
Centennial-scale climate change in Ireland during the Holocene

Swindles, G. T., Lawson, I. T., Matthews, I. P., Blaauw, M., Daley, T. J., Charman, D. J., ... Armit, I. (2013).
Centennial-scale climate change in Ireland during the Holocene. Earth-Science Reviews, 126, 300-320. DOI:
10.1016/j.earscirev.2013.08.012

Published in:
Earth-Science Reviews

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
NOTICE: this is the author’s version of a work that was accepted for publication in Earth-Science Reviews. Changes resulting from the
publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be
reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was
subsequently published in Earth-Science Reviews, [VOL126, (2013)].¨

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:16. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/16501697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/centennialscale-climate-change-in-ireland-during-the-holocene(5888bfa8-5636-45b3-a3d5-b2f498ccd5dc).html


�������� ��	
���
��

Centennial-scale climate change in Ireland during the Holocene

Graeme T. Swindles, Ian T. Lawson, Ian P. Matthews, Maarten Blaauw,
Timothy J. Daley, Dan J. Charman, Thomas P. Roland, Gill Plunkett, Georg
Schettler, Benjamin R. Gearey, T. Edward Turner, Heidi A. Rea, Helen
M. Roe, Matthew J. Amesbury, Frank M. Chambers, Jonathan Holmes,
Fraser J.G. Mitchell, Jeffrey Blackford, Antony Blundell, Nicholas Branch,
Jane Holmes, Peter Langdon, Julia McCarroll, Frank McDermott, Pirita O.
Oksanen, Oliver Pritchard, Phil Stastney, Bettina Stefanini, Dan Young, Jane
Wheeler, Katharina Becker, Ian Armit

PII: S0012-8252(13)00144-X
DOI: doi: 10.1016/j.earscirev.2013.08.012
Reference: EARTH 1894

To appear in: Earth Science Reviews

Received date: 15 June 2013
Accepted date: 18 August 2013

Please cite this article as: Swindles, Graeme T., Lawson, Ian T., Matthews, Ian P.,
Blaauw, Maarten, Daley, Timothy J., Charman, Dan J., Roland, Thomas P., Plunkett,
Gill, Schettler, Georg, Gearey, Benjamin R., Turner, T. Edward, Rea, Heidi A., Roe,
Helen M., Amesbury, Matthew J., Chambers, Frank M., Holmes, Jonathan, Mitchell,
Fraser J.G., Blackford, Jeffrey, Blundell, Antony, Branch, Nicholas, Holmes, Jane, Lang-
don, Peter, McCarroll, Julia, McDermott, Frank, Oksanen, Pirita O., Pritchard, Oliver,
Stastney, Phil, Stefanini, Bettina, Young, Dan, Wheeler, Jane, Becker, Katharina, Ar-
mit, Ian, Centennial-scale climate change in Ireland during the Holocene, Earth Science
Reviews (2013), doi: 10.1016/j.earscirev.2013.08.012

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.earscirev.2013.08.012
http://dx.doi.org/10.1016/j.earscirev.2013.08.012


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 
 

Centennial-scale climate change in Ireland during the Holocene 

Manuscript for Earth Science Reviews (revision 1) 

 

Graeme T. Swindles (Corresponding author) 

School of Geography, University of Leeds, Leeds, LS2 9JT, UK 

Email: g.t.swindles@leeds.ac.uk 

Phone: +44 (0)11334 39127 

Ian T. Lawson 

School of Geography, University of Leeds, Leeds, LS2 9JT, UK 

Ian P. Matthews 

Department of Geography, Royal Holloway, University of London, Egham, TW20 0EX, UK 

Maarten Blaauw 

School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Belfast, BT7 1NN, 

Northern Ireland, UK 

Timothy J. Daley 

School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK 

Dan J. Charman 

Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK 

Thomas P. Roland 

Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK 

Gill Plunkett 

School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Belfast, BT7 1NN, 

Northern Ireland, UK 

Georg Schettler 

GeoForschungs Zentrum Potsdam, Telegrafenberg,  D-14473, Potsdam, Germany 

Benjamin R. Gearey 

Department of Archaeology, University College Cork, Cork, Ireland  

T. Edward Turner 

School of Geography, University of Leeds, Leeds, LS2 9JT, UK 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 
 

Heidi A. Rea 

School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Belfast, BT7 1NN, 

Northern Ireland, UK 

Helen M. Roe 

School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Belfast, BT7 1NN, 

Northern Ireland, UK 

Matthew J. Amesbury 

Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK 

Frank M. Chambers 

Centre for Environmental Change and Quaternary Research, University of Gloucestershire, GL50 4AZ, UK 

Jonathan Holmes 

Environmental Change Research Centre, Department of Geography, University College London, London, 

WC1E 6BT, UK 

Fraser J.G. Mitchell 

School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland 

Jeffrey Blackford 

School of Environment and Development, The University of Manchester, Manchester, M13 9PL, UK 

Antony Blundell 

School of Geography, University of Leeds, Leeds, LS2 9JT, UK 

Nicholas Branch 

School of Human and Environmental Sciences, University of Reading, Reading, RG6 6AH, UK 

Jane Holmes 

School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Belfast BT7 1NN, 

Northern Ireland, UK 

Peter Langdon 

Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK 

Julia McCarroll 

Centre for Environmental Change and Quaternary Research, University of Gloucestershire, GL50 4AZ, UK 

Frank McDermott 

School of Geological Sciences, University College Dublin, Dublin 4, Ireland 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3 
 

Pirita O. Oksanen 

School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland 

Oliver Pritchard 

National Soil Resources Institute, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, 

MK43 0AL, UK 

Phil Stastney 

School of Human and Environmental Sciences, University of Reading, Reading, RG6 6AH, UK 

Bettina Stefanini 

Department of Geography, National University of Ireland, Maynooth, Ireland 

Dan Young 

School of Human and Environmental Sciences, University of Reading, Reading, RG6 6AH, UK 

Jane Wheeler 

Division of Archaeological and Environmental Sciences, University of Bradford, Bradford, BD7 1DP, UK 

Katharina Becker 

Division of Archaeological and Environmental Sciences, University of Bradford, Bradford, BD7 1DP, UK 

Ian Armit 

Division of Archaeological and Environmental Sciences, University of Bradford, Bradford, BD7 1DP, UK 

 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

4 
 

 

Abstract 

We examine mid- to late Holocene centennial-scale climate variability in Ireland using 

proxy data from peatlands, lakes and a speleothem.  A high degree of between-record 

variability is apparent in the proxy data and significant chronological uncertainties are 

present. However, tephra layers provide a robust tool for correlation and improve the 

chronological precision of the records. Although we can find no statistically significant 

coherence in the dataset as a whole, a selection of high-quality peatland water table 

reconstructions co-vary more than would be expected by chance alone. A locally 

weighted regression model with bootstrapping can be used to construct a ‘best-estimate’ 

palaeoclimatic reconstruction from these datasets. Visual comparison and cross-wavelet 

analysis of peatland water table compilations from Ireland and Northern Britain shows 

that there are some periods of coherence between these records. Some terrestrial 

palaeoclimatic changes in Ireland appear to coincide with changes in the North Atlantic 

thermohaline circulation and solar activity. However, these relationships are 

inconsistent and may be obscured by chronological uncertainties. We conclude by 

suggesting an agenda for future Holocene climate research in Ireland. 

 

Keywords: Climate change; Holocene; Centennial-scale; Ireland; Palaeoclimate compilation; Statistical 

analysis 
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1. Introduction and Rationale 

Until recent decades, the climate of the Holocene epoch was considered to be 

exceptionally stable compared to that of the Pleistocene (Denton and Karlen, 1973; 

Dansgaard et al., 1993; Mayewski et al., 2004). However, evidence from both marine and 

terrestrial proxy records suggests that the Holocene was characterised by marked 

climatic changes including cycles of millennial and centennial scales (e.g. Bond et al., 

1997, 2001; Wanner et al., 2008), and abrupt events (e.g. Barber et al., 1999; Magny, 2004). 

As recent global mean temperatures are probably higher than they have been during the 

past millennium (Jones and Mann, 2004; Moberg et al., 2005; Osborn and Briffa, 2006), it is 

critical that natural climate change in the Holocene is fully understood, because this may 

either mask or enhance any human-influenced climate change of recent centuries. 

However, climate reconstructions from single sites tend to be heavily influenced by local 

factors, thus there is an urgent need to compile and scrutinise large proxy datasets from 

different climatic regions. 

 

Ireland is a key location for the examination of Holocene climate dynamics as it is 

sensitive to any changes occurring in the North Atlantic Ocean (e.g. Lehman and Keigwin, 

1992). Ireland’s oceanic climate is strongly influenced by the North Atlantic Drift and 

thus does not have temperature extremes typical of many other countries at similar 

latitude (McElwain and Sweeney, 2003). Mean daily temperatures vary between 4-8°C in 

winter and 2-16°C in summer (http://www.met.ie/).  The rainfall of Ireland mostly comes 

from Atlantic frontal systems, although there is marked spatial variation. Rainfall is 

highest in the west (~1000-1400 mm yr-1) and in mountainous areas (often >2000 mm yr-1), 
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whereas typical rainfall in eastern Ireland is between 700-1000 mm yr-1. December and 

January are usually the wettest months in Ireland (http://www.met.ie/). This spatial 

variation in temperature and precipitation leads to variation in annual water deficit 

(Mills, 2000; Figures 1 and 2). 

 

The Armagh Observatory records, which began in 1838, represent the longest 

instrumental climate records for Ireland (Figure 2). The calibration of these records has 

provided data that are reliable, consistent and of high quality (Butler et al., 1998; 2005).  

In general, two main phases of change can be observed in the total annual rainfall data. 

Firstly, there is a phase of fluctuating but generally increasing rainfall from 1840 to the 

late 1960s. Secondly, a major decrease in rainfall occurs in the 1960-70s, followed by an 

apparent stabilisation at a lower level for the 1980-90s. The temperature data show three 

main phases. The first is a period of reasonably high temperatures from the 1840-1880s. 

Then, in 1880, a rapid fall in temperature is then followed by a period of fluctuating but 

generally increasing temperature until the 1960s. In the 1960s temperature appears to 

remain relatively stable until a rapid increase from the late 1980s. Despite these high-

quality instrumental climate data, a compilation of Holocene palaeoclimate proxy data 

for Ireland is needed to examine the nature of climate changes in Ireland beyond recent 

centuries.  

 

During the Holocene, multi-millennial-scale climatic changes should be relatively minor 

in Britain and Ireland as changes in insolation due to orbital forcing were much smaller 

than those experienced at high latitudes (Charman, 2010). Therefore, millennial and 

centennial-scale variability is likely to have been a more important factor for 
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environmental change and human societal dynamics in Ireland. Over the last 20 years 

there has been a proliferation of Holocene climate studies in Ireland, including analysis 

of lacustrine (e.g. Schettler et al., 2006; Diefendorf et al., 2006; Holmes et al., 2010; 

Ghilardi and O’Connell, 2013), peatland (e.g. Plunkett 2006; Blundell et al., 2008; Swindles 

et al., 2010) and speleothem (McDermott et al., 1999; 2001) archives. Several Holocene 

tephra layers (microscopic ‘cryptotephras’) have been found in Irish peat bogs and lakes 

and have been used for dating and precise correlation of the profiles. The tephra layers 

and are mostly from Icelandic sources (Hall and Pilcher, 2002; Chambers et al., 2004).  

 

In addition, much work has focused on records of climate change from North Atlantic 

marine sediments west of Ireland (e.g. Bianchi and McCave, 1999; Bond et al., 2001; 

Thornalley et al., 2009). Despite some attempts to compare marine records to individual 

terrestrial palaeoclimate records in Ireland (e.g. Swindles et al., 2007a; Blundell et al., 

2008), further work is needed to examine these links using a comprehensive synthesis of 

terrestrial records. Although a general review of centennial-scale climate variability in 

the British Isles has been undertaken (Charman, 2010), there has been no similar study 

focussing on Ireland alone. The abundance of data from Ireland presents a unique 

opportunity to consolidate, analyse and interpret the Holocene proxy record at an 

island-wide scale. This will be valuable for further studies that seek to i) examine key 

periods of climate change within Ireland and put these into a wider spatio-temporal 

context (e.g. Diefendorf et al. 2006; Blundell et al., 2008; Swindles et al., 2010); ii) 

investigate climate forcing parameters (e.g. Swindles et al., 2007a); and iii) use 

archaeological data and historic records to examine human-environment relations in the 

past (e.g. Kerr et al., 2009; Stolze et al., 2012; Plunkett et al., 2013). 
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The aims of this paper are fourfold: 

1. To review evidence for mid-late Holocene climate change in Ireland over centennial 

timescales and assess the coherence between records. We focus on the last 5,000 

years as there are abundant data spanning this period. There are only a limited 

number of early Holocene records from Ireland (e.g. McDermott et al., 2001; Schettler 

et al., 2006; Langdon et al., 2012; Figure 3a and b).  

2. To decipher climatic signals from autogenic processes and statistical noise in a 

compilation of peat-based proxy climate records. 

3. To determine whether the patterns observed at the centennial scale in Irish 

palaeoclimatic records could be explained as the result of chance alone. Blaauw et al. 

(2010) suggested that ecosystem changes claimed as significant features of many 

palaeoenvironmental records can in fact be produced by random-walk simulations. 

Thus a cautious approach to recognising palaeoclimatic features such as abrupt 

events, long-term trends, quasi-cyclic behaviour, immigrations and extinctions, is 

required. 

4. To evaluate the role of climate-forcing parameters (including oceanic circulation and 

temperature changes, and solar radiance) in driving changes in Irish climate over the 

last 5,000 years.  

 

2. Data compilation 

A compilation was made of all available Holocene palaeoclimate proxy data from Ireland. 

The data comprised palaeoclimate proxy records from peatlands, lakes and a speleothem 

(Table 1, Figures 1 and 3a). A precisely dated palaeoclimatic index inferred from bog oak 
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population dynamics in Northern Ireland (Turney et al., 2005) has been shown to be 

problematic and has therefore been excluded from this analysis. It has been illustrated 

that there is not a simple relationship between the frequencies of oaks and bog surface 

wetness (see Swindles and Plunkett, 2010).  

 

 

 

2.1. Speleothem record 

A high-resolution U-series dated oxygen isotope record from a speleothem in Crag Cave 

(County Kerry) represents one of the few temperature-sensitive Holocene proxy climate 

records in the British Isles (McDermott et al., 1999, 2001; Charman, 2010). This record is 

based on isotopic analysis of drilled sub-samples of calcite (every 2-2.5 mm) along the 

central growth axis of the speleothem (McDermott et al., 1999). Crag Cave itself is 

relatively shallow (~20m deep), situated 20 km inland of the SW coast of Ireland and 

contained within Lower Carboniferous limestone (McDermott et al., 1999). Speleothem 

CC3 was taken from the cave interior where the relative humidity is high (98-99%) and 

where modern measurements indicate a constant internal temperature (McDermott et 

al., 1999; 2001). Accordingly, the record from CC3 reflects variations in drip water δ18O 

that are largely derived from changes in the δ18O value in precipitation source water 

(δ18Op) (McDermott, 2004). In terms of Holocene palaeoclimate, this record has been 

interpreted as reflecting changes in air temperature as well as changes in the isotopic 

signature of the moisture source and total precipitation amount (McDermott et al., 2001). 

 

2.2 Lake-based records 
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The brackish karst lake An Loch Mór fills a collapsed sinkhole on the small island Inis 

Oírr (Galway Bay, western Ireland). The geological setting makes the sediments of the 

lake a sensitive natural monitor for dissolved element influx via freshwater and seawater 

inflow, and for siliciclastic aeolian input. Dissolved influx of Ca and inorganic carbon 

(DIC) largely originate from chemical limestone dissolution in the lake’s catchment 

(delivered through freshwater discharge), whereas the influx of algae and Mg is 

predominantly from seawater. A major component of the lake sediments is chemically 

precipitated as biogenic autochthonous calcite, which fluctuates in response to climatic 

conditions and well as human activity in the catchment (Molloy and O’Connell, 2004; 

Schettler et al., 2006; Holmes et al., 2007). It has been proposed that the proportion of 

sedimentary CaCO3 in the record from An Loch Mór reflects precipitation (P) or 

Precipitation minus evapotranspiration (P-E), as a decrease in CaCO3 with a coinciding 

increase in total organic carbon (TOC) and Mg/Ca documents periods of lowered rainfall 

or freshwater inflow, respectively. This signal is complicated by sea-level change and 

hydrological effects of human impacts on vegetation (Molloy and O’Connell, 2004; 

Schettler et al., 2006). The geochemical record from An Loch Mór is dated using a 

combination of 14C, tephrochronology and pollen-based biostratigraphic markers 

(Chambers et al., 2004).  

 

A ~1 kyr lacustrine carbonate oxygen-isotope time series from Lough-na-shade, a small 

(0.3 ha surface area) shallow lake (maximum depth ~3.5 m) in Co. Armagh, N. Ireland, is 

included (Holmes et al., 2010). The record from Lough-na-shade is based on isotopic 

analysis of the carbonate in contiguous 1-cm samples of isolated valves of the ostracod 

genus Candona from a two-metre core (NSH92) (Holmes et al., 2010). Lake water δ18O 

composition is ultimately linked to that of precipitation source water. The extent to 
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which this signal is modified once the water arrives in the lake depends on whether it is a 

closed or open system, and on the evaporation/precipitation balance. The δ18O values of 

lacustrine carbonates are not only controlled by the δ18O value and temperature of lake 

water, but also by kinetic and biochemical/vital effects in the precipitation of calcite. The 

Lough-na-shade record is dated by pollen and geochemical age-equivalent markers as i) 

short-lived radioisotopes are in low concentration owing to recent rapid sedimentation 

and ii) 14C dating was not possible owing to the calcareous sediment and lack of 

terrestrial macrofossils (Holmes et al., 2010).  

 

2.3 Interpretation of oxygen isotope records 

It would be a misconception to suggest that oxygen isotope records reflect solely past 

changes in surface air temperature (Schmidt et al., 2007; Holmes et al., 2010; Daley et al., 

2011), not least because the controls on the isotopic composition of the source 

precipitation are notoriously complex in the mid-latitudes (Cole et al., 1999; Araguás-

Araguás et al., 2000). The sections of these records spanning the last 1000 years in the 

lake and speleothem records (CC3 and NSH92) were compared in a recent paper by 

Holmes et al. (2010). The authors demonstrated that the covariance between (and 

magnitude of) the respective isotope signals in the two archives was best explained by 

changes in past atmospheric circulation. Variations in the estimated δ18Op therefore 

reflected changes in the origin and trajectory of the moisture sources for precipitation 

over Ireland. Lower δ18Op values were interpreted to reflect the sourcing of moisture 

from either higher latitude or more continental source air masses. This interpretation is 

justified on the basis of instrumental evidence linking large (~4‰) variations in the 
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isotopic composition of precipitation in the British Isles to the trajectories of air masses 

(Heathcote and Lloyd, 1986). 

 

2.4 Peatland records  

Peat-derived records represent the most abundant Holocene palaeoclimate data in 

Ireland. These records are based on testate amoebae (with transfer function-based water 

table reconstructions), plant macrofossils (with associated 1-dimensional statistical 

wetness summaries) and humification data from ombrotrophic raised bogs and blanket 

peatlands. These are well-established climate proxies in peatlands, although multiproxy 

approaches have revealed discrepancies between individual proxies (e.g. Blundell and 

Barber, 2005; Swindles et al., 2007b; Chambers et al., 2012). It has been suggested that 

peat-based records should be considered as proxies of effective precipitation (P-E), 

especially reflecting the summer deficit period (Charman, 2007; Charman et al., 2009; 

Booth, 2010). However, peatlands are dynamic ecohydrological systems and climatic 

signals may be modified by feedbacks inherent in peat formation, decomposition and 

hydrology (Belyea and Baird, 2006; Frolking et al., 2010; Morris et al., 2011; Swindles et 

al., 2012a).  

 

In Ireland, there is also some evidence that bog bursts may have influenced the 

hydrology of peatlands, such as in Derryville (Lisheen) bog (Caseldine and Gearey, 2005; 

Caseldine et al., 2005; Gearey and Caseldine, 2006). Detailed stratigraphic survey and 

independent radiocarbon dating of the growth and development of Derryville Bog by 

Casparie (2005) produced evidence of several catastrophic failures of the hydrological 

integrity of the mire system attributed to ‘bog bursts’ at dates of c. 3200 cal. BP, 2770 cal. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

13 
 

BP and 2550 cal. BP, with tentative evidence for a further burst at c. 2350 cal. BP. These 

events tend to be evidenced by erosion gullies, re-deposited peat and anomalous age-

depth correlations. The precise causes of ‘bog bursts’ are unclear but seem to be related 

to an excess of water within the bog system leading to the crossing of a hydrological 

‘threshold’ and the subsequent rupture of the mire. Study of recent bog bursts indicates 

that they may occur during periods of extreme weather, such as heavy rains or periods of 

prolonged dry weather followed by flash flooding (e.g. Feldmeyer-Christe et al., 2011).  

 

Peat records in Ireland have been dated using 14C (e.g. Barber et al., 2003), 14C wiggle-

matching (Plunkett and Swindles, 2008), spheroidal carbonaceous particles (‘SCPs’ - e.g. 

Swindles, 2006), tephra (e.g. Plunkett, 2006; Table 2), or a combination of these (Swindles 

et al., 2010). Peat humification data were detrended using linear regression and 

presented as % transmission residuals (Blackford and Chambers, 1991, 1993). Testate 

amoebae water table reconstructions are based on the ACCROTELM transfer function 

(Charman et al., 2007), except Glen West, which is based on the Northern Ireland transfer 

function (Swindles et al., 2009) and Ardkill and Cloonoolish which are based on the 

British transfer function (Woodland et al., 1998). However, the output of these transfer 

functions show markedly similar trends (Charman et al., 2007; Swindles et al., 2009; 

Turner et al., 2013).  

 

3. Data analysis 

The chronologies of four key high-resolution records (Derragh, Dead Island, Slieveanorra 

and Crag Cave) were firstly analysed through Bayesian methods to assess the typical 

chronological resolution of the proxy data. The chronological information was modelled 
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using OxCal v4.2 with the IntCal09 calibration set (Bronk Ramsey, 2008, 2009a; Reimer et 

al., 2009). Each sequence was modelled independently using the procedures outlined in 

Blockley et al. (2007) with the following refinement: model averaged outlier detection 

was used to identify and down-weight proportionally the influence of possible outliers in 

the final model (a ‘general outlier model’ as specified in Bronk Ramsey, 2009b). The final 

age model for each data set including estimates of the total uncertainty between dated 

intervals was calculated by interpolating between points within OxCal. For Dead Island 

and Slieveanorra interpolation was carried out at 2.5cm intervals while at Derragh Bog 

5cm interpolation was used. For Crag Cave, an interpolation interval of 2 mm was 

employed. When finalised the total chronological uncertainty (mean average and 

standard deviation) for each record was recorded and used as a guide for comparing the 

proxy data. 

 

Statistical analysis of the data was carried out using R 2.14.1 (R Development Core Team, 

2011). The time series were first detrended by fitting a linear regression line through 

each dataset and extracting the residuals. As all of the time series are several thousand 

years in length, this effectively acts as a high-pass filter, so that the focus of subsequent 

analysis is century-scale variation in climate. The detrending is necessary because the 

proxy climate data may contain long-term patterns related to (i) gradual changes in 

climate over millennia, for example tracking insolation changes, and (ii) gradual changes 

in the response of the proxy to climate at each site, for example the slow growth of 

ombrotrophic mires and the consequent slow variation in hydrological behaviour. The 

detrended time series were standardized to produce series with means of zero and one 

standard deviation. To facilitate comparisons, the irregular time series were converted to 

regular time series by calculating the weighted average of the data points within 
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contiguous 100 and 250-yr-long 'bins'. An analysis of the direction of change (i.e. 

wetter/cooler - drier/warmer) from one bin to the next was carried out. The data were 

mapped with a separate map for each bin.  

 

A null hypothesis that the data show no climatic coherence was tested using a Monte 

Carlo approach. A test statistic was constructed by finding, for each bin, the difference 

between the number of data points with positive values and the number of data points 

with negative values. In a fully random dataset this difference should be close to zero. 

These differences were summed across all time bins to give a single test statistic 

representing the overall coherence of the data. The significance of this value was 

assessed by randomly reordering each time series, 999 times, and calculating the test 

statistic for each permutation. The 95th percentile of the resulting set of statistics was 

used as the critical value for the hypothesis test. Full details of statistical testing are 

provided in section 4.3.1.  

 

 

 

 

 

 

4. Results and discussion 

 

4.1 Chronological uncertainties 
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While it is tempting to align records based around existing age models, frequently these 

do not fully quantify their chronological uncertainties. This may lead to the 

miscorrelation of unrelated events or conversely the failure to identify related climatic 

events, ultimately leading comparative records to appear to diverge and hence leading to 

the impression of ‘noisy’ regional reconstructions. This is especially important in 

Holocene records where subtle and short-lived climatic changes may have differing 

expressions across a region and may be masked at individual sites and sampling spots by 

autogenically-driven variation in proxy data. Extracting a climatic signal from this noise 

is fundamental to understanding the impacts of past climatic change, but may only be 

achieved when meaningful reconstructions of regional climatic trends can be identified.  

One approach advocated for dealing with these problems has been to align several 

records using common ‘climatic events’ and produce a single master curve for a region 

(Charman et al., 2006). This approach termed “tuning and stacking” has the potential to 

alleviate some of the problems outlined above. However, Swindles et al. (2012b) highlight 

that defining common climatic events and using these to constrain chronologies, 

potentially introduces further errors into a reconstruction. Ultimately, this approach 

removes the independence of individual sequence chronologies and makes it difficult to 

quantify the associated uncertainties of each record (see Blaauw, 2012). This may have 

the effect of masking the noise in the data and leading to mis-/missed correlations. Here 

we reconsider the chronology of four key records, Crag Cave, Derragh Bog, Dead Island 

Bog, and Slieveanorra, which were selected as they have high quality chronologies 

(McDermott et al., 2001; Brown et al., 2005; Swindles et al., 2007a; Langdon et al., 2012). 

The age-depth relationships of each site were remodelled in order to examine the 

maximum likely uncertainties encountered within records, and the most robust way of 

refining these uncertainties. The total uncertainty can be used as a guide of the 
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robustness of correlation between proxy data and the potential of each record to 

recognise short-lived decadal-scale events. 

 

The least-well constrained record (at least in the middle and later Holocene) is Crag Cave, 

which has a low density of dates during this period, indeed total uncertainties are greater 

than 1000 years between c. 2700-5000 cal. BP. For the entire record, the mean average 

uncertainty is 438 ±292 years, suggesting this record can only provide centennial-scale 

information at best. The best-constrained chronologies are found in the peat sites where 

either tephra or SCP data are available. In the case of the last 1000 years, tephras have 

calendar ages associated with them and these provide very precise tie points for 

correlation. However, uncertainties quickly increase away from these intervals. In the 

Derragh Bog chronology, no tephra or SCP data are available, but this site represents one 

of the best radiocarbon dated mid- to late Holocene peatland records for Ireland 

(Langdon et al., 2012). In this instance, the age model provides relatively consistent total 

uncertainties with the mean average uncertainty of 231 ±62 years (Figure 4). Dead Island 

and Slieveanorra have mean average uncertainties of 164 ±55 and 167 ±77 years 

respectively, indicating all three records can potentially be correlated at the centennial-

scale. However, if the last c.1000 years are assessed (where annually dated tephras and 

SCP data are available) both Dead Island and Slieveanorra perform markedly better than 

Derragh Bog (Figure 4). In this time period, Derragh Bog has mean average uncertainty of 

146 ±47 years while Dead Island and Slieveanorra have uncertainties of 72 ±70 and 65 ±47 

years respectively. In this later period the tephra and SCP information potentially allow 

the assessment and correlation of proxy data at decadal scales.   
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Consequently, reconstructions based on radiocarbon dating alone have relatively 

consistent uncertainties in the order of 100s of years. However, where tephra and SCP 

data are available alongside radiocarbon information very precise reconstructions over 

the last c. 1000 years are achievable. This is also likely to be the case during the period 

3000-2500 cal. BP where the widespread GB4-150, OMH-185 (Microlite) and BMR-190 

tephra layers have been identified. Currently, these tephra layers constrain the Dead 

Island and Slieveanorra age models so that they have decadal-scale uncertainties 

between c. 2800-2600 years ago. Future improvements to these estimates alongside the 

recognition of other regional tephra marker layers are likely to provide significant 

reductions in the total chronological uncertainties over this time period where large-

scale shifts in climate and environment have been proposed (van Geel et al., 1996; 1998; 

Plunkett and Swindles, 2008). Even tephra horizons that are less-well chronologically 

constrained can provide useful stratigraphic tie points. These independent marker layers 

alongside SCP counts may be used to make direct comparisons between sites, thus 

removing the need to undertake tuning and stacking approaches (Figure 3). 

 

4.2 Spatial patterns  

Figure 5 shows the directional changes across each 100-year bin for the last 5,000 years. 

It is evident that there is much variability in the data and there is much non-coherence 

at centennial timescales (also see section 4.3.1). However, two periods of shift to much 

wetter/colder conditions are apparent, one centred on 250 cal. BP and the other around 

2.7 ka cal. BP. The first of these occurs during the ‘Little Ice Age’, which is well 

documented in NW Europe, and the second also coincides with a well-established period 

of climatic change in the early Iron Age transition (Plunkett, 2006; Swindles et al., 2007a). 
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In the datasets analysed here, the first pulse of the Little Ice Age occurs at 550 cal. BP, 

there is recovery by 450 cal. BP, and only at 250 cal. BP is there strong evidence for a 

widespread deterioration. The 2.7 ka cal. BP event in Ireland appears to be a more 

northern phenomenon with quite widespread drying/warming (2750 cal. BP) preceding 

the shift at 2650 cal. BP.  There seems to be a gradual shift to wetter/colder conditions 

peaking after 1650 cal. BP at 1450 cal. BP, which may reflect a climatic deterioration 

thought to have occurred in NW Europe during the Dark Ages (e.g. Blackford and 

Chambers, 1991). There is no unambiguous evidence for a widespread Medieval Warm 

Period, Roman Warm Period or 4.2 ka cal. BP event (e.g. Booth et al., 2005; Roland, 2012) 

in Ireland. 

 

4.3 Peatland water table compilation (PWTC)  

To refine the peatland proxy climate dataset, the following records were removed: 

1. The peatland records from Lisheen (Derryville) as they are confounded by bog bursts 

(Caseldine and Gearey, 2005); 

2. The peatland records from Cloonshannagh, Killeen, Longford Pass and Littleton as they 

have poor chronological control and low-resolution sampling; 

3. All peatland humification and plant macrofossil records. Analysis of plant macrofossils 

and measurement of the degree of humification are semi-quantitative, and a number of 

complexities are associated with these proxies. Evaluating causal factors of hydrological 

change through plant macrofossils can be complicated, as ecological response thresholds 

may vary between sites (e.g. Moore, 1986; Barber, 1994). Differential preservation and 

representation of bog surface vegetation is apparent (Yeloff and Mauquoy, 2006), and 

taxonomical difficulties are exacerbated where peat decomposition increases (Grosse-
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Brauckmann, 1986). The records can also become ‘complacent’ where a single eurytypic 

Sphagnum species dominates the profile (Barber et al., 1994; Barber et al., 2003). In 

addition, different approaches have been used to generate 1-dimensional summaries, 

which leads to inconsistency between records (for example, weighted averaging index 

values or ordination axis scores) (e.g. Daley and Barber, 2012).  

 

Humification can be particularly useful in situations, for example in many blanket 

peatlands where little or no stratigraphy is apparent owing to the high level of 

decomposition (e.g. Blackford and Chambers, 1991; Langdon and Barber, 2005; Swindles 

et al., 2012c). However, there are potential problems with the extraction of humic acids 

from peat (Caseldine et al., 2000) and changes in botanical composition may have a 

significant influence on results because of differential decay rates of plant species 

(Blackford and Chambers, 1993; Yeloff and Mauquoy, 2006; Hughes et al., 2012). However, 

there are also problems with testate-amoebae based reconstructions. Differential 

preservation of tests (Mitchell et al., 2008; Swindles and Roe, 2007), particularly in highly 

humified peats (e.g. Payne and Blackford, 2008) and potential ‘no analogue’ situations 

may necessitate careful interpretation of results. While the ecology of these organisms is 

generally well understood, there remains a high level of complexity to their position in 

the microbial network (Sullivan and Booth, 2011; Turner and Swindles, 2012), and site-

specific factors may influence community composition.  Nevertheless, directional 

changes (i.e. wet/dry shifts) inferred by testate amoebae-based transfer functions are 

highly consistent when independently tested (Turner et al., 2013), however, the 

magnitudes of change should be viewed with some caution.  
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Peat-based water table reconstructions contain signals from autogenic processes (see 

Swindles et al., 2012a). We present a flexible statistical method in an attempt to decipher 

climate signals from a large compilation of noisy data from multiple sites. Water table 

reconstructions were carried out on eight high-quality testate amoebae records from 

Ireland using the European transfer function (Charman et al., 2007) (Ardkill, Ballyduff, 

Cloonoolish, Dead Island, Derragh, Glen West (high-resolution section only), 

Slieveanorra, Sluggan).  

 

The chronologies and associated errors for each sequence were modelled using Bacon, an 

age-depth model based on piece-wise linear accumulation (Blaauw and Christen, 2011; 

Supplementary material 2), where the accumulation rate of sections depends to a degree 

on that of neighbouring sections. In Bacon, accumulation rates are constrained by a prior 

distribution (a gamma distribution with parameters acc.mean and acc.shape), as is the 

variability in accumulation rate between neighbouring depths (“memory”, a beta 

distribution with parameters mem.mean and mem.strength). The age-modelling 

procedure is similar to that described in Blaauw and Christen (2005), although many 

more, shorter sections are used (default 5 cm thickness), resulting in more flexible and 

robust chronologies. The prior information was combined with the radiocarbon and 

tephra dates using millions of Markov Chain Monte Carlo iterations (Blaauw and 

Christen, 2011). The total chronological error (difference between maximum and 

minimum probability ages at 95%) associated with each depth (in all the above sites) was 

calculated from the model (Figure 6). Samples with chronological errors >500 years were 

removed from the compilation process. 
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The water table data were standardised to z-scores, combined and ranked in 

chronological order (i.e. by maximum age probability as modelled by Bacon). A Lowess 

(Locally weighted scatterplot smoothing; Cleveland 1979, 1981) (smooth = 0.02) was 

calculated. Polynomial regressions in a neighbourhood of � were fitted following: 
 

� � 1 � ������ 	
� � � ����

�

���

�
�

 �

��	

 

 

where ������ denoted k-NN weights (Cleveland, 1979). Bootstrapping was used (999 
random replicates) to calculate 95% bootstrap ranges on the Lowess function. In order to 

retain the structure of the interpolation, the procedure uses resampling of residuals 

rather than resampling of original data points. It was found that interpolation to annual 

interval made little difference to the overall shape of the Lowess function. This 

represents a statistical compilation of the peatland water table records (PWTC) and 

models the common inter-site trends (Figure 7). 

 

4.3.1 Statistical testing 

It is obvious that there is a lot of variability in the data and it is not immediately 

apparent by inspection that the water table reconstructions show a common pattern. 

This may be due to i) differences in regional climate; ii). chronological uncertainties; iii) 

response of proxies to factors other than climate and iv) internal peatland processes 

(Figures 8 and 9). Ideally it would be possible to test the null hypothesis “the sequences 
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do not co-vary more than if they were drawn from an appropriate distribution at 

random”. A conclusive test of this hypothesis is difficult for several reasons: 

1. The interval between observations in any given water-table reconstruction time-

series is irregular; 

2. The observations in the different time-series do not represent the same years; 

3. The age of each observation is uncertain (cf. Haam and Huybers, 2010); 

4. Even after detrending, some of the time-series appear to be autocorrelated, which 

means that the effective degrees of freedom are reduced (Yule, 1926). However, 

because of the irregular nature of the time-series, standard approaches to treating 

autocorrelation (e.g. ARMA modelling) cannot readily be applied. 

Nonetheless, useful insights can be made by comparing simulated datasets to the actual 

data. In order to compare the sequences, the detrended, standardized datasets were 

transformed into regular time-series by binning the data, with bins of 0-100, 100-200, ... 

4900-5000 cal. BP (following the same approach used in mapping the data in Figures 5 

and 7).  

 

We then calculated a statistic �
��

�: 

�
��

� � � � ��,�

�

��	

�

��	

 

 

where b is the bin, n is the total number of bins, d is the (binned) dataset, m is the 

number of datasets, and xb,d represents each data point. Missing data points were 

ignored. This statistic will be close to zero if the datasets do not co-vary systematically 

(note that this statistic is less sensitive to large values than the more usual coefficient of 
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co-variance, based on products rather than sums, commonly used for comparing two 

datasets). 

 

We then generated 999 simulations of the dataset by randomly re-ordering the 

detrended, standardized observations. The statistic w was calculated for each simulated 

dataset and the 95th percentile was recorded as w95. The probability of attaining a higher 

value of w than wactual by chance was estimated from the ranking of the simulations. We 

performed the same procedure for the datasets without first detrending. The statistics 

were calculated for the complete set of water-table reconstructions available, and then 

for the smaller set of eight records in the PWTC. The results are shown in Table 3. To 

check the effect of the choice of bin size or starting point, in each case we ran the test 

using 19 additional, random combinations of bin size (between 25 and 150 years) and 

starting point (between 0 and 150 cal. BP). The results are shown in Table 4. There was no 

obvious relationship between bin size, starting position, and the ratio of wactual to w95. 

 

This approach to testing the hypothesis does not take into account the effect of 

autocorrelation in the time series. We measured the autocorrelation of the longest 

continuous series in the binned data (bin size 100 years, starting point 0 years cal. BP). On 

this basis, only four of the twelve records (Ballyduff, Dead Island, Derragh, Littleton) 

were found to be significantly autocorrelated (always at lag 1) at the 95% level; overall, 

the effect of autocorrelation on the data is therefore weak. Thus, while we stress that a 

perfect test of the hypothesis is not technically feasible, this analysis strongly suggests 

that the records co-vary more than we would be expected by chance alone. This is 

particularly true of the eight records that were selected on the basis of quality. This 
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provides confidence that the PWTC shown in Figure 9 reflects, at least in part, genuine 

changes in regional climate. 

All the raw lake, speleothem and peatland data in Figure 3a were subjected to the same 

permutation test and the following results were obtained: wactual = 219, w95 = 281. Even 

with possible effects of autocorrelation making the data appear more coherent than they 

really are, there is no statistically significant co-variance in the unscreened data. 

 

 

 

4.3.2. Comparison with the British compiled water table record 

There is variable correspondence between the PWTC and the British ‘tuned and stacked’ 

water table reconstruction of Charman et al. (2006) (Figure 10). However, there are some 

potential periods of coherence including a clear shift to wetter conditions at c. 2700 cal. 

BP, 1400 cal. BP and a wet phase from c. 500-100 cal. BP. These correspond temporally 

with the Subboreal-Subatlantic transition (e.g. van Geel et al., 1996; Swindles et al., 

2007a), the Dark Ages climatic deterioration (e.g. Blackford and Chambers, 1991) and the 

Little Ice Age (e.g. Lamb, 1995). Dry phases are present from 3200-2750 cal. BP and 2250-

1550 cal. BP and a major swing to drier conditions occurred in the last ~100 years. The 

latter two episodes correspond temporally with the Roman Warm Period and 20th century 

(e.g. Wang et al., 2012; IPCC, 2007). Cross-wavelet analysis (Figure 10) suggests there are 

similar significant centennial-scale periodicities in the two records. This is most 

apparent from c. 3500-1400 cal. BP, suggesting a degree of structural coherence between 

the two records at this time despite some leads and lags. 
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4.4. Wider climate variability and forcing 

A synthesis dataset comprising the PWTC, the isotope record from Crag Cave and the Inis 

Oírr CaCO3 record is compared with other proxy data and climate forcing parameters. 

However, we note that the Crag Cave record has much poorer chronological precision 

than the water table data (see section 4.1). In addition, the Inis Oírr CaCO3 record is 

complicated by the hydrological effects of human impacts on vegetation and sea-level 

change (Schettler et al., 2006).  

 

We examine these proxy records alongside other climate proxy records including the 

δ
18O record from the NGRIP ice core (NGRIP members, 2004), indicators of changes of 

temperature and salinity in the Atlantic meridional overturning circulation which 

maintains the warm climate of NW Europe (Thornalley et al., 2009), the N. Atlantic IRD 

record (Bond et al., 2001) and the Na+ content of the GISP2 ice core as a proxy of sea salt 

aerosol loading of the atmosphere over Greenland, related to expansion of the polar 

vortex (O’Brien et al., 1995; Mayewski et al., 1997) (Figure 11). Climate forcing was 

investigated using volcanic sulphate data from the GISP2 ice core (Zielinkski and 

Mershon, 1997), a combined CO2 record from Mauna Loa, the Law Dome ice cores and 

EPICA Dome C (Keeling et al., 1976; Etheridge et al., 1996; Monnin et al., 2004) and total 

solar irradiance data (Steinhilber et al., 2009) (Figure 11, Table 5). 

 

It is clearly evident that there are differences and a high degree of variability between 

the climate proxy data. Although the proxies are ultimately driven to some degree by 

climatic variables, those variables may differ in importance depending on the individual 

proxy. Furthermore, some of the mechanisms by which climate changes are recorded in 
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the proxy variables are rather poorly understood. This, along with chronological error, 

explains much of the apparent non-coherence between proxies. However, there are also 

some visible similarities between proxies. We present some tentative correlations in 

Table 5.  

 

Apart from a rapid, but short-lived isotopic excursion in the Crag Cave speleothem 

record, there is no clear evidence for a ‘4.2 kyr event’ (cf. Booth et al., 2005) in Ireland 

based on the terrestrial data. This supports the broader assertion of Roland (2012) that 

the manifestation of the event in Britain and Ireland is unclear. The ‘4.2 kyr event’ has 

been correlated with ice-rafted debris (IRD)/Bond event 3, a cold event which took place 

in the North Atlantic c. 4200 cal. BP and is postulated to have been the result of a 

reduction in solar activity (Bond et al., 2001). Indeed, based on the global distribution of 

evidence for the ‘4.2 kyr event’ (e.g. Walker et al., 2012), from North America (Booth et 

al., 2005), South America (Marchant and Hooghiemstra, 2004), Africa (Thompson et al., 

2002), western Asia (Cullen et al., 2000), eastern Asia (Liu and Feng, 2012), Continental 

Europe (Drysdale et al., 2006), it would be reasonable to suggest that it was driven by 

complex, albeit currently ambiguous, changes in Earth’s ocean-atmospheric circulation 

systems, making its apparent absence in oceanic Britain and Ireland all the more 

interesting (Roland, 2012).  

 

A wet/cold phase from 2700-2400 cal. BP is present in the PWTC, the NGRIP δ18O and 

RAPiD-12-1K records, coincident with a decrease in TSI. This suggests that this climate 

event was widespread in the North Atlantic region. This event has previously been 

considered to be the product of solar forcing or related to solar-influenced changes in 
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ocean circulation (e.g. Van Geel et al., 1996; Bond et al., 2001) and may be a global 

phenomenon (Chambers et al., 2007) with possible regional variation in its expression 

(Plunkett 2006; Plunkett and Swindles, 2008). The ice core records confirm that the start 

of the event was generally coincident with a decrease in TSI.  

 

A Roman Warm Period (e.g. Wang et al., 2012) is suggested by the PWTC and tentatively 

by some of the other terrestrial, ice core and marine records. It occurs at a time of 

relatively high solar activity. A climatic deterioration in the Dark Ages (early medieval 

period) is supported by the terrestrial and ice core proxy data, although there are 

differences in timing. It is not manifest in the marine records. The Dark Ages 

deterioration (Blackford and Chambers, 1991) occurs at the same time as a major 

downturn in solar irradiance suggesting it was driven by solar forcing (e.g. Jiang et al., 

2005). In contrast, the Atlantic records suggest a minor warming event at this time. 

 

A potential Medieval Warm Period (e.g. Lamb, 1965) signal is much stronger in the Inis 

Oírr and Crag Cave data than the PWTC. It is coincident with a period of relatively high 

solar activity. The MWP is not clearly evident in the ice core and marine data. Increased 

GISP2 volcanic sulphate at this time illustrates the complex relationship between 

volcanic activity and climate. In comparison, a Little Ice Age signal is present in all proxy 

climate records, although with slightly different expressions of magnitude and timing. 

The climate forcing data suggest that this was also the product of solar and/or ocean 

mechanisms (e.g. Broecker, 2000; Mauquoy et al., 2002). The volcanic sulphate record 

suggests that volcanism was not the primary driver of the Little Ice Age. However, it has 
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been suggested that the initial trigger for the Little Ice Age may have been due to 

increased volcanicity between c. AD 1275 and 1300 (Miller et al., 2012).  

 

The major recent swing to drier/warmer conditions in the PWTC is also reflected in the 

marine and ice core proxies (but not in the Inis Oírr or Crag Cave records from Ireland) 

and is coherent with the global rise in CO2 (e.g. IPCC, 2007). However, the PWTC may be 

influenced by the effects of peat cutting or drainage at this time which would complicate 

the peatland hydroclimatic signal. Further work is needed to investigate the nature of 

the rapid recent change in peatland hydrology that is present in many sites across 

Northern Europe (Rea, 2011; Turner, 2012).  

 

5. Conclusions and future studies 

We analysed Holocene climate proxy records from Ireland including isotope data from 

lakes and a speleothem, a CaCO3 record from a karst lake, and palaeohydrological proxy 

data from peatlands. As only three records span the early Holocene to present day, we 

focused our analysis on the last 5,000 years, for which there is an abundance of records. 

We draw the following conclusions: 

1. There is marked variability of the palaeoclimate proxy data from Ireland 

associated with proxy complexities and chronological uncertainties. 

2. Bayesian modelling illustrates that there is significant centennial, multi-

centennial scale associated with the climate proxies (and even millennial-scale 

chronological uncertainty in the case of the Crag Cave record). However, multi-

decadal scale uncertainties are achieved when the record is constrained using 

historically dated tephra layers. 
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3. There is no statistically significant co-variance in the unscreened data. 

4. Screened high-quality peatland water-table reconstructions co-vary more than 

would be expected by chance alone. 

5. Although the peat-based palaeoclimate records are highly variable, a flexible 

statistical approach (using a Lowess model with bootstrapping and Bayesian age 

modelling) can be used to decipher the climatic signal from the noisy data. Data 

from specific peatlands are variable owing to autogenic factors, chronological 

uncertainties and potentially responses of testate amoebae to non-climatic 

factors. 

6. There is variable correspondence between the PWTC and the British ‘tuned and 

stacked’ water table reconstruction of Charman et al. (2006). However, both 

reconstructions contain a shift to wetter conditions at c. 2700 cal. BP (Subboreal-

Subatlantic transition), 1400 cal. BP (Dark Ages climatic deterioration) and a wet 

phase from c. 500-100 BP (the Little Ice Age). Dry phases are present from 3200-

2750 cal. BP and 2250-1550 cal. BP (Roman Warm Period), and a major swing to 

drier conditions occurred in the last ~100 years.  

7. There are some similarities between the terrestrial palaeoclimate records from 

Ireland and marine records from the North Atlantic and Greenland ice core data. 

8. There is clear evidence that the terrestrial climate changes in Ireland are related 

to changes in the North Atlantic thermohaline circulation. Some (but not all) of 

these phases of climate change appear to be related to changing solar activity. 

Future studies may lead to an improved understanding of Holocene climate change in 

Ireland within a wider NW European and even global context. Depending on funding 

availability and time, researchers planning Holocene climate research in Ireland should 

consider: 
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1. Using a combination of dating techniques, e.g. tephrochronology, SCP 

stratigraphies, short-lived radioisotopes (e.g. 137Cs, 210Pb), 14C (potentially including 

wiggle-matching) and age-equivalent pollen markers, modelled using Bayesian 

methods (e.g. OxCal, Bacon), to achieve excellent chronological control and 

precise inter-record correlations. 

2. Generating paired lake and peatland proxy records precisely correlated through 

tephrochronology. 

3. Deciphering autogenic and allogenic factors in peat-based climate proxy records 

using a combination of multiple profiles from each site and peatland development 

models (e.g. Blaauw and Mauquoy, 2012; Swindles et al., 2012a). 

4. Isotope and biomarker analysis in peatlands (e.g. McClymont et al., 2010; Daley et 

al., 2010; Nichols and Huang, 2012). 

5. Analysis of other biological proxies in Irish lake records (e.g. diatoms, 

chironomids, cladocera). Chironomid-based temperature reconstruction should 

be investigated. 

6. Analysis of speleothems in other Irish cave systems. 

7. Focussing on early Holocene records, as there are still relatively few from Ireland 

covering this timeframe. 

8. Analysis of Holocene tephras in North Atlantic marine records so that the marine 

and terrestrial data can be linked precisely. 
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Figure 1. Map of Ireland showing average annual deficit (based on Mills, 2000) and 
study sites. The sample codes represent the first and last letter in the site name (e.g. 
Slieveanorra – SA). Please refer to Figure 3 for the full site names. 

Figure 2. Historical climate data (annual mean temperature and annual total rainfall) 
from the Armagh observatory (Butler et al., 1998; 2005). 

Figure 3a. Holocene proxy climate data from Ireland. Testate amoebae-based water 
table reconstructions (WT) are expressed as water table depth (cm below surface, 
i.e. negative values indicate standing water), plant macrofossil (PM) ordination 
scores (DCA – detrended correspondence analysis; NMDS – non-metric 
multidimensional scaling; hydroclimate index (HCI) are expressed as arbitrary units). 
Peat humification (HU) is expressed as detrended humification residuals. Isotope 
data are expressed as ‰. Inis Oírr CaCO3 is expressed as a weight percentage. 
Tephra layers are shown by encircled crosses. Please see Table 1 for relevant 
sources. Water table reconstructions with bootstrap error ranges are shown in 
Supplementary material 1. 

Figure 3b. The only existing proxy-climate records from Ireland that span the 
majority of the Holocene.  

Figure 4. Oxcal P_sequence age-depth models for four selected palaeoclimate 
records; the speleothem δ18O profile from Crag Cave and the records from Derragh, 
Dead Island and Slieveanorra peatlands. 

Figure 5. Map of Ireland showing directional changes (wetter/colder – drier/warmer) 
across a 100-year period from 5000 cal. BP to present (all records). The colours of 
the data points on the maps represent the value of the datapoint: bright red circles 
are extremely positive (dry, warm), grey circles are intermediate (values close to 
zero), and bright blue circles are extremely negative (wet, cold). In order to fit all of 
the data on the maps without overlaps, the coloured circles are frequently displaced 
from their true geographical location; in these cases a line joins the circle to its place 
of origin.  

Figure 6. Greyscale graphs of peatland water table reconstructions from Ireland. 
Greyscale illustrates differences in chronological uncertainty. These are based on 
the Bacon models shown in Supplementary material 2. Water table depth (WT) is 
expressed in cm. 

Figure 7. Map of Ireland showing directional changes (wetter-drier) across a 100-
year period from 5000 cal. BP to present. Only the selected peatland sites with 
chronologies remodelled in Bacon are shown. The colour represents the strength of 
the change (see Figure 5). 

Figure 8. [a] All water table reconstruction data from the selected sites (Ardkill, 
Ballyduff, Cloonoolish, Dead Island, Derragh, Glen West (high-resolution section 
only), Slieveanorra, Sluggan). The data were combined and ranked in age order. 
Reconstruction (vertical) and chronological (horizontal) errors are shown. The 
chronological errors are based on the Bacon models shown in Supplementary 
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material 2. [b] Chronological distance between each successive sample in the 
combined water table data; [c] Total chronological error associated with each 
individual point with Lowess smooth line; [d] Lowess model (smooth=0.02) applied to 
the combined standardised water table data (Peatland Water Table Compilation - 
PWTC); [e] Lowess peatland water table compilation (PWTC) model with 95% 
bootstrap ranges (standardised water table units). 

Fig 9. All standardised peatland water table reconstructions along with the Lowess 
PWTC model. Boxplots of the standardised peatland water table reconstruction data 
are also shown (100 year bins – the x axis label denotes the most recent age in each 
bin). Values outside the inner fences are shown as circles, values further than 3 
times the box height (the "outer fences") are shown as stars. 

Figure 10. Comparison of the Ireland PWTC with the ‘tuned and stacked’ water table 
compilation of Charman et al. (2006). For a critique of the tuning and stacking 
approach see Swindles et al. (2012b). Data are expressed in standardised water 
table units. In addition a cross-wavelet analysis of the two records is also shown. 
The 95% significance level against a red noise background is shown as a black 
contour.  Relative phase relationship shown as arrows with in-phase pointing right, 
anti-phase pointing left, and ‘Ireland’ leading ‘Northern Britain’ by 90◦ pointing 
straight down. The analysis was carried out in Matlab (Maraun and Kurths, 2004). 
There is a period of similar centennial-scale periodicities in the two records (c. 1400-
3500 cal. BP) suggesting a degree of coherence. The relative phase relationships 
should be interpreted with extreme caution as significant chronological error is 
associated with the compiled records. The individual wavelet transform diagrams are 
shown in SM3. 

Figure 11. Diagram showing the continuous 5,000-year palaeoclimate data for 
Ireland (the water table compilation expressed in standardised water table units with 
95% bootstrap errors shown), the Crag Cave δ18O and Inis Oírr %CaCO3 records. 
The δ18O record from the NGRIP ice core (NGRIP members, 2004), RAPiD-12-1K 
δ

18O and density difference indicators of changes of temperature and salinity in the 
Atlantic meridional overturning circulation (Thornalley et al., 2009), the N. Atlantic 
IRD record (Bond et al., 2001) and the Na+ content of the GISP2 ice core as a proxy 
of sea salt aerosol loading of the atmosphere over Greenland (O’Brien et al., 1995; 
Mayewski et al., 1997) are shown. Climate forcing parameters include volcanic 
sulphate data from the GISP2 ice core (Zielinkski and Mershon, 1997), a combined 
CO2 record from Mauna Loa, the Law Dome and EPICA Dome C ice cores (Keeling 
et al., 1976; Etheridge et al., 1996; Monin et al., 2004) and total solar irradiance data 
for the last 5,000 years (Steinhilber et al., 2004). Known climate events are marked 
(wetter/colder = blue; drier/warmer = red). 

Table 1. Site details and relevant references. 

Table 2. Cryptotephra layers found in palaeoclimate records from Ireland (For more 
details see Hall and Pilcher, 2002). 
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Table 3. Statistics describing the co-variance of the water-table reconstructions. 

Table 4. Proportion of combinations of bin size and starting point returning a 

nominally significant test result. 

Table 5. Comparison of Holocene palaeoclimate data from terrestrial, marine and ice 

core records, and climate forcing parameters. Well-known climate events are 

illustrated. 
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Table 1 

PEATLAN
D Type 

Lat 
N 

Long 
W 

Altitude 
(m ASL) 

Maximum 
peat depth 
(m) 

Total area 
(km2)  

Mean annual 
rainfall (mm) Key references 

Abbeyknoc
kmoy 

Raised 
bog 

53.4
4361
8 

-
8.767
610 60 5.3 1.50 1065 

Barber et al. (2003); Hughes and Barber 
(2004) 

Ardkill  
Raised 
bog 

53.3
6571
4 

-
6.957
793 96 >7 0.50 820 Blundell et al. (2007) 

Ballyduff 
Raised 
bog 

53.0
8073
0 

-
7.992
510 60 9.45 0.85 804 Stefanini (2008)  

Ballynahon
e 

Raised 
bog 

54.8
2225
0 

-
6.663
230 42 9 2.43 1200 Holmes (1998) 

Claraghmo
re 

Raised 
bog 

54.6
3256
0 

-
7.456
110 78 >4.5 0.51 1100 Plunkett (2006), Plunkett (2009) 

Cloonoolis
h  

Raised 
bog 

53.1
8346
0 

-
8.251
080 61 >3 0.89 993 Blundell et al. (2007) 

Cloonshan
nagh 

Raised 
bog 

53.7
7361
1 

-
7.951
111 100 3.5 5.00 ~1000 Young et al. (unpublished) 

Daingean 
Raised 
bog 

53.2
8276
6 

-
7.268
747 87 5.3 7.60 932 Matthews (2009) 

Dead 
Island 

Raised 
bog 

54.8
8736
0 

-
6.548
880 41 8 0.55 1116 Swindles (2006), Swindles et al. (2010) 

Derragh 
Raised 
bog 

53.7
5591
0 

-
7.400
770 70 >7 0.80 928 

Langdon et al. (in press), Selby and 
Brown (2007) 

Fallahogy 
Raised 
bog 

54.9
0641
0 

-
6.559
100 46 10.5 1.16 1116 Barber et al. (2000); Amesbury (2008) 

Garry 
Raised 
bog 

55.0
9919
0 

-
6.528
670 50 12 1.55 1116 

Plunkett (2006), Plunkett (2009), Holmes 
(1998) 

Glen West 
Raised 
bog 

54.4
1189
0 

-
8.039
670 90 >2 1.52 1200 

Plunkett (2006), Plunkett (2009), 
Swindles (2006), Swindles et al. (2007) 

Killeen 
Raised 
bog 

52.5
9972
2 

-
7.724
444 150 4 4.00 ~1200 Young et al. (unpublished) 

Kinnegad 
Raised 
bog 

53.4
3530
6 

-
7.101
803 90 5.5 4.00 ~1000 Young et al. (unpublished) 

Letterfrack 
Blanket 
peat 

53.5
4642
8 

-
9.946
947 287 1.08 >1.6 1300 Chambers and Blackford (2001) 

Lisheen Raised 52.7 - 124 6 2.00 ~1000 Caseldine and Gearey (2005), Caseldine 
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(Derryville) bog 6611
2 

7.668
829 

et al. (2005), Gearey and Caseldine 
(2006) 

Littleton 
Raised 
bog 

52.6
7777
8 

-
7.656
111 140 5 2.50 1100 Young et al. (unpublished) 

Longford 
Pass 

Raised 
bog 

52.6
9722
2 

-
7.658
611 150 4.5 2.50 ~900 Young et al. (unpublished) 

Lough 
Lurgeen 

Raised 
bog 

53.5
7977
1 

-
8.513
380 80 4.3 0.80 1100 Plunkett (2006), Plunkett (2009) 

Mongan 
Raised 
bog 

53.3
2925
7 

-
7.954
968 45 4.5 6.00 850 

Barber et al (2003); Hughes and Barber 
(2004) 

Moyreen 
Blanket 
peat 

52.5
3296
0 

-
9.179
990 120 >6.9 0.21 1100 Plunkett (2006), Plunkett (2009) 

Owenduff 
Blanket 
peat 

53.9
6426
0 

-
9.692
420 125 >4.5 60.00 1200 Plunkett (2006), Plunkett (2009) 

Raheenmo
re 

Raised 
bog 

53.3
3600
0 

-
7.343
000 107 >12 2.10 880 Daley (2007) 

Slieveanor
ra 

Raised & 
Blanket 
peat 

55.0
8599
5 

-
6.192
559 290 6 1.45 1500 Swindles (2006), Swindles et al. (2010) 

Sluggan 
Raised 
bog 

54.7
6473
8 

-
6.292
379 50 6 1.08 ~1000 

Plunkett (2006), Plunkett (2009), Roland 
(unpublished) 

LAKE Type 

Latit
ude 
N 

Longi
tude 
W 

Altitude 
(m ASL) 

Depth (m) 
Water, 
Sediment 

Total lake 
area (km2) 

Mean annual 
rainfall (mm) References 

Lough-na-
Shade Lake 

54.3
5035
8 

-
6.690
709 43 3.5, >2  <0.01 805 Holmes et al. (2010) 

Inis Oírr 
(An Loch 
Mór) Lake 

53.0
5909
0 

-
9.508
159 0 23, 14  0.09 1250 Schettler et al. (2006) 

SPELEOT
HEM Type 

Latit
ude 
N 

Longi
tude 
W 

Altitude 
(m ASL) 

Speleothem 
length (m) 

Cave 
length 
(km)  

Mean annual 
rainfall (mm) References 

Crag Cave 
Speleothe
m 

52.2
5338
0 

-
9.441
210 60 0.465 3.8 900 

McDermott et al. (2001), Baldini et al. 
(2006), McDermott et al. (2011),  
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Table 2 

Name Reported date cal. 

Hekla 1947 AD 1947 

SLU-5 c. AD 1600-1700 

Hekla 1510 AD 1510 

MOR-T1 / Veiðivötn 1477 c. AD 1477 

PMG-5/MOR-T2 c. AD 1400 

Öræfajökull 1362 AD 1362 

GB4-50 c. AD 1250 

GB4-57 c. AD 1150 

Hekla 1104 AD 1104 

MOR-T4 c. AD 1000 

BMR-90 c. AD 920 

MOR-T5 c. AD 890 

AD 860 A AD 776-887 

AD 860 B AD 776-887 

MOR-T6  c. AD 840  

GA4-85 c. AD 700-800 

OWB-105 c. AD 700 

MOR-T7 c. AD 280 

MOR-T8 c. AD 150 

MOR-T9 c. AD 35 

BMR-190 705-585 BC 

QUB490 Unknown Garry 710-641 BC 

Microlite = OMH-185 Population 1 755-680 BC 

OMH-185 Population 2 755-680 BC 

GB4-150 (~SILK-UN) 800-758 BC 

Hekla 3 1087-1006 BC 

GB4-182 c. 1350 BC 

Unknown c. 2050 BC 

Hekla 4 2395-2279 BC 

SILK-N2? ~2395-2279 BC 
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Table 3. Statistics describing the co-variance of the water-table reconstructions. 

 Data detrended Data not detrended 

 wactual w95 pestimated wactual w95 pestimated 

All records 131.9 123.7 0.007 134.4 123.9 0.006 

Eight selected records 120.4 108.0 0.000 120.9 107.1 0.000 
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Table 4. Proportion of combinations of bin size and starting point returning a nominally 

significant test result. 

 Data detrended Data not detrended 

All records 10/20 17/20 

Eight selected records 19/20 20/20 
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Table 5 

 

Climate proxy records Forcing parameters   

Climati

c event 

Crag 

Crave 

δ
18

O  

Inish Oirr 

% CaCO3 PWTC 

NGRIP 

δ
18

O 

RAPiD-

12-1K 

Δδ
18

O 

RAPiD-

12-1K 

DD 

IR

D  

% of records 

providing evidence 

for event GISP2 Na
+ 
 

GISP2 

volcanic 

sulphate CO2 ΔTSI Ocean 

Plausibl

e 

forcing 

4.2 Cold  

No 

distinct 

event 

No 

distinct 

event 

No 

distinct 

event Cold  Cold  

Col

d  57 

No distinct 

event  

No distinct 

event  

No 

distinct 

event  

Minor 

decrease in 

TSI Cooling 

Solar-

Ocean 

2.7 Warm  

No 

distinct 

event Wet Cold  Cold  Cold  

Col

d  71 

No distinct 

event  

No distinct 

event  

No 

distinct 

event  

Major 

decreases 

in TSI Cooling 

Solar-

Ocean 

DACP Cold  Wet  Wet Cold  Warm Warm  

W

ar

m  57 

No distinct 

event  

No distinct 

event  

No 

distinct 

event  

Major 

decrease in 

TSI 

No 

distinct 

event Solar 

Little 

Ice Age Cold  Wet  Wet Cold  Cold  Cold  

Col

d  100 

Expanded 

polar 

vortex 

No distinct 

event  

No 

distinct 

event  

Major 

decreases 

in TSI Cooling 

Solar-

Ocean 

RWP Warm  Warm  Dry Warm  Warm  Warm  

W

ar

m  100 

No distinct 

event  

Increased 

volcanic 

sulphate 

No 

distinct 

event  High TSI 

Warmin

g 

Solar-

Ocean 

MWP Warm  Warm  Dry 

No 

distinct 

event 

No 

distinct 

event 

No 

distinct 

event 

W

ar

m  57 

No distinct 

event  

Increased 

volcanic 

sulphate 

No 

distinct 

event  High TSI 

No 

distinct 

event 

Solar-

Ocean 
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20th C Cold  Cold  Dry Warm  Warm  Warm  

W

ar

m  71 

No distinct 

event  

No distinct 

event  

Rapid 

increase 

Small 

increase in 

TSI 

Warmin

g 

CO2-

Solar-

Ocean 

 


