
BDDT: Block-level Dynamic Dependence Analysis for
Task-Based Parallelism

George Tzenakis1, Angelos Papatriantafyllou3, Hans Vandierendonck1,
Polyvios Pratikakis2, and Dimitrios S. Nikolopoulos1

1 Queen’s University of Belfast, Belfast, United Kingdom
{gtzenakis01,h.vandierendonck,d.nikolopoulos}@qub.ac.uk

2 FORTH-ICS, Heraklion, Crete, Greece
polyvios@ics.forth.gr
3 TU Wien, Vienna, Austria

papatriantafyllou@par.tuwien.ac.at

Abstract. We present BDDT, a task-parallel runtime system that dynamically
discovers and resolves dependencies among parallel tasks. BDDT allows the pro-
grammer to specify detailed task footprints on any memory address range, multi-
dimensional array tile or dynamic region. BDDT uses a block-based dependence
analysis with arbitrary granularity. The analysis is applicable to existing C pro-
grams without having to restructure object or array allocation, and provides flex-
ibility in array layouts and tile dimensions.
We evaluate BDDT using a representative set of benchmarks, and we compare
it to SMPSs (the equivalent runtime system in StarSs) and OpenMP. BDDT per-
forms comparable to or better than SMPSs and is able to cope with task granular-
ity as much as one order of magnitude finer than SMPSs. Compared to OpenMP,
BDDT performs up to 3.9× better for benchmarks that benefit from dynamic
dependence analysis. BDDT provides additional data annotations to bypass de-
pendence analysis. Using these annotations, BDDT outperforms OpenMP also in
benchmarks where dependence analysis does not discover additional parallelism,
thanks to a more efficient implementation of the runtime system.

Keywords: Compilers and runtime systems, Task-parallel libraries, Middleware
for parallel systems, Synchronization and concurrency control

1 Introduction

Task-parallel programming models [2,8,11] offer a more abstract, more structured way
for expressing parallelism than threads. In these systems the programmer only describes
the parts of the program that can be computed in parallel, and does not have to manually
create and manage the threads of execution. This lifts a lot of the difficulty in describing
parallel, independent computations compared to the threading model, but still requires
the programmer to manually find and enforce any ordering or memory dependencies
among tasks. Moreover, these models maintain the inherent nondeterminism found in
threads, which makes them hard to test and debug, as some executions may not be easy
to reproduce.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/16500475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Programming models with implicit parallelism [4,10,13,14] extend task-parallel
programming models with automatic inference of dependencies, requiring the pro-
grammer to only describe the memory resources required in each task. They are easier
to use, as programmers need not discover and describe parallelism —which might be
unstructured and dynamic— but can instead annotate the program using compiler di-
rectives [10,14] or language extensions [4,6]; the compiler and runtime system then
discover parallelization and manage dependencies transparently.

Dynamic dependence analysis can discover more parallelism than possible to de-
scribe statically in the program, as it only synchronizes tasks that actually (not poten-
tially) access the same resources. In order for a dynamic dependence analysis to benefit
program performance, it must (i) be accurate, so that it does not discover false depen-
dencies; and (ii) have low overhead, so that it does not nullify the benefit of discov-
ering extra parallelism. Most existing such systems require the programmer to restrict
task footprints into either whole and isolated program objects, one-dimensional array
ranges, or static compile-time regions. This may cause false dependencies in programs
where tasks have partially overlapping or unstructured (irregular) memory footprints,
or disallow tasks that operate on a multidimensional tile of a large array or on dynamic
linked data structures.

SMPSs [12], a state-of-the-art implementation of the StarSs programming model
for shared-memory multicores with implicit parallelism, supports non-contiguous array
tiles and non-unit strides in task arguments. This is, however, at the cost of reduced
parallelism due to overapproximation of memory address ranges and high overhead for
maintaining a complex data structure used to discover partial overlaps.

This paper presents BDDT, a task-parallel runtime system that dynamically dis-
covers and resolves dependencies deterministically among parallel tasks, producing
executions equivalent to a sequential program execution. BDDT supports a provably
deterministic task-based programming model [15]. Lifting the above restrictions of ex-
isting systems, BDDT allows the programmer to specify detailed task footprints on
any, potentially non-contiguous, memory address range, multidimensional array tile, or
dynamic region. To allow this, we use a block-based dependence analysis with arbi-
trary granularity, making it easier to apply to existing C programs without having to
restructure object or array allocation, introduce buffers and marshaling, or change the
granularity of task arguments.
Overall, this paper makes the following contributions:

– We present a novel technique for block-based, dynamic task dependence analy-
sis that allows task arguments spanning arbitrary memory ranges, partial argument
overlapping across tasks, dependence tracking at configurable granularity, and dy-
namic memory management in tasks. The analysis is tunable to balance accuracy
and performance.

– We implement this dependence analysis in BDDT, a runtime system for schedul-
ing parallel tasks. Our implementation is adaptive, the programmer can enable or
disable the dependence analysis for each task argument independently to minimize
overhead when the analysis is not necessary.

– We evaluate the performance of our runtime system. On a representative set of
benchmarks, BDDT performs comparable to or better than SMPSs and handle arbi-
trary tile sizes and array dimensions. In several benchmarks, dynamic dependence



analysis in BDDT discovers additional parallelism, producing speedups of up to
3.9× compared to OpenMP using barriers. BDDT outperforms OpenMP on em-
barrassingly parallel tasks without dependencies, by using hand-added annotations
to disable the dependence analysis.

2 Dataflow Execution Engine Design

BDDT uses a dataflow execution engine based on block-level dependence analysis for
identifying parallel tasks. Task arguments are annotated —at task-issue time— with
data access attributes, corresponding to three access patterns: read (in), write (out)
and read/write (inout). The runtime system detects dependencies between tasks by
comparing the access properties of arguments of different tasks that overlap in memory.
To do that, BDDT splits arguments into virtual memory blocks of configurable size and
analyzes dependencies between blocks. Similarly to whole-object dependence analysis
used in tools such as SMPSs and SvS, block-based analysis detects true (RAW) or anti-
(WAW, WAR) dependencies between blocks by comparing block starting addresses and
checking their access attributes. Block-based analysis can also detect dependencies be-
tween tasks that whole object analysis does not: Partially overlapping arguments are
dependencies if the overlapping part is written by at least one task. Furthermore, tasks
can have arguments that are non-contiguous in memory, such as a tile of a multidimen-
sional array or a collection of objects in random memory locations.

There are two potential drawbacks to block-based dependence analysis. First, as the
dependence analysis is performed per block, the runtime system must sometimes re-
peat the same action across all blocks in an argument, increasing overhead. In contrast,
whole-object dependence tracking must perform each action only once per argument.
Second, false positives may occur when data structures are not properly laid out or
when the block size is too large. BDDT overcomes both problems. A custom memory
allocator integrates the metadata with the application data to eliminate the overhead of
metadata lookup, and allows the sharing of metadata between blocks. Moreover, BDDT
allows the user to adjust block granularity, to be coarse enough to amortize overhead,
yet fine enough to avoid false positives. In our experience, selecting an appropriate
block size is quite straightforward.

Each task in the program goes through four stages: task issue performs dependence
analysis, queuing the task if any pending dependencies are unresolved; task scheduling
releases a task for execution when all its dependencies are resolved, selects a worker’s
queue and inserts the task; task execution executes it; and task release resolves pending
dependencies of an executed task, potentially releasing new tasks for execution. The
dynamic dependence analysis induces overheads in the issue and release stages, for
checking dependencies and task wakeup, respectively. We design the data structures
used in the dependence analysis specifically to minimize these overheads.

Retrieving the metadata that track dependencies for each byte, object, or block of
memory accessed by a task can be expensive. A general solution to this is to maintain a
hash from memory addresses to metadata [12], although this incurs a large overhead per
access. A faster way is to attach the metadata directly to the actual data payload [1,18],
but this may make metadata visible to the programmer, require significant additional



changes to the program source and memory layout. We achieve the best of both solu-
tions using a custom memory allocator that allows for fast lookup of metadata, while
still hiding metadata management in the runtime system.

The dependence analysis on blocks is quite similar to dependence tracking on whole
objects. There can be, however, extra overhead, as a task argument may consist of mul-
tiple blocks, and dependencies must be tracked on each such block. BDDT allows mul-
tiple blocks to share the same metadata information. Then, critical dependence tracking
operations operate on one metadata element instead of multiple, reducing the overhead
of dependence tracking. We use this mechanism in particular to track dependencies
on strided arguments—usually multidimensional array tiles: while dependencies are
tracked on each block individually, the runtime system registers a single metadata ele-
ment for all the blocks in the tile.

To detect task dependencies, we also allow multiple metadata elements to describe
the same block, capturing the task order. Specifically, each written task argument (out
or inout footprint) creates a new metadata element to describe the argument blocks,
and each read (in) task argument creates one or more metadata element to describe
the argument blocks. Read arguments may result in multiple metadata elements, if the
relevant blocks were described by more than one metadata elements (fragmentation)
before the new task is created; this captures the scenario of a consumer task waiting
for multiple producers. This design allows for an efficient dependence analysis while
limiting the complexity of accessing and updating the same data structures for every
block.

Using solely memory address ranges to describe the memory footprint of a task re-
stricts tasks to finite footprints. Moreover, it prohibits tasks from allocating memory, as
the new range is yet unknown at task-invocation time, and thus cannot be part of the
footprint. To address these issues and allow tasks to operate on dynamic data structures,
we also use a region-based allocator [17]. A dynamic region (or zone) is an isolated
heap in which objects can be dynamically allocated. A BDDT task footprint can in-
clude dynamic regions, meaning that all memory allocated in a region is in the task’s
footprint, without having to enumerate the actual ranges. Moreover, a task can then allo-
cate new memory inside a region in its footprint (when it has an out or inout effect).
Dynamic regions are directly linked in the dependence analysis by allocating exactly
one metadata element per region, and treating it as exactly one memory location.

3 Implementation

BDDT constructs a task dependence graph dynamically, by deducing task dependencies
from the access modes and blocks in task footprints. We design the system so that
identifying and retrieving dependent tasks causes minimal overhead.

The runtime system consists of (i) a custom block-based memory allocator; (ii)
metadata structures for dependence analysis; and (iii) a task scheduler. The two meta-
data types include (i) task elements; and (ii) block elements. The memory allocator is
designed to facilitate fast lookup of block elements that model the outstanding and ex-
ecuting tasks operating on these blocks, and to coalesce runtime system operations on
blocks that are used in the same way, e.g., consecutive blocks forming a single task



argument. This key optimization in the design in the runtime reduces redundancy and
saves both time and space.

3.1 Task Elements

Each task metadata element represents a dynamic instance of a task. Task elements con-
tain all the essential metadata that is necessary to execute a task, including the closure:
a function pointer, the number of arguments, and the address, size and access attributes
for each argument. BDDT supports strided arguments specified as a base address, the
size and number of elements, and the stride (in bytes) between consecutive elements.
Arguments consisting of multiple contiguous blocks are also considered as strided ar-
guments by setting the stride equal to the block size.

Each task element contains a list of dependent tasks: tasks that wait for this task to
finish. New task elements are appended to this list whenever a new dependent task is
issued. The dependent task list is also used during task release to check whether any
of the dependent tasks becomes ready to execute. We implement this check using an
atomically updated join counter, which tracks the number of task arguments that are not
yet ready. As a task finishes execution and is released, it reduces the counters of all task
elements in its dependent list.

3.2 Block Elements

Block metadata elements capture the running and outstanding tasks that operate on a
particular collection of data blocks. They facilitate the construction of the task graph as
dependencies between tasks are derived from the data blocks that they access. A BDDT
block metadata element may represent a collection of blocks; in contrast, systems im-
plementing object-based dependence tracking would use one block metadata element
per object. Conversely, a collection of blocks may correspond to multiple block ele-
ments describing operations on that collection. A new block metadata element is al-
located for each task with a write effect (i.e., out or inout). These block elements
are strictly ordered from the youngest (most recently issued) tasks to the oldest (least
recently issued) tasks. Moreover, every block metadata element contains a list of task
elements that take the corresponding collection of blocks as a task argument. This list is
used at task issue to link the newly issued task on the dependent task list of older tasks
that have overlapping arguments.

Block metadata elements conceptually include information about the access mode
of the collection (in, inout, out). In fact, for space optimization, there can be up
to two access modes per block metadata element: an in mode, followed by an out
or inout mode. All task elements with in effect in the task list of a block metadata
element store an additional pointer to the first non-in task in the list. The reason for
this is that, in the common case, a series of tasks with in mode is always followed
by a single task with out or inout mode. By construction, the metadata elements
reveal the parallelism between tasks: tasks listed in the same block metadata element
may execute in parallel, while tasks in a younger block element must wait until all tasks
in an older block element have finished execution.



3.3 Memory Allocator

BDDT uses a custom memory allocator to embed dependence analysis metadata in
the allocator’s metadata structures4. The allocator partitions the virtual address space
in slabs and services memory allocation requests from such slabs. Memory allocators
typically manage multiple slabs and allocate chunks of the same size in the same slab.
BDDT divides the slabs in blocks of configurable but fixed size. For every data block in
a slab, there is also room provisioned to store a pointer to index the metadata elements,
as discussed in Section 3.2.

(a) Task 1 Issue (b) Task 2 Issue

(c) Task 3 Issue (d) Task 4 Issue

Fig. 1. Memory allocation and dependence analysis metadata

Figure 1(a) shows the structure of such a slab. While data blocks are allocated start-
ing from one end of the slab, pointers to the metadata for these blocks are allocated
starting from the opposite end of the slab. Thus, there may be fragmented (unusable)
memory in the slab, the amount of which is bounded by the block size. All shared mem-
ory and metadata is bulk-deallocated upon completion of all tasks. As such, BDDT does
not need special handling for fragmentation. Moreover, by using slabs of fixed size and

4 Several parallel runtime systems implement custom memory allocators for performance rea-
sons, e.g. Cilk++ and Intel TBB. This is not a limitation of the usability of the programming
model.



alignment, we can calculate the address of a block’s metadata through very efficient
integer arithmetic on the block address. This also increases locality, as the metadata
pointers of consecutive blocks are located at neighboring addresses.

The metadata pointers stored in the slab implement collections of blocks: a collec-
tion of blocks is a group of blocks that are operated on by the same task and will be
available as a task argument together. We optimize dependence tracking by mapping
all blocks in a collection to the same metadata elements. BDDT implements merging
of collections of blocks simply by assigning a pointer to the same metadata element to
all blocks, and splits collections of blocks by assigning a new pointer to a subset of the
blocks.

For example, Figure 1(a) shows the state of memory after issuing task T1, which
accesses 4 different blocks as an inout strided argument. When issuing T1, BDDT
registers one metadata element (M1) for the four blocks and sets the slab pointers of the
blocks to M1. In addition, T1’s task element is inserted in M1’s linked list of tasks. In
the state shown, task T1 is executing or pending to execute.

3.4 Task Issue

During task issue, BDDT identifies dependencies between the new task and older tasks
by scanning all data blocks in the task arguments and analyzing the corresponding meta-
data elements. Note that blocks operated on in the same way are mapped to the same
metadata element. As such, a task with a large memory footprint may still require only
a few of the following actions. Depending on the access mode (in, out, or inout),
and any outstanding tasks that access the same data, BDDT either immediately sched-
ules the task, or stores it for later scheduling. If the task touches a memory block for
the first time, BDDT creates an empty block metadata element for each collection of
blocks with the same access mode.

Handling in arguments: If the most recent block metadata element contains writer
tasks, then BDDT iterates through the metadata’s list and registers the new task in the
list of dependent tasks of all the linked task elements. It also increments the join counter
by one in every task element it finds. Next, BDDT creates a new metadata element in
the youngest position of the metadata element list for the current collection of blocks,
and adds the new task to the new metadata element’s task list. Alternatively, if the
most recent metadata element contains only reader tasks, then the new task element
is simply added to its task list. Note that the operations on the metadata elements are
performed only once for all blocks sharing the same metadata elements, i.e., they have
equal pointers in the memory allocators slab at the start of task issue. The equality of
slab pointers is maintained after task issue for all blocks accessed by the new task. If the
collection contains blocks that are not accessed by the new task, then their slab pointers
are not updated. This results in a split of the collection.

Handling inout and out arguments: Such arguments similarly benefit from the op-
timization of operating on collections of blocks that have the same slab pointer. If the
most recent metadata element contains writer tasks, then BDDT iterates through the
metadata’s task list and adds the new task to the dependent list of all the task elements.



It also increments the join counter by one for every task element on the list, creates a
new metadata element, and inserts the new task in its task list. If the most recent meta-
data element contains readers but no writers, BDDT again adds a new metadata element.
This is necessary because all blocks in the collection are mapped to this new metadata
element. The new task is again inserted in the task list in the metadata element, and in
the dependent task lists of each task in the previous metadata element.

Collections of blocks are merged when blocks with different metadata elements are
passed as part of the same out or inout argument. In this case, a new metadata ele-
ment is added and the slab pointers for each block are set to point to the new metadata
element. This results in a merge of blocks in a collection and accelerates future depen-
dence analysis.

As an example, in Figure 1(b), assume that while task T1 is running, the program
spawns new tasks T2. Task T2 reads and writes four blocks in inout mode, where
one block overlaps with the footprint of T1. To issue T2, BDDT creates a new metadata
element (M2), and iterates through the linked list of M1 to place T2 in T1’s dependence
list. T2 becomes the first node in the linked list of M2. Finally, BDDT alters all slab-
pointers corresponding to the blocks in T2’s footprint (including that of the overlapping
block) to point to M2.

Continuing the example, Figure 1(c) shows the issue of task T3. Task T3 reads
five contiguous blocks in in mode. These blocks partially overlap with the memory
footprint of T1. Two new metadata elements are created: M3 that models accesses to
the block accessed by both T1 and T3, and M4 that models accesses to the remaining
blocks. The slab pointers are updated accordingly, splitting the collection of blocks
accessed by T1 to reflect different subsequent usage. Task T3 is linked in the dependent
tasks list of T1.

Finally, Figure 1(d) shows the issue of task T4. T4 reads 3 contiguous blocks in
in mode. This argument overlaps with the T1/T3 footprint intersection (M3) and it
partially overlaps with the collection of blocks that is accessed uniquely by T3 (M4).
Consequently, two new metadata elements are created. M5 complements the M3 meta-
data element while M6 models accesses to part of M4. M4 persists and models the
blocks accessed by T3 but not by T4. T4 is inserted in the list of dependent tasks of T1
because it has a dependence with T1.

Note that metadata elements are recycled when they are no longer used: when the
last slab pointer to a metadata element is removed, the metadata element is freed, as is
the case for M3 in the example. Note also that, in total, 11 blocks are accessed, but due
to the coalescing of metadata elements between blocks that are accessed in the same
way, only 6 metadata elements are allocated.

3.5 Task Release and Scheduling

BDDT is based on a master-worker program model. The master is responsible for task
issue and dependence analysis. The workers concurrently perform task scheduling, exe-
cution and release. The master can also operate as a worker, as discussed below. On task
completion, the finished task walks through its dependence list and decrements by one
the dependence counter of every dependent task. Tasks with no pending dependencies
are pushed for execution.



BDDT schedules a task for execution whenever all its dependencies are satisfied.
Each worker thread has its own queue of ready tasks. Queues have finite length and are
implemented efficiently, as concurrent arrays. The master thread has its own task queue
and can operate as a worker when the queues of all workers are full.

The master issues ready tasks to worker queues round-robin. Workers issue tasks to
their own task queues to preserve memory locality. If a worker’s task queue becomes
full, the worker issues tasks to task queues of other workers round-robin. In case there
is no empty slot in any task queue, the task is executed synchronously by the issuing
thread. Any thread can steal tasks from any other thread’s task queue in case its own
task queue is empty.

Task queues are allocated in a NUMA aware, first-touch policy. NUMA aware al-
location is important to reduce remote memory accesses inside the critical path of the
worker thread. Ready task queues support lock-free dequeuing with the utilization of
atomic primitives. A bit vector indicates the free slots in the queue. We use the atomic
“bit scan forward” and “bit test and set/reset” instructions of x86 to manipulate this
vector. The queue allows any number of dequeue operations and up to one enqueue op-
eration to occur concurrently. Enqueue operations must therefore be mutually exclusive
by means of a spin-lock. Each task queue has a fixed size of 32 slots which is imposed
by the atomic primitives used to implement the task queues.

3.6 Complexity analysis and discussion

BDDT incurs overhead for task issue and task release. Task release overhead depends
on the shape of the task graph: The runtime system receives a finished task from the
scheduler and inspects its dependent task list to locate ready tasks. We assume that the
average out-degree in the task graph is dout, at least in the part of the task graph that
is dynamically generated. Task release then takes O(dout) operations. Note that BDDT
shares metadata elements between blocks in the same collection, so the dependent task
list is scanned only once per collection. For the remaining blocks, only the slab pointers
may have to be updated. Assuming an average collection size of C blocks and N blocks
per task, then task release takes O(dout NC ) operations on average. In practice, sharing
of metadata elements reduces task release overhead by more than 50% for arguments
having more than 64 blocks.

Task issue has similar complexity. If prior producers of a block are still executing,
then the runtime system locates the metadata of a block with a single operation on the
bits of the block address in O(1) time and a new metadata element is created. The issued
task is linked to all tasks in the last-issued task list of the prior metadata element, taking
O(din) operations assuming an average in-degree din in the task graph. Furthermore, the
slab pointers of all blocks in a collection are updated. In total, task issue takes O(din N

C )
operations on average. Note that the overhead of merging and splitting collections is
included in the presented formulas as they are realized by setting the slab pointers.

To put the overheads in perspective, we compare BDDT to SMPSs [12]. The latest
version of SMPSs that we use as a comparison has less functionality than BDDT: it
handles only multi-dimensional array tiles, encoded with a binary representation, thus
disallowing arbitrary pointer arithmetic. The representation is approximate and subject



to aliasing and alignment constraints, which restricts the acceptable tile and array sizes
to powers of two and is prone to false positives.

Dependence detection in SMPSs requires encoding of tiles in their binary represen-
tation, taking a number of operations proportional to the number of bits in an address.
SMPSs walks a tree data structure to detect overlap with other tiles, updates the tree
by adding the tile or updates the metadata of an already existing tile. These operations
take O(din N

R log T ), where R is the average tile size expressed in blocks and T is the
number of tiles in the tree. The tile size may be less than the argument size N because
tiles must be split to eliminate false positives, with R = O(N) in the worst case.

Although comparisons between block size and array length, and between average
collection size C and average tile size R are not trivial, we can conclude that BDDT
has the advantage that the appropriate metadata elements are identified in O(1), while
SMPSs requires O(log T ) time to locate metadata elements of overlapping task argu-
ments.

4 Experimental Analysis

We ran all experiments on a Cray XE6 compute node with 32GB memory and two
AMD Interlagos 16-core 2.3GHz dual-processors, i.e. a node with a total of 32 cores
and 8 cores per processor. Every pair of cores shares one FPU, possibly reducing float-
ing point arithmetic performance. Each 8-core processor has its own NUMA partition,
yielding a total of 4 NUMA partitions with 8 GB of DRAM per partition. To uniformly
distribute application data on all NUMA nodes, we initialize input data in parallel. Each
core allocates and touches a part of the input array(s) used in each benchmark, so that
all NUMA partitions perform approximately the same number of off-chip memory ac-
cesses during execution.

4.1 Benchmarks

We use a set of task-based benchmarks to evaluate BDDT. All benchmarks use row-
major (C-language) array layout. Ferret is taken from the PARSEC benchmark suite [5]
and Intruder is from the STAMP benchmark suite [7]. Cholesky, FFT, and Jacobi are
SMPSs benchmarks [12] and porting them to BDDT requires only trivial changes.

We compare the performance of the task-based benchmarks with equivalent OpenMP
implementations when available, so that both use the same parallelization strategy and
parameters, modulo the removal of barriers in the task-based version. We compare
against OpenMP in two contexts: First, we measure the performance gain of dynamic
dependence analysis in applications where OpenMP requires barriers to enforce depen-
dencies. Second, we measure the overhead cost of the dynamic dependence analysis
using applications with ample task parallelism and few or no dependencies.

The block size used in BDDT to partition task arguments affects the overhead and
accuracy of dynamic dependence analysis. For the block linear algebra benchmarks that
work on two-dimensional tiles of the input array, we set the block size to the row size
of a tile. Multisort recursively splits an array until a certain threshold, which we set as
the BDDT block size.



4 8 12 16 20 24 28 32
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
BDDT

SMPSS

OpenMP

Threads

T
o
ta

l 
t i

m
e
 (

m
s
)

(a) Cholesky

4 8 12 16 20 24 28 32
0

500

1000

1500

2000

2500
BDDT

SMPSS

OpenMP

Threads

T
o
ta

l 
t i

m
e
 (

m
s
)

(b) FFT

4 8 12 16 20 24 28 32
0

500

1000

1500

2000

2500

3000

3500
BDDT
SMPSS
OpenMP
w/o analysis

Threads

T
o
ta

l 
t i

m
e
 (

m
s
)

(c) Jacobi

4 8 12 16 20 24 28 32
0

200

400

600

800

1000

1200

1400

1600

1800
BDDT

SMPSS

OpenMP

Threads

T
o
ta

l 
t i

m
e
 (

m
s
)

(d) Multisort

4 8 12 16 20 24 28 32
0

2

4

6

8

10

12

14
BDDT

Threads

T
o
ta

l 
t i

m
e
 (

s
e
c
)

(e) Intruder

4 8 12 16 20 24 28 32
0

5

10

15

20

25

30

35

40

45

50
BDDT

SMPSS

Threads

T
o
ta

l 
t i

m
e
 (

s
e
c
)

(f) Ferret

Fig. 2. BDDT, SMPSs and OpenMP on Interlagos

Cholesky is a factorization kernel that solves normal equations in linear least squares
problems. The kernel can be decomposed into four tile operations, each of which corre-
sponds to a task in the benchmark. Dependencies among tasks create an irregular task
graph, requiring the OpenMP implementation to use barriers between phases. This lim-
its parallelism across outermost iterations of the code. Both SMPSs and BDDT over-
come this limitation using dynamic dependence analysis. Figure 2(a) shows the per-
formance of Cholesky for a 4096×4096 double precision matrix and 128×128 tiles.
BDDT performs 3.9× better than OpenMP on 32 cores, due to the extraction of ad-
ditional parallelism. Moreover, BDDT matches the SMPSs performance with less than
2% deviation. Both BDDT and SMPSs versions of the benchmark achieve a top speedup
of 14 on 32 cores, whereas the top speedup of the OpenMP version is 3.5.

FFT involves alternating phases of transposing a two-dimensional array and com-
puting one-dimensional FFT. We use the FFTW library for the 1-D FFT computations;
FFTW requires a row-wise layout in memory for the input array, which forces each FFT
calculation task to operate on an entire row of the array. In contrast, transposition phases
can break the array into tiles, so the transpose tasks’ arguments are non-contiguous array
tiles. Because of this difference in the memory layout of task arguments, the OpenMP
version must use barriers between phases to ensure correctness. Dynamic dependence
analysis in BDDT overcomes this limitation and exploits parallelism across phases, thus
permitting transpose and FFT tasks to overlap. Figure 2(b) shows the performance of
a 2-D FFT on 16M complex double-precision elements with BDDT and OpenMP. The
input array is 4096×4096 elements and the transpose tile size is 128×128. OpenMP
outperforms BDDT by up to 3% when the code runs with up to 4 cores, due to the
cost of dynamic dependence analysis. Using more than 4 cores, BDDT extracts more



parallelism than OpenMP and performs up to 50% better on 32 cores. BDDT still man-
ages an overall speedup of 16× using 32 cores, whereas OpenMP achieves a maximum
speedup of 11×. Furthermore, SMPSs has a performance advantage over BDDT by 3%
on 32 cores.

Jacobi is a common method for solving linear equations. Each task in Jacobi works
on a tile of the array. The kernel is an iterative method, so we keep an input and an out-
put array and swap arrays from one iteration to the next. Dynamic dependence analysis
allows tasks from consecutive iterations to execute in parallel by keeping two arrays
as input and output and swapping them from one iteration to the next. In contrast, the
OpenMP implementation must issue a barrier between outermost iterations of the ker-
nel. We tested Jacobi using a 4096×4096 array and 128×128 tile size. The kernel is
data parallel, communication bound and memory intensive, thus highlighting the anal-
ysis overhead. In BDDT and SMPSs, overheads dominate execution time, yielding a
2.3× slowdown compared to OpenMP on 32 cores. The scalability of the BDDT version
of the code is also inferior to that of OpenMP: maximum speedup with BDDT reaches
2.1 vs. 3.1 with OpenMP. BDDT allows the programmer to selectively apply or turn
off the dependence analysis per task argument. The “w/o analysis” line in Figure 2(c)
shows the performance of BDDT with dependence analysis disabled for all arguments,
via data annotations. BDDT performs identical to OpenMP on up to 16 cores. For 16
cores or more, BDDT outperforms OpenMP by 15% to 45%, a difference that increases
with the core count. The result indicates that BDDT’s implementation of the runtime
system is efficient, scalable, and can be used by both conventional task-based models
and advanced models with out-of-order task execution capabilities.

Multisort is a parallel sorting algorithm from the Cilk distribution [11]. The algo-
rithm is a parallel extension of ordinary Mergesort. Multisort recursively divides an
array in halves up to a threshold, sorts each half, and merges the sorted halves, with
each merge task working on overlapping parts of the array. OpenMP requires barriers
between merge phases of the algorithm. Figure 2(d) shows the performance of Multisort
on an array of 32M integers, with a threshold of 128K elements for stopping recursive
subdivision. BDDT extracts more parallelism than OpenMP and achieves up to 35%
better performance on 32 cores. Specifically, BDDT is 3.5× faster on 32 cores, while
the top speedup of the OpenMP version is 2.7. SMPSs presents a performance advan-
tage of 20% on average for small number of cores but it deteriorates for higher core
counts, falling to 5% on 32 cores.

Intruder is a signature-based network intrusion detection system. It processes net-
work packets in parallel in three phases: capture, reassembly, and detection. The re-
assembly phase uses a dictionary that contains linked lists of packets that belong to the
same session. The lists are allocated in BDDT dynamic regions, allowing task footprints
to include whole lists and tasks to allocate new elements. Each packet issues a task that
inserts the packet into a list and possibly packs the list. The task footprint contains the
whole region where the list is allocated. Figure 2(e) shows the performance of Intruder
on 16384 sessions with max 512 packets per session. The figure only contains BDDT
data, because SMPSS cannot express task footprints that contain dynamically linked
lists. Intruder scales up to 2 on 4 cores and then speedup falls to 0.9 on 32 cores. Note
that while the Intruder port to BDDT outperforms the sequential code by up to a factor



of 2×, the original software transactional memory implementation [7] fails to get any
speedup over sequential runs.

Ferret is an image similarity search engine. We issue parallel queries to the search
engine, where each query corresponds to a task. We used 1,000 images to issue queries
to a database which contains 59,695 images. Figure 2(f) shows the performance of Fer-
ret. BDDT scales up to 15.5× on 32 cores while SMPSS reaches maximum scalability
of 3.4× on 6 cores.

5 Related Work

Task parallel programming models offer a more structured alternative to parallel threads,
allowing the programmer to easily specify scoped regions of code to be executed in
parallel. OpenMP [2] is an API for parallelization of sequential code, where the pro-
grammer introduces a set of directives in an otherwise sequential program, to express
shared memory parallelism for loops and tasks. OpenMP implements these directives in
a runtime system that hides the thread management required, although the programmer
is still responsible for avoiding races and inserting all necessary synchronization.

Cilk [11] is a parallel programming language that extends C++ with recursive paral-
lel tasks. Cilk tasks can be fine-grained with little overhead, as Cilk creates parallel tasks
only when necessary, using a work-stealing scheduler; and “inlines” all other tasks at
no extra cost. The programmer must use sync statements to avoid data races and enforce
specific task orderings.

Sequoia [3,8] is a parallel programming language similar to C++, which targets
both shared memory and distributed systems. In Sequoia, the programmer describes (i)
a hierarchy of nested parallel tasks by defining atomic Leaf tasks that perform simple
computations, and inner tasks that break down the computation into smaller sub-tasks;
(ii) a machine description of the various levels in the memory hierarchy and any implicit
(coherency) or explicit communication (data transfer) among memories; and (iii) a map-
ping file that describes how data should be distributed among task hierarchies, which
tasks should run at each level in the memory hierarchy, and when computation work-
load should be broken into smaller tasks. Sequoia inserts implicit barriers following the
completion of each group of parallel tasks at a given level of the memory hierarchy.

Several programming models and languages aim to automatically infer synchro-
nization between parallel computations. Transactional Memory [9] preserves the atom-
icity of parallel tasks, or transactions, by detecting conflicting memory accesses and
retrying the related transactions. Jade [16] is a parallel language that extends C with
coarse-grain tasks. In Jade, the programmer must declare and manage local- and shared-
memory objects and define task memory footprints in terms of objects. The runtime
system then detects dependencies on objects and enforces program order on conflict-
ing tasks. Jade requires task arguments to be whole objects, and maintains per-object
metadata for the dependence analysis.

StarSs [14] is a task-based programming model for scientific computations that uses
annotations on task arguments to dynamically detect argument dependencies between
tasks. SMPSs [12] is a runtime system that implements a subset of StarSs for mul-
ticore processors with coherent shared memory. Similarly to BDDT, in SMPSs each



task invocation includes the task memory footprint, used to detect dependencies among
tasks and order their execution according to program order. SMPSs describes array-
tile arguments using a three-value-bit vector representation to encode memory address
ranges. This representation, however, causes aliasing and over-approximation of mem-
ory ranges when the array base address, row-size and stride are not powers of 2. Alias-
ing in turn creates false dependencies which reduce parallelism, and also a high over-
head for maintaining and querying a global trie-structure that detects overlapping mem-
ory ranges. In comparison, BDDT uses a transparent block-level dependence analysis
with constant-time overhead per block that, with proper choice of block size, eliminates
aliasing and false dependencies.

SvS [4] is a task-based programming model that uses static analysis to determine
possible argument dependencies among tasks and drive a runtime-analysis that com-
putes reachable objects for every task, using an efficient approximate representation of
the reachable object sets, resembling Bloom filters. It then detects possible conflicts
and enforces mutual exclusion between tasks. SvS assumes all tasks to be commutative
and does not preserve the original program order as BDDT. Moreover, it tracks task
dependencies at the object level, restricting SvS on type-safe languages. Finally, SvS
object reachability sets are approximate, and may include many reachable objects in the
program, regardless of whether they are accessed by a task or not. This may hinder the
available parallelism, and fails to take advantage of programmer knowledge about the
memory footprint of each task.

Out-of-Order Java [10] and Deterministic Parallel Java [6] are task-parallel exten-
sions of Java. They use a combination of data-flow, type-based, region and effect anal-
yses to statically detect or check the task footprints and dependencies in Java programs.
OoOJava then enforces mutual exclusion of tasks that may conflict at run time; DPJ re-
stricts execution to the deterministic sequential program order using transactional mem-
ory to roll back tasks in case of conflict. As task footprints are inferred (OoOJava) or
checked (DPJ) statically in terms of objects or regions, these techniques require a type-
safe language and cannot be directly applied on C programs with pointer arithmetic and
tiled array accesses.

6 Conclusions

We presented BDDT, a runtime system for dynamic dependence analysis in task-based
programming models. BDDT performs dependence analysis among tasks with memory
footprints spanning arbitrary ranges or dynamic data structures, and preserves program
order for dependent tasks. BDDT outperforms OpenMP by up to a factor of 3.8× in
benchmarks where dynamic dependence analysis can exploit distant parallelism be-
yond barriers, and similarly or better than OpenMP in data-parallel benchmarks when
dynamic dependence analysis is deactivated. Compared to SMPSs, a state-of-the-art
task-based model based on dynamic dependence analysis, BDDT has lower overhead,
supports dynamic memory management in tasks, and allows the dependence analysis to
be applied (or disabled) on individual task arguments.



Acknowledgments. We thankfully acknowledge the support of the European Commis-
sion under the 7th Framework Programs through the TEXT (FP7-ICT-261580) project.
Hans Vandierendonck is supported by the People Programme (Marie Curie Actions)
of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement no. 327744. This research is also supported by EPSRC through the
GEMSCLAIM project (grant EP/K017594/1).

References

1. C. Augonnet, S. Thibault, and R. Namyst. StarPU: a runtime system for scheduling tasks
over accelerator-based multicore machines. Tech Report RR-7240, INRIA, March 2010.

2. E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel, P. Unnikrish-
nan, and G. Zhang. The Design of OpenMP Tasks. TPDS, 20(3):404–418, 2009.

3. M. Bauer, J. Clark, E. Schkufza, and A. Aiken. Programming the Memory Hierarchy Revis-
ited: Supporting Irregular Parallelism in Sequoia. In PPoPP, 2011.

4. M. J. Best, S. Mottishaw, C. Mustard, M. Roth, A. Fedorova, and A. Brownsword. Syn-
chronization via Scheduling: Techniques for Efficiently Managing Shared State. In PLDI,
2011.

5. C. Bienia, S. Kumar, J. Pal Singh, and K. Li. The PARSEC benchmark suite: Characterization
and architectural implications. In PACT, October 2008.

6. R. Bocchino, V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komuravelli, J. Overbey,
P. Simmons, H. Sung, and M. Vakilian. A type and effect system for deterministic parallel
Java. In OOPSLA, 2009.

7. C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional
applications for multi-processing. In IISWC, September 2008.

8. K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez, M. Ren,
A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia: Programming the Memory Hierarchy. In
SC, 2006.

9. M. Herlihy and J. E. Moss. Transactional memory: Architectural support for lock-free data
structures. In ISCA, 1993.

10. J. C. Jenista, Y. H. Eom, and B. Demsky. OoOJava: Software Out-of-Order Execution. In
PPoPP, 2011.

11. C. E. Leiserson. The Cilk++ concurrency platform. TJS, 51(3):244–257, 2010.
12. J. M. Pérez, R. M. Badia, and J. Labarta. Handling Task Dependencies under Strided and

Aliased References. In ICS, 2010.
13. J. M. Pérez, P. Bellens, R. M. Badia, and J. Labarta. CellSs: Making it Easier to Program the

Cell Broadband Engine Processor. IBMRD, 51(5):593–604, 2007.
14. J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical Task-Based Programming

With StarSs. IJHPCA, 23(3):284–299, 2009.
15. Polyvios Pratikakis, Hans Vandierendonck, Spyros Lyberis, and Dimitrios S. Nikolopoulos.

A programming model for deterministic task parallelism. In MSPC, pages 7–12, 2011.
16. M. C. Rinard and M. S. Lam. The Design, Implementation, and Evaluation of Jade. TOPLAS,

20(3):483–545, 1998.
17. M. Tofte and J.-P. Talpin. Region-based memory management. Inf. Comput., 132(2), 1997.
18. H. Vandierendonck, P. Pratikakis, and D. S. Nikolopoulos. Parallel programming of general-

purpose programs using task-based programming models. In HotPar, 2011.


	BDDT: Block-level Dynamic Dependence Analysis for Task-Based Parallelism

