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Abstract. The inherent difficulty of thread-based shared-memory programming
has recently motivated research in high-level, task-parallel programming mod-
els. Recent advances of Task-Parallel models add implicit synchronization, where
the system automatically detects and satisfies data dependencies among spawned
tasks. However, dynamic dependence analysis incurs significant runtime over-
heads, because the runtime must track task resources and use this information to
schedule tasks while avoiding conflicts and races.
We present SCOOP, a compiler that effectively integrates static and dynamic
analysis in code generation. SCOOP combines context-sensitive points-to, control-
flow, escape, and effect analyses to remove redundant dependence checks at run-
time. Our static analysis can work in combination with existing dynamic analyses
and task-parallel runtimes that use annotations to specify tasks and their memory
footprints. We use our static dependence analysis to detect non-conflicting tasks
and an existing dynamic analysis to handle the remaining dependencies. We eval-
uate the resulting hybrid dependence analysis on a set of task-parallel programs.

Keywords: Task-Parallelism, Static Analysis, Dependence Analysis, Determin-
istic Execution

1 Introduction
The inherent difficulty and complexity of thread-programming has recently lead to

the development of several task-based programming models [1–4]. Task-based paral-
lelism offers a higher level abstraction to the programmer, making it easier to express
parallel computation. Although early task-based parallel languages required manual
synchronization, recent task-based systems implicitly synchronize tasks, using a task’s
memory footprint at compile or at run time to detect and avoid concurrent accesses or
even produce deterministic execution [5–9]. In order for such a dependence analysis
to benefit program performance, it must (i) be accurate, so that it does not discover
false dependencies; and (ii) have low overhead, so that it does not nullify the benefit of
discovering extra parallelism.

Static systems detect possibly conflicting tasks in the program code and insert syn-
chronization prohibiting concurrent access to shared memory among all runtime in-
stances of possibly conflicting tasks. As this can be too restrictive, some existing static
systems speculatively allow conflicting task instances to run in parallel and use dynamic
techniques to detect and correct conflicts [6].



Dynamic dependence analysis offers the benefit of potentially discovering more
parallelism than is possible to describe statically in the program, as it checks all run-
time task instances for conflicts and only synchronizes task instances that actually (not
potentially) access the same resources. However, dynamic dependence analysis incurs
a high overhead compared to hand-crafted synchronization. It requires a complex run-
time system to manage and track memory allocation, check for conflicts on every task
instance, and schedule parallel tasks. Often, the runtime cost of checking for conflicts
in pessimistic, or rolling back a task in optimistic runtimes becomes itself a bottleneck,
limiting the achievable speedup as the core count grows.

This paper aims to alleviate the overhead of dynamic dependence analysis with-
out sacrificing the benefit of implicit synchronization. We develop SCOOP, a compiler
that brings together static and dynamic analyses into a hybrid dependence analysis in
task-parallel programs. SCOOP uses a static dependence analysis to detect and remove
runtime dependence checks when unnecessary. It then inserts calls to the task-parallel
runtime dynamic analysis to resolve the remaining dependencies only when necessary.
Our work makes the following contributions:

– We present a static analysis that detects independent task arguments and reduces
the runtime overhead of dynamic analysis. We implement our analysis in SCOOP,
a source-to-source compiler for task-parallel C, using OpenMP-Task extensions to
define tasks and their memory footprints.

– We combine our static dependence analysis with an existing dynamic analysis,
resulting in an efficient hybrid dependence analysis for parallel tasks. SCOOP
uses the static dependence analysis to infer redundant and unnecessary dependence
checks and inserts custom code to use the dynamic analysis only for the remaining
task dependencies at runtime.

– We evaluate the effect of our analysis using an existing runtime system. On a rep-
resentative set of benchmarks, SCOOP discovers almost all independent task argu-
ments. In applications with independent task arguments, SCOOP achieved speedups
up to 68%.

2 Motivation
Consider the C program in Figure 1. This program has three global integer variables,

a, b and c (line 1) and a global pointer alias (line 2) that points to b. Function set()
copies the value of its second argument to the first (line 4) and function addto() adds
the value of its second argument to the value of its first (line 5). The two functions are
then invoked in two parallel tasks, to add c to b (lines 8–9) and to set the value of a
to the value pointed to by alias (lines 11–12). The first task reads and writes its first
argument, b, and reads from its second argument, c. Similarly, the second task writes
to its first argument, a, and reads from its second argument alias. The program then
waits at a synchronization point for the first two tasks to finish (line 14) and then spawns
a third task that reads from c and writes to a (lines 16–17).

To execute this program preserving the sequential semantics, the second task set
needs to wait until the value of b is produced by the first task, i.e., there is a dependence
on memory location b. Note, however, that since the third task cannot be spawned
until the first two return, memory location c is only accessed by the first task and a



1 int a = 1, b = 2, c = 3;
2 int *alias = &b;
3

4 void set( int *x, int *y) { *x = *y; }
5 void addto(int *x, int *y) { *x += *y; }
6

7 int main() {
8 #pragma task inout(&b) in(&c)
9 addto(&b, &c);

10

11 #pragma task out(&a) in(alias )
12 set(&a, alias );
13

14 #pragma wait all
15

16 #pragma task out(&a) in(&c)
17 set(&a, &c);
18 }

Fig. 1: Tasks with independent arguments

is only accessed by the second. So, any dependence analysis time spent checking for
conflicts on a or c before it starts the first two tasks is unnecessary overhead that delays
the creation of the parallel tasks, possibly restricting available parallelism and thus the
scalability of the program. So, the #pragma task directive spawning these tasks
states that c and a are safe or independent arguments, that the analysis does not need
to track. For the same reason, both the arguments of the third task are safe, meaning it
can start to run without checking for dependencies.

Section 3 describes the static analysis we use to discover independent task argu-
ments like a and c above. Inferring that a task argument does not need to be checked
for dependencies requires verifying that no other task can access that argument. In short,
the static analysis infers this independence in three steps. First, we compute aliasing in-
formation for all memory locations in the program. Second, we compute which tasks
can run in parallel; we do not need to check for conflicting arguments between for ex-
ample the second and third task in the example of Figure 1, even though a is accessed
by both, because the barrier prohibits them from running at the same time. Third, we
check whether a memory location (through any alias) is never accessed in parallel by
more than one task. We can then safely omit checking this location at runtime. We can
extend this idea by differentiating between read and write accesses and allowing for
concurrent reads without checking for dependencies, as long as no writes can happen
in parallel.

3 Static Independence Analysis
This section presents the core algorithm of the independence analysis. To simplify

the presentation, we use a small language λ‖, and do not differentiate between reads and
writes. Section 4 describes how we extended our analysis to the C full programming
language.



Values v ::= n | () | λx . e
Expressions e ::= v | x | e; e | e e | ref e | ! e | e := e

| task(e1, . . . , en) {e} | barrier
Locations ρ ∈ L
CFG Points φ ∈ F
Tasks π ∈ T
Types τ ::= int | unit | (τ, φ)→ (τ, φ) | ref ρ(τ)
Constraints C ::= ∅ | C ∪ C | τ ≤ τ | ρ ≤ ρ | φ ≤ φ

| ρ ≤ π | π‖π | φ : Barrier | φ : π
Environments Γ ::= · | Γ, x : τ

Fig. 2: λ‖: A simple task-based parallel language

3.1 The Language λ‖
Figure 2 presents λ‖, a simple task-parallel programming language. λ‖ is a simply-

typed lambda calculus extended with dynamic memory allocation and updatable ref-
erences, task creation and barrier synchronization. Values include integer constants n,
the unit value () and functions λx . e. Program expressions include variables x, func-
tion application e1 e2, sequencing, memory operations and task operations. Specifi-
cally, expression ref e allocates some memory, initializes it with the result of eval-
uating e, and returns a pointer to that memory; expression e1 := e2 evaluates e1 to
a pointer and updates the pointed memory using the value of e2; and expression ! e
evaluates e to a pointer and returns the value in that memory location. Expression
task(e1, . . . , en) {e} evaluates each ei to a pointer and then evaluates the task body
e, possibly in parallel. The task body e must always return () and can only access the
given pointers; if e is evaluated in a parallel task, the task expression immediately re-
turns (). Finally, expression barrier waits until all tasks issued until this point have
been executed.

3.2 Type System
We use a type system to generate a set of constraints C and infer independence of

task arguments. Figures 3(a) and 3(b) shows the type language of λ‖, which includes
integer and unit types, function types (τ, φ) → (τ, φ) and reference (or pointer) types
ref ρ(τ). We annotate function and reference types with inference labels φ and ρ, and
use them to compute the control flow graph among φ labels and the points-to graph
among ρ labels, respectively. Specifically, typing the program creates a constraint graph
C, which has three kinds of vertices. Location labels ρ annotating reference types ab-
stract over memory locations, control flow labels φ abstract over a control flow point
in the program execution, and task labels π abstract over parallel tasks in the program.
Typing a program e in λ‖ creates a constraint graph C. Constraint τ1 ≤ τ2 requires τ1
to be a subtype of τ2. Constraint ρ1 ≤ ρ2 (ρ1 “flows to” ρ2) means abstract memory
location ρ2 references all locations that ρ1 references. Constraint φ1 ≤ φ2 means the
execution of control flow point φ2 follows immediately after the execution of φ1. Con-
straint ρ ≤ π (ρ “is an argument of” π) means an abstract memory location ρ is in the
memory footprint of task π. Constraint π1‖π2 (π1 “can happen in parallel with” π2)
means there may be an execution where tasks represented by π1 and π2 are executed
in parallel. Constraint φ : Barrier means there is barrier synchronization at control flow



[T-INT]

C;φ;Γ ` n : int ;φ

[T-UNIT]

C;φ;Γ ` () : unit ;φ

[T-FUN]
φ1−fresh C;φ1;Γ, x : τ1 ` e : τ2;φ2

C;φ;Γ ` λx . e : (τ1, φ1)→ (τ2, φ2);φ

[T-VAR]
Γ (x) = τ

C;φ;Γ ` x : τ ;φ

[T-SEQ]
C;φ;Γ ` e1 : unit ;φ1

C;φ1;Γ ` e2 : τ ;φ2

C;φ;Γ ` e1; e2 : τ ;φ2

[T-APP]
C;φ;Γ ` e1 : (τ1, φ1)→ (τ2, φ2);φ

′

C;φ′;Γ ` e2 : τ1;φ
′′ C ` φ′′ ≤ φ1

C;φ;Γ ` e1 e2 : τ2;φ2

[T-REF]
C;φ;Γ ` e : τ ;φ′

ρ−fresh
C;φ;Γ ` ref e : ref ρ(τ);φ′

[T-DEREF]
C;φ;Γ ` e : ref ρ(τ);φ′

C;φ;Γ ` ! e : τ ;φ′

[T-ASGN]
C;φ;Γ ` e1 : ref ρ(τ);φ′

C;φ′;Γ ` e2 : τ ;φ′′

C;φ;Γ ` e1 := e2 : τ ;φ′′

[T-TASK]
∀i ∈ [1..n] . C;φi;Γ ` ei : ref ρi(τi);φi+1 φ′, π−fresh C ` φn+1 ≤ φ′

C ` φ′ : π ∀i ∈ [1..n] . C ` ρi ≤ π C;φ′;Γ ` e′ : unit ;φ′′

C;φ1;Γ ` task(e1, . . . , en)
{
e′
}
: unit ;φ′

[T-BARRIER]
φ′−fresh C ` φ′ : Barrier C ` φ ≤ φ′

C;φ;Γ ` barrier : unit ;φ′

[T-SUB]
C;φ;Γ ` e : τ ;φ′ C ` τ ≤ τ ′

C;φ;Γ ` e : τ ′;φ′

(a) Type Inference Rules

C ∪ {int ≤ int} ⇒ C
C ∪ {unit ≤ unit} ⇒ C

C ∪ {(τ1, φ1)→ (τ2, φ2) ≤ (τ ′1, φ
′
1)→ (τ ′2, φ

′
2)} ⇒
C ∪ {τ ′1 ≤ τ1, τ2 ≤ τ ′2, φ′

1 ≤ φ1, φ2 ≤ φ′
2}

C ∪ {ref ρ1(τ1) ≤ ref ρ2(τ2)} ⇒ C ∪ {ρ1 ≤ ρ2, τ1 ≤ τ2, τ2 ≤ τ1}
C ∪ {ρ ≤ ρ′, ρ′ ≤ ρ′′} ∪⇒ {ρ ≤ ρ′′}
C ∪ {ρ ≤ ρ′, ρ′ ≤ π} ∪⇒ {ρ ≤ π}
C ∪ {φ1 ≤ φ2, φ1 : π} ∪⇒ {φ2 : π} when {φ2 : Barrier} /∈ C
C ∪ {φ : π1, φ : π2} ∪⇒ {π1‖π2}

(b) Constraint Solving Rules

Fig. 3: Constraint generation and solving

point φ of all executions. Finally, constraint φ : π means there can be an execution
where task π is executed in parallel while control flow reaches point φ.

Figure 3(a) shows the type system for λ‖. Typing judgments have the formC;φ;Γ `
e : τ ;φ′, meaning program expression e has type τ under assumptions Γ and constraint
set C. Rules [T-INT] and [T-UNIT] and [T-VAR] are standard, with the addition of
control flow point φ as both starting and ending point. Rule [T-FUN] types function
definitions. The function type (τ1, φ1)→ (τ2, φ2) includes the starting and ending con-



trol flow point of the function body. As with typing the other values, function definitions
do not change control flow point φ. Rule [T-SEQ] types sequence, where e1 must have
type unit , and the sequence expression has the type of e2. The ending control flow
point φ1 of e1 is the starting point of e2. The first two premises in rule [T-APP] type
the function expression e1 and argument e2 capturing the control flow order, the third
premise “inlines” the control flow of the function by setting the function starting point
immediately after the evaluation of the argument. The function application ends at φ2.
Rule [T-REF] creates a fresh label ρ that represents all memory locations produced by
the expression, and annotates the resulting type. Rules [T-DEREF] and [T-ASGN] are
straightforward, and type reference read and write expressions respectively.

Rule [T-TASK] types task creation expressions. The first premise types the task
argument expressions e1, . . . , en with reference types in that control flow order. The
next three premises create a constraint that task π runs in parallel with control flow
point φ′ of the task-create expression. The fifth premise marks all locations ρi of the
arguments as the footprint of task π, and the last premise requires the task body to have
type unit . The task’s control flow ends at any control flow point φ′′. Rule [T-BARRIER]
types barrier expressions, marking control flow point φ′ as a barrier synchronization
operation. Finally, rule [T-SUB] is standard subsumption.

3.3 Constraint Resolution
Applying the type system shown in Figure 3(a) generates a set of constraints C.

To infer task arguments that are safe to skip during the runtime dependence analysis,
we first compute the may-happen-in-parallel relation π1‖π2 among tasks by solving
the constraints C. Figure 3(b) shows the constraint resolution algorithm as a set of
rewriting rules that are applied exhaustively until C cannot change any further. Here,
∪⇒ rewrites the constraints on the left to be the union of the constraints on both the
left and right side.

The first four rules reduce subtyping constraints into edges between abstract labels:
we drop integer and unit subtyping; we replace function subtyping with contravariant
edges between the starting control flow points and arguments, and covariant edges be-
tween the returning control flow points and results; and we replace reference subtyping
with equality on the referenced type (note both directions of subtyping) and a flow
constraint on the abstract location labels. The fifth rule solves the points-to graph by
adding all transitivity edges between abstract memory locations, and the seventh rule
marks any locations aliasing task arguments also as task arguments. The seventh rule
amounts to a forwards data-flow analysis on the control flow graph. Namely, for every
control flow edge φ1 ≤ φ2 we propagate any task π that executes in parallel with φ1 to
also execute in parallel with φ2, unless φ2 is a barrier. Finally, the last rule marks any
two tasks π1 and π2 that both run in parallel with any control flow point φ, as also in
parallel with one another. We use C∗ to represent the result of exhaustively applying
the constraint resolution rules on a set C.

3.4 Task Argument Independence
Having solved the constraints C of a program, we can now infer independent task

arguments, namely arguments that cannot be accessed concurrently by any two parallel
tasks. Formally, we define the dependent set DC(ρ) of location ρ under constraints C
to be the set of tasks that can access ρ in parallel:



DC(ρ)
.
= {π | C∗ ` ρ ≤ π}

We can now compute independent task arguments, i.e., memory locations that can be at
most accessed by one task:

C ` Safe(ρ) ⇐⇒ |DC(ρ)| ≤ 1

4 Implementation
We have extended the algorithm presented in Section 3 to the full C programming

language in a compiler for task-parallel programs with implicit synchronization. To
handle the full C language, we make several assumptions concerning data- and control-
flow. Our pointer analysis assumes that all allocation in the program is done through
the libc memory allocator functions and that no pointers are constructed from inte-
gers. We treat unsafe casts and pointer arithmetic conservatively and conflate the related
memory locations. We perform field-inference for structs and type-inference for void*
pointers to increase the precision of the pointer analysis. We currently assume there is
no setjmp/longjmp control-flow.

The compiler is structured in three phases. The first extends the C front-end with
support for OpenMP-like #pragma directives to define tasks and task footprints. We
have chosen to mark task creation at the calling context, instead of marking a function
definition and have every invocation of the function create a parallel task for better pre-
cision; this way we are able to call the same function both sequentially or as a parallel
task without rewriting it or creating wrapper functions. The syntax for declaring task
footprints supports strided memory access patterns, so that we can describe multidi-
mensional array tiles as task arguments. When not explicitly given, we assume that the
size of a task argument is the size of its type.

The second phase uses a type-system to generate points-to and control flow con-
straints and solves them to infer argument independence, as described in Section 3. In
Section 3, however, we have made several simplifying assumptions to improve the pre-
sentation of the algorithm, that must be addressed when applying the analysis on the
full C language.

Although in the formal presentation we do not differentiate between read and write
effects in the task footprint, we actually treat input and output task arguments differ-
ently. In particular, we match the behavior of the runtime system, which allows multiple
reader tasks of a memory location to run in parallel. Thus, we also mark task arguments
that are only read in parallel as independent.

To increase the analysis precision, we use a context-sensitive, field sensitive points-
to analysis, and a context-sensitive control flow analysis. In both cases, context sensi-
tivity is encoded as CFL-reachability, with either points-to or control flow edges that
enter or exit a calling context marked as special open or close parenthesis edges [10].

Finally, in several benchmarks tasks within loops access disjoint parts of the same
array. However, the points-to analysis treats all array elements as one abstract location,
producing false aliasing and causing such safe arguments to be missed. To rectify this,
in part, we have implemented a simple loop-dependence analysis that discovers when
different loop iterations access non-overlapping array elements. This (orthogonal) prob-



lem has been extensively studied in the past [11, 12], resulting in many techniques that
can be applied to improve the precision of this optimization.

The final phase transforms the input program to use the runtime system to create
tasks and perform dependence checks for task arguments not inferred or declared in-
dependent. As an optimization, the compiler produces custom code to interact with the
runtime structures instead of using generic runtime API calls. In particular, for each
#pragma task call, the compiler generates custom code that creates a task descrip-
tor (closure) with the original function as task body, registers the task arguments with
the runtime dependence analysis, and replaces the specified function call with the gen-
erated code.

We ran the resulting programs using the BDDT runtime [8,13] to perform dynamic
dependence analysis and check for any dependencies that are not ruled out statically.
The BDDT runtime system maintains a representation of every task instance and its
footprint at run time, and uses these to check for overlap among task arguments and
compare their access properties to detect task dependencies. To do that, BDDT splits
task arguments into virtual memory blocks of configurable size and analyzes depen-
dencies between blocks. Similarly to whole-object dependence analysis used in tools
such as SMPSs, SvS, and OoOJava, block-based analysis detects true read-after-write
(RAW) dependencies, or write-after-write (WAW) and write-after-read (WAR) anti-
dependencies between blocks, by comparing block starting addresses and checking their
access attributes. We selected BDDT for our experiments due to its good performance
and because it is easy to disable specific dynamic checks on specific task instances us-
ing its API. However, the SCOOP static independence analysis can be used to remove
unnecessary dynamic checks from other task-parallel runtimes with implicit synchro-
nization.

We used a region-based allocator to support dynamic memory allocation in tasks,
and allow for tasks that operate on complex data structures. This way, we extend BDDT
to handle task footprints that include dynamic regions specially: the task footprint lan-
guage allows several task arguments to belong to a dynamic region; the task footprint
then includes the region instead of the individual arguments, and SCOOP registers only
the region descriptor with the dependence analysis.

5 Evaluation
We evaluated the effect of the static independence analysis in SCOOP on a set

of representative benchmarks, including several computational kernels and small-sized
parallel applications. We ran the experiments on a Cray XE6 compute node with 32GB
memory and two AMD Interlagos 16-core 2.3GHz dual-processors, a total of 32 cores.
We compiled all benchmarks with GNU GCC 4.4.5 using the -O3 optimization flag. As
is standard in evaluation of task-parallel systems in the literature, we measured the per-
formance of the parallel section of the code, excluding any initialization and I/O at the
start and end of each benchmark. We used barriers to separate the initialization phase
from the measured computation. Finally, to minimize variation among different runs,
we report the average measurements over twenty runs for each benchmark.

We use the following benchmarks in our evaluation, listed in Table 1. Black-Scholes
is a parallel implementation of a mathematical model for price variations in financial



Benchmark LOC Tasks Total Args Scalar Args Analysis (s) Graph Nodes Safe Args
Black-Scholes 3564 1 8 1 3.17 1790 6
Ferret 30145 1 2 0 699.05 85128 2
Cholesky 1734 4 16 8 1.06 7571 0
GMRES 2661 18 72 20 2.21 7957 9
HPL 2442 11 59 35 1.47 9330 0
Jacobi 1084 1 6 0 0.74 3980 0
FFT 2935 4 12 4 1.72 9750 3
Multisort 1215 2 8 4 1.02 4016 0
Intruder 6452 1 5 1 19.89 16855 3

Table 1: Benchmark description and analysis performance

markets with derivative investment instruments, taken from the PARSEC [14] bench-
mark suite. Ferret is a content-based similarity search engine toolkit for feature rich
data types (video, audio, images, 3D shapes, etc), from the PARSEC benchmark suite.
Cholesky is a factorization kernel used to solve normal equations in linear least squares
problems. GMRES is an implementation of the iterative Generalized Minimal Resid-
ual method for solving systems of linear equations. HPL solves a random dense linear
system in double precision arithmetic. Jacobi is a parallel implementation of the Jaco-
bian method for solving systems of linear equations. FFT is a kernel implementing a
2-dimensional Fourier algorithm, taken from the SPLASH-2 [15] benchmark suite. It
is implemented in alternating transpose and computation phases. On each transpose the
data gets reordered, creating irregular dependencies between the two phases. Multisort
is a parallel implementation of Mergesort. Multisort is an alternative implementation of
the Cilksort test from Cilk [1]. It has two phases: during the first phase, it divides the
data into chunks and sorts each chunk. During the second phase, it merges those chunks.
Intruder is a Signature-based network intrusion detection systems (NIDS), from the
STAMP benchmark suite [16]. It processes network packets in parallel in three phases:
capture, reassembly, and detection. The reassembly phase uses a dictionary that con-
tains linked lists of packets that belong to the same session. The lists are allocated using
dynamic regions. Intruder issues a new task for each packet it receives. When a task
reassembles the last packet of a session it also executes the detection algorithm.

The second column (LOC) of Table 1 shows the size of each benchmark in lines of
code3. The third column (Tasks) shows the number of task invocations in the code. The
fourth column (Total Args) shows the total number of arguments of all task invocations.
We report the total number of arguments as each such argument incurs the additional
overhead of a runtime dependency check. The fifth column (Scalar Args) shows how
many of those arguments are scalars passed by value, since it is trivial for either the
programmer or the analysis to find them, thus we do not count them as independent
arguments discovered by the static analysis.

The last three columns of Table 1 show the performance and precision of the static
analysis. Namely, the sixth column (Analysis) shows the total running time of the static
dependence analysis in seconds. The seventh column (Graph Nodes) shows the num-

3 We count lines of code not including comments after merging all program sources in one file.



Benchmark Task Dynamic (ms) Standard Static & Standard SpeedupInstances Deviation Dynamic (ms) Deviation
Black-Scholes 234375 1618 5.83 % 963 4.51 % 1.68
Ferret 1000 3344 1.10 % 3344 1.33 % 1.00
Cholesky 45760 983 0.23 % 981 0.32 % 1.00
GMRES 5170 16640 4.42 % 13947 2.65 % 1.19
HPL 28480 1628 0.44 % 1574 0.37 % 1.03
Jacobi 204800 11499 0.39 % 11588 0.53 % 0.99
FFT 28864 2028 0.10 % 1849 0.29 % 1.10
Multisort 11264 3683 15.77 % 3446 15.15 % 1.07
Intruder > 4M 12572 1.23 % 10332 1.76 % 1.22

Table 2: Impact of the analysis on performance

ber of nodes in the constraint graph. The last column (Safe Args) shows the number of
independent task arguments inferred by the analysis. Note that Ferret, the largest bench-
mark, creates the largest constraint graph, causing an analysis time of over 11 minutes.
This is because the context sensitive analysis has cubic complexity in the size of the
constraint graph.

Table 2 shows the effect of the optimization on the total running time of all bench-
marks, on 32 cores. Specifically, the second column (Task Instances) shows the total
number of task spawns by each benchmark during execution. The third column (Dy-
namic) shows the total running time in milliseconds for each benchmark, without using
the static analysis. Here, we use BDDT to perform runtime dependence analysis on
all the non-scalar task arguments of all tasks. The fourth column (Standard Deviation)
shows the standard deviation of the Dynamic total running time for twenty runs. The
fifth column (Static & Dynamic) shows the total running time in milliseconds for each
benchmark compiled with SCOOP, where the runtime dependence analysis is disabled
for any arguments found safe by the static analysis. The sixth column (Standard Devia-
tion) shows the standard deviation of the Static & Dynamic total running time. Finally,
the last column shows the speedup factor gained by removing redundant checks for ar-
guments found independent by the static analysis, compared to always checking argu-
ments dynamically. Note that even though the static analysis does not infer independent
task arguments in Multisort and HPL, we observe a speedup of 1.07 and 1.03 respec-
tively when compiling with SCOOP compared to the dynamic-only execution. This
happens because SCOOP generates code to interface directly with the BDDT runtime
internals, whereas the BDDT API may perform various checks, e.g., on scalar argu-
ments. We consider the 0.99 speedup (slowdown) in Jacobi to be well within the noise
due to cache effects, other processes executing, etc., as seen by the deviation observed
among twenty runs.

The dependence analysis is able to infer safe task arguments only in Black-Scholes,
Ferret, GMRES, FFT and Intruder. In these benchmarks, inferring independent argu-
ments has a large impact on the overhead and scalability of the dependence analysis,
producing substantial speedup over the original BDDT versions for four benchmarks.
The reduction of dependence analysis overhead is not noticeable in Ferret because the
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Fig. 4: Comparison with alternative runtimes

tasks are very coarse grain. On the rest of the benchmarks (Cholesky, HPL, Jacobi and
Multisort) the dependence analysis fails to find any safe arguments. We examined all
benchmarks manually and found that there are no safe arguments.

For reference, we compare the three largest benchmarks with related parallel run-
times. We have ported each benchmark to all runtimes so that they are as comparable as
possible and express the same parallelism. Figure 4 shows the results. Specifically, Fig-
ure 4a compares four parallel implementations of Black-Scholes: the original Pthreads
and OpenMP implementations from the PARSEC benchmark suite, as well as two ports
of the OpenMP version into SMPSs and BDDT, using SCOOP. Note that SCOOP finds
and removes the redundant dependency checks. As Black-Scholes is a data-parallel ap-
plication, this removes most of the runtime overhead and matches in performance the
fine-tuned Pthreads and OpenMP implementations. In comparison, the SMPSs runtime
scales up to 8 cores, mainly due to the overhead caused by redundant checks on inde-
pendent task arguments.

Figure 4b compares the original Pthreads implementation of Ferret with the SMPSs
and BDDT runtime. The Pthread version uses one thread to run each computation
phase, causing load imbalance. In comparison, BDDT and SMPSs perform dynamic



task scheduling that hides load imbalance and distributes computation to processors
more evenly. Although SCOOP detects and removes redundant runtime checks, Ferret
tasks are computationally heavy and coarse-grain, hiding the effect of the optimization.
The difference in performance between SMPSs and BDDT is mainly due to constant-
factor overheads in task scheduling.

Figure 4c compares the original Pthreads implementation of Intruder from the STAMP
benchmark, with a port for BDDT. The STAMP implementation uses software trans-
actional memory to synchronize threads, which causes high contention effects above
8 cores, limiting performance. In comparison, BDDT incurs lower overheads and uses
pessimistic synchronization that also removes the cost of rollbacks.

6 Related Work
Task Parallelism: There are several programming models and runtime systems that sup-
port task parallelism. Most, like OpenMP [2], Thread Building Blocks [17], Cilk [1],
and Sequoia [3], use tasks to express recursive or data parallelism, but require manual
synchronization in the presence of task dependencies. That usually forces programmers
to use locks, barriers, or other synchronization techniques that are not point-to-point,
and result in loss of parallelism even among task instances that do not actually access
the same memory.

Some programming models and languages aim to automatically infer synchroniza-
tion among parallel sections of code. Transactional Memory [18] preserves the atom-
icity of parallel tasks, or transactions, by detecting and retrying any conflicting code.
Static lock allocation [19] provides the same serializability guarantees by automati-
cally inferring locks for atomic sections of code. These attempts, however, allow non-
deterministic parallel executions, as they only enforce race freedom or serializability,
not ordering constraints among parallel tasks.

Jade [20] is a parallel language that extends C with parallel coarse-grain tasks. Sim-
ilarly, StarSs, SMPSs and OpenMP-Ss [9, 21] are task-based programming models for
scientific computations in C that use annotations on task arguments to dynamically de-
tect argument dependencies between tasks. All of these runtimes could benefit from
independencies discovered by SCOOP to reduce the overhead of runtime checks.

Static analysis has been used in combination with dynamic analysis in parallel pro-
grams in the past. SvS [7] uses static analysis to determine possible argument depen-
dencies among tasks and drive a runtime-analysis that computes task dependencies with
overlapping approximate footprints. SvS assumes all tasks to be commutative and does
not preserve the original program order as SCOOP and BDDT. Prabhu et al. [22] define
sets of commutative tasks in parallel programs. The compiler uses this information to al-
low more possible orderings in a program and extract parallelism. As with all compiler-
only parallelization techniques, this approach is limited by over-approximation in static
pointer and control flow analyses that might cause many tasks to be run sequentially, be-
cause only two instances have clearly disjoint memory footprints. To avoid this, Comm-
Sets uses optimistic transactional memory, which is not suitable for programs with high
contention or effects that cannot be rolled back.
Deterministic parallelism: Recent research has developed methods for the determinis-
tic execution of parallel programs. Kendo [23] enforces a deterministic execution for



race-free programs by fixing the lock-acquisition order, using performance counters.
Grace [24] produces deterministic executions of multithreaded programs by using pro-
cess memory isolation and a strict sequential-order commit protocol to control thread
interactions through shared memory. DMP [25] uses a combination of hardware owner-
ship tracking and transactional memory to detect thread interactions through memory.
Both systems produce deterministic executions, even though they may not be equivalent
to the sequential program. Instead, they enforce the appearance of the same arbitrary in-
terleaving across all executions.

Out-of-Order Java [5] and Deterministic Parallel Java [6], task-parallel extensions
of Java. They use a combination of data-flow, type-based, region and effect analyses to
statically detect or check the task footprints and dependencies in Java programs. OoO-
Java then enforces mutual exclusion of tasks that may conflict at run time; DPJ restricts
execution to the deterministic sequential program order using transactional memory to
roll back tasks in case of conflict. As task footprints are inferred (OoOJava) or checked
(DPJ) statically in terms of objects or regions, these techniques require a type-safe lan-
guage and cannot be directly applied on C programs with pointer arithmetic and tiled
array accesses.

Chimera [26] proposes a hybrid system that detects and transforms races, so that the
runtime system can then enforce deterministic execution.
Static and Dynamic Dependence Analysis: Static dependence analysis is often em-
ployed in compilers and tools that optimize existing parallel programs or for automatic
parallelization. Early parallelizing compilers used loop dependence analysis to detect
data parallelism in loops operating on arrays [12, 27], and even dynamic dependence
analysis to automatically synchronize loops [28] These systems, however do not han-
dle inter-loop dependencies and do not work well in the presence of pointers. Recently,
Holewinski et al. [29] use dynamic analysis of the dynamic dependence graph of se-
quential execution to detect SIMD parallelism.

Several pointer analyses have been used to detect dependencies and interactions
in parallel programs. Naik and Aiken [30] extend pointer analysis with must-not-alias
analysis to detect memory accesses that cannot lead to data races. Pratikakis et al. [31,
32] use a context-sensitive pointer and effect analysis to detect memory locations ac-
cessed by many threads in the Locksmith race detector. SCOOP uses the pointer anal-
ysis in Locksmith to detect aliasing between task footprints, and extends Locksmith’s
flow-sensitive dataflow analysis to detect tasks that can run in parallel.

7 Conclusions
This paper presents SCOOP, a compiler for a task-parallel extension of C with

implicit synchronization. SCOOP targets task parallel runtimes such as BDDT and
OpenMP-Task, that use dynamic dependence analysis to automatically synchronize and
schedule parallel tasks. SCOOP uses static analysis to infer safe task arguments and re-
duce the runtime overhead for detecting dependencies. We have tested SCOOP using
the BDDT runtime system on a set of parallel benchmarks, where it finds and removes
unnecessary runtime checks on task arguments. Overall, we believe that task depen-
dence analysis is an important direction in parallel programming abstractions, and that
using static analysis to reduce its overheads is a major step in its practical application.
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