-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Queen's University Research Portal

Hardware Acceleration of Background Modeling in the
Compressed Domain

Popa, S., Crookes, D., & Miller, P. (2013). Hardware Acceleration of Background Modeling in the Compressed
Domain. IEEE Transactions on Information Forensics and Security, 8(10), 1562-1574. DOI:
10.1109/TIFS.2013.2276753

Published in:
IEEE Transactions on Information Forensics and Security

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights e

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:16. Feb. 2017

https://core.ac.uk/display/16501434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/hardware-acceleration-of-background-modeling-in-the-compressed-domain(bb170d9e-8985-4c17-b42b-535b93290f76).html

Hardware Acceleration of Background Modeling in
the Compressed Domain

Stefan Popa, Danny Crookes and Paul Miller

Abstract—In intelligent video surveillance systems, scalability
(of the number of simultaneous video streams) is important.
Two Kkey factors which hinder scalability are: the time spent
in decompressing the input video streams, and the limited
computational power of the processor. This paper demonstrates
how a combination of algorithmic and hardware techniques can
overcome these limitations, and significantly increase the number
of simultaneous streams. The techniques used are: processing
in the compressed domain, and exploitation of the multi-core
and vector processing capability of modern processors. The
paper presents a system which performs background modeling,
using a Mixture of Gaussians approach. This is an important
first step in the segmentation of moving targets. The paper
explores the effects of reducing the number of coefficients in the
compressed domain, in terms of throughput speed and quality of
the background modeling. The speed-ups achieved by exploiting
compressed domain processing, multi-core and vector processing
are explored individually. Experiments show that a combination
of all these techniques can give a speed-up of 170 times on a single
CPU compared to a purely serial, spatial domain implementation,
with a slight gain in quality.

Index Terms—video surveillance, background subtraction,
compressed domain, hardware acceleration, multi-core, SSE

I. INTRODUCTION

key issue for intelligent video surveillance systems is that

of scalability. Real-world deployment of video surveil-
lance systems can involve hundreds, or even thousands, of
cameras. Thus it is vital that video analytics are scalable with
respect to both robust performance and also computability.
Scalability is achieved for these systems by decomposing them
into subsystems consisting of 8, 16, 32 or 64 IP cameras
connected to a single sever. Thus, we argue that scalability
can be achieved with respect to video analytics, if we can
process the data in real-time produced by one of these sub-
systems. With regard to computational efficiency, an important
consideration is the hardware/software architecture of the
video analytics processing. The main commercial approach
to achieve computational efficiency is the use of the Texas
Da Vinci Multimedia DSP chipset. In the video surveillance
research community, the use of GPUs for implementation of
video analytics has been investigated. However, a drawback
of this approach is the PCI bus bottleneck between the GPU
and CPU. More recently, the availability of multi-core CPUs
and vectorization has provided another option with respect to
computational efficiency.

S. Popa (spopa0l@qub.ac.uk), D. Crookes (d.crookes@qub.ac.uk) and P.
Miller (p.miller@ecit.qub.ac.uk) are with the School of Electronics, Electrical
Engineering and Computer Science, Queen’s University Belfast, UK (see:
http://www.qub.ac.uk/).

Manuscript sent October 1, 2012

Another consideration with respect to scalability and com-
putational efficiency is that the video data are transmitted
and stored in the compressed domain. However, most video
analytic algorithms operate in the spatial domain; therefore,
the video data has to be decompressed. From a computational
viewpoint, decompression of, say, 64 video streams is non-
trivial. Furthermore, the presence of compression artifacts
can also reduce performance. One approach to reducing this
computational overhead, therefore, is to implement the video
analytics in the compressed domain.

The first step in video analytics is usually some form of
foreground detection based on background modeling. The gold
standard in this regard, both commercially and in research,
is the mixture of Gaussians (MoG) algorithm. Therefore, in
this work we investigate the implementation of this algorithm
in the compressed domain using multi-core and vectorization.
Specifically, we set ourselves the challenge: Can we perform
foreground detection on 64 streams of video in real-time on
a single chip without compromising performance? The work
reported in this paper tries to answer this.

II. RELATED WORK
A. Background Modeling in the Compressed Domain

One of the most popular methods for extracting moving
objects from a scene is background subtraction (BS). BS is
one of the first low-level processing operations in virtually any
intelligent video surveillance system, and it is the operation of
identifying and segmenting moving objects in video frames
by separating the still areas, called the background (BG),
from the moving objects, called foreground (FG). Any BS
algorithm first constructs a representation of the BG called the
background model. Then, each subsequent frame is subtracted
from this background model to give the resulting FG [1].

The main advantage of including a BS stage in a video
surveillance system is the increase in performance of any
higher-level video analysis. This is possible, for example,
by focusing any tracking methods on the FG objects, or by
narrowing the search window of any detection methods to the
FG [2].

As shown in [3], background modeling (BM) algorithms
can broadly be classified into three categories, depending
on the compression features used: algorithms based only
on Discrete Cosine Transform (DCT) coefficients [4]-[7];
algorithms based only on the motion vectors (MV) [8], [9]; and
algorithms based on both [10]. Several studies have focused
on BM algorithms using only DCT coefficients. In [4] the
authors propose a framework that uses competing Hidden

Markov Models over small neighborhoods, which are capable
of maintaining a valid background model. In this case, the
small neighborhoods are the JPEG 8x8 blocks of DCT coeffi-
cients. For this framework, the main challenge is background
initialization, which requires a large amount of time. Another
drawback is that this framework is only well suited for indoor
surveillance. In [5] the authors propose a fast and efficient
adaptive method for modeling the background, which uses two
features extracted from each 8x8 block of DCT coefficients in
a JPEG frame. The first feature is the first DCT coefficient
(also called the DC coefficient), and the second feature is
a weighted sum of a few DCT low frequency coefficients
(also called the AC coefficients). A Gaussian distribution is
used to model each of the two features. In addition, further
processing is used to handle variations in the environment
and improve the segmentation. By combining the model built
around the two features with different characteristics (the
DC coefficient is more sensitive to changes in illumination
and the low frequency AC coefficients are more sensitive
to changes in texture), the authors claim that the model is
robust to many of the problems linked with BS in video
sequences representing outdoor scenes, such as gradual and
sudden illumination changes, and small repetitive background
movements. The authors of [6] use the same principle of
modeling the background using two features extracted directly
from each 8x8 block of DCT coefficients in a frame as part
of a more complex tracking system. The main difference
between the two is the choice of the second feature, which
is represented by the first three AC coefficients in [6].

One of the most referenced papers addressing the problem
of background modeling in the compressed domain, using
only DCT coefficients, is [7]. Here, the authors present a
framework composed of three algorithms for BM (Running
Average, Median and Mixture of Gaussians) and a two-
stage segmentation approach with pixel-level resolution. In
the first stage, the background model is generated by one of
the algorithms, which is further used to identify the block
regions that are fully or partially occupied by a foreground
object. In the second stage, the pixels from the partially
occupied blocks are then processed (classified) in the spatial
domain. Even though the processing is performed in the spatial
domain for the partially occupied blocks, the authors prove
through theoretical analysis and practical measurements that
their algorithms in the compressed domain are several times
faster than their spatial domain counterparts [11] and with
better segmentation results.

B. Hardware Acceleration for Background Modeling

Several hardware-accelerated implementations for moving
object detection and segmentation systems based on BM in
the spatial domain have been developed. In [12], the authors
implemented a BM algorithm based on an adaptive mixture of
Gaussians (AGMM). Using an NVIDIA GPU with the Com-
pute Unified Device Architecture (CUDA [13]) they achieved
18x acceleration compared with an implementation on an Intel
multi-core CPU using multithreading. In the same paper, an
implementation on IBMs Cell Broadband Engine Architecture

(CBEA) achieved 3x the acceleration compared with the
same Intel multi-core CPU benchmark. In [14], the authors
implement a system that uses selective HOG-based features
and BS based on a GMM for pedestrian detection. They report
that using an Intel i7 and a low budget NVIDA GeForce
480GTX card, they are able to process 48 frames/second
with high accuracy. Although the system does not achieve a
significant speedup, the implementation is complex, and the
BS represents only a part of the total computation. The authors
of [15] implement only the AGMM algorithm. They report
that the system can process close to 250 frames/second for
high-resolution images, and close to 1600 frames/second for
low-resolution images even when using a low-end NVIDIA
GeForce 9600GT. Using the same GPU, they also report an
acceleration of over 11x compared with a reference CPU
implementation.

It is possible to conclude that, although there has been
a significant amount of research in BM and higher level
video analysis in the compressed domain, it is clear that the
compressed domain has not been explored as extensively as
the spatial domain with respect to algorithmic performance and
hardware acceleration. To the best of our knowledge, there are
no significant hardware accelerated implementations of BM
algorithms in the compressed domain. This is the key novel
contribution of the work reported in this paper.

Due to current industry practices, video surveillance footage
is stored in the MJPEG compressed format in order to be
accepted as evidence in law courts. In addition, all surveillance
video cameras currently available on the market can stream
images in the MJPEG compressed format. For these reasons,
the research will be based on the MJIPEG compressed format.

III. BACKGROUND
A. MJPEG/JPEG Compression Format

MIPEG is a video compression format that takes advantage
only of the pixel redundancies within a frame (spatial pixel
redundancy). Each frame in a MJPEG video stream is a JPEG
encoded image, which is independent of any previous or future
frames; therefore, the compressed domain data available for
processing in MJPEG compressed video streams is the DCT
coefficients of the current frame [16].

The JPEG image compression standard [17] defines dif-
ferent modes of operation. Among the different modes of
operation the most representative mode is the baseline JPEG
mode, which is described next for a grayscale image.

First, the baseline JPEG encoder splits the image into 8x8
non-overlapping blocks of pixels and the pixels intensity is
shifted from a range of 0:255 to a range of -127:127 in order
to evenly distribute the values around zero. Further, each block
is almost independently encoded, as in figure 1, using the
following steps.

The forward type II two-dimensional discrete cosine trans-
formation (2D-DCT type 1I) is first applied to the 8x8 block
of pixels, resulting an 8x8 block of DCT coefficients. The top-
left frequency component in the transformed block is called
the DC coefficient and it is equivalent to the average intensity
value of the pixels in the input block. The other coefficients

Level
" DCT t
8xg |-shift,l gyg axs 12" axs

Compression
—
Decompression

ig- —_—

Entropy

Encodin
9 Byte Stream

RLE AC

O Markers

Fig. 1: JPEG Compression/Decompression Transformations

are called AC coefficients. Next, the 64 DCT coefficients are
quantized using different quantization thresholds for different
frequency components. This is the step that gives rise to the
lossy nature of the JPEG compression. During quantization
the high frequency coefficients are more often than not set to
zero. By applying this transformation, the entropy encoding
step will become much more effective, because it reduces the
dynamic range of the DCT coefficients and, as a consequence,
fewer bits are needed for representation. After quantization, the
64 DCT coefficients are rearranged in a zigzag order. In this
way the low frequency coefficients, which, in contrast to high-
frequency coefficients, are mainly non-zero, are grouped at the
start of the array. The high frequency coefficients, which are
usually zero, are grouped at the end of the array. This trans-
formation is called zigzag reordering. The DC coefficients of
the neighboring blocks tend to be highly correlated. The JPEG
compression algorithm exploits this property and predicts the
value of the current DC coefficient based on the value of DC
coefficient of the previous block. This transformation is called
DPCM DC (differential pulse-code modulation). After zigzag
reordering and DPCM DC, the array containing the DCT
coefficients, usually turns out to have some non-zero values
scattered between zeros. Using this property, the JPEG format
encodes the non-zero values and the number of previous
zeros in just a pair of numbers. This transformation is called
run-length encoding (RLE) of DCT coefficients. The entropy
encoding transformation assigns variable length codes to pair
of values created during RLE transformation, so that less prob-
able pairs are represented by longer encoded binary codes and
more probable pairs are represented by shorter encoded binary
codes. JPEG uses Huffman encoding for entropy encoding.
At the end, the entropy encoded data, the quantization table
and the Huffman table are combined with markers to create
the final byte stream (data stream). The markers are nothing
more than delimiters for the different component parts of the
byte stream. During the decompression, the JPEG decoder
performs the inverse of the operations previously described
in reverse order: starting with entropy decoding and finishing
with inverse DCT transformation and inverse level shifting.
Due to quantization, the decompressed image is not identical
to the original one.

Because of the computation required to decompress an
MIPEG video stream, processing the DCT coefficients directly
is attractive. However, extracting the DCT coefficients from
the video stream still requires a significant amount of process-
ing, though inverse DCT is not required. The process is called
partial decompression. The compressed domain representation
of each frame is a 2D matrix of blocks, where each block
comprises the DCT coefficients for the 8x8 block of pixels.

B. Background Modeling using Online Mixture of Gaussians

This section will introduce the Mixture of Gaussians (MoG)
algorithm for which a hardware acceleration strategy will be
presented later.

MoG is one of the most common BM algorithms in the
literature. The algorithm received considerable interest from
the moment it was introduced in [11]. The popularity of this
algorithm is due to two important aspects. First, it is capa-
ble of modeling backgrounds containing non-static objects,
such as tree branches or bushes moving in the wind (multi-
model background). The algorithm can handle multi-model
backgrounds because it follows the evolution of a set of K
Gaussian distributions simultaneously (where K is a small
number). Second, a recursive (or online) formulation of the
algorithm can significantly reduce its complexity. However,
the algorithm is still more complex than most of the non-
statistical BM algorithms (simple algorithms like running-
average, median, etc.). There are two notable drawbacks of
MoG [2]. First, algorithm parameters require careful tuning.
Second, for the case where the scene remains stationary for too
long, the variance of the Gaussian distributions will become
too small and any sudden change in the global illumination
will force most of the scene to be classified as foreground.

Considering the case of a sequence of grayscale images,
we have the following two situations. In the spatial domain,
the input to a BM algorithm is, for each pixel position, a
scalar value (one-dimensional feature vector) which is the
pixel intensity at that location in the image. In the compressed
domain, the input is, for each 8x8 block, a 64-dimensional
feature vector which is obtained by concatenating the rows
(or the columns) of the 8x8 block of DCT coefficients at that
block location in the JPEG image. The underlying learning
method used by the MoG algorithm to update the model
parameters is not influenced by the type of feature vector used
as input, and it can be applied to data coming from the spatial
or compressed domain [7], [11]. The MoG algorithm uses a
mixture of K Gaussian distributions to maintain a probability
density function (PDF) for each feature vector (pixel intensity
or block of DCT coefficients) in the current frame. This PDF
is updated each frame.

As in [7] and [11], given the recent history
{Ti—n,Tt—p+1,...,24—1} of a feature vector x;, the
distribution of the current feature vector is:

K
P (4]60;) = Zwk,t * Tk (xtaﬂk,taglz,t))
k=1
K
where 6; = {Wk,t,Uk,nU;%t}k is the model parameter
ity

vector and wy, ¢, fik,, cr,% . are the weight, mean and variance
of the k" Gaussian distribution, Nk, in the mixture and

Zle wm) = 1. The Gaussians are D-dimensional, where
is equal to the size of the feature vector x;. To simplify
the computation, as in [7], [11], we are making the following
simplifications: Xy ; = o7 ,* I (I is the unit matrix); although
the Gaussians are D—dimeﬁsional, the variance is a scalar value
(but the mean is a vector of length D).

The algorithm has two stages. The first stage is the binary
classification of the current feature vector as BG or FG
according to the background model; the second stage is the
online update of the parameters using the current feature
vector. The binary classification stage takes place as follows.
The algorithm selects the first B most significant distributions
to be part of the background model, where:

b
B = argmin ((Z wk7t> > T))
b k=1

and T is a user-defined threshold (0 < 7" < 1). For the current
feature vector x;, a matching distribution % is sought using the
following equation:

(0 = pra—1)" (@0 = pra—1) < frof, G
where f is a small deviation. If more than one matching

distribution is found, the one closest to the feature vector is
selected. This is done using the following equation:

/;’ = mkin ((SUt - ,Uk:,tfl)T (l’t - Mk,tfl)/o’]%,tfl) 4

The current feature vector x;, is classified as BG if there
is a matching distribution k and this matching distribution is
part of the B selected distributions to represent the background

k < B)). Otherwise, x; is classified as FG.

Next, the online update stage takes place as follows. If
a matching distribution %k is found, the parameters of that
distribution are updated as follows:

Wi ¢ (1—a)x* Wi ta

ey = (1 - p) * g1 T pxTy &)
T

Jl%,t = (1=p)x Jz,t—l +p* (wt - l“l%,t) (zt - N’fc,t)

where « is a user-defined learning rate (0 < o < 1) and p is
a calculated learning rate:

P a/wm (6)

The parameters of the other distributions (kz # l%) are
updated as follows:

2
Wre = (1 —a) *wg 1 Okt = Okt—1 (7)

Kkt = Hik,t—1

If no matching distribution is found, the one with the
smallest weight (wy,¢—1) is replaced by a new one with the
following parameters:

2 2
Wit =Wo HEt =Ty Opy = 0g (8)

where wy is a small weight and 02 a large variance.

After updating the parameters, the weights are renormalized,
so that they still sum up to 1 and the distributions are ordered
in descending order of their significance, s, where:

2
Skt = wk,t/Uk,t)

The reordering is necessary to ensure that only the relevant
distributions are selected as part of the background model. A
distribution is considered to be relevant when it has a large
weight (evidence) and a small variance.

C. Hardware Acceleration

As mentioned in the introduction, real-world video surveil-
lance systems can include deployments of a large number of
cameras, which in turn generate a large amount of video data.
Processing all this data in real-time requires a huge amount of
computation. Modern CPUs commonly have multiple cores
(typically 4-8) capable of parallel processing, where each
core is equipped with short vector units capable of handling
multiple data elements simultaneously. To handle the compu-
tation in a scalable and efficient manner, it is necessary to
take advantage of all the resources available on the modern
CPUs. To do so, the use of specific programming APIs and
technologies is needed.

To use such CPUs to their full capacity, let us imagine a
very simple image processing operation. The subtraction of
two images, in a classic scenario, requires iterating over all
elements in the two images and subtracting the pixel intensities
at each location, using one core. By using, for example, a CPU
with 4-cores and 4-ways SIMD processing units, the images
are first split in four and the individual parts processed in
parallel on the 4-cores; then each part is further split into
vectors of four pixels which are processed simultaneously
using the SIMD units. These optimizations can in theory give
a speedup of 16x compared to a purely serial implementation.

At present, OpenMP [18] is the industry standard for par-
allel programming of shared memory multiprocessors. Multi-
core CPUs are considered to be shared memory multiproces-
sors. OpenMP uses the shared memory model to represent
the interaction between threads and the memory, and uses the
fork/join execution model to manage multithreaded execution
[19].

The shared memory model has the following characteristics.
One or more threads can run on a processor/core, but all
threads have access to the shared memory. Data can exist as
shared (in which case it can be accessed by all threads) or
private (in which case it can be accessed only by the thread
that owns it). Data transfers between threads and the private
or shared memory is transparent, but the synchronization is
mostly explicit (i.e. it is the programmers responsibility).

The fork - join execution model has the following charac-
teristics. The processing starts with a single thread, called the
master thread, and it runs sequentially until a parallel region
construct is encountered. When this happens, the master thread
will create a team of parallel threads (fork), and will divide the
execution of the code inside the parallel region among the team
of threads. After a team of threads finishes the code inside the
parallel region, they synchronize and terminate (join), leaving
the master thread to continue the program sequentially.

From the programmer’s point of view, OpenMP is accessible
in C/C++. It is composed of a set of compiler directives, a
library of support functions and a set of environment variables.

Furthermore, each core commonly has both scalar units and
short vector units, so vectorization is a form of parallelism

available at the core level and the individual CPU cores
can achieve vectorization independently. The vector units are
single instruction, multiple data (SIMD) processing units and
can process multiple data elements using the same instruction
(data-level parallelism). The use of SIMD units should accel-
erate the calculations by a factor equal to the length of the
unit (for example, a 4-way SIMD processing unit should in
theory accelerate the calculations by a factor of four).

On the Intel and AMD CPU micro-architectures the vector
processing units use vector registers of 128 bits, which are
able to handle the following data types: integer (usually 8
X 16-bits or 4 x 32-bits) and float (4 x 32-bits or 2 x 64-
bits). This technology is called Streaming SIMD Extensions
Technology (SSE) [20].

Some modern compilers can auto-vectorize scalar code to
some extent, but usually just for simple cases. For complex
cases, programmers have to explicitly use the vector data types
and write code in a SIMD manner. From the programmer’s
perspective, SSE programming can be done in C/C++ using
compiler intrinsics (which are compiled to one or a small set
of assembly instructions), or directly in assembly language
[20].

There are three important aspects that anyone should be
aware of when developing algorithms using SSE [20]-[23]: the
alignment of data in memory, the layout of data in memory,
and the instructions available.

The best performance for accessing data in memory using
the SSE instructions is achieved when the memory address of
the accessed data (usually a 4-element vector) is divisible by
16 (16-byte aligned). The performance impact of misaligned
memory accesses and methods to avoid them have been
previously studied in [23].

When vectorizing code which is processing an array of
structured objects (e.g. an array of grouped Gaussian param-
eters), the recommended layout for data is to have a separate
array for each component of the structure (e.g. an array of
means, an array of variances, etc.) This is called Structure
of Arrays (SoA). An alternative layout is the more ’natural’
(from an object oriented point of view) layout of a single
array of structures. This is called Array of Structures (AoS).
The advantage of SoA is that it keeps the homogeneous
data components together in memory. This makes it easy
to load and process them with the same instruction (or set
of instructions). The performance impact of using different
data memory layouts has been previously studied in [22]. For
example, an RGB image using SoA layout is represented by
three memory areas, where each memory area stores the data
of one channel for all pixels. In contrast, using AoS layout,
just one memory area is required, but each pixel occupies three
consecutive memory locations, one for each channel (R, G, B).

The SSE vector instructions can be grouped into cate-
gories [20], such as: load/store, arithmetic, logic, comparisons,
miscellaneous (min/max, type conversions, rounding, cache
control, etc.) and application specific (fast-block difference,
etc.) and they are closely tied to the type of the vector
elements. For most float vector instructions, SSE offers a
corresponding scalar version. These should not be confused
with the classic (x86) scalar instructions because they operate

on the vector registers (even though they are applied only
on the first element of the vector register). Instructions for
different data types, and even different instructions for the
same data type, can be serviced by different parts of the pro-
cessor. In fact, modern CPUs can issue up to six instructions
per clock cycle, which increases the chances of executing
instructions in parallel if there are no data dependencies
between the operands of consecutive instructions. SSE is
IEEE floating-point compliant, except for the reciprocal and
square root reciprocal instructions. Division is one of the most
expensive SSE instructions. The two instructions have been
introduced to speed up algorithms involving division where
high precision is not the first requirement. Another feature
of the SSE instruction set is that it can handle conditional
code without having to individually process each element in
a vector register. This is possible by using a combination of
logical SSE instructions or the newer blend instruction. The
blend instruction takes two vector registers and selects their
elements according to a mask. Usually the mask comes from
a vector comparison instruction.

IV. ACCELERATING THE MIXTURE OF GAUSSIANS IN THE
COMPRESSED DOMAIN

To accelerate multi-stream background subtraction, there are
two forms of parallelism to be exploited: multi-core (at the
high level) and vector processing (low level). Our approach to
exploiting multiple cores is straightforward: each input video
stream is processed by a separate thread, with no need for
communication with other threads. We do not partition the
data for a video stream across multiple threads. So there is no
significant programming effort involved in exploiting multi-
core parallelism. Each thread performs the partial decompres-
sion followed by background modeling on a complete video
stream.

To exploit vector processing, our approach is to vectorize
the processing of Gaussian mixtures, rather than processing
image blocks in parallel. Since it is sufficient to use a mixture
of four Gaussians, and given the size of SSE vector registers,
it is appropriate to vectorize the processing of the Gaussians.
Further, since each Gaussian has three parameters (plus some-
times a fourth index - see below), we also have the option of
using either a SoA approach or, if need be, an AoS approach.

One further possible dimension for increasing the amount
of parallelism is to reduce the precision of the Gaussian
components from 32 bit float to 16 bit fixed point. This would
in theory provided a further speed up of 2x. However, having
explored this, it was discovered that the increased complexity
of the coding for 16 bit representation meant that the overall
performance was actually slower than for processing 32 bit
floats. In what follows, we therefore do not consider the
question of precision any further.

Because of the complexity of SSE programming, the re-
mainder of this section focuses on the SSE accelerated imple-
mentation of the MoG algorithm in the compressed domain.

As previously specified, the MoG algorithm in the com-
pressed domain classifies and models the PDF of an entire
block of DCT coefficients simultaneously using a mixture of

1st 2nd 3rd 4th
s b1 2]]D4]->
1 1 1 1

Weights - (w1 Jw2 JwaJwa] >

1 1
variances-{vi Jva Jva] va J- >

Means - { D-Means 1] D-Means 2] D-Means 3 [D-Means 4] - [>

Fig. 2: The data layout of the model parameters in the
compressed domain.

K Gaussian distributions. Therefore, the parameters for one
Gaussian distribution in a mixture are: one weight (which
represents the probability of a block to match that particular
distribution, and is calculated based on previous observations),
one variance and a set of D-means (one for each DCT
coefficient in the block). The number of Gaussian distributions
in a mixture has been set to four (K = 4). This is (more
than) adequate algorithmically, and matches the hardware
constraints imposed by the size of the vector registers (128-
bits). However, we note that one change to the detail of the
algorithm, introduced to suit vectorization, is that we always
maintain four Gaussians, instead of a dynamically varying
number up to four. In order to avoid some expensive memory
copy operations in the later steps of the algorithm, a new index
parameter, ID, is added to each distribution (see step 6 below
for more details). These IDs will be used to access the correct
set of means in the means memory area corresponding to a
particular mixture. The IDs of the distributions in a mixture
are initialized to (0,1,2,3). The data layout used for the
background model is SoA (figure 2).

Before processing a DCT block, the weights, IDs and
variances of all distributions in the associated mixture are
loaded in three vector registers. Due to these loads the CPU
will (automatically) load these values also in the level 1 (L1)
cache memory. The four sets of means corresponding to a
mixture are loaded only when needed in the later steps. The
parameters are saved back in the memory after their values
have been updated and the process is repeated for the next
block. The result of the assessment of the current block is a
value which represents the binary classification of the block
as FG or BG. In practice, the update steps for a block are as
follows.

Step 1. Identify how many distributions make up the
background model, according to equation 2. The result is an
index, idx;, with a value between zero and three. The dis-
tributions are already ordered according to their significance.
The algorithm loads the weight of one distribution at a time
(using SSE scalar load - movss), adds it to a sum (using SSE
scalar add - addss) and compares the sum with the matching
threshold 7' (using SSE scalar compare - comiss).

Step 2. Identify the closest distribution to the current
block using equations 3 and 4. The result of this step is an
index, ¢dxs, with value between zero and three if the current
block matches any of the distributions, or -1 otherwise. The
algorithm computes the distances between the current block
and all the distributions in the mixture simultaneously using
vector instructions. The computation of one of the distances is
equivalent to processing a scalar product between a vector and

f 3

Stia Sti3 Stiz2 Stil

Wi Wti3 Wti2 Wil)

1D t,i,4 D t,i,3 1D t,i,2 1D t,i,1

Vt,i4 Vt,i,3 Vt,i,.2 Vi1
El < e
] ~¢—— 4x4 Matrix Transpose ~———p» %
5| 1N (=

Vi1 1D t,i,1 W t,i,1 Stil

V2 1D t,i,2 W t,i,2 Sti2 |

Vt,i,3 ID ,i,3 Wt,i,3 Sti3 |

V4 D t,i4 Wt,i4 Stid |

~ Sort v’

Fig. 3: Data transformations and sorting.

itself, which is a classic reduction problem, where the vector
is the result of the difference between the current DCT block
and the means set of one of the distributions. The distances
can be processed simultaneously because the DCT block is
read only once, and used for all distances. These distances
are then stored in memory. Further, using the SSE scalar
instructions, a short algorithm is implemented to find the index
of the closest distribution accordingly to the already computed
distances (which is a typical “minimum” problem). Step 3.
Classify the current block of DCT coefficients as BG or FG
using the indices computed in step 1 (idz1) and step 2 (idxs).
The pixel is classified as BG if idzy > 0 and idz, > idxs.

Step 4. Update all the distribution parameters. How this is
done depends on the index computed in step 2 (idxs), which
identifies the closest distribution. There are two cases:

Step 4.a. If there is a matching distribution (idze > 0),
then its parameters are updated according to equations 5 and
6. The parameters of the remaining distributions are updated
according to equation 7. Specific SSE programming techniques
are used to avoid “branching” code. First, the weights and
variances are updated using vector instructions twice, once
according to equation 5 and once according to 7. Then, the
index from step 2 (idxs) is used to build the mask used
by the vector Blend instruction (see III.C for details) to
select the correct updated parameters for each distribution.
This procedure adds more computation but avoids “branching”
code. Note that the update of the means is done last and is
highly efficient, because it is performed on the full length of
the vector registers (see SoA layout, III.C).

Step 4.b. If there is no matching distribution, the distribution
with the smallest weight is replaced by a new one according
to equation 8. For this, the distribution containing the smallest
weight is identified (again using SSE scalar instructions) and
then its parameters are reinitialized. An important note for step
4(a and b) is that the selection of the correct set of means
associated with a particular distribution in a mixture is done
using the ID parameter which we have added earlier to each
distribution (see step 6).

Step 5. Renormalize the weights to sum up to 1. For this,
specific SSE programming techniques are used in order to
handle the horizontal operation (sum) on the vector register
containing the weights. The vector division necessary for
renormalization (divps) has been replaced with a vector
multiplication (mulps) between the weights register and the
vector reciprocal (repps) of the previously calculated sum.

Step 6. Reorder the distributions based on their significance.
Here, few implementation details deserve mention. The sig-

Fig. 4: The data layout used for the model parameters in the
spatial domain.

nificance values, sy ¢, are computed according to equation 9
using SSE vector instructions (here the vector division has
been replaced). Further (figure 3), to prepare for reordering
all distributions in a mixture, a 4x4 matrix transposition
operation is required. This transformation will reorganize
the parameters of the unsorted distributions from SoA to
AoS format. The operation can be done using only vector
registers (without accessing the memory) and some specific
SSE instructions for reordering the data in these registers.
For the actual sorting we use a 4-ways sorting network [24]
which offers an optimal number of comparisons. The sorting
network implementation requires SSE scalar instructions for
handling the conditions and vector instructions to swap a full
register at a time (mowvps). After sorting, another 4x4 matrix
transposition operation is necessary to switch the parameters
back to oA format. This implementation turns out to be highly
efficient because no memory operations are required and the
instructions involved in the transposition are low latency. But
the most important optimization here is the introduction of
the ID parameter to each distribution. The introduction of this
parameter eliminated the necessity to move around the large
sets of means associated with the D-dimensional Gaussian
distributions during the sorting operation.

For benchmarking reasons an SSE optimized version of the
MoG algorithm in the spatial domain was also implemented.
Now, the parameters for one Gaussian distribution in a mixture
are: one weight, one mean and one variance per pixel. The
ID parameter is not necessary anymore. Due to the same
hardware constraints the number of Gaussian distributions in
a mixture has also been set to four (K = 4). The data
layout used for the background model remains SoA (figure
4). Although the SSE implementations of the MoG algorithm
for the two domains seem very similar, a few differences are
visible straight away. The compressed domain implementation
is using a very compact memory representation of the model
parameters, which is possible because it keeps the means
of all distributions of a mixture associated with a block of
DCT coefficients in a contiguous memory block. This makes
their update, during step 4, much more efficient. Also, the
compressed domain implementation has to maintain a lot
fewer parameters. As already mentioned in [7], for a 8x8 pixel
block, the algorithm uses 192 x K parameters in the spatial
domain compared with just 66 * K in the compressed domain
(K represents the number of distributions in a mixture). The
ID parameter is not included in these numbers because it does
not require updating.

TABLE I: Decompression Speed Results Per Frame

[[1 Core [4 Cores |

Libjpeg v8c (MC) 8 ms 1.82 ms
1JG v6b (MC) 7.2 ms 1.6 ms
1JG v6b (IC) 7 ms 1.54 ms

1JGmod v6b (IC & IPP) 372 ms | 0.86 ms

UIC (IC & IPP) 3 ms 0.82 ms

[Partial Decoder (IC & IPP) | 0.84 ms | 0.19 ms |

V. EXPERIMENTS AND RESULTS
A. Results for Partial Decompression

In the spatial domain, a frame is represented as a 2D matrix
of pixels. To get access to the spatial pixel data in a video
frame, the video stream has first to be fully decompressed.
In the compressed domain, a frame is represented as a 2D
matrix of blocks of DCT coefficients. This representation of
a frame can be extracted from a video stream without fully
decompressing the stream. Before any computation can begin,
the video sequences need to be partially decompressed (if
processing in the compressed domain) or fully decompressed
(if processing in the spatial domain).

To evaluate the partial decompression, its performance was
compared with five different full decompression implemen-
tations. For the latter, three different libraries were used:
the standard Libjpeg v8c, Intel’s Libjpeg-based library (IJG
v6b), and Intel’s proprietary library UIC which uses the Intel
Performance Primitives Library (IPP). Two different compilers
were also used: Microsoft’s C++ Compiler (MC), and Intel’s
C++ Compiler (IC). Our MJPEG partial decoder makes use of
the IPP library for Huffman decoding. The tests were carried
out by simulating four camera streams, by replicating the
input video sequence. We used the PETS2001 video sequence,
which comprises 2688 frames, each of size 768x576 pixels. All
images were first loaded into memory (decompression times
do not include the time to read the images from the hard drive).
The CPU used for these tests is an Intel i7 960 4-core CPU.
For the multithreaded implementation, OpenMP was used to
launch 4 threads, mapped to the 4 cores.

Table I shows the decompression times per frame, for the
five full decompression versions, and for the partial decom-
pression. We can draw the following conclusions from the
table.

The fastest full decompression version is UIC. The use of
IPP approximately doubles the performance. The speed of
partial decompression is 4.3 times that of the fastest full de-
compression version. At a frame rate of 25 frames per second,
the time for partial decompression equates to the ability to
process 210 simultaneous video streams (not allowing for the
input of the streams to memory). When processing fewer video
streams (e.g. 64), this allows more time for processing tasks
such as background modeling.

B. Hardware Acceleration results for Background Modeling

Experiments on the PETS2001 test video sequence showed
that, on average only 14-16% of the DCT coefficients are non-
zero in the entire video sequence, and most DCT blocks have

TABLE II: Processing Speed Results Per Frame

[[1Core [4 Cores |
23.342 ms | 6.485 ms
Scalar
Spatial Domain 1x 3.0x
Vector 17.493 ms | 4.714 ms
1.3x 4.9x
11.858 ms | 3.082 ms
Scalar Tox T5x
Compressed Domain - 64 Veetor 0930 ms T 0616 ms
25x 37.9x
5.854 ms 1.551 ms
Scalar T0x 5%
Compressed Domain - 32 Vet 03566 ms T 0342 ms
ector 1 x 68.2x
2.927 ms 0.781 ms
Scalar
Compressed Domain - 16 7.9x 29.8x
P Veetor | 0438 ms | 0.137 ms
53.3x 170.3x

32 or fewer non-zero DCT coefficients. The number of non-
zero DCT coefficients per block depends on two factors. First,
the quantization table used during compression; a stronger
quantization table will increase the number of zero DCT
coefficients. Second, the complexity and level of activity in the
scene; for example, in the PETS2001 video sequence, the sky
areas can be encoded with just one non-zero DCT coefficient
per block, the grass areas are typically encoded with 6-10
non-zero DCT coefficients per block, and the regions covered
by the cars are encoded with over 10 DCT coefficients per
block. In general, blocks containing many edges or complex
texture patterns are encoded using a larger number of DCT
coefficients. These experiments led us to test the algorithm in
the compressed domain using 64, 32 and 16 coefficients per
block.

Table II presents the execution times for the spatial domain
implementation vs. compressed domain implementation for
three different numbers of DCT coefficients per block (64, 32,
16). For each case, it shows execution times for a single core
and a 4-core implementation, first using scalar (non-vector)
and then using vector implementations of the algorithm. The
tests were run on the same custom video sequence described
in the previous section, and under the same conditions.

The results show that the multi-core, vectorized versions of
the three compressed domain implementations (using 64, 32
and 16 DCT coefficients) outperform the purely serial spatial
domain version by factors 5x, 38x and an impressive 170x
respectively. The speed up is due to three factors: the data
reduction in the model, the use of the SIMD processing units,
and the use of multiple cores. The data reduction counts for
45%, the use of SIMD processing units counts for 37% and
the use of multi-cores contributes the remaining 18% from the
total acceleration. The higher than expected contribution of the
SIMD processing units is partly due to the manually optimized
register management when programming at the SSE level, in
a way which the compiler cannot yet achieve.

With a frame rate of 25 frames per second, the optimized
implementation of the algorithm in the compressed domain
using 16 DCT coefficients per block equates to the ability to
perform background modeling on 292 video streams in real-
time. This is equivalent to processing one frame every 0.14 ms.

Further, by using the results from the previous section (where
it was shown that a JPEG image can be partially decompressed
in around 0.19 ms) it can be seen that, by using the same
implementation, it is possible to perform combined partial
decompression and background modeling on an equivalent of
122 video streams in real-time.

An additional investigation was carried out to evaluate
the quality of the foreground detection, by measuring the
impact on the detection rate of the MoG algorithm when
moving from the spatial to the compressed domain, and when
reducing the number of DCT coefficients from 64 to 32 and
16. Because accuracy could potentially be data dependent,
two very different video sequences were used for these tests:
PETS2001, a typical outdoor video surveillance sequence;
and BusSeq, a very challenging video surveillance sequence
taken inside a bus, with moving background seen through the
windows. These were manually ground truthed. As can be
seen from the receiver operating characteristics (ROC) curves
of the two video sequences (figures 5a and 5b), there is no
overall loss of quality when moving from the spatial domain
to the compressed domain; indeed, there is actually a small
improvement in the detection rate, especially in PETS2001.
Figures 6 and 7 show that the block-based approach also filters
the large amount of pixel-level misclassifications in the spatial
domain method. This suggests it may be safe to process the
sequences directly in the compressed domain using as few as
16 DCT coefficients, and hence obtain the 170x acceleration.

VI. CONCLUSIONS

The implementation of background modeling presented in
this paper uses compressed domain processing with a reduced
number of DCT coefficients, plus hardware acceleration, to
achieve a speed-up of up to 170x compared to a purely serial
implementation of the same algorithm in the spatial domain.
At 25 fps, this speed up equates to the ability to segment in
real-time around 122 video streams (including the time for
partial decompression), which exceeds our initial target of 64
simultaneous video streams.

The overall speed-up is the result of the combination of sev-
eral different optimizations, which all complement each other.
By processing at the block level instead of the pixel level,
the number of modeling parameters is immediately reduced
by almost a third. Also, the number of coefficients per block
can be reduced from 64 to 16 while maintaining segmentation
quality. Together, these algorithmic optimizations contribute
a speed up of approximately 8x. The subsequent individual
contributions of the two forms of parallelism depend on the
order in which they are applied. Choosing vectorization first,
this contributes a further speed-up of 6.7x. This is greater than
the expected 4x maximum because the low level of program-
ming required leads to reduced internal data transfers. The
subsequent use of multi-core (four core) contributes a further
3.2x. It was noted that, in the spatial domain implementation,
the use of the SIMD units provided only 1.3x speed up,
because of the low computation to data ratio. This shows the
interesting result that operating in the compressed domain can
increase the potential for hardware acceleration.

08 08

07 0.7
g 2
& o6 & 06
% oo SD _E e D
5 os Z 05
o ----CD-64 o ----CD-64
o H -4
Boa | —- D32 304 —- D32
S i . = .

03 CD-16 03 CD-16

02 0.2

01 0.1

0 0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
False Positive Rate False Positive Rate
(a) PETS2001 (o« = 0.001, T =0.75) (b) BusSeq (o = 0.005, T =0.8)

Fig. 5: ROC Curves - SD for spatial domain and CD for compressed domain (using 64, 32, 16 coefficients).

Fig. 6: PETS2001, from left to right and top to bottom: the original frame (frame no. 864), the ground truth, the result in
spatial domain, the result in compressed domain using all 64 DCT coefficients, using 32 coefficients and using 16 coefficients.

Fig. 7: BusSeq, from left to right and top to bottom: the original frame (frame no. 121), the ground truth, the result in spatial
domain, the result in compressed domain using all 64 DCT coefficients, using 32 coefficients and using 16 coefficients.

From the point of view of programming effort, the use of
multi-core required minimal effort. On the other hand, the
use of SIMD processing was by far the most difficult task.
It required very considerable programming effort and a steep
learning curve because of the low level, architecture dependent
nature of the programming. The effort in implementing the
compressed domain processing lay somewhere between these
two steps, once the partial decompression code was available.

For the case of background modeling at least, the speed up
obtained did not come at the expense of a loss in segmentation
quality when moving from the spatial to the compressed
domain.

The partial decompression is over 4x faster than full de-
compression using the highly optimized JPEG decoder from
Intel, which on its own represents an important speed up
for any intelligent video surveillance system working in the
compressed domain.

Future work will extend the foreground detection in the
compressed domain to human detection and tracking for a
multi-camera system.

REFERENCES

[1] M. Cristani, M. Farenzena, D. Bloisi, and V. Murino, “Background
Subtraction for Automated Multisensor Surveillance: A Comprehensive
Review,” EURASIP Journal on Advances in Signal Processing, vol.
2010, pp. 1-24, 2010.

[2] H. Hassanpour, “Video Frames Background Modeling: Reviewing the
Techniques,” Journal of Signal and Information Processing, vol. 02,
no. 02, pp. 72-78, 2011.

[3] S. Primechaev, A. Frolov, and B. Simak, “Scene Change Detection
Using DCT Features in Transform Domain Video Indexing,” in Systems,
Signals and Image Processing, 2007 and 6th EURASIP Conference
focused on Speech and Image Processing, Multimedia Communications
and Services. 14th International Workshop on, 2007, pp. 369-372.

[4] M. Lamarre and J. Clark, “Background subtraction using competing
models in the block-DCT domain,” Pattern Recognition, 2002. Proceed-
ings. 16th International Conference on, vol. 1, pp. 299 — 302, 2002.

[5] S. Schwartz, “A Transform Domain Approach to Real-Time Foreground
Segmentation in Video Sequences,” Proceedings. (ICASSP '05). IEEE
International Conference on Acoustics, Speech, and Signal Processing,
2005., vol. 2, pp. 685-688, 2005.

[6] L. Dong and S. Schwartz, “DCT-Based Object Tracking in Compressed
Video,” in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006
Proceedings. 2006 IEEE International Conference on, 2006, pp. 665—
668.

[7]1 W. Wang, J. Yang, and W. Gao, “Modeling Background and Segmenting
Moving Objects from Compressed Video,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 18, no. 5, pp. 670-681,
2008.

[8] J. Meng, Y. Juan, and S. Chang, “Scene change detection in a MPEG
compressed video sequence,” IS&T/SPIE Symposium ..., vol. 2419, no.
February, pp. 1-12, 1995.

[9] Y. Chen and I. Bajic, “Compressed-domain moving region segmentation

with pixel precision using motion integration,” in Communications,

Computers and Signal Processing, 2009. PacRim 2009. IEEE Pacific

Rim Conference on, 2009, pp. 442-447.

F. Porikli and F. Bashir, “Compressed Domain Video Object Segmenta-

tion,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 20, no. 1, pp. 2-14, Jan. 2010.

C. Stauffer and W. Grimson, “Adaptive background mixture models

for real-time tracking,” in Proceedings. 1999 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (Cat. No

PR00149). 1EEE Comput. Soc, pp. 246-252.

M. Poremba, Y. Xie, and M. Wolf, “Accelerating adaptive background

subtraction with GPU and CBEA architecture,” in 2010 IEEE Workshop

On Signal Processing Systems. Ieee, Oct. 2010, pp. 305-310.

NVIDIA, “CUDA C Programming Guide.” [Online]. Available:

http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation

[10]

[11]

[12]

[13]

[14] D. Weimer, S. Kohler, C. Hellert, K. Doll, U. Brunsmann, and
R. Kirzikalla, “Gpu architecture for stationary multisensor pedestrian
detection at smart intersections,” 2011 IEEE Intelligent Vehicles Sympo-
sium (IV), no. Iv, pp. 89-94, Jun. 2011.

V. Pham, P. Vo, V. T. Hung, and L. H. Bac, “GPU Implementation of
Extended Gaussian Mixture Model for Background Subtraction,” in 2010
IEEE RIVF International Conference on Computing & Communication
Technologies, Research, Innovation, and Vision for the Future (RIVF).
Ieee, Nov. 2010, pp. 1-4.

Iain E. Richardson, Video Codec Design: Developing Image and Video
Compression Systems, 2002.

ISO, “ISO/IEC 10918-1:1993(E) and
mendation T.81 (1992 E).” 1993.
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
OpenMP - Committee, “OpenMP Specifications.” [Online]. Available:
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

R. V. D. P. B. Chapman, G. Jost, Using OpenMP, Portable Shared
Memory Parallel Programming, 2007.

Intel, “Intel 64 an T1A-32 Architectures and
Software Development Manuals.” [Online]. Avail-
able: http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html

Alex Klimovitski, “SSE/SSE2 Toolbox - Solutions for
Real-Life SIMD Problems,” 2001. [Online]. Available:
http://www.thomasdideriksen.dk/misc/SIMD/sse_in_real_applications.pdf
W. Eckhardt and A. Heinecke, “An efficient vectorization of linked-cell
particle simulations,” Proceedings of the 9th conference on Computing
Frontiers - CF ’12, p. 241, 2012.

M. Alvarez and E. Salami, “Performance impact of unaligned memory
operations in SIMD extensions for video codec applications,” Perfor-
mance Analysis of ..., 2007.

T. Furtak, J. N. Amaral, and R. Niewiadomski, “Using SIMD regis-
ters and instructions to enable instruction-level parallelism in sorting
algorithms,” Proceedings of the nineteenth annual ACM symposium on
Farallel algorithms and architectures - SPAA '07, p. 348, 2007.

[15]

[16]

(17] CCITT

[Online].

Recom-
Available:

(18]
[19]

[20]

[21]

[22]

(23]

[24]

Stefan Popa obtained his BSc in Robotics from University POLITEHNICA
of Bucharest in 2006, and his MSc in Computer and Electronic Security from
Queen’s University Belfast in 2011. He is currently studying for a PhD in
the Institute for Electronics, Communications and Information Technology
(ECIT), Queens University Belfast. His current research interests are image
processing in the compressed domain, high performance video processing,
and video surveillance.

Prof. Danny Crookes was appointed Professor of Computer Engineering
in 1993 at Queens University Belfast, and was Head of Computer Science
from 1993-2002. He is currently Director of Research for Speech, Image
and Vision Systems at ECIT. His research interests include the use of novel
architectures (including FPGAs, multi-core and GPUs) for high performance
video and speech processing. Danny Crookes has over 200 scientific papers
in journals and international conferences. He is currently involved in projects
in automatic shoeprint recognition, speech separation and enhancement, and
high performance processing of 4D confocal microscopy imagery.

Dr. Paul Miller is a Senior Lecturer in the School of Electronics, Electrical
Engineering and Computer Science at Queens University Belfast (QUB). He is
also Research Director of the Intelligent Surveillance Systems group in Centre
for Secure Information Technology. He has published over sixty papers in
image and video analysis, including a best paper award for his work on object
recognition. He received his PhD in Optical Image Processing from QUB in
1989. He worked as a senior research scientist at the Defence, Science and
Technology Organisation, Australia where he led a team on unmanned aerial
surveillance systems. Since returning to academia he has continued to work
in video analytics for both defence and civilian CCTV applications, and also
bio-medical image analysis. His research interests include image restoration,
segmentation, multi-camera tracking and gender/age profiling of subjects in
video.

