical conditions such as pH and 

temperature, which may change its reactivity and functional activity (Mosmann et al. 1980).  

Monoclonal antibodies have only a subset of the properties of a conventional antiserum, and 

therefore it is unlikely that antibody produced by just one hybridoma cell line can fulfil all 

requirements for all assays (Yelton and Scharff, 1981). 

The recognition of multiple determinants limits antigenic analysis with polyspecific 

antisera and precludes characterization on individual antigenic sites of a protein (Yewdell and 

Gerhard, 1981). On the other hand, the use of monoclonal antibodies has allowed the 

delineation of antigenic structure at a level of precision not previously possible, because 

MAbs recognised only a single site and not an average of determinants (Benjamin et al.  

1984). 

Prior to the application of the MAbs to antigenic studies they need to be characterised, 

since the interpretation of antigenic analysis is dependent on the homogeneity and specificity 

of the hybridoma antibodies (Yewdell and Gerhard, 1981). 

Monoclonal antibodies have become key components in clinical laboratory diagnostic 

tests since they enable the development of standardises immunoassay systems. The wide 

application in detecting and identifying serum analytes, cell markers and pathogenic agents 

has largely arisen through the exquisite specificity of these unique reagents (Nelson et al.  

2000). 

 

 

3.1.1 - Production of hybridoma cells  
 

Monoclonal antibodies are obtained through the production of a specific hybridoma 

cell line to a pre-determined antigen. 
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Most MAbs have been produced using the BALB/C mouse because the fusion 

partners (myeloma cell lines) have been developed from plasmacytomas induced in this strain 

by the intraperitoneal injection (IP) of mineral oil (Dean and Shepherd, 2000).  

When soluble proteins or carbohydrates are used for immunising mice they are 

usually mixed with an adjuvant. Adjuvants are substances which non-specifically enhance the 

immune response to antigens (Roitt et al. 1985). An adjuvant may function as an antigen-

depot-forming substance, a delivery vehicle or inert carrier, an immunostimulator/ 

immunomodifier (able to stimulate cells of the immune system or modify immune cell 

activation), or a combination of these (Hanly et al. 1995). Certain adjuvants such as 

aluminium compounds, oil emulsions, liposomes, and synthetic polymers act through the 

effect of antigen localization ("depot" effect) (Jennings, 1995). This “depot” effect provides a 

protected reservoir of antigen for slow release to draining lymph nodes, helping promote 

formation of memory cells and prolonged Ab responses (Hanly et al. 1995), and inducing 

complex cell interactions between macrophages and lymphocytes (Jennings, 1995). Adjuvants 

can be been categorized according to: 1 their origins, whether they are derived from mineral, 

bacterial, plant, synthetic, or whether they are host a product, such as Interleukin 1; 2 their 

proposed mechanism of action. Freund’s complete adjuvant has been the most widely used 

adjuvant. This is a mineral oil containing mycobacteria that acts as a slow release agent 

preventing rapid dispersion of soluble immunogens and elicits a strong cellular infiltrate of 

neutrophils and macrophages at the site of injection (Dean and Shepherd, 2000).  

As a result of the memory of the adaptive immune system of mice and the fact that the 

strongest immune response follows secondary encounters with the antigen, the immunisation 

of the mice is usually performed twice. The booster immunity is given with Freund’s 

incomplete adjuvant (i.e. mineral only). These immunisations should be performed several 

weeks apart when the serum titres have dropped after immunisation. Re-immunisation when 

the levels of antibodies are still high will lower the effective strength of the boost (Harlow and 

Lane, 1988). 
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The antibody response is also influenced by the anatomical site at which immunogens 

are administered (Liddell and Cryer, 1991). Intraperitoneal injection (IP) is the most common 

immunisation method for mice used due to two factors (Harlow and Lane, 1988). Firstly the 

capacity of the peritoneal cavity allows the use of larger volumes of the immunogens. 

Secondly IP immunisation does not deliver antigens directly into the blood system and 

therefore adjuvants can be used  

Mature antibody-secreting cells fuse poorly with myeloma cells and it is the 

committed precursors that are required for hybridoma production. For this reason a third and 

final boost is given to the mouse 3-5 days before the fusion between the spleen cells and 

myeloma cells is performed (Dean and Shepherd, 2000). This boost is performed by 

intravenous injection (IV) without adjuvant and a rapid and strong response can be expected, 

as the antigen will be collected quickly in the spleen, liver and lungs (Harlow and Lane, 

1988). 

For MAb production the host spleen cells are mixed with a selected cell line and the 

mixed cells exposed to an agent that promotes the fusion between the cells (see Figure 3.3). 

The immortal cell partners for the antibody-producing cell are myeloma cells, cancerous cells 

derived from the immune system (Liddell and Cryer, 1991). The myeloma cell lines originally 

used secreted immunoglobulin molecules that were a mix of the spleen and the myeloma H 

and L chains (Yelton and Scharff, 1981). These problems were overcome by the use of 

myeloma cell lines, such as SP2/0, that do not produce L and H chains (Shulman et al. 1978). 

The maintenance and health of the myeloma fusion partner is of major importance for the 

success of the fusion, with the best results achieved with myeloma cells thawed from liquid 

nitrogen just a few days prior to the fusion procedure (Hunt et al. 2000). 

The mechanism of fusion is complex, involving cell agglutination, membrane fusion, 

cell swelling and optimal environmental conditions (Knutton and Pasternak, 1979). The 

original agent used by Köhler and Milstein (1975) for enhancing the frequency of fusion 

between cells was inactivated Sendai virus. Nowadays a large number of chemicals can be 
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used to induce the fusion between cells, but the most commonly used chemical “fusogen” is 

polyethylene glycol (PEG) (Klebe and Mancuso, 1981).  
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Figure 3.3 – Hybridoma cell line production. 

 

 

Polyethylene glycol (PEG) fuses the plasma membranes of adjacent myeloma and 

antibody secreting cells, forming a single cell with two or more nuclei. During mitosis and 

further rounds of division, the individual chromosomes are segregated into daughter cells 

(Harlow and Lane, 1988). In the presence of abnormal number of chromosomes, segregation 

does not always deliver identical sets of chromosomes to daughter cells, and chromosomes 

may be lost (Harlow and Lane, 1988, Nelson, 2001). If the chromosome that carries a 

functional gene (e.g. those responsible for rearranged immunoglobulin heavy or light chain 

genes) is lost then production of the antibody will stop, leading to unstable hybridoma cells 

 62 



Chapter 3 – MAbs and polyclonal antibody production 

(Nelson, 2001). This unstable hybridoma cell line will be seen phenotypically by decreasing 

of antibody titres (Harlow and Lane, 1988).  

The fusion protocol results in a mixture of parental cells, hybrids of each parent to 

itself, and most importantly, hybrids between one parent and the other (Yelton and Scharff, 

1981). The selection of the hybrids between mouse spleen cells and myeloma cells is based on 

the fact that cells possess two pathways of nucleotide biosynthesis:  the de novo pathway, 

that is the normal pathway and  the salvage pathway which uses an enzyme called 

hypoxanthine guanine phosphoribosyl transferase (HGPRT) (Nelson, 2001). The 

hypoxanthine-aminopterin-thymidine (HAT) selection system is usually employed for the 

selection of the hybrids between the two parents. The myeloma parent has been engineered 

with a genetic defect for the enzyme hypoxanthine guanine phosphoribosyl transferase 

(HGPRT-) (Dean and Shepherd, 2000). The HGPRT- cells cannot use exogenous 

hypoxanthine to synthesize purines (salvage pathway) just being able to use the de novo 

pathway for this synthesis (Yelton and Scharff, 1981).  The de novo pathway is blocked by the 

aminopterin (Nelson, 2001). The myeloma cells die in the presence of hypoxanthine, 

aminopterin and thymidine because both pathways for the formation of the purine precursors 

of DNA are blocked (Liddell and Cryer, 1991). Spleen lymphocyte cells, although not killed 

by aminopterin, will not proliferate in culture, so after a few days the only rapidly dividing 

cells remaining are myeloma-spleen hybrids (Yelton and Scharff, 1981). Aminopterin inhibits 

many of the normal cell functions and should be removed from the feeding medium as soon as 

possible (Campbell, 1984). Usually the HAT is replaced with HT (hypoxanthine and 

thymidine) to allow the emerging cells to adapt to the main pathways of purine and 

pyrimidine biosynthesis (Campbell, 1984). 

The hybrids need to be screened with a rapid, simple and sensitive assay because just 

a small percentage of the hybrids generated produce the desired antibody (Yelton and Scharff, 

1981).  Screening is normally carried out 10-14 days post-fusion by removing samples of the 

cell culture supernatant. This screening is vital for the final result, because the selection of the 

hybridoma colony to pick, expand and clone is based on it (Dean and Shepherd, 2000). Once a 
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positive hybrid is identified it should be cloned to avoid overgrowth by other hybrids or by 

non-producing variants (Yelton and Scharff, 1981). Cloning is an essential part of MAb 

production, ensuring that a single clonally expanded B-cell produces the antibody (Melamed 

and Sutherland, 1997). Cloning by limiting dilution is the most common method used to 

obtain single clone wells (Harlow and Lane, 1988). The use of feeder cells is vital during this 

procedure in order to achieve reasonable cloning efficiencies (Melamed and Sutherland, 

1997). The isolated single cell clones are re-screened and re-cloned several times. After 

subclones are rescreened to identify those still producing the antibody of interest, just a few of 

them are grown to mass culture and frozen for future recovery and applications (Yelton and 

Scharff, 1981). Single-cell cloning ensures that the antibody producing cells are truly 

monoclonal (Harlow and Lane, 1988).  

 

 

3.1.2 - Objectives  
 

The aim of this study was to produce monoclonal antibodies against betanodavirus 

and to apply these in epitope mapping studies. 

The MAbs obtained were characterised and their application as diagnostic tools was 

explored. Western Blot, immunohistochemistry and neutralisation assays were also optimised 

using the anti-betanodavirus MAbs obtained. 
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3.2 -  Materials and Methods 

3.2.1 -  Antigen  
 

The European sea bass (Dicentrarcus labrax L.) betanodavirus strain used was used 

for the production of polyclonal and monoclonal antibodies. The virus was cultured and 

purified as described in Chapter 2.  

 

 

3.2.2 - Polyclonal antibodies 

3.2.2.1  -  Immunisation 

 

One female New Zealand rabbit was immunised in order to obtain polyclonal 

antibodies against European sea bass nodavirus. The purified nodavirus sample was obtained 

as described in Chapter 2. The virus (50 μg ml-1) was mixed 1:1 with Titremax® Gold 

(TitreMax, CyT Rx® corp. USA, Stratech Cambridgeshire U.K.).   Titremax® Gold, used as an 

adjuvant and does not contain mineral oil, proteins, polysaccharides or other microbial 

products. These characteristics minimise or eliminate the undesirable side effects caused by 

most common adjuvant used, such as Freund’s Complete Adjuvant (FCA). Titremax® is 

completely non-toxic to users and animals. It induces a moderate transitory inflammation, 

while FCA induces a severe inflammation. In addition it does not induce a hypersensitivity 

granulomatous response (http://www.titremax.com).  

The virus was mixed with the adjuvant using two latex free syringes (1 ml, Henke 

Sass Wolf GMBH, Germany) linked by a Leur lock and the solution was mixed until a white, 

thick solution was obtained.  

The rabbit was injected subcutaneously (SC) at 4 sites, with 0.1 ml of virus:adjuvant 

solution per site. This procedure was repeated 4 weeks later. The third and final immunisation 
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was given after another 4 weeks by intravenous injection (IV) with 600 μl of nodavirus (50 μg 

ml-1 of virus in TNE buffer). 

The rabbit was sacrificed 12 days later and blood collected by cardiac puncture (5 ml 

syringe, Terumo, Merseyside U.K.). 

 

3.2.2.2  -  Collection of rabbit blood  

 

In order to verify specific antibody production rabbit blood was collected. The blood 

was collected from the marginal ear vein. The fur on the ear was shaved off carefully with a 

scalpel blade, then the region was wiped with ethanol and the marginal ear vein was cut with a 

sterile scalpel. The drops of blood were collected into a 1.5 ml eppendorf tube. 

The blood was allowed to clot overnight at 4°C. On the following day it was 

centrifuged for 5 mins at 15 800 x g (Thermo IEC microlite), the serum collected and stored at 

-20°C. 

A pre-immunisation sample was collected on the same day as the first immunisation 

and another two samples were collected 10 days after the first and second immunisation. The 

rabbit serum was tested by ELISA (see Chapter 2). 

 

 

3.2.3 - Monoclonal antibody production 

3.2.3.1  -  Immunisation 

 

For the production of monoclonal antibodies against European sea bass betanodavirus 

3 mice were immunised with 30 μg ml-1 of virus. The nodavirus was diluted in TNE buffer 

and mixed with adjuvant Titremax® Gold as described in section 3.2.2.1.   

The mice were immunised IP with 0.2 ml of virus:adjuvant spread over 3 sites. The 

same procedure was performed for the first boost 4 weeks later. The final boost was given 
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without adjuvant IV (0.1 ml of virus in TNE buffer) after another 4 weeks. The mouse that 

presented the highest antibody titre by ELISA was chosen for the last boost.  

 

3.2.3.2  -  Collection of mouse blood 

 

Mouse blood was collected in order to test the titre against the virus. This operation 

was performed once before the first immunisation and 10-14 days after the first IP and the 

first boost. 

The mouse’s tail was wiped with alcohol and the tail vein cut with a sterile scalpel. 

The blood drops were collected into a 1.5 ml eppendorf tube and allowed to clot overnight at 

4°C. The following day the blood was centrifuged for 5 mins at 15 800 x g (Thermo IEC 

microlite), the upper serum layer collected and stored at -20°C. 

On the day that the mouse was sacrificed the blood was collected by cardiac puncture 

with a 2 ml sterile syringe (Terumo, Merseyside U.K.). 

Mice sera were screened by ELISA (as described in Chapter 2) using a 10-fold 

dilution series and the end-point titre of the sera antibodies was obtained.  

 

3.2.3.3  -  Fusion 

3.2.3.3.1 -  Myeloma cells 

 

Myeloma cells (SP2/0, Sigma, U.S.A.) were thawed for the fusion and cultured in 

DMEM+ (Chapter 2). 

On the fusion day, the cells were collected, DMEM with additives (sodium pyruvate, 

L-glutamine and streptamycin/penicillin) added up to 50 ml and then cells were centrifuged 

for 7 mins at 150 x g (Wifug 500E). The supernatant was discarded and the pellet was gently 

resuspended into 50 ml of DMEM with additives and placed in a CO2 incubator at 37°C. 
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3.2.3.3.2 -  Blood feeder medium   

 

Blood was collected from a non-immunised mouse in order to be used as feeder cells. 

The mouse was sacrificed using CO2 and blood collected by cardiac puncture using a 2 ml 

sterile syringe with sterile heparin (Sigma, Dorset U.K.) (10 i.u. in DMEM). 

A solution of DMEM+ and 10 % of HAT (hypoxanthine-aminopterine-thymidine, 

Sigma, Dorset U.K.) was prepared and kept at 37°C until mixed with the mouse blood. The 

mouse blood was mixed with DMEM+/HAT in a ratio of 1:300 of blood:medium and kept in 

the incubator until further utilization.  

 

3.2.3.3.3 -  Mouse spleen cells 

 

The immunised mouse was sacrificed using carbon dioxide. The abdomen was wiped 

with ethanol, aseptically opened and the spleen collected very carefully.  

The spleen was placed into 20 ml of DMEM, fat trimmed off and it was then washed 

by passing through three petri dishes containing DMEM. The organ was then “blown” by 

cutting off both ends and injecting 5 ml of DMEM through the spleen using a syringe and a 

needle. All the DMEM used was previously warmed up to 37°C. 

The cell suspension was placed into a centrifuge tube and DMEM with additives was 

added to make the volume up to 50 ml. The cells were then placed in the CO2 incubator at 

37°C. 

 

3.2.3.3.4 -  Fusion 

 

The spleen cells and the SP2 cells were centrifuged at 82.3 x g for 7 mins, supernatant 

discarded and the pellet gently resuspended in 10 ml of warmed DMEM with additives. 
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An aliquot of each type of cell was made and counted using a haemocytometer. 

All the spleen cells were mixed with myeloma cells to give a spleen:SP2 ratio of 4:1. 

The cell mix was centrifuged for 7 mins at 82.3 g. The pellet was aspirated as dry as possible 

and then resuspended by gently tapping. 

To the pellet was added 1 ml of warmed 50 % PEG (Sigma, Dorset U.K.) over 1 min, 

allowed to stand for 1½ mins swirling occasionally. Then 1 ml of warm DMEM was added 

over ½ min, 3 ml warm DMEM over ½ min, 16 ml warm DMEM over 1 min and the cells 

were left to stand for 5 mins. After this period the cells were centrifuged for 7 mins at 82.3 g, 

the pellet resuspended by gently tapping and 200 ml of blood feeder medium, was added. 

The cells were placed into sterile 96 well plates (Nunc, Fisher Scientific 

Leicestershire U.K) by adding 180 μl per well and incubated at 37°C with 5 % CO2. 

 

3.2.3.3.5 -  Screening the clones 

 

If the aim is generating as diverse an antibody panel as possible, a binary assay 

system should be used which is independent of antibody isotype and in which the binding of 

the antibody to the viral protein occurs in the absence of a competing interaction (Yewdell and 

Gerhard, 1981). Commonly used binary assays are the radioimmunoassay (RIA) and Enzyme-

Linked-Immunosorbent-Assay (ELISA) (Yewdell and Gerhard, 1981). In the present study 

the ELISA was the selection method chosen.  

The fused cells were allowed to stand for 10 days without being disturbed. After this 

period 100 μl of supernatant was collected and ELISA was performed to verify the production 

of antibodies (as described in Chapter 2). Positive antibody producing fusion cells were 

collected, placed into sterile 24 well plates (Nunc, Fisher Scientific Leicestershire U.K.) with 

1 ml of DMEM+ supplemented with 10 % HT (hypoxanthine-thymidine, Sigma, Dorset U.K.) 

and incubated for 7 days at 37°C with 5 % CO2. 
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After this period 100 μl of supernatant for each well was collected and ELISA was 

performed. The positive cells were selected, cloned by limiting dilution into 96 well plates 

and incubated for 7 days. The positive cells were also expanded to 2 wells of a 24 well plate 

and incubated for 7 days. After this period the cells were stored in liquid nitrogen (see Chapter 

2). These cells are called Parental cells.   

After a 7 day period of incubation the cloned cells were checked, wells with just one 

clone were selected and the supernatant screened by ELISA. The clones that were positive by 

ELISA were cloned again by limiting dilution in a 96 well plate and incubated for 7 days. 

This procedure was performed 3 times until the clone could be considered to be a hybridoma 

cell line producing antibodies. 

The positive clones of all the stages were expanded into 2 wells of a 24 well plate, 

incubated for 7 days and stored in liquid nitrogen.  

All the limiting dilution and expanding of the clones were performed with blood 

feeder medium. 

 

3.2.3.3.6 -  Expansion of hybridoma cell lines 

 

Following the selection procedure the hybridoma cells were expanded to a 24 well 

plate using 1 ml of blood feeder medium. After one week the cells were split into 1.5 ml of 

DMEM+. This procedure was repeated until the cells were used to growing without the mouse 

blood cells. After this period of adaptation the cells were expanded into 25 cm3 flask (Nunc, 

Fisher Scientific Leicestershire U.K.) in order to produce enough supernatant for further 

applications. 

The expansion was performed by adding 5 ml of DMEM+ to 25 cm3 flask. The 

content of 1 well of a 24 well plate was added per 25 cm3 flask and incubated for 7-10 days. 

The supernatant was collected, following centrifugation at 515 g for 10 mins and stored at -

20°C.  
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The cells were expanded into larger flasks, when larger volumes of antibody was 

required. 

 

 

3.2.4 - Characterisation of the antibodies 
 

The type of immunoglobulin and specificity of the monoclonal antibodies produced 

were determined. 

For both monoclonal and polyclonal antibodies, the neutralisation ability, molecular 

weight of antigen that they recognised and performance in immunohistochemistry was 

determined. 

 

3.2.4.1.1 -  Immunotyping 

 

The determination of the isotype serves not only to define the murine immunoglobulin 

class or subclass but also helps to identify the presence of a single isotype or a mixture isotype 

(Nelson et al.  2000). 

Immunotyping was performed using a Sigma ImmunoType™ kit (Sigma, Dorset 

U.K.). The procedure followed the manufacturer’s instructions. Forceps were used and all the 

incubations were performed at room temperature using a rocker shaker (Bibby Gyro-rocker). 

Briefly, the strip was placed into an assay tube, 3 ml of MAb supernatant was added 

and incubated for 30 mins. After this period the supernatant was decanted, the strip washed by 

adding 3-4 ml of PBS-T-BSA (PBS (Sigma, Dorset U.K.) with 0.05 % (v/v) Tween 20 

(Sigma, Dorset U.K.) and 2 % (w/v) BSA (Sigma, Dorset U.K.), and incubated for 5 mins. 

Meantime the biotinylated second antibody (anti-mouse conjugated with biotin) was prepared 

by adding 1 drop of biotinylated antibody to 2 ml of PBS-T-BSA (1:50 dilution). After the 

washing step, biotinylated antibody was added to the assay tube and incubated for 30 mins. 
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Once the incubation period had finished, the antibody was decanted and the strip was washed 

as previously described. The ExtrAvidin®-Peroxidase was added to the assay tube and 

incubated for 15 mins. The ExtrAvidin®-Peroxidase was prepared by adding 1 drop of 

extravidin to 2 ml of PBS-T-BSA. After the incubation period the ExtrAvidin®-Peroxidase 

was decanted and the strip was washed for 5 mins with PBS-T-BSA and 5 mins with PBS. 

The buffer was discarded and 2 ml of substrate solution was added. The substrate solution was 

prepared by mixing thoroughly 4 ml of water, 2 drops of substrate buffer (2.5 M Acetate 

buffer pH 5.0), 1 drop of substrate chromogen (3-amino-9-ethyl-carbazole in N,N-dimethyl 

formamide; AEC-DMF) and 1 drop of substrate (2 % v/v hydrogen peroxide). The reagents 

were added in this order. The strip was incubated until a clear, red insoluble signal was 

obtained for the positive control. Incubation was performed for a maximum of 10 mins. The 

strips were preserved by immersing them in distilled water for a few mins, drying in a paper 

towel and storing in a plastic sleeve protected from the light. 

 

3.2.4.2  -  Specificity 

 

The specificity of the MAbs was determined by screening them in ELISA (Chapter 2) 

against other strains of betanodavirus and different pathogens that may be present in fish or 

aquatic environment (Table 3.2). 

For the viruses tested the ELISA assays were performed with virus supernatant. The 

bacteria tested were resuspended in PBS.  

The antigenic specificity of the MAbs was analysed with other strains of 

betanodavirus belonging to different genotype clades. From BFNNV clade, Atlantic cod 

(Gadus morhua) and halibut (Hippoglossus hippoglossus) strains were used. Striped jack 

(Pseudocaranx dentex) strain was used for representing the SJNNV clade. 
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Table 3.2 – Strains of betanodavirus, cell lines and other fish viruses 
and bacteria used for test MAbs specificity. 

 

Antigen 
  

 Virus      Betanodavirus strains: 
            European sea bass (Dicentrarchus labrax) 
            Atlantic cod (Gadus morhua) 
            Halibut (Hippoglossus hippoglossus) 
            Striped jack (Pseudocaranx dentex) 
      Infectious Pancreatic Necrosis Virus - IPNV (serotype) 
      Salmon Pancreatic Disease Virus - SPPD 
      Infectious Salmon Anaemia Virus - ISAV 
      Sleeping Disease Virus -SDV 
       

  

Cell lines      CHSE - 214 
      SSN-1 
      SHK-1 
  
  

Bacteria      Vibrio vulnificus (biotype 2) 
      Vibrio harveyii (CECT 5978) 
      Vibrio anguillarum (type II) 
      Vibrio parahaemolyticus 
      Vibrio splendidus 
      Vibrio alginolyticus 
      Vibrio mimicus 
      Photobacterium damselae subspecies piscicida 
      Mycobacterium fortuitum (1294) 
      Mycobacterium chelonae 
      Piscirickettsia salmonis LF-89 (ATCC VR 1361) 

  

 

 

The viral supernatants (SPDV, ISAV and SDV) and cell line supernatants (SHK-1 and 

CHSE – 214) were kindly supplied by Dr. Kimberly Thompson (Aquatic Vaccine Unit, 

University of Stirling). The SPDV, ISAV and SDV isolated were originally obtained from Dr. 

David Smail (FRS Marine Lab, Aberdeen).  

The bacteria used for testing MAbs specificity belong to the Institute of Aquaculture 

(University of Stirling) bacteriology’s collection and were kindly supplied by several PhD 

students at the Institute of Aquaculture (Stirling) namely Fuad Matori (Vibrio species and 

Photobacterium damsela subspecies piscicida), Sandra Laffon (Mycobacterium species) and 

Úna McCarthy (Piscirickettsia salmonis and CHSE – 214).  
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3.2.4.3  -  Neutralisation 

 

The neutralisation test is used to verify if an antibody has the ability to prevent the 

infection of cells by viruses (Cann, 1999). Neutralisation activity was performed using β 

neutralisation. This was performed in sterile flat bottom 96 well microtitre plates (Nunc, 

Fisher Scientific Leicestershire U.K.) by adding 40 μl of 5 fold serial dilutions of antibodies 

and 40 μl of 100 TCID50 ml-1 of betanodavirus. The plates were incubated for 90 mins. After 

this period 100 μl of SSN-1 cells was added to each well and incubated for 7 days at 25° C for 

European sea bass betanodavirus strain, and at 22°C for cod betanodavirus strain. After this 

period the cells were scored for cytopathic effect and antibodies titre was estimated by 50 % 

end-point Spearman-Karber method (LD50) (Chapter 2). 

The neutralisation index (NI) was calculated according to Rovozzo and Burke (1973). 

 

NI =  log10[(LD50 of virus with diluent) – (LD50 of virus with Mabs)] 

 

With:  NI < 1 considered not significant; 

           1 > NI < 1.6 considered questionable; 

           NI ≥ 1.7 considered significant. 

 

 

 

3.2.4.4  -  Western Blot 

 

Western blot was performed to determined the molecular weight of the antigen that 

the monoclonal antibodies recognised. 
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3.2.4.4.1 -  SDS-PAGE gel 

 

The SDS-PAGE was optimised to betanodavirus using the protocol established by 

Weins et al. (1990). 

The plates for running the SDS-PAGE were washed with tap water, rinsed with 

distilled water and dried with paper tissue. A spacer was placed between the plates and slid 

into the plate’s holder. The set was made even and the holder was screwed from the top to the 

bottom. A small amount of Vaseline® was spread on the bottom of the holder/plates in order 

to promote the adhesion of the plates to the caster (Dual gel caster, Might™ Small SE245, 

Hoefer Pharmacia Biotech Inc.).  

The plates where then placed in the caster and the separating gel (12 % acrylamide, 

Appendix 1) was added. A layer of butanol-2 (Fisher Scientific, Leicestershire U.K.) was 

added to the top of the gel in order to prevent gel oxidation. The gel polymerised for 60 mins 

at room temperature. After polymerisation of the gel, the butanol was washed out with 

plentiful amounts of distilled water. The comb was placed, the stacking gel (4 % acrylamide, 

Appendix 1) loaded and allowed to polymerise for 45 mins. After this period the gel plates 

were placed into the electrophoresis chamber (Hoefer Pharmacia Biotech Inc. SE250) and 

reservoir buffer was added (Appendix 1).   

Betanodavirus was prepared as described in Chapter 2. Several concentrations of 

purified virus were utilised (Table 3.2.) in order to verify the optimal concentration of 

betanodavirus for running the SDS-Gel. The virus sample diluted in TNE buffer was mixed 

with SDS sample buffer (Appendix 1), boiled for 4 mins and centrifuged for 5 mins at 15 800 

x g (Thermo IEC microlite). The ability of antibodies to bind to unboiled samples was also 

determined, as in Table 3.3. 
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Table 3.3 – Concentration of Betanodavirus samples analysed by SDS-
PAGE, with or without boiling.  

 
 Betanodavirus (μg l-1) 

 1 2.5 5 15 25 30 50 100 

Boiled + + + + + + + + 
Not boiled - - - - - + - - 

 

 

Two different molecular weight markers were used, Protein Marker Broad Range 

(BioLabs Inc., New England) for SDS-PAGE gel, and Full Range Rainbow (Amersham) for 

Western-blot. 

The samples and molecular weights were loaded with loading tips and gel was 

electrophoresed for 90 mins at 120 V (Amersham Pharmacia Biotech EPS 1001). 

The gel was stained with Coomassie Brilliant Blue (Appendix 1) in order to observe 

the molecular weight of the betanodavirus proteins and to confirm the success of the gel. 

 

3.2.4.4.2 -  Western blot 

 

Optimisation of Western blot to use the MABs against betanodavirus was performed 

using the protocol established by Weins et al. (1990). 

Unstained SDS-PAGE gel, filter paper (Whatman n.1), nitrocellulose membrane 

(Hybond™-ECL™, Amersham) and sponge pads were equilibrated in transblot buffer 

(Appendix 1) for 20 mins. 

The blot holder was mounted from the cathode to the anode in the following order – 

sponge pad, three sheets of filter paper, nitrocellulose membrane, SDS gel, three sheets of 

filter paper and sponge pad. The procedure was carefully carried out to prevent the formation 

of bubbles. 

The blot holder was placed into the blotting chamber (Fisher FEB10) and filled with 

transblot buffer. The nitrocellulose membrane was then blotted at 60 V for 70 mins 

(Amersham Pharmacia Biotech EPS 1001).  
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The lanes with molecular markers were cut, rinsed in distilled water, dried and stored 

in the dark. The non-specific binding sites on the membrane containing sample lanes were 

blocked over-night at 4°C with 1 % (w/v) BSA in TBS (Appendix 1).  

The following morning the membrane was washed 3 times with TTBS (Appendix 1) 

for 5 mins each and incubated with hybridoma supernatant. Two incubation periods, 1 h at 

room temperature and over-night at 4°C, and several concentrations of hybridoma cells 

(1:100; 1:50, 1:25, 1:10 (v/v in TNE buffer), neat and 2 × concentrated) and polyclonal 

antibodies (1:100; 1:50; 1:30) were tested. 

After this incubation the washing procedure with TTBS was repeated and the 

membrane was incubated for 1 h at room temperature with anti-mouse IgG HRP conjugated 

(1:100 in PBS) (Diagnostics Scotland, Edinburgh, Scotland). The membrane was washed 3 

times with TTBS for 5 mins each and finally washed 1 min in TBS. The membrane was 

developed with chromogen/ substrate solution (4CN Membrane Peroxidase Substrate System 

(2-C), KPL, Wembley U.K.). The reaction was allowed to proceed for a period no longer then 

30 mins and stopped with distilled water. 

 

3.2.4.5  -  Immunohistochemistry 

 

The immunohistochemistry protocol used was developed according to Adams and 

Marin de Mateo (1994). 

Tissue blocks were trimmed to facilitate access to the embedded tissues, and soaked 

in distilled water for 60 mins. Sections of 5 μm thickness were cut using a microtome (Jung 

Biocut 2035). Ribbons of sections were floated on 40°C distilled water and then slipped onto 

labelled glass slides. These were allowed to dry at 40°C, then transferred to a drying oven and 

further dried at 60°C overnight. 

The sections were de-waxed in xylene (2 × xylene, 5 mins each), re-hydrated through 

ethanol 100 % (5 mins), ethanol 70 % (3 mins) and distilled water (5 mins). 
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The tissues were encircled with a PAP pen (Liquid blocker Super pap pen, Agar 

Scientific, Essex U.K.) and the endogenous peroxidase was blocked by incubation with 3 % 

(v/v) hydrogen peroxide (Sigma, Dorset U.K.). 

After this period the slides were washed 3 times with buffer (TBS or PBS, see Table 

3.4) and the non-specific binding sites were blocked with 10 % (v/v) goat serum (Diagnostics 

Scotland, Edinburgh, Scotland). Excess liquid was tapped off and anti-betanodavirus MAb 

was added and slides incubated for a variety of times (Table 3.4). 

 

Table 3.4 – Variables tested for optimisation of the immunohistochemistry protocol for 
the detection of Betanodavirus. 

 
Variable Protocol step 

Reagent Diluted in 
Incubation time 

(mins) 

 Washing buffer TBS 
PBS   

 
 

Antigen 
 

Retrieval 
 
 

TBS 
Formic Acid 

 
 
 
 

Citric Acid 

 

850 W - 1’45 s; 80 W - 6’ 
850 W - 1’45 s; 80 W - 2’ 30s 
850 W - 2’ 30 s; 80 W - 2’ 30s 

850 W - 2’ 30 s; 80 W - 3’ 
850 W - 3’; 80 W - 3’ 

850 W - 3’30 s; 80 W - 3’ 
850 W - 6’; 80 W - 6’ 

Endogenous 
peroxidase H2O2 

Methanol 
PBS 

20; 30 
30 

Non-specific 
binding Goat serum 1:10 in TBS 

1:10 in PBS 
10; 20 

20 

 
 

MAbs 
 
 

Supernatant ♦ 
Supernatant Ä 
Supernatant 3x 

concentrated Õ 
Supernatant 10x 
concentrated Õ 
Freeze drye Õ 

 
 
 
 
 
 

1:10 in PBS 

60; 120 
60 
180 

 
60; 180 

 
120 

Secondary antibody 
 

Anti-mouse HRP 
Anti-mouse Biotin 

 
 

Anti-mouse biotin 
(Vector ABC) 

1:75 in TBS 
1:50 in TBS 
1:100 in PBS 
1:1000 in PBS 
PBS and serum 

 

60; 75 
60 

60; 30 
30 
30 
 

Streptavidin-biotin 
amplification 

 

Extravidin HRP 
 

Streptavidin HRP 
 

Streptavidin  
(Vector ABC) 

1:50 in TBS 
1:100 in PBS 
1:200 in PBS 
1:2000 in PBS 

PBS 
 

60 
60 
20 
20 
30 
 

Chromogen 

DAB 
True Blue 

Vector VIP peroxidase 
substrate 

TBS 

20; 24 
10 
10 
 

Counterstain 
Mayer’s Haematoxilin

Contrast red 
Methyl Green 

 
3 

10; 2 
3 mins at 60°C 

♦ - MAbs 4C3, 3B10 and 4A12; Ä cocktail of 1:1:1 of MAbs 4C3, 3B10 and 4A12; 
Õ - MAb 4A12.   All incubations performed at room temperature. 
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 The slides were then washed 3 times with buffer (TBS or PBS), and incubated with 

secondary antibody. This antibody was anti-mouse or anti-rabbit antibody conjugated with 

HorseRadish Peroxidase (HRP) or biotin. These antibodies were diluted from a range between 

1:50 to 1:100 (v/v) in TBS or PBS, as described in Table 3.4.  

After washing 3 times with buffer (TBS or PBS) the slides were incubated with the 

chromogen or with the streptavidin-biotin complex. Following incubation with the chromogen 

and conterstaining the slides were de-hydrated (3 mins in ethanol 70 %; 5 mins in ethanol 100 

%; 2 × xylene, 5 mins each) and coverslipped with Pertex (Cellpath Ltd., Hemel Hempstead 

U.K.). 

The Vectorstain® ABC kit (Vector, Peterborough U. K.) was also tested for 

optimisation of the streptavidin-biotin amplification step. The chromogen used with this kit 

was Vector® VIP Peroxidase Substrate Kit (Vector, Peterborough U. K.) and the counterstain 

was performed with Methyl Green (Vector, Peterborough U. K.).  

The Atlantic cod tissue was kindly provided by Dr. David Gromam (University of 

Prince Edward Island, Canada). Doctor Bovo (Istituto Zooprofilattico Sperimentale, Venice 

Italy) and Professor Hugh Ferguson (IoA, Stirling Scotland) kindly provided the tissue 

samples from European sea bass and grouper. 

 

3.2.4.5.1 -  Antigen Retrieval 

 

After de-waxing and re-hydrating the slides were placed in a Copeland jar with buffer 

(Appendix 1) covered with microwaveable cling film and placed into a microwave oven 

(Sanyo). The slides were microwaved at 850 W, then at 80 W (Table 3.3). After these boiling 

periods the slides were allowed to cool down in the buffer for 5 mins. The slides were 

incubated another 5 mins in TBS (pH 7.6, Appendix 1) at room temperature and 

immunohistochemistry was performed as described in section 3.2.4.5.   
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3.3 -  Results 

3.3.1 - Monoclonal antibody production 
 

In order to obtain monoclonal antibodies two fusions needed to be performed. On the first 

fusion the clones obtained were not considered to be useful for further applications because 

the antibody titre was too low.  

 

 
Figure 3.4 –  Cloned cells surrounded by feeder cells (magnification 200x);  single clone 

adjacent to feeder cells (magnification 40x); hybridoma cells producing 
monoclonal antibodies (  magnification 400x and  magnification 100x). 

 

 

Some examples of clone cells surrounded by the feeder cells or hybridoma cells 

obtained are shown in Figure 3.4. 

With the second fusion 21.3 % of the clones showed a high positive response by 

ELISA against betanodavirus supernatant. These clones were amplified and screened once 
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more. After this amplification 10 % showed a positive response against the virus. These 

positive clones were classified as parental cells, cloned by limited dilution and screened three 

times. After this selection 3 clones (21 %) still give a positive result by ELISA and were 

considered to be hybridoma cells producing monoclonal antibodies (3B10, 4A12 and 4C3). 

The parental cells stored in liquid nitrogen were thawed and the cloning procedure 

was repeated once more. This process allowed a further two hybridoma cell lines – 1E3 and 

5G10, to be obtained. 

 

 

3.3.2 - Immunotyping 
 

All five MAbs were shown to belong to the same immunoglobin class IgG but have 

different subclasses. MAbs 4C3, 4A12 and 1E3 were IgG2a, and MAbs 3B10 and 5G10 were 

IgG2b, as demonstrated in Figure 3.5. 

 

 

Figure 3.5 – Immonotyping strips used for determining the type of immunoglobin of 
the MAbs.  4C3, 4A12 and 1E3;  3B10 and 5G10. 

 

 

1 

2 

3.3.3 - Cross-reactivity 
 

The reaction of the anti-betanodavirus MAbs against other betanodavirus strains and a 

variety of fish pathogens was determined by ELISA (Table 3.5).).  

 81 



Chapter 3 – MAbs and polyclonal antibody production 

As well as reacting against betanodavirus from European sea bass MAbs 4A12, 1E3 

and 5G10 also reacted with betanodavirus isolated from Atlantic cod and halibut strains. The 

MAbs 3B10 and 4C3 only showed reactivity against the strain of betanodavirus that was used 

to immunised the mice, i.e. the European sea bass strain. None of the MAbs reacted against 

the striped jack betanodavirus strain. 

None of the MAbs showed cross-reactivity against other viruses (IPNV, WISAV, 

SPPD, sleeping disease), or against the cell lines CHSE-214 and SKH-1 used to grow these 

viruses or to the cell line used to grow betanodavirus, SSN-1.  

 

 

Table 3.5 – Cross-reactivity of the anti-betanodavirus MAbs with several strains of betanodavirus 
and other fish viruses and bacterioses. 

 
MAbs  Antigen 3B10 4A12 4C3 1E3 5G10 

      

 Virus      
     IPNV (serotype) - - - - - 
     SPPD - - - - - 
     WISAV - - - - - 
     SDV - - - - - 
     Betanodavirus strains      
       European sea bass 
        (Dicentrarchus labrax) + + + + + 

       Atlantic cod 
        (Gadus morhua) - + - + + 

       Halibut 
        (Hippoglossus hippoglossus) - + - + + 

       Striped jack 
        (Pseudocaranx dentex) - - - - - 
      

   

 Cell lines      
     CHSE - 214 - - - - - 
     SSN-1 - - - - - 
     SHK-1 - - - - - 
      
   

 Bacteria      
     Vibrio vulnificus (biotype 2) - - - - - 
     Vibrio harveyii (CECT 5978) - - - - - 
     Vibrio anguillarum (type II) - - - - - 
     Vibrio parahaemolyticus - - - - - 
     Vibrio splendidus - - - - - 
     Vibrio alginolyticus - - - - - 
     Vibrio mimicus - - - - - 
     Photobacterium damselae subspecies piscicida - - - - - 
     Mycobacterium fortuitum (1294) - - - - - 
     Mycobacterium chelonae - - - - - 
     Piscirickettsia salmonis LF-89 - - - - - 
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Bacterial pathogens including Piscirickettsia salmonis, Photobacterium damselae 

subspecies piscicida and several strains of Vibrio and Mycobacterium were also tested with 

negative results. 

 

 

3.3.4 - Neutralisation 
 

The supernatant of five clone hybridoma cells and one polyclonal antibody were 

tested using an in vivo neutralisation test (Table 3.6). The Mabs 3B10 and 4C3 neutralised the 

European sea bass nodavirus strain. 

  

Table 3.6 – Neutralisation index of polyclonal antibodies 
and MAbs 3B10, 4A12, 4C3, 1E3 and 5G10. 

 
Neutralisation Index (NI)  

 European sea bass Atlantic cod 
Mabs   
3B10 3.16 - 
4A12 0.36 1.26 
4C3 3.44 - 
1E3 1.68 0.20 

5G10 2.74 1.80 
Polyclonal antibody 4.56 3.74 

 

 

 

 

 

 

 

MAb 4A12 had no neutralisation capacity against the European sea bass strain but 

gave a questionable NI with cod nodavirus strain (NI = 1.26). MAb 1E3 showed the opposite 

behaviour. This MAb had no neutralisation capacity against the betanodavirus cod strain (NI 

< 1), but with the European sea bass strain the NI value (1.68) can be considerered significant 

(NI ≥ 1.7). Both nodavirus strains were neutralised by MAb 5G10. 

The polyclonal antibodies produced against the European sea bass strain revealed 

neutralisation ability against betanodavirus strain from European sea bass (NI = 4.56) and 

against the Atlantic cod strain (NI = 3.74).  
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3.3.5 - Western-Blot 
 

Western Blot analysis showed that all the MAbs obtained have the ability to bind to a 

virus protein of approximately 42 kDa. 

 
 

 
Figure 3.6 – Western Blot of all the MAbs and 

polyclonal antibodies. The virus 
sample was boiled. 

 

4C3 4A12 3B10 5G10 1E3  Poly 
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15 kDa 

25 kDa 

10 kDa 

 
Figure 3.7 – Western Blot with boiled and 

non-boiled virus samples.  
 

 

The polyclonal antibody recognised virus proteins of several different molecular 

weights at 160 kDa; 75 kDa; 55 kDa and the 42 kDa recognised by the MAbs. 
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MAbs 4A12 and 4C3 bound to boiled and non-boiled betanodavirus samples. These 

MAbs appear to recognise virus protein with different intensities, showing heavier staining to 

non-boiled virus samples (see Figure 3.6 and 3.7). 

 

 

3.3.6 - Immunohistochemistry 
 

The application of the MAbs in immunohistochemistry was possible only when 

streptavidin-biotin amplification or when antigen retrieval was performed. Monoclonal 

antibody 4A12 was the only one capable of recognising the virus by immunohistochemistry.  

For both methods the optimised protocol is described in Table 3.7. Both methods 

show similar results but biotin-streptavidin amplification protocol is less labour and time 

demanding.  

Using immunohistochemistry it was possible to verify that the virus is widely spread 

in the infected tissue, and it is not possible to detect localised areas of virus at the stage where 

these tissue samples were collected (Figure 3.8 ,  and Figure 3.9  to ).  

When non-infected tissue sample was analysed MAb 4A12 revealed no cross-

reactivity with non-infected tissue (Figure 3.8 ). The use of PBS instead of MAb revealed 

that none of the reagents used react with fish tissue (Figure 3.8 ,  and ; Figure 3.9 ). 

Immunohistochemistry using MAb 4A12 appeared to be very sensitive for detecting 

virus in European sea bass diagnosed with VNN. These samples were diagnosed with VNN 

but did not show clear histological symptoms (Figure 3.8  and ). However, with 

immunohistochemistry they revealed the presence of the virus and allowed the confirmation 

of the diagnosis. Fish tissue samples with the characteristic vacuoles in the retina layers and 

brain could be observed in Atlantic cod (Figure 3.9  to ). 
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Table 3.7 – Immunohistochemistry optimised protocols. 
 

Variable Protocol Protocol step 
Reagent Diluted in 

Incubation time 
(mins) 

 Washing buffer TBS   

Antigen Retrieval Formic Acid  850 W - 3’30 s 
80 W - 3’ 

Endogenous peroxidase H2O2 Methanol 30 

Non-specific binding Goat serum 1:10 in PBS 20 

MAb Supernatant 10x 
concentrated  180 

Secondary antibody Anti-mouse HRP 1:100 in PBS 60 

Chromogen 

 
 

Antigen 
 

Retrieval 

DAB TBS 24 

Counterstain Mayer’s Haematoxilin  3 

Endogenous peroxidase H2O2 Methanol 30 

Non-specific binding Goat serum 1:10 in TBS 20 

MAb ADL 1:10 in PBS 120 

Secondary antibody Anti-mouse biotin  
(Vector ABC) PBS and serum 30 

Streptavidin-biotin 
amplification 

Streptavidin  
(Vector ABC) PBS 30 

Chromogen Vector VIP peroxidase 
substrate PBS 10 

 
 

Biotin-
streptavidin 

 amplification 

Counterstain Methyl Green  3 mins at 60°C 
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1.

1.

 
 
Figure 3.8 – Immunohistochemistry of paraffin section of normal and infected fish tissue. Streptavidin-

biotin amplification was performed with Vectorstain ABC kit. The presence of virus is 
revealed by the colour purple. Eye of non-infected Atlantic cod incubated with PBS  
and MAb  shows no immunostaining. Immunostaining can be observed in the photo-
receptors (PR) and in the ganglionic layer (GL) of European sea bass infected with VNN 
incubated with MAb . The same sample incubated with PBS  shows no 
immunostained. Brain of European sea bass infected with VNN was incubated with PBS 

 and MAb  and shows the widely spread disposition of the virus in the brain tissue. 
Bar = 100 μm. 
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BN 
GL 

 
 
Figure 3.9 – Immunohistochemistry of paraffin section of infected Atlantic cod using antigen retrieval 

step. The presence of virus is revealed by a brown colour. Spinal cord was incubated with 
 PBS and  MAb. Immunostaining and vacuoles can be observed in the major parts of 

the spinal cord , eye , ,  (bipolar nuclear layer (BN) and ganglionic layer (GL)) 
and brain . Bar = 100 μm. 
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3.4 -  Discussion 

 

The production of MAbs for use as diagnostic tools is widespread and has been 

carried outfor 30 years. Monoclonal antibodies are attractive reagents since, once generated, 

they provide a perpetual source of a well-defined antibody (Yelton and Scharff, 1981). The 

discriminatory power of monoclonal antibodies makes them ideal reagents for investigation of 

antigenic relationships between viral proteins (Yewdell and Gerhard, 1981).  

The ultimate aim in the production of Mabs that recognise European sea bass 

nodavirus strain was to apply them in antigenic analysis. It is known that the relevance of this 

type of analysis with MAbs may depend largely on the availability of a diverse panel of 

antibodies (Yewdell and Gerhard, 1981). In order to try to obtain the most diverse and best 

panel possible two fusions were performed. The clones obtained with the first fusion revealed 

very low titre values. Usually this type of result is a consequence of the chromosomal 

instability associated with the fusion process of the spleen cells and the myeloma cells. The 

MAbs obtained with the first fusion were therefore discarded and a second fusion was 

performed. With this second fusion it was possible to obtain and characterise five hybridoma 

cell lines. The produced MAbs all belonged to the IgG class. As the affinity to the antigen of 

IgG is higher than that of the IgM antibodies (Nakajima and Sorimachi, 1995), this suggests 

that the MAbs obtained can be used in serological and diagnostic assays.  

Monoclonal antibody may not be specific, as it is possible that they will react not only 

with the antigen of interest but also with other antigens with similar structural features (Yelton 

and Scharff, 1981). This cross-reaction demonstrates shared determinants that are indicative 

of structural or chemical similarities between the antigen and the other “substance” (Yelton 

and Scharff, 1981, Nelson et al. 2000). Thus, an ELISA was used to determine the cross-

reactivity of the five MAbs against other betanodavirus strains, viruses and bacterial 

organisms that can be found in fish and the aquatic environment. The MAbs 4A12, 1E3 and 

5G10 recognised Atlantic cod and halibut strains as well as European sea bass betanodavirus 
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strain. However MAbs 4C3 and 3B10 just recognised the strain used for immunising the mice 

– European sea bass strain. European sea bass is grouped into the RGNNV clade (Red-Spotted 

Grouper Nervous Necrosis Virus) (Skliris et al. 2001), Atlantic cod and halibut into the 

BFNNV clade (Barfin Flounder Nervous Necrosis Virus) (Starkey et al. 2000, Starkey et al. 

2001) and the striped jack into the SJNNV clade (Striped Jack Nervous Necrosis Virus) 

(Nishizawa et al. 1997).  Benjamin et al. (1984), suggested that by applying the multi-

determinant-regulatory model nearly all evolutionary substitutions would directly affect 

immunologic cross-reactivity because most amino acid substitutions are immunologically 

detected. The lack of response of some of the MAbs against the different nodavirus strains 

may reveal that the MAbs recognise a less conserved region of the coat protein, and this 

region is not shared by RGNNV, BFNNV and SJNNV clades.  Nishizawa et al. (1995b) 

suggested that there is a difference in the epitopes between SJNNV and other nodavirus 

strains based on the lack of binding of MAbs to these strains. Monoclonal antibodies 4A12, 

1E3 and 5G10 appear to recognise a region on the coat protein shared by RGNNV and the 

BFNNV clusters, but 3B10 and 4C3 recognised a region that is not shared between these two 

clades and is specific to the RGNNV cluster. The results suggests the presence of five MAbs 

binding to at least two different epitopes, one where MAbs only recognise the European sea 

bass strain (MAbs 4C3 and 3B10) and another where MAbs also recognise Atlantic cod and 

halibut strains (MAbs 4A12, 5G10 and 1E3).  

Photobacterium damselae subspecies piscicida, Piscirickettsia salmonis and several 

species of Vibrio and Mycobacterium were tested for MAbs specificity. There was no cross-

reaction between these organisms and the MAbs. The same result was observed when four 

different fish viruses (IPNV, SPDV, WISAV and sleeping disease) were screened.  

An enormous advantage of hybridoma technology is the ability to generate specific 

antibodies even with impure antigens, due to the selection performed during the screening 

assays (Secher and Burke, 1980). The immunisation of the mice was performed with purified 

betanodavirus, but the selection of MAbs was performed with virus supernatant from tissue 

culture. There is always the possibility that the MAbs may recognise SSN-1 cell components 
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present in the supernatant. This could occur due to the presence of cell particles in the purified 

virus suspension used for the immunisation of the mice. In fact, the MAbs did not cross-react 

with SSN-1 supernatant. The lack of cross-reactivity between the MAbs and the cell lines 

(CHSE-214 and SHK-1) used to grow the other viruses tested was also confirmed.  

Antibodies specific for viral antigens are often crucial in containing the spread of a 

virus during acute infection and in protecting against re-infection (Kuby, 1994). Antibodies 

can reduce virus growth by preventing virus adsorption or penetration into host cells 

(Dimmock, 1984, Abbas et al. 2000). Work with polio virus suggested that different MAbs 

can neutralise virus by different mechanisms or a single MAb can neutralise by a number of 

alternative mechanisms (McCullough, 1986). The neutralisation index (NI) suggests the 

presence of MAbs that bind to different epitopes. The group comprising the MAbs that cross-

reacted with other betanodavirus strains can be sub-divided. The lack of neutralisation ability 

of MAb 4A12 to the European sea bass strain indicated that this MAb recognised a different 

epitope region to MAbs 5G10 and 1E3. Even these two MAbs do not appear to share the same 

epitope as the lack of neutralisation against Atlantic cod presented by MAb 1E3 indicates.  

Western blot analysis revealed that all the MAbs recognised a protein with an 

approximate molecular weight of 42 kDa, the size of the betanodavirus coat protein (Mori et 

al.  1992). The MAbs developed by Nishizawa et al. (1995b) against striped jack nodavirus 

and by Lai et al. (2001a) for Yellow Grouper Nervous Necrosis Nodavirus (YGNNV) also 

recognised this protein. The generation of MAbs that recognise this protein is not surprising as 

the coat protein is the outer structural component of the virion particle.  

Monoclonal antibodies recognised the proteins in their three-dimensional 

configuration on the viral surface and often recognise epitopes that depend upon the folded 

three-dimensional shape of the polypeptide chain (Dulbecco, 1988a). The detection of the coat 

protein is very important for future antigenic studies because it indicates the type of epitope 

that the MAbs recognise. Two of them (MAbs 4C3 and 4A12) revealed the ability to 

recognise the coat protein in both boiled and non-boiled samples suggesting that the epitope 

of these MAbs bind may not be dependent on protein folding.  
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Immunohistochemistry with the anti-nodavirus MAbs was only successful with MAb 

4A12 and the process required either an amplification or antigen retrieval step. Both antigen 

retrieval and signal amplification with streptavidin-biotin revealed similar results and a 

general binding of the MAb to the cytoplasm of infected tissue cells was observed. Such a 

result is not surprising as the betanodavirus particles are present in the cytoplasm of infected 

cells (Nishizawa et al. 1995b), where virus assembly occurs (Chi et al. 1997).  Such results, a 

generalised staining of the brain and eye were also observed by Lai et al. (2001a) and Shieh 

and Chi (2005) using anti-grouper nodavirus MAbs. When tested MAb 4A12 revealed no 

cross-reativity with normal nerve cell, eye or even with other organs tissue. These results 

indicate that MAb 4A12 can be useful for diagnosis and confirmational diagnosis of VER.  

Polyclonal antisera contain many different antibodies that will perform optimally in 

different assays (Yelton and Scharff, 1981). Therefore polyclonal antibodies can be use in a 

vast number of immunoassays. The exquisite specificity and homogenous structure of MAbs 

is the main reason why MAbs are so often considered to be superior to polyclonal antibodies. 

In the context of immunoassays this is not always an advantage (Peppard, 2000) because they 

may not performe well in as many immunoassays as polyclonal antibodies. These differences 

between MAbs and polyclonal antibodies were confirmed by the polyclonal antisera showing 

the highest neutralisation index to the betanodavirus strains and the binding to several proteins 

by Western Blot.  

A crucial aspect of the characterisation of MAbs is the study of how the MAbs react 

in different assay systems. This is especially pertinent for the use of MAbs as diagnostic 

reagents because some antibodies perform well is some assays but not in others. This 

phenomenon relates to how an antibody recognises its target epitope in the context of the 

assay system used with the target epitope being masked, denatured or rendered inaccessible by 

the immobilisation procedure adopted within a given technique (Nelson et al. 2000). The most 

crucial advantage of MAb is that once a useful hybridoma cell line has been generated it can 

be used by different laboratories eliminating a source of variation and providing a standard 

reagent (Pollock et al.  1984).  
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3.4.1 - Final reflection 
 

The production of hybridoma cell lines is a well-established technique. However, it is 

not a straightforward technique and often more than one fusion needs to be performed and this 

can be costly and time consuming. In order to obtain hybridoma cell lines producing 

antibodies against European sea bass betanodavirus two fusions were performed and five 

MAbs were generated.  

The results obtained suggest that the five hybridoma cell lines recognised different 

regions of the coat protein. This fact is extremely useful for achieving the major aim of the 

thesis i.e. producing MAbs against betanodavirus for application in antigenic mapping studies. 

Due to the characteristics shown by the MAbs several epitope mapping techniques could be 

used, e.g. escape mutants and pepscan. 

Cross-reactivity tests revealed that three of the MAbs (4A12, 5G10 and 1E3) 

recognised Atlantic cod and halibut betanodavirus strains. None of the MAbs produced cross-

reacted with other fish viruses, cell line culture supernatant or bacteria species common to fish 

and aquatic environment. This indicates the specificity of the MAbs to betanodavirus and the 

possibility that they may be utilised as diagnostic tools. 

The monoclonal antibodies produced can be applied to several techniques that require 

the use of antibodies against betanodavirus. For example the isolation of betanodavirus in cell 

culture can be confirmed by performing a neutralisation assay with the MAbs produced. The 

high signal obtained when infected tissue was staining using immunohistochemistry shows 

that the MAb 4A12 can be used for diagnosis and confirmation of VER in fish tissue samples. 

Further studies should be performed in order to confirm the ability of the MAbs to 

bind to other betanodavirus strains e.g. barramundi, turbot, Dover sole, groupers, guppy and 

sturgeon and to establish a wider range of possible application of these MAbs. 
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Chapter 4 - Epitope mapping with escape mutants 
 

4.1 -  Introduction  

 

During infection with bacteria or viruses, the host immune system produces an 

antibody response directed against the pathogen. These antibodies protect the organism by 

interaction between the paratope (antibody binding site) and the epitope (antigen binding site) 

(Klasse and Sattentau, 2002).  

The development of techniques for the production of monoclonal antibodies allowed 

the perpetual supply of antibodies directed against a single epitope (Yelton and Scharff, 

1981). Consequently, monoclonal antibodies stimulated the study of the antigen-antibody 

interaction and the characterisation of epitopes within viruses and other antigenic structures.  

Several techniques have been employed for epitope mapping, including random 

peptide phage display (Scott and Smith, 1990) and pepscan using overlapping panels of 

synthetic peptides (Geysen et al. 1984). However, these techniques are largely limited by their 

inability to represent conformational epitopes.  

Monoclonal antibodies directed against viral antigens have been available for over 20 

years. Some of these antibodies exhibit viral neutralising activity (Strauss et al. 1991). The 

biological processes involved in virus neutralisation by antibodies are not completely 

understood. However, it has been suggested that antibodies may neutralise viruses by 

preventing the binding of viral particles to cellular receptors or by blocking viral penetration 

into the cytoplasm (Kuby, 1994).  

When viruses are incubated with neutralising antibodies, rare mutants can be 

recovered that possess the ability to replicate despite the presence of the antibody neutralising 

activity (Gerhard  and Webster, 1978, Laver et al. 1979). These virus mutants are referred to 

as neutralisation escape mutants. Nucleotide sequencing of these viruses can then be used to 

identify which changes in the virus protein structure confers neutralisation resistance (Mateu 
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et al. 1990, Strauss et al. 1991, Balasuriya et al. 1995). This procedure is particularly suitable 

for the analysis of RNA viruses since these exhibit relatively high genetic variability due to 

error-prone replication machinery (Gitlin et al. 2002, Boden et al. 2003).  

The principle underlying this technique is that virus escape mutants are able to 

replicate in the presence of a neutralising antibody because they possess a mutation that 

confers a change in an amino acid residue situated at the antibody binding site. Thus the 

antibody is unable to bind and neutralise the escape mutant (Morris, 1996b). It has been 

demonstrated that a single amino acid substitution is sufficient to shift the antigenicity of a 

virus as occurs for example in the influenza virus HA1 polypeptide (Berton et al. 1984). The 

interaction between an antibody and an antigen can be abolished by the loss of a single 

hydrogen bond, provoking a reduction in the binding constant of nearly three orders of 

magnitude (Colman et al. 1987). 

The generation of mutants is a routine procedure exploited widely in structure-

function analyses and for the development of engineered viruses as vaccines or drugs 

(Yoshiyama et al. 1994, Shotton et al. 1995, Zhao et al. 2004, Schubert et al. 2005)  

The most widely used method for isolating and selecting escape mutants is based on 

the viral plaque reduction assay. However, for some viruses such as influenza virus the 

production of escape mutants has been achieved in eggs (Berton et al. 1984, Saito et al. 1994). 

In the plaque reduction assay the growth of the virus occurs in the presence of a 

neutralising antibody, so any plaques that occur are formed by the replication of a viral escape 

mutant. Plaques are formed by cytopathic viruses (Rovozzo and Burke, 1973) and these can in 

many cases be produced by the addition of an overlay such as agarose to an infected 

monolayer of cells  (Dulbecco and Vogt, 1954).  

In the majority of studies the plaque process is preceded by several passages of the 

virus in cell culture in the presence of the neutralising antibody (Weiland et al. 1999). 

However, selection of escape mutants may take place in the absence of an overlay (Borrego et 

al. 2002). This methodology is of use for the analysis of viruses that are refractory to plaque 

formation. 
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Escape mutants have been used for epitope mapping studies of the intracytoplasmic 

tail of Human Immunodeficiency Virus (HIV) type 1 gp41 (Kalia et al. 2005), xenotropic 

murine leukaemia virus (Li et al. 1999); equine arteritis virus (Balasuriya et al. 1995); 

hepatitis A virus (Ping and Lemon, 1992); influenza virus (Gerhard et al. 1981); measles 

virus, mumps virus, rubella virus (Tischer and Gerike, 2000) and poliovirus (Minor et al.  

1983). 

 

 

4.1.1 - Plaque Formation    
 

Zones of cell lysis or CPE occurring in virus infected cell monolayers are referred to 

as plaques (Hierholzer and Killington, 1996). Each plaque originates from a single virus 

particle (Rovozzo and Burke, 1973). 

 

 

Figure 4.1 - Plaques produced by measles virus. Overlay 
agarose stained with neutral red (bar = 0.5 
cm) (Borges et al.  1996). It is possible to 
observed the different plaque sizes produce 
by different measles strains. 
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In order to obtain plaques the virus is added to the cell culture monolayer and allowed 

to adsorb (Burleson et al. 1992) (see Figure 4.1). An overlay, typically agarose or carboxyl 

methylcellulose is then added and the infected monolayers are incubated. The overlay 

prevents diffusion of viral particles and permits better resolution of plaques by preventing the 

spread of virus to other areas of the cell monolayer (Bachmann et al. 1999, Hierholzer and 

Killington, 1996). 

After incubation a stain is (e.g. neutral red or tetrazolium) is used to visualise plaques 

(Burleson et al.  1992). Virus isolated from individual plaques can be isolated by “picking”.   

 

 

4.1.2 - Objectives 
 

The aim of this chapter was to isolate and characterise betanodavirus escape mutants. 

This would permit identification of the site(s) recognised by neutralising antibodies that play a 

major role in protection and recovery from infection. Neutralising monoclonal antibodies were 

used for escape mutant isolation. The production and characterisation of the MAbs are 

described in Chapter 3. Determination of the nucleotide sequence of the coat protein gene of 

isolated escape mutants would enable identification of amino acid changes in the coat protein 

associated with resistance to neutralisation. Two approaches were used to produce 

betanodavirus escape mutants: a) plaque isolation and b) isolation by limiting dilution. For 

producing betanodavirus plaques, several different overlays were tested. A limiting dilution 

procedure developed by Borrego et al. (2002) was also used.  
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4.2 -  Material and Methods 

4.2.1 - Plaque isolation  
 

The procedure for obtaining betanodavirus plaques was performed with a nodavirus 

isolated from European sea bass designated Mt/01/Sba. Virus growth was performed in 6 well 

plates (Nunc, Fisher Scientific Leicestershire U.K.).  

Agar number 1 (Oxoid, Hampshire U.K.); agarose type VII, low melting point 

(Sigma, Dorset U.K.); agar gum (Sigma, Dorset U.K.); carboxyl-methylcellulose medium 

viscosity (Sigma, Dorset U.K.) and carboxyl-methylcellulose high viscosity (Sigma, Dorset 

U.K.) were used as overlay. 

All the overlays were tested at different concentrations, 0.5 %, 1 % and 1.5% (w/v) in 

a solution 1:1 of distilled water and L-15/FBS. The gelling compounds were dissolved in 

distilled water, autoclaved and held above gelling temperature until Lebovitz L-15 medium 

containing 10 % FBS (L-15/FBS) was added. The L-15/FBS was added immediately before 

the overlay was used.  

Betanodavirus plaques were produced in pre-formed SSN-1 monolayers and also by 

simultaneous inoculation of SSN-1 monolayers. 

Culture of SSN-1 stock cells is described in Chapter 2. Seven day old cultures of 

SSN-1 cells (25 cm3 flask) were harvested and used to inoculate 6 well plates which were then 

incubated at 25°C. Cell monolayers were allowed to develop until 80 % confluent. Growth 

medium was then removed and monolayers washed three times with HBSS (supplemented 

with 2 % FBS). Betanodavirus strain Mt/01/Sba (500 μl) was added to each well and the 

plates were sealed with Nesco film. Virus was allowed to adsorb to the SSN-1 cells for one 

hour at 25°C, with gentle agitation (Mini Rocking platform, Biometra™). Monolayers were 

infected with between 102 to 106 TCID50
 of virus. Negative controls were inoculated with L-15 

supplemented with 5 % of FBS.  
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After removal of non-adsorbed virus, cells were washed with HBSS (supplemented 

with 2 % FBS). The overlay (2 ml) was added and allowed to solidify. Plates were sealed with 

Nesco film and incubated at 25 °C. 

Plates were incubated for 2, 3, 4 and 5 days. After this period 500 μl of neutral red 

(0.1 % in HBSS/FBS 2 %) was added and monolayers were examined microscopically for the 

formation of plaques. 

For the simultaneous inoculation 2 ml of SSN-1 cells were mixed with 500 μl of the 

virus and allowed to seed for 24 hrs. Monolayers were then processed as described above for 

pre-formed monolayer. 

 

 

4.2.2 - Isolation by limiting dilution 
 

Two strains of betanodavirus were used for escape mutant isolation by limiting 

dilution, MT/01/Sba isolated from European sea bass and GB/32/cod, isolated from cod. 

Three MAbs were used 4C3, 4A12 and 3B10 (see Chapter 3 for details). The neutralisation 

ability of each of the MAb against each virus strain was determined as described in Chapter 3. 

MAbs 4C3 and 3B10 were used for MT/01/sba, and 4A12 was used for GB/32/cod. 

Virus neutralisation assay was performed as described by Borrego et al. (2002).  

HBSS (45 μl well-1) was added to each well of a 96 well plate. Betanodavirus (5 μl) 

was added to the wells in the first column wells and a 10-fold series of dilutions was then 

made. Equal volumes of MAbs (1:20 and 1:100 v/v in HBSS) were added to virus-containing 

wells. The virus and MAbs were allowed to interact for 90 mins at 25°C or 20°C with gentle 

agitation (Mini Rocking platform, Biometra™). After this period 90 μl of SSN-1 cells were 

added to wells, then plates were sealed with Nesco film and incubated for 4 to 6 days at 25°C 

(European sea bass strain) or 20°C (Atlantic cod strain). After this period monolayers were 
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examined for CPE. Virus was harvested from cells showing CPE that had received the 

greatest input dilution of virus.  

The harvested virus (100 μl well-1) was added to 5 wells of a 24 well plate and 

incubated with 100 μl of MAb (1:20 v/v in HBSS) for 90 mins at 25°C or 20°C with gentle 

agitation. After this period 1 ml of SSN-1 cells was added to each well, and plates sealed with 

Nesco film and incubated for 4-6 days. After this period the supernatant was collected and the 

procedure repeated two further times. After the 3rd passage in the presence of MAb the virus 

was grown twice in the absence of MAb in order to exclude the MAb from the sample. 

Positive and negative controls were incorporated into the limiting dilution procedure. 

These controls were processed in the same way as for samples. HBSS was added instead of 

MAb for a positive control, and HBSS (supplemented with 5 % FBS) was added instead of 

virus for a negative control. 

Borrego et al. (2002) screened the escape mutants obtained by ELISA. This step was 

performed in order to gain reassurance that the escape mutants were not recognised by the 

MAbs. This screening was performed prior to sequencing the escape mutant’s cDNA. An 

ELISA was performed as described in Chapter 2. An ELISA plate was coated with mutant 

virus supernatant from tissue culture of the virus. The MAbs used for the selection of the 

escape mutants were used as first antibody in the ELISA.   

Once escape mutants have been identified the coat protein should be sequenced and 

the results compared with the coat protein of the non-escape mutants virus. 
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4.3 -  Results 

 

The aim of this study was to isolate betanodavirus neutralisation escape mutants. Two 

approaches were used; plaque isolation and isolation by limiting dilution. 

 

 

4.3.1 - Plaque isolation 
 

Plaque assays were performed using five different types of overlay: agar no 1; agar 

gum, agarose type VII, of high viscosity carboxyl-methylcellulose and medium viscosity 

carboxy-methylcellulose. None of these techniques permitted the isolation of betanodavirus 

escape mutants, when either infection of pre-formed monolayers or simultaneous inoculation 

was used as the route of infection. 

Results varied considerably between experiments. On occasions, virus appeared to 

grow efficiently, whereas at other times, little growth was evident in infected monolayers. 

Agar type VII yielded plaques most consistently, but these were very small and tended to be 

surrounded by many other plaques. Cytopathic effects tended to be diffuse and present 

throughout infected monolayers rather than confined to discrete plaques, as shown in Figure 

4.2. 
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Figure 4.2  - SSN-1 monolayer showing cytopathic effects induced by betanodavirus MT/01/Sba. 
Monolayers were overlayed with Agar type VI and stained with 0.1% neutral red (  
and  magnification 100x,  magnification 40x) 

 

 

4.3.2 - Isolation by limiting dilution 
 

Limiting dilution was also assessed as a method for betanodavirus escape mutant 

isolation. In Figure 4.3. and 4.4 can be observed the SSN-1 monolayer in the presence or 

absence of the virus. 

 Escape mutants obtained were screened by ELISA prior to the nucleotide sequence 

analysis. The ELISA results revealed that the neutralising escape mutants were recognised by 

the MAbs. The nucleotide sequence would be performed in the mutants revealing a negative 

result by ELISA. The lack of such negative results led to none of the escape mutants obtained 

being sequenced.   
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Figure 4.3 – SSN-1 monolayer (  magnification 40 x and  magnification 100 x). 
 

 

 

 

 

 

Figure 4.4 – Production of escape mutants by limiting dilution. European sea bass NNV infecting 
SNN-1 cells in the presence of 4C3 MAb (  magnification 40 x;  magnification 100 x; 

 magnification 200 x). Atlantic cod NNV infecting SNN-1 cells in the presence of MAb 
4A12 (  magnification 200x). 
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4.4 -  Discussion 

 

Sequence analysis of viral neutralisation escape mutants is a powerful tool for 

analysing the molecular interaction between the humoral immune response and viral 

pathogens. This methodology has been applied successfully to several viruses including 

Hantaan virus (Wang et al. 1993), influenza A virus (Laver et al. 1979), rabies virus (Raux et 

al. 1995) and HIV type 1 (Shotton et al. 1995). The results of epitope mapping studies can be 

used to aid the rational design of vaccines and immunodiagnostic reagents. The method is 

particularly suited to the study of RNA viruses, which exhibit high mutation rates (Morris, 

1996b, Das et al. 2004). 

Attempts to isolate betanodavirus neutralisation escape mutants were performed using 

the two classical virological procedures of plaque purification and limiting dilution. Escape 

mutants were selected with a panel of neutralising MAbs produced in an earlier stage of the 

project (Chapter 3).  

The plaque assay is ideally suited to escape mutant isolation because it allows for the 

easy isolation and propagation of viral clones resistant to the effects of neutralisation. This 

method had been used with success for the isolation of escape mutants to the rainbow trout 

virus VHSV (Béarzotti et al. 1995). The use of plaque assay required optimisation for 

betanodaviruses since plaque assays have not previously been described for this virus family. 

There is not a single method that can be used to plaque all known virus groups (Rovozzo and 

Burke, 1973). 

Virus plaques are formed after infection of a cell monolayer. Virus is allowed to 

adsorb prior to the addition of a solid or semi-solid overlay to restrict diffusion of replicating 

virus (Dulbecco, 1988b, Cann, 2001). In the present study 5 different types of overlay were 

used: agar no1, agar gum, agar type VII and carboxyl methylcellulose (high and medium 

viscosity). None of these methods permitted the formation and isolation of betanodavirus 

plaques. This result is in contrast to numerous other studies in which virus plaques have been 

successfully produced using the same experimental procedures. For example, plaque 
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formation has been described for coxsackievirus, influenza virus, measles virus, mumps virus, 

and rubella virus using carboxy-methylcellulose as an overlay (Bachmann et al. 1999, Pipkin 

et al. 1999, Triantafilou et al. 1999, Tischer and Gerike, 2000). Furthermore, Wolf and 

Quimby (1973) have produced plaques of a number of fish viruses (bluegill myxovirus, 

channel catfish virus, eel virus, Egtved virus, IPNV, lymphocystis virus and spring viraemia 

of carp). Agar has been widely used as an overlay since the 1950s (Dulbecco and Vogt, 1954, 

Moss and Gravell, 1969, Borges et al. 1996, Scotti and Dearing, 1996, Li et al. 1999, LaBarre 

and Lowy, 2001).  

In the present study, the betanodavirus strains studied formed microscopic plaques, 

however it was not technically feasible to collect the virus from plaques of this size. When 

longer incubation periods were used in attempts to produce larger plaques, the CPE spread 

throughout infected monolayers. 

Several factors can influence the growth and plaquing characteristics of viruses. These 

include the sensitivity of the cells used for virus growth, health status of the cells, adsorption 

time, type of overlay, incubation period (Burleson et al. 1992, Hierholzer and Killington, 

1996). All of these points were taken in to consideration in attempts to obtain betanodavirus 

plaques. 

The SSN-1 cells (Frerichs et al. 1996) are the most commonly used cell line for 

isolation and propagation of Betanodaviruses. Other cell lines have been developed (Lai et al.  

2001b) but it was not possible to obtain these. Whilst the use of other cell lines may ultimately 

permit the successful production of betanodavirus plaques, many of these are not available 

due to patent restrictions surrounding betanodavirus vaccine manufacture.  

The adsorption period could also be of critical importance in the formation of virus 

plaques. During the present study, a 90 mins adsorption step was used. This length of time 

should be sufficient for virus attachment and penetration to occur. Previous studies have 

shown that 60 mins is sufficient for adsorption of viruses to cells, and no gain is obtained by 

increasing the adsorption time (Fendrick and Hallick, 1983, Bushar and Sagripanti, 1990). 
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Some studies have reported better results when infected cells were fixed with formalin 

and then stained with crystal violet (Bushar and Sagripanti, 1990, Gaertner et al. 1993). 

However, these methods could not be utilised in the present study because they are destructive 

procedures that do not permit the recovery of viable virus for nucleotide sequencing analysis.  

Successful selection of escape mutants to IHNV, a fish rhabdovirus, was performed 

by Huang et al. (1996), when the escape mutants were selected by limiting dilution previous 

to plaque-purification. The use of limiting dilution is especially suitable for obtaining escape 

mutants of viruses that do not form plaques, but are capable of inducing cytopathic effects 

(Barclay and Almond, 2000). Since plaque based procedures did not yield betanodavirus 

escape mutants, attempts were made to isolate escape mutants using a limiting dilution 

procedure developed by Borrego et al. (2002). With this procedure selection was achieved 

with two dilutions of MAb (1:100 and 1:20 v/v). These were followed by further incubations 

in the presence of MAb at a dilution of 1:20. The dilutions of neutralising MAb were found to 

be suitable for obtaining escape mutants by limiting dilution (Minor et al. 1983, Ping and 

Lemon, 1992). 

The isolation of mutant virus by limiting dilution is possible because rare variants in a 

virus sample (typically 1:106) are not neutralised and these represent antigenic variants of the 

parental virus  (Yewdell et al. 1979). Betanodavirus is an RNA virus and the strains used 

replicated to a titre greater than 107 which is appropriate for use in limiting dilution based 

procedures for escape mutant isolation. RNA viruses are particularly suited for escape mutant 

selection because there are no error correction mechanisms operating in RNA replication, and 

thus RNA viruses tend to exhibit high mutation frequencies that favours the creation of escape 

mutants (Dimmock and Primrose, 1987).  

Neutralisation escape mutants are predicted to contain a single nucleotide sequence 

change corresponding to a single amino acid change compared to the parental virus (Parry et 

al. 1990). Several methods can be used to confirm resistance to the neutralising MAb used for 

selection such as ELISA and neutralisation test (Zhou et al. 1994, Béarzotti et al. 1995, 

Hörling and Lundkvist, 1997). In the present study the protocol developed by Borrego et al. 
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(2002) was followed so the escape mutants were screened by ELISA and found to be still 

recognised by the selecting antibody. Nucleotide sequencing of escape mutants was not 

performed because Borrego et al. (2002) considered the lack of recognition by ELISA as a 

pre-requisite for nucleotide sequencing. This may have lead to a failure to recognise the 

presence of mutations that had occurred in phage clones but did not prevent the binding of the 

MAbs. Nucleotide sequencing could be utilised to determine whether escape mutants were 

produced.  

A possibility for the inability to produce escape mutants may be due to an insufficient 

number of passages in the presence of neutralising MAbs. It is possible that three passages of 

betanodavirus were insufficient and a longer selection is necessary. 

 

 

4.4.1 - Final considerations 
 

The aim of this thesis section was not achieved. It was not possible to develop a 

method for the production of betanodavirus neutralisation escape mutants by plaque-selection. 

The use of different cell lines may have enabled this objective to be achieved. Virus 

isolated by limiting dilution was recognised by the selecting MAb in ELISA tests. According 

to Borrego et al. (2002) this recognition indicates that the production of escape mutants was 

unsuccessful. It is possible that several mutations are needed to alter the antigenicity of the 

betanodavirus or a higher number of passages may be required to obtain escape mutants.  
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Chapter 5 - Epitope mapping by phage display 
 

5.1 -  Introduction 

 

Antibodies represent a major component of the array of immune defence mechanisms 

directed against pathogens such as bacteria and viruses. Humoral immune responses are of 

great importance in the protective effects induced by vaccines (Irving et al. 2001). Antibody 

molecules interact with their target antigen through specific receptor regions generated 

through somatic recombination of V, D, and J gene segments during B-lymphocyte 

maturation. Hypervariable regions of VL and VH domains are brought together in three 

dimensional space to form an antigen binding surface (Abbas and Lichtman, 2001). The 

specific region of an antibody molecule that interacts with the antigen is referred to as the 

paratope, and the corresponding region of the target antigen recognised by this region of an 

antibody molecule is referred to as an epitope (Wang and Yu, 2004).  

Epitopes can be classified into two types. Those comprising a short sequential stretch 

of amino acids are referred to as linear epitopes. In contrast, epitopes that are formed by the 

juxtaposition of two or more distinct regions of a protein molecule are referred to as 

discontinuous or conformational epitopes (van Regenmortel, 1989a). Within this 

classification scheme, epitopes whose affinity is affected by unfolding of the protein are said 

to be constrained; almost all discontinuous and many linear epitopes are constrained (Geysen 

et al. 1987b). 

Characterisation of the primary amino acid sequence or structural conformation of 

epitopes has many applications in biological sciences including the deciphering of protein-

protein interactions, immunoassay development, elucidation of pathogen neutralising sites, 

vaccine development, investigation into the pathogenesis of autoimmune diseases and 

analysis of protein topology in intact cells or organelles (Morris, 1996a). 
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Several techniques have been developed for epitope mapping. One of the most 

commonly used techniques during the last 20 years has been phage display. This technique 

was first described in 1985 when George Smith demonstrated that it was possible to create a 

fusion between one of the phage fl minor coat protein genes with short stretches of DNA 

encoding foreign proteins. Smith showed that the sequence insert was translated and 

expressed as a fusion protein on the surface of the bacteriophage. Consequently, it was 

possible to create an epitope library by inserting tens of millions of short random DNA 

sequences into a phage population (Scott and Smith, 1990).  

The phage display methodology provides a direct physical link between phenotype 

and genotype (Hoogenboom and Chames, 2000). This is achieved because the fusion peptide 

is part of the capsid enclosing the phage genomic DNA (Cull et al. 1992). Thus phages 

expressing a single insert can be purified from the phage library by affinity binding to an 

antibody or other protein (Scott and Smith, 1990). The use of the simple and cost efficient 

process of bacteriophage replication is applied to the propagation of individual clones (Rodi 

and Makowsi, 1999). The DNA insert of the phage is identified by DNA sequence analysis 

(Burton, 1995). One of the key advantages of this technique is that it can be performed 

without the previous knowledge of the protein structure (Williams et al. 2001). 

A number of different phage display methods have been described (Kay and Hoess, 

1996): 1 phage display of natural peptides, used for mapping epitopes of monoclonal and 

polyclonal antibodies and generating immunogens; 2 phage display of random peptides, 

used for mapping epitopes of antibodies, identifying peptide ligands and mapping substrate 

sites for proteases and kinases; 3 phage display of proteins and protein domains, utilised in 

the study of directed evolution of proteins, isolation of high-affinity antibodies and cDNA 

expression screening.  

For the study of antigen-antibody interactions two types of phage display libraries 

have been used, random peptide libraries (RPL) and gene fragment libraries. Random peptide 

libraries are ideal for identifying peptide ligands of an antibody without prior knowledge of 

the recognition site (Irving et al.  2001). Both linear and discontinuous epitopes can be 
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mapped by phage display, but mapping of discontinuous epitopes represents a much more 

difficult task than the mapping of linear epitopes (Yip and Ward, 1999). Numerous attempts 

at epitope mapping discontinuous epitopes with phage display have been unsuccessful 

(Williams et al. 2001).  

Random peptide phage display has been used in several epitope mapping studies and 

analyses of protein-protein interaction, including: the VP2 protein of the coronavirus 

infectious bursal disease virus (IBDV) (Cui et al. 2003); feline immunodeficiency virus (FIV) 

coat protein (D'Mello et al. 1999); hepatitis B virus (Germaschewski and Murray, 1996, Pál 

et al.  2003), hepatitis C viruses (Barban et al. 2000, Hadlock et al. 2000, Bugli et al. 2001); 

apical membrane antigen-1 (AMA1) of Plasmodium falciparum (malaria) (Coley et al. 2001); 

multi-drug resistance associated protein MRP1 (one of the most important members of the 

ATO-binding cassette (ABC) protein family) (Poloni et al. 1995, Flego et al. 2003); crotoxin, 

a lethal venom of rattlesnake Crotalus durissus terrificus (Demangel et al. 2000); hormones 

(Li et al. 1995); interaction of the phosphorylation site of kinase CK2 with other peptides and 

proteins (Cardellini et al. 2004) and screening MAbs using antigen-displaying phage (Lijnen 

et al. 1997). 

 

 

5.1.1 - Bacteriophage  
 

Filamentous phages (Figure 5.1) constitute a large family of bacterial viruses that 

infect a variety of Gram-negative bacteria, and use pilin as a receptor (Russel et al. 1997). 

The best characterised phages are M13, fd and fl. The genomes of these phages are 

highly conserved, exhibiting 98 % sequence identity (Hill and Petersen, 1982). Because of 

this conservation and the dependence on the F plasmid for infection M13, fd and fl are 

collectively referred to as the Ff phage (Webster, 1996). This group of bacteriophages uses 

the tip of the F conjugative pilus as a receptor and thus are specific for Escherichia coli 

containing the F plasmid (F+) (Wang and Yu, 2004). In contrast to other groups of 
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bacteriophages that complete their life cycle by lysing the bacterial cell, filamentous phages 

do not kill their host. New phage particles are secreted without breaking the integrity of the 

cell envelope (Pereboev and Morris, 1996). 

 
 
 

 
Figure 5.1 – Filamentous phage by electron 

microscope (Petrenko and Vodyanoy, 
2003). 

 

 

The filamentous phages have a single stranded, covalently closed DNA genome, 

which is encased in a long cylinder (approximately 7 nm wide and 900-2000 nm in length) 

(Wilson and Finlay, 1998). The phage genome encodes 10 proteins, five of which are virion 

structural proteins, three are required for phage DNA synthesis, and two serve assembly 

functions (Webster, 1996).   

 Five copies of each of the minor coat proteins pIII and pVI are located at one end of 

the phage particle. The minor coat proteins pVII e pIX are located at the other end, and 2700 

copies of the major coat protein pVII are spread along the filamentous tube (Russel et al.  

1997, Smith and Petrenko, 1997).  
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Infection of E.coli by the Ff phage is initiated by the specific interaction of the phage 

with the tip of the F pilus (Webster, 2001). The N-terminus of the pIII protein is responsible 

for this interaction (Pereboev and Morris, 1996).  

After infection, the phage positive (+) strand DNA (ssDNA) enters the cytoplasm and 

the complementary strand (-) is synthesised by bacterial enzymes, creating a double-stranded 

replicative form (RF) (Wilson and Finlay, 1998). When the phage specific single-stranded 

DNA binding protein, pV, reaches a critical concentration, it binds to the newly synthesised 

DNA strands to form a pV-DNA complex (Webster, 2001). This complex prevents the (+) 

DNA strand from being used by host replication enzymes, facilitating virus encapsidation 

(Russel, 1995). Eventually, further increases in pV concentration halt RF synthesis, and the 

viral assembly process starts at the bacterial membrane (Webster, 1996). During assembly, 

pV molecules are displaced from the pV-DNA complex, and the capsid proteins assemble 

around the DNA as it is extruded through the envelope (Webster, 2001). The extrusion 

process is very well tolerated by the host bacteria, and they continue to multiply for several 

generations while extruding phage into the culture medium (Pereboev and Morris, 1996). The 

concentration of RF DNA and of progeny phage produced are very high (1011 to 1012 phage 

particles ml-1). Because of these high levels of replication it is relatively easy to isolate large 

quantities of both double and single-stranded phage DNA (Bainbridge, 2000).   

 

 

5.1.2 - Phage display system 
 

The life cycle of filamentous bacteriophages can be exploited using molecular 

biological techniques to generate large and diverse libraries of phage-displayed peptides, 

which can be used to isolate and characterise bioactive ligands such as antibodies (Smith and 

Petrenko, 1997, Zwick et al. 1998, Sidhu, 2001). 

Although it is theoretically possible to create phage libraries in any bacterial virus, 

the filamentous bacteriophages are particularly suited for this purpose in that they replicate to 
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high levels and have a small, easily manipulated genome (Hoess, 1993). Many of the vectors 

used in genetic manipulation studies are phages that infect Escherichia coli (Smith and 

Petrenko, 1997). Bacteriophage M13 has been the most frequently used biological vehicle for 

phage display, not just because it was the first and the best characterised library display, but 

also because it has proven to be amenable to successful screening (Rodi and Makowsi, 1999). 

In phage display, peptides or proteins are fused to one of the capsid proteins and are 

accessible to molecular interactions (Smith, 1985). Peptides have been expressed as fusions 

to a number of M13 capsid proteins, including pIII (Scott and Smith, 1990; Cwirla et al. 

1990; Devlin et al. 1990) and the major capsid protein pVIII (Felici et al. 1991) (Figure 5.2).  

 

 

Figure 5.2 –   Localisation of phage encoded proteins in the filamentous phage 
Ff;    localisation of the fusion proteins on the filamentous phage 
surface (Irving et al. 2001). 

 

 

The major coat protein, pVIII, may represent the best candidate for protein fusion 

because it is present at a high copy number (2700 copies) compared to the minor coat protein 

pIII of which only five copies are expressed on the phage surface (Kay et al. 1998). However, 

most studies have employed pIII, since this protein can accommodate longer inserts than 

pVIII, which can only accept a maximum of six amino acids (Greenwood et al. 1991). 
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Longer inserts in pVIII interfere with the phage assembly process (Smith and Petrenko, 

1997). Consequently, phagemid vectors are required to implement long inserts in this phage 

protein (Williams et al. 2001). 

The key concept of phage display is that the binding activity of a ligand displayed by 

the phage (the phenotype) is physically linked to the genetic information encoding that 

ligand, (the genotype) (Wang and Yu, 2004). It is this linkage between phenotype and 

genotype that enables the selection and characterisation of a specific peptide ligand (Sparks et 

al. 1996).  

Vast numbers of unique peptide sequences (≥ 108) can be generated and screened 

simultaneously through a process called biopanning (Dottavio, 1996). During this process, 

the target, e.g. a MAb, is immobilised onto a surface and interact with a phage display library 

(Gershoni et al. 1997) (Figure 5.3). Phages expressing inserts identical or similar to the 

epitope recognised by the target MAb will be recognised and bound (Pereboev and Morris, 

1996, Gershoni et al. 1997). Enrichment of bound phages is achieved by amplification in 

Escherichia coli between each round of the panning procedure (Pereboev and Morris, 1996). 

Clones derived from a single bound phage can thus be propagated, facilitating DNA isolation. 

Conventional nucleotide sequence analysis can then be used to determine the amino acid 

sequence of the peptide insert displayed on the phage surface (Dottavio, 1996, Sidhu, 2001). 

The propagation of individual clones also enables the application of further immunological 

techniques such as phage ELISA (Williams et al. 2001).   

 

                         

 
Figure 5.3 -  Biopanning of phage libraries:  Screening of phage library with the target;  

Washing to remove non-specific phage;  Elution of specific phage binders;  
DNA sequencing of individual phage clones. 
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The success of this technique is dependent on the phage-display library quality.  A 

given phage component of a library can only be selected if the insert DNA sequence is 

efficiently expressed and displayed on the phage surface (Sidhu, 2001). 

 

5.1.2.1  -  Random peptide phage libraries  

 

The first generation of phage display random peptide libraries was described in 1990 

(Scott and Smith, 1990, Cwirla et al. 1990, Devlin et al. 1990). The fusion of random DNA 

sequences to the coat protein gene III permitted the construction of a large library that 

contained a vast number of different peptide sequences. Although each phage clone displayed 

a single peptide, the library as a whole may represent billions of various peptides altogether 

(Gershoni et al. 1997). 

When constructing a random peptide library the peptides are encoded by synthetic 

degenerate oligonucleotides and cloned into the pIII coat protein gene (Adey et al. 1996). If a 

stop codon (TAG, TAG and TGA) is present in the synthetic insert in a recombinant protein-

insert DNA molecule, translation of the capsid protein is terminated, precluding assembly of 

progeny phage (Burrit et al. 1996). This possibility is reduced by the use of the degenerate 

codon NNK or NNS, where N can be any of the four nucleotides (G, T, C and A), K is for G 

or T, and S is for G or C (Beck-Sickinger and Jung, 1993). Each degenerate codon can 

represent all of the 32 codons that encode all 20 amino acids plus one amber stop codon 

(TAG) (Scott, 2001). 

One of the principal objectives of a random peptide library is the maximisation of 

library complexity. The total number of variants, referred to as complexity of the library, is 

simply calculated as 20n, where n is the number of peptide residues (Burrit et al. 1996, 

Gershoni et al. 1997). The complexity of the library is dependent on the number of inserted 

peptides. Not even a relatively large size library can contain all possible amino acid 

sequences longer than six residues, thus not all peptides can be represented in any random 

peptide library (Fack et al. 1997). 
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5.1.2.2  -  Ph.D.™ libraries  

 

Phage display is a selection technique in which a library of variants are expressed on 

the outside of phage particles, coupled to the genetic material encoding each variant (Wilson 

and Finlay, 1998, Rodi and Makowsi, 1999). 

The Ph.D™ system is a commercially available random peptide library developed at 

the New England BioLabs. This phage library uses the phage vector M13KE for displaying 

random peptides as N-terminal fusions to the minor coat protein pIII (Noren and Noren, 

2001). M13KE is a conventional M13mp19 derivative that can be simply and rapidly 

propagated using standard techniques, without the requirement for antibiotic selection or 

helper phage super-infection (Devlin et al. 1990). The vector is based on wild-type M13, but 

contains a lacZ gene cloned into the plus-strand origin and the restriction sites KpnI and EagI 

in the gene III coding sequence to allow the construction of the libraries (Scott and Barbas 

III, 2001). 

The Ph.D.™ system comprises three different libraries, two not constrained (insert 

length 7 and 12 mer) and one constrained (insert length 7 mer flanked by a pair of cysteine 

residues). On this library a complexity of ~109 clones is sufficient to encode most of the 1.28 

x109 possible 7-mers, but only 1 millionth of the 4 x1015 possible 12-mers (Noren and Noren, 

2001). 

With just five copies of pIII per virion this type of library is more suited for the 

identification of high-affinity ligands (Noren and Noren, 2001). The use of a library with 

shorter peptide inserts is appropriate for targets that bind to short, contiguous stretches of 

amino acids e.g. an antibody with a linear epitope. The longer peptide library (12-mer) is 

useful for targets where ligand binding is spread out over a longer randomised “window” than 

that contained in a library of shorter (≤ 7-mer) peptides (Noren and Noren, 2001). 

The Ph.D™ system has been widely applied in biomedical research. Examples are 

included in Table 5.1. 
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Table 5.1 – Examples of studies performed with Ph.D™ system 
 

Ph.D™ system application studies Author 
Epitope mapping with:  

Mabs 

Human IgG1  
Syndecan-1 (human plasma cell) 
Receptor binding domain of human  α2-macroglobulin (α2-Mn) 
Human p53 protein 
Neisseria meningitidis outer membrane lipooligosaccharide (NmLOS) 
Rabies virus (RABV) 
Scorpion toxins Cn2 and noxiustoxin (NTX) 

Ehrlich and Bailon (1998) 
Dore et al. (1998) 

Birkenmeier et al. (1997) 
Blaydes et al. (2001) 

Charalambous and Feavers (2000) 
Mansfield et al. ( 2004) 

Gazarian et al. (2003 
Hernández et al. (2002 
Gazarian et al. (2000a) 

Rabbit 
polyclonal 
antibodies 

Anti-gliadin 
Mycoplasma hyopneumoniae IgG 
N-terminal of Taenia solium  paramyosin 

Yang and Shiuan (2003) 
Gazarian et al. (2000b) 

Osman et al. (1998) 

Human 
polyclonal 
antibodies 

Diabetes type 1; 
Primary biliary cirrhosis (PBC) 
Autoimmune thrombocytopenic purpura (AITP) 
Gliadin  

Davies et al. (1999) 
Gevorkian et al. (1998) 

Osman et al. (2000) 

Characterisation of immune factors 

 
C1q (subunit of C1 the initiator of the classical complement pathway) 
Tumor Necrosis Factor α (TNFα) 
Zinc sites 

Zhang et al. (2003) 
Messmer and Thaler (2000) 

Matsubara et al. (2003) 

Development of drugs 

 

gp120 of Human Immunodeficiency Virus type 1 (HIV) 
Biotinylated derivate of paclitaxel (high effective anti-neoplastic 

agent) 
Prolyl-tRNA synthetase (ProRS)] and protein kinase C alpha (PKCα) 

Ferrer and Harrison (1999) 
Ashraf et al. (2003) 

Tao et al. (2000) 
Rodi and Makowsi (1999) 

Enzyme inhibitors 

 

Class ligase (tyrosyl tRNA synthetase (haemophilus influenza) and 
proline RS (E. Coli)) 

Class oxidoreductase (alcohol dehydrogenase (Saccharomyces 
cerevisiae)) 

Class hydrolase (carboxypeptidase B (Sus scrofa – pig) and β-
glucosidase (Agrobacterium faecaelis)) 

Class transferase (hexokinase (Saccharomyces cerevisiae) 
Glycogen phosphorylase a (Oryctolagus cuniculus – rabbit) 

Hyde-DeRuyscher et al. (2000) 

Peptides directly to the antigen 

 
Spores of: 

Bacillus  anthracis, B. cereus, B. subtilis and B. globigii 
Eimeria acervulina and E. tenella 

 
Turnbough Jr. (2003) 

Silva et al. (2002) 

 

 

5.1.3 - Objectives  
 

The objective of the work described in this chapter was to identify the epitope/s on 

the betanodavirus coat protein recognised by a panel of MAbs using phage display 

technology. 

Two non-constrained phage libraries presenting inserts of either 7 or 12 random 

peptides fused to the coat protein pIII of M13 phage were used in this study.  
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5.2 -  Materials and Methods 

 

Phage display libraries Ph.D.-7™ and Ph.D.-12™ were obtained from New England 

Biolabs (Herts U.K.). The manufacturer's instructions were followed for all the phage 

manipulation procedures. Media and buffers are described in Appendix 1. 

The Ph.D.-7™ and Ph.D.-12™ phage display libraries are non-constrained 

combinatorial libraries of random peptides with inserts encoding 7 or 12 amino acid residues 

respectively. These are fused to the minor coat protein (pIII) of phage M13. The insert 

sequence is positioned such that expressed peptides are located at the N-terminus of the pIII 

protein. A short spacer (Gly-Gly-Gly-Ser) is present between the insert and the pIII coding 

sequence. The 7-mer phage display library (Ph.D.-7™) has a complexity of ≈ 2.8 x 109 

transformants. Approximately 70 copies of each insert sequence is contained in the 10 μl of 

phage supplied. The 12-mer phage display library (Ph.D.-12™) has a complexity of ≈ 2.7 x 

1010 transformants, and the 10 μl of phage supplied contains ≈ 55 copies of each sequence.  

Escherichia coli (ER2738) was used for phage-amplification. This E. coli strain is F´ 

lacIq ∆(lacZ)M15 proA+B+ zzf::Tn10(TetR)/fhuA2 supE thi ∆(lac-proAB) ∆(hsdMS-mcrB)5 

(rk
– mk

– McrBC–). The E. coli host strain was supplied in TBS supplemented with 50 % 

glycerol and was stored at -70°C. 

Streptavidin and biotin were used for a positive control.  

All the procedures were executed with sterile filter tips. 

The MAbs used for the assay were produced as described in Chapter 3. Purification 

and protein concentration of MAb preparations was also performed (Chapter 2).  

For phage display studies, MAbs were diluted to a concentration of 100 μg ml-1 in 

coating solution (Appendix 1). The Ph.D.-7™ library was used to characterise MAbs 3B10, 

4A12 and 4C3. The Ph.D.-12™ library was used to study MAbs 3B10, 4A12, 4C3, 1E3, and 

5G10. 
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5.2.1 - Escherichia coli host 
 

Although Escherichia coli strain ER2738 is defined as recA+, spontaneous in vivo 

recombination events were never observed. 

Escherichia coli used for M13 propagation was grown on LB-Tet media to select for 

the F-factor, since M13 is a male-specific coliphage.  

When E. coli of F+ Δ-tet background is used to create an M13-based library, only 

phage-infected cells exhibit tetracycline resistance, so the ability of the cells to grow in the 

presence of tetracycline is a selective marker (Pereboev and Morris, 1996). The mini-

transposon, which confers tetracycline resistance, was inserted in the F-factor of E. coli 

ER2738 strain. This resistance allows the selection of cells harboring the F-factor by plating 

and propagating on tetracycline-containing media. 

 The E. coli (ER2738) were grown on LB-Tet plates (Appendix 1), incubated at 37°C 

overnight. Plates were sealed with Nescofilm (Bando Chemical Ind. Ltd Japan, Fisher 

Scientific Leicestershire U.K.). Plates were stored at 4°C wrapped with aluminium foil for a 

maximum of 1 month. 

The E. coli (ER2738) used in phage display studies was cultured overnight prior to 

use.  

 

 

5.2.2 - Biopanning 
 

The biopanning procedure comprises several steps, which are described below in the 

order of execution.  
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5.2.2.1  -  Biopanning - 1st day 

 

Purified MAbs were diluted in antibody buffer (100 μg ml-1, Appendix 1) and 150 μl 

added to each well of a 96 well plate (Nunc, Fisher Scientific, Leicestershire U.K.). The plate 

was incubated overnight at 4°C, with gentle agitation (Mini Rocking platform, Biometra™) in 

a humidified container. The MAbs were tested in duplicate. Streptavidin (1.5 mg ml-1) 

(prepared as described in Appendix 1) was added to plates as a positive control.  

Escherichia coli was plated and incubated overnight at 37°C. 

 

5.2.2.2  -  Biopanning - 2nd day 

 

The coating solution was removed and wells drained by firmly slapping plates face 

down onto a clean paper towel. Each well was filled with blocking buffer (Appendix 1) and 

incubated for 60 mins at 4°C with gentle agitation. Wells containing streptavidin (+ control) 

were blocked with blocking solution supplemented with 0.1 μg ml-1 streptavidin, to complex 

to any biotin in BSA. 

Blocking solution was discarded and wells thoroughly drained. The wells were then 

washed 6 x with TBST (0.1 %) (Appendix 1). Washing was performed quickly to prevent 

plates drying. For Ph.D.-7™ the TBST was added with a pipette, while for Ph.D.-12™, TBST 

was added with a beaker. The latter method was adopted with Ph.D.-12™ due to the 

unsatisfactory results obtained with Ph.D.-7™, which potentially could have arisen due to the 

type of washing procedure used.  

The library, as supplied, was diluted 1:100 in TBST (0.1 %) and 100 μl added per 

well. Plates were incubated 60 mins at room temperature with gentle agitation.  

Non-binding phage was discarded and plates washed 10 x with TBST (0.1 %) as 

described above. 
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Bound phages were eluted with 100 μl of elution buffer (Appendix 1) by incubation 

for 8 mins at room temperature with gentle agitation. Elutes were pipetted into a microfuge 

tube and neutralised with 15 μl neutralising elution buffer (Appendix 1).  

Streptavidin containing wells (+ control) were eluted with 100 μl of biotin (0.1 mM 

in TBS, Appendix 1). Incubation was performed for 30 mins at room temperature with gentle 

agitation.  

An aliquot of 1 μl was used to quantitate eluted phage (see below). The remainder of 

the eluted phage was amplified in E. coli.  

LB medium was inoculated with E. coli in a 250 ml Erlenmeyer flask. E. coli were 

incubated at 37°C with vigorous shaking until mid-log phase was attained. After sample 

elution E. coli was aliquoted (20 ml per sample) into culture flasks and eluted phage samples 

were added. Phages were amplified for 4.5 hrs at 37°C with vigorous shaking.  

Cultures were transferred to 50 ml centrifuge tubes and centrifuge for 20 mins at 13 

500 x g at 4°C (Sanyo Mistral 3000i). The upper 80 % of the supernatant transferred to a 

fresh centrifuge tube to which 1:6 volumes of PEG/NaCl (Sigma, Dorset U.K.) (Appendix 1) 

was added. Phages were allowed to precipitate at 4°C overnight.  

 

 

Phage titration 

 

Five ml of LB broth (Appendix 1) was inoculated with a single colony E. coli and 

incubated at 37°C with shaking until mid-log phase was attained. The mid-log was based on a 

O.D. value of 0.5, on spectrophotometric analysis using a wave length of 600 nm. 

Agarose Top (Appendix 1) was melted in a microwave oven (Philips) and dispensed 

(3 ml) into sterile bijoux, one for each dilution of phage tested. Bijoux were kept at 45°C 

until used. 

For logistical and financial reasons one plate per dilution was used for phage titration.  
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LB/IPTG/Xgal plates (Appendix 1) (one per dilution), were pre-warmed at 37°C. 

A 10-fold serial dilution of phage was prepared in LB (Appendix 1). For amplified 

phage a dilution of 108-1010 was used. For un-amplified phage the dilution series ranged from 

101 and 103. 

When the E. coli culture had reached mid-log phase, 200 μl of culture was dispensed 

into 1.5 ml microfuge tubes. Ten μl of the appropriate phage dilution was added to tubes, 

which were vortexed briefly, then incubated at room temperature for 4 mins.  

Microfuge tubes containing phage-infected E. coli were transferred to bijoux 

containing Agarose Top, vortexed briefly, and then poured onto a pre-warmed LB/IPTG/Xgal 

plate. The Agarose Top was spread evenly by tilting the plate. 

The plates were sealed with Nescofilm and incubated overnight at 37°C. 

The plates with ~100 plaques were counted and the phage titre expressed as plaque 

forming units (pfu) was calculated using the formula: 

 

Phage titre (pfu) per 10 μl = 
s

dn ×   

 

Where: n is the number of clones.  
              d is the dilution factor. 
              s is the volume of phage added. 
 

 

5.2.2.3  -  Biopanning - 3rd day 

 

Phage samples precipitated in PEG were centrifuged for 30 mins 3500 x g at 4°C. 

The supernatant was decanted, re-centrifuged briefly and the residual supernatant removed 

with a pipette. The pellets were resuspended in 1 ml TBS and transferred into 1.5 ml 

microfuge tubes. After centrifugation for 5 mins at 12 000 x g at room temperature (Sanyo 

Micro centaur) to pellet residual cells, supernatants were transferred to fresh microfuge tubes 
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and 1:6 volumes of PEG/NaCl  was added. Phages were re-precipitated on ice for 60 mins. 

Tubes were centrifuge at 9500 g for 10 mins at room temperature, the supernatant was then 

discarded, prior to re-centrifugation and removal of residual supernatant. The pellet was 

resuspended in 200 μl storage buffer (Appendix 1), centrifuged at 9500 g for 1 min, and the 

supernatant transferred to a fresh tube prior to storage at 4°C. This is the first amplified 

eluate. 

The quantity of phage in the amplified product was titrated as described above. 

A 96 well plate was coated with MAbs and Streptavidin in order to performed the 

second round of panning. 

 

5.2.2.4  -  Biopanning - 4th day 

 

Coating buffer removal, blocking of non-specific sites, incubation, elution, titration 

and amplification were performed as described above for day 2. Washing steps were 

performed using TBST (0.5 %). 

An input volume corresponding to 2 x 1011 phage-pfu from the first round amplified 

elute was added to the wells of a 96 well plate for the incubation step. The sample chosen 

was that exhibiting the highest titre. Phage samples were diluted with TBST (0.1 %).  

 

5.2.2.5  -  Biopanning - 5th day 

 

The procedure on the fifth day was identical to that described above for day 3. The 

final product is the second amplified elute. 

A third 96 well plate was coated with MAbs and Streptavidin for the third round of 

panning. 
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5.2.2.6  -  Biopanning - 6th day 

 

On the 6th day the procedure was identical to that described above for day 4. Plate 

wells were incubated with 2 x 1011 pfu of phage from the second round amplified elute.  

Amplification of phages eluted in the third panning step is not require. These phages 

can be used for nucleotide sequencing of inserts in the pIII minor coat protein gene. 

Eluted phage samples were titred and the resulting plates were used in subsequent 

nucleotide sequencing analysis. Consequently, the plates were incubated longer (16 –18 hrs at 

36°C). 

 

5.2.2.7  -  Blocking experiment 

 

Taking into consideration the results obtained after three rounds of biopanning using 

both Ph.D.-7™ and Ph.D.-12™, it was possible that the blocking procedure was not 

functioning efficiently. Consequently, an experiment was performed to test this hypothesis. 

Blocking solution was added to one 96 well plate and incubated at 4°C for 60 mins 

with gentle agitation. Plates were drained and washed 6 x with TBST (0.5 % Tween 20) as 

described above.  

The original library (PhD 12™) was diluted 1:100 v/v in TBST (0.1% Tween 20) and 

incubated for 60 mins at room temperature with gentle agitation.  

The non-binding phage was discarded and the plate was washed 10 x with TBST (0.5 

%). 

Elution buffer (100 μl) was added to each well and incubated for 8 mins at room 

temperature with gentle agitation. The elute was transferred into a microfuge tube and 

neutralised with 15 μl neutralising elution buffer.  

The resulting elute was titred as described above. 
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5.2.2.8  -  4th Biopanning 

 

A 4th panning step was performed for assays using Ph.D.-12™. All of the steps in this 

procedure were identical to those described above, with the exception of the elution step. The 

elution step was performed with TBS supplemented with 20 μg ml-1 and 100 μg ml-1 of the 

target molecule (MAb used to coat the well) and the usual elution buffer (Zhang et al. 2003).  

The elution procedure was performed in 3 steps. The first elution step was performed 

by incubating the wells with 100 μl of TBS (20 μg ml-1 target) for 15 mins. The eluate was 

collected and transferred to a microfuge tube. For the second elution step, 100 μl TBS (100 

μg l-1 target) was added and incubated for 1 h. The eluate product was then collected and the 

3rd elution step performed with elution buffer incubated for 8 mins followed by addition of 

the neutralising elution buffer.  

The eluted products were titred and the clones harvested for nucleotide sequence 

analysis of inserts. 

 

 

5.2.3 - Nucleotide sequence analysis of phage 

5.2.3.1  -  Plaque amplification 

 

For characterisation of the clones only plates showing less then 100 colonies were 

used. Where this was not possible, eluted phage samples were further diluted to yield plates 

with suitable numbers of 100 plaques. 

LB medium was inoculated with E. coli and incubated until a value of mid-log phase 

was attained. Bacteria were aliquoted (1 ml) into culture flasks. 

Using a sterile pipette tip, blue plaques were stabbed and inoculated into a culture 

flask containing E. coli. Flasks were incubated at 37°C with vigorous shaking for 4.5–5 hrs. 
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With Ph.D.-7™ 10 plaques were selected and amplified for characterisation of the insert. For 

Ph.D.-12™ 20 plaques were used. An example of the plaques is depicted in Figure 5.4. 

 

 

 
Figure 5.4 - Selection of the phage with Xgal-IPTG. Phage clones grow blue. 

These clones were selected for amplification and DNA extraction. 
Contamination with wild M13 would result in the growth of white 
plaque phage  

 

 

After incubation, the cultures were transferred to 1.5 ml microfuge tubes, and 

centrifuged at 9500 x g for 30 seconds. The supernatant was transferred to a fresh tube and 

re-centrifuged. The upper 80 % of the supernatant was then transferred to a fresh tube. This 

product represents the amplified phage stock and was stored at 4°C for maximum of 8 weeks. 

For long-term storage, the phage samples were diluted 1:1 with sterile glycerol and stored at -

20°C. 

Phage clones selected and amplified as described above were found to contain 

insufficient DNA for nucleotide sequencing.   

Consequently, an extra amplification step was introduced to produce greater amounts 

of DNA. This was performed by adding 100 μl of phage to 10 ml of LB containing mid-log 

phase E. coli. After 4.5 hrs of incubation the product was transferred to a 15 ml centrifuge 

tubes and centrifuged for 10 mins at 3500 x g, 4°C. 
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The amplification products were always plated on LB/IPTG/Xgal plates to confirm 

the presence of phage clones. 

 

5.2.3.2  -  Rapid purification of amplified phage clones  

 

Purification of amplified phage clones was performed by transferring 500 μl of phage 

to a 1.5 ml microfuge tube. PEG/NaCl (200 μl) was added and mixed by inverting the tubes, 

which were allowed to stand at room temperature for 10 mins. The tubes were centrifuged for 

10 mins at 12 000 x g. The supernatant was discarded and the tubes re-centrifuged briefly. 

Any remaining supernatant was carefully pipetted away. 

In initial sequencing work, the quantity of DNA obtained from phage preparations 

was found to be insufficient. Consequently, greater amounts of purified phage were used. For 

each clone two extraction reactions were performed. In each reaction 1000 μl of amplified 

phage sample was mixed with 400 μl of PEG/NaCl. The procedure was performed as 

described above.  

The buffer used to re-suspend pellets depended on the DNA extraction method used. 

For the iodine DNA extraction method, the pellet was re-suspended with iodine buffer 

(Appendix 1) and with TE (appendix 1) for the phenol-chloroform DNA extraction method. 

 

5.2.3.3  -  Phage DNA extraction  

5.2.3.3.1 -  Iodine DNA extraction method 

 

The amplified phage pellet was re-suspended in 100 μl iodide buffer. Ethanol (250 

μl, Fisher Scientific, Leicestershire U.K.) was added and the mix incubated for 10 mins at 

room temperature. Samples were centrifuged for 10 mins at 12 000 x g and the supernatant 
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discarded. The pellet was washed in 500 μl of 70 % ethanol, and then allowed to air dry prior 

to re-suspension in 30 μl of TE buffer. 

Extracted DNA was found to be of low quality using this method, so the phenol-

chloroform extraction method was used as an alternative.  

 

5.2.3.3.2 -  Phenol-Chloroform DNA extraction method 

 

This method was kindly provided by Dr. David Landry of New England Biolabs, 

who suggested the use of Phenol buffered with TrisHCl (pH 8) as an alternative method to 

iodine DNA extraction.  

Phage pellets were re-suspended in 70 μl TE buffer. The same volume of Phenol 

(Sigma, Dorset U.K.) or Aquafenol (Qbiogene, Cambridge U.K.) was added and samples 

were then vortexed. The samples were centrifuged for 2 minutes at 15 800 x g (Thermo IEC 

microlite). The upper layer was collected, transferred to a clean tube and 70 μl of chloroform 

(Sigma, Dorset U.K.) was added. The tubes were vortexed and centrifuged for 2 minutes at 

15 800 x g. The upper layer was collected and transferred to a clean tube and 3 volumes of 

ethanol (92 %) was added. After incubation on ice for 3 mins the mix was centrifuged at 15 

800 x g for 15 minutes. The supernatants were discarded and pellets washed with 500 μl of 

ethanol (70 %) by centrifugation as described above. The supernatants were discarded and the 

pellets were dried, and then re-suspended in 30 μl nuclease-free water (Promega, 

Southampton U.K.). 

 

5.2.3.4  -  Nucleotide sequencing 

 

For nucleotide sequencing of the inserts fused to a minor coat protein gene (pIII) of 

M13 phage, the DYEnamic ET Terminator Cycle Sequencing Kit (Amersham Biosciences, 

Bucks U.K.) was used.  
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All the procedures for nucleotide sequence have been described in Chapter 2. 

 The sequencing primer (5’ CGT TAC GCT AAC TAT GAG GGC 3’) was supplied 

with the phage display kit. The amount supplied was found to be insufficient, so this primer 

was subsequently obtained from MWG (Milton Keynes, U.K.).  

Amino acid sequences were deduced from the nucleotide sequence of inserts (Figure 

5.5). This was processed using BioEdit software  (Chapter 2).  

 

 
Figure 5.5 – Reduced genetic code (Phage display peptide 

library kit, NE BioLabs). 
 

 

The following steps were performed to ensure the fidelity of nucleotide sequence 

analysis of phage inserts:  

 The reverse complement sequence of the insert was determined;  

 The sequence read accuracy of the Kpn I (upstream of the insert) and the Eag I 

(downstream of the insert) containing regions was confirmed;  

 The third position of each codon in the randomised region was confirmed to be  G 

or T;  

 TAG codons were considered to represent glutamine (Q). 

 The phage clones obtained with streptavidin should exhibit amino acid sequence 

S/T/N_L_L/I/V_A/N_HPQ as the insert sequence. Being the major consensus amino acids 

the HPQ sequence. 
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5.2.3.5  -  Detection of phage clones by ELISA 

 

Phages corresponding to each amino acid sequence variant obtained were analysed 

by ELISA for verifying recognition by the selecting MAbs.  

The ELISA protocol was performed as described in Chapter 2, using the amplified 

phage samples (200 μl) to coat the 96 well ELISA plates. Phage samples were incubated 

overnight at 4°C. Monoclonal antibodies (neat supernatant) was added as the primary 

antibody. 
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5.3 -  Results 

 

After three - four biopanning rounds, the nucleotide sequence of the inserts in the 

M13 pIII gene was determined. This was used to deduce the amino acid sequence of the 

peptide displayed on the phage surface. The results obtained with the phage systems Ph.D.-

7™ and Ph.D.-12™ are presented below. 

 

5.3.1 - Ph.D.-7™ 
 

The Ph.D.-7™ system was used to characterise epitopes recognised by MAbs 4C3, 

4A12 and 3B10. Streptavidin was used as a positive control. Phage clones were sequenced 

after the third biopanning round.  

 

5.3.1.1  -  MAb 4C3 

 

The deduced amino acid sequence data obtained with Ph.D.-7™ when panning was 

performed with MAb 4C3 are presented in Table 5.2. 

No consensus sequence was evident based on the analysis of nine sequenced inserts. 

Attempts were made to sequence phage clone 4 but based on the criteria of validity described 

in 5.2.3.4, the sequence data was rejected. Clone 2 was found to contain a double insert (2a 

and 2b). 

Some of the clones contained the same amino acids in a given position, as can be 

observed with clone 2b and 5 (xxWSxxx). Clone 5 and 6 shared 3 amino acids, but their 

position within the insert was different, (x)HWSxx. 
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Table 5.2 – Amino acid sequence of the Ph.D.-7™  
inserts obtained after panning with 
MAbs 4C3. 

 
4C3 

Clone Insert sequence Clone Insert  sequence

1 HLRWHHT   

2a HSPSVLS 2b AKWSSRH 

3 QFSHYFN   

4 -   
5 NHWSLNG   
6 HWSHARH   
7 ALNYTNS   
8 HMRFIHY   
9 GHIMINR   
10 WPHKHFY   

 

 

5.3.1.2  -  MAb 4A12 

 

Table 5.3 present the deduced amino acid sequence data obtained with Ph.D.7™ 

when panning was performed with MAb 4A12.  

No consensus sequence was obtained from the clones analysed. Clones 3 and 8, 

revealed the same amino acid in the same position (xxxHHHx). 

 

Table 5.3 – Amino acid sequence of the Ph.D.-7™ 
inserts obtained after panning with 
MAbs 4A12. 

 
4A12 

Clone Insert sequence Clone Insert sequence

1a HRLHSYM 1b LPTNLHW 

2 HTSSKLV   

3 WTPHHHF   

4 MHRPHWH   

5 SPLHAWW   

6 LLPSYIY   

7a HYQSSVT 7b GPKIWHI 

8 HLRHHHY   

9a WQFHLPH 9b PRQYPRA 

10 -   
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Clones 1, 7 and 9 contained double inserts. Clones 1a and 7a contained the same two 

amino acids in the same position: HxxxSxx. Clones 1b and 7b also shared two amino acids: 

xPxxxHx. 

It was not possible to analyse sequence data for clone 10. 

 

5.3.1.3  -  MAb 3B10 

 

The deduced amino acid sequence data obtained with Ph.D.7™ when panning was 

performed with MAb 3B10 are presented in Table 5.4 

No consensus was obtained. Clones 9b and 10 showed the greatest similarity with the 

sequence RxxLRxL.  

 

Table 5.4 – Amino acid sequence of the Ph.D.-
7™ inserts obtained after panning 
with MAbs 3B10. 

 
3B10 

Clone Insert sequence Clone Insert sequence

1a GPKIWHT 1b HYQSSVT 

2 RPKRSPI   

3 NAMLQLR   

4a TVKYHHH 4b VSNMNTV 

5a ITPENST 5b HPRIHFW 

6 MSSAEAR   

7 MNLGALP   

8 APPSNLP   

9a HSNHLHN 9b RNVLRCL 

10 RLTLRSL  

 

 

Almost half of the clones (1, 4, 5 and 9) contained a double insert. Some of these 

clones contained common amino acids, e.g. xSNxxxx (clone 4b and 9a). 
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5.3.1.4  -  Streptavidin 

 

Streptavidin was used as a positive control. A consensus sequence was obtained in 

the clones that contained a double insert, which was present in 40 % of clones (Table 5.5). 

 

Table 5.5 – Amino acid sequence of the Ph.D.-
7™ inserts obtained after panning 
with Streptavidin. 

 
Streptavidin 

Clone Insert sequence Clone Insert sequence

1a DPAPRPR 1b NHAHSTP 

2 HLHIRFP   

3 HKRPRNN   

4a DPAPRPR 4b NHAHSTP 

5 RPKRSPI   

6a DPAPRPR 6b NHAHSTP 

7 -   

8a DPAPRPR 8b NHAHSTP 

9 AQRQPEH   

10 INHVHRL   

 

 

 

5.3.2 - Ph.D.-12™. 
 

The Ph.D.-12™ system was used to characterise epitopes recognised by MAbs 4C3, 

4A12 and 3B10, 1E3 and 5G10. Streptavidin was used as a positive control. Phage clones 

were sequenced after the third and fourth biopanning round.  

 

5.3.2.1  -  MAb 4C3 

 

No consensus sequence was obtained with MAb 4C3 after three rounds of panning 

(Table 5.6). Several clones contained the same amino acids in the same position, e.g. clones 

15 and 16 shared WHxxxLxPxxxx amino acids; clones 1 and 10 shared residues 
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xxxHHxxxxSxx and clones 5 and 6 shared residues xxxHxxxxxSRx. Clone 6 had some 

residues in common with clone 18, HLxxxYxxxxxx. 

The 4th panning revealed inter and intra-elution consensus sequences. Insert sequence 

HHRHNYAVEAPF occurred in 4 of 52 clones sequenced (two clones from the 1st elution, 

one clone of the 2nd and one clone of the 3rd elution) (Table 5.7). The sequence 

WHKHSYNSMPVY was present in two 1st elution clones and one 3rd elution clone. Clone 17 

from the 1st elution and clone 7 of the 2nd elution contained the same amino acid sequence, 

GWKSHHNHERVF. Clone 4 of 1st panning and clone 13 of the 2nd panning contained the 

insert sequence HHKHGINQISP. This sequence, HHHKHGINQISP, was almost identical to 

clone 11 of the 1st panning sequence, differing by just a single residue (I or D) at the 10th 

position. Clones 5 and 7 of the 1st elution shared the same amino acid sequence with the 

exception of the final amino acid (L or P).  

 

Table 5.6 – Amino acid sequence of Ph.D.-12™ clones obtained after panning with MAb 4C3. 
 

Amino acid sequence 
4th panning 

MAbs 
4C3 3rd panning 

1st elution 2nd elution 3rd elution 

1 HRSHHMHLPSPW KPYHSWHQWQTS HPRPHSHLEMPR - 

2 Double insert HHRHNYAVEAPF GHKHWQHNHSTH WHKHSYNSMPVY 

3 ALYKHSHHVWRL HHRHNYAVEAPF HTKVPWWGAFIT IPHHYQFLKHRH 

4 Double insert HHHKHGINQISP FHKHSYNYAHMH WHKNTNWPWRTL 

5 WPYHKHAFPSRP WHKPWYSQPWPL HSQWNTMQAIAT WHRTYQPPLEPR 

6 HLNHAYWQHSRA VHWKNPTVFSYY LPWHWHTSQRSL HSRHHYNVHLNA 

7 LHKPRPWHEFNR WHKPWYSQPWPP GWKSHHNHERVF HHRHNYAVEAPF 

8 HWKHFNGTRLLD WHKHSYNSMPVY HPLSKMHYRIHM RFVIFILVIGLL 

9 Double insert - - IIVIIRIFLGGI 

10 WPHHHHTRLSTV APWWYHQWKAEQ HSYHHTQRLLTR FHKPSWHAWSGR 

11 HHRYFNSNYLAW HHHKHGINQDSP YPWHKSHLREVT HHWHQNNRQALV 

12 FHKHPHSGRWYP - HHRHNYAVEAPF FPRNHHQWLPHR 

13 GQISNLPPLFRT HFKHQHSYARPP HHHKHGINQISP YPHHHNSRYFPM 

14 HLSKINRHFDHY GLRHHHTIPNVS HYKHHHTPILLN Double insert 
15 WHANKLPPRYFY - - SHKHYNNYAHMH 

16 WHKYPLFPPMTA WHKHSYNSMPVY HPSTHHRGASHI FHKHSPRSPIFI 

17 IIVIRLCRLLLM GWKSHHNHERVF HHWHSRSQLSWF WHKPRLHTFDFA 

18 HLRMNYPLHTYH FHKHSPISPIFI DHGLWRYYLYYQ FHKHSPRSPIFI 

19 HHRHTFVPLTPN WNPHNHYRWFPH - HHRHIHTALWQN 

20 MHRDYYPRYVPW WNPHNHYRWFPH HPFHQRHWLQLP HHRAVPTFTWYS 

Note – consensus clones are marked in colour. 
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Table 5.7 – Occurrence of insert selected with MAb 4C3. 
 

Panning MAb 4C3 Occurrence 
3rd 4th 

HHRHNYAVEAPF 4/52  
1st elution (2/17) 
2nd elution (1/17) 
3rd elution (1/18) 

WHKHSYNSMPVY 3/52  1st elution (2/17) 
3rd elution (1/18) 

HHHKHGINQISP 2/52  1st elution (1/17) 
3rd elution (1/18) 

GWKSHHNHERVF 3/52  1st elution (2/17) 
2nd elution (1/17) 

WHKPWYSQPWPL 
WHKPWYSQPWPP 

1/52 
1/52  1st elution (2/17) 

WNPHNHYRWFPH 2/52  1st elution (2/17) 
FHKHSPRSPIFI 2/52  3rd elution (2/18) 

Note – the remaining insert sequences just occurred once. 

 

No insert consensus sequences were obtained from phages derived from the second 

elution.  

For the 3rd elution just two clones (16 and 18) exhibited a consensus sequence 

(FHKHSPRSPIFI). Clone 18 from the 3rd panning had a similar sequence that differed by a 

single amino acid, with an I instead of an R residue at position 7. Clone 14 from the 3rd 

panning contained a double insert. 

Both pannings yielded samples that were impossible to sequence. 

 

5.3.2.2  -  MAb 4A12 

 

No consensus sequence was observed in clones from the 3rd panning after selection 

with MAb 4A12 (Table 5.8). Some clones contained amino acid residues in the same 

position. For example clones 13 and 14 contained the sequence xxxxxHHRSxxx and clones 

17 and 20 contained xxxxxHxxPWRS. Clones 7, 9 and 15 were impossible to sequence. 

A consensus sequence was observed for seven clones from the 1st elution of the 4th 

panning (HHHKHGINQISP/R) (Table 5.8). This sequence occurred at a frequency of 34/60 

clones from the 2nd and 3rd elutions (Table 5.9). With this sequence it was impossible to 

distinguish between a P or an R at the last amino acid position of the insert. 
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Table 5.8 – Amino acid sequence of Ph.D.-12™ clones obtained after panning with MAb 4A12. 
 

Amino acid sequence 
4th panning 

MAbs 
4A12 3rd panning 

1st elution 2nd elution 3rd elution 

1 WNMPHISHRHWR HVKSHYHSLPHS HHHKHGINQISP/R HHHKHGINQISP/R 

2 HIRHNHYTTSPF HSKHRHLLWQAI HHHKHGINQISR HHHKHGINQISP/R 

3 HHVHTPRWKLPL SPPLYHKHHRHY HHHKHGINQISP HHHKHGINQISR 

4 GKYHHHTPAHPQ HHHKHGINQISP/R HHHKHGINQISP HHHKHGINQISP/R 

5 VPFTKGYPPFDT HHWHSGTHMSHV HHHKHGINQISR HHHKHGINQISP/R 

6 FHRHHISPTWSP SIWHSHHRYSWL HHHKHGINQISP HHHKHGINQISP/R 

7 - HHNHIRTYVWSA HHHKHGINQISP/R HHHKHGINQISP 

8 PFHHKSTVAKNR HNKHQHPPFMFG HHHKHGINQISP/R HHHKHGINQISP/R 

9 - VHRHHYWAPWSQ HHHKHGINQISP/R HHHKHGINQISR 

10 LPHHHRYWDYPY HSKVFHGLHSLK HHHKHGINQISP/R HHHKHGINQISP 

11 TWSWHNSHIHMR HHHKHGINQISP/R HHHKHGINQISP/R HHHKHGINQISP/R 

12 YKSHHTRVAPST HHHKHGINQISP HHHKHGINQISP/R HHHKHGINQISP 

13 PKSTVHHRSAAA HHHKHGINQISR HHHKHGINQISP/R HHHKHGINQISR 

14 ISLMHHHRSTVP HHHKHGINQISP/R HHHKHGINQISP/R HHHKHGINQISP/R 

15 - HHHKHGINQISP/R HHHKHGINQISP/R HHHKHGINQISP/R 

16 MQMILSPVKHHL HHHKHGINQISP HHHKHGINQISP/R HHHKHGINQISP/R 

17 HKSCTHVPPWRS HHHKHGINQISP/R HHHKHGINQISP/R HHHKHGINQISP/R 

18 LLQIVSATRHHH HHHKHGINQISP/R HHHKHGINQISP/R HHHKHGINQISP/R 

19 Double insert HHHKHGINQISP/R HHHKHGINQISR HHHKHGINQISP 

20 GIVLLHHRPWRS HHHKHGINQISP/R HHHKHGINQISP/R HHHKHGINQISP 

Note – consensus clones are marked in colour. 

 

 

Table 5.9 - Occurrence of insert selected with MAb 4A12. 
 

Panning MAb 4A12 Occurrence 
3rd 4th 

HHHKHGINQISP/R 34/60  
1st elution (8/20) 

2nd elution (14/20) 
3rd elution (12/20) 

HHHKHGINQISP 10/60  
1st elution (2/20) 
2nd elution (3/20) 
3rd elution (5/20) 

HHHKHGINQISR 7/60  
1st elution (1/20) 
2nd elution (3/20) 
3rd elution (3/20) 

                              Note – the remaining insert sequences just occurred once 

 

 

 

 

 

. 
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5.3.2.3  -  MAb 3B10 

 

The insert sequences obtained after the 3rd and 4th pannings with MAb 3B10 are 

presented in Table 5.10. After the 3rd panning, clones 14 and 18 contained an insert consensus 

sequence (NHWSWYWSAQLN). Some of the clones had the same amino acids in the same 

sequence position. As an example clone 10 and 17 shared the first four amino acids of the 

insert sequence (FHKHxxxxxxxx). 

 

Table 5.10 – Amino acid sequence of Ph.D.-12™ clones obtained after panning with MAb 3B10. 
 

Amino acid sequence 
4th panning 

MAbs 
3B10 3rd panning 

1st elution 2nd elution 3rd elution 

1 HHNHIRTYVWSA HHHKHDINQISP HHHKHGINQISP SARIHTHFPSHT 

2 STFKFHKHHLPL HHHKHGINQISP/R HHHKHGINQISP Double insert 
3 HHWHIRLPSSES HHHKHGINQISP/R HHHKHGINQISP - 

4 FPHHPKIHVPWR HHHKHDINQISP HHHKHGINQISP WHKAPRPTYLSY 

5 HWWDYNMRYHKS HHHKHGINQISP HHHKHGINQQSP - 

6 AKSPHWYHSHQR HHHKHGINQISP HHHKHGINQQSP IHRTPHHHYYLY 

7 LSTNHHTHPNPR HHHKHGINQISP/R HASRHPHPPWHP Double insert 
8 HMKHPRPLWPYW HHHKHGINQISP/R HHHKHGINQISP HHHKHGINQISP 

9 WSWHIHRPPILP HHHKHDINQISP - WHKAPRPTYLSY 

10 FHKHSPRSPIFI HHHKHGINQISP/R HHHKHGINQISP HSIRLYQEPQIH 

11 WHGSLKQNLWWY HHHKHGINQISP WHRIPEKIFVWQ HTRTVHYHSLVP 

12 HMPHKFHTHTRL HHHKHGINQISP IHRTPHHHYYLY WHKAPRPTYLSY 

13 SHWYQRTYWLST HHHKHGINQISP IHRTPHHHYYLY IHRTPHHHYYLY 

14 NHWSWYWSAQLN HHHKHGINQISP/R SHWHWRMLPPFS WHKAPRPTYLSY 

15 WHRHSPPTLKFQ HHHKHGINQISP IHRTHPSVWWHL HHHKHGINQISP 

16 - HHHKHGINQISP WPSYFTRHNQNM HHTSAHGINPSV 

17 FHKHHKAPALVR HHHKHGINQISP SARIHTHFPSHT LHKAPRPTYLSY 

18 NHWSWYWSAQLN HHHKHGINQISP HHRLHAHHWAIN - 

19 HGTAHGWKAYWY HHHKHGINQISP - SARIHTHFPSHT 

20 - HHHKHGINQISP/R - IHRTHPSVWWHL 

Note – consensus clones are marked in colour. 

 

A consensus sequence (HHHKHGINQISP) was obtained from the 1st elution of the 

4th panning in half of the clones analysed. This sequence was also obtained with six clones of 

2nd elution and two clones of 3rd elution. In total this insert sequence occurred in 17 of the 53 

clones analysed (Table 5.11). 
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The remaining insert clones sequences of 1st elution were very similar, exhibiting a 

single amino acid difference. Clones 1, 4 and 9 contained a D instead of a G at the 6th 

position of the insert. With the remaining clones derived from the 1st elution, it was not 

possible to distinguish between a P or a R at the last amino acid position of the insert.  

With the 2nd elution two clones (5 and 6) contained a similar insert sequence 

(HHHKHGINQISP), which varied by a single amino acid – Q instead of an I in the 10th 

position.  

The insert IHRTPHHHYYLY occurred in four clones, representing 4 of the 53 

clones analysed. 

 

Table 5.11 - Occurrence of insert selected with MAb 3B10. 
 

Panning MAb 3B10 Occurrence 
3rd 4th 

HHHKHDINQISP 3/53  1st elution (3/20) 

HHHKHGINQISP 17/53  
1st elution (10/20) 
2nd elution (5/17) 
3rd elution (2/16) 

HHHKHGINQISP/R 8/53  1st elution (7/20) 
2nd elution (1/17) 

HHHKHGINQQSP 2/53  2nd elution (2/17) 
IHRTPHHHYYLY 2/53  2nd elution (2/17) 

SARIHTHFPSHT 3/53  2nd elution (1/17) 
3rd elution (2/16) 

WHKAPRPTYLSY 4/53  3rd elution (4/16) 
IHRTPHHHYYLY 2/53  3rd elution (2/16) 

 

 

The amino acid sequence WHKAPRPTYLSY occurred in four clones of the 3rd 

elution. SARIHTHFPSHT and HHHKHGINQISP were each present in two clones. Clones 2 

and 7 contained a double insert.  

 

5.3.2.4  -  MAb 5G10 

 

The insert sequences derived from phage panning with MAb 5G10 are presented in 

Table 5.12. A consensus sequence (VPHWHTEYLRWL) occurred in six clones from the 3rd 
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panning round (6:16 clones - Table 5.13). Clone 5 of the 3rd elution contained the same amino 

acid sequence. Clones 9, 15 and 18 from the 3rd panning were impossible to sequence and 

clone 14 contained a double insert.  

In the 4th panning, clones 16 and 18 from the 1st elution contained a consensus 

sequence (SHRTTKTQSLTQ). The sequence HGSHQHRWQHSV occurred in 2/58 samples, 

(clone 7 of 1st elution and clone 7 of 2nd elution) (Table 5.13). 

 

Table 5.12 – Amino acid sequence of Ph.D.-12™ clones obtained after panning with MAb 
5G10. 

 
Amino acid sequence 

4th panning 
MAbs 
5G10 3rd panning 

1st elution 2nd elution 3rd elution 

1 GHWKLFPYWARS SIWHSHHRYSWL WHKIPQKAPLNP LPHHHRWPIPRV 

2 VPHWHTEYLRWL YHKNYRSLPYFM APRWHHHIILIG LPHHHRWPIPRV 

3 VPHWHTEYLRWL LCAGQRHETSLL GPHTYHSKHRLF HHKLPTRITHYW 

4 HMNKHSAHLVHL HPKWHSFPPQLL SFRHHHPTYQHL LPHHHRWPIPRV 

5 APWHLHNPIYRL HTTYKSHHFFRT HTWHLKYPTHRT VPHWHTEYLRWL 

6 VPHWHTEYLRWL SWPSRHYHHLLP HHNHIRTYVWSA HHKHQIQPMLNL 

7 VPHWHTEYLRWL HGSHQHRWQHSV HGSHQHRWQHSV HFRKFHAERHLR 

8 YHTEYMLWLGST HVKHTHSYGIHY Double insert TPHAHPLKTGLS 

9 - HTNHSHWPLVRN SHWHSKLRYFPP HFRIHDNTHSLR 

10 VPHWHTEYLRWL FHKHSPRSPIFI HHKHRALEPFLL YPHHHHSWRLHT 

11 HSRIHNHTDRNI SPYHFHHRYTPT SWPALSRHNDHT TLFKHHPHSPRT 

12 HTSLNYRPWLTI HDRHKVHTPYYS WHKHSYNSMPVY LPHHHRWPIPRV 

13 HSTHHLSKHILA GNKNTNWPWRTL HSFHNHLSRARL HHRHFYSPWMSN 

14 Double insert FHKPYFKAPHMF WHKIPQKAPLNP FPKHSFHNHHAP 

15 - HHRHFSSPWMSN YERMCHLDNYSD FPSKWHGHWTAF 

16 VPHWHTEYLRWL SHRTTKTQSLTQ VHKTHSHVNWRF - 

17 W/GHRHTPPPYPVI WHKTSWQSWPGS FPSKWHGHWTAF APGHRHHYHQSF 

18 - SHRTTKTQSLTQ HSLHSLYRLHSH LPQWHHWHAPSR 

19 HHRHFVQPPPTF HHRHIPGWQLHT HHTHQRPFYLAS HIRFPYSHFFHA 

20 KGIHWHHWNYGV HVRHFYNTPPSY LPSPKHHSREPH GVNHWWHHGHLK 

Note – consensus clones are marked in colour. 

 

An insert consensus sequence was also present in clone 15 of the 1st panning and 

clone 13 of the 3rd panning (HHRHFSSPWMSN). 

The 2nd elution contained a consensus sequence (WHKIPQKAPLNP) in 2 clones (1 

and 14). A consensus sequence (FPSKWHGHWTAF) was present in clone 17 of this elution 

and clone 15 of the 3rd elution. Clone 8 contained a double insert. 
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In the 3rd elution a consensus insert sequence was obtained between clone 1, 2 and 4 

(LPHHHRWPIPRV).  

 

Table 5.13 – Occurrence of insert selected with MAb 5G10. 
 

Panning MAb 5G10 Occurrence 
3rd 4th 

VPHWHTEYLRWL 6/16 
1/58 6/16 3rd elution (1/19) 

HGSHQHRWQHSV 2/58  1st elution (1/20) 
2nd elution (1/20) 

HHRHFSSPWMSN 
HHRHFYSPWMSN 

1/58 
1/58  1st elution (1/20) 

3rd elution (1/20) 

SHRTTKTQSLTQ 2/58  1st elution (2/20) 
WHKIPQKAPLNP 2/58  2nd elution (2/19) 

FPSKWHGHWTAF 2/58  2nd elution (1/19) 
3rd elution (1/19) 

LPHHHRWPIPRV 3/58  3rd elution (3/19) 

 

 

5.3.2.5  -  MAb 1E3 

 

An insert consensus sequence (FHKHSPRSPIFI) was identified in phage clones 

derived from the 3rd and 4th panning with MAb 1E3 (Table 5.14). This sequence was present 

in 4/18 clones from the 3rd panning and 27/56 clones from the 4th panning (eleven clones of 

the 1st elution and eight clones of 2nd elution and 3rd elution) (Table 5.15). The sequence 

LHKHPHSHYNLE was also present in clones from each elution from the 3rd and 4th panning 

rounds. This insert sequence was present in four clones from the 3rd panning. The same 

sequence occurred in several clones from the fourth panning: clone 12 from the 1st elution, 

clones 1 and 19 of the 2nd elution and clones 4, 6, 7 and 19 of the 3rd elution. 

Clones 13 and 15 from the 3rd panning contained the sequence FHRPHVHAHPPY. 

As described above, the insert sequence FHKHSPRSPIFI occurred in phage clones 

(27/56) derived from all of the 4th panning elutions. 

A similar sequence was present in two other 1st elution clones (2 and 4), which 

differed by a single amino acid residue (D instead of a P at the 6th position). The insert 
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sequence HHHKHGINQISP was also present in clones derived from each of the elutions 

from the 4th panning round. Clone 3 of the 1st elution, clones 7, 8 and 15 of the 2nd elution and 

clone 17 of the 3rd elution contained this insert amino acid sequence. 

 

Table 5.14 – Amino acid sequence of Ph.D.-12™ clones obtained after panning with MAb 1E3. 
 

Amino acid sequence 
4th panning 

Mabs 
1E3 3rd panning 

1st elution 2nd elution 3rd elution 

1 LHKHPHSHYNLE FHKHSPRSPIFI LHKHPHSHYNLE FHKHSPRSPIFI 

2 FHKHSPRSPIFI FHKHSDRSPIFI - - 

3 - HHHKHGINQISP FHKHSPRSPIFI FHKHSPRSPIFI 

4 FHKHSPRSPIFI FHKHSDRSPIFI FHKHSPRSPIFI LHKHPHSHYNLE 

5 FHKHSPRSPIFI FHKHSPRSPIFI FHKHSPRSPIFI - 

6 FHKHSPRSPIFI FHKHSPRSPIFI HSAHSHRWSGHP LHKHPHSHYNLE 

7 HRTHNHTNWPPH FHKHSPRSPIFI HHHKHGINQISP LHKHPHSHYNLE 

8 IHRTPHHHYYLY FHKHSPRSPIFI HHHKHGINQISP FHKHSPRSPIFI 

9 ASQHHNHKWTLR RRPHQRLHSTSH FHKHSPRSPIFI GKPHREPVLTLR 

10 LHKHPHSHYNLE FHKHSPRSPIFI FHKHSPRSPIFI FHKHSPRSPIFI 

11 AHKHLSFWLRDG FHKHSPRSPIFI FHKHSPRSPIFI FHKHSPRSPIFI 

12 LHKHPHSHYNLE LHKHPHSHYNLE FHKHSPRSPIFI HSAHSHRWSGHP 

13 FHRPHVHAHPPY FHKHSPRSPIFI FHKHNYKSPPII FHKHSPRSPIFI 

14 SHRHIHNHLLSR FHKHSPRSPIFI AHKAHMHTHSRP FHKHSPRSPIFI 

15 FHRPHVHAHPPY FHKHSPRSPIFI HHHKHGINQISP GKPHREPVLTLR 

16 - FHKHSPRSPIFI VLKPTYQSFKLH HHKHTSPRTVLT 

17 SPPLYHKHHRHY HMNKHSAHLVHL FHKHSPRSPIFI HHHKHGINQISP 

18 YYPLHLHRHGLH HRLHVPHQVTHM AHKAHMHTHSRP HSAHSHRWSGHP 

19 HHKYSSTLYSSP WHKHIPSPRASS LHKHPHSHYNLE LHKHPHSHYNLE 

20 LHKHPHSHYNLE double insert GKPHREPVLTLR FHKHSPRSPIFI 

Note – consensus clones are marked in colour. 

 

The 2nd elution showed a consensus sequence (AHKAHMHTHSRP) occurring in 

phage clones 14 and 18 from the 2nd elution. Two other clones from this elution shared insert 

sequences with clones derived from the 3rd elution (GKPHREPVLTLR and 

HSAHSHRWSGHP, respectively). 

The insert sequence GKPHREPVLTLR amino acid sequence was present in clone 20 

of the 2nd elution and clones 9 and 15 of the 3rd elution. Clone 6 of 2nd elution and clones 12 

and 18 of the 3rd elution shared the amino acid insert sequence HSAHSHRWSGHP. 
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Table 5.15 - Occurrence of insert selected with MAb 5G10. 
 

Panning MAb 1E3 Occurrence 
3rd 4th 

LHKHPHSHYNLE 4/18 
7/56 4/18 

1st elution (1/19) 
2nd elution (2/19) 
3rd elution (4/18) 

FHKHSPRSPIFI 4/18 
27/56 4/18 

1st elution (11/19) 
2nd elution (8/19) 
3rd elution (8/18) 

FHRPHVHAHPPY 2/18 2/18  
FHKHSDRSPIFI 2/56  1st elution (2/19) 

HHHKHGINQISP 5/56  
1st elution (1/19) 
2nd elution (3/19) 
3rd elution (1/18) 

HSAHSHRWSGHP 2/56  2nd elution (1/19) 
3rd elution (1/18) 

AHKAHMHTHSRP 2/56  2nd elution (2/19) 

GKPHREPVLTLR 3/56  2nd elution (1/19) 
3rd elution (2/18) 

 

 

5.3.2.6  -  Streptavidin 

 

Steptavidin was used as a positive control. After biopanning a consensus sequence 

containing as a minimum the amino acid residues HPQ should be obtained. 

Three different consensus sequences were present in phage clones derived from the 

3rd panning using streptavidin (Table 5.16). The amino acid sequence IGHHTLYINHPQ 

occurred in 3 out of 18 clones sequenced (clones 7, 16 and 17) (Table 5.17).  

The two other consensus sequences were obtained from clones 3 and 8 

(WHKPHARPALDL), and clones 1 and 12 (AHKAHMHTHSRP). Clones 10, 15 and 20 

shared four amino acid residues (WHKxxRxxxxxx). Clones 10 and 15 also shared a P residue 

at the 5th position and an L residue at the 10th position. 

All of the phage clones analysed (n = 19), obtained from the 4th panning contained the 

same amino acid insert sequence – HHHKHGINQISP. 
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Table 5.16 – Amino acid sequence of the Ph.D.-12™ inserts 
obtained after panning with Streptavidin. 

 

Amino acid sequence  
Streptavidin 

3rd panning 4th panning 

1 HIRLGHLVSPHP - 

2 FHRHSDLSWFTI HHHKHGINQISP 

3 WHKPHARPALDL HHHKHGINQISP 

4 - HHHKHGINQISP 

5 WHNSWRSYSSSF HHHKHGINQISP 

6 HHKHFERVPRPP HHHKHGINQISP 

7 IGHHTLYINHPQ HHHKHGINQISP 

8 WHKPHARPALDL HHNKHGINQISP 

9 AHKAHMHTHSRP HHHKHGINQISP 

10 WHKHPRYYPLPP HHHKHGINQISP 

11 LPSYWHFSHYMR HHHKHGINQISP 

12 AHKAHMHTHSRP HHHKHGINQISP 

13 YPHQHTHPPKKT HHHKHGINQISP 

14 - HHHKHGINQISP 

15 WHKAPRPTYLSY HHHKHGINQISP 

16 IGHHTLYINHPQ HHHKHGINQISP 

17 IGHHTLYINHPQ HHHKHGINQISP 

18 LQTQYRPHQNHL HHHKHGINQISP 

19 AHKAHMHTHSRP HHHKHGINQISP 

20 WHKPVRRWSTLI HHHKHGINQISP 

                             Note – consensus clones are marked in colour. 

 

 

Table 5.17 - Insert consensus sequences in phage clones 
selected with streptavidin. 

 
Panning Streptavidin Occurrence 

3rd 4th 
WHKPHARPALDL 2/18 2/18  
IGHHTLYINHPQ 3/18 3/18  
AHKAHMHTHSRP 3/18 3/18  
HHHKHGINQISP 19/19  19/19 
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5.3.3 - Blocking experiment 
 

The inability to obtain consensus sequences after the third panning suggested that it 

may be due to the blocking step not working correctly. In order to confirm or reject this 

possibility a blocking experiment was performed. 

The titre of the phage recovered after incubation and elution exhibited the same range 

of values for both kits used. The amount of phage Ph.D-7™ and Ph.D-12™ added to the wells 

was 2 × 109 pfu μl-1 and 4 × 108, respectively. With Ph.D-7™ was possible to recover 2 × 102 

pfu μl-1, and with Ph.D-12™ 2.65 × 102 pfu μl-1 was recovered.  

 

 

5.3.4 - ELISA 
 

Elisa was performed in order to confirm the reactivity of the clone phage with the 

MAb used in the biopanning selection assays. The reactivity of the MAbs was only tested 

against phages recovered from the 4th panning round. Samples exhibiting an absorbance value 

< 3 × negative control absorbance value were considered negative and rejected. The rejected 

samples are not presented in table 5.18. The ELISA results indicate that all of the phage 

clones selected after panning with MAbs 4A12, 3B10 and 1E3 were not recognised by these 

monoclonal antibodies.  

The majority of the phage clones isolated, 37 out of 52, were identified by MAb 4C3 

in ELISA. Only one of the clones selected by panning with MAb 5G10 was recognised by 

ELISA. 
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Table 5.18 – Insert sequences of phage clones identified by MAbs 4C3 and 5G10 in 
ELISA. 

 

MAb Insert - amino acid 
sequence Occurrence  Insert - amino acid 

sequence Occurrence 

4C3 HHRHNYAVEAPF 4/52  HPLSKMHYRIHM 1/52 
 WHKHSYNSMPVY 3/52  HYKHHHTPILLN 1/52 
 GWKSHHNHERVF 2/52  HHWHSRSQLSWF 1/52 
 WHKPWYSQPWPL 1/52  IPHHYQFLKHRH 1/52 
 WHKPWYSQPWPP 1/52  HHRAVPTFTWYS 1/52 
 WNPHNHYRWFPH 2/52  WHKNTNWPWRTL 1/52 
 FHKHSPRSPIFI 2/52  WHRTYQPPLEPR 1/52 
 VHWKNPTVFSYY 1/52  HSRHHYNVHLNA 1/52 
 APWWYHQWKAEQ 1/52  RFVIFILVIGLL 1/52 
 HFKHQHSYARPP 1/52  HHWHQNNRQALV 1/52 
 GLRHHHTIPNVS 1/52  FPRNHHQWLPHR 1/52 
 WHKHSYNSMPVY 1/52  YPHHHNSRYFPM 1/52 
 FHKHSPISPIFI 1/52  SHKHYNNYAHMH 1/52 
 GHKHWQHNHSTH 1/52  WHKPRLHTFDFA 1/52 
 FHKHSYNYAHMH 1/52  HHRHIHTALWQN 1/52 
 LPWHWHTSQRSL 1/52  HSQWNTMQAIAT 1/52 

5G10 YHTEYMLWLGST 1/16    
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5.4 -  Discussion 

 

The discussion of the epitope mapping by phage display results comprises two 

sections. In the first section, the validity of the experimental protocol is analysed. The second 

section is concerned with the significance of the phage display data with respect to 

betanodavirus epitopes.  

 

 

 Section 1 - Validity of the phage display assays 

 

The development of filamentous bacteriophage vectors has facilitated the construction 

of phage-displayed random peptide libraries that can mimic hundreds of millions of unique 

peptide sequences (Burrit et al. 1996). The small size and stability of the phage particle allows 

phage libraries of high titre (1014 particles ml-1) to be produced and stored at 4°C for long 

periods (Smith and Scott, 1993). 

The basic strategy of this technique is affinity selection of individual clones from a 

random peptide phage library. This is achieved through biopanning with a selected analyte 

(e.g. a MAb) immobilised on the surface of 96 well plates or on beads. After several 

biopanning steps the DNA of individual clones can be sequenced, permitting the deduced 

amino acid sequence to be determined. This can then be compared to the amino acid sequence 

of the protein under investigation. A consensus between the sequences of individual phage 

clones selected by a given analyte points to the interacting site(s) of the target protein.   

According to Jefferies (1998) the main advantages of phage display are:  

biopanning efficacy, that permits the selection of high affinity phage present at extremely low 

levels in a phage library;  amplification of the selected phage in bacteria allowing the 

enrichment of rare binding phage;  the physical link between genotype and phenotype that 

enables a fast and simple method for elucidation the binding sequence.  
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There are some studies that point to a small bias in random peptide libraries. Some of 

them are not explicable, but one is described as "a bias in the oligonucleotide sequence" 

(Bonnycastle et al. 1996). Generally phage display libraries show higher levels of glycine (G) 

and lysine (K) and lower levels of proline (P) and cysteine (C) than expected (Wilson and 

Finlay, 1998). However, provided that the affinity between displayed peptides and MAbs is 

high (as is the case for antibody-antigen interactions), the results obtained in the present study 

are unlikely to be influenced by this possible source of bias. 

When a phage display experiment is designed, it is important to bear in mind that a 

given phage library is composed of different populations: non-binding phage (the dominant 

population); non-specific-binding phage, that binds for example to plastic or BSA (known as 

plate-binders); phage that specifically binds the screened molecule weakly and phage that 

specifically binds the screened molecule tightly (Menendez et al. 2001).  

Several steps may be taken to enhance the elimination of undesired components of the 

phage population. High stringency washing can greatly reduce the background absorption of 

non-specifically binding phage (Lowman, 1997). However, a very high stringency in the first 

panning may lead to an unwanted decrease in the library complexity. A strategy using a 

combination of conditions favouring multivalent and monovalent interactions may thus be 

advantageous. The first rounds of panning are performed with conditions that promote 

multivalent interactions by using a lower stringency washing buffer. Subsequent panning 

rounds are performed on the basis of monovalent interactions that enrich for the higher 

affinity peptides using high stringency washing buffer (Cwirla et al. 1990, Dyson and Murray, 

1995). In the present study, this strategy was used by performing the first panning washing 

steps with a buffer containing a relatively low amount of the detergent Tween 20 (0.1 %) and 

increasing the Tween 20 content to 0.5 % in the washing steps of the remaining panning 

rounds.  

The plate-binder phages are usually removed by pre-adsorption of the libraries in 

microwells containing all the components of the screening assay, except the screening (target) 

molecule (Menendez et al. 2001). Alternatively, the phage library can be diluted in the 
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blocking agent. In this study, BSA was used as a blocking agent. Pre-incubation or dilution of 

the phage library in the presence of BSA was not performed during this experiment. Such an 

additional step was not considered to influence results, because the majority of previously 

published studies (14 of 19) performed with the Ph.D.™ system successfully yielded results 

without pre-incubation with BSA.  

It has been observed that with libraries of different peptide length the yield of phage 

clones on panning with a given antibody may vary significantly and some instances the yield 

may be very low (Wilson and Finlay, 1998). In order to exclude this potential problem two 

different peptide length libraries were used in the present study, Ph.D-7™ and Ph.D-12™, 

which contain inserts of 7 and 12 residues respectively. The use of two different phage 

libraries was based on the major advantages and disadvantages of each phage display system. 

Longer inserts are more likely to assume a folded structure that may be required for binding to 

a selecting antibody. However, phage libraries constructed with peptides longer than six or 

seven residues will not fully represent all the possible peptide combinations (Miceli et al. 

1994). Thus, the use of these two libraries (Ph.D-7™ and Ph.D-12™) will increase the overall 

chances of identifying the ligand of interest. 

 

 

Section 2 - Analysis of the phage display assays data 

 

Detailed analyse of the data obtained with the Ph.D-7™ and Ph.D-12™ phage libraries 

are discussed separately. The first part of this section will focus on the data obtained with 

Ph.D-7™. The second part will focus on discussion of the results obtained with Ph.D-12™.  

 

Ph.D.-7™. 

 

The phage library Ph.D-7™ has been successfully applied to the screening of 

antibodies to many different targets including: syndecan-1 core protein (Dore et al. 1998), 
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protein kinase C alfa (PKCα, (Ashraf et al. 2003), and protozoan sporozoite (Eimeria 

acervulina and E. tenella) (Silva et al. 2002). When screening MAbs to human α2-

macroglobulin, Birkenmeier et al. (1997) obtained a consensus sequence SxxAxxL in each of 

twenty-five clones sequenced. However, in some studies performed using the Ph.D-7™ 

system the consensus sequence present amongst selected clones was less clear. For instance in 

the study performed by Yang and Shiuan (2003) only 21 of 70 clones sequenced formed a 

consensus sequence. All clones sequenced by Messmer and Thaler (2000) shared the motif 

PF, which was present in different positions of the insert sequence. 

No consensus sequence was unequivocally present in phage clones selected by 

panning with the three MAbs analysed during this study. For this reason the insert sequences 

present in selected phage clones were analysed for the occurrence of smaller amino-acid 

motifs. In phage clones selected by MAb 4C3, several pairs of clones shared the same motifs, 

HxR, RH, HxxxN and HWS. Another clone also exhibited a WS motif (Table 5.19). When the 

phage clones insert sequences selected by MAb 4C3 were aligned, W, S, H residues were 

found to occur in five clones. This suggests, but does not definitively prove that WSH may 

represent a motif contained in the binding region of MAb 4C3.  

In the phage clones selected by MAb 4A12, three inserts contained a PH motif and 

several clones exhibited WH, SY, SS, HHH and LP motifs (Table 5.19). An alignment of the 

deduced amino acid sequence of inserts from these clones suggests that a WH motif may be 

present in the recognition site of MAb 4A12.   

When the same analysis was applied to MAb 3B10 two clones shared the RxxLRxL 

motif (Table 5.19). Another two clones exhibited some similarity with this motif with LxxL 

and LR. The sequence SN was present in three clones and two-residue motifs (SS, LP, MN) 

were present in several clones. It is possible that the motif LRxL is a component of the 

betanodavirus coat protein epitope recognised by MAb 3B10. W and P residues may also be 

involved. 
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Table 5.19 - Common motifs in phage clones selected by MAbs 4C3, 4A12 and 
3B10 with Ph.D-7™. 

 
4C3 

insert sequence 
4A12 

insert sequence 
3B10 

insert sequence 
1 HLRWHHT 1a HRLHSYM 1a GPKIWHT 

2a HSPSVLS 1b LPTNLHW 1b HYQSSVT 
2b AKWSSRH 2  HT-SSKLV 2 RPKRSPI 

3 QFSHYFN 3 WTPHHHF 3 NAMLQLR 
5 NHWSLNG 4 MHRPHWH 4a TVKYHHH 

6 HWSHARH 5 SPLHAWW 4b VSNMNTV 
7 ALNYTNS 6 LLPSYIY 5a ITPENST 

8 HMRFIHY 7a HYQSSVT 5b HPRIHFW 

9 GHIMINR 7b GPKIWHI 6 MSSAEAR 
10 WPHKHFY 8 HLRHHHY 7 MNLGALP 

  9a WQFHLPH 8 APPSNLP 
  9b PRQYPRA 9a HSNHLHN 
    9b RNVLRCL 
    10 RLTLRSL 

 
Note – the residues highlighted occurred more than once at that particular position. Italic residues are 

shared by 2 clone inserts; underlined residues are shared by ≥ 3 clone inserts; blue bold 
underlines the same motif shared by ≥ 2 clone inserts; red bold underlines residues of the 
proposed motif. 

 

 

One of the drawbacks of epitope mapping by phage display arises from the analysis of 

an insufficient number of phage clones. This may lead to a failure to detect important insert 

sequences (Scott, 2001). During the present study, the number of clones sequenced was that 

recommended by the manufacturer. Other studies suggest that greater numbers of phage 

clones should be sequenced. Screening of thirty-two clones selected with MAbs to Neisseria 

meningitidis outer membrane lipooligosaccharide (NmLOS) revealed only three clones 

containing a consensus sequence. A second consensus sequence was contained in two further 

clones (Charalambous and Feavers, 2000). Thus, it is possible that the absence of consensus 

sequences in the present study is a reflection of the relatively small number of clones 

sequenced. However, greater numbers of clones were not studied because of the high 

percentage of double inserts discovered in the clones analysed.  

The presence of double inserts in Ph.D.-7™ phage clones selected by MAbs has not 

been described previously. A small percentage (< 1 %) of clones in each library can pick up 

more than one insert during ligation to the coat protein gene  (Ph.D.™ Manual, New England 
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BioLabs). The high occurrence of phage clones containing double inserts may be a 

consequence of using a phage display system expressing a relatively short insert. An epitope 

has 15-22 contact residues with an antibody molecule (Laver et al. 1990). The region of the 

antigen in contact with an antibody is estimated to be between 650-900 Å2 in area (Laver et al. 

1990). Important contact residues may be further apart than can be mimicked by a short 

peptide. Phages with tandem inserts are potentially capable of binding to larger ligands.  

Screening performed with the streptavidin positive control failed to yield either a 

consensus sequence or any phage clones with inserts containing the streptavidin consensus 

motif (HPQ) described by Devlin et al. (1990). The most plausible explanation for these 

observations is failure to remove non-specifically bound phages during the washing steps. 

 

 

Ph.D.-12™ 

 

The phage library Ph.D.-12™ has been used to characterise ligand interactions in 

diverse areas of biological science, including: Human and rabbit sera recognition of gliadin 

(Osman et al. 1998, Osman et al. 2000); MAbs to Human Immunodeficiency Virus type 1 

gp120 (HIV-1) (Ferrer and Harrison, 1999); rabies virus glycoprotein (Mansfield et al. 2004).  

Nucleotide sequence analysis of twenty phage clones from the third panning with 

MAbs 4C3 and 4A12 indicated that no consensus sequence was present in any of these clones.  

Two clones selected with MAb 3B10 contained the same insert sequence. Five clones selected 

by MAb 5G10 also contained the same insert sequence. Clones selected with MAb 1E3, 

contained three consensus sequence groups, two of these were present in four clones, and the 

third in two clones.  

The absence of a clear consensus sequence in any Ph.D.12™ clone could indicate the 

requirement for further rounds of biopanning, or else point to inefficient blocking or the use of 

non-specific elution buffer.  
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A similar failure to detect a consensus sequence in clones derived from three panning 

rounds was described by Gevorkian et al. (1998) who were only able to generate clones 

exhibiting insert consensus  sequences after a total of five pannings. An extra panning round 

(four in total) with Ph.D.-12™ was performed with success by several researchers (Ehrlich and 

Bailon, 1998, Gazarian et al. 2000b, Turnbough Jr., 2003, Mansfield et al. 2004).  

A "blocking" experiment designed to estimate phage recovery rates indicated that 

only 0.00001 % and 0.0000663 % were recovered to Ph.D-7™ and Ph.D-12™, respectively. 

This suggests that non-specific binding of phage particles has not biased the results of the 

present study. However, these recovery values represent ≈ 2 × 102 pfu μl-1 that may be 

sufficient to introducing error by amplification and sequencing of non-consensus insert 

sequence. The non-specific binding to plastic has been reported by Adey et al. (1995) and 

Gebhardt et al. (1996) and could potentially explain the lack of consensus motifs detected 

during this study. 

The majority of studies employing Ph.D.™ phage libraries have utilised a non-specific 

elution buffer (Glycine-HCl). However the results obtained with the streptavidin positive 

control, eluted with biotin, indicated that the use of a specific elution buffer might be 

advantageous. Whilst specific elution is not technically possible, methods for competitive 

elution have been described. Zhang et al. (2003) used a competitive elution followed by non-

specific elution in their work with successful results.   

These observations (greater selection efficiency of increased panning rounds, phage 

recovery, and efficacy of multi-step elution) considered with the presence of consensus 

sequences within the MAb-selected phage inserts, and an HPQ motif in three positive control 

clones, indicate that the biopanning selection procedure was successful, and that better results 

may have been obtained with a fourth panning round. Consequently, a series of experiments 

was performed using a fourth panning combined with two competitive elutions and one non-

specific elution.  

The fourth panning revealed an increase in the number of insert consensus sequences 

in phage clones selected by all of the MAbs studied. A visible enrichment of the library was 
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obtained with the insert sequence FHKHSPRSPIFI in clones selected with MAb 1E3. This 

sequence revealed an occurrence frequency of 12.5 % in the third panning, and 52 % in the 

fourth panning. A consensus sequence (HHHKHGINQISP/R) occurred in 85 % of clones 

selected with MAb 4A12. This sequence also occurred in 57 % of clones selected with MAb 

3B10, 6 % of clones selected with MAb 4C3 and 9 % of 1E3-selected clones. The high 

occurrence of one insert sequence in four of the five MAbs analysed suggests the presence of 

a bias towards this sequence (HHHKHGINQISP/R). Gazarian et al. (2003) considered clones 

with inserts occurring at a frequency of 70 % to result from bias and as such should be 

rejected.  

In the present study, bias may result from overpanning of the phage library, such that 

only a limited number of clones predominate in the population to the exclusion of others 

which have similar or better affinities (Scott, 2001), even though the characteristics of the 

predominant clone bears no relevance to the selecting antibody (Burrit et al. 1996). The 

positive streptavidin control experiment strongly suggests that panning bias had influenced 

results. The HPQ control motif was not detected in any of the clones and all of the clones 

studied matched a single sequence (HHHKHGINQISP/R). 

There is an inherent bias of growth competition within a biological system, which 

may explain the observed results. Each round of affinity selection is followed by competitive 

growth of the MAb-selected phages. During the phage growth of the screening cycles there is 

the chance that specifically-binding phages will be over-grown by poor or none-specific 

binders which have better growth properties (Rodi and Makowsi, 1999). This overgrowth can 

be favoured by the use of liquid medium for amplification of the adherent clones (Burrit et al. 

1996).  

An ELISA experiment was performed to confirm that panning bias in the Ph.D-12™ 

4th panning had influenced the results of the present study, and to verify that the phage-clones 

were recognised by the MAbs used for selection. This is a recognised final screening 

procedure to identify reactive clones (Yip and Ward, 1999). The majority (37 of 52) of clones 

selected with MAb 4C3 and one clone selected by MAb 5G10 were identified in ELISA tests. 
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The sequence, HHHKHGINQISP/R, suggested to result from bias in the 4th panning was not 

recognised by any of the MAbs by ELISA. These data strongly suggest that 

HHHKHGINQISP/R sequence may be a consequence of a phage overgrowth. No binding was 

observed between any of the phage clones selected with MAbs 4A12 and 3B10. Similar 

findings were reported by Lane and Stephen (1993) in epitope mapping studies of the p53 

protein.  

The analysis of the clones identified by ELISA revealed that no consensus sequence is 

unequivocally present. Following the same approach as for Ph.D-7™, ELISA selected phage 

clones were analysed for the occurrence of smaller amino acid motifs.  

As can be observed in Table 5.20 it is impossible to suggest just one or few smaller 

amino acid motifs. However, the amino acid residues known for their involvement in active 

sites, serine (S), aspartic acid (D), histidine (H), tryptophan (W), tyrosine (Y) and arginine (R) 

(Villar and Kauvar, 1994, Ma et al. 2003, Mansfield et al. 2004), are present in the majority of 

the reactive clones.  

In the present study, the alignment of the deduced amino acid sequences of phage 

inserts with the betanodavirus coat protein did not produce meaningful results. Unlike earlier 

studies where alignments were restricted to a target of 20 amino acid residues in length 

(Gazarian et al. 2000b), the betanodavirus coat protein is comprised of 338 amino acid 

residues, significantly reducing the probability of identifying the sites mimicked by short 

consensus motifs. 

 

 
155



Chapter 5 – Epitope mapping by phage display 

Table 5.20 – Common motifs in clones selected by MAb 4C3 identified with Ph.D-12™. 
 

Amino acid sequence 

4th panning MAbs 
3rd panning 

1st elution 2nd elution 3rd elution 

4C3     

HL 
H-S 

H--------S 

HLSKINRHFDHY 
HLRMNYPLHTYH 
HLNHAYWQHSRA 
HRSHHMHLPSPW 

   

HK----Q--P 
HK-----(-)P 
HK--(-)FP 
HKHSYN 
HKH—N 

HKH 
HK-S 

WPYHKHAFPSRP 
WHKYPLFPPMTA 
FHKHPHSGRWYP 

HHHKHGINQISP 
WHKPWYSQPWPP 
WHKHSYNSMPVY 

 

FHKHSYNYAHMH 
GHKHWQHNHSTH 

WHKHSYNSMPVY 
SHKHYNNYAHMH 
FHKPSWHAWSGR 

HHRH 
HHR 

HHR---T--W 
HHRHTFVPLTPN HHRHNYAVEAPF HHRHNYAVEAPF 

HPSTHHRGASHI 

HHRHNYAVEAPF 
HHRHIHTALWQN 
HHRAVPTFTWYS 

HHH WPHHHHTRLSTV HHHKHGINQISP HHHKHGINQISP 
HYKHHHTPILLN YPHHHNSRYFPM 

WHK—Y 
WHKP 
WHK 

WHK-----P 
WHK--------A 

WH---L-P 
WH---(-)R 
WH------P 

HHWH 
WH 
HW 
WQ 

W---QP 
HQW 
WHP 

WP-H-H---S 
W-H---TRL 

WHKYPLFPPMTA 
WHANKLPPRYFY 
LHKPRPWHEFNR 
HLNHAYWQHSRA 
WPYHKHAFPSRP 
WPHHHHTRLSTV 
HWKHFNGTRLLD 

WHKPWYSQPWPL 
WHKPWYSQPWPP 
WHKHSYNSMPVY 
KPYHSWHQWQTS 
VHWKNPTVFSYY 

APWWYHQWKAEQ

YPWHKSHLREVT 
LPWHWHTSQRSL 
HHWHSRSQLSWF 
GHKHWQHNHSTH 
HSQWNTMQAIAT 

WHKHSYNSMPVY 
WHKPRLHTFDFA 
FHKPSWHAWSGR 
HHWHQNNRQALV
WHKNTNWPWRTL 
WHRTYQPPLEPR 
HHRHIHTALWQN 
FPRNHHQWLPHR 

 

PRY WHANKLPPRYFY 
MHRDYYPRYVPW    

PLF GQISNLPPLFRT 
WHKYPLFPPMTA    

FHKHS 
FHK-S 
F-KH 

  FHKHSYNYAHMH 
FHKHSPRSPIFI 

FHKPSWHAWSGR 
IPHHYQFLKHRH 

VI------L IIVIRLCRLLLM   RFVIFILVIGLL 

E--F  HHRHNYAVEAPF 
WKSHHNHERVF 

GWKSHHNHERVF 
HHRHNYAVEAPF HHRHNYAVEAPF 

SHH HRSHHMHLPSPW 
ALYKHSHHVWRL    

RH 
H-RH-Y-V HLSKINRHFDHY HHRHNYAVEAPF 

GLRHHHTIPNVS HHRHNYAVEAPF HSRHHYNVHLNA 
HHRHNYAVEAPF 

5G10     

YH—Y 
Y--WL 
HS--H 
WH--N 

PY 
 

VPHWHTEYLRWL 
GHWKLFPYWARS 
YHTEYMLWLGST 
HSRIHNHTDRNI 
HSTHHLSKHILA 
HTSLNYRPWLTI 

KGIHWHHWNYGV 
APWHLHNPIYRL 

YHKNYRSLPYFM   

         Note – the residues depicted in bold type underline same motif are shared by ≥ 2 clone inserts. 
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The failure to identify unequivocally a consensus sequence has been associated with 

plate-binder clones represent a probable explanation for the results. Insert sequences 

containing tryptophan (e.g. WxxWxxxW) and tyrosine are usually associated with this 

phenomenon (Adey et al. 1995, Gebhardt et al. 1996). Six clones of seventy-one sequenced 

contained two or more W or Y residues.  

Christian et al. (1992) were unable to map epitopes recognised by MAbs to HIV-1 

gp120. The authors associated the failure with an inability of their phage display protocol to 

discriminate between rare high-affinity insert sequences and more common low affinity 

sequences.  

 

 

5.4.1 - Final reflection 
 

Although the phage display methodology has been applied to epitope mapping studies 

for over 15 years, to our knowledge this is the first time that the technique has been used to 

identify epitopes on a fish virus.  

Two phage libraries that expressed different sizes of random peptides fused to the pIII 

coat protein were used. After several affinity selection steps, biopanning, and sequence 

analysis of MAb selected clones, a consensus insert amino acid sequence should be obtained. 

However, the recognition of a consensus sequence is dependent upon the interpretation of 

short amino acid sequences and their relationship to the target antigen. The relationship 

between phage insert and the target antigen can “range from obvious to surprisingly obscure” 

(Burrit et al. 1996). 

In the present study, no consensus sequence was identified in inserts from phages 

selected with MAbs raised against the betanodavirus coat protein. Phage clones selected with 

the Ph.D.-7™ system contained double inserts. An epitope comprises 14-22 residues (Kuby, 

1994) and sometimes a peptide comprised of seven amino acid residues in length is not large 

enough to bind sufficient critical residues on an antibody molecule.  
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The use of the Ph.D.-12™ system, which expresses longer peptides (12 amino acids) 

also failed to yield a consensus sequence in MAb-selected phage clones after three rounds of 

panning. For this reason, a fourth round of panning was performed. However, this additional 

step created a bias in the MAb-selected procedure that was confirmed by the non-reactivity of 

peptides with the selecting MAbs in ELISA tests. The lack of consensus can also be 

associated with the presence of plate-binder phages that contaminate the elution step.  

In future work, these problems should be taken into consideration and may potentially 

be solved with a pre-incubation of the phage library with possible sources of non-specific 

binding, such as for example, the plastic plate, BSA and buffers. 
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Chapter 6 - Epitope mapping with synthetic peptides 
 

6.1 -  Introduction 

6.1.1 - Synthetic peptides 
 

An important component of immune responses to many diseases is the ability of the 

host’s antibodies to recognise foreign antigens, such as surface proteins or toxins (Carter, 

1994). 

The region of an antigen that is recognised by an antibody is designated as an 

antigenic site or B-cell epitope. In the case of viruses, the antigenic sites frequently 

correspond to parts of the capsid or envelope protein. The region of the antibody molecule that 

recognises an epitope is known as the combining site or paratope (van Regenmortel, 1992).  

Antibodies to protein epitopes are usually highly specific and able to distinguish between 

proteins differing by only a single amino acid in the target epitope (Alexander et al. 1983). 

There are two main approaches to identifying the regions of a protein that are 

recognised by antibodies. These are based on either a) generation of successively smaller 

fragments of the native protein, or b) use of chemically synthesised synthetic peptides. 

Knowledge of the amino sequence of a given protein is a requirement of the latter approach. 

Over the last two decades, the simultaneous synthesis of large numbers of peptides, 

either as discrete members of sets or as mixtures, has become an important tool in both 

molecular immunology and the drug discovery process (Ede, 2002). A revolutionary advance 

in this technology was described by the development of parallel synthesis of large sets of 

peptides by Geysen et al. in 1984. This methodology represented a major advance in epitope 

mapping of protein antigens because of its ability to characterise the interaction between 

antibodies and large numbers of overlapping synthetic peptides required to identify epitopes 

of protein molecules (Geysen et al. 1987a). 
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The use of synthetic peptides to identify epitopes recognised by monoclonal 

antibodies as described by Geysen et al. (1984) has been widely used in epitope mapping 

studies, e.g  influenza A virus (Hatta et al. 2000), foot and mouth virus (Geysen et al. 1984), 

beet necrosis yellow vein virus (BNYVV) (Commandeur et al. 1994). For fish viruses the 

synthetic peptides have been applied to epitope mapping of Viral Haemorrhagic Septicaemia 

Virus (VHSV) (Estepa and Coll, 1996, Fernandéz-Alonso et al. 1998).  

The principle of the pepscan technique is based on the fact that antibodies produced 

against a native protein are, by definition, directed to the immunogenic epitopes. Thus by 

representing an entire protein in the form of short overlapping synthetic peptides, antibody 

recognition sites can be mapped to regions defined by the length of the peptides used and 

sometimes even less, when the overlap of adjacent peptides is taken into consideration 

(Gershoni et al. 1997). Peptides are frequently coupled to a solid surface or a carrier molecule 

in order to allow detection of binding interactions between the peptide and the monoclonal 

antibody. This coupling procedure can significantly affect the presentation of the peptide, 

even to the extent of masking potentially reactive amino acid side chains (Geysen et al. 

1987a).  

The physical state of the peptides used in epitope mapping studies depends on the 

immune recognition molecule studied. For mapping B-cell epitopes either bound or cleaved 

peptides can be used. For T-cell epitope mapping cleaved peptides must be used (Sumar, 

2001).  

The synthesis of peptides has been a challenge to organic chemists since the turn of 

the 20th century. Classical methods of peptide synthesis are poorly suited for high throughput, 

simultaneous synthesis of peptides (Atherton and Sheppard, 1989). In 1964 Merrifield 

developed a completely new approach for peptide synthesis utilising solid phase synthesis 

(Merrifield, 1964). In this procedure the nascent peptide molecule is constructed  whilst bound 

to a stable, solid particle throughout all of the synthesis steps, and is separated from soluble 

reagents and solvents by simple filtration and washing (Atherton and Sheppard, 1989).  
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The PEPSCAN procedure is a variation of the solid-phase peptide synthesis method 

developed by Geysen et al. (1984) and uses synthesis of peptides on the tip of polyacrylated 

grafted polyethylene rods arranged in an 8x12 microtitre plate array. The modular format that 

complements a 96 well plate permits the simultaneous handling of hundreds to thousands of 

individual peptides (Maeji et al. 1995). The original application of this technique enabled the 

identification and characterisation of epitopes within protein antigens to a resolution of one 

amino acid (Geysen et al. 1984). Although the PEPSCAN procedure has been shown to be 

particularly effective for mapping linear/continuous epitopes, it is also possible to detect 

discontinuous epitopes (Gao and Esnouf, 1996).  

A further variation of the solid phase peptide synthesis was developed by Frank and 

Döring (1988), who used cellulose paper discs for the solid phase. With this technique 

individual amino acid coupling reactions in a multiple parallel synthesis are performed 

simultaneously on distinct areas of a continuous pure cellulose chromatography paper sheet 

(Frank, 1992, Frank, 2002). This technique has been named SPOT-synthesis.  

The overlapping peptide scan utilising SPOT synthesis is a popular tool for 

characterisation of molecular interactions (Reineke et al. 2001). The best-known applications 

of this technology are the analysis of epitope mapping and receptor-ligand interaction sites 

(Laune et al. 2002). Continuous and discontinuous epitopes can be detected. The 

identification of discontinuous epitopes is based on the detection of low affinity interactions 

(Reineke et al. 1998, Reineke et al. 1999). These low affinity interactions can be detected by 

measuring the dissociation constant (Kramer et al. 1997, Reineke et al. 2002).  
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6.1.2 -  Flow cytometry  
 

Flow cytometry enables discrete measurements of optical signals from a single 

particle such as cells or beads (Edwards et al. 2004). These signals can be read by electrical 

impedance, light scattering and fluorescence (Shapiro, 2003). 

Flow cytometers are divided in to two main types, analysers and sorters. The sorters 

have the ability to collect data on cells (analyse cells) and sort cells with particular properties 

(Chapman, 2000). The Becton Dickinson FACScan is an example of the sorters currently 

available. xMAP-based products from Luminex are of  the analyser type. 

For flow cytometric analysis, mono-dispersed cell suspensions must be produced 

(Mandy et al. 2001). These are achieved by the use of a laminar sheath-flow technique to 

confine cells to the center of a flow stream, reducing clogging due to clumps (Horan and 

Wheeless Jr., 1977). Single particles or cells are scanned as they flow in a liquid medium past 

an excitation light source (Radcliff and Jaroszeski, 1998).  

With the flow cytometry technique, each cell is exposed to excitation light only for 

the brief period during which it passes through the illuminating beam, usually a few 

microseconds, and the flow velocity is typically constant for all the cells examined (Shapiro, 

2003). The use of these uniform conditions of measurement make it possible to attain high 

precision, by obtaining nearly equal measurement values for cells containing equal amounts of 

fluorescent material (Shapiro, 2003).  

Typically fluorochromes are fluorescent probes conjugated to monoclonal antibodies. 

These fluorescent probes react with the cells or particles of interest before analysis. Therefore 

the amount of fluorescence emitted as a particle passes the light source is proportional to the 

amount of fluorescent probe bound to the cell (Radcliff and Jaroszeski, 1998). 

Cytometers can be used for sensitive chemical analyses involving the binding of 

suitable labelled ligands to solid substrates or to particles such as polystyrene beads (Shapiro, 

2003). During development, the terminology describing microsphere-based assays saw many 

variations including: multiplex bead assay (MBA), particle-based micro-array technology 
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(PBMT), microparticle-based flow cytometric technology (MFCT), multiplexed particle-

based flow cytometry assay (MPBFC), micro-array immunoassay (MAI), cytometric bead 

array (CBA) and suspension array technology (SAT) (Mandy et al. 2001, Nolan and Mandy, 

2001). 

For many years, the concept of performing immunological assays on microspheres 

has been both theorized and applied. Recently the technology been developed to the extent 

that both reagents and software are now commercially available (McHugh, 1994, McDade and 

Spain, 1997).  

In 1977, Horan and Wheeless Jr. described for the first time the use of flow cytometry 

combined with microspheres for the determination of analytes in serum and other fluids. 

Initially two different sizes of beads were used. Rapid advances in instrumentation permitted 

the use of four different bead sizes (McHugh et al. 1988, Scillian et al. 1989). The ability to 

discriminate between different sized microspheres facilitated the simultaneous detection of 

several analytes. However the inability to distinguish aggregates of smaller microspheres from 

larger microspheres severely limited the extent of multiplexing that could be achieved (Fulton 

et al. 1997). This limitation jeopardised the opportunities that multiplexed binding assays 

offered for exploration of complex binding interactions in a single reaction volume (Iannone 

et al. 2001). Eventually, codifying the microspheres provided an elegant solution to this 

methodological problem. 

The most commonly used encoding method in bead-based assays is optical encoding 

with fluorescent dyes (Yingyongnarongkul et al. 2003). To prepare microsphere sets, two 

hydrophobic fluorophores are used, one emitting in the red region of the light spectrum, and 

one emitting in the orange region (McDade and Spain, 1997). These two fluorophores are 

combined within microspheres to a unique ratio (Smith et al. 1998). By adjusting these 

intrinsic optical properties, it became possible to prepare arrays of microspheres in which 

individual microsphere subsets possess a unique spectral address, and thus can be used to 

perform multiplexed analyses (Nolan and Sklar, 2002).  
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These techniques require microspheres coated with a unique capture reagent 

(McHugh, 1994). There are several types of microspheres coated with different linkers for 

non-covalent coupling (Kellar and Iannone, 2002). However, when the orientation of the 

protein on the bead surface is critical, as is the case of antibodies, covalent coupling should be 

used (McHugh and Stites, 1991). Carboxyl (COOH), amine/hydrazide and maleimide groups 

are used for covalent coupling (Kellar and Iannone, 2002). 

Microspheres of several sizes and composed of different polymers are currently 

available commercially. 

Assays that combine flow cytometry and microspheres consist of four basic steps:  

coating of the beads with the antibody/antigen or capture reagent;  addition of the analyte to 

the microspheres;  addition of a fluorescent reporter molecule that binds to the analyte and 

 fluorescent quantitation. These four steps are depicted in Figure 6.1. 

 

 

Figure 6.1 – Flow cytometry using SAT.  beads coated with antibody/antigen;  sample 
containing analyte added;  molecular reporter added;  fluorescent quantitation. 
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The combination of microspheres, flow cytometry technology and digital signal 

processing has facilitated the development of a fast and precise assay platform (McDade and 

Spain, 1997). This new generation of fluorescent microsphere-based immunological assays 

reduces the time and cost of traditional microtitre plate-based assays, by relying on the rapid 

association kinetics of antibodies and antigens in solution, as well as the use of a smaller 

surface area. Consequently, smaller quantities of reactants are required than in conventional 

immunoassays (Kellar et al. 2001). 

Since the 1960s, flow cytometry has been applied to several fields of research. Until 

recently, the combination of this technique with labelled microspheres has predominantly 

been employed in immunological research (Table 6.1). 
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Table 6.1– Application of the microspheres and flow cytometry technology. 
 

 Reference 

Immunology studies 

Quantification of cytokines 

Tumour necrosis factor-alpha (TNF-α) 

 
Intereukin: IL-1β, IL-1α, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-
15, IL-17, IL-18 
Gamma interferon (IFN-γ) 
Granulocyte-macrophage colony-stimulating factor (GM-CFS)

Prabhakar et al. (2002 
de Jager et al. (2003) 

 
Kellar and Douglass (2003) 

Hulse et al. (2004) 

Quantification of antibodies 

 
Human papilloma virus 
Toxins of anthrax, tetanus and diphtheria 
Haemophilus influenzae type b 

Opalka et al. (2003) 
Biagini et al. (2004b) 

Pickering et al. (2002a) 

Detection of antibodies in autoimmune diseases 

 Systemic rheumatic disorders 
Systemic lupus erythematosus 

Rouquette et al. (2003 
Mahler et al. (2004) 

Characterisation of antibodies 

 HIV-1 infected individuals Opalka et al. (2004) 

Detection of antibodies 

 
Flavivirus 
Pneumococcal polysaccharides (PnPs) 
Genotype-specific to respiratory syncytial virus 

Wong et al. (2004) 
Pickering et al. (2002b) 

Jones et al. (2002) 

Expression 

 CD40 in diabetic people Vosters et al. (2004) 

Other studies 

Detection and/or quantification 

 

Phosphorylation levels in cell signalling proteins: 
phospho-JNK 
phospho-p38 MAPK 
phospho-IκB-α 
phospho-ERK2 
phospho-Akt 
phospho-ATF-2 
phospho-MEK2phospho-STAT3 
Herbicides in human urine  (glyphosate, atrazine and metolachlor) 
Common foodborne illnesses (E. coli, Listeria monocytogenes, Salmonella and 

Campylobacter jejuni) 
Staphylococcal protein toxins (ETA and ETB) 

 
Gao et al. (2003) 

 
 
 
 
 
 

Biagini et al. (2004b) 
Dunbar et al. (2003) 

 
Joubert et al. (2003) 

Molecular techniques 

 

Single nucleotide polymorphism (SNP) 
Forensic analyses with human identity testing (SNP of African American vs 

Caucasian) 
Bacterial identification using 16S rDNA 
Identification and quantification of DNA in environmental samples 
Detection and quantification of viral nucleic acids 

Chen et al. (2000) 
Vallone and Butler (2004) 

 
Ye et al. (2001) 

Spiro et al. (2000) 
Smith et al. (1998) 

Hybridoma technology 

 Characterisation of monoclonal antibodies Jia et al. (2004) 
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6.1.2.1  -  Suspension array technology with xMAP  

 

For suspension array technology (SAT) the interaction between analyte and target is 

detected on the surface of solid fluorospheres (Mandy et al. 2001).  

The Luminex-100 instrument has been designed by the Luminex Corporation (Austin, 

Texas) for fluorosphere-based flow cytometry (Nolan and Mandy, 2001). This technique is 

referred to as xMAP technology.  

The Luminex-100 uses traditional flow cytometry hardware and spectrally discrete 

polystyrene beads, or microspheres, to measure multiple analytes simultaneously (Seideman 

and Peritt, 2002).  

By varying the ratio of the two fluorophores (red and orange), up to 100 different 

bead sets can be distinguished and each bead set can be coupled to a different biological probe 

(Figure 6.2 ) (Dasso et al. 2002). 

5.5 μm, cross linked polystyrene microspheres with surface carboxylate groups were 

found to provide the best combination of thermal stability, uniformity (coefficient of variation 

1% for diameter) and reagent density required for a wide range of possible assays (McDade 

and Spain, 1997). 

The Luminex-100 has a dual laser system. The 532-nm, 13-mW yttrium aluminium 

garnet (YAG) laser (green laser) is used because it improves the excitation efficiency of R-

phycoerythrin (PE, 578-nm emission) as compared to a 488-nm laser (Kellar and Iannone, 

2002), and is dedicated to the quantitative analysis (Mandy et al. 2001). The 635-nm 10-mW 

red diode laser excites the two classification fluorochromes embedded within the 

microspheres (Kellar and Iannone, 2002) that are used to define a spectral address (Mandy et 

al. 2001) (Figure 6.2 ).  
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Figure 6.2 -  Matrix of beads available by Bio-Rad;  Dual lasers identifying the beads. 
 

 

 

Data is acquired on the Luminex-100 by a PC equipped with a special digital signal 

processing board and control software that runs in the Windows environment. The software 

uses the orange and red data to separate the pool of microspheres into individual bead sets, 

and presents the average amount of green to each bead set (Vignali, 2000). The concentration 

of the analytes can be determined by extrapolation to a standard curve. The data can be 

exported to a spreadsheet program such as Microsoft-Excel for further analysis.  

The most commonly used reporter molecules are antibodies either conjugated with a 

fluorochrome or biotin, which can be used to bind a streptavidin-fluorochrome conjugate 

(Sklar et al. 2002). R-phycoerythrin (R-PE) is considered the most suitable fluorochrome for 

quantitative fluorescence measurement in clinical flow cytometry (Haugland, 1994, Gratama 

et al. 1998), because its extinction coefficient and quantum yield are high (Mandy et al. 

2001). Low background fluorescence is achieved through the use of homogenous multi-

parameter measurements coupled with quantitative fluorescence detection capacity at low 

emission levels (Nolan and Mandy, 2001). The sensitivity of the instrument is high, and it can 

detect less than 500 PE molecules bound to beads (Shapiro, 2003). 
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6.1.3 - Objectives 
 

The objective of this chapter was to identify B-cell epitopes on the betanodavirus coat 

protein using a new approach. This was achieved through the use of xMAP technology and 

the synthesis of a panel of overlapping synthetic peptides that mimicked the betanodavirus 

coat protein. This procedure was used by Opalka et al. (2004) for epitope mapping in Human 

Immunodeficiency Virus (HIV). Sets of overlapping peptides that mimic the betanodavirus 

coat protein were synthesised and coupled to polystyrene beads. The peptide-bead sets were 

incubated with antibodies and the reaction read in a Bio-Plex™ system array, to determine 

which region(s) of the betanodavirus coat protein are recognised. This technique was used to 

characterise the binding sites of murine monoclonal antibodies, rabbit polyclonal antibodies, 

and sera from fish (European sea bass Dicentrarchus labrax) naturally-infected with 

nodavirus. The production of monoclonal and polyclonal antibodies use in this study is 

described in Chapter 3.   
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6.2 -  Materials and Methods 

6.2.1 - Synthetic peptides 
 

The Dragon Fish Nervous Necrosis Virus (DFNNV) coat protein (Genbank protein 

access number AAG22496) was used as template for the production of the synthetic peptides. 

Synthetic peptides were 12 amino acid residues in length (12 mers) and overlapped by two 

residues.  

The cross-reactivity of peptides may be influenced by the immunoassay format, 

simply due to the fact that different conformations can be adopted by peptides in the various 

experimental conditions of different immunoassays (van Regenmortel, 1989b). An N-terminal 

AHX linker (amino hexanoic acid) was introduced in the peptide sequence in order to prevent 

conformation problems related with direct binding of the peptide sequence to the beads.  

Two additional peptides were synthesised for use as negative controls. These peptides 

corresponded to the amino acid 30-41 and 305-316 but were synthesised in reverse sequence 

order. The sequences of peptides used in this study are presented in Table 6.2. The negative 

control peptides are marked in bold.  

COOH beads were chosen for coupling to synthetic peptides. These beads are most 

useful for binding antibodies or small molecules, which can lose function when passively 

adsorbed to the microsphere surface (McHugh, 1994). The amine group of the peptides was 

coupled to the carboxyl group of the COOH beads (Bio-Rad, Hertfordshire U.K.). The 

coupling reaction was performed using the Bio-Plex Amine Coupling kit (Bio-Rad, 

Hertfordshire U.K.) according to the manufacturer's instructions. 

The overlapping peptides were produced by Pepscan Systems (Lelystad, The 

Netherlands) and were supplied coupled to beads. After coupling beads were stored in the 

dark at 4°C. 

Bead concentration was determined with a hemocytometer. 
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Table 6.2 – Sequences of synthetic peptides used for epitope mapping. Sequences were derived from 
the DFNNV coat protein.  

 
Peptide 

(residue) Amino acid sequence Bead 
reference  Peptide 

(residue) 
Amino acid 
sequence 

Bead 
reference 

1 (1-12) MVRKGEKKLAKP 171-506046  19 (181-192) GRLILLCVGNNT 171-506042 
2 (11-22) KPPTTKAANPQP 171-506046  20 (191-202) NTDVVNVSVLCR 171-506042 
3 (21-32) QPRRRANNRRRS 171-506046  21 (201-212) CRWSVRLSVPSL 171-506042 
4 (31-42) RSNRTDAPVSKA 171-506046  22 (211-222) SLETPEETTAPI 171-506042 
5 (41-52) KASTVTGFGRGT 171-506046  23 (212-232) PIMTQGSLYNDS 171-506042 
6 (51-62) GTNDVHLSGMSR 171-506046  24 (231-242) DSLSTNDFKSIL 171-506042 
7 (61-72) SRISQAVLPAGT 171-506046  25 (241-252) ILLGSTPLDIAP 171-506042 
8 (71-82) GTGTDGYVVVDA 171-506046  26 (251-262) APDGAVFQLDRP 171-506042 
9 (81-92) DATIVPDLLPRL 171-506046  27 (261-272) RPLSIDYSLGTG 171-506042 

10 (91-102) RLGHAARIFQRY 171-506028  28 (271-282) TGDVDRAVYWHL 171-506024 
11 (101-112) RYAVETLEFEIQ 171-506028  29 (281-292) HLKKFAGNAGTP 171-506024 
12 (111-122) IQPMCPANTGGG 171-506028  30 (291-302) TPAGWFRWGIWD 171-506024 
13 (121-132) GGYVAGFLPDPT 171-506028  31 (301-312) WDNFNKTFTDGV 171-506024 
14 (131-142) PTDNDHTFDALQ 171-506028  32 (311-322) GVAYYSDEQPRQ 171-506024 
15 (141-152) LQATRGAVVAKW 171-506028  33 (321-332) RQILLPVGTVCT 171-506024 
16 (151-162) KWWESRTVRPQY 171-506028  34 (327-338) VGTVCTRVDSEN 171-506024 
17 (161-172) QYTRTLLWTSSG 171-506028  35 (41-30) KSVPADTRNSRR 171-506024 
18 (171-182) SGKEQRLTSPGR 171-506028  36 (316-305) SYYAVGDTFTKN 171-506024 

 

 

The assay was multiplexed to 4 different peptides per well, because peptides were 

coupled with beads of four different spectral addresses. Peptides were grouped into 9 groups 

for analysis as indicated in Table 6.3. 

 

 
Table 6.3 – Synthetic peptide groupings used for multiplex analysis in the Bio-Plex™ system. 

 
Group Peptide Bead  Group Peptide Bead 

PepS 1 

1 
10 
19 
28 

171-506046 
171-506028 
171-506042 
171-506024 

 PepS 6 

6 
15 
24 
33 

171-506046 
171-506028 
171-506042 
171-506024 

PepS 2 

2 
11 
20 
29 

171-506046 
171-506028 
171-506042 
171-506024 

 PepS 7 

7 
16 
25 
34 

171-506046 
171-506028 
171-506042 
171-506024 

PepS 3 

3 
12 
21 
30 

171-506046 
171-506028 
171-506042 
171-506024 

 PepS 8 

8 
17 
26 
35 

171-506046 
171-506028 
171-506042 
171-506024 

PepS 4 

4 
13 
22 
31 

171-506046 
171-506028 
171-506042 
171-506024 

 PepS 9 

9 
18 
27 
36 

171-506046 
171-506028 
171-506042 
171-506024 

PepS 5 

5 
14 
23 
32 

171-506046 
171-506028 
171-506042 
171-506024 
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6.2.1.1  -  Peptide synthesis 

 

The overlapping peptides were produced by Pepscan Systems (Lelystad, Netherlands) 

using solid phase synthesis and Fmoc chemistry.  

To ensure the correct synthesis of a peptide it is necessary for inappropriate binding of 

the amino group of one amino acid and the carboxyl group of the other amino acid be 

prevented (Atherton and Sheppard, 1989). This is achievable by linking a protective group to 

the amino acids. The protective group used depends on the type of synthesis chosen. 

However, it must be easily removed during or after the polypeptide synthesis (Atherton and 

Sheppard, 1989). Fmoc (flurenylmethyloxycarbonyl) was used as for the α-N amino 

protecting groups during the synthesis of the peptides produced by Pepscan Systems. Usually 

this protective group is chosen because it requires mild conditions for removal and for the 

cleavage from the solid support (Sumar, 2001) (Figure 6.3). 
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Figure 6.3 – Diagram of solid phase peptide synthesis using the Fmoc technique (Adapted from Sumar 
(2001). 
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Side chain protecting
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        ⏐   ⏐⏐ 
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Side chain protecting
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support ⎯ 

        ⏐   
       R1   O 
        ⏐   ⏐⏐ 
NH2-CH-C-OH⎯ 

Side chain protecting
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6.2.2 -   xMAP  technology    
 

The xMAP technology (Luminex™) used in this study was the Luminex-100 

marketed by Bio-Rad (Hertfordshire U.K.). Bio-Rad have named this equipment Bio-Plex™. 

The Bio-Plex™ suspension array system integrates the xMAP technology with 

instrument controls and data analysis software, system validation and calibration tools 

together with all supplementary materials required to perform xMAP-based assays in a 96-

well plate format (Willis et al. 2003). 

The Bio-Plex™ system is comprised of an array reader, an XY platform, an HTF 

system (Figure 6.4) and a computer (PC). The Bio-Plex™ array reader is a compact flow 

analysis unit integrating a dual laser detection system, optics, fluidics and advanced digital 

signal processing.  

 

 

 
Figure 6.4 - Bio-Plex™ system: HTF system, array reader and XY platform. 
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The XY platform allows the automated processing of samples from a 96 well plate. 

The HTF (High Throughput Fluidics) system is designed to automate the introduction of 

sheath fluid into the Bio-Plex™ array reader.  

The HTF system automatically draws sheath fluid from a non-pressurized bulk 

container to constantly maintain a reservoir of pressurized sheath fluid.  

Minimum computer hardware and software requirements are IBM PB, Pentium III 

processor. Microsoft Windows 2000 operating system, Excel and Access software are 

essential. A high-speed digital signal processor and Bio-Plex Manager™ 3.0 software record 

the fluorescent signals simultaneously for each bead, and translate the signals into data for 

each bead-based assay. The data can then be exported to Microsoft Excel for further analysis. 

The Bio-Plex™ has a MCV plate specially designed for needle adjustments and for 

performing the validation, calibration and washing 

(Figure 6.5). 

 

 

 
 
 

Figure 6.5 - MCV plate. 
 

 

6.2.3 - Antibody samples 
 

In this study, mouse MAbs, rabbit polyclonal antibodies and fish polyclonal sera were 

used. 

The production of mouse MAbs was described in Chapter 3. Five monoclonal 

antibodies were used. These were designated 1E3, 3B10, 4A12, 4C3 and 5G10. The 

purification and estimation of MAb concentration using the BCA protein kit (Pierce, 

Northumberland U.K.) were performed as described in Chapter 2.  
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Polyclonal antibodies were produced in Rabbit immunised with European sea bass 

betanodavirus as described in Chapter 3. 

The fish serum samples were kindly supplied by Professor Alexandra Adams (Aquatic 

Vaccine Unit, Stirling University, U.K.). The samples were collected from European sea bass 

(Dicentrarchus labrax L.) naturally infected with betanodavirus. The samples were tested for 

betanodavirus antibodies by ELISA. Nine fish serum samples were used. Seven of these were 

positive and two negative. The positive samples chosen represented those samples with the 

highest nodavirus antibody titres as presented in Table 6.4. 

 

 

Table 6.4 – Betanodavirus antibody titres in samples of European sea bass serum as 
determined by ELISA.  

 
Sample 1 3 4 7 10 15 17 2 9 

Titre 1/16 1/32 1/32 1/32 1/32 1/64 1/32 - - 

 

 

As a negative control one betanodavirus-negative European sea bass serum sample 

was kindly supplied by Dr. W. Roy of the Machrihanish fish farm. European sea bass were 

sourced from a hatchery in Wales. No outbreaks of betanodavirus infection have been 

recorded at this site. 

 

 

6.2.4 - Protocol for epitope mapping with SAT  
 

The experimental xMAP protocol used in this thesis was based on previously 

published work (Kellar et al. 2001, Dasso et al. 2002, Prabhakar et al. 2002, Seideman and 

Peritt, 2002, Joubert et al. 2003). Some of the experimental steps were optimised as described 

in Table 6.5. 
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Table 6.5 – Overview of the protocol used for epitope mapping with SAT.  
 

    Amount Volume per well Incubation 

Blocking analyte Block interactions between 
synthetic peptides and buffer 

Analyte (bead/peptide) in 
DPBS+ 

2000 beads per 
well of each 

peptide 
 30 minutes 

RT Preliminary Steps 

Pre-wetting plate Block filter plate 
Wetting the filter membrane DPBS+  200 μl 2 x 30 minutes 

RT 

Analyte Analyte added to the well plate Analyte in DPBS+ 
2000 beads per 

well of each 
peptide 

50 μl  

Sample incubation Binding bead-peptide to 
antibodies 

Antibodies (polyclonal, MAbs 
and fish antibodies) in DPBS+

Required 
optimisation 50 μl Required 

optimisation 
Wash  DPBS+  3 x 100 μl  

Primary antibody* Binding the primary antibody 
to fish serum Anti-sea bass IgM Required 

optimisation DPBS+ 3.5 hours 
RT 

Wash  DPBS+  3 x 100 μl  

Reporter molecule 
Binding the antibody 

conjugated with fluorochrome 
to the bead-peptide-abs 

Anti-mouse IgG PE 
Anti-rabbit IgG PE 

Required 
optimisation 50 μl 30 minutes 

RT 

Wash  DPBS+  3 x 100 μl  

Pre-reading Re-suspend the beads for 
reading DPBS+  100 μl  

 
 
 

Protocol Steps 

Reading 50 μl of the sample were read by Bio-Plex™ and minimum of 100 beads per analyte are analysed 
RT – room temperature;  * required only for fish serum samples 
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All antibody dilution, blocking and washing steps were performed using Dulbecco’s 

PBS (Gibco, Paisley U.K.) containing 1 % BSA (w/v) (Sigma, Dorset U.K.) and 0.02 % (w/v) 

sodium azide (Sigma, Dorset U.K) (DPBS+).  

Assays were performed in sterile MultiScreen HTS™ (Millipore, Watford U.K.) 96 

well filter plates. These plates have a 1.2 μm hydrophil, low protein binding Durapore® 

membrane. 

The fluorochrome phycoerythrin (PE) conjugated directly to antibodies was used as a 

reporter molecule. Goat anti-mouse IgG conjugated with PE (mouse IgG-PE) and goat anti-

rabbit IgG conjugated with PE (rabbit IgG-PE) were obtained from Molecular Probes (Paisley 

Scotland). 

All washing steps were performed with a vacuum manifold (Bio-Rad, Hertfordshire, 

U.K.) connected to a vacuum pump. The vacuum pressure was kept at –10 mm Hg. 

The protocol used for screening the polyclonal and MAbs was identical. For fish sera 

an additional step was incorporated due to a requirement for the inclusion of a primary 

antibody (anti-fish IgM monoclonal antibody). The antibody used was mouse anti-European 

sea bass IgM monoclonal antibody (sea bass IgM) (Aquatic Diagnostics Ld, Stirling 

University, Stirlinghire Scotland). The IgG MAb was reconstituted in 1 ml of DPBS+. 

The beads and phycoerythrin (PE) are photosensitive, and exposure to light for a 

period of two hours has been demonstrated to adversely influence assays due to photo-

bleaching (Carson and Vignali, 1999). Special precautions were taken to avoid 

photobleaching. Beads and reporter molecules were protected from light at all steps of the 

experimental protocol. Laboratory illumination was minimised and directed away from 

benches used for experimental work. Light exposure was reduced to minimum levels. The 

beads, reporter molecules and the assay plates were wrapped in aluminium foil at all times.  
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6.2.5 - Antibody Screening Assay  
 

Before screening the full set of synthetic peptides with antibody samples three steps of 

the protocol were optimised.  

 

6.2.5.1  -  Sample Incubation Time 

 

The incubation time for allowing an optimal rate of antibody-peptide was the first step 

to be optimised, by incubating MAbs with PepS1 group (Table 6.6).  

 

Table 6.6 – Optimisation of sample incubation time for epitope mapping with SAT. 
 

Sample Incubation Step Antibody Reporter 
Time Temperature 

60 minutes Room temperature 
Sample 

Incubation 

MAbs 
1E3, 3B10, 4A12, 

4C3, 5G10 
 

20 μg ml-1 

Mouse IgG PE 
7.5 μg ml-1 

Overnight 4°C 

 

 

The concentration of MAbs and reporter molecule used are shown in Table 6.6. All 

protocol steps were performed as described in Table 6.5.  

 

6.2.5.2  -  Antibody concentration 

 

Different concentrations of the anti-betanodavirus antibodies were tested (Table 6.7). 

For mouse MAbs four concentrations were tested and for European sea bass three different 

dilutions of sera were used. The rabbit polyclonal serum assay was optimised with seven 

different serum dilutions. Antibodies were diluted in DPBS+. A previous run with a randomly 

chosen peptides revealed MAb 4A12 as the one with more heterogeneous behaviour, showing 

both very low and very high MFI values. These MFI values revealed MAb 4A12 as the best 
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antibody for optimisation of the assay, in order to achieve high MFI values without increasing 

non-specific background due to an excess of mouse-PE. Samples 10 and 15 (SB10 and SB15) 

were used for the optimisation of the fish serum concentration. These samples were chosen 

because of the high titre values that they present and the higher amount of sample (as shown 

in Table 6.3).  

The protocol steps were performed as described in Table 6.5. 

 

Table 6.7 – Optimisation of antibody concentration for epitope mapping with SAT. 
 

Sample Incubation Step Antibody Primary Ab Reporter 
Time Temperature 

Sample 
 

Incubation 

MAb - 4A12 
 

20 μg ml-1 

50 μg ml-1 

80 μg ml-1 

100 μg ml-1 

- 
Mouse IgG PE 

 
7.5 μg ml-1 

Overnight 4°C 

 

 

 
Polyclonal 

 
1/10 
1/100 
1/500 
1/1000 
1/2500 
1/5000 

1/10000 
 

- 
Rabbit IgG PE 

 
25 μg ml-1 

Overnight 4°C 

 

 

 
Fish sera 

 
Sample 10 

1/10 
1/50 

Sample 15 
1/50 
1/100 

 

Sea Bass IgM 
 

6 μg ml-1 

Mouse IgG PE 
 

25 μg ml-1 
Overnight 4°C 

 

 

6.2.5.3  -   Reporter antibody concentration 

 

The optimum reporter antibody concentration was determined as indicated in Table 

6.8. Mouse IgG PE was optimised with MAb 4A12 (20 μg ml-1) and rabbit IgG PE was 

optimised with polyclonal antibodies (1/250 v/v). The protocol steps were performed as 

described in Table 6.5.  
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Table 6.8 – Optimisation of the reporter antibody concentration used in SAT. 
 

Sample Incubation Step Antibody Reporter 
Time Temperature 

MAb 
 

4A12 
 

20 μg ml-1 

Mouse IgG PE 
7.5 μg ml-1 

15 μg ml-1 

25 μg ml-1 

35 μg ml-1 

Overnight 4°C  
 

Reporter 
 

antibodies 
 
 

Polyclonal 
 

1/250 (v/v) 

Rabbit IgG PE 
7.5 μg ml-1 

10 μg ml-1 

15 μg ml-1 

25 μg ml-1 

Overnight 4°C 

 

 

6.2.5.4  -  Concentration of anti-European sea bass monoclonal antibodies 

 

Primary antibody was used at a concentration (6 μg ml-1) as recommended by the 

supplier (Aquatic Diagnostics Ltd) for use in ELISA (section 6.2.5.2). Several different 

concentrations of anti-European sea bass IgM were tested with fish sample 10 (Table 6.9). 

The protocol was carried out as described in Table 6.5. 

 

Table 6.9 – Optimisation of primary antibody concentration used for SAT. 
 

Sample Incubation Step Antibody Primary Ab Reporter 
Time Temperature 

Primary 
 

Antibody 
 
 
 

Fish sera 
 

Sample 10 
 

1/10 (v/v) 

Anti-sea bass MAb 
 

4 μg ml-1 

6 μg ml-1 

10 μg ml-1 

20 μg ml-1 

Mouse IgG PE 
 

25 μg ml-1 
Overnight 4°C 
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6.2.6 - Data Analysis 
 

Data analysis is comprised of the following steps; 

 Subtraction of the blank from the raw sample data. The blank was obtained by 

running a simultaneous assay using the same procedure where antibody samples were 

replaced with DPBS+. 

 Background elimination. According to Carter (1994) the background should be the 

mean of 10-25 % of the lowest values read. Opalka et al. (2004) considered all values 

obtained below 50 MFI as background. During this study both of these concepts of 

background were employed. The mean of the 25 % lowest values read was determined and 

subtracted from the data obtained. Then all readings below 50 MFI were rejected.  

 Sensitivity may be a problem when analysing serum samples where background is 

a problem (Johansson and Andersson, 2003). To reduce the influence of the background 

readings in the analysis of fish serum samples an additional step was incorporated. The values 

obtained for each peptide with the negative serum sample (Machrihanish fish farm sample) 

were subtracted from the corresponding peptide MFI value for the naturally infected fish 

serum samples. After this subtraction the average of the 25 % lower readings was determined 

and subtracted from the data. A further step was performed - all the points below 150 MFI 

were rejected and not analysed.  

 

The betanodavirus coat protein amino acid sequence was submitted into 

www.compbio.dundee.ac.uk/~www-jpred/jnet/ for prediction of the secondary structure of the 

protein using the Jnet secondary structure prediction method (Cuff and Barton, 1999). Jnet is a 

neural network prediction algorithm which applies multiple sequence alignments against 

PSIBLAST and HMM profiles. This secondary structure prediction program achieves an 

average accuracy of 76.4 %. 

The 3D structure of the Betanodavirus coat protein has not been determined using X-

ray crystallography. Consequently, in this study, CPHmodels 2.0 homology-modelling server 
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(Lund et al. 2002) was used to predict the 3D-structure. This algorithm is available on: 

www.cbs.dtu.dk/services/CPHmodels/. The program searches for homologies between a 

target protein sequence and the sequences of proteins contained in three databases (NCBI, 

SWISS-PROT and RCSB). The betanodavirus sequence was aligned with the template and 

modelled according to Lund et al. (2002) recommendations. Regions of protein molecules that 

are modelled at less than 95 % accuracy are excluded from the predicted structural model. 

 

Amino acids may be classified as either hydrophobic or hydrophilic. The 

hydrophobicity of amino acids contributes to the folding of protein molecules. Hydrophobic 

radical groups tend to be located on the inside of a protein whereas hydrophilic groups tend to 

occur on the exterior interacting with water molecules (Kyte and Doolittle, 1982).   

The hydropathicity profile of the betanodavirus coat protein was analysed using a 

method developed by Kyte and Doolittle in 1982. In this procedure, each amino acid is given 

a hydrophobicity score between -4.5 and 4.5, where 4.5 represents the most hydrophobic, and 

-4.5 represents the most hydrophilic (Table 6.10).  

   

Table 6.10 – Hydropathicity of each amino acid according to Kyte and Doolittle (1982). 
 

Amino Acid  Amino Acid 
(Hydrophobic) 

Hydropathy 
Score  (Hydrophilic) 

Hydropathy 
Score 

Isoleucine I 4.5  Glycine G -0.4 

Valine V 4.2  Threonine T -0.7 

Leucine L 3.8  Tryptophan W -0.9 

Phenylalanine F 2.8  Serine S -0.8 

Cysteine C 2.5  Tyrosine Y -1.3 

Methionine M 1.9  Proline P -1.6 

Alanine A 1.8  Histidine H -3.2 

    Glutamic acid E -3.5 

    Glutamine Q -3.5 

    Aspartic acid D -3.5 

    Asparagine N -3.5 

    Lysine K -3.9 

    Arginine R -4.5 
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In the present study, hydropathicity profiles were analysed in a window of seven 

amino acids. Hydrophobicity scores were averaged and assigned to the amino acid located in 

the centre of each window. The computer program starts with the first window of amino acids 

and calculates the average of all the hydrophobicity scores in that window. Then the computer 

program moves down one amino acid and calculates the average of all the hydrophobicity 

scores in the second window. This pattern continues to the end of the protein, computing the 

average score for each window and assigning it to the middle amino acid in the window.  

Hydropathicity analyses were performed with the programme Pepwindow, contained 

within the EMBOSS (European Molecular Biology Open Software Suite, 

http://bioinfo.hku.hk/EMBOSS).  
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6.3 -  Results 

 

The goal of this chapter was identification of B-cell epitopes on the betanodavirus 

capsid protein.  This was approached in two stages: i) optimisation of xMAP technology and 

ii) epitope mapping with overlapping synthetic peptides. 

  

 

6.3.1 - Optimisation of the assays 
 

Optimisation assays was performed in three different experiments. These were 

designed to optimise: sample incubation time, amount of primary antibody, amount of 

reporter and amount of sample antibody. 

 

6.3.1.1  -  Reporter 

 

Sample incubation time was optimised using mouse MAbs. Overnight incubation at 

4°C was found to be optimal. This incubation period was used in all subsequent experiments, 

and also applied to assays using rabbit and fish antibodies.  

The concentration of the conjugate (mouse IgG PE) was optimised with MAb 4A12. 

A concentration of 25 μg ml-1 was found to be optimal. This concentration of mouse IgG PE 

was used in mapping experiments with fish sera.  

Experimental analysis of the optimal concentration of reporter molecule was also 

performed for rabbit IgG PE. A concentration of 25 μg ml-1 was also found to be optimal.  
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6.3.1.2  -  Target antibody 

 

For monoclonal antibodies, a concentration of 100 μg ml-1 of purified MAb was 

optimal. For rabbit and fish polyclonal antibodies, optimal results were achieved with serum 

dilutions of 1:250 and 1:25 respectively. 

Optimised incubation times and reactant concentrations used in epitope mapping 

studies are summarised in Table 6.11.  

 

Table 6.11 – Optimised conditions for mouse MAbs, rabbit polyclonal antibodies and fish 
sera in epitope mapping with SAT. 

 
Procedure step 

Sample Incubation Antibody 

Amount Ab Time Temperature 
Primary Ab Reporter 

MAb 100 μg ml-1 Overnight 4°C - Mouse IgG PE 
25 μg ml-1 

Polyclonal 1/250 (v/v) Overnight 4°C - Rabbit IgG PE 
25 μg ml-1 

Sea bass sera 1/25 (v/v) Overnight 4°C Sea bass IgM 
20 μg ml-1 

Mouse IgG PE 
25 μg ml-1 

 

 

 

6.3.2 - Epitope Mapping 
 

B-cell epitope mapping of the betanodavirus coat protein was performed using 

antibodies or serum samples from three different species; mouse monoclonal antibodies, and 

polyclonal sera from rabbit and European sea bass. 

All the data shown are above the cut off established for the assay.   
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6.3.2.1  -  Monoclonal antibodies 

6.3.2.1.1 -  Negative control 

 

Epitope mapping with mouse MAbs using the xMAP technology yielded a wide range 

of Mean Fluorescence Intensity (MFI) values. The antibodies bound to synthetic peptides are 

themselves bound by the PE-labelled conjugated. The MFI is proportional to the fluorescence 

of the PE, and thus a measure of the amount of antibody bound to a bead.   

 During this study an anti-Tetracapsuloides bryosalmonae MAb was used as a 

negative control. This MAb did not show any affinity with the any of the synthetic peptides 

used in this study.  

 

 

Table 6.12 – Mean Fluorescence Intensity values for T. bryosalmonae and MAbs 1E3. 
 

Monoclonal Antibodies (MFI)  Monoclonal Antibodies (MFI) Peptide 
1E3 T. bryosalmonae  

Peptide 
1E3 T. bryosalmonae 

1 0.00 0.0  19 3.6 0.0 
2 2.0 0.0  20 19.3 0.0 
3 9.0 0.0  21 3.6 0.0 
4 0.0 0.0  22 0.0 0.0 
5 2.3 0.0  23 0.3 0.0 
6 0.0 0.0  24 0.0 0.0 
7 0.0 0.0  25 0.0 0.0 
8 0.0 0.0  26 0.0 0.0 
9 0.0 0.0  27 0.0 0.0 
10 0.0 0.0  28 0.0 0.0 
11 0.0 0.0  29 0.0 0.0 
12 0.0 0.0  30 6.3 0.0 
13 0.0 0.0  31 0.0 0.0 
14 0.0 0.0  32 0.0 0.0 
15 0.0 0.0  33 3.3 0.0 
16 8.7 0.0  34 3.3 0.0 
17 0.0 0.0  35 9.7 0.0 
18 0.0 0.0  36 1.7 0.0 
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6.3.2.1.2 -  MAb 1E3 

 

Fluorescence values obtained with MAb 1E3 were slightly higher than T. 

bryosalmonae, however, these were excluded since they were lower than the cut-off value of 

50 MFI. Results obtained with the Mabs raised against T. bryosalmonae and 1E3 are shown in 

Table 6.12. 

 

6.3.2.1.3 -  MAb 5G10 

 

MAb 5G10 showed lower MFI values than 4A12, 4C3 and 3B10, however 

approximately 1/3 of these were greater than the threshold of 50 MFI, and thus considered to 

be valid. MAb 5G10 recognised peptides 16 (190 MFI), and 20 (110 MFI) most strongly 

Figure 6.6).  
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Figure 6.6 –MAb 5G10 binding to synthetic peptides. 

 

The majority of the synthetic peptides recognised by 5G10 are located on the same 

region of the coat protein, between peptides 16-21 (amino acids 151-212 of the capsid 
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protein). Peptide 35 was also recognised (88 MFI). This peptide was synthesised to act as 

negative control.  

 

6.3.2.1.4 -  Mab 3B10 

 

MAb 3B10 recognised peptides 19 and 20 most strongly (MFIs 1399 and 2138 

respectively) (Figure 6.7).  
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Figure 6.7 – MAb 3B10 binding to synthetic peptides. 

 

 

The peptides recognised by MAb 3B10 were located in four different regions of the 

betanodavirus coat protein. Peptide 5 (MFI 1162) and peptide 1 (MFI 1153) were also 

recognised. These are located in the N-terminus of the coat protein. A further region was 

recognised by MAb 3B10 comprising peptides 28 - 32, situated near the C terminus of the 

capsid protein. 

 

 
189



Chapter 6 – Epitope mapping with synthetic peptides 

6.3.2.1.5 -  MAb 4A12 

 

MAb 4A12 exhibited the highest MFI values of the MAbs analysed (peptide 3, MFI 

3704). This MAb strongly recognised the three consecutive peptides, 19, 20 and 21 with very 

high MFI (Figure 6.8). 
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Figure 6.8– MAb 4A12 binding to synthetic peptides. 
 

 

MAb 4A12 recognised three regions of the coat protein. Two of these are located in 

the N and the C termini of the coat protein, and the third region is situated in the central 

region of the protein. This antibody recognised both control peptides (35 and 36).  

 

6.3.2.1.6 -  MAb 4C3 

 

MAb 4C3 exhibited lower binding to the synthetic peptides than either MAb 4A12 or 

3B10 (Figure 6.9). This MAb recognised peptides situated in the centre of the coat protein 

most strongly, together with peptide 35 (control peptide). These results were obtained for two 
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groups of consecutive peptides, peptide 15-16 and peptide 19-20. Peptide 20 revealed the 

highest binding values (842 MFI) follow by peptide 35 (669 MFI).  
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Figure 6.9 – MAb 4C3 binding to synthetic peptides. 

 

 

6.3.2.1.7 -  MAbs - analysis of the peptides recognised most strongly 

 

None of the MAbs analysed bound to all the peptides. However all peptides were 

recognised by at least one MAb, although in some cases, the MFI values were low. For each 

MAb studied, the three peptides recognised with the highest MFI value were located in three 

regions of the coat protein: peptide 1 to 5; peptide 15 to 16 and peptide 19 to 21 (Table 6.13).  

Within the peptides that were recognised most strongly, i.e. greatest MFI values, 

peptide 20 was most frequently recognised, showing high MFI with all five MAbs studied. 

Peptides 16 and 35 were recognised by MAbs 5G10 and 4C3. These two MAbs showed 

similar binding affinities, and recognised the same peptides. The other peptides recognised 

with high MFI values were recognised by a single MAb.  
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Table 6.13 – The three peptides with highest 
MFI for each of the MAbs 
analysed. 

 
 Peptide MFI 

5G10 16 KWWESRTVRPQY 190 

 20 NTDVVNVSVLCR 110 

 35 KSVPADTRNSRR 88 

3B10 20 NTDVVNVSVLCR 2138 

 19 GRLILLCVGNNT 1399 

 5 KASTVTGFGRGT 1162 

4A12 3 QPRRRANNRRRS 3704 

 21 CRWSVRLSVPSL 1658 

 20 NTDVVNVSVLCR 1440 

4C3 20 NTDVVNVSVLCR 842 

 35 KSVPADTRNSRR 669 

 16 KWWESRTVRPQY 648 

 

 

 

The six peptides showing the highest MFI values were aligned with the predicted 

secondary structure of the betanodavirus coat protein (Figure 6.10). All peptides showing high 

MFI values could be mapped to regions of the coat protein that form areas of β-sheet 

conformation. 
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Peptide 3 Peptide 35

Peptide 5

Peptide 19

Peptide 16

Peptide 20

Peptide 21

Peptide 3 Peptide 35

Peptide 5Peptide 5

Peptide 19

Peptide 16

Peptide 20

Peptide 21Peptide 21

 

Figure 6.10 – Synthetic peptides recognised by MAbs, aligned with the secondary structure of DFNNV 
coat protein (Jnet secondary structure prediction method).  is α-helix regions and 

 is β-sheet regions. 
 

 

 

6.3.2.2  -  Polyclonal Antibodies 

 

The xMAP procedure was also used to map regions of the betanodavirus coat protein 

recognised by polyclonal antibodies from rabbit immunised with European sea bass 

betanodavirus. The results of this study are presented in Figure 6.11. Peptide 20 (1290 MFI) 

followed by peptide 13 (679 MFI) were recognised most strongly. 

 
193



Chapter 6 – Epitope mapping with synthetic peptides 

Four different regions of the coat protein were recognised by rabbit polyclonal 

antibodies: peptides 1 to 4; peptides 10 to 13; peptides 19 to 21 and peptides 28 to 30.  
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Figure 6.11 – Rabbit polyclonal antibodies binding to synthetic peptides. 
 

 

The three peptides showing the highest MFI values (peptides 10, 13 and 20) were 

located in three different regions of the coat protein (Table 6.14).  

 

 

Table 6.14 - The three peptides with 
highest MFI to rabbit 
polyclonal antibodies. 

 
Polyclonal antibodies 

Peptide MFI 
20 NTDVVNVSVLCR 1290 
13 GGYVAGFLPDPT 679 
3 QPRRRANNRRRS 511 
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After aligning these peptides with the predicted secondary structure of the 

betanodavirus coat protein, peptide 20 was found to correspond to region with B-sheet 

structure. Peptide 13 has a mixture of α-helix and β-sheet regions (Figure 6.12). 

 

 

Peptide 3

Peptide 13

Peptide 20

Peptide 3

Peptide 13

Peptide 20

  

Figure 6.12 – Synthetic peptides recognised by polyclonal antibodies aligned with the 
secondary structure of DFVVN coat protein (Jnet secondary structure prediction 
method).  is α-helix regions and  is β-sheet regions. 
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6.3.2.3  -  European sea bass sera 

 

The xMAP procedure was also used to study the interaction between fish (European 

sea bass) antibodies and the coat protein of betanodavirus. Nine serum samples, obtained from 

a natural VNN outbreak in Greece, were used in this study. 

 

6.3.2.3.1 -  Negative control serum samples 

 

For negative controls, fish sera were obtained from European sea bass held at 

Machrihanish fish farm. This fish have never been exposed to a betanodavirus infection. All 

the peptides showed a degree of non-specific binding to the fish serum (Table 6.15).  

 

Table 6.15 – Negative control, European sea bass 
sera, binding to synthetic peptides.  

 
Machrihanish fish serum 

Peptide MFI  Peptide MFI 
1 44  19 53 
2 50  20 168.5 
3 256  21 175.5 
4 65  22 72.5 
5 60  23 85 
6 76  24 31.5 
7 30  25 42.5 
8 40.5  26 69 
9 50  27 70.5 

10 83.5  28 66.5 
11 89  29 211.5 
12 125.5  30 214.5 
13 107  31 93 
14 44.5  32 77.5 
15 41  33 78.5 
16 198.5  34 60 
17 72.5  35 144.5 
18 67  36 86 

 

This was considered a result of natural binding capacity of fish serum to the synthetic 

peptides being used as background. This background value obtained per peptide was 

subtracted from the corresponding peptide for infected European sea bass (Sb).   
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6.3.2.3.2 -  Serum samples betanodavirus infected European sea bass 

 

European sea bass serum sample 1 (SB1) showed high MFI towards peptides 15 and 

16 (1113 MFI and 1030 MFI, respectively), however the highest value was obtained with 

peptide 21 (2108 MFI) (Figure 6.13). These peptides mapped to the two main regions of the 

coat protein (peptide 15-16 and 19-21). Other regions are comprised by singular peptides as 

number 3 and 12. 
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Figure 6.13 – European sea bass antibodies binding to synthetic peptides (  sample 1 

and  sample 3). 
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 Sample 3 (SB3) strongly identified peptide 20 (1394 MFI) and peptide 1 (612 MFI) 

(Figure 6.14). 

 Serum sample 4 (SB4) revealed similar affinities for peptide 1 and peptide 16, (1224 

MFI and 1207 MFI respectively) (Figure 6.14). Peptide 16 belongs to a region, defined by 

amino acid residues 141-212 (peptides 15-21) that reveal high binding (MFI) values.  
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Figure 6.14 - European sea bass antibodies binding to synthetic peptides (  sample 4 and 

 sample 7). 
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SB7 bound most strongly to peptide 10 (1297 MFI), followed by peptide 19 (1107 

MFI). Peptides 21 and 22 have similar affinities to SB7 with an MFI of 883 and 888, 

respectively. These two peptides with peptide 19 comprise a regions of the coat protein 

recognised by SB7 antibodies. Other regions are not so easy to define because the peptides are 

located throughout the coat protein (Figure 6.14). 

 

Serum sample 10 (SB10) showed similar binding affinities to peptides 1, 22 and 10 

(891, 879 and 802 MFI, respectively) (Figure 6.15).  
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Figure 6.15 – European sea bass antibodies binding to synthetic peptides (  sample 10 
and  sample 15). 
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Fish serum sample 15 (SB15) showed relatively higher specificity for the synthetic 

peptides (Figure 6.16). This sample yielded MFI values that were lower than those recorded 

for other serum samples. Peptides 20-21 were recognised with the highest MFI (621 MFI and 

381 MFI, respectively). A further region was recognised by sample 15. This comprised 

peptide 1, which is located near the N terminus of the coat protein.  

 

Serum sample 17 (SB17) recognised one region comprising peptides 20 and 21 (MFI 

values with 745 and 1161 respectively). Peptide 1 and peptide 12 were also recognised with 

high MFI values (Figure 6.16). 

 

0

200

400

600

800

1000

1200

1400

pe
p.

 1

pe
p.

 3

pe
p.

 5

pe
p.

 7

pe
p.

 9

pe
p.

 1
1

pe
p.

 1
3

pe
p.

 1
5

pe
p.

 1
7

pe
p.

 1
9

pe
p.

 2
1

pe
p.

 2
3

pe
p.

 2
5

pe
p.

 2
7

pe
p.

 2
9

pe
p.

 3
1

pe
p.

 3
3

pe
p.

 3
5

M
FI

SB17 

 
Figure 6.16 – European sea bass antibodies binding to synthetic peptides (sample 17). 
 

 

 

6.3.2.3.2.1 SB2 and SB9 

 

Serum samples SB2 and SB9 did not recognised betanodavirus when assessed by 

ELISA. These samples were used as negative controls, both SB2 and SB9 showed similar 

levels of MFI to the peptides as the samples from infected fish (Figure 6.17). 
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European sea bass serum sample SB2 exhibited the greatest level of binding to any 

peptide (peptide 10, 2239 MFI). This fish serum sample recognised two consecutive peptides, 

15 and 16, with the second and the third highest binding value with 2168 MFI and 1435, 

respectively. With this sample it is possible to distinguish several peptides or group of 

peptides of the coat protein with high MFI values. The peptides/regions are peptide 3, 10 and 

peptides 15-16 and 20-23. 

 

 
Figure 6.17 – European sea bass antibodies binding to the synthetic peptides (  sample 2 

and  sample 9). 
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Serum sample 9 (SB9) showed the greatest level of binding to peptide 21 (2164 MFI). 

As was observed for sample SB2, sample SB9 bound to two consecutive peptides, 15 and 16, 

(1620 MFI and 1595 MFI respectively). Sample SB9 also strongly recognised peptide 3 (1210 

MFI) and peptide 10 (1273 MFI).  

 

 

6.3.2.3.3 -   European sea bass sera – analysis of the peptides recognised most 

strongly 

 

The three peptides recognised by the serum samples with the greatest MFI values 

were submitted to further analysis. The three peptides recognised most strongly (i.e. three 

highest MFI values) by each fish serum sample are shown in Table 6.16. These peptides map 

to two major regions of the coat protein defined by peptides 15-16 and peptides 18-22. The 

region comprising peptides 15-16 (aa 141-162) was recognised by five sera, and the region 

comprising peptides 18-22 (aa 171-222) was recognised by eight sera. Additionally, peptide 1 

(aa 1-12) was recognised by four serum samples. 

Using this approach the most commonly recognised peptides were peptides 1, 16 and 

21. These peptides were recognised by four of the nine fish serum samples analysed. One 

third of the fish serum antibodies recognised peptides 10, 15 and 21. Peptides 19 and 22 were 

recognised by two of the fish samples, and a single serum sample recognised peptide 18 and 

peptide 12.  

The same three peptides were recognised by SB1 and SB9 (15, 16 and 21). These 

peptides were identified by serum sample SB2, however, this sample recognised peptide 10 as 

opposed to peptide 21. Both samples SB7 and SB10 bound strongly to peptides 10 and 22. 

SB15 and SB17 both showed high binding levels to two peptides, 20 and 21. 
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Table 6.16 - The three peptides showing the highest MFI values to each of the European sea 
bass samples analysed.  

 
 Peptide MFI   Peptide MFI 

SB 1 21 CRWSVRLSVPSL 2108  SB 9 21 CRWSVRLSVPSL 2164 

 15 LQATRGAVVAKW 1113   15 LQATRGAVVAKW 1620 

 16 KWWESRTVRPQY 1030   16 KWWESRTVRPQY 1595 

SB 2 10 RLGHAARIFQRY 2239  SB 10 1 MVRKGEKKLAKP 891 

 15 LQATRGAVVAKW 2168   22 SLETPEETTAPI 879 

 16 KWWESRTVRPQY 1435   10 RLGHAARIFQRY 802 

SB 3 20 NTDVVNVSVLCR 1394  SB 15 21 CRWSVRLSVPSL 621 

 1 MVRKGEKKLAKP 612   20 NTDVVNVSVLCR 381 

 18 SGKEQRLTSPGR 349   1 MVRKGEKKLAKP 361 

SB 4 1 MVRKGEKKLAKP 1243  SB 17 21 CRWSVRLSVPSL 1161 

 16 KWWESRTVRPQY 1071   20 NTDVVNVSVLCR 745 

 19 GRLILLCVGNNT 754   12 IQPMCPANTGGG 474 

SB 7 10 RLGHAARIFQRY 1377      
 19 GRLILLCVGNNT 1117      
 22 SLETPEETTAPI 879      
 
 

The peptides showing the three highest binding levels for each fish serum sample 

were mapped onto a computer predicted model of the secondary structure of the beta-

nodavirus coat protein. (Figure 6.18). One peptide (#10) mapped to a region predicted to form 

an α-helix. The other peptides mapped to regions of the coat protein that form β-sheets.  
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Peptide 1

Peptide 10

Peptide 5

Peptide 19

Peptide 16

Peptide 20

Peptide 21

Peptide 12

Peptide 15

Peptide 18

Peptide 22

Peptide 1

Peptide 10

Peptide 5Peptide 5

Peptide 19

Peptide 16

Peptide 20

Peptide 21Peptide 21

Peptide 12

Peptide 15
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Figure 6.18 – Synthetic peptides recognised by fish antibodies aligned with secondary 

structure of DFNNV coat protein (Jnet secondary structure prediction method). 
 is α-helix regions and  is β-sheet regions. 
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6.3.3 - Comparison of peptides recognised by mouse, rabbit and fish 
antibodies 

  

The three peptides recognised most strongly by each monoclonal antibody or serum 

sample are presented in Figure 6.19 and Table 6.17.  
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Figure 6.19– The three peptides recognised most strongly (i.e. highest MFI) by  mouse MAbs,  
rabbit polyclonal antibodies,  European sea bass antibodies). 
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Antibodies from mouse, rabbit, and European sea bass recognised peptide 20. All of 

the mouse MAbs, the rabbit polyclonal sera, and one third of the fish serum samples identified 

this peptide, which mapped to amino-acid residues 191-202 of the coat protein. Peptide 16 

was recognised by four fish sera and two MAbs. Peptide 21 was recognised by one MAb 

(4A12) and four fish serum samples. Peptide 19 was also strongly recognised by one MAb, 

but only two fish serum samples. The region defined by peptides 18-22 contained almost half 

of the peptides that were recognised most strongly. 

 

Table 6.17 – The three peptides recognised most strongly by Mabs and serum samples. 
 

Peptide Coat protein residue Antibody 
1 MVRKGEKKLAKP 1-12 SB3, SB4, SB10, SB15 
3 QPRRRANNRRRS 21-32 4A12, Poly 
5 KASTVTGFGRGT 41-52 3B10 

10 RLGHAARIFQRY 91-102 SB2, SB7, SB10 
12 IQPMCPANTGGG 111-122 SB17 
13 GGYVAGFLPDPT 121-132 Poly 
15 LQATRGAVVAKW 141-152 SB1, SB2; SB9 

16 KWWESRTVRPQY 
 

151-162 
 

4C3, 5G10, SB1, SB2, 
SB4, SB9 

18 SGKEQRLTSPGR 171-182 SB3 
19 GRLILLCVGNNT 181-192 3B10, SB4, SB7 

20 
 

NTDVVNVSVLCR 
 

191-202 
 

3B10, 4A12, 4C3, 5G10, Poly, 
SB3, SB15, SB17 

21 CRWSVRLSVPSL 201-212 4A12, SB1, SB9, SB15, SB17 
22 SLETPEETTAPI 211-222 SB7, SB10 
35 KSVPADTRNSRR 41-30 4C3, 5G10 

Note - MAbs: 3B10, 4A12, 4C3 and 5G10 
        - Polyclonal antibodies: Poly 
        - European sea bass: SB1, SB2, SB3, SB4, SB7, SB9, SB10, SB15 and SB17  

 

 

Some peptides were recognised by antibodies from only one of the species studied. 

Peptides 5 and 35 were only identified by mouse antibodies. Peptide 13 was only recognised 

by rabbit polyclonal antibodies, and peptides 1, 10, 12, 15, 18 and 22 by fish antibodies. 

The warm blooded species, mouse and rabbit, were the only ones that strongly 

recognised peptide 3. 
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The three peptides recognised most strongly by each antibody or serum sample were 

mapped onto a hydropathicity profile of the betanodavirus coat protein produced using the 

method described by Kyte and Doolittle (1982).  

As can be observed in Figure 6.20, peptide 3 mapped to the most hydrophilic region 

of the coat protein and was only identified by MAb 4A12 and rabbit polyclonal sera. Peptide 

19 which is strongly recognised by one mouse MAb and two European sea bass sera maps to 

the most hydrophobic region. Peptide 1 is hydrophilic and peptide 15 can be considered 

neutral. These peptides were recognised only by European sea bass sera. The first residues of 

peptides 5, 13, 10, 16 and 35 are hydrophobic but most of the peptide sequence is hydrophilic. 

Peptides 12, 20, 21 and 22 have different behaviour in the plot but they are all hydrophobic.   

The most hydrophobic region (peptide 19-22) is recognised by all the mouse MAbs, 

the rabbit polyclonal and eight of nine fish sera samples.   

 

1 10

 
Figure 6.20 – Positions of the most strongly recognised peptides mapped onto a hydropathicity plot of 

the betanodavirus coat protein. 
 

 

Mapping of peptides that were most strongly recognised by antibodies onto the 

predicted secondary structure of the coat protein indicates that the majority of these peptides 

belong to regions comprised of β-sheet (Figure 6.21). Only peptide 10 mapped to a region of 
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the coat protein that possessed an α-helical structure. A mixture of β-sheet and α-helix region 

can be observed in peptide 13 mapped to a region containing both β-sheet and α-helix 

structure. 

 
 
 

Peptide 1

Peptide 10

Peptide 5

Peptide 3

 
Figure 6.21 – The most strongly recognised peptides aligned with the secondary structure of 

DFNNV coat protein. The red boxes show the peptides that were recognised by 
more than 1 species.  is α-helix regions and  is β-sheet regions. 
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6.4 -   Discussion  

 

This discussion is divided into four sections. Section one focuses on the use of SAT 

technology and synthetic peptides for epitope mapping studies.  Section two deals with the 

validity of the experimental results. In section three, the peptides predicted to be of greatest 

significance in epitope mapping studies are highlighted and mapped onto the native structure 

of the betanodavirus coat protein. Finally in section four, the results of the present study are 

compared and contrasted with those obtained from other epitope mapping studies of 

betanodaviruses. 

 

 

Section 1 - SAT technology and synthetic peptides       

 

In the first part of this section, assay optimisation and accuracy are discussed. This is 

followed by a discussion of the use of synthetic peptides in epitope mapping studies. 

 

Optimisation 

 

The epitope mapping procedure used in this thesis was based on two principles:  - 

the ability of flow cytometry to distinguish separate sets of labelled beads based on their 

unique optical properties. Results are expressed as fluorescence intensities for each 

microsphere subset. This value is proportional to the concentration of analyte contained in 

individual samples (Yingyongnarongkul et al. 2003);  - the identification of peptide 

fragments derived from a protein molecule that are able to react with antibodies raised against 

the intact protein (Arnon and van Regenmortel, 1992). 

A Bio-Plex™ system utilising xMAP technology was used for flow cytometric 

measurements, and a panel of synthetic peptides 12 amino-acid residues in length that 

mimicked the betanodavirus coat protein were used to identify antibody binding sites. 
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Antibodies to betanodavirus from three different species were studied: mouse (monoclonal 

antibodies), rabbit (polyclonal antibodies) and European sea bass (polyclonal antibodies).  

 

As with any equipment the accuracy and reproducibility of the results obtained using 

the Bioplex™ may be influenced by a number of parameters. Validation assays were 

employed to optimise the equipment, which was also calibrated on a daily basis using 

materials supplied by the manufacturer.  

SAT assays are dependent on the consistent and predictable performance of the 

microspheres and the properties of the antibody molecules used in conjugates (Mandy et al.  

2001). High quality microspheres supplied by the manufacturer were used throughout the 

present study, ensuring full compatibility between the detection system and software. 

Antibody conjugates produced by Molecular Probes and recommended for SAT assays were 

also used to ensure efficient analyses.  

Optimisation of the experimental protocol was performed prior to epitope mapping 

studies. The parameters studied were sample incubation period, and concentrations of sample, 

primary antibody and reporter molecule (Table 6.11). The optimal incubation times for use in 

Bio-Plex™ based assays is currently undefined. Whilst some data suggest that short incubation 

periods are advantageous (Pickering et al. 2002b, Seideman and Peritt, 2002, Kellar and 

Douglass, 2003) other studies suggest that the opposite is true (Vignali, 2000) and that short 

sample incubation periods can reduce assay sensitivity up to 100 fold. Two incubation periods 

were used in the present study: 1 hour at room temperature and overnight at 4°C. Overnight 

incubation yielded superior results. For logistical reasons (costs; time) extensive analyses of 

the effects of incubation temperature and duration were not performed. However, it is possible 

that shorter incubation times could be employed in combination with different incubation 

temperatures as described by Dasso et al. (2002) and Prabhakar et al. (2002). 

The optimal concentration of antibodies used in SAT assays was found to vary 

according to the host species. Polyclonal rabbit and fish antibodies were used at a dilution of 

1:250 and 1:25 (v/v), respectively. Purified MAbs were used at a concentration of 100 μg ml-1. 
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This is a relatively high value in comparison to the detection levels that can be obtained for 

cytokines (1.6 to 32000 pg ml-1) and pesticides (0.1 to 300 ng ml-1) (Jenmalm et al. 2003, 

Biagini et al. 2004b). This may be due to the fact that antibodies raised against a native 

protein antigen usually show lower affinities for binding to fragments of the antigen (Sachs et 

al. 1972). This lower affinity has been related to the absence in the peptide of a portion of a 

determinant residue; conformational differences between peptides and the native molecule; 

and the absence in the peptide of long-range effects (e.g. electrostatic) that may exist in the 

native protein (Al Moudallal et al. 1982).  

The sensitivity of SAT assays may be influenced by ratio of reporter molecules per 

microsphere and the number of microspheres with the same classification address. As long as 

both of these values exceed one hundred, statistical limitations imposed by the Poisson 

distribution have a nominal effect (Mandy et al. 2001). These limitations were avoided by 

careful assay optimisation, and the use of a concentration of 25 μg ml-1 of PE-conjugated 

antibody in all assays. Furthermore, a minimum of 100 beads per analyte were used as 

recommended.  The requirement for just 100 readings is due to the fact that reaction on the 

microsphere surface is uniform between microspheres (McHugh, 1994).  

 

Synthetic peptides 

 

The length and overlap of synthetic peptides are significant factors that can influence 

epitope mapping analyses. In the present study, synthetic peptides twelve amino acid residues 

in length were chosen. Adjacent peptides overlapped by two amino acid residues. The ideal 

length of synthetic peptides used in epitope mapping studies is not known with certainty. 

Sumar (2001) suggested that the ideal overlapping can be calculated using the formula: 

 

X= [n-(n-1)]  
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where: X is the number of overlapping residues and n is the number of residues of the 

protein. 

As a first approach synthetic peptides should not be shorter then eight residues and 

with an overlap of five residues (Tribbick and Rodda, 2002), instead of the seven residues 

recommended when using the formula mentioned above. However, several works have been 

performed using different peptide sizes with good results. Peptides 15 residues in length were 

used for epitope mapping of the fish virus Viral Haemorrhagic Septicaemia Virus (VHSV) 

(Estepa and Coll, 1996) and peptides 13 residues in length were used for epitope mapping of 

the G glycoprotein of Herpes Simplex Virus type 2 (Liljeqvist et al. 2002). Decapeptides have 

also been widely used for epitope mapping many different proteins, for instance anti-troponin 

(Filatov et al. 1998), Beet Necrosis Yellow Vein Virus (BNYVV) (Commandeur et al. 1994) 

and interleukin-10 (Reineke et al. 1998). The epitope mapping of interleukin-10 by these 

authors was also successful when peptides 6 residues in length were used. Thus previous 

studies suggested that synthetic peptides 12-residues in length could be used successfully and 

represented a balance between maximising the efficacy of epitope mapping and the funding 

available for the project.  

However, the use of such peptides should be borne in mind during interpretation of 

results. For example, use of longer peptides could explain why several peptides were 

recognised by many of the antibodies analysed. An increase in the peptide length has been 

associated with an increase in the number of peptides identified (Geysen et al. 1987a). 

Furthermore, the detection of some epitopes may be compromised by the use of synthetic 

peptides that overlap by only two residues. (Sumar, 2001). The use of greater numbers of 

synthetic peptides of shorter length was not possible in the present study due to financial and 

logistical constraints. However, in future studies, the use of a set of synthetic peptides of 

reduced length and with greater overlap could facilitate the identification of epitopes on the 

betanodavirus capsid protein with greater resolution, especially within the regions that are 

predicted to be of significance based upon the present study. 
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Section 2 - Validity of the assay 

 

In this section, the precautions taken to ensure assay validity are discussed.  

 

Several precautions were taken to ensure validity of the assay. Negative controls were 

incorporated to confirm the specificity of results. These comprised a Betanodavirus-negative 

sea bass serum sample, and a mouse MAb; and two control peptides (with the same amino 

acid composition as two test-peptides, but synthesised in the reverse sequence (i.e. C terminus 

- N terminus). The latter were designated peptides 35 and 36. 

The specificity of the interaction between antibodies or serum samples with synthetic 

peptides was supported by the lack of affinity of MAbs raised against the fish parasite 

Tetracapsuloides bryosalmonae towards the panel of peptides. The lack of reaction between 

an unrelated antibody (anti-Tetracapsuloides bryosalmonae MAb) and the panel of peptides 

reinforced confidence in the specificity of the nodavirus epitope mapping data. 

In order to assess the specificity of European sea bass sera to synthetic peptides two 

different types of serum samples were used. The first type comprised two European sea bass 

serum samples that exhibited no activity to betanodavirus as determined by ELISA. However, 

in SAT assays, these serum samples demonstrated strong binding to the panel of synthetic 

peptides. This could be due to the relatively greater sensitivity of SAT assays as compared to 

ELISA (Carson and Vignali, 1999, Biagini et al. 2004a, Biagini et al. 2004b). Furthermore, at 

lower concentrations of analyte, SAT microspheres have been demonstrated to be four times 

more sensitive than assays performed using the microtitre plate format (McDade and Spain, 

1997).  

The second type of negative control serum was obtained from European sea bass that 

had never been exposed to betanodavirus. This European sea bass serum showed non-specific 

binding to synthetic peptides. This fluorescence was considered to represent non-specific 

background, and on this basis was subtracted from all the fluorescence values of all test 

samples. 
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The use of peptides synthesised in the reverse sequence as controls yielded 

contradictory results. None of the serum samples analysed recognised control peptide 36 but 

MAbs 4C3 and 5G10 recognised control peptide 35, showing high MFI values. The ability of 

these MAbs to recognise control peptide 35 could be due to the presence of common residues 

between this peptide and the recognition target of the MAbs studied (Saul and Alzari, 1996). 

The recognition of this peptide indicates that epitope mapping with synthetic peptides requires 

careful interpretation. Pepscan results are presented such that all of the peptides recognised by 

a given MAb or serum sample are evident.  

 

 

Section 3 – Discussion of pepscan results 

 

Discussion of the pepscan results is divided into three sub-sections. The first sub-

section compares and contrasts the results obtained with antibodies from different host 

species. The second sub-section comprises an analysis of the synthetic peptides that were 

most strongly recognised by antibodies/serum samples. In the final sub-section, the peptides 

recognised by antibodies/serum samples are discussed with reference to the structure of the 

betanodavirus coat protein. 

 

Comparation of pepscan data obtain with antibodies from different species 

 

The immune systems of different species may react to different sets of epitopes in a 

given antigen (Geysen et al. 1984). In this thesis, the recognition sites of mouse MAbs, rabbit 

antibodies and European sea bass sera were characterised using synthetic peptides that 

mimicked the betanodavirus coat protein. Antibodies and serum samples from all species 

studied exhibited similar levels of binding to synthetic peptides. Maximum MFI values were 

3704, 2138, 842 and 190 for the four mouse MAbs; 1290 for rabbit polyclonal antibodies; and 
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2239, 2164, 2108, 1394, 1377, 1243, 1161, 891 and 621 for the nine European sea bass serum 

samples. 

 

Mice and rabbit were immunised with a standardised betanodavirus preparation 

facilitating a comparison of the immune responses in these species. Both mouse and rabbit B-

cell immune responses were directed against two principal regions of the betanodavirus coat 

protein defined by peptides 1-5 and 19-21. Additionally, mouse MAbs recognised another 

region represented by peptide 15-16. Rabbit polyclonal antibodies also recognised two further 

regions (peptides 10-13 and 28-30).   

Binding of rabbit polyclonal antibodies to several peptides is in agreement with 

previous studies. Valle et al. (1999) mapped the bacteriophage φ29 connector protein 

recognised by rabbit polyclonal antibodies and identified 11 regions. Although polyclonal 

antibody responses are frequently directed against several epitopes, in many cases, one 

epitope is recognised more strongly than the others (Carter, 1994).  

The results of the present study suggest that peptide 20 may contain a major epitope. 

This peptide was the most strongly recognised by half of the mouse MAbs analysed (3B10 

and 4C3) and by the rabbit antibodies. Peptide 20 was also amongst those most strongly 

recognised by the other two MAbs.  

When the three peptides that were recognised most strongly by each antibody/serum 

sample are compared, peptide 3 was recognised by mouse MAb 4A12 and rabbit antibodies, 

but not by the natural host (European sea bass). Similar findings have been reported in studies 

of immune responses to African Horse Sickness Virus (AHSV) (Martínez-Torrecuadrada et 

al. 2001). Further similarities in the patterns of epitopes recognised by MAbs and polyclonal 

antibodies were reported by Quesniaux et al. (1990). These studies conflict with the 

hypothesis that MAbs tend to be directed towards minor epitopes that are not 

immunodominant and are not detected by polyclonal antisera (van Regenmortel, 2000). 
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The mouse MAbs studied recognised several epitopes. At first sight, this is a 

surprising result since a MAb should only recognise a single target sequence (Carter, 1994). 

Short peptides are believed only to be capable of mimicking linear or continuous epitopes. 

Thus antibodies recognising short synthetic peptides are believed to be directed against linear 

epitopes (van Regenmortel, 1990a). However, a linear epitope defined by a single peptide may 

represent a part of a larger discontinuous epitope present on the native antigen (van 

Regenmortel, 1989b). Carter (1994) has hypothesised that an antibody recognition site may be 

comprised of two or three discontinuous regions of a protein sequence that fold into a discrete 

conformation. In this thesis, mice were immunised with a live betanodavirus for production of 

MAbs. Thus, B-cell clones selected during the production of MAbs may be directed against 

portions of discontinuous epitopes that are created by the molecular folding which forms the 

three dimensional structure of a protein antigen. Consequently, individual synthetic peptides 

may represent fractions of a discontinuous epitope present on the native virus coat protein. 

Accordingly, it is possible for MAbs derived from an immunisation with intact virus to 

recognise more than one synthetic peptide in epitope mapping studies as occurred in the 

present study. Similar findings have been described in epitope mapping studies of β-factor 

XIIa (a component of human blood coagulation factor XII), where multiple peptides located 

throughout the protein were recognised by mouse (Gao and Esnouf, 1996). 

 

The spectrum of epitopes recognised in antiviral immune responses varies between 

individuals of the same host species, the route of infection, and the strain of virus  (de Vegvar 

and Robinson, 2004). Idiosyncrasies are evident in immune responses by individual European 

sea bass. The peptides that were recognised most strongly (20 % highest MFI) by each 

European sea bass serum are located in two large regions that span almost all of the coat 

protein. This type of immune response may be a reflection of unique characteristics of fish 

immune systems. It is known that the major immunoglobulin class (IgM) of fish that exhibits 

neutralising activity towards bacteria and viruses is similar in structure to IgM of higher 

vertebrates (Shelton and Smith, 1970). In fish of the class Actinopterygii, IgM forms a 
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tetramer instead of the pentamer structure displayed by IgM in higher vertebrates ([Pilstrøm 

1998]). These structurally diverse and flexible IgM tetramers may easily provide binding 

capabilities through cross linking not available to higher vertebrates (Kaattari et al. 1999). 

These authors suggest that the flexibility in accommodating differentially spaced epitopes 

could serve to increase the avidity of binding over a more rigid, fully-polymerised form. A 

more flexible array of Fabs would be able to accommodate more epitopes by physically 

adjusting in orientation, enabling an antibody to bind a wider range of epitopes (Kaattari et al. 

1999). The versatility of fish IgM might compensate for the lack of a diverse antibody 

response such as that found in higher vertebrates. 

When the three peptides recognised most strongly by European sea bass sera are taken 

into consideration, the majority of samples were found to be directed against four regions of 

the coat protein defined by: a) peptide 1; b) peptide 10-12; c) peptide 15-16; and d) peptide 

18-22. Mouse MAbs and rabbit polyclonal antibodies also identified two of these four regions, 

suggesting that there are similarities in antibody responses between these species. Similar 

findings have been reported for immune responses to varicella-zoster virus by Fowler et al. 

(1995), who suggested that some of the differences in immune responses by mice and humans 

may have been due to differences in the form of antigen presented to the immune systems of 

these species. In the present study, European sea bass were naturally infected with 

betanodavirus, whereas mice and rabbits received a virus/adjuvant preparation.  

All the antibody samples analysed showed reactivity to several peptides with different 

amino acid sequences. This may be due to the fact that these peptides contain a sufficient 

proportion of the amino acids that comprise the recognition site of a given antibody (van 

Regenmortel, 1999). Some of the residues in a linear epitope can be replaced by any of the 

other 19 amino acids without impairing antigenicity, and the linear fragment may in fact be 

antigenically discontinuous (Geysen et al. 1988). Thus, peptides of differing primary amino 

acid sequence may be antigenically similar. In the absence of crystallographic data on the 

peptide-antibody complex, it is not clear whether such replaceable residues actually interact 

with the antibody only through their main chain or whether they play merely an indirect role 
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by acting as a scaffold to bring the neighbouring essential residues at the required location for 

contacting the antibody (van Regenmortel, 2001).  

 

Comparation of pepscan data with respect to betanodavirus coat protein 

structure  

 

The recognition of a synthetic peptide by an antibody does not necessarily establish 

the presence of a continuous epitope in the corresponding region of the protein (van 

Regenmortel, 1992). Consequently the interpretation of epitope mapping studies such as those 

reported in this thesis is not straightforward.  

 

Rabbit antibodies, mouse MAbs and 5/9 of the fish serum analysed identified the 

region comprised by peptides 20 and 21 (coat protein amino acids 191-212, see Table 6.17). 

The identification of this region by many diverse antibodies/sera suggests that it may 

represent a significant immunogenic domain. When peptides 20 and 21 are aligned together, it 

is evident that they posses similarities in amino acid sequence. This comprises two residues 

(CR) flanked by SV residues on the N and C termini, suggesting that the amino acid sequence 

SVxCRxSV is potentially an important epitope that is recognised by the majority of the 

antibody/serum samples analysed. This hypothesis is experimentally testable, and has 

important implications for the design of immunodiagnostic reagents and vaccines to counter 

betanodavirus infections.  

The region represented by peptides 15 and 16 (amino acids 141-162) was recognised 

by three European sea bass serum samples (SB1, SB2 and SB9). When peptides 15 and 16 are 

aligned, it is possible to observe a common motif, in which, lysine-tryptophan residues, 

overlapped residues between the peptides (Figure 6.22, residues labelled in red), are flanked 

by glutamine residues at a spacing of 8 residues. Arginine residues also flank the tryptophan 

at a spacing of 6 residues  (QxxRxxxxxKWxxxxxxRxQ).  
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A similar motif is also present in peptide 21 (amino acids 201-212) recognised by 

serum samples SB1 and SB9. Arginine (R) proline (P) residues occur at the same spacing 

from a tryptophan (W) residue (Figure 6.22, residues labelled in blue). Valine  (V) and serine 

(S) residues also occur at the same positions in peptide 16 and peptide 21 (Figure 6.22, 

residues labelled in green).  

 

Peptide 15/16      LQATRGAVVAKWWESRTVRPQY 
Peptide 21                   CRWSVRLSVPSL 

 

 

Figure 6.22 – Alignment of peptides 15, 16 and 21 recognised by SB1 and SB9. In 
red can be visualised the overlapping residues of peptide 15 and 
16. In bold are the amino acids with the same spacing to KW. In 
blue are the consensus amino acids of peptide 16 and 21 and in 
green the similar residues between the two sequences.   

 

 
 
 

 
Figure 6.23 – The 3D view of the nodavirus coat 

protein showing the amino acid 
residues identified by SB1 and SB9. 

V 158  

A 147  

A 150 

Q  161  
P 160  

V 149  

R 156  

S 151  

W 152 
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When all of these peptide sequences are taken into consideration, it is possible that 

residues W, V, S, R, P and Q are involved in the recognition site of serum samples SB1 and 

SB9. This conclusion is supported by the predicted three-dimensional structure of the 

betanodavirus coat protein (Figure 6.23). Protein folding brings peptides 20 and 21 into 

proximity, and shows that peptide 16 shares residues in common with this region.  

 

Comparison of peptide 10 (amino acids 91-102) with peptides 15 and 16 suggests that 

serum sample SB2 recognises a different epitope (Figure 6.24). The overlapping residues, 

lysine and tryptophan (KW) are flanked by an  alanine residue (A) and an aromatic amino acid 

(W). An arginine (R) occurs in the fifth positions before the alanine (Figure 6.24, residues 

labelled in blue). The same motif occurs, RxxxxAxxF is also present in peptide 10.  

 

 

Peptide 15/16      LQATRGAVVAKWWES TVR
Peptide 10             RLGHAARIFQRY 

RPQY 

 

Figure 6.24 – Alignment of peptides 15, 16 and 10 recognised by SB2. In red 
can be visualised the overlapping residues of peptide 15 and 16. 
In bold the amino acids that with the same distance to KW. In 
blue the consensus amino acids of peptide 10 and peptides 15-16 
and in green the similar residues between the two sequences.   

 

 

Both peptides 16 and 10 contain glutamine (Q) and tyrosine (Y) residues near their C 

termini.  

Based on analysis of the amino acid sequences of the peptides recognised by serum 

sample SB2, it is possible that the target epitope of this serum comprises K, A, W/F, Q and Y. 

The 3D structure of this sample does not confirm the epitope content, because the folding of 

the protein does not bring together peptide 10 and peptide 15-16 region  (Figure 6.25). 
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Only serum samples SB1, SB2, and SB9 contained aromatic amino acid residues (W, 

F and Y). Relative scarcity of aromatic amino acids in B cell epitopes has also been identified 

in lysozyme (Davies and Cohen, 1996).  

 

 

Q 100 R 101 

A 147 

A 
143 

   P 160   A 97 

Peptide 
15-16 

Peptide 
10 

Figure 6.25 – The 3D view of the nodavirus coat protein 
showing the amino acid residues identified by 
SB2. 

 
 

 

The same three peptides (16, 20 and 35) were recognised most strongly (i.e. highest 

MFI values) by mouse MAbs 4C3 and 5G10. Peptide 35 was used as a negative control. If the 

MFI obtained with the control peptide 35 is considered to represent background fluorescence 

and used as a cut-off value, MAb 4C3 only binds to peptide 20 and MAb 5G10 binds to 

peptides 16 and 20. Analysis of the amino acid sequence of these peptides and 3D structure of 

the coat protein suggest that Serine (S), Valine (V), and Arginine (R) are present within the 

epitope recognised by these Mabs (Figures 6.26 and 6.27).  
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Figure 6.26 – Alignment of peptides 16 and 20 recognised by 
MAb 5G10. In blue the consensus amino acids 
of peptide 16 and 20. In bold the common 
residues between the two peptides 

 

 

 

 

Peptide 16         KWWESRTVRPQY 
Peptide 20     NTDVVNVSVLCR 

S 204 

R 202 
V 158 

S 155 

 
Figure 6.27 - The 3D view of the nodavirus coat 

protein showing the amino acid 
residues identified by MAbs 4C3 
and 5G10. 

 

 

However, the amino acid residues (S, V and R) that are predicted to be present in the 

epitopes recognised by MAbs 4C3 and 5G10 may not be the crucial residues for the binding 

of these MAbs. This is because in neutralisation and cross-reactivity assays, 4C3 and 5G10 do 
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not exhibit equivalent binding patterns which suggests that the epitopes recognised by these 

two MAbs may not be composed of the same residues. The MAbs were produced by 

immunisation of mouse with a European sea bass nodavirus strain, but 5G10 is also cross-

reacts by ELISA (Chapter 3) with Atlantic cod and halibut strains, and is capable of 

neutrali

protein 

akes the functional epitope 

much smaller than the structural epitope (van Regenmortel, 2000). 

sing the European sea bass and Atlantic cod strains.  

Epitope mapping studies of the glycoprotein of Viral Haemorrhagic Septicemia Virus 

(VHSV) glycoprotein also identified conformation constraints. In this case, peptide 

recognition only occurred with non-neutralising MAbs (Fernandéz-Alonso et al. 1998). These 

authors concluded that a glycoprotein neutralising epitope was only available when the 

was in the native form and situated on the surface of the infected cells. 

The results of the present study which suggest B-cell epitopes can be comprised of 

several regions of a polypeptide molecule are supported by X-ray crystallographic analysis of 

protein structure. The surface area of the interaction between an antibody and an antigen 

varies from 600-900 Å2, involves 14-20 amino acid residues, is discontinuous, and is formed 

from two to five separate stretches of the antigen polypeptide chain (Laver et al. 1990, Saul 

and Alzari, 1996, van Regenmortel, 2000). Calculations suggest that a smaller sub-set of 3 to 

6 of these residues contributes most of the binding energy, with the surrounding residues 

merely "indulging in complementarity" (Laver et al. 1990). The disproportionate contribution 

of such a small number of residues to the overall binding energy m

 

The fact that different peptides are recognised by MAbs is not surprising, and 

supports the idea that almost any part of the surface of a protein may be antigenic (Benjamin 

et al. 1984). The capacity for immune recognition of several sites of a pathogen is 

advantageous to the host, and facilitates effective immune responses against pathogens. This 

is particularly true for RNA viruses, which exhibit high rates of evolution and variability. 

Similar findings have been described in mouse humoral immune responses to influenza A 

virus (Hatta et al. 2000). Involvement of different amino acid residues within an epitope in 
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antibody binding has been reported in immune responses to human epithelial mucins (MCU1) 

protein core, molecules associated with secretory epithelia and with carcinoma of breast, 

ovary and other tissues (Petrakou et al. 1998).   

omparasion of pepscan data with respect to betanodavirus coat protein regions 

 

 

C  

fferent amino acid residues can be involved in the binding of antibodies to the coat 

protein.

 

In the present study mouse MAbs, rabbit polyclonal antibodies and European sea bass 

antibodies recognised different regions of the betanodavirus coat protein. Within a given 

region, di

  

 

The abundance of charged amino acids residues in the N terminal region of the 

betanodavirus coat protein, which possesses nine arginine residues and six lysine residues 

within the first 50 amino acids, could explain the recognition of this region by the majority of 

the antibodies studied. Basic/charged amino acids have been identified in antibody 

recognition sites in many proteins (Shi et al. 1984).  A similar abundance of arginine and 

lysine residues is present in the coat protein of insect nodaviruses and is believed to be 

involved in the interaction between the coat protein and viral RNA genome required for 

encapsidation (Sideris, 1997). This region of the coat protein plays an essential role in 

replication and thus represents a "logical" target for protective immune responses. In fact all 

of the MAbs studied that showed neutralising activity (Chapter 3) recognised a region 

comprising coat protein amino acid residues 29-52, that contains five arginine residues and 

one lysine residue. Studies performed with the betanodavirus dragon grouper NNV show the 

triple arginine motif at 29-31 to be critical for virus particles formation (Lu and Chan-Shing, 

2003). Similar studies in the alphanodavirus Flock House Virus (FHV) indicate that the region 

of the coat protein between amino acids 31 and 50 is critical for the assembly of the coat 

proteins into virus particles, and the deletion of this region completely blocks particle 
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formation (Schneemann et al. 1998). The amino acid residues 23-31 have been identified as a 

nucleolus localisation signal for greasy grouper NNV (Guo et al. 2003). Deletion of this 

region p

 of the N terminal region of the coat 

protein tentially represent an immunogenic domain. 

revents the accumulation of viral particles in the nucleolus of the cells.  

These results suggest that amino acid residues

po

 

The region of the coat protein containing amino acids 181-212 contains only two 

arginine residues and no lysine residues. However, this region was recognised by all of the 

antibodies analysed with the exception of SB2 and SB10. This region is rich in leucine (n = 6) 

and valine residues (n = 7). These amino acids are very hydrophobic. The region of the 

betanodavirus coat protein within residues 181-212 is the most hydrophobic portion of the 

coat protein (Figure 6.20). The high hydrophobicity suggests that this region is situated in the 

interior of the coat protein molecule, and not available on the surface for antibody binding. 

However, the involvement of hydrophobic residues in antibody binding has been 

demonstrated in, for example, VP1 of Foot and Mouth Diseases Virus (FMDV), in which one 

epitope not predicted to be surface-presented is largely dependent on two leucine residues for 

antibody binding (Geysen et al. 1984). The interaction of antibody and antigen involves 

conformational changes in both, that can range from insignificant to considerable (Davies and 

Cohen, 1996). The amino acid residues flanking an epitope may influence the three 

dimensional structure of the latter, or alter physicochemical properties such as 

hydrophillicity/hydrophobicity or van der Waals forces, bulkiness or charge, (van 

Regenmortel, 1992). An epitope of Herpes Simplex Virus type 2 (HSV-2) has been found to 

contain predominantly positively charged arginines and residues that are hydrophobic 

(Liljeqvist et al. 2002). This finding is in agreement with X-ray crystallographic analysis of 

antibody-antigen interactions that show that discontinuous epitopes are usually composed of 

highly charged amino acids flanking a central core of hydrophobic residues (Smith et al. 

1996, Kwong et al. 1998). This pattern occurs in the region comprising residues 181-212 of 

the betanodavirus coat protein, where the first leucine residue (L) is flanked by an arginine 
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residue (R). Two further arginines and an aspartic acid (D) are contained in this region, and 

the final leucine residue is flanked by another charged amino acid – glutamic acid (E). The 

prominence of hydrophobic residues in the most frequently recognised region suggests that 

the surface structure of the betanodavirus coat protein when combined with antibody differs 

from the native structure. This phenomenon has been identified in FMDV by Geysen et al. 

(1988). These results suggest that region (aa 181-212) is highly antigenic, and contains 

epitopes recognised by many serum samples studied in this thesis.  

e 

nodavir

 important areas of this protein may be an important strategy for 

surviva

 

The C terminus of the betanodavirus coat protein is predicted to be located at the outer 

surface of the virus capsid, and the region comprised by amino acids 83-216 forms the inner 

shell of the capsid (Lin et al. 2001, Tang et al. 2002). This is in marked contrast to the 

localisation of the C terminus of insect nodavirus coat proteins, which is on the inside of the 

folded molecule (Wery et al. 1994, Lin et al. 2001). A surface location of the C terminus 

would be predicted to make this region a primary target for antibody binding, yet this 

prediction is in conflict with the results of the present study. None of the antibodies studied 

recognised the C-terminal region. A lack of recognition of the C-terminal region of th

us coat protein by European sea bass sera was reported by Coeurdacier et al. (2003). 

The short C-terminal segment of the insect nodavirus coat protein is cleaved to yield 

mature infectious virus particles, and is believed to play a role in the delivery of viral RNA 

into host cells (Fisher and Johnson, 1993). Encapsidation of insect nodavirus (BBV) is 

mediated through the C terminus of the coat protein (Schneemann and Marshal, 1998). 

European sea bass nodavirus coat protein is shorter and is believed to lack a critical 

proteolytic cleavage site situated at C terminal residues Asn363-Ala364 (Delsert et al. 1997a). 

The lack of this functional site would confer less importance with respect to immune control. 

However, the essential role of the C-terminal region for virus particle formation has been 

demonstrated for dragon grouper NNV (Lu and Chan-Shing, 2003). The deflection of humoral 

immune responses to less

l and propagation. 
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Section 4 - Comparison with previous studies of betanodavirus epitopes 

) 

suggested that the first 14 amino acids of the coat protein contain neutralising determinants.  

B17 was the only antibody 

sample 

protein 

 

In this section results are discussed in relation to the two previous studies aimed at the 

identification of neutralising epitopes in the betanodavirus coat protein. The first of these 

studies was performed by Nishizawa et al. (1999), who identified an amino acid motif, PAN , 

in the coat protein as immunogenic. The second study performed by Coeurdacier et al. (2003

  

A putative major neutralising epitope, with the amino acid sequence PAN, has been 

predicted to occur at amino acid residues 254-256 of the coat protein of the betanodavirus 

SJNNV (Nishizawa et al. 1999). PAN is encoded by a fragment of the coat protein gene 

referred to as T4. The MAbs utilised by Nishizawa et al. (1999) also recognised a target 

situated in the T2 region of the coat protein gene of three other nodavirus genotypes. The 

cross-reactivity was mapped to a region of the coat protein located between amino acids 83-

216. This region is highly conserved (> 93 % sequence identity), whereas the T4 region is 

located in a variable region (sequence identity 62 %) that encodes amino acids 235-315 

(Nishizawa et al. 1995a). In the T2 region, a PAN sequence is situated between amino acid 

116-118. In the present study, European sea bass serum sample S

that recognised this region (contained within peptide 12).  

In the nodavirus coat protein peptides 12, 20 and 21 recognised by SB17 are brought 

together by the tertiary protein folding. It is known that antigenic sites are often complex 

conformations dependent on the tertiary folding of the protein chain (Geysen et al. 1987b). 

The software used, in the present study, to predict the betanodavirus 3D coat protein structure 

was unable to incorporate the amino acid residues 1 to 87 and 213 to 336 of the nodavirus 

coat protein. The lack of these residues was revealed by the incomplete appearance of the 

and the presence of a gap between residues N 191 and N 118 as shown in Figure 6.28.  

The three peptides sequences recognised by SB17 were compared and amino acids 

were located in the 3D structure. This analysis suggests that the amino acid residues involved 
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in SB 17 epitope are C, P, V and S. The analysis of the peptide sequences and 3D structure of 

the protein suggests that the amino acids involved in the SB17 epitope are not the linear 

“PAN” sequence as described by Nishizawa et al. (1999). However, both the PAN sequence 

and the putative epitope containing residues identified in the present study may represent 

components of a single immunogenic domain that is the target of neutralising immune 

response. This is of considerable relevance to the design of betanodavirus vaccines.  

 

Figure 6.28 – The 3D view of the nodavirus coat protein showing the amino acid residues identified by 
SB17. 

their location on cell surfaces (Thornton and Sibanda, 1983). Surface orientation of the coat 
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The region of the coat protein between amino acid 1 and 12 (peptide 1) has been 

postulated to represent a potential vaccine target in European sea bass by Coeurdacier et al. 

(2003). These authors evaluated the degree of protection conferred by immunisation with 

synthetic peptides mimicking the N-terminus (amino acids 1-14) and C terminus (amino acids 

325-338). The strong antigenicity of terminal segments of proteins is believed to arise from 
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protein N-terminus is not observed in insect nodaviruses, in which the N and C termini of the 

coat protein are situated within the interior of the molecule (Schneemann et al. 1998).  

In the present study, this region of the N-termini was strongly recognised by four of 

the European sea bass serum samples analysed suggesting that region comprising peptide 30-

50 is potentially immunogenic. The region comprised by peptide 1 (coat protein residues 1-

12) has been suggested to represent a putative immunogenic region in European sea bass 

(Coeurdacier et al. 2003) . The region represented by peptide 1 is rich in charged amino acids, 

containing four lysines and one arginine. It is known that the addition of a single lysine 

residue to a peptide can result in a ten-fold increase in antibody binding (Shi et al. 1984). This 

high content may have led to over production of antibody. However the recognition of this 

region by four European sea bass serum samples confirms that it is probably important in fish 

humoral immune response to betanodavirus. Future work on the development of vaccines 

against betanodavirus should consider the N-terminal as a potentially important immunogenic 

site. 

 

 

6.4.1 - Final reflection 
 

It is believed that this is the first time that SAT technology has been used for epitope 

mapping of a fish viral pathogen. At the time of writing, a single publication exists describing 

the use of synthetic peptides coupled to microspheres for epitope mapping of the gp41 protein 

of HIV-1 (Opalka et al. 2004) by SAT. 

The combination of SAT technology and synthetic peptides has proved to be a useful 

technique for epitope mapping of the betanodavirus coat protein but was compromised by 

background fluorescence as evident in the results obtained with peptide 35 and European sea 

bass serum. 

Further optimisation of the SAT protocol is possible. The use of different incubation 

periods and temperatures for each incubation step might yield better results. Optimisation of 
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the incubation steps may also permit smaller volumes of antibodies to be used in assays. The 

requirement for all washing steps could be confirmed, since their omission would simplify the 

protocol. 

It was possible to verify that all the antibodies analysed, mouse MAbs, rabbit 

polyclonal antibodies and European sea bass sera identified multiple peptides, which may 

have been linear fragments of discontinuous epitopes.  

Analysis of the three peptides with highest MFI values identified by each antibody or 

serum sample resulted in the identification of two regions of the coat protein which may 

represent important immunogenic domains. These are located at amino acid residues 1-50 and 

181-212, in agreement with previous studies performed by Nishizawa et al. (1999) and 

Coeurdacier et al. (2003). A further potentially immunogenic region was identified between 

amino acids 141-162 based on analysis of European sea bass sera. Further work is required to 

confirm the role of these regions as sites that are of importance in protective immune 

responses to betanodaviruses. The precise location of residues within these regions and their 

involvement in antibody binding should also be determined. Furthermore, the ability of 

synthetic peptides mimicking these regions to serve as vaccines could be investigated. The 

development of such a synthetic vaccine that could be synthesised inexpensively and 

reproducibly would be of great benefit to the aquaculture industry. 
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Chapter 7 - General discussion and future prospects  
 

 

The B-cell epitopes of a virus represent the regions of virus encoded proteins that are 

specifically recognised by the antigen binding sites of B-cell immunoglobulin receptors and 

antibody molecules (van Regenmortel, 1990a). 

Betanodavirus epitopes are poorly characterised. Nishizawa et al. (1999) suggested 

that a region defined by the amino acid sequence PAN within the coat protein was a putative 

epitope. This conclusion was based on a comparison of MAbs to recognise different 

betanodavirus genotypes with defined coat protein amino acid sequence. In 2003 Couerdacier 

et al. suggested that the first fourteen N-terminal amino acids of the coat protein constitute an 

immunogenic region. Fish were immunised with synthetic peptides mimicking both N and C 

terminal regions, but only the fish immunised with the N-terminal region produced an 

immune response. However, this study did not examine the full-length of the coat protein and 

other regions may be involved in the immune response.  

The aim of this thesis was to map B-cell epitopes in betanodavirus. The first step in 

the identification of these regions involved the production of betanodavirus monoclonal 

antibodies. Two fusions were required in order to obtain monoclonal antibodies directed 

against European sea bass NNV. Successful production of MAbs was crucial to the thesis as 

these were to be utilised to produce neutralisation escape mutants, in phage display and 

pepscan methodology in epitope mapping experiments. 

Selection and characterisation of neutralisation escape mutants was facilitated by the 

capacity of the MAbs produced in the project to neutralise betanodaviruses. This technique is 

applicable to the identification of discontinuous epitopes and is based on the isolation of 

neutralisation resistant viral clones through plaque purification. However, the betanodaviruses 

studied were refractory to plaque production, and consequently, a limiting dilution procedure 

established by Borrego et al. (2002) for swine vesicular disease virus was used. In this 

procedure, cDNA sequence analysis of putative neutralisation-resistant clones is performed 
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after an ELISA that is used to confirm that isolated virus variants are not recognised by the 

selecting monoclonal antibody. In the present study, all betanodaviruses obtained by limiting 

dilution were recognised by MAbs in the confirmatory ELISA, and so no sequencing analyses 

were performed, based on the assumption that escape mutant selection was not successful. It 

is possible that strict adherence to the protocol of Borrego et al. (2002) may have resulted in 

an inability to detect escape mutants. This is because virus recognised by a MAb in the 

screening ELISA may not necessarily be neutralised by the same antibody. Thus, the 

characterisation of potential escape mutants by neutralisation tests with the selecting antibody 

may increase the effectiveness of the procedure. This could be incorporated into future 

studies. Nucleotide sequencing of viruses recognised by MAbs in the confirmatory ELISA 

could also be performed. Financial and time constraints ruled out this approach in the present 

study. 

Monoclonal antibodies that bind to proteins in Western blot assays are almost always 

directed against linear epitopes (Morris, 1996a). The MAbs used in phage display and pepscan 

studies were shown to bind to the betanodavirus coat protein in Western Blots, indicating their 

suitability for use in these epitope mapping procedures as these techniques are more suitable 

for the identification of linear epitopes. However, a number of proteins that are completely 

denatured in Western blots have been found to renature during or after electroblotting (Wang 

and Yu, 2004). Thus it is potentially possible for epitopes recognised by MAbs in Western 

blots to possess conformational structure (Morris, 1996a, Wang and Yu, 2004). The majority 

of epitopes recognised by host antiviral responses are usually conformational (Hadlock et al. 

2000). This is of relevance to the present study as the results obtained by epitope mapping 

with synthetic peptides, suggests that the MAbs recognised a discontinuous epitope on the 

betanodavirus coat protein. 

This hypothesis may explain the results obtained using phage display. This technique 

depends on the affinity between randomly expressed peptides on the phage surface and the 

antigen recognition site of a MAb. Usually antibodies against discontinuous epitopes do bind 

linear and constrained phage libraries efficiently (Bonnycastle et al. 1996). When the spatial 
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presentation of random peptides does not match the original three-dimensional structure of the 

natural protein, binding affinity is lost (Rodi and Makowsi, 1999). This could explain why a 

clear consensus sequence was not obtained in phage display experiments. It is difficult to 

obtain epitope mapping data for discontinuous epitopes with phage display (Williams et al. 

2001). However in some cases antibodies that are directed against discontinuous sequences 

recognise phage displayed peptides (Balass et al. 1993, Luzzago et al. 1993, Birkenmeier et 

al. 1997). 

When analysing the data obtained from the phage display system Ph.D.-7™ and from 

pepscan analyses, it is possible to align the sequence of the phage clones with the synthetic 

peptides recognised in pepscan (Figure 7.1). This alignment strengthens confidence in the 

results obtained with the pepscan procedure, that identified three major epitope containing 

regions in the betanodavirus coat protein: amino acid residues 1-50 (peptide 1-5), 141-162 

(peptide 15-16) and 181-212 (peptide 19-21).  

As discussed in Chapter 5 in studies employing the Ph.D.™-7 library the high 

occurrence of phage clones containing double inserts may be due to the relatively short insert 

size (i.e. 7 residues). Confidence in this explanation is increased when the phage display 

results are considered together with the data from pepscan analysis (e.g. phage clones 1a and 

1b selected with MAb 4A12). Unfortunately the use of a phage library with a longer insert (12 

amino acid residues, Ph.D.-12™) did not produce conclusive results.  

Analysis of phage clones with double inserts also enables identification of some of the 

amino acid residues that may potentially be involved in the interaction between MAbs and 

betanodavirus. For MAb 3B10 the critical binding residues (CBRs) are represented by the 

sequence VxxxNTxV(T)xxRSVLxR. For MAbs 4A12 and 4C3 the identification of CBRs 

and their localisation in the betanodavirus coat protein amino acid sequence is less clear. 

However, for MAb 4A12, possible CBRs are SVLxRWxRLxSxPS and PrxxRAxxRxxS; and 

for MAb 4C3 NxSVLxR and KW(S)xSR. The identification of the negative control peptide 

35 by MAb 4C3 may be explained by the presence of the CBRs TxNxSR. This number of 

amino acid residues can be sufficient to allowing antibody binding, once it is been 
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demonstrated that a sub-set of 3 to 6 of these residues contributes to most of the binding 

energy (Laver et al. 1990).  

 

 MAb 3B10 
  

Peptide 19 GRLILLCVGN-NT 
Peptide 20             ...    .   NTDVVN--VSVLCR 

Ph 6             ...    .   .. .   MSSAEAR 
Ph 3             ...    .   .. .  NAMLQL-R 

Ph 9b               ...    .   .. .    RNVL-RCL 
Ph 10               ...    .   .. .    RLTL-RSL 
Ph 4b        ...    VSNMNT-V    . 

Peptide 5          ...      KAST-VTGFGRGT 
Ph 1b    ...     HYQSS-VT 
Ph 5a ...   ITPENST 

Peptide 5          KASTVTGFGRGT 
Ph 7               MNLGALP 

  
  
  

 MAb 4A12 
  

Peptide 20 NTDVVNVSVLCR 
                  ...CRWSVRL-SVPSL Peptide 21 

Ph 1a                LPTHLH-W  .. . .. 
Ph 1b                 ...  ..HRLHSYM  

                 ... HTSSKLV  .. Ph 2 
Ph 5                  SPLHAWW  .   .. 
Ph 6                     ...  .   L--LPSYIY 
Ph 7a         HYQSSVT  .   . 
Ph 7b             .GPKIWHI . 
Ph 8              HL-RHHHY.      
Ph 9a                    WQFHLPH 

  
Peptide 3 QPR--RRANNRRRS 

Ph 1b                   ..   .. HRLHSYM       
Ph 9b                   PRQYPRA 

  
  
  

 MAb 4C3 
  

Peptide 20 NTDVVNVSVLCR 
Ph 1          . .HL-RWHHT 

Ph 2b    HSPSVLS 
Ph 7                  ALNYT-N-S 

Peptide 35                KSVPADTRN-SRR 
Ph 9                   GHIMIN--R 

  
Peptide 16 KWWESRTVRPQY 

Ph 1                 HLRWHHT 
Ph 2b                  AKWS-SRH 
Ph 5                  NHWSLNG 
Ph 6                   HWSHARH 

Ph 10                    WPHKHFY 
  
  
  

 
Figure 7.1 - Alignment of the peptides and phage clones selected 

with  MAb 3B10,  MAb 4A12 and  MAb 4C3. 
Ph stands for phage display clone selected with Ph.D.-
7™. 
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Recommendations for future research 

 

The identification of potential epitopes within the betanodavirus coat protein is of 

significance to the development of diagnostic reagents and vaccines. 

 

 

Betanodavirus vaccines 

 

In the last four years, a number of studies on the development of betanodavirus 

vaccines have been published, including recombinant protein and DNA vaccines. Thus far the 

most encouraging results have been achieved with recombinant protein vaccines using the 

betanodavirus coat protein as the immunogen (Húsgarð et al. 2001, Tanaka et al. 2001, Yuasa 

et al. 2002). However, even the most efficient vaccine constructs were unable to achieve 

complete protection. Mortalities reached forty percent in vaccinated fish populations. This is 

inadequate for a commercial fish vaccine. Furthermore vaccines based on DNA constructs or 

recombinant proteins are problematic in relation to licensing. Public perception of these 

vaccines also may affect the marketability of vaccinated stocks.  

Against this background, there are advantages associated with the use of peptide 

based vaccines. These are chemically defined and not produced using genetic modified 

organisms, like recombinant protein or DNA vaccines. They also do not pose risks to wild fish 

associated with live-attenuated vaccines (Arnon and van Regenmortel, 1992). 

A knowledge of protective epitopes is required to develop peptide based vaccines. 

The work of Coeurdacier et al. (2003), indicates the potential use of synthetic peptides for fish 

vaccines. Recently developed techniques permit the presentation to the immune system of 

multiple peptides through the use of an engineered bacterial protein as a scaffolding construct 

(Laplagne et al. 2004). Use of this system would facilitate the development of vaccine 

constructs containing several copies of one or more betanodavirus epitopes, or copies of 
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betanodavirus epitopes combined with T-cell epitopes (if and when these are identified and 

their role in fish immune responses elucidated) which may improve immunogenicity.  

Peptide vaccines have been developed for a number of viruses including respiratory 

syncitial virus (Steward, 2001) and canine parvovirus (CPV) (Langeveld et al. 1994). A 

peptide vaccine developed against CPV demonstrated good protective efficacy. 

Whilst peptide vaccines represent one logical continuation of the work reported in this 

thesis, the putative epitopes identified through pepscan studies could also be used to inform 

the development of different types of vaccines, such as those based on the use of recombinant 

proteins, or DNA / RNA vaccines. In these instances, candidate vaccines could be trialled for 

induction of humoral immune responses. 

The results of the present study suggest three candidate regions (amino acids 1-50, 

141-162 and 181-212) for a vaccine, although the optimum region of the coat protein could be 

further defined using epitope mapping of greater resolution. A series of overlapping synthetic 

peptides could be synthesised using an overlap of a single amino acid. A peptide set of shorter 

length (i.e. n = 7) could also be used, permitting a more accurate mapping of the residues 

recognised by neutralising antibodies. Once these regions are identified then amino acid 

replacement could be used to identify the critical binding regions. Certain amino acids are 

more difficult and expensive to synthesise than others. Thus the use of peptides that do not 

contain such residues in vaccines would simplify the chemical manipulation involved in 

vaccine synthesis. Thus, these two steps would help to produce a more effective and 

inexpensive vaccine.  

An effective vaccine should be able to induce protection against several betanodavirus 

strains or ideally against the four betanodavirus genotypes (RJNNV, SJNNV, BFNNV and 

TPNNV). The importance of multi-genotype vaccines was highlighted by Thiéry et al. (2004) 

who showed that three betanodavirus genotypes could be isolated from a single country. 

European sea bass were found to be infected with betanodavirus viruses belonging to the 

RJNNV and BFNNV groups, and Solea senegalensis were infected with viruses from the 

SJNNV clade. Solea senegalensis is a novel species in aquaculture and in Portugal and Spain 
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this species is produced in polyculture systems together with European sea bass and gilthead 

sea bream.  

To produce a vaccine to protect against all or at least several strains of betanodavirus, 

it would be necessary to investigate whether antibodies from other fish species infected with 

different betanodavirus strains recognise the same regions identified in this study.  

In preliminary vaccine development studies, the regions of the coat protein identified 

as containing putative epitopes could be synthesised and used to immunise fish. The 

production of anti-peptide antibodies could be confirmed by ELISA or SAT and the protective 

efficacy of the peptides could be confirmed by challenge studies.  

Further studies are clearly needed to facilitate the development of betanodavirus 

vaccines. In this respect, a number of research themes require investigation, including the 

functions of the betanodavirus proteins, the mechanisms of virus replication and accurate 

definition of betanodavirus structure using X-ray crystallography. The mechanisms through 

which the virus infects host cells are not fully understood. It is not known whether 

betanodavirus inhibits post-transcriptional gene silencing or other methods of immune escape. 

The mechanism of virus recognition by the host immune system also requires research.  

 

 

Diagnostic tests 

 

Non-invasive sensitive diagnostic methods are essential for screening broodstock, 

ongrowing stock or fish stock prior to introduction into a fish-farm. Screening methods should 

ideally be fast and not technically complex. ELISA is a widely used method. However, 

ELISA tests for betanodavirus are compromised by antigenic variation between different 

betanodavirus strains. None of the MAbs produced during this study were able to recognise 

three genotypes groups of betanodavirus (BFNNV, RGNNV and SJNNV). Nevertheless two 

MAbs, 3B10 and 4C3, are specific to European sea bass betanodavirus, a RGNNV strain used 

to immunise the mice for their production. The remaining MAbs (4A12, 1E3 and 5G10) also 
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recognised BFNNV. This same specificity was observed by Chi et al. (2003), with MAbs 

produced against grouper betanodavirus (RGNNV). This lack of ability of the MAbs to 

recognised SJNNV strain may be associated with the phylogenetic distances observed 

between the clades. Such phylogenetic distances reflected differences in the coat protein 

amino acid sequence, and may lead to differences in the 3-dimentional structure of the 

betanodavirus coat protein that invalidate the binding of the MAbs to SJNNV. Iwamoto et al. 

(2004) identified viral RNA2 and/or encoded coat protein as being responsible for host 

specificity in SJNNV and SGNNV.  

Taking to account the restrictions on their ability to identify the multiple genotypes of 

betanodavirus mentioned above, the MAbs developed during this project could still be used 

for the detection of betanodavirus. As been demonstrated MAb 4A12 is suitable for 

confirmation of the virus in histological samples by immunohistochemistry and this MAb is 

now commercially available from Aquatic Diagnostic Ltd (University of Stirling, Stirling 

Scotland) as product number P09 (www.aquaticdiagnostics.com). However, other diagnostic 

techniques such as sandwich ELISA could be developed and optimised for the detection of 

betanodavirus. Different MAbs could be used as capture and detection antibodies. For 

validating ELISA as a betanodavirus diagnostic tool the sensitivity of the assay should be 

compared with nested-PCR or NASBA. These molecular techniques have been indicated to be 

more sensitive for the detection of betanodavirus and ideally suitable for diagnostics (Dalla 

Valle et al. 2000, Starkey et al. 2004). The use of anti-SJNNV polyclonal antibody revealed to 

be less sensitive than RT-PCR (Mushiake et al. 1994). However, in several studies it has been 

demonstrated that ELISA can be as sensitive as PCR (Mycoplasma bovis) or RT-PCR 

(hepatitis C virus) (Attallah et al. 2003, Ghadersohi et al. 2005), ans ELISA possesses the 

advantage of being a high-throughput screening technique. 

Alternatively the ELISA could be set up to detect fish antibodies against 

betanodavirus. This would have the advantage of being non-destructive, only requiring a 

serum sample. The use of multiple peptides mimicking several regions of the betanodavirus 

coat protein to coat the ELISA plate could permit generic assays to be developed, capable of 
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detecting fish antibodies against all the betanodaviruses. The results obtained from pepscan 

analyses in this project could be exploited to develop such an ELISA test to detect anti-

betanodavirus fish antibodies. The use of synthetic peptides has been applied in 

serodiagnostics for the detection of antibodies to parasites, such as Leishmania donovani 

(Fargeas et al. 1996) or viruses, for example SARS - coronavirus (Chan  et al. 2004). These 

ELISA tests demonstrated high sensitivity and specificity. Optimal results were achieved by 

use of a mixture of peptides to avoid epitope restrictions (Soto et al. 1998, Noya et al. 2003). 

Since synthetic peptides are used as the target antigen, assays are easy to standardise, less 

subject to the variation between batches of antigen that may occur with cell culture grown 

material, cheaper and ideal for large-scale screening. The use of synthetic peptides in 

serodiagnostic assays may also be less labour intensive, and confers several advantages since 

there is also no requirement for infectious virus. 

Synthetic peptides could also be linked to beads allowing for sensitive and rapid 

multiplex testing with high throughput. The SAT is also less labour intensive than ELISA. 

The use of beads would allowed the multiplexing of the assay and the possibility for screening 

for antibodies against other pathogens simultaneously. 

  

 

The main achievement of this work was the identification of putative epitope 

containing domains in the betanodavirus capsid. It is believed that this is the first time that 

SAT technology has been used for antigenic epitope mapping of a fish virus. The regions 

identified in this thesis may have important consequences for vaccine development programs 

aimed at the control of VNN.  

As a complement to the application in vaccine development the epitope regions 

identified may also be applied in the development of hight-throughput screening ELISA or 

SAT assays. 
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Appendix I 

DEPC treatment 
 

Concentration 
 
Add 1ml DEPC per litre of water. 
 

Glass or plastic 
 
o Fill the glass with water 
o Add DEPC, mix well and leave overnight in the fume hood 
o Following morning autoclave 
o Water in the glass can be thrown away in the normal drain 
o Glass is autoclaved 
 
 

 Water 
 
Same procedure mentioned for the glass. The flask where the water is kept needs to have been 

DEPC treated previously.  
 

 

 

 

TNE-buffer 
 
Prepare a stock solution of NaCl (1 M) and EDTA (0.1 M) in distilled water and filter sterilise 

(0.2 μm filter).  
All the procedures should be done in a sterile environment. 
 
 
o Add 50 ml of 1 M NaCl and 5 ml of 0.1 M EDTA to a 500 ml DEPC treated bottle that 

has been scored at 500 ml. 
o Add 400 ml of DEPC treated distilled water and mix well 
o Remove a small aliquot and check the pH with an indicator stick 
o Adjust the pH until ± pH 7 with NaOH or HCL. Mix well  
o Remove a small aliquot and measure in pH meter  
o Adjust pH to 7.4-7.6 using NaOH or HCl 
o Add 500 μl of DEPC and leave overnight 
o Autoclave to remove any last trace of DEPC 
o Allow the solution to cool down 
o Add 5 ml sterile, RNAse-free Tris (pH 7.5, 1M) 
o Adjust the volume until 500 ml with DEPC treated water 
o Remove a small aliquot and check the pH. 

DEPC treatment and TNE buffer  
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Hi Trap protein G HP 
 
All the solutions are made on the day of using. 
 
 
 
 

Binding buffer 
(20 mM sodium phosphate, pH 7.0) 
 
  150 ml 

Na2HPO4 (20 mM) 0.534 g 
NaH2PO4 (20 mM) 0.468 g 

 
       
 
Both solutions are mixed until pH 7.0 is reached. Filter through a sterile 0.45 μm filter. 
 
 
 
 
 

Elution buffer 
(0.1 M Glycine-HCl, pH 2.7) 
 
 
Glycine - 0.375 g in 50 ml of distilled water. 
 
Add HCl until pH 2.7 is reached. Filter through a sterile 0.45 μm filter. 
 
 
 
 
 

Tris-Hcl 
(1 M Tris, pH 9.0) 
 
 
Trizma base - 6.057 g in 50 ml of distilled water. 
 
Add HCl until pH 9.0 is obtained. Filter through a sterile 0.45 μm filter. 

Hi Trap protein G HP 
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ELISA 
 

Poly-L-lysine  
(Solution at 0.01 %) 
 
1.5 ml of solution dissolved in 13.5 ml of coating buffer. 
 
 
 
 

Coating Buffer 
(Carbonate-bicarbonate solution, pH 9.6) 
 

 1000 ml 
Na2CO3 1.59 g 
NaHCO3 2.93 g 

 
Dissolve in distilled water and adjust pH to 9.6 with HCl. 
 
OR  
 
Dissolved 1 tablet of carbonate-bicarbonate buffer (Sigma) in 100 ml of distilled water. Must 

be made fresh 
 
 
 
 

Glutaraldehyde  
(Solution at 0.05%) 
 
   Add 10 μl of glutaraldehyde to 10 ml of PBS. 
 
 
 
 

Low Salt Wash Buffer (LSWB) 
(0.02 M Tris; 0.38 M NaCl; 0.05 % Tween 20; pH 7.3) 
 
This solution is 10x concentrate.  
 

 1000 ml 500 ml 
Trisma base 24.2 g 12.1 g 
NaCl 222.2 g 111.1 g 
Tween 20 5 ml 2.5 ml 

 
 
Dissolve in distilled water and adjust pH to 7.3 with HCl.  
 
 
 

Phosphate Buffered Saline (PBS)  
(0.02 M phosphate; 0.15 M NaCl) 
 

 1000 ml 500 ml 
NaCl 8.77 g 4.385 g 
NaH2PO4. 2H2O 0.876 g 0.438 g 
Na2HPO4. 2H2O 2.56 g 1.28 

 
Dissolve in distilled water and adjust pH to 7.2 with HCl. 
 

ELISA 
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Blocking buffer 
(3 % casein) 
 
Add 3 g of skimmed milk to 100 ml of distilled water. 
 
 
 
 

Antibody Buffer 
(solution at 1 %) 
 
Add 1 g of BSA to 100 ml PBS. 
 
Must be made fresh 
 
 
 
 

Conjugate Buffer 
(solution at 1 %) 
 
Add 1g of BSA to 100 ml LSWB. 
 
Must be made fresh. 
 
 
 
 

High Salt Wash Buffer (HSWB) 
(0.02M Tris; 0.5 M NaCl; 0.1% Tween 20) 
 
This solution is 10x concentrated.  
 

 1000 ml 500 ml 
Trisma base 24.2 g 12.1 g 
NaCl 292.2 g 146.1 g 
Tween 20 10 ml 5 ml 

 
Dissolved in distilled water and adjust pH to 7.7 with HCl. 
 

 
 
 
Substrate 
 

To 15 ml of substrate buffer add 150 μl of substrate solution and 5 μl of hydrogen peroxidase. 
 
 
 

    Substrate buffer  
(0.1 M Citric acid; 0.1 M Sodium acetate) 
 

 1000 ml 500 ml 
Citric acid 21 g 10.5 g 
Sodium acetate 8.2 g 4.1 g 

 
 
Dissolved in distilled water and adjust pH to 5.4 with NaOH. 
 

 

ELISA 
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     Substrate Solution 

(42 mM TMB, 3’3’5’5’ – tetramethylbenzidine dihydrochloride) 
 
Prepare the TMB: 
 0.07896 g  to  6 ml 

0.0658   g  to  5 ml 
0.03948 g  to  3 ml 

 
  
 
Dissolved in distilled water. Add acetic acid in a proportion 1:2 (acid:water). Must be made 

fresh. 
 
 
 
 
 

Stop Reagent  
(H2SO4 2 M)  
 
For 500 ml of solution add 55.5 ml of sulphuric acid (98%) to 444.5 ml of distilled water. 
 

ELISA 
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Western Blot 
 
 

Separating Gel Buffer 
(1.5 M Tris; 0.4 % (w/v) Sodium Dodecyl Sulphate (SDS)) 
 

 1000 ml 500 ml 
Trisma base 182 g 91 g 
SDS 4 g 2 g 

 
Dissolve in distilled water and adjust pH to 8.7 with HCl. 
 
 
 
 

Stacking Gel Buffer 
(0.5M Tris; 0.4% (w/v) Sodium Dodecyl Sulphate (SDS)) 
 

 1000 ml 500 ml 
Trisma base 60.5 g 30.25 g 
SDS 4 g 2 g 

 
Dissolve in distilled water and adjust pH to 6.8 with HCl. 
 
 
 
 

Ammonium Persulphate Solution  
(10 % v/v ammonium persulphate) 
 
Dissolve 0.1 g ammonium persulphate solution in 1 ml distilled water. Must be done fresh 

every time 
 
 
 
 
Sample Buffer 

(100 mM Tris; 4% SDS; 2mM DTT; 0.02 % Bromophenol blue) 
 
This solution is 5x concentrated 
 

Tris HCl 0.5 M (pH 6.8) 2.5 ml 
Glycerol  2 ml 
SDS (10% (w/v)) 4 ml 
DTT  0.31 ml 
Bromophenol blue 2 mg 
Distilled water 0.9 ml 

 
 
 

Reservoir Buffer 
 
This solution is 5x concentrated  
 

 1000 ml 500 ml 
Tris  15 g 7.5 g 
Glycine 43.2 g 21.6 g 
SDS  5 g 2.5 g 

 
Dissolved in distilled water and adjust pH to 8.3 with HCl. 

Western blot 
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Separating Gel (12 % Acrylamide) 
 

Separating buffer 5 ml 
Acrylamide (30 %) 8 ml 
TEMED 15 μl 
Ammonium persulphate (10 %) 7 μl 
Distilled water 7 ml 

 
The TEMED should be the last reagent to be added. 
 

 
Stacking Gel  

 
Distilled water 2.7 ml 
SDS (10%) 40 μl 
Tris-HCl (1M, pH 6.8) 0.5 ml 
Acrylamide (30 %) 0.67 ml 
Ammonium persulphate  (10 %) 40 μl 
TEMED 4 μl 

 
The TEMED should be the last reagent to be added. 

 
 
Tris Buffered Buffer (TBS) 

(0.02 M Tris; 0.5% NaCl) 
 

 1000 ml 500 ml 
Trisma base 2.42 g 1.21 g 
NaCl 29.24 g 14.62 g 

 
Dissolved in distilled water and adjust pH to 7.5 with HCl. 
 

 
TBS with Tween (TTBS)  

(1.5M Tris; 0.4% (w/v) SDS) 
 

Tween 20 0.5 ml 
TBS 1000 ml 

 
Adjust pH to 7.5. 
 
 
 

Transblot Buffer 
 

 1000 ml 500 ml 
Glycine 14.4 g 7.2 g 
Trizma base 3.03 g 1.515 g 

 
Adjust pH to 8.3. 
 
 

Coomassie Brilliant Blue Staining  
 

Coomassie Brilliant Blue 2.5 g 
Methanol 400 ml 
Acetic acid 100 ml 
Distilled water 500 ml 

 
 

Western blot 
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Immunohistochemistry 
 
 
TBS 

(0.05 M Tris; 0.15 M NaCl) 
 

Tris 6.055 g 
NaCl 8.766 

 
Dissolved in 1000 ml of distilled water and adjust the pH to 7.6. 

 
 
 
 
Formic acid  

(0.1 M formic acid; 2 % gelatine; pH 6.0) 
 

Gelatine 8 g 
Formic acid 1.576 ml 
Distilled water Until 400 ml 

 
Dissolve the gelatine in the microwave and then add the formic acid. Adjust the pH to 6. 
 
 
 
 

Citrate buffer 
(0.1 M citric acid; 0.2 M Na2HPO4. 2H2O) 
 

Na2HPO4. 2H2O 3.6 g 
Citric acid 2.1 g 
Distilled water 100 ml 

 
 
 
 

DAB 
 
Dissolve 1 tablet in 6.67 ml of TBS. Aliquot into 0.5 ml and freeze. Keep in the dark until 

further use. 
 
For use: to the 0.5 ml DAB aliquot add 5 ml TBS and 0.1 ml of H2O2 (1 %) 
 
 

Immunohistochemistry 
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Molecular Biology  
 
 
Dilution buffer 
 

Mix 200 mM Tris-HCl to 5mM MgCl2 in nanopure water. Adjust the pH to 9. 
 
 
Precipitation buffer 

 
For each sample mix throughly 50 μl of ethanol 95 % (kept at – 20°C) with 2 μl of NaAc (3 

M). 
 
 

 
Acrylamide Sequencing gel 

 
Nanopure water 26 ml 
Mix beads  0.5 g 
Urea 18 g 
Long Ranger (acrylamide) 5 ml 

 
 
Mix well and allow to reach room temperature. Filter through 0.2 μm cellulose nitrate 

membrane filter and degas for 4 minutes. Just before loading the gel add: 
 

Ammonium persulphate  (10%) 250 μl 
TEMED 35 μl 

 
 
TBE 

 
This solution is 10x concentrate  
 

Nanopure water Bring up to 1000 ml 
Tris 108 g 
EDTA(Na2) 8.3 g 
Boric acid 55 g 

 
Filter through 0.45 μm filter. 
 

 
Ficoll loading buffer 

 
Ficoll (10 %) – 0.5 g ficoll in 5 ml deionised water 
Blue dextran stock solution – 0.01 g of blue dextran in 1 ml of deionised water  
     
Mix well 4.5 ml of ficoll 10 % with 0.5 ml of blue dextran stock solution. Aliquot and freeze at 

–20°C. 
 
 
 

Agarose gel  
 

Agarose 1 g 
TBE (1x) 100 ml 

 
Dissolve in the microwave. Add 50 μl ethidium bromide (1 mg l-1) when the gel temperature < 

60°C. 

Molecular biology 
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Phage display 
 

 
Microbiology  
 

LB Medium 
 

 Per liter Per 450 ml 
Bacto-Tryptone 10 g 4.5 g 
Yeast extract 5 g 2.25 g 
NaCl 5 g 2.25 g 

 
 Autoclave and store at room temperature. 
 
 
 

Agarose Top 
 Per liter Per 450 ml 
Bacto-Tryptone 10 g 4.5 g 
Yeast extract 5 g 2.25 g 
NaCl 5 g 2.25 g 
Agarose 7 g 3.15 g 
MgCl2•6H2O 1 g 0.45 g 

 
 
Autoclave, dispense into 50 ml aliquots. Store solid at room temperature, melt in microwave as 

needed. 
 
 
 

Tetracycline Stock  
 

Tetracycline  200 mg 
Ethanol 10 ml 

 
Store at –20°C in the dark. Vortex before using. 
 
 
 

LB-Tet Plates 
 

LB medium 1000 ml 450 ml 
Agar  15 g 6.75 g 

 
 
Autoclave, cool down to < 70°C and add Tetracycline stock solution (0.1 %). Pour 

and store plates at 4°C in the dark. Do not use plates if brown or black.  
 
 

 
LB/IPTG/Xgal Plates 

 
 

LB medium 1000 ml 450 ml 
Agar  15 g 6.75 g 

 
 
Autoclave, cool down to < 70°C and add IPTG/Xgal (0.1 %). Pour and store plates at 4°C in 

the dark. 
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IPTG/Xgal 
 

IPTG (isopropyl β-D-thiogalactoside) 1.25 g 0.5 g 
Xgal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) 1 g 0.4 g 
dimethyl formamide 25 ml 10 ml 

 
Solution can be stored in glass or polypropylene tube protected from light at -20°. 
 
 
 
 

Panning   
 

 
Antibody buffer 

(0.1 M NaHCO3, pH 8.6) 
 
     
NaHCO3 - 0.840 g in 100 ml of distilled water. Adjust the pH to 8.6. Autoclave and store at 

4°C. 
 
 
 

Blocking Buffer 
(0.1 M NaHCO3, pH 8.6; 0.5 % BSA; 0.02 % NaN3) 
 

NaHCO3  0.840 g 
BSA  0.5 g 
NaN3  0.02 g 
Distilled water 100 ml 

     
Filter sterilize, store at 4°C. 
 
 
 

Neutralising Elution Buffer 
(1 M Tris-HCl, pH 9.1) 
 
 
 Tris-HCl - 7.88 g in 50 ml of distilled water.  
 
 
Filter sterilize, store at 4°C. 
 
 
 
 

TBS 
(50 mM Tris-HCl, pH 7.5; 150 mM NaCl) 
 

Tris-HCl  0.394 g 0.788 g 
NaCl  0.4383 g 0.8766 g 
Distilled water 50 ml 100 ml 

    
 
 
Prepared Tri-HCl 10x concentrated and filter sterilize. Prepared the NaCl and autoclave. 
Mix both solutions, dispense into universals and store at 4°C. 
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Elution Buffer 
(0.2M Glycine-HCL, pH 2.2; 0.1 % BSA) 
 
 
Glycine-HCL  - 1.501 g in 100 ml of distilled water  
 
 
Adjust pH to 2.2 with HCl and then filter sterilize, store at 4°C.Previously to use add BSA (1 

mg/ml). Filter sterilize, store at 4°C until used. 
 
 

Storage Buffer 
(50 mM Tris-HCl, pH 7.5; 0.02 % Sodium azide; 150 mM NaCl) 
 
 

Tris-HCl (50 mM, pH 7.5) 0.394 g 0.788 g 
Sodium azide (0.02%) 0.01 g 0.02 g 
NaCl (150 mM) 0.4383 g 0.8766 g 
Distilled water 50 ml 100 ml 

 
 
Prepared Tris 10x concentrated, adjust pH to 7.5 with HCl. Prepared sodium azide 10x 

concentrated. Mix Tris and sodium azide solutions and filter sterilize. Prepare the NaCl and autoclave. 
Mix both solutions, dispense into universals and store at 4°C. 

 
 
PEG/NaCl 

(20 % (w/v) PEG; 2.5 M NaCl) 
 
 

PEG (polyethylene glycol 8000) 20 g 
NaCl  14.61 g 
Distilled water 100 ml 

 
Autoclave, dispense into bijoux and universals, store at room temperature. 
 
 

TBST 
(50 mM Tris-HCl, pH 7.5; 150 mM NaCl; 0.1 % or 0.5% Tween-20) 
 

Tris-HCl  3.94 g 
NaCl  4.383 g 
Tween-20 (0.1 %) 0.5 ml 
Tween-20 (0.5 %) 2.5 ml 
Distilled water 500 ml 

    
 
Prepared Tri-HCl 10x concentrated and filter sterilize. Prepared the NaCl and autoclave. 
Mix both solutions, dispense into universals and store at 4°C. 
 
 

TE buffer 
(10 mM Tris-HCl, pH 8.0; 1 mM EDTA)        
                
 

Tris-HCl 0.121 g 
EDTA 0.03722 g 
Distilled water 100 ml 

 
Filter sterilized and store at 4°C. 
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Iodide Buffer 
 (10 mM Tris-HCl, pH 8.0; 1 mM EDTA; 4 M NaI) 
 
 

Tris-HCl 0.0605 g 
EDTA 0.01861 g 
NaI 29.978 g 
Distilled water 50 ml 

 
 
Store at room temperature in the dark. 
 

 
 
 
Streptavidin Stock Solution 

 
 
Dissolved 1.5 mg of Streptavidin (supplied with the Phage display kit) in 1 ml of 

Na2PO4/NaCl/NaN3.  
 
Store at 4°C or –20°C (avoid repeated freezing/thawing). 
    
 
Na2PO4 (10 mM, pH 7.2)  /NaCl (100 mM)/NaN3 (0.02 %)  
                 

Na2HPO4 (10 mM)     0.0234 g 
NaH2PO4 (10 mM)    0.0267 g 

 
 
Dissolve each phosphate in 15 ml of distilled water. Mix until pH 7.2. 
Then to 10 ml of sodium phosphate add 0.5844 g of NaCI and 0.002 g of NaN3. 
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Reagents/ Chemicals/ Kits/ Consumables 

 
Reagents/ Chemicals 

 
o Acetic Acid, CH3COOH (100%) – BDH (1001CU) 
o Acrylamide/Bis acrylamide stock solution (30 % w/v acrylamide ratio 20:1 –Bis 

acrylamide) – Severn Biotech Lta (20-2600-05) 
o Agar bacteriologic (no. 1) – Oxoid (LP0011) 
o Agarose MP – Roche (1388938) 
o Albumin standard – Pierce (23209) 
o Ammonium persulphate, (NH4)2S2O8 – Sigma (A-3678), SDS Page  gel 
o Ammonium persulphate, (NH4)2S2O8 – amresco® USA (0486) ACS grade, sequence 

gel  
o Aquafenol – Qbiogene (AQUAPH01) 
o Blue dextran – Sigma (D-5751) 
o Boric acid electrophoresis purity reagent – Bio-Rad (161-0750)  
o BSA (Albumine Bovine, fraction V) – Sigma (A-9647) 
o Carbonate-bicarbonate buffer capsules (0.05 M carbonato-bicarbonato buffer pH 9.6) 

– Sigma (C-3041)  
o Citric Acid (monohydrate), C6H8O7.H2O – Sigma (C-1909) 
o Chlorophorm, CH4Cl3 – Sigma (C-2432) 
o Contrast Red – KPL (71-00-05) 
o DAB (3,3’ diaminobenzidine), 3, 3’ 4, 4’ tetra amino biphenyl tetrahydrochloride – 

Sigma (D-5905) 
o DEPC (diethyl pyrocarbonate), C6H10O5 – Sigma (D-5758) 
o DMSO (dimethyl sulphoxide) – HyBri-max® Sigma (D-2650) 
o DTT (DL-Dithiothreitol, Cleland’s reagent), C4H10O2S2 – Sigma (D-5545) 
o Dulbecco’s Modified Eagle’s Medium – Sigma (D-5671) 
o Dulbecco’s PBS (DPBS, CaCl2, MgCl2) – Gibco (14190-094) 
o EDTA (ethylenediaminetetraacetic acid), C10H14N2O8Na2.2H2O – Sigma (E-5134) 
o EDTA (ethylenediaminetetra acetic acid disodium salt, EDTA(Na2)), 

C10H14N2O8Na2.H2O – AnalaR® BDH (100933 T), sequence gel 
o Ethanol absolute – Fisher Scientific (E/0650DF/21) 
o FBS (fetal bovine serum) – Sigma (F-6178), hybridoma culture 
o FBS (fetal bovine serum) – Gibco (10106-169), virus culture 
o Ficoll, type 400 (approx. mol wt 400000) – Sigma (F-4375) 
o Formic acid – Sigma (F-4636) 
o Gluteraldehyde, C5H8O2 (50% solution photographic grade) – Sigma (G-6403) 
o Glycerol, C3H8O3 – Sigma (G-7757) 
o Glycine (amino acetic acid), C2H5NO2 – Sigma (G-7126)  
o HAT media supplement (50x) – HyBri-max® Sigma (H-0262)  
o HBSS (CaCl2, MgCl2) – Gibco (14170-088) 
o Heparin sodium salt grade I-A: from porcine intestinal mucosa – Sigma (H-3149) 
o HT media supplement (50x) – HyBri-max® Sigma (H-0137) 
o Hydrogen peroxide H2O2 (30% w/w) – Sigma (H-1009)  
o IPTG (isopropyl β-D-thiogalacto-pyranoside), C9H18SO5 – Sigma (I-6758)  
o L-15 (Leibovitz) with GlutaMAX™ - Gibco (31425-029) 
o L-Glutamine – HyBri-max® Sigma (G-2150)  
o Long Ranger® gel solution (acrylamide 50 % stock solution) – Cambrex Bio 

Science, USA (50611) 
o Magnesium chloride hexahydrate, MgCl2.6H2O – BDH (10149) 
o Methanol, CH3.OH – Fisher Scientific (M/3950/21) 
o Methyl green - Vector (H-3402) 
o Mixed bead resin for molecular biology – Sigma (M-8032) 
o Nuclease-free water – Promega (P 119C) 
o PEG (polyethylene glycol), Av Mol.Wt. 8000 C2H602 – Signa (p-5413) 
o Penicillin-Streptomycin solution -– HyBri-max® Sigma (P-7539)  
o Pertex - Cellpath Ltd (UN 1866) 
o Phenol (saturated Tris-HCl) – Sigma (P-4557) 
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o Poly-L-Lysine solution (0,1% w/v in water thimerosal 0,01% added as preservative) – 
Sigma (P-8920)  

o SDS (sodium dodecylsulphate), C12H25O2SNa – Sigma (3771) 
o Sodium acetate (pH 5.2 3M), NaAc – Sigma (S-7899) 
o Sodium azide, NaN3 – Sigma (S-2002) 
o Sodium bicarbonate, NaHCO3 – Sigma (S-6014) 
o Sodium acetate (anhydrous), C2H3O2Na – Sigma (S-7545) 
o Sodium choride, NaCl – Sigma (S-9625) 
o Sodium dihydrogen orthophosphate dehydrated, NaH2PO4.2H2O – BDH (301324 Q)   
o di-Sodium hydrogen orthophosphate , NaHPO4.2H2O – BDH (301517 J)   
o Sodium iodine, NaI – BDH (301724 F) 
o TBE (tris-borate-EDTA) – Sigma (T-4415) 
o TEMED (N,N,N’,N’-tetramethyl ethylenediamine), C6H16N2 – Sigma (T-9281), SDS 

Page gel 
o TEMED (N,N,N’,N’-tetramethyl ethylenediamine), C6H16N2 – Sigma (T-8133), 

sequence gel 
o TiterMax® Gold – TiterMAx USA, Inc (G-1), CytRx® Corporation  
o Tris, electrophoresis purity reagent (tris(hydroximethyl)-aminomethane) – Bio-Rad 

(161-0719), sequence gel 
o Trizma® (Tris base), C4H11NO3 – Sigma (T-1503)  
o True blue™ peroxidase substrate – KPL (71-00-64) 
o Trypsin-EDTA (1x) in HBSS w/o CA&MG w/EDTA.4NA – Gibco (25300-054) 
o Tryptone – Oxoid (LP0042) 
o TMB (3,3’,5,5’ – tetramethylbenzidine dehydrochloride) – Sigma (T-8768)  
o Tween 20 (Polyoethylene-sorbitan monolaurate) – Sigma (P-1379)  
o Urea electrophoresis purity reagent – Bio-Rad (161-0731) 
o Xgal (5-bromo-4chloro-3-indolyl-β-D-galactopyranoside), C14H15BrCINO6 – Sigma 

(B-4252) 
o Yeast extract – Oxoid (LP0021) 

 
 

Antibodies 
 
o Anti-European Sea Bass (Dicentrarchus labrax) IgM monoclonal antibody – Aquatic 

Diagnostic Ltd (F01) 
o Anti-Nodavirus IgG monoclonal antibody – Aquatic Diagnostic Ltd (P09) 
o Biotin anti-mouse IgG – Vector (BA-9200)  
o Goat Anti-mouse conjugated with HRP – Scotland Diagnostic 
o Goat Anti-rabbit conjugated with HRP – Sigma (A-6154)  
o Goat Anti-mouse IgG conjugated with PE – Molecular Probes (P-852) 
o Goat Anti-rabbit IgG conjugated with PE – Molecular Probes (P-2771)  
o Goat Sera - Scotland Diagnostic 
o Stretavidin-HRP - Vector (SA-5004) 
 
 
 

Kits 
o BCA™ protein assay reagent – Pierce (23225) 
o Bio-Plex™ Amine Coupling Kit – Bio-Rad (171-406001) 
o Bio-Plex™ Calibration Kit – Bio-Rad (171-203060) 
o Bio-Plex™ COOH Bead 24 – Bio-Rad (171-506024) 
o Bio-Plex™ COOH Bead 28 – Bio-Rad (171-506028) 
o Bio-Plex™ COOH Bead 42 – Bio-Rad (171-506042) 
o Bio-Plex™ COOH Bead 46 – Bio-Rad (171-506046) 
o Bio-Rad™ Validation kit – Bio-Rad (171-203000) 
o DYEnamic ET Terminator Cycle Sequencing Kit - Amersham Biosciences (US81050) 
o Hi Trap protein G HP – Amersham (17-0404-03) 
o Immunotype™ kit – Sigma (ISO-I) 
o Ph.D-7™ phage display peptide library kit – New England BioLabs® Inc. (E8100S) 
o Ph.D-12™ phage display peptide library kit – New England BioLabs® Inc. (E8110S) 
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o Vectorstain® ABC kit – Vector (PK-6102) 
o Vectors® VIP peroxidase substrate kit – Vector (SK-4600) 
o 4CN membrane peroxidase substrate system (2-C) – KPL (50-73-00) 
 
 
 
 

Consumables 
 
o 64 well paper shark tooth comb ABI Prism377 – PE Biosystems (A64-199904-0007) 
o Cell culture – flasks of 25 cm2, 75 cm2 and 175 cm2; 12 well plates; 24 well plates, 

Greiner and Nunc 
o Comb membrane unlaminated – The gel company (CAM64) 
o Cryotube™ - Nunc 
o Hybond™-ECL™ nitrocellulose membrane - Amersham (RPN303D) 
o Immulon® 4 HBS flat bottom microtitre 96 well plates, Thermo Labsystems (3855), 

ELISA plates 
o MultiScreen HTS™ - Millipore (MSBV1210) 
o Nescofilm – Bando Chemical Ind. Ltd, Japan 
o PAP pen - Liquid blocker Super pap pen, Agar Scientific 
o SDS plates - Hoefer™ glass plates 8x10 cm - Amersham (80-6136-81) 
o SDS loading tips – Gel loading tip round – Alpha Laboratoires Lda (LW1255R) 
o Syringe 1 ml and 5 ml - Terumo™ 
o Syringe 1 ml – Norm-Ject Turberkulin, Henke Sass Wolf GMBH, immunised animals 
o Ultra-Clear™ tubes, Beckman (344φ59, 44 x 89 mm; 344φ58, 25 x 89 mm) 
o Whatman number 1 (1001 917) 
o 0.20 μm cellulose nitrate membrane filter – Whatman (7182-004) 
o 0.20 μm syringe sterile filter - Sartorius (16532) 
o 0.45 μm filter – Whatman (7184-004) 
o 0.45 μm syringe sterile filter -  Sartorius (16555) 
o 15 ml sterile centrifuge tubes – Cellstar®, Greiner bio-one  
o 50 ml sterile centrifuge tubes – Bibby Sterilin Ltd 
 
 
 

Equipment 
 

Centrifuges  
o Beckman L80 
o Denville Scientific Inc. Micro 240A 
o Eppendorf centrifuge 5804R 
o Heraus biofuge pico 
o Sanyo Mistral 3000i 
o Sanyo MSE 2000R 
o Sanyo Micro centaur 
o Thermo IEC microlite 
o Wifug 500E 
 
Electrophoresis  
o Amersham Pharmacia Biotech, electrophoresis power supply EPS 1001, Western blot and 

SDS 
o Fisher blotting unit FEB10, Western blot 
o Hoefer Pharmacia Biotech Inc. SE250, SDS 
o Pharmacia, gel electrophoresis apparatus GNA-100, agarose gel 
o Pharmacia, electrophoresis power supply LKS CPS 200/400, agarose gel 
 
 
Molecular biology 
o ABI Prisma™ 377 DNA sequencer  
o Biometra™ Tgradient 
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Rocker platforms 
o Bibby Gyro-rocker  
o Mini Rocking platform, Biometra™ 
 
Spectrophotometer 
o Cecil CE 2041 
o Cecil CE 2021 
 
Others 
o Bioplex – Bio-Rad 
o Dynex Technologies MRXII, ELISA reader 
o Dual gel caster, Might™ Small SE245, Hoefer Pharmacia Biotech Inc., SDS 
o Econo System (Bio-Rad) – 2110 fraction collector, MAb purification 
o Fraction Recovery System 270-331580, Beckman, virus purification  
o Jung biocut 2035, microtome 
o Philips cooktronic 7910, microwave 
o Refractometer 60-70 ABBE, Bellingham + Stanley Limited, virus purification 
o Sanyo Super Showerwave, microwave 
o Techne UB-8, water bath 
o ThermoShadon citadel 2000, tissue processor 
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