
Deterministic Scale-Free Pipeline
Parallelism with Hyperqueues

Hans Vandierendonck
Queen’s University Belfast

United Kingdom
h.vandierendonck@qub.ac.uk

Kallia Chronaki
∗

Barcelona Supercomputing
Center, Spain

kallia.chronaki@bsc.es

Dimitrios S. Nikolopoulos
Queen’s University Belfast

United Kingdom
d.nikolopoulos@qub.ac.uk

ABSTRACT
Ubiquitous parallel computing aims to make parallel pro-
gramming accessible to a wide variety of programming areas
using deterministic and scale-free programming models built
on a task abstraction. However, it remains hard to reconcile
these attributes with pipeline parallelism, where the number
of pipeline stages is typically hard-coded in the program and
defines the degree of parallelism.

This paper introduces hyperqueues, a programming ab-
straction that enables the construction of deterministic and
scale-free pipeline parallel programs. Hyperqueues extend
the concept of Cilk++ hyperobjects to provide thread-local
views on a shared data structure. While hyperobjects are
organized around private local views, hyperqueues require
shared concurrent views on the underlying data structure.
We define the semantics of hyperqueues and describe their
implementation in a work-stealing scheduler. We demon-
strate scalable performance on pipeline-parallel PARSEC
benchmarks and find that hyperqueues provide compara-
ble or up to 30% better performance than POSIX threads
and Intel’s Threading Building Blocks. The latter are highly
tuned to the number of available processing cores, while pro-
grams using hyperqueues are scale-free.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Parallel programming;
D.3.3 [Language Constructs and Features]: Concur-
rent programming structures; D.3.4 [Programming Lan-
guages]: Processors—Runtime environments

1. INTRODUCTION
Ubiquitous parallel computing aims to make parallelism

accessible to a wide variety of programming areas without
putting quality aspects of software at risk. It is understood

∗Kallia Chronaki was with the Institute of Computer Sci-
ence, Foundation for Research and Technology - Hellas,
Greece, when this work was performed.

To appear in the 2013 International Conference for High-Performance
Computing, Networking, Storage and Analysis. November 17 - 21 2013,
Denver, Colorado USA.
Copyright 2013 ACM.
http://dx.doi.org/10.1145/2503210.2503233

1 struct data { ... };
2 void pipeline (int total) {
3 versioned<data> value;
4 versioned<int> fd = ...;
5 for(int i=0; i < total ; ++i) {
6 spawn produce((outdep<data>)value);
7 spawn consume((indep<data>)value,
8 (inoutdep<int>)fd);
9 }

10 sync;
11 }
Figure 1: A two-stage pipeline parallel program ex-
pressed with task dataflow.

that a task abstraction, where a task is a unit of compu-
tation, is a key element as it allows programmers to focus
on the “What?” instead of the “How?”. Moreover, deter-
minism, or determinism by default [1], adds repeatability to
parallel programs which is, among other things, critical for
debugging and testing. Finally, scale-free parallel programs
are performance-portable across architectures with different
core counts. This is a necessity in light of the continuously
growing number of cores on a chip, combined with decreas-
ing reliability and dynamically managed power budgets.

Several research projects define deterministic and scale-
free parallel programming languages [2, 3, 4, 5]. In these,
most attention has gone to DOALL parallelism and fork-join
parallelism. While these are important programming pat-
terns, there is a large class of programs that contain pipeline
parallelism and are within the remit of ubiquitous parallel
computing. Models that are scale-free are, however, often
not deterministic in the sense that the programming model
neither defines nor respects a serial elision of the program.

Task dataflow is a deterministic and scale-free task-based
parallel programming model. Programmers describe what
variables are inputs and outputs to tasks, which essentially
describes the task’s side effects. The runtime system collects
these side effects as tasks are spawned and computes the task
dependence graph on the fly.

The task dataflow model is highly suitable for pipeline
parallelism, as a pipeline is just one of the many patterns
that the dependence graph may take [6]. Moreover, task
dataflow systems provide a level of memory management
that greatly simplifies writing pipeline parallel programs [7].
Figure 1 shows a simple pipeline parallel program in Swan [6],
a task dataflow programming model designed as an exten-
sion to Cilk [8]. Variables that enforce dataflow dependences
are defined with the versioned keyword which attaches fa-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/16501471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cilities to them for tracking inter-task dependences. Also,
automatic memory management is applied to versioned ob-
jects to break write-after-read dependences. Versioned vari-
ables may be used as procedure arguments provided they are
cast to type indep, outdep or inoutdep, which describes
side effects of reading, writing or both. The spawn keyword
indicates that calling a task may occur in parallel with the
continuation of the calling procedure, as in Cilk. The sync
keyword blocks a procedure until all children have finished
execution. The loop in Figure 1 corresponds to a two-stage
pipeline where instances of the produce stage may execute
in parallel as there are no dependences between those in-
stances, while instances of the consume stage execute strictly
in order due to the dependence on the inoutdep argument.

Task dataflow is an intuitive programming model where
the pipeline pattern emerges on-the-fly as a side-effect of
the code structure, rather than being designed-in. However,
task dataflow has two limitations with respect to pipeline
parallelism: (i) pipelines must be sufficiently coarse-grained
as every stage invocation is modeled as a separately sched-
uled task, and (ii) each pipeline stage consumes a fixed num-
ber of elements from its predecessor and produces a fixed
number of output elements [6]. This paper will address
both shortcomings by introducing hyperqueues, a program-
ming abstraction of queues for a task based programming
language. Hyperqueues are deterministic and allow the con-
struction of scale-free pipeline parallel programs.

Hyperqueues share commonalities with Cilk++ hyperob-
jects, specifically with reducers [9]. Reducers are special pro-
gram variables that support reduction operations, i.e., they
are identified by a type, an identity element and an asso-
ciative reduction operation. A common example is addition
over integers, but also appending to a list is an associative
operation. The latter was, in fact, the main motivation for
the development of reducers [9]. Reduction operations can
be parallelized by creating duplicates of the reduction vari-
able, called views, which are private to a task. As views are
private, they are accessed without races. When tasks com-
plete, the views are reduced to a single value in such a way
that program order is respected. Moreover, Cilk++ uses a
“special” optimization to reduce views only on task steals, as
opposed to on all spawned tasks. Hyperqueues build on this
property of reducers to perform push operations in parallel
while retaining determinism.

However, hyperqueues also allow concurrent push and pop
operations and are different in this respect from Cilk++
hyperobjects. To support this behavior, hyperqueues require
a distinct implementation. Views are no longer private but
are shared between a producing task and a consuming task.
This paper shows how to design shared views that are data
race free and how to ensure deterministic parallelism for
programs utilizing hyperqueues.

Using hyperqueues, we parallelize several benchmarks with
less programming effort than using POSIX threads or Thread-
ing Building Blocks (TBB) because synchronization is hid-
den in the runtime system and because the programming
language does not impose a stringent format, as TBB does.
Moreover, the hyperqueue version is scale-free and obtains
the same or up to 30% better performance. It also out-
performs task dataflow languages like [6] because the latter
cannot capture varying numbers of inputs and outputs.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the programming model. Section 3 discusses

1 struct data { ... };
2 void consumer(popdep<data> queue) {
3 while(!queue.empty()) {
4 data d = queue.pop();
5 // ... operate on data ...
6 }
7 }
8 void producer(pushdep<data> queue, int start, int end) {
9 if (end−start <= 10) {

10 for(int n=start; n < end; ++n) {
11 data d = f(n);
12 queue.push(d);
13 }
14 } else {
15 spawn producer(queue, start , (start +end)/2);
16 spawn producer(queue, (start+end)/2, end);
17 sync;
18 }
19 }
20 void pipeline (int total) {
21 hyperqueue<data> queue;
22 spawn producer((pushdep<data>)queue, 0, total);
23 spawn consumer((popdep<data>)queue);
24 sync;
25 }
Figure 2: The simple pipeline-parallel program of
Figure 1 expressed with the hyperqueue.

the internal representation of hyperqueues in the runtime
system and views. Section 4 discusses how the runtime sys-
tem merges views. Then, Section 5 presents programming
idioms. We present an experimental evaluation in Section 6.
Finally, Section 7 discusses related work and Section 8 con-
cludes this paper.

2. PROGRAMMING MODEL

2.1 The Hyperqueue Abstraction of Queues
Hyperqueues are a programming abstraction for queues.

A queue is an ordered sequence of values. Values are added
to the tail of the sequence using a push method. Values are
removed from the head of the sequence using a pop method.

We define a hyperqueue as a special object in our pro-
gramming language that models a single-producer, single-
consumer queue. Its implementation allows tasks to concur-
rently push and pop values without breaking the semantics
of a single-producer, single-consumer queue, and without
breaking the serializability of the parallel program.

Hyperqueues are defined as variables of type hyperqueue,
which takes a type parameter to describe the type of the val-
ues stored in the queue. Hyperqueues may be passed to pro-
cedures provided they are cast to a type that describes the
access mode of the procedure. This type can be pushdep,
popdep or pushpopdep, to indicate that the spawned pro-
cedure may only push values on the queue, that it may only
pop values from the queue, or that it may do both. A task
with push access mode is not required to push any values,
nor is a task with pop access mode required to pop all val-
ues from the queue. A hyperqueue may be destroyed with
values still inside.

A simple 2-stage pipeline using the hyperqueue is shown in
Figure 2. The procedure pipeline at line 20 creates a hyper-

1 void producer(pushdep<data> queue, int start, int end) {
2 if (end−start <= 10) {
3 for(int n=start; n < end; ++n) {
4 data d = f(n);
5 queue.push(d);
6 }
7 } else {
8 for(int n=start; n < end; n += 10)
9 spawn producer(queue, n, min(n+10,end));

10 sync;
11 }
12 }
Figure 3: A parallel producer program with im-
proved locality.

queue object where elements of the queue are of type struct
data. It then spawns a procedure producer with pushdep
access mode which will produce data in the queue using the
push method. The procedure consumer is spawned with
popdep access mode and will consume the data. It may
utilize the method empty to check whether any data on the
queue is pending and the method pop to remove data from
the head of the queue.

The empty method checks if more values are pending in
the queue. It is designed such that it mimics the result of
sequential execution: the empty method returns false only if
it is certain that no more values will be added to the queue.
If there is a possibility that values will be added that are
visible to the task executing the empty method, then the
emtpy call will block until a definite decision can be made.

Pop must only be called on non-empty queues, as popping
elements from an empty queue is an error.

Executing the producer will grow the queue as big as it
needs. When a program, or part of it, is executed sequen-
tially, Swan’s depth-first execution order will make the queue
grow and store all data that is produced, before any of the
data is consumed. This may have an adverse effect on mem-
ory locality. We show how to avoid unbounded queue growth
in Section 5.

2.2 Parallel Execution and Memory Locality
Multiple producers may be active simultaneously on a hy-

perqueue, each producing a different range of values. The
producer procedure in Figure 2, line 8, is recursively divided
to produce subranges of the values, following Cilk best prac-
tice. The Swan runtime system ensures that the consumer
sees all values in correct (serial) program order, i.e., f(0),
f(1), f(2), etc., no matter what.

In the case of hyperqueues, it may be more appropriate
to write the producer as in Figure 3. In this case, values
are produced with better locality as all active threads are
concentrating on the head of the queue. However, there will
be more frequent work stealing activity as the program’s
spawn tree is shallow.

2.3 Task Scheduling
The Swan runtime system utilizes the queue access modes

pushdep, popdep and pushpopdep to decide when a
spawned procedure may start execution. This process is sim-
ilar to how indep, outdep and inoutdep define an execu-
tion order between tasks operating on versioned objects [6].

The task scheduler enforces the following constraints due

to queue access modes (the access modes on all arguments
are taken into account when scheduling tasks, including the
versioned object access modes):

1. Tasks with pushdep access mode on the same queue
may execute concurrently. The runtime system will
use the concept of reduction to manage concurrent
pushes and expose the pushed values in serial program
order to any consumer.

2. A task with popdep access mode may execute con-
currently with the preceeding tasks with pushdep ac-
cess mode on the same queue. This enables concurrent
pushes and pops on the queue. The runtime system
ensures that pops do not run ahead of pushes.

3. A task with popdep access mode may initiate exe-
cution only when all older tasks with popdep access
mode on the same queue have completed execution.
The rationale is that values are exposed in program
order, so the oldest task must perform all its pops be-
fore a younger task may perform its pops.

4. A task P with pushdep access mode may execute con-
currently with an older task C with popdep access
mode. The rationale is that P will create a sequence
of values, but this sequence of values is independent of
the actual pops performed by C. Moreover, C is not
allowed to see any of the values pushed by P because
this would violate the serializability of the program.
The runtime system will ensure that any values left in
the queue when C completes execution will be merged
with the values produced by P in program order.

Tasks with pushpopdep access mode are scheduled by tak-
ing restrictions of both pushdep and popdep modes into
account. The Swan runtime system uses the same machin-
ery to enforce the execution order of tasks with queue de-
pendences as it does for versioned objects [6].

In recursive programs, tasks can only spawn child tasks
with a subset of the privileges that they hold, i.e., tasks with
pushpopdep access on a hyperqueue can pass both privi-
leges on that hyperqueue, while tasks with either pushdep
or popdep access mode can pass only the named privilege
on the corresponding hyperqueue. This restriction makes it
safe to apply the above rules for task scheduling separately
to each procedure instance [10].

Consider the following program to illustrate these rules:

1 hyperqueue<T> queue;
2 spawn A((pushdep<T>)queue);
3 spawn B((pushdep<T>)queue);
4 spawn C((popdep<T>)queue);
5 spawn D((pushpopdep<T>)queue);
6 spawn E((pushdep<T>)queue);
7 spawn F((popdep<T>)queue);
8 sync;

Procedure A is the oldest procedure and is immediately
ready to execute. B may execute concurrently with A due
to case 1. C may execute concurrently with A and B due
to case 2. D must wait until C completes due to case 3.
E may execute concurrently with A, B and C and prior to
D following case 4. Finally, procedure F must wait until D
completes due to case 3. F will never start execution prior
to E due to the work-first principle (spawned tasks are exe-
cuted immediately by the spawning thread).

3. INTERNAL DATA STRUCTURES

3.1 Requirements
Let us first consider push operations. The push operation

is, like list concatenation, a reduction operation. Reduction
operations are essentially associative operations, meaning
that the operations may be reassociated to their operands
provided that the operands remain in order. For instance,
pushing the elements a, b and c on a queue Q may be ob-
tained by pushing the elements one by one, which can be
written as ((Q+ a) + b) + c. Associativity implies that the
operations may be reordered, for instance as ((Q+a) + (ε+
b)) + c where ε is an empty queue. Consequently, pushing a
and b may occur concurrently on distinct queues, which are
subsequently merged.

Reductions are implemented in Cilk++ reducer hyperob-
jects [9], which form the basis of our hyperqueue implemen-
tation. Reducers are variables that provide a local view on
the variable for each task that accesses it. In a way, this view
bears similarity to thread-local storage. Contrary to thread-
local storage, reducers’ views are task-local and views are
reduced as tasks complete, or they are handed over unmodi-
fied from one task to the next. Moreover, reducers retain the
relative ordering of tasks, implying that only associativity of
the reduction operation is required and not commutativity.
The latter is essential to build list reducers.

From a bird’s eye view, hyperqueues operate as follows:
(i) parallel producers operate on distinct queues, (ii) queues
are merged as tasks complete, (iii) consumers operate on the
head of the hyperqueue and (iv) consumers can observe only
values that were pushed by tasks that precede them in serial
program order. Hyperqueues, however, require a significant
functional extension to Cilk++’s list reducer as pop oper-
ations may occur concurrently with pushes, popping values
from the queue before it has been fully constructed. In hy-
perqueues, views are not strictly private, but they can be
shared by at most one producer and at most one consumer.

In the remainder of this section, we will discuss the de-
sign of the underlying data structure in detail, as well as
the algorithms for sharing head and tail pointers with the
appropriate tasks, and how we succeed in giving a correct
view on the queue for all tasks involved.

3.2 Queue Segments
We select an internal data structure for the hyperqueue

that consists of a singly-linked list of queue segments. Each
queue segment is a fixed-size linearly stored list (array). A
queue segment may also act as a queue in its own right and
is utilized as a circular buffer under those circumstances.

The queue segment is a fixed-size single-producer, single-
consumer queue. As such it has a data buffer to store values,
the buffer’s allocated size, a head and tail index, a pointer
to the next queue segment and a producing flag.

Each queue segment has a producing flag that indicates
whether additional values may be pushed onto it. The pro-
ducing flag is used by the empty() call to check whether a
queue is permanently empty, or just temporarily empty.

The producing flag is initially set to true when a segment
is created. It is set to false when a task with push privileges
terminates and (i) there are no younger tasks outstanding on
the hyperqueue (meaning that all data has been produced),
or (ii) when the next younger task has pop privileges (mean-
ing that no more data may be produced that is visible for

the next task). The producing flag is turned on again when
spawning a task with push privileges for the tail of the seg-
ment that is currently visible. Moreover, the producing flag
is ignored when the pointer to the next queue segment is
non-null, as the subsequent data is trivially accessible.

The hyperqueue uses a mixed design of single-producer
single-consumer queues based on arrays [11] and on dynam-
ically linked lists [12]. The head of the queue is reachable
only by the single consumer task that may pop values from
the queue. From the head of the queue stretches a linked
list of segments that hold produced data. Additionally, the
hyperqueue may hold linked lists of segments that are not
(yet) accessible from the head. These lists are simultane-
ously under production by parallel tasks. It is only when
tasks complete that these lists can be merged and possibly
be linked to the head of the queue in order to guarantee
determinism.

The internal hyperqueue data structure was selected for
its performance in common circumstances. A buffer-based
implementation amortizes the overhead of memory alloca-
tion per buffer, while a linked-list implementation allows
concatenation of lists (reduction operation) in O(1) steps.
Moreover, a concurrent producer and consumer may contin-
uously reuse a queue segment, realizing a queue implemen-
tation with zero allocation cost in steady state.

Race-free queue implementations require hardware syn-
chronization operations, which have varying performance
cost on different architectures [13]. Several papers discuss
how to build correct and high-performant single-producer
single-consumer queues using arrays [11, 14, 15] and linked
lists [12, 16, 17].

The hyperqueue, however, is a simplified case as the queue
holds at least one segment and the head and tail pointers in
the linked list representation are each accessed by a single
task. Moreover, there can be at most one consumer active
on the hyperqueue and this consumer operates on the head
segment of the hyperqueue. Thus, all but one queue segment
may be viewed as write-only buffer during the production of
data, or for a part of that. Making this optimization race-
free requires careful design to detect when a segment switches
to concurrent usage. We have not pursued this optimization.

3.3 Views
A local view of the queue, created and owned by a single

task, is represented by a linked list of queue segments. As
such, two pointers to queue segments are used, namely to
the head and tail of the linked list. Thus, in the view (h, t),
h points to the head of a linked list of queue segments, and
t points to the last segment in the list. We say that h and t
are local pointers when they point to a queue segment.

Shared views give a task access to queue segments that
may be operated on by distinct tasks, in particular a concur-
rent producer and consumer. The producer holds a tail-only
view (pNL, t), consisting of a non-local head pointer pNL and
a tail pointer t, and pushes values on the segment t. The
consumer holds a head-only view (h, pNL), consisting of a
head pointer h and a non-local tail pointer pNL, and pops
values from the segment h. Non-local pointers indicate that
the queue segment is shared with another view and should
not be (and cannot be) accessed from the view. Non-local
pointers always occur in pairs and must match between suc-
cessive views in program order. (In practice, all non-local
pointers are represented by a null pointer.)

Two operations are defined on views: split makes a view
shared by splitting it in two views. Reduce takes two views
and returns two views that define the new values for both
arguments. The split operation is defined as:

split((s, s)) = ((s, pNL), (pNL, s))

where (s, s) is the local view on the queue segment s, and
pNL is a unique “non-local” pointer.

The split operation is unique to hyperqueues and does not
appear with Cilk++ hyperobjects. The split operation is re-
quired to make the head of a section of the queue accessible
to the consumer task by attempting to attach it to the im-
mediate and logically preceeding view. In particular, if all
earlier tasks have completed, then the head view on the new
queue segment will be accessible by the consumer.

When tasks complete, views are reduced by the reduction
operation, defined as:

reduce((h1, t1), (h2, t2)) = ((h1, t2), ε)

where ε is the empty view. There are two cases to consider:

1. The pointers t1 and h2 are local pointers. t1 is a local
tail pointer to a queue segment s1 and h2 is a local
head pointer to a distinct queue segment s2. Reduce
also concatenates the segments s1 and s2 by setting
the next pointer in s1 to point to s2.

2. The pointers t1 and h2 are non-local pointers. These
non-local pointers must match: t1 = h2 = pNL, a
condition that is guaranteed true in our system. This
case is the inverse of split. As such, the queue segments
pointed to by the views are already linked and further
concatenation is not required.

The cases above express constraints on the tail pointer in
the left-hand view and on the head pointer in the right-
hand view. The remaining pointers may be either local or
non-local. E.g., if h1 equals qNL, a non-local pointer distinct
from pNL, then the view (h1, t2) becomes (qNL, t2), again a
shared view. If t is also a non-local pointer, say rNL, then
the result is the view (qNL, rNL), again holding non-local
pointers. Note that such a shared view is distinct from the
empty view.

The reduction is defined also if any of the arguments is
the empty view:

reduce((h, t), ε) = ((h, t), ε)

reduce(ε, (h, t)) = ((h, t), ε)

reduce(ε, ε) = (ε, ε)

Other cases for the reduction operator cannot occur during
execution due to the properties of the system.

4. HYPERQUEUE MANAGEMENT
The runtime system maintains the logical ordering of the

partial lists of pushed values using up to 4 views on the queue
per task. Each view is a shared queue segment as discussed
above and may contain a head and tail pointer. Every task
has the views user and right. Tasks with push privileges also
have the view children, while tasks with pop privileges have
the view queue. The top-level task always has both push
and pop privileges and thus maintains 4 views.

4.1 Updating Views with New Segments
Push operations work on the user view, which represents

the slice of the queue viewable to the currently executing

task. If that task has spawned other tasks, then those tasks’
pushed values will be collected in the children view. The
right view represents the values pushed by the tasks’ right
siblings (tasks later in program order).

The queue view gives access to the end of the queue where
values can currently be popped from. Initially, an empty
queue segment is generated when the hyperqueue is created.
The head pointer of the queue view and the tail pointer of
the user view are set to point to the segment snew:

(queue, user)← split((snew, snew))

The push operation appends a value to the queue segment
identified by the tail pointer of the user view. If the queue
segment is full, a new segment is created and appended to
the user view. This updates only the tail of the user view.

During parallel execution, the push operation may also
find an empty user view. In this case, a new segment is
created and linked to the logically preceeding segment. Once
the segment is linked in place, the consumer task is able to
reach it as it holds a pointer to the first segment in the
hyperqueue in its queue view, and it can follow the linked
list of segments to reach all segments linked to it.

However, care must be taken to respect the program order
wherein values are created. Depending on how the parallel
program is executed, it may be premature to link a new seg-
ment to the segments accessible by the consumer. Indeed,
tasks earlier in program order may not have completed yet.
This problem is solved by the children, user and right views
in the task and by linking a queue segment only to the im-
mediate logically preceeding task.

Formally, a new view is created pointing to the new seg-
ment snew and is split into a temporary view:

(tmp, user)← split((snew, snew))

The temporary view is then merged with a view in the im-
mediate logically preceeding task.

If the task performing the push has a left sibling in the
spawn tree, then the temporary view is reduced with the left
sibling’s right view:

(left.right, tmp)← reduce(left.right, tmp)

If the creating task does not have a left sibling, then the
head pointer is reduced with the parent task’s children view.
If this view is empty before the reduction, then the algorithm
to share the queue head is executed recursively from the
parent, until the top-level task is encountered, where it is
merged with the children view.

4.2 Updating Views at Scheduling Points
We have discussed above how views are updated with new

segments. This section describes how views are updated at
spawn and sync statements, and when tasks complete.

Spawn with push privileges. The user view, if any,
is passed from the parent frame to the child frame. The
parent’s user view is cleared. This behavior is the common
path when executing code sequentially.

Return from spawn with push privileges. Let us
assume that a child frame C has finished execution, and
that C was originally spawned by its parent frame P . As
the child frame C has finished execution, its user view can
no longer grow. The right view of C is reduced with its user
view, linking it to the data produced by C’s right sibling
(C.user, C.right)← reduce(C.user, C.right).

Q U R
Task 5

0	 4	

C U R
Task 2

C U R
Task 3

C U R
Task 1

C U R
Task 0

Q

Q U R
Task 4

0 0 1 1

(a) Tasks 2 and 3 concurrently push el-
ements.

C U R
Task 1

C U R
Task 0

Q

4	 5	 6	

Q U R
Task 5

Q U R
Task 4

C U R
Task 3

0	 1	 2	 3	

0

0 1

1

(b) Task 2 has completed. Task 5 can
pop from queue head.

C U R
Task 1

C U R
Task 0

Q

4	 5	 6	 7	 2	 3	

Q U R
Task 5

Q U R
Task 4

C U R
Task 6

8	

0

0 2 2

(c) Tasks 2 and 3 have completed. Task 5 has
popped values from the queue. Task 6 pushes
more values that are invisble to tasks 4 and 5.

Figure 4: Illustration of the concurrent execution of producing and consuming tasks and their effect on the
construction and destruction of the hyperqueue. Legend: Q is queue view, C is children view, U is user view
and R is right view. Arrows with a numeric idea represent non-local pointers, which occur in pairs.

If C has a left sibling L, then C’s values are merged with
L: (L.right, C.user)← reduce(L.right, C.user). If C has no
left sibling, then it must be the oldest child of P . Thus, we
perform: (P.children,C.user)← reduce(P.children,C.user).

Call and return from call with push privileges.
For reasons of simplicity, we treat calls in the same way
as spawns for the purpose of hyperqueues. We do not antic-
ipate that call statements would be a common idiom on hy-
perqueues because calls forego concurrency with consumers.

Spawn with pop privileges. When a parent frame P
spawns a child frame C with pop privileges, then P ’s user
view is copied to C’s user view and P ’s user view is cleared.
The user view is passed to C to hide it from subsequent tasks
with push privileges. The user view will be merged back in
in correct program order when the current task completes.
Similarly, P ’s queue view is passed over to C.

Return from spawn with pop privileges. When re-
turning from a frame that was spawned with pop privileges,
it is not necessarily the case that all elements have been con-
sumed from the queue. The remaining view is passed back
to the parent procedure.

First, the same actions are taken as in the case of “return
from spawn with push privileges”. Second, C’s queue view,
which is a head-only view, is returned to its parent P .

Sync. A frame P that executes a sync statement waits
until all children have completed execution. As such, all
spawned children have completed and they have reduced
their local views with P ’s children view. P ’s user view is
updated with the reduction of P ’s children and user views.

4.3 Example
Figure 4 presents an example of view creation and reduc-

tion. The top-level task (Task 0) spawns Task 1 with push
privileges, followed by Task 4 with pop privileges, followed
by Task 6 with push privileges. Determinism requires that
the effects of the tasks must be observed in this order. Task
1 in turn spawns Tasks 2 and 3 with push privileges. Task
2 pushes values 0–3 on the queue, while Task 3 pushes 4–7.
Task 4 spawns Task 5 which pops values from the queue.
Finally, Task 6 pushes the value 8 on the queue, which may
not be observed by Tasks 4 and 5 in light of determinism.

Tasks 2 and 3 are spawned first and generate a partial list
of values (Figure 4 (a)). Task 2 inherits access to the initial
queue segment through its user view and pushes values on

that segment. Task 3 creates a new queue segment which
it splits and then merges the head with Task 2’s right view.
The split creates a new non-local pointer with unique ID (1).
As discussed above, it is too early to link this segment to
the segment operated on by Task 2 as Task 2 may perform
more pushes and may require additional segments.

When Task 2 completes, its user and right views are re-
duced, together with Task 1’s children view. The user view
is a tail-only view (due to the push), while the right view
is a head-only view (due to the split and propagation of the
head performed by Task 3’s push). These views merge, leav-
ing Task 1’s children view with non-local pointers. This case
shows the utility of splitting the view on new segments and
reducing the head-only view ahead of the reduction of the
tail. Even though Task 3 is still executing, the consumer is
able to pop values produced by Task 3.

Tasks 4 and 5 are created concurrently while Tasks 1 and
2 execute. Task 5 inherits the queue view through Task 4
and pops the values 0 and 1 from the queue (Figure 4 (b)).

Finally, Task 6 is created and pushes values onto a new
queue segment (Figure 4 (c)). Similar to Task 3, Task 6
shares the head of this queue segment with its left sibling
(Task 4). By consequence, this segment is not linked with
its predecessor and remains inaccessible to Tasks 4 and 5.
This is, again, a requirement for deterministic execution.

4.4 Hyperqueue Invariants
At any moment, hyperqueues respect the following invari-

ants which we state without proof:
1. Every hyperqueue holds at least one segment. An ini-
tial segment is created when the hyperqueue is constructed.
The last segment is not deleted when it is empty.
2. At any one time, for a given hyperqueue, there is exactly
one queue view with a local head pointer. This view
is accessible by the single task with pop privileges that is
allowed to consume data.
3. The tail pointer in the queue view and the head pointer
in the user view are always non-local unless if these views
are empty. Space may be saved by not storing these pointers.
4. Every segment in a hyperqueue is pointed to by either
one next-segment pointer, or by one view’s head pointer.
5. Every segment stored in a hyperqueue is pointed to by
at most one view’s tail pointer. Every segment stored in a
hyperqueue is pointed to by exactly one view’s tail pointer

if and only if the segment’s next-segment pointer is null.
6. A consequence of invariants 4 and 5 is that any segment
may be shared by at most two tasks, of which one is
a consumer and one is a producer, as a consumer requires
access through the head pointer and a producer requires
access through the tail pointer.

Assume a total order < of views that reflects the program
order (following serial elision) in which the data stored in
those views has been produced. We say that for views v1
and v2, v1 < v2 when the following holds:

(i) For a task T , T.queue < T.children < T.user <
T.right. If a task does not have a particular view,
the relation for that view is irrelevant.

(ii) For sibling tasks T1 and T2 where T2 is later in program
order, all views of T1 are ordered before T2’s views.

(iii) For tasks P and C where P is the parent of C, and for
any view v of C, P.children < C.v < P.user.

7. If a linked list of segments is pointed to by the head
pointer of view T1.v1 and by the tail pointer of view T2.v2,
then T1.v1 < T2.v2 provided that v1 is not a queue view. An
interpretation of this invariant is that values are stored in
an order that corresponds to program order.
8. For views T1.v1 and T2.v2 as in invariant 7, it holds that
T2.v2 < T1.v1 provided that v1 is a queue view and T1 does
not have both push and pop privileges. This invariant shows
that a consumer task can only observe values that have been
pushed by tasks preceeding it in program order.
9. For views T1.v1 and T2.v2 as in invariant 7, if v1 is not a
queue view, then for any non-queue view v held by any task
T , if T1.v1 < T.v < T2.v2, then v is a non-local view or ε.

4.5 Discussion
Double reduction. The hyperqueue assumes two reduc-

tion steps: first, when a new segment is created in an empty
user view, the head is reduced with the immediate logically
preceeding view. Second, when a task has completed, its
views are reduced as in the case of hyperobjects. The early
head reduction is required to make partial queue segments
discoverable as soon as possible. This reduction has limited
overhead as (i) it occurs only on empty user views and (ii) it
terminates after 1 step (in case a left sibling task exists) or
in at most d steps for a d-deep spawn tree.

Hyperqueues are free of deadlock. To demonstrate
this, we need to show that there cannot be dependence cycles
between tasks [18]. To be more precise, we will demonstrate
that there cannot be dependence cycles between strands,
where a strand is a maximum sequence of instructions with-
out spawn and sync statements [9]. The Cilk programming
model defines dependences between strands such that the
parallelism defined by spawn statements is exposed, and
the serialization of sync statements is enforced. The de-
pendences between strands are a partial ordering of strands
that respects the total order of strands defined by sequential
program order, i.e., the serial elision of the program.

On top of these dependences, we introduce additional
producer-consumer dependences for the hyperqueues. These
producer-consumer dependences also respect program order:
only strands containing an empty() or pop() call depend on
other strands and they can only depend on strands earlier
in program order. As such, neither the Cilk-defined depen-
dences nor the hyperqueue dependences introduce a depen-
dence between strands that does not exist in the serial eli-

sion, which is a total order. It follows that the total set of
dependences cannot contain cycles. As such, there always
exists at least one strand that the scheduler can execute.
This guarantees forward progress.

Scalability. Consuming tasks (with popdep arguments)
may block on the empty() call. There are two design choices
to deal with blocking: (i) the executing task and worker may
block until the blocking condition is resolved, or (ii) the exe-
cuting task may be suspended and the worker may continue
operating on a distinct task. Either approach is possible and
can be implemented without changes to the programming in-
terface. We have opted to block the worker in this work for
pragmatic reasons. The blocking delays are short in practice
in our benchmarks, so the overhead of de-scheduling the task
would not be justifiable. In other circumstances, suspend-
ing the task may be a better choice. A possible extension
to the programming interface is to allow the programmer to
express whether the task should block or be suspended.

Blocking tasks has the potential downside that in the
worst case all but one of the worker threads may be blocked.
Defensive programming is possible whereby a good mix of
consumers and producers is simultaneously active. However,
even without this, blocking occurs rarely in our benchmarks.

Special Optimization. Cilk++ hyperobjects are effi-
cient even on deep spawn trees. The reason is that hyper-
maps are created and reduced only when tasks are stolen,
but not every time a task is created. This is referred to
as the special optimization [9]. The special optimization is
also applicable to hyperqueues. The children, user and right
hypermaps may be handled as specified by the special op-
timization (our discussion in Section 4.2 only discusses the
cases of stolen tasks). The queue hypermap is distinct, as
only one task has a non-empty queue view for a given hy-
perqueue. As such, it is preferrable to store the queue view
in the hyperqueue variable and attach an ownership label to
it (e.g., the stack frame pointer) such that access to it can
be arbitrated.

Our experimental evaluation does not include the special
optimization. We expect that it would have a negligible
impact on our benchmarks as they have shallow spawn trees.

5. PROGRAMMING IDIOMS

5.1 Queue Segment Length Tuning
The programmer often knows the best queue segment size

for a program. E.g., a program performing producing or
consuming data in parallel may generate the same number
of values in each leaf task. It is beneficial to set the queue
segment length equal to this number. Alternatively, the pro-
grammer may know that the total queue size is often around
a particular size, or that the consumer and producer require
a particular queue buffer length to remain in balanced ex-
ecution without blocking. The queue segment length may
be set at queue initialization time as a parameter to the
constructor of the hyperqueue class.

5.2 Queue Slices
Queue slices provide direct access to a queue segment,

which is as fast as an array access. Instead of performing
push, empty and pop operations on the queue, the program-
mer first requests a slice and then performs the operations
on the slice. It is guaranteed that the storage space for a
slice is available and that all data is ready.

1 bool producer(pushdep<int> queue, int block) {
2 for(int i=0; i < block; ++i)
3 queue.push(...);
4 return more work to do() ? true : false ;
5 }
6 void consumer(popdep<int> queue) {
7 while(!queue.empty())
8 ... = queue.pop();
9 }

10 void pipeline () {
11 hyperqueue<int> queue;
12 while(producer((pushdep<int>)queue, 10)) {
13 spawn consumer((popdep<int>)queue);
14 }
15 sync;
16 }
Figure 5: Taking the main queue iteration loop out-
side the tasks.

Read slices can be requested from tasks with pop privi-
leges. The system returns the slice starting at the current
head of the queue up to the requested length under the con-
straints that (i) the data must have been pushed and (ii) the
slice must fit inside a single segment. If not, a shorter slice
will be returned.

Write slices can be requested from tasks with push privi-
leges. A new queue segment may be created to accommodate
the requested slice length.

5.3 Selectively Enabling Pipelining
When executed sequentially, the hyperqueue will grow as

large as necessary to accommodate all data sent through the
queue. It is possible to avoid this behavior by providing both
sequential and pipeline-parallel implementations of the code.
Then, a runtime check can be made to check if the code is
executing in parallel or not and an appropriate version of
the code can be selected.

There are several ways to detect whether a Cilk program
is executing sequentially or in parallel. Cilk provides a direct
way by checking the variable SYNCHED [19]. Alternatively,
Cilk++ hyperobjects can also be designed in order to give
away this information [20]. These features must be used
with care because they can violate determinism.

5.4 Queue Loop Split and Interchange
Another potential protection against unbounded queue

growth is to split each stage’s main loop over queue val-
ues and bring the outer loop outwards of the queue. This
technique is illustrated in Figure 5. Instead of calling the
producer function once, it is now called once for every 10
elements. The total degree of parallelism is equal to that
of a solution with a single call to producer and consumer,
except that memory usage is limited to grow by a factor 10
when the program is executed serially.

5.5 Selective Sync
The procedure in Figure 6 spawns a consumer task and

performs empty() and pop() calls itself. The procedure will
block on empty() until completion of the consumer as it has
an empty queue view while the consumer executes. It is,
however, preferrable to suspend the task, freeing the worker
to execute other tasks. The following syntax suspends a task
until all children with a particular access mode on a partic-

1 hyperqueue<int> queue;
2 spawn producer((pushdep<int>)queue);
3 spawn consumer((popdep<int>)queue);
4 spawn producer((pushdep<int>)queue);
5 if (!queue.empty()) // block until consumer() done
6 queue.pop();

Figure 6: A case for selective sync.

seg extr vect rank input out

Figure 7: Schematic of ferret’s pipeline.

ular object have completed: sync (popdep<int>)queue;
suspends the procedure until all child tasks with popdep
access mode on queue have completed. Adding this state-
ment before empty() changes blocking to suspension. This
is an extension of the syntax “sync queue;” supported by
Swan to suspend a task until all children operating on the
queue object have completed.

6. EVALUATION
We evaluate the performance of pipeline parallel bench-

marks implemented with POSIX threads, Intel’s Threading
Building Blocks and Swan, a task dataflow system [6]. More-
over, the hyperqueues are also implemented in Swan in order
to leverage the dataflow ordering functionality required to
sequence tasks with pop privileges. Our implementation is
published at http://github.com/hvdieren/swan.

The experimental system is a multi-core node with 2 AMD
Opteron 6272 (Bulldozer) processors. On this processor,
pairs of cores share a floating-point unit (FPU). The pro-
cessors have 6144 KB L3 cache shared per 8 cores. Main
memory is distributed over 4 NUMA nodes. The system
runs the Ubuntu OS version 12.04.1 LTS and gcc version
4.6.3. We use Intel Threading Building Blocks (TBB) ver-
sion 4.1 20130314oss.

We evaluate the hyperqueue on 3 pipeline parallel bench-
marks: ferret and dedup taken from the PARSEC suite [21],
and the bzip2 compression utility. Our codes are available
from http://github.com/hvdieren/parsec-swan.

6.1 Ferret
Ferret performs content-based similarity search, determin-

ing for a set of images which images contain the same kind
of object. The required computation is spread over a 6-
stage pipeline (Figure 7) consisting of, respectively, input
(loading images from disk), segmentation, feature extrac-
tion, vectorizing, ranking and output. The first (input) and
last (output) stages are serial stages, implying that these
stages must operate on all images strictly in their original
order. The stages in between have no permanent state. As
such, multiple instances of these stages may be executing in
parallel on distinct images.

We have measured the amount of time taken by each stage
when executing the serial version of the benchmark on the
PARSEC ’native’ input (Table 1). This table shows that
the majority of execution time is taken by the ranking stage
(75.3%), while the vectorizing stage also takes a sizable frac-
tion of execution time (16.2%). The segmentation and ex-
traction stages are less time consuming.

Serial stages can pose major limitations to scalability. In

Table 1: Characterization of ferret’s pipeline.

Iterations Time (s) Time (%)

Input 1 34.000 4.48
Segmentation 3500 26.800 3.57
Extraction 3500 2.773 0.35
Vectorizing 3500 133.939 16.20
Ranking 3500 603.286 75.30
Output 3500 2.000 0.10

0	

5	

10	

15	

20	

25	

30	

0	 5	 10	 15	 20	 25	 30	 35	

Sp
ee
du

p	

Number	 of	 cores	

Pthreads	 TBB	

Objects	 Hyperqueue	

Figure 8: Ferret speedup by using various program-
ming models.

ferret, the input stage takes about 4.5% of execution time.
As such, scalability is limited to roughly 22 if we fail to
overlap its execution with other work.

While the structure of the computation of ferret does not
pose any problems toward parallelization (it is a common
pipeline pattern), the code exposes a generic programma-
bility issue. The input stage is a recursive directory traver-
sal that collects image files in a directory tree. Written in
Pthreads, files are pushed on a queue as they are discovered.

Turning ferret into a pipeline structure using program-
ming models such as TBB or Swan is not impossible. How-
ever, it requires thoroughly restructuring the input stage in
such a way that it can be called repeatedly to produce the
next file [22]. To this end, its internal state must be made
explicit (i.e., its current position in the traversal of the direc-
tory tree) and passed as an argument to the first stage. This
is all but rocket science. But it is tedious and error-prone.

Hyperqueues avoid restructuring the program, thereby
making it much easier to extract the latent parallelism in the
program. With hyperqueues, the directory traversal pushes
discovered image files on the queue, as in the pthreads ver-
sion. These images can be concurrently consumed by the
next pipeline stage.

We measured the performance of ferret using Pthreads,
TBB and Swan. We show two versions of the code for Swan.
The “objects” version uses the baseline task dataflow model.
In this case, we did not implement the code restructuring of
the input stage as with the TBB code in order to demon-
strate the importance of overlapping the execution of the
input stage with the remainder of the pipeline. The “hy-
perqueue” version uses a hyperqueue to communicate data
between the input stage and the segmentation stage, and
also to communicate between ranking and output. The lat-
ter hyperqueue was inserted because of the fine granularity
of the output stage. As such, we avoid spawning many small
tasks. Instead a single large task is spawned for this stage
which iterates over all elements in the queue.

ref ddup cmp out frag
one by one
any order

Figure 9: Schematic of the dedup pipeline.

Table 2: Characterization of the dedup pipeline.
Iterations Time (s) Time (%)

Fragment 336 1.900 3.08
FragmentRefine 336 3.916 6.35
Deduplicate 369950 4.854 7.90
Compress 168364 45.881 74.48
Output 369950 5.049 8.19

Figure 8 shows the speedup of the pthreads, TBB, objects
and hyperqueue implementations relative to the serial im-
plementation. Performance of the objects version is clearly
limited by not overlapping the input stage with the remain-
der of the pipeline. The remaining implementations show
nearly the same performance.

Note a slight decrease of scalability when the number of
cores exceeds 16. This is due to the sharing of FPUs between
pairs of cores in the Bulldozer architecture.

The pthreads version uses massive core oversubscription.
It starts 28 threads for each of the parallel stages. Launch-
ing the same number of threads is clearly not justified by the
breakdown in Table 1. For best performance, the number of
threads per stage needs to be tuned individually. The num-
ber 28 was experimentally determined and is likely a result
of the maximum number of cores we used (32) and the fact
that one stage dominates the execution time. As such, it
is important to assign many threads to this stage. The hy-
perqueue implementation obtains the same performance as
pthreads and does not require core-count dependent tuning.

6.2 Dedup
Dedup performs file compression through deduplication

(eliminating duplicate data blocks) and compression. Dedup
has a 5-stage pipeline that is tricky to implement efficiently
using structured programming models such as TBB and
Swan. The dedup pipeline stages consist of fragmentation
(dividing the input file in large chunks), refining (splitting
large chunks in small chunks), deduplication (finding equal
chunks), compression of chunks and output (Figure 9). This
pipeline poses implementation problems because of the vari-
able number of input and output items in several stages. In
particular, the fragment refining stage produces a variable
number of small chunks per large chunk and the compression
stage is skipped for duplicate chunks.

Table 2 shows the number of chunks processed and the
time spent per pipeline stage. Execution time is biased to-
wards Compress. Instances of this stage can execute in par-
allel so there is ample parallelism. The Output stage is the
most limiting serial stage. Taking 8.2% of the execution
time, it limits overall application speedup to 12.7.

Reed et al observed that dedup exhibits a nested pipeline
[22]. The outer pipeline, handling large chunks, consists
of three stages: Fragment, InnerPipeline and Output. The
inner pipeline consists of FragmentRefine, Deduplicate and
Compress. A new instance of the inner pipeline is created
for every large chunk and produces a list of small chunks
that makes up the corresponding large chunk.

ref frag ddup cmp out

ddup cmp out

ddup cmp out

ref ddup cmp out

ddup cmp out

(a) Nested pipelines

lists

ref frag ddup cmp out

ddup cmp out

ddup cmp out

ref ddup cmp out

ddup cmp out

local
queue

local
queue

write
queue

(b) Positioning of hyperqueues

1 void Fragment(pushdep<chunk t ∗>write queue) {
2 while(more coarse fragments) {
3 chunk t ∗ chunk = ...;
4 { // Set up inner pipeline with local queue
5 hyperqueue<chunk t∗> ∗ q
6 = new hyperqueue<chunk t ∗>;
7 spawn FragmentRefine(
8 chunk, (pushdep<chunk t ∗>)∗q);
9 spawn DeduplicateAndCompress(

10 (popdep<chunk t ∗>)∗q,
11 (pushdep<chunk t ∗>)write queue);
12 }
13 }
14 sync;
15 }
16 int main() {
17 hyperqueue<chunk t∗> write queue;
18 spawn Fragment((pushdep<chunk t∗>)write queue);
19 spawn Output((popdep<chunk t∗>)write queue);
20 sync;
21 }

(c) Hyperqueue implementation of dedup.

Figure 10: Alternative implementation choices for dedup. The graphics (a) and (b) show dynamic instantia-
tions of each pipeline stage, how they are grouped and where collections of data elements are used. Dashed
lines indicate instances of the inner pipeline. (c) Sketch of hyperqueue code according to (b).

Figure 10 (a) shows the dynamic instantiations of all
pipeline stages. Two large chunks have been found, where
the first is further split in three small chunks and the latter
is split two-ways. This graphic demonstrates a shortcoming
of the nested pipeline approach: all the small chunks for a
large chunk must be completed and gathered on a list be-
fore the output stage can proceed. This puts an important
limit to scalability, as the number of small chunks per in-
ner pipeline is typically 500-600 and may run up to 65537,
potentially resulting in long and skewed delays.

Hyperqueues allow consuming elements concurrently to
pushes, removing the wait times of the output stage un-
til large chunks have been fully processed as in the case of
nested pipelines. Moreover, like Cilk++ list reducers, hyper-
queues allow us to construct parts of the list concurrently
and merge list segments as appropriate. This way, all nested
pipelines can push elements on the same hyperqueue and the
write actions become synchronized and ordered between in-
vocations of the nested pipeline. Finally, hyperqueues can be
used directly as a drop-in replacement for lists, as they sup-
port the required push and pop operations (Figure 10 (b)).

Our hyperqueue implementation inserts a local hyperqueue
between the FragmentRefine stage and the Deduplication
stage. Also, all instances of the Deduplication and Com-
press stages that correspond to the same nested pipeline
(large chunk) are merged into a single sequential task. This
design was chosen to coarsen the tasks and reduce dynamic
scheduling overhead (which is absent in the pthreads imple-
mentation). Ample parallelism remains in the program.

Our formulation of dedup follows the original sequential
algorithm, which greatly affects programmer productivity.
Figure 10 (c) shows a sketch, where the main procedure
spawns two tasks Fragment and Output. Fragment calls all
but the output stage in a recursive manner: whenever a
large chunk is constructed, a nested pipeline is created using

0	

1	

2	

3	

4	

5	

6	

7	

0	 5	 10	 15	 20	 25	 30	 35	

Sp
ee
du

p	

Number	 of	 cores	

Pthreads	 TBB	

Objects	 Hyperqueue	

Figure 11: Dedup speedup with various program-
ming models.

two tasks that communicate through a local hyperqueue.
Completed small chunks are produced on the write queue.
In contrast, the TBB version of dedup requires significant
restructuring of the code in order to match the structure
imposed by TBB.

Note that the hyperqueue enforces dependences across
procedure boundaries. This is an effect that is hard to
achieve in Swan, where dataflow dependences can exist only
within the scope of a procedure.

Figure 11 shows speedup for dedup in the pthreads, TBB
and Swan programming models. While Reed et al demon-
strated improved performance of their TBB implementation
relative to the pthreads implementation in PARSEC 2.1 [22],
our evaluation using PARSEC 3.0 shows that the TBB im-
plementation is slower than the pthreads implementation.
The Swan implementation with hyperqueues outperforms
the pthread version by at least 12% and up to 30% in the re-
gion of 6-8 threads. The hyperqueue implementation looses
some of its advantage for 22 threads and higher due to task
granularity and locality issues.

6.3 Bzip2
We only report the main results on bzip2 in the interest

of brevity. Prior work shows that the baseline task dataflow
model is well-suited to execute bzip2’s pipeline in parallel [7].
We compared a hyperqueue implementation against the task
dataflow implementation to verify the performance of the
hyperqueue. bzip2 has a 3-stage pipeline where the first and
last pipeline stages must execute serially.

Our first implementation assigns one task to each pipeline
stage, connected through two hyperqueues. The second
stage’s task performs a spawn for every element popped from
the input queue to exploit parallelism in the second stage.
Passing the output hyperqueue of stage2 to each of these
spawned functions allows them to execute in parallel while
retaining the order of the elements through the reduction
properties. This implementation scales well, however, it suf-
fers from bad memory locality when executed serially. Thus,
we applied the technique of Section 5.4 to improve memory
locality and obtained performance equivalent to that of the
baseline task dataflow implementation.

7. RELATED WORK
We describe related work concerning the properties of the

programming model and also the runtime scheduler.

7.1 Programming Model
The Threading Building Blocks (TBB) [23] provide par-

allel skeletons that allow programmers to express parallel
code structures in a generic way. TBB, however, does not
define a serialization of the program and does not guarantee
determinism, even in the case of specially crafted function-
ality [24]. TBB programs tend to be free of thread-count
dependent parameters.

StreamIt [25] defines a language and compiler for stream-
ing programs, which are closely related to pipelined pro-
grams. StreamIt programs are scale-free. However, the
StreamIt compiler statically schedules the computations to
cores, at which point this property is lost. StreamIt pro-
grams may be non-deterministic in which case there exists
no unique serialization.

A fine-grain scheduler for GRAMPS graphics pipelines is
described in [26]. The paper does not discuss aspects of
determinism nor the existence of a serialization of GRAMPS
programs. It does not provide examples to demonstrate that
the system encourages scale-free programs.

Phasers are a multi-purpose synchronization construct ap-
plicable also to pipelines [27]. Programs constructed with
phasers are not serializable and are not scale-free, although
they are deterministic [4].

OpenSTREAM is a system for stream- and task-based
programming [28]. OpenSTREAM programs are determin-
istic provided that producing and consuming tasks are cre-
ated in a fixed order. Removing parallel constructs from
OpenSTREAM programs does not deliver a workable seri-
alization. OpenSTREAM does, however, provide compiler
support to optimize the execution of stream-based programs.

Concurrent data structures [29, 30] can be used in con-
junction with thread-oriented parallel programming abstrac-
tions such as POSIX threads and Java threads. Concurrent
data structures allow multiple threads to access the data
structure concurrently with a guarantee that each thread’s
effects occur in some perceived order, as in the case of the
linearizability condition [31]. Concurrent data structures are

not deterministic (in the sense used in this paper) and they
do not provide a serialization of the program.

7.2 Scheduling
It has been shown that pipeline parallelism is best sched-

uled dynamically in order to cope with imbalanced pipeline
stages [32]. The baseline Swan runtime system performs
such dynamic load balancing very effectively, also for pipeline
parallel programs [6].

Pipeline stages may be seen as transformations on work
items [33]. Threads pick work items from queues holding
work items from various stages in the pipeline. Threads
advance the work items to the next stage and return them
to the queues until processing is completed. This model
is scalable as more threads are easily added to execute the
pipeline. It also closely corresponds to the way the baseline
Swan system executes pipelines, except that Swan retains
program order and gives preferences to complete older work
items before generating new ones.

DoPE [34] adapts the degree of parallelism in statically
scheduled programs by switching dynamically between static
schedules. DoPE introduces some opportunity to change the
scale, but switching between versions is costly as it requires
to drain the pipeline.

Others have devised specific strategies to identify perfor-
mance limiting stages [35]. Additional threads are assigned
to the limiting stages and taken away from the others. Swan
achieves this effect automatically, without analyzing per-
thread performance.

GRAMPS [26] employs optimization to bias the scheduler
towards limiting memory footprint, to optimize the usage
of intermediate buffer space and to recycle thread state for
serial pipeline stages. Overall, the Swan scheduler executes
a comparable schedule, but its genericity foregoes optimiza-
tion specific to pipeline parallelism.

7.3 Hyperqueue Implementation in Cilk
Our implementation of hyperqueues builds on the task

dataflow runtime of Swan. With a few modifications, how-
ever, they may also be implemented in Cilk. Hyperqueues
use two features that are not available in Cilk: (i) The possi-
bility to postpone tasks with popdep arguments in case an
older task with a popdep argument is executing. (ii) Dif-
ferentiating the actions on a hyperqueue depending on the
branch in the spawn tree. Hyperobjects behave the same
throughout a Cilk program, i.e., a reducer is always a re-
ducer and a holder is always a holder [9]. Hyperqueues,
however, show a produce interface with the push method on
some branches of the spawn tree. They show a consume in-
terface with the pop and empty methods on other branches.

It is possible to overcome these limitations. For instance,
one may require that only a single consuming task may be
spawned per parallel region, i.e., between any two sync state-
ments. To resolve the multi-faceted aspects of hyperqueues,
statements may be added just before spawn statements that
declare that the hyperqueue will specialize to a produce
(pushdep) or consume (popdep) interface. This information
is then visible to the subsequently spawned tasks.

Finally, it is necessary to construct a coordinated view
between all tasks operating on a hyperqueue. We believe
that this can be achieved with appropriate definition of the
hyperobject and with a few modifications to the generic re-
ducer mechanism in Cilk++.

8. CONCLUSIONS
Determinism and scale-free parallelism are key charac-

teristics of ubiquitous parallel programming models that
improve programmer productivity and code quality. This
paper presents hyperqueues, a programming abstraction of
queues that allows to specify deterministic and scale-free
programs with pipeline parallelism.

We explain the semantics and an implementation of hyper-
queues in the context of a task dataflow programming lan-
guage and runtime system. Application to several irregular
pipeline parallel programs shows that the same performance
(for ferret and bzip2) or up to 30% better performance can
be obtained (for dedup) on a 32-core shared memory node.

Most importantly, hyperqueues simplify the construction
of highly parallel pipelined programs. Programs written in
our task dataflow language extended with hyperqueues are
serializable, deterministic and scale-free. This improves pro-
grammer productivity and aids performance portability.

In future work we aim to extend the semantics of the hy-
perqueue to allow concurrent pop operations, while retaining
the programming productivity properties of the hyperqueue.

9. ACKNOWLEDGMENT
We are grateful to the reviewers and the shepherd for their

constructive comments on this paper. This work is partly
supported by the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under the NovoSoft
project (Marie Curie Actions, grant agreement 327744), un-
der the TEXT project (grant agreement 261580) and by
the United Kingdom EPSRC GEMSCLAIM project (grant
agreement EP/K017594/1).

10. REFERENCES
[1] R. Bocchino, V. Adve, S. Adve, and M. Snir, “Parallel

programming must be deterministic by default,” in HotPar,
2009.

[2] R. L. Bocchino, Jr., S. Heumann, N. Honarmand, S. V.
Adve, V. S. Adve, A. Welc, and T. Shpeisman, “Safe
nondeterminism in a deterministic-by-default parallel
language,” in POPL, 2011.

[3] J. C. Jenista, Y. h. Eom, and B. C. Demsky, “OoOJava:
software out-of-order execution,” in PPoPP, 2011.

[4] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar,
“Habanero-java: The new adventures of old X11,” in
Principles and Practice of Programming in Java, 2011.

[5] M. Bauer, S. Treichler, E. Slaughter, and A. Aitken,
“Legion: Expressing locality and independence with logical
regions,” in SC, 2012.

[6] H. Vandierendonck, G. Tzenakis, and D. S. Nikolopoulos,
“A unified scheduler for recursive and task dataflow
parallelism,” in PACT, 2011.

[7] H. Vandierendonck, P. Pratikakis, and D. S. Nikolopoulos,
“Parallel programming of general-purpose programs using
task-based programming models,” in HotPar, 2011.

[8] M. Frigo, C. E. Leiserson, and K. H. Randall, “The
implementation of the Cilk-5 multi-threaded language,” in
PLDI, 1998.

[9] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin,
“Reducers and other Cilk++ hyperobjects,” in SPAA, 2009.

[10] P. Pratikakis, H. Vandierendonck, S. Lyberis, and D. S.
Nikolopoulos, “A programming model for deterministic
task parallelism,” in Workshop on Memory Systems
Performance and Correctness, 2011.

[11] L. Lamport, “Specifying concurrent program modules,”
ACM Trans. Program. Lang. Syst., vol. 5, no. 2, pp.
190–222, Apr. 1983.

[12] J. Valois, “Implementing lock-free queues,” in Proc. of the
7th Intl. Conf. on Parallel and Distributed Computing
Systems, 1994.

[13] D. Lea, “The JSR-133 cookbook for compiler writers,” 2011.
[14] J. Giacomoni, T. Moseley, and M. Vachharajani,

“Fastforward for efficient pipeline parallelism: a
cache-optimized concurrent lock-free queue,” in PPoPP,
2008.

[15] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M.
Michael, and M. Vechev, “Laws of order: expensive
synchronization in concurrent algorithms cannot be
eliminated,” in POPL, 2011.

[16] M. M. Michael and M. L. Scott, “Simple, fast, and
practical non-blocking and blocking concurrent queue
algorithms,” in PODC, 1996.

[17] P. Fatourou and N. D. Kallimanis, “A highly-efficient
wait-free universal construction,” in SPAA, 2011.

[18] E. G. Coffman, M. Elphick, and A. Shoshani, “System
deadlocks,” ACM Comput. Surv., vol. 3, no. 2, pp. 67–78,
1971.

[19] “Cilk 5.4.6 reference manual,”
http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf, 1998.

[20] A. Robinson, “Detecting theft by hyperobject abuse,”
http://software.intel.com/en-us/blogs/2010/11/22/
detecting-theft-by-hyperobject-abuse/, 2010.

[21] C. Biena, “Benchmarking modern multiprocessors,” Ph.D.
dissertation, Princeton University, Jan. 2011.

[22] E. C. Reed, N. Chen, and R. E. Johnson, “Expressing
pipeline parallelism using TBB constructs,” in Workshop
on Transitioning to Multicore, 2011.

[23] Intel Threading Building Blocks, Intel, Sep. 2010,
document Number 319872-006US.

[24] A. Katranov, “Deterministic reduction: a new community
preview feature in Intel threading building blocks,”
http://software.intel.com/en-us/blogs/2012/05/11/deter-
ministic-reduction-a-new-community-preview-feature-in-
intel-threading-building-blocks, 2012.

[25] W. Thies, M. Karczmarek, and S. P. Amarasinghe,
“Streamit: A language for streaming applications,” in CC,
2002.

[26] D. Sanchez, D. Lo, R. M. Yoo, J. Sugerman, and
C. Kozyrakis, “Dynamic fine-grain scheduling of pipeline
parallelism,” in PACT, 2011.

[27] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer,
“Phasers: a unified deadlock-free construct for collective
and point-to-point synchronization,” in ICS, 2008.

[28] A. Pop and A. Cohen, “Openstream: Expressiveness and
data-flow compilation of openmp streaming programs,”
ACM Trans. Archit. Code Optim., vol. 9, no. 4, pp.
53:1–53:25, 2013.

[29] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase,
N. Thomas, N. Amato, and L. Rauchwerger, “STAPL: an
adaptive, generic parallel C++ library,” in LCPC, 2003.

[30] D. Lea, “Concurrency JSR-166 interest site,”
http://gee.cs.oswego.edu/dl/concurrency-interest/.

[31] M. P. Herlihy and J. M. Wing, “Linearizability: a
correctness condition for concurrent objects,” ACM Trans.
Program. Lang. Syst., vol. 12, no. 3, pp. 463–492, 1990.

[32] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval,
“Analytical modeling of pipeline parallelism,” in PACT,
2009.

[33] S. Macdonald, D. Szafron, and J. Schaeffer, “Rethinking
the pipeline as object-oriented states with
transformations,” in Intl. Workshop on High-Level Parallel
Programming Models and Supportive Environments
(HIPS) at IPDPS, 2004.

[34] A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August,
“Parallelism orchestration using DoPE: the degree of
parallelism executive,” in PLDI, 2011.

[35] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt,
“Feedback-directed pipeline parallelism,” in PACT, 2010.

