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Abstract
East African athletes now dominate international distance running events from the 800 m to the marathon. Expla-
nations for their phenomenal success have included optimal environmental conditions for developing distance
running performance, psychological advantage and advantageous physiological characteristics. It is well estab-
lished that genetics plays a role in determining inter-individual differences in exercise performance and adaptation
to training stimuli. It is not known, however, to what extent inter-population differences (i.e. between ‘races’ and/
or ethnic groups) in exercise performance can be attributed to genetics. There have been considerations that
‘black’ athletes are genetically adapted towards performance, given the concurrent success of athletes of West
African ancestry in sprint events. However, the current notion of ‘race’ is not universally accepted, and genetic
differences within and between populations are not clearly delineated by geographical or ethnic categorizations.
Recent findings from mitochondrial DNA show that the populations from which Ethiopian athletes are drawn
have not been isolated populations and are not genetically distinct from other Ethiopians. Y-chromosome analysis
of the same population shows concurrent results, although some differences are present between athletes and
the general Ethiopian population, suggesting an influence of the Y chromosome on athlete status in Ethiopia.
It is concluded that there may be a role for genetics in the success of East African athletes; however, any genetic
component to their success is unlikely to be limited to East Africans and is more likely to be found in other popu-
lations. At present it is unjustified to implicate a role for genetics in the success of East African runners when no
genes have been identified as being important to their performance.
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Introduction

Why some ethnic and/or ‘racial’ groups consistently

outperform others in the sporting arena has been a

topic of great research interest, with the ‘nature’

versus ‘nurture’ debate at the fore. For example, the

USA has dominated basketball in international compe-

tition in the same way as the Chinese have enjoyed

particular success in table tennis. Social scientists

have attributed such sporting dominance to differ-
ences in participation rates, coaching and training1.

However, there are other examples where expla-

nations of coaching and training cannot be applied

so readily, such as in athletic track events. The current

world record-holders for the 100 m to the marathon

for males are all of ‘black’ African ancestry (Table 1).

This has led to the presumption that ‘black’ athletes

are genetically endowed ‘natural’ athletes2. The par-
ticular example discussed here is that of East African

athletes, who now dominate in track events upwards
of 800 m as well as in international cross-country and

road racing events. In the 2003 World International

Association of Athletics Federations’ Championships

in Paris for example, athletes from Ethiopia and

Kenya won nine of the 12 available medals for the

5000 m and 10 000 m.

A number of explanations have been proposed to

account for the success of East African athletes.
These have included optimal environmental conditions

for developing distance running performance, psycho-

logical advantage and advantageous physiological

characteristics; the evidence for each of these factors

is discussed in more detail elsewhere in this issue3.

The explanation frequently offered, but substantiated

primarily by compelling statistics of differential ethnic

and/or ‘racial’ athletic success and non-scientific evi-
dence, is that East African athletes possess favourable
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genetics for superior middle- and long-distance run-

ning4 –7. East African athletes are not evenly distributed

throughout East Africa, but are concentrated among

particular ethnically and geographically defined popu-

lations. In Kenya, the Nandi people are recognized as

producing the most successful runners8, and in Ethio-
pia, the Oromo people, particularly those from Arsi

are particularly prevalent among elite athletes9. Anec-

dotal explanations for this have included the possibility

that the Nandi have been genetically adapted towards

endurance performance as a result of selection for

those with greater prowess in hunting or gathering.

As shall be discussed, it is certainly conceivable that

genetics is influential in the determination of athletic
success; however, there are ways in which genetics

may be important in the success of East African

distance runners and ways in which it may not.

The present review attempts to discuss the theoreti-

cal basis of a ‘racial’ and/or ethnic genetic predisposi-

tion for superior running performance in East Africans

by reviewing the few available studies on the genetics

of elite human physical performance and data from
selected anthropological/evolutionary studies, as well

as recent genetic data of elite East African runners.

Genetics of elite human physical
performance

In an attempt to identify the extent to which adaptive

variation is attributable to an uncharacterized genetic

effect, heritability studies using twin models were

able to show that physiological characteristics such

as maximal oxygen uptake ( _VO2max) had a strong

genetic component10,11. However, such studies often

provide equivocal results, and are confounded by

a number of factors (for a review, see Klissouras12).
A number of elaborate genetic studies of human physi-

cal performance have emerged more recently, aided

substantially by technological advances in the field of

molecular genetics. A yearly publication summarizing

the literature on the genetics of physical performance

has now identified in excess of 100 genetic variants

that can effect muscular, morphological and cardiore-

spiratory factors (albeit mainly in non-elite ath-

letes)13– 15. Such genetic variants may account for

some of the differences in physical performance

between elite and non-elite athletic populations. How-

ever, at present, the extent to which elite athlete status
is associated with particular performance genes is

unknown, owing to a number of contrasting

results16 – 20. Factors such as inevitably low subject

numbers for truly elite athletes may confound associ-

ations, and may partially explain the discrepancies in

the findings.

Perhaps the most studied of the putative ‘perform-

ance’ genes is the angiotensin-converting enzyme

(ACE) gene, which contains an intronic insertion poly-

morphism. The insertion (I) allele is associated with

lower levels of circulating ACE than the deletion (D)

allele21. The ACE I allele has been associated with endur-

ance performance22, and has been shown to be more

prevalent in elite endurance athletes compared to a

normal population17 or athletes specializing in shorter

distances23, although these results have not always
been supported20 (see Payne and Montgomery24 for a

recent review). Another promising ‘performance’ gene

is the a-actinin-3 gene that codes for a protein restricted

largely to fast glycolytic skeletal muscle fibres (see

MacArthur and North25 for a recent review). A variant

of this gene, which inactivates the protein product,

has been associated with athletic performance. This var-

iant is less frequent in Olympic-standard sprint athletes
than in endurance athletes or matched non-athlete con-

trols26. Polymorphisms in the muscle-specific creatine

kinase (CKMM) gene locus were not found to be associ-

ated with elite endurance athlete status27, despite

having been associated with adaptation of _VO2max to a

standardized training programme28.

Despite the lack of conclusive evidence for an influ-

ence of genetics on the determination of elite athlete
status, there is a great deal of support for the idea

that genetics does influence some of the inter-individ-

ual differences in health-related fitness pheno-

types13 – 15. However, although genetics may account

Table 1 Men’s world running records

Event Athlete Time Ancestry

100 m Tim Montgomery (USA) 9.78 s West Africa
110 m hurdles Colin Jackson (Great Britain) 12.91 s West Africa
200 m Michael Johnson (USA) 19.32 s West Africa
400 m Michael Johnson (USA) 43.18 s West Africa
400 m hurdles Kevin Young (USA) 46.78 s West Africa
800 m Wilson Kipketer (Kenya) 1 min 41.11 s East Africa
1000 m Noah Ngeny (Kenya) 2 min 11.96 s East Africa
1500 m Hicham El Guerrouj (Morocco) 3 min 26.00 s North Africa
Mile Hicham El Guerrouj (Morocco) 3 min 43.12 s North Africa
3000 m Daniel Komen (Kenya) 7 min 20.67 s East Africa
5000 m Kenenisa Bekele (Ethiopia) 12 min 37.35 s East Africa
10 000 m Kenenisa Bekele (Ethiopia) 26 min 20.31 s East Africa
Marathon Paul Tergat (Kenya) 2 h 4 min 55 s East Africa
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for some of the inter-individual differences in physical

performance, the extent to which it may influence the

inter-population differences (i.e. between ‘races’ and/

or ethnic groups) in performance is yet to be

determined.

The genetics of ‘race’ and East African
running dominance

The success of East African athletes in distance running
and of athletes of West African ancestry in the shorter

distances has perpetuated the idea that ‘black’ athletes

are genetically adapted for athletic performance2. This

notion is based on a preconception that each ‘race’ con-

stitutes a genetically homogeneous group, with ‘race’

being defined simply by skin colour. This notion is con-

trary to the assertion that there is more genetic vari-

ation within Africa than between the average African
and Eurasian29. It is estimated that most human genetic

variation is shared by all humans and that a marginal

proportion (approximately 10%) is specific to groups

as defined by geography or skin colour (see Bou-

chard30). Alleles found in one population are usually

common to all human populations, particularly when

they occur at a frequency of over 20% in a population31.

Consequently, any differences in physiology, biochemis-
try and/or anatomy between groups defined solely by

skin colour (e.g. ‘black’ vs. ‘white’) are inapplicable

to East African runners, even if the differences found

are indeed genetically determined. This argument

would also apply to any comparison between Kenyan

and Ethiopian athletes despite these populations

being closer geographically. Even within countries

like Kenya and Ethiopia, any group comparisons
based only on skin colour would be subject to the

same methodological constraints due to the greater gen-

etic diversity inherent in African populations.

A ‘race’ is generally considered to have shared

common ancestry. However, based on recent esti-

mates, all modern humans shared a common ancestor

in the last 200 000 years32. Populations outwith Africa

are considered to have arisen from movements out of
Africa and are therefore likely to be constructed from

selected subsets of African genetic variation. This has

prompted some advocacy that ‘race’ should be aban-

doned as a tool for assessing the prevalence of disease

genotypes in certain populations, and that ‘race’ is not

an acceptable surrogate for genetics in assessing these

risks33. Others, however, argue that there is a role for

‘race’, and that the potential benefits to be gained in
terms of diagnosis and research of disease outweigh

the potential social costs of linking ‘race’ or ethnicity

with genetics32. Arguments for the inclusion of ‘race’

in biomedical research often focus on the use of the

term to identify single gene disorders and their medical

outcome, and it is acknowledged that the genetic basis

of complex phenotypes, such as athletic performance,

is poorly understood and far more difficult to study.

This debate focuses on the question of whether

geographically or culturally defined populations can

be differentiated by their genetics. It is argued that

humans do indeed form genetic clusters of African,

Asian, Caucasian and Pacific Islanders, but it is also

acknowledged that there are a number of exceptions
including some East African populations such as Ethio-

pia. Ethiopia, which has had a significant admixture

from Middle Eastern groups, has been found to cluster

more closely with Caucasian groups than with other

African groups in certain studies34.

Despite the ongoing debate and confusion surround-

ing the use of concepts such as ‘race’, ethnicity and

genetics, one should be wary of ascribing genetic
effects as being ‘race’-specific35. At the individual

level, ‘race’ is not an acceptable proxy for genetics

(i.e. the genotype of an individual can only be deter-

mined by genetic analysis of that individual).

Matrilineal genetics and the dominance of
East Africans in world distance running

A study of Ethiopian runners was recently undertaken

in an attempt to address some of the issues raised in
the previous section. This study involved the collec-

tion of demographic information and genetic material

from 76 elite Ethiopian runners (including Olympic

and World Champions) and an Ethiopian control popu-

lation9. The demographic results revealed that elite

Ethiopian distance runners were of a distinct ethnic

and environmental background, relative to the general

Ethiopian population9. These demographic results
highlight the importance of environment in the deter-

mination of endurance athletic success without

excluding any genetic effect. A possible genetic

effect in this cohort was studied subsequently by com-

paring the mitochondrial DNA (mtDNA) haplogroup

distribution of the elite Ethiopian athletes relative to

the general Ethiopian population36. Findings of a

maternal effect in the inheritance of _VO2max
11 hinted

at a possible influence of mtDNA in the determination

of aerobic capacity. In addition to polymorphisms in

the nuclear genome, some studies have suggested

that polymorphisms in mtDNA may account for some

of the inter-individual differences in endurance

performance and response to endurance training37,38

(for a review, see Rupert39). Intriguing evidence

of adaptive selection of mtDNA types to colder
climates40, through an increased emphasis on thermo-

genic activity of mitochondria, raises the question

of whether those from warm environments have main-

tained more efficient mitochondria, perhaps contribut-

ing to the superior running economy of East Africans.

mtDNA is a circular, double-stranded DNA molecule
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of 16 569 bp which encodes 13 subunits of a number

of enzyme complexes of oxidative phosphorylation,

as well as components of the mitochondrial protein

synthesis system41. mtDNA is passed intact from

mother to offspring and changes only with the occur-

rence of new mutations, which allows phylogenetic

trees of human evolution to be constructed. A simpli-

fied mtDNA tree is shown in Fig. 1. At the root of
this tree is ‘Mitochondrial Eve’ (mtEve), the common

maternal ancestor of all modern humans who lived

in East Africa around 170 000 years ago32. Each of

the descending branches of the tree is known as a

haplogroup and is defined by the presence or absence

of haplogroup-specific polymorphisms. The earliest

lineages are known as L1 types, which are almost

exclusive to Africa, and are thought to have arisen in
East Africa. The mtDNA haplogroup distribution

found in a population can give insight into their ances-

try44. In Ethiopia, there are a wide variety of mtDNA

types belonging, in almost equal proportions, to all

of the major African types (i.e. L1, L2 and L3)45.

These types are divergent and coalesce over 100 000

years ago in the time of mtEve. Given that athletic suc-

cess in East Africa is concentrated in particular subsets
of the East African population9, it was of interest to

establish if this population was genetically distinct as

defined by mtDNA type.

Given that mtDNA haplogroups are defined by the

presence of polymorphisms (as discussed later, some

of which may have functional significance), combined

with a lack of recombination, if mtDNA polymorphisms

were important in the success of Ethiopian distance
runners, selection for the mutants beneficial to exercise

performance would lead to an increased frequency of

the haplogroups that carry the polymorphism amongst

elite athletes. Also, as some of the mtDNA haplogroups

found commonly in Ethiopia are less frequent outwith

East Africa, if any of these haplogroups contain ben-

eficial mutants, this would raise the question of

whether this may partially account for the success of

East African athletes in international distance running.

The haplogroup distribution in the control group

(109 subjects intended to be representative of the gen-

eral Ethiopian population) was compared with that in
76 elite Ethiopian endurance athletes competing at dis-

tances from 5000 m to marathon36. The haplogroup dis-

tribution of the control group was similar to data

previously published46 – 48, with a divergent range of

mtDNA haplogroups and a high proportion of L and

M haplogroups. Rather than the athletes being

restricted to one branch of the tree, they too were wide-

spread throughout, with no statistical difference from
the control group. These findings do not support the

hypothesis of a role for mtDNA polymorphisms in the

determination of East African running success. Further-

more, the diversity of mtDNA found in the athlete

group is in contrast to the notion that they are a geneti-

cally distinct group, as defined by mtDNA. Some of the

athletes share a more recent common mtDNA ancestor

with many Europeans than they do with other elite
Ethiopian athletes. In addition, no difference in

mtDNA haplogroup distribution was found between

geographically or ethnically defined groups. When the

mtDNA distribution of subjects from the Arsi region

of Ethiopia, which produces a disproportionate

number of elite athletes9, was compared with that of

other regions, it was found that the Arsi population

had an mtDNA distribution equally as diverse as other
regions. This finding does not support the hypothesis

that such populations have remained genetically

isolated for long periods of time.

The results of the Ethiopian study36 suggest that

mtDNA polymorphisms are not a major determinant

of the success of East African athletes. As the

haplogroups are defined by the polymorphisms they

contain, any haplogroup containing a functional variant
would be likely to change in frequency in the elite

athletes relative to controls as a result of selection.

As this was not found to be the case, it is unlikely

that they are influential in the success of Ethiopian

distance runners.

Patrilineal genetics and the dominance of
East Africans in world distance running

The Y chromosome, like mtDNA, is interesting
because it is inherited solely through a single sex

(i.e. the male). Although often ignored in genetic

association studies, the Y chromosome is a potentially

interesting candidate to study. While poor in genes and

non-essential for survival (given the presence of XX

females), it could in principle carry gene variants

FIG. 1 Human mitochondrial tree. Approximate positions of poly-
morphisms relative to the Cambridge Reference Sequence (CRS)
are shown (hypervariable segment I polymorphisms are shown
minus 16 000). Haplogroup topology is modelled upon more
detailed human phylogenies42,43. Approximate positions of the
ancestral mitochondrial DNA sequence ‘Mitochondrial Eve’ and
the CRS are also shown.
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that might influence physical performance specifically

in males, which may explain why the dominance of

East African runners is primarily a male phenomenon

(i.e. more than a sociological phenomenon linked to

participation rates). The haploid nature of the chromo-

some means that it does not recombine, and thus

haplotypes pass undisturbed from one generation to

the next, with changes arising only due to new
mutations. The availability of a unique and highly

resolved phylogeny49 based on binary markers, such

as single nucleotide polymorphisms, allows hap-

logroups to be defined. The frequencies of particular

haplogroups can then be compared between subject

and control groups. Positive associations have pre-

viously been reported between specific haplogroups,

a number of phenotypes (reviewed by Jobling and
Tyler-Smith50) and ethnic origin46,47,51. It is possible

that there is something unique about the distribution

of East African Y-chromosome haplogroups that is

influencing their endurance performance.

Recently, Moran et al.
52 studied the association

between the Y chromosome and endurance athlete

status in Ethiopians in an attempt to examine whether

elite Ethiopian runners are indeed a genetically distinct
group as some may infer from the published Ethiopian

demographic data9. To address potential population

stratification effects, two control populations were

used: a general Ethiopian control and a second control

comprised of individuals from the Arsi region (known

to be the source of a disproportionate number of

athletes). The athlete cohort was the same as in the

previous studies36, although confined to males in this

instance. The distribution of the Y-chromosome hap-

logroups of the Ethiopian subjects is shown in Fig. 2.

There were significant differences between the general
Ethiopian control and the 5–10 km and combined

endurance runners (5–10 km and marathon runners),

and between the Arsi control and the 5–10 km run-

ners, the marathon runners and the endurance athletes

as a whole. On deeper investigation, these associations

appeared to have been produced by four haplogroups:

E*, E3*, E3b1 and K*(xP). Haplogroups E*, E3*

and K*(xP) were positively associated with elite
performance in one or both endurance events, whilst

haplogroup E3b1 was negatively associated with

endurance performance. The finding that Y-chromo-

some haplogroups are associated with elite athlete

status in Ethiopians suggests that either an element

of the Y-chromosome genetics is influencing athletic

performance or that the Y-chromosome haplogroup

distributions were affected by population stratification.
However, the range of haplogroups in the athlete

groups was similar to that in the two control groups,

and haplogroups in both control and athlete groups

FIG. 2 Phylogenetic tree of the Y-chromosome haplotypes and their percentage frequencies. All mutations shown were examined in the
present study. n for each group is given in parentheses. Abbreviations used in figure: E3b(x) represents E3b*(xE3b1,E3b2,E3b3) and
R1*(x) represents R1*(xR1a1,R1b). Data from Moran et al.52.
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were similar to those previously identified as being

present in Ethiopian samples47,51. Nor was any associ-

ation found between the Y-chromosome haplogroups

of the subjects and their place of birth or language

family. The observed associations could not, therefore,

be readily explained by regional or cultural affiliation,

and were less likely to be a result of simple population

stratification. If there was something special about the
genetics of the Arsi population that was predisposing

them to endurance athletics, it might have been

expected that the two control groups would be signifi-

cantly different, and that the endurance athletes would

be statistically different from the general control but

very similar to the Arsi control. However, no difference

was found between the control groups and more

differences were observed between the athletes and
the Arsi control than between the athletes and the gen-

eral control. This raised the question of whether or not

the Arsi control population was representative of the

Arsi populations from which the athletes originated.

Despite this, there were still differences between the

athlete groups and the general Ethiopian control,

suggesting that the athletes were a distinct group.

With population stratification ruled out, something
about the Y-chromosome biology of the athletes must

have been influencing their athletic abilities directly.

Although once thought to be devoid of genes,

merely full of repetitive and parasitic sequences, gen-

eticists’ views on the Y chromosome have changed.

The male-specific region (MSY) is now estimated to

contain 156 genes53, some of which are expressed

throughout the body. Despite this, there are as yet
no clear candidates for genes directly affecting athletic

ability. The conclusions from the Ethiopian study52 are

that elite Ethiopian endurance runners are not spread

throughout the Y-chromosome haplogroup tree in the

same proportions as the general population, with sig-

nificant differences in four of the individual Y-chromo-

some haplogroups between elite athletes and controls.

Although it remains possible that these associations
were a result of population stratification, it would be

of interest to test for the same haplogroup associations

in other East African athletic populations, such as the

Kenyans. If the same haplogroups were under/over-

represented, this would provide strong evidence for

a biological effect of the Y chromosome on elite ath-

lete status.

The finding that populations such as those in the
Arsi highlands have not arisen from a limited genetic

isolate over thousands of years does not rule out an

influence of genetics on their disproportionate success

in distance running. In fact, recent reports on geneti-

cally modulated responses to altitude may offer some

insight into ways in which genetics may influence

their success. Evidence of different strategies for

coping with hypobaric hypoxia54 used by geographi-

cally isolated indigenous populations may suggest

that the unique adaptations of East Africans have

some influence on their endurance success. Genes

involved in the hypoxic response have been found to

be polymorphic55, with some polymorphisms varying

significantly in frequency between high- and low-alti-

tude populations. The possibility exists, therefore,

that variants having been selected for benefits in
oxygen transport have the potential to concurrently

influence the endurance phenotype. Although unlikely

to be a genetic influence isolated to East Africans, it is

entirely possible that subtle changes in the frequency

of particular candidate genes for human performance

may have an influence on the disproportionate success

of East Africans. The aforementioned ACE gene is a

particular example of how there may be a genetic
effect acting on the success of East Africans which is

not entirely specific to them. The I allele of the ACE

gene has been implicated as important in high-altitude

tolerance56, shown by an increased frequency of clim-

bers with at least one I allele being able to tolerate

high altitude. It is plausible, therefore, in high-altitude

populations such as those found in East Africa, that

there has been a selective advantage for those carrying
the I allele. As discussed earlier, the I allele has also

been associated with endurance performance, which

raises the possibility that the highland East Africans

may have been adapted towards endurance perform-

ance indirectly. However, the lack of conclusive evi-

dence on the role of the ACE I allele in endurance

performance further attests to the belief that a single

gene effect is unlikely to be the final arbiter between
success and failure in athletic performance, particu-

larly not in differentiating between populations.

Conclusions

It is concluded that, at present, there is no evidence

that genetics plays a role in determining East African

running success, and that any genetic effect is more

likely to be as a result of an increased frequency of a

particular candidate gene, not unique to East Africa,
but conferring advantage in any population. Any

allele that is having a major influence on the success

of East Africans is likely to be present in most other

groups, as it is estimated that any allele present in

a population at a frequency of over 20% is almost

certainly present in other populations at reasonable

frequencies31. Findings that South African runners

exhibit advantageous physiological characteristics,
even if genetically determined, are unable to be

extrapolated to East African athletes given the current

understanding of ‘race’ and genetics. Rather than

unique genetics, what may be unique about East

Africans is their combination of social and cultural

factors, such as strong traditions of distance running,
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as well as optimal environmental conditions such as

running long distances to school each day. It may

also be the case that those with an advantageous com-

bination of potential performance genes, conferring

advantage in endurance performance, recognize their

talent through using it regularly. It can be concluded

that it is unjustified at present to identify the phenom-

enon of East African running success as a genetically
mediated one, and that to justify doing so, one must

identify the genes which are important. The unsub-

stantiated concept that East Africans are genetically

adapted towards distance running leads to the percep-

tion amongst opponents that they are at a disadvan-

tage, which will only serve to perpetuate the myth

through stereotype threat57.
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