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a b s t r a c t

Medical geology research has recognised a number of potentially
toxic elements (PTEs), such as arsenic, cobalt, chromium, copper,
nickel, lead, vanadium, uranium and zinc, known to influence
human disease by their respective deficiency or toxicity. As the
impact of infectious diseases has decreased and the population
ages, so cancer has become the most common cause of death
in developed countries including Northern Ireland. This research
explores the relationship between environmental exposure to
potentially toxic elements in soil and cancer disease data across
Northern Ireland. The incidences of twelve different cancer types
(lung, stomach, leukaemia, oesophagus, colorectal, bladder, kidney,
breast, mesothelioma, melanoma and non melanoma (NM) skin
cancer both basal and squamous) were examined in the form
of twenty-five coded datasets comprising aggregates over the
12 year period from 1993 to 2006. A local modelling technique,
geographically weighted regression (GWR) is used to explore the
relationship between environmental exposure and cancer disease
data. The results show comparisons of the geographical incidence
of certain cancers (stomach and NM squamous skin cancer) in
relation to concentrations of certain PTEs (arsenic levels in soils
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and radon were identified). Findings from the research have
implications for regional human health risk assessments.
© 2013 The authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

1.1. How environmental factors affect health

Natural trace elements, mineral water and gases (such as radon) are present in the environment
and these interact with the human body in both positive and negative ways. As recognised by
Paracelsus (1493–1541 AC) ‘‘all substances are poisons; there is none which is not a poison; the right
dose differentiates a poison and a remedy’’. Medical geology or spatial epidemiology is concerned
with the study of spatial patterns of disease incidence andmortality and the identification of potential
causes of disease including environmental exposure or socio-demographic factors (Goovaerts, 2010).
To date, the culmination of a broad body of research has recognised a number of potentially toxic
elements (PTEs), such as arsenic (As), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb),
selenium (Se), vanadium (V), uranium (U) and zinc (Zn), known to influence human disease by their
respective deficiency or toxicity. As the impact of infectious diseases has decreased and the population
as a whole ages, so cancer has become the most common cause of death in developed countries.
The risk of developing cancer is recognised as a combination of the person’s genetic makeup and
environmental factors usually over long periods of time. Steingraber (2010) describes a study of
cancer among adoptees that found correlations with their adoptive families but not within their
biological ones. The concept that our genes work in communion with substances from the larger
ecologicalworld suggests thatwhat runs in families does not necessarily run in the blood (Steingraber,
2010). Carcinogens fall into three groups—chemical, physical and biological. Chemical carcinogens,
the largest group, include tobacco products, asbestos, benzene and the products of tobacco. Biological
agents include infections such as Human Papilloma Virus, (HPV) causally linked with cervical cancer,
and Human Immunodeficiency virus (HIV) linked with lymphomas. The best known example of
physical carcinogens is high-energy radiation, including nuclear radiation and X-rays. Radiation
is known as a ‘complete’ carcinogen because it can initiate, promote and progress a cancer.
Chemical carcinogens occur in nature, in mineral ores, such arsenic and others in foods (e.g. fungal
contaminants). The history of cancer is long but our recognition of the agents that contribute to
its occurrence has been slow to mature. A reflection that external or environmental agents could
producemalignant changewas noted by Pott, a London physician, in 1775, after observational studies
prompted him to link scrotal cancer, common among chimney sweeps, to the soot that accumulated
on their bodies (cited inMajno and Joris, 2004). Skin cancer was noted to be prevalent amongworkers
exposed to arsenic fumes in copper smelters and tin foundries in Cornwall and Wales. Workers in
cobalt mines in Saxony and the uraniummines in Bohemia were subject to a disease of the lungs later
identified as cancer. Many of the causes of cancer including the effects of lifestyle and environmental
factors are still not well understood. Investigating the geographical differences in cancer incidence
may shed light on variations in cancer risk factors between populations (Carsin et al., 2009).

1.2. Aim of the work

The term ‘environmental medicine’ has been used for studies into how environmental factors
affect health (Alexander and Boyle, 1996). While it is estimated that occupational and environmental
exposures account for 2% and less than 1% of total cancers respectively, it has also been assessed that
80% of all cancers are environmentally inducedwhen cancer fromdietary carcinogens, polluted air and
water along with exposure to cosmic and solar radiation is included. Environmental exposure rates
concentrate in subgroups of the population (Bofetta, 2004), deeming them worthy of investigation
despite the small percentages. The aim of this research is to explore spatial correlations between
PTEs in soils and epidemiological data using a comprehensive soil geochemical dataset for Northern
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Ireland generated from the Tellus Survey (GSNI) in conjunction with cancer data provided by the
Northern Ireland Cancer Registry (NICR). Bioaccessability is the fraction of the pseudo-total soilborne
PTE concentration that is soluble in the gastrointestinal tract and is available for absorption (Wragg
et al., 2009). A conjunctive study by Barsby et al. (2012) undertook bioaccessibilty testing of selected
soil samples from the Tellus Survey following the Unified BARGE Method (BARGE INERIS, 2011) and
investigated the spatial variability of pseudo-total and bioaccessible PTE concentrations. A secondary
aim of this study is to compare observed lithological and pedological associations from the Barsby
et al. (2012) study with spatial correlations between PTEs in soils and epidemiological data.

2. Material and methods

There are several factors that culminate to make Northern Ireland an important exemplar for the
UK and Ireland and indeed for advancing the science of medical geology globally. The key opportu-
nities stem firstly from Northern Ireland’s complex geology (Fig. 1a) that forms a microcosm for that
encountered across the UK and Ireland and secondly from the combination of available data sources:
comprehensive soil geochemistry data generated by GSNI Tellus Survey (conducted over the period
2004–2006) and cancer data collected from 1993 onwards and maintained by NICR. In bringing these
two datasets together, this research offers the potential to examine the impact of one aspect of the
environment on public health. The accuracy and inclusivity of the datasets enables spatial investiga-
tion into the influence of geographical distribution, total concentration and level of bioaccessibility of
trace element in soil on human epidemiology in Northern Ireland. The indications of spatial correla-
tions found have implications outside Northern Ireland for regional human health risk assessments.

2.1. Soil geochemistry

The GSNI Tellus Survey, completed between 2004 and 2006, provides a unique dataset combining
comprehensive spatial soil sampling coverage with an extensive suite of soil geochemical analysis
(Smyth, 2007). This study uses data from the ground based geochemical survey comprising 13,860
soil samples taken at a 20 cm depth and collected on a regular grid of one sample site every 2 km2

(GSNI, 2007) following the G-BASE sampling regime established by British Geological Survey (BGS).
The soil samples used for this study were analysed for 60 elements and inorganic compounds using
pressed pellet X-ray Fluorescent Spectrometry (XRF) using Wavelength Dispersive XRF Spectrometry
(WD-XRF) and Energy Dispersive/Polarised XRF Spectrometry (ED-XRF). The sampling and analysis
regimes for the geochemical surveys included in the Tellus Survey are detailed in Smyth (2007). The
Tellus data set provides the basis for a comprehensive study with relevancy for the whole of the UK.

2.2. Cancer data

Cancer is now the most common cause of death in Ireland as a whole (CSO, 2011) and moreover,
overall cancer incidence is expected to increase by 20% between 2010 and 2020, and by 30% between
2010 and 2030 (NCR, 2011) mainly due to population ageing. Cancer is predominantly a disease of the
elderly with cancers in children accounting for around 0.5% of the total cancer incidence (Quinn et al.,
2005, 8). Cancer mortality is also projected to increase, although not to the same extent (Carsin et al.,
2009, 11). In Northern Ireland, between 1993 and 2003, 8,640 new cancer cases were diagnosed every
year. The 2001 census for Northern Ireland records the population as 1,685,267 (NISRA, 2004), this
equates to 0.51% of the population being diagnosedwith cancer annually. The overall cancermortality
rates in Ireland are slightly below the European average in men and above average in women (Boyle
et al., 2003).

Disease data for this research were provided by the NICR. This registry was re-established in May
1994 and replaced an older, incomplete paper based registry established in 1959. The registry receives
and collects electronic data information on all neoplasms diagnosed in Northern Ireland including non
melanoma (NM) skin cancers andhas an extensive programmeof quality assurance of the registry data
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Fig. 1. (A) Simplified geology; (B) Maximum radon risk; (C) OKmap of total Ni (mg/kg) in soils; (D) OKmap of total As (mg/kg)
in soils; (E) BAF % Ni in soils; (F) BAF % As in soils.
Source: Adapted from Barsby et al. (2012).

(NICR, 2008). The information contained in the database is a uniquely valuable resource and makes
Northern Ireland a prime location in which to carry out this research study.
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Spatial variation observed in the incidences of different cancer diseases does not necessarily mean
that the spatial location itself causes cancer, rather as Carsin et al. (2009) stress it is more likely to
reflect socio-economic differences and lifestyle factors in the population, geographical differences in
exposure to risk factors and variations in access to, or uptake, of cancer services. The influence of
population density must also be taken into account. Areas with a population of >20 persons/hectare
consistently were found to record a higher risk of cancer than sparsely populated areas with <1
person/hectare (Carsin et al., 2009). This does not negate the importance of the geographical aspect
of the land on population settlement in that access to resources may influence where populations
initially locate. A further issue is population mobility, from the foetal development stage until
diagnosis it is entirely possible for a human to come into contact with a whole range of possible
carcinogens from a variety of sources. However, the proposal of exploring the relationship between
soil constituents with cancer disease is arguably well suited to Northern Ireland, as an area with
traditionally little migration of people thus providing greater potential for prolonged exposure at one
location or area. Furthermore as the risk of developing cancer increases with age, an older population
(> 60 years) is likely to have less exposure to imported and processed foods and beverages.

3. Theory/calculations

3.1. Aspatial and spatial analyses of geochemical data

Following exploratory aspatial analysis (Table 1) of pseudo-total PTE concentrations, including As,
Co, Cd, Cr, Ni, Pb, Se, V, U and Zn, spatial mapping techniques were used to identify areas of elevated
levels of the PTEs. It is rare that environmental data are normally distributed. Although the application
of geostatistics is more straightforward for distributions that are not too skewed, it does not require
the variable to follow a normal distribution except in specific situations, such asmultiGaussian kriging
and sequential Gaussian simulation. Moreover, undertaking a normalisation process may force the
data to follow fictitious constraints, which in the case of geochemistry may have little in common
with real geological processes. For this reason normalisation was not applied to the geochemical data
for this study. Gstat (Pebesma and Wesseling, 1998; Pebesma, 2004), an open source programme for
multivariate geostatistical modelling, was used to estimate variograms for the PTEs. Mathematical
models, selected from the set of authorised models provided by McBratney and Webster (1986),
were fitted to the experimental variograms using the weighted least squares functionality of Gstat.
Parameters of the fitted models (Table 2) were used to provide information on the maximum scale of
spatial variation of the PTEs (Jensen et al., 1996; Gringarten and Deutsch, 2001; McKinley et al., 2004).
The nugget:sill ratio was computed to determine the proportion of random to spatially structured
variation observed for the geochemical elements. The coefficients of the modelled variograms using
Gstat were used for ordinary kriging (OK), conducted using the geostatistical functionality of ArcGIS
version 10 for all PTEs of interest.

3.2. Standardisation of disease data

The incidence of twelve different cancer types (lung, stomach, leukaemia, oesophagus, colorec-
tal, bladder, kidney, breast, mesothelioma, melanoma and nonmelanoma basal and squamous), were
provided by the NICR in the form of twenty-five anonymised coded datasets comprising aggregates
over the 12 year period from 1993 to 2006. The aggregated datasets were provided in the form of
postcode, gender and disease code. In addition, NICR provided a non-cancer disease dataset and a fab-
ricated dataset to test the effectiveness of the methodology. Initially a blind analysis was conducted
on the disease coded data. The 2001 Census provided population age and gender structure on a census
ward basis. These data were not available on a postcode scale, so the disease events were assigned by
postcode (the lowest level unit of geographical unit) to the corresponding census ward code using a
‘point in polygon’ method which matched the relevant latitude and longitude information for post-
codes from the Central Postcode Directory NISRA (2004) against digital boundaries supplied by the
Ordnance Survey of Northern Ireland. A function was applied to the data to account for population
density and age distribution variations across the area of investigation. Methods for age standardi-
sation are outlined in Bland (1996, 291). Age standardisation takes the frequency of disease by age
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Table 1
Summary statistics for pseudo-total concentrations of individual potentially toxic elements (PTEs) in mg/kg as measured by
X-ray Fluorescent Spectrometry (XRF).

mg/kg Arsenic Cadmium Chromium Nickel Lead Selenium Uranium
(As) (Cd) (Cr) (Ni) (Pb) (Se) (U)

Method detection
limit (MDL)

0.9 0.5 3.0 1.4 1.3 0.2 0.5

Minimum 0.9 0.5a 4.1 1.4 2.2 0.2 0.5
Maximum 271.2 63.3 1229 333.6 18,756 7.8 142.9
Median 8.7 0.5 94.1 29.1 28.8 0.7 2.3
Interquartile range 6.5–11.7 < MDL–0.7 56.7–161 14.0–56.1 22.2–41.0 0.6–1.0 1.7–2.8
a 57% samples below MDL.

Table 2
Coefficients of the modelled variograms.

Element Modelled parameters
c0 c1 c2 a1 (m) a2 (m) c0 + c1 + c2 c0:c0 + c1 + c2 %

As 64.17 19.40 14.17 7436 42311.9 83.56 0.7679 76.79
Cd 0.42 0.17 10000 0.59 0.7124 71.24
Co 54.61 152.78 73603.7 207.39 0.2633 26.33
Cr 3773.63 1590.93 11760.50 10370.4 89597.6 17125.06 0.2204 22.04
Cu 1001.33 690.74 60425.1 1692.07 0.5918 59.18
Ni 741.33 1220.30 3284.49 50817.8 73913.7 5246.12 0.1413 14.13
Pb 55056.60 12324.10 17736 67380.70 0.8171 81.71
Se 0.11 0.06 0.06 10005.6 39528.8 0.22 0.4965 49.65
V 1250.32 3644.78 81864.3 4895.10 0.2554 25.54
Zn 1521.50 2078.69 95924.3 3600.19 0.4226 42.26
Zr 2659.82 1752.3 2059.53 9175.9 50526.5 6471.65 0.4110 41.10

(and gender) group in each administrative unit (in this case ward, the population age distribution in
each unit, and the standard population. For this study Northern Ireland 2001 census data were used
for 582 electoral districts or wards. Following the methodology of Bland (1996) the disease frequency
was divided by the category specific population to give the age specific rate. This was multiplied by
the proportion of the age group in the standard population, to give the expected frequency if the pop-
ulation exhibited the same age profile as the standard population. The standardised rate therefore is
the sum of the expected frequencies divided by the sum of the standard population. This gave the Age
Standardised Incidence Rate (ASIR’s) of disease by gender for 582 electoral wards. The approach used
in this research is described in Donnelly and Gavin (2007).

3.3. Mapping disease clustering

Following the age standardisation process and preliminary analysis of the mapped ASIR outputs
a local cluster analysis was undertaken. Disease clustering involves the analysis of ‘unusual’ aggre-
gations of disease to identify if areas of elevated incidences of disease are present (Lawson, 2006). A
global spatial analysis involves the complete study area to examine whether a disease has a natural
tendency to cluster. The aim of a local clustering method is to identify the locations of any clusters
(Alexander and Boyle, 1996). In this study the local technique Moran’s I was used to identify statis-
tically significant spatial outliers in the disease datasets. The local Moran’s I index (I) is a relative
measure and can only be interpreted within the context of significance levels. A positive value for I
indicates that a geographical unit has neighbouring geographical units with similarly high or low at-
tribute values and therefore forms part of a cluster. A negative value for I indicates that a geographical
unit has neighbouring geographical units with dissimilar values; this geographical unit is an outlier.
In either instance, the significance level for the geographical unit must be small enough for the cluster
or outlier to be considered statistically significant. Results are only reliable if the input class contains
at least 30 geographical units. This study had 582 input classes (geographical ward units). All results
of the local cluster analysis shown are statistically significant for a significance level of 0.05.
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3.4. Spatial relationships between disease data and explanatory factors

Ecological analysis involves the analysis of relations between the spatial distribution of disease
incidence andmeasured explanatory factors (Lawson, 2006). More often the analysis is undertaken at
an aggregated spatial level and compared to explanatory factors measured at regional or other levels
of aggregation. This can lead to misconceptions of relations that are more related to the change of
aggregation level than the aggregated data itself (Lawson, 2006). In an effort to avoid this, summary
statistics of PTEs were calculated on a ward basis to compare directly with disease data.

Regression analysis may be useful to investigate factors affecting a population. Cook and Pocock
(1983) investigated the relationship between cardiovascular incidence in the UK and potentially ex-
planatory variables including water hardness, climate, pollution, location, socioeconomic and genetic
factors. Brugge et al. (2007) studied the link between respiratory health of school children and volatile
organic compounds in the external atmosphere. GeographicallyWeighted Regression (GWR) is a spa-
tial regression technique that is increasingly used in geography and other disciplines. In this study
GWR was used to provide a local model of the relation between disease data and PTEs by fitting a
regression equation to every geographic unit. GWR works in a similar way to a moving window re-
gression in that all the data points within awindow are used to calibrate amodel (Fotheringham et al.,
2002). This is repeated for all possible regression points, each data point being weighted by its dis-
tance from the regression point in question. GWR can be used as a tool for exploring patterns in data
and generating an exploratory hypothesis for further testing, rather than as a tool for testing a priori
hypotheses (Fotheringham et al., 2002). An example of the application of GWR to disease modelling
is provided by Lawson et al. (2003) in a study of the spatial distribution of incidences of lip cancer in
Eastern Germany. Spatially variable regression coefficients were found between the log relative risk
of lip cancer and the population employed in a covariate of agriculture, forestry and fishing.

A potential problem with a GWR approach is that there may be only one attribute value at each of
the locations for each of the target (e.g., diseases) and explanatory variables (PTEs in soil). To provide
sufficient observations with which to fit a local regression model for each, a moving window is con-
sidered around the location of the variables (Brunsdon et al., 1999). Theweighted least-squares (WLS)
approach to fitting regression models provides a means by which to vary the influence of individual
measurements on the fitted model. The weights usually are chosen to inversely reflect somemeasure
of uncertainty, so that more uncertain observations are assigned less weight. Brunsdon et al. (1999)
consider a range of possibleweighting functions. The essential idea of GWR,whateverweighting func-
tion is chosen, is to givemoreweight to observations close to the location of observations at which the
regressionmodel is desired than to those observations that are farther away. For this research BioMed-
ware Space-StatTM (Version 3.6.20) was used to perform GWR using a maximum-likelihood approach
to calculate local model regression parameters and variances. Within Space-StatTM GWR is extended
to non-linear regression procedures including Poisson regression with parameter values and param-
eter variances calculated from a weighted log-likelihood formulation. Poisson aspatial regression and
Poisson GWR using 20 nearest neighbours were used to assess how the relationship between disease
data and the PTEs vary across Northern Ireland. The kernel bandwidth can be a constant (or fixed)
distance or a constant (or fixed) number of nearby observations (i.e. an adaptive distance). In this
study, different weighting schemes (equal weights, Gaussian, bisquare-adaptive, and bisquare-fixed)
were compared, and a cross-validation procedure was used to calculate the optimum bandwidth. For
adaptive bandwidths, the optimum bandwidth was calculated as 361.39 m using a cross-validation
procedure. The local parameter estimates were mapped using ArcGIS version 10, to investigate the
potential dependent disease data and explanatory PTE variables.

4. Results

4.1. Geostatistical analysis of geochemical data

Spherical models were fitted to the experimental variograms, and the nugget variance (c0), the
sill variance of the spatially dependent component (c) and the range (a), were estimated from the
modelled variograms. The modelled variograms (Table 2) indicate spatial structure for all of the PTEs
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exceptU,which demonstrated a highly variable distribution across the region. The coefficients of these
variograms were used as inputs for ordinary kriging (OK).

Spatial structure at different ranges of correlation is observed for individual pseudo-total PTE
concentrations. Shorter correlation distances (≤20 km) are indicated for Cd, Cr, Se and Pb. Longer
correlation distances (>60 km) are indicated for the PTEs of Co, Cu, V and Zn. For PTE concentrations of
As and Cr two distinctive correlation distances or ranges are observed (shorter ranges 7–15 km, longer
ranges >40 km). Spatial structure with two longer ranges is recorded for Ni concentrations (∼50 km
and 70 km). The nugget:sill ratio (c0:c0+c) varies from14% (Ni) to 82% (Pb) suggesting that for some of
the PTEs (Table 1; As, Cr, Cu and Pb) there is considerable unresolved variation at scales finer than the
resolution of the Tellus survey (2 km2). Previous studies (Jordan et al., 2007; Barsby et al., 2012) have
observed positively skewed distributions of untransformed soil geochemical data. It should be noted
that the observed large nugget effects for several of the PTEs in this study (Pb and Cr)may be related to
skewed distributions. The spatial pattern of the PTEs is linked with the distribution of geological and
soil parent material. The presence of several scales of spatial structure may be related to the presence
of more than one lithological or pedological source for several of the data (including As, Ni, V, Cr, Co
and Cu). Barsby et al. (2012) found that outliers for Ni, Cr and V concentrations were predominantly
related to samples derived from igneous/basalt soil parent material. The variable distribution for U
concentrations has been related to samples derived from soil parentmaterial typically associatedwith
elevated U concentrations, including shales, granites and limestones (Alloway, 2005).

4.2. Mapping PTEs

The OK outputs maps (shown for Ni and As) demonstrate lithological associations with the spatial
distribution of PTE concentrations. The presence of the basaltic lavas of the Palaeogene Lava Group
(Fig. 1a) has a strong control over the spatial distribution of PTE concentrations of Ni (Fig. 1c), Cr, Co, V
and Cu and to a lesser degree for Cd and Zn. The spatial distribution of elevated concentrations of Ni, V,
Cr, Co and Cu suggest a secondary lithological control in the occurrence of these PTEs associated with
the Southern Upland Terrain. PTE concentrations of Cd, Zn and Pb show outlier areas with elevated
values that do not closely correspond to specific lithological and pedological associations.

Arsenic is notably absent from basaltic lavas and overlying deposits. The distribution of As (Fig. 1d)
is more closely associated with sandstone and shales of the Midland valley and Southern Upland
Terrains (Ordovician–Silurian) where elevated concentrations of this PTE exceed the current UK soil
guidelines values (SGVs) for As in soils with a residential or allotment land use (EA, 2009a).

Radon, the radioactive gas formed from the natural radioactive decay of U, is not measured in the
Tellus soil survey, but the distribution of soil U demonstrates visual correlation with known areas
of elevated indoor radon, including the area around Co Tyrone and the southeast part of Co. Down
(GSNI, 2007). Soils overlying the granitic bedrock of theMourneMountains Complex show the highest
U values (Table 1; max 142.9 mg/kg) in Northern Ireland. The spread of elevated U anomalies from
granite bedrock onto Lower Palaeozoic outcrop of the Hawick Group in southeast Co. Down may be
due to the effects of river drainage and glacial overprinting during the Last Glacial Maximum (GSNI,
2007). Soil values on the eastern coastal fringe of theMournemountains suggest transport of uranium
downslope towards the coast.

A correlation of elevated soil U is also noted associated with limestone bedrock which may reflect
its natural accumulation in organic-rich rocks (GSNI, 2007). In Northern Ireland, this association is
evident overlying the Early Carboniferous Armagh Group in south Co. Fermanagh, where elevated soil
U values (>4.0 mg/kg) coincide with the outcrop of limestone and mudstone-dominated Carbonifer-
ous formations. Extensive NW–SE orientated zones of elevated soil U levels present in Co. Fermanagh
correspond to the outcrop of Palaeogene dolerite dykes. However, the spatial extent of these elevated
U zones, suggest that the dykes are not the only source of the soil U anomalies.

The spatial distribution of radon concentrations, provided by GSNI and the Health Protection
agency (HPA), (Fig. 1b; mapped by ward for maximum risk bands) are variable across Northern
Ireland. Radon concentrations (>25% radon risk) are indicated for the granitic bedrock of the
Mourne Mountains Complex which also showed the highest U values in overlying soils (Table 1;
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max 142.9 mg/kg) in Northern Ireland. Wards in counties Tyrone and Fermanagh also show high
concentrations of radon.

4.3. Mapping age standardised incidence rates (ASIRs)

The ASIRs demonstrate categorised incidence frequencies of each ward (standardised to account
for population and age) for each disease dataset by gender. Mapping ASIRs indicates spatial variability
for the disease datasets of stomach, leukaemia, oesophagus, colorectal, bladder, kidney, breast cancer
andmesothelioma. Results are shown formale incidences of stomach, lung andNMskin cancer (Fig. 2).
The outputs demonstrate the usefulness of the standardisation process in that wards containing ur-
ban centres of high population do not dominate the spatial distribution of disease incidence. It should
be noted that this may also be attributed to the fact that the rates for these diseases may be more
stable and less likely to be as extreme as in sparsely populated areas. Between 2000 and 2004 stom-
ach cancer was recorded as the fifth most common cancer in males comprising 3.3% of cases with an
average of 148males diagnosed each year (Donnelly and Gavin, 2007). Mapping ASIRs for 1993–2006,
shows similarities between incidence rates of stomach cancer for males and females for the twelve
year period. High incidence rates are shown for men for a number of wards in the southwest (county
Fermanagh) and southeast (county Armagh) of Northern Ireland (Fig. 2a).

Lung cancer data were provided for three time periods; two different 6 year periods 1993–1999
and 2000–2006 and the complete 12 year period of 1993–2006. Mapping ASIRs indicated an increase
in the number of wards with high incidence rates, most evident for female incidence rates. Along
with the urban centres of Belfast and Londonderry, several wards were found to show high incidence
rates of lung cancer for both male and female for the twelve year period. Highest ASIRs for both male
and female across the 12 year period from 1993–2006 occur in several wards within Co Tyrone and Co
Down and highmale incidences rates are indicated for several wards in southern Co. Armagh (Fig. 2b).
The highlighted wards have low to moderate Multiple Deprivation Measure (MDM) ranks. Donnelly
and Gavin (2007) report higher incidence andmortality rates of lung cancer in the 40%most deprived
areas of Northern Ireland than across Northern Ireland.

In total 10 of the NICR datasets comprised aggregated data of incidences of skin cancer. The results
show variability in the incidence of skin cancer across Northern Ireland. From 2000 to 2004malignant
Melanoma of the skin was the eighth most common cancer in females and the tenth most common
cancer in males (Donnelly and Gavin, 2007). Skin cancer is more commonly associated with affluence
than deprivation, reflecting the risk factor of ultraviolet radiation which comes with an increased
access to holidays in sunnier climates (NCR, 2003). Previous work has shown that Melanoma of the
skin has a strong geographical pattern, similar formen andwomen in that, areas of higher relative risk
were recorded along the east coast of Northern Ireland (NCR, 2007). Highest ASIRs for Melanoma for
the 12 year period (1993–2006) in this research are recorded for females with a spatially dispersed
pattern of wards with the highest category of incidence rates (ASIRs of 34–66 per 100,000 persons).
Wards on the east coast of Northern Ireland (e.g. Newry andMourne) show high ASIRs for both males
and females.

In both 2001 and 2007, Non Melanoma skin (NMS) cancer was recorded as the most common
cancer in males and females accounting for about 27% of male and 25% of female cancers of all
malignant neoplasms (NCR, 2003, 2007). The results from this study examining records from 1993 to
2002 indicated that for all three cancers, the age-specific rates for both males and females increased
with age, except for NMS cancer inmen aged 75 years and over, where the rateswere seen to decrease.
Over the 12-year period a 62% increase was observed in the overall number of skin cancer and a 20%
increase in the number of patients. Although a commonly diagnosed cancer, NMS cancer is rarely a
cause of cancer mortality. The most commonly diagnosed NMS cancers (NCR, 2007) were basal cell
carcinomas (64%), followed by squamous cell (29%). The number of cases and the age-specific rates
increased with increasing age. Basal Cell Carcinoma is the most common and least dangerous form
of skin cancer and accounts for over half of skin cancers. It grows slowly, mainly affecting people
over 60 years, and rarely spreads, but can cause local damage and requires treatment (NCR, 2007).
Squamous Cell Skin Carcinoma occursmainly in older people and accounts for over one quarter of skin
cancers (NCR, 2007). Previous research has demonstrated a geographical variation in the incidence of



34 J.M. McKinley et al. / Spatial Statistics 5 (2013) 25–41

Fig. 2. ASIR mapping for male incidences of (A) stomach cancer data (1993–2006); (B) lung cancer (1993–2006); (C) NM
squamous skin cancer (1993–2007);Moran’s I mapping for (D) stomach cancer data (1993–2006); (E) lung cancer (1993–2006);
(F) NM squamous skin cancer (1993–2007).
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Table 3
Summary table of local Moran’s I index (I): Cluster of high values (HH), cluster of low values (LL), outlier in which a high value is
surrounded primarily by low values (HL), and outlier in which a low value is surrounded primarily by high values (LH) (p-value
= 0.05).

Cancer/ disease type (time period) Disease
code

Gender No.
HH

No.
HL

No.
LH

No. LL No.
N/S

Total

Lung (1993–1999) 1 M 28 2 2 9 541 582
F 37 1 3 23 518 582

Lung (2000–2006) 2 M 28 2 2 18 532 582
F 25 3 3 22 529 582

Lung (1993–2006) 3 M 35 3 2 20 522 582
F 42 3 3 25 509 582

Stomach (1993–2006) 4 M 16 2 2 2 560 582
F 15 4 6 12 545 582

Leukaemia (1993–2006) 5 M 2 3 0 10 567 582
F 0 4 3 0 575 582

Oesophagus (1993–2006) 6 M 5 2 3 13 559 582
F 0 5 1 6 570 582

Colorectal (1993–2006) 7 M 8 2 2 6 564 582
F 10 2 4 10 556 582

All January cancers excluding Non
melanoma (NM) Skin cancer
(1993–2006).

8 M 4 2 5 9 562 582
F 6 0 2 3 571 582

Bladder (1993–2006) 10 M 0 3 1 12 566 582
F 2 2 2 6 570 582

Kidney (1993–2006) 11 M 0 4 4 6 568 582
F 2 0 4 4 572 582

Breast (1993–2006) 12 F 4 2 4 2 570 582
All NM skin (1993–1999) 13 M 31 3 4 11 533 582

F 18 6 4 10 544 582
Mesothelioma (1993–2006) 14 M 32 14 8 1 527 582

F 1 26 6 0 549 582
All NM skin (2000–2006) 15 M 10 1 13 7 551 582

F 13 5 3 8 553 582
Melanoma (1993–2006) 16 M 4 1 3 7 567 582

F 3 3 5 8 563 582
All NM skin (1993–1997) 17 M 4 6 2 5 565 582

F 2 5 1 6 568 582
All NM skin (1998–2002) 18 M 9 3 8 5 557 582

F 7 6 5 7 557 582
All NM skin (2003–2007) 19 M 5 3 1 1 572 582

F 2 5 4 1 570 582
NM skin basal (1993–1997) 20 M 4 3 3 8 564 582

F 5 3 2 2 570 582
NM skin basal (1993–2007) 21 M 6 2 3 9 562 582

22 F 4 4 2 9 563 582
NM skin-Squamous 23 M 43 2 11 8 518 582

F 16 4 6 8 548 582
NM skin-Squamous (1993–2007) 24 M 39 2 11 10 520 582

25 F 23 3 5 11 540 582

NMS cancer in that incidences for males and females were much higher in Newry and Mourne, and
Craigavon District Councils. The ASIRmaps for basal skin cancer show spatial variability in wardswith
highest incidence rates. Mapping the ASIRs for squamous skin cancer for both sexes (shown for male
ASIRs 1993–2006 Fig. 2c) indicates highest incidences rates in the Southeast of Northern Ireland.

4.4. Results of local cluster analysis

In the maps and scatterplots results from Moran’s I analysis (Table 3) the cluster/outlier type
distinguishes between a statistically significant (at α = 0.05 level) cluster of high values (HH),
cluster of low values (LL), outlier in which a high value is surrounded primarily by low values (HL),
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and outlier in which a low value is surrounded primarily by high values (LH). There are a number
of clusters of high and low values for the different disease datasets, although the majority of wards
are ‘‘not significant’’ in terms of clustering of incidences of diseases for the period from 1993 to 2007.
Outputmaps are provided for ASIRs for stomach cancer, lung and NM squamous skin cancer and these
results are discussed in more detail. Several wards in county Armagh showed high ASIRs for stomach
cancer for the period 1993–2006. These wards are highlighted as HH clusters (high incidences of
stomach cancer surrounded by wards of similar high occurrences of this disease) (Fig. 2d). Several
wards within the urban centres of Belfast and Londonderry showed high ASIRs for lung cancer for the
period 1993–2006. These wards are highlighted as HH clusters (Fig. 2e; high incidences of lung cancer
surrounded by wards of similar high occurrences of this disease). The most interesting results from
Moran’s I analysis are shown for NM skin cancer data.Mapped ASIRs demonstrated highest incidences
rates for NM squamous skin cancer for both sexes were located in the Southeast of Northern Ireland.
Results from Moran’s I analysis indicates that wards located in this area show HH clusters (Table 3:
48 wards highlighted as HH clusters). Mapped ASIRs differentiated for male and female showed that
although overall incidence rates are higher for females, a large portion of the pattern displayed (Fig. 2f)
is controlled by a high male incidence rate. The southeast of Northern Ireland showed a grouping of
wards with high incidence rates for males. These same wards show HH clusters for male incidence
rates (39 wards show HH clusters) and female rates (23 wards show HH clusters) for NM squamous
skin cancer. The results for NM Basal skin disease showed spatial variability in the location of wards
with highest incidence rates distributed across Northern Ireland and amuch lower number of clusters
(6 wards show HH clusters for male incidences of NM basal skin compared with 39 HH clusters for
NM squamous skin cancer).

4.5. Investigation of relations between disease data and environmental hazards (PTEs)

The results indicate that there are spatially varying patterns of both elevated PTEs and incidences
of diseases across Northern Ireland. To explore the spatial correlations and to model any spatially
varying relationships between PTEs in soils and epidemiological data, GWR provides a local model
of the relationship between soil geochemistry and disease data by fitting a regression equation to a
subset of the dataset within a window of each target area.

4.5.1. Use of GWR to test for correlations between the diseases and PTEs
Aspatial Poisson regressionwas applied to all datasets as an initial exploratory investigation. Aspa-

tial Poisson regression demonstrated a weak global relationship between male stomach cancer data
and As (correlation coefficient r = 0.075) and betweenmale NM squamous skin cancer data andmax-
imum radon risk (correlation coefficient r = 0.233) for a significance level of 0.05. In global regression
geographic location is not taken into account. Such regression models are appropriate only where the
relations between properties (e.g. PTEs and disease data) can reasonably be modelled as invariant
over space, i.e., there is no variability with geographic distribution.Where the relations between vari-
ables are expected to change with geographical location, as investigated in this study, a spatially non-
stationarymodel can be applied to allow variation in the parameters of themodel from place to place.

4.5.2. GWR results
Poisson GWRwas conducted for the disease datasets of stomach cancer and NM skin cancer as the

dependent variables for As and maximum radon risk, respectively, as potential explanatory variables.
Using a maximum weighted likelihood approach within SpaceStatTM the regression parameters,
parameter variances, residuals, standard errors and the ‘‘local model’’ r2 were calculated. The outputs
shown are produced using Poisson GWR with 20 nearest neighbours and a bisquare-adaptive
weighting scheme. The coefficient standard errorwasmapped in all cases. Thismeasures the reliability
of each coefficient estimate. Confidence in estimates is higher when standard errors are small in
relation to the actual coefficient values. Large standard errors may indicate problems with local
multicollinearity which indicates redundancy due to two or more variables indicating the same
control (Wheeler, 2007).
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4.5.2.1. Investigating incidences of stomach cancer and As. Severalwardswithin South Armagh showed
clusters of highmale and female incidences of stomach cancer. GWR indicates a grouping ofmoderate
correlations (Fig. 3a; r values = 0.44–0.69) suggesting an interesting association between stomach
cancer and As for the same group of wards in South Armagh. Intercept values show a pattern of
largest values along the southeastern coast and in county Fermanagh.Where intercept values are large
(Fig. 3b), this suggests stomach cancer incidence values vary irrespective of As. The standard errors
(Fig. 3c) for stomach cancer (1993–2006) and As show that over- and underpredictions are randomly
distributed. A grouping of the highest observed correlation values (Fig. 3a; r values range from 0.27
to 0.69) between lung cancer incidences and maximum As (for each ward) exhibits an interesting
association with highest recorded pseudo-totals concentrations of As (Fig. 1e; 35.18–271.2 mg/kg).
This coincideswith the Dalradianmetamorphic rocks of Co. Tyrone, and the organic-rich and pyritised
Carboniferous rocks of Co. Fermanagh. In Co. Tyrone, highest correlation values (r values = 0.44–0.69)
are associated with the As-bearing Devonian Shanmullagh Formation in the Fintona Block, along with
the broader zone of As anomalies across the Fintona Block suggested as response to glacial dispersion
of materials (GSNI, in preparation).

4.5.2.2. Investigating incidences of NM squamous skin cancer and radon. Findings from GWR analysis
correspond with the occurrence of high ASIRs for skin cancer for both male and females in the
southwest of Northern Ireland. Highest correlation values are found for wards in this area between
NM squamous skin cancer and maximum risk band for radon (Fig. 3d; r values = 0.54–0.74).
This correlates with proximity to the south coastal areas but also with the mountainous area
of the Mournes. Largest intercept values (Fig. 3e) are observed in county Armagh and through
central Northern Ireland. This suggests incidences of NM squamous skin cancer vary in these areas
irrespective of radon levels. The standard errors for NMskin-squamous cancer (1993–2006) and radon
show that over- and underpredictions are randomly distributed (Fig. 3f).

5. Discussion

Soil geochemistry concentrations in shallow soils in Northern Ireland reveal elevated Ni and Cr
concentrations across a significant area of the Antrim Plateau (Barsby et al., 2012). These levels
exceed the current UK soil guidelines values (SGVs) for Ni in soils (EA, 2009b). On the basis of total
concentration, these elevated Ni and Cr concentrations would cause concern for human health risk
assessment. Bioaccessibility testing by Barsby et al. (2012) indicated that the PTEs of Ni (Fig. 1d) and
Cr in basaltic lavas of the Palaeogene Lava Group are not readily bioaccessible and as a result do not
present a risk to human health. Results from Moran’s I cluster analysis and GWR did not indicate a
correlation between the PTEs of Ni and Cr and the disease data studied in this research.

Studies have indicated a link between stomach cancer and exposure to Pb, As, Cd and Zn,
although these studies did not account for quantitative data on smoking (Selevan et al., 1985; Fu and
Boffetta, 1995). The strongest relationship indicated in this study for stomach cancer was observed
with As for wards in South Armagh. Very high (>43.7 mg/kg) concentrations of As are recorded
in soils over the Hawick Group of Co. Armagh and Co Down, possibly reflecting the presence of
Late Caledonian lamprophyre dykes or veinlets of galena following cleavage planes in the bedrock
(GSNI, in preparation). High levels of bioaccessible As (Fig. 1f; BAF %) were found to be associated
with the metasediments of the Gala Group of the Southern Uplands-Down Longford Terrain (Barsby
et al., 2012). GSNI (in preparation) record that no anthropogenic influence on the concentration or
distribution of soil As has been observed for Northern Ireland. PTE concentrations of Cd, Zn and Pb
show outlier areas which exceed the respective SGV value but these do not closely correspond to
specific lithological and pedological associations. Results for Pb, Cd and Zn from this study did not
show any clear relationship with disease data. A potential relationship between stomach cancer and
elevated levels of bioaccessible As in soils overlying the Hawick and Gala Groups of the Southern
Uplands-Down Longford Terrain is very tentative and requires more further research.

Previous research has strongly indicated that exposure to radon is associated with an increased
frequency of lung cancer. Although mining sources create greatest levels of exposure, low level radon
exposure in the home environment is thought to account for approximately 10% of lung cancers
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Fig. 3. GWR results for Stomach cancer data (1993–2006) and arsenic (mg/kg) (A) correlation value; (B) intercept and (C)
standard error; GWR results for NM Squamous Skin cancer (1993–2007) and radon (D) correlation value; (E) intercept and (F)
standard error.
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(Belpomme et al., 2007) with the duration of the exposure being generally longer (Bofetta, 2004).
Autier (2007) describes howmost of the ionising radiation affecting humans originates frommedical
X-rays and background radiation including cosmic radiation and terrestrial radiation from radon
decay products. Levels of exposure to radon in the range of 1000 Bq/m3 or more have been associated
with lung cancer (Autier, 2007). Granitoid parent rocks have been linked to increased radionuclides in
drinkingwater. InNorthern Ireland, soils overlying granite bedrock of theMourneMountains Complex
show the highest U values (>5.5 mg/kg). The spread of U anomalies from granite bedrock onto Lower
Palaeozoic outcrop have been attributed to river drainage patterns and glacial overprinting accounting
for the distribution of elevated U soil concentrations to extend from the Eastern Mournes Complex
onto the Hawick Group near Annalong in southeast Co. Down (GSNI, in preparation). The mapped
total airborne radiation shows a comparable spatial distribution to mapped U soil concentrations
with highest U values corresponding to elevated gamma radiation dosage from granite bedrock of
the Mournes Complex, Co. Down. The association between lung cancer and radon is not evident from
the findings of this research. Results from Moran’s I cluster analysis for lung cancer data concur with
previous findings by Donnelly and Gavin (2007) in that clusters of high incidences of lung cancer
reflect more deprived areas linked to higher levels of tobacco use within Northern Ireland. GWR
analysis in the current research showed a pattern of low but significant correlation between radon
and NM squamous skin cancer for both sexes in the Southeast of Northern Ireland. This correlates
with proximity to the south coastal areas but also with the mountainous area of the Mournes. Results
for basal skin cancer do not showanobvious association observedwith radon concentrations. Previous
research (Boyle et al., 2003; Quinn et al., 2005; Gavin et al., 2012), encompassing data on skin cancer
from the Republic of Ireland and the NICR, concurs with higher levels of skin cancers found for coastal
areas. The results also showed that affluence was a key indicator confirming research undertaken
previously by NICR in 2001.

Hoey et al. (2007) describe how the incidence of skin cancer, both melanoma and nonmelanoma
skin cancer, is rising and stress the importance of an evaluation of trends in skin cancer to allow
better planning of the future development of skin cancer services (NICE). Previous studies have
noted an association between radon emission and NM skin cancers. Etherington et al. (1996) studied
incidences of 14major cancers in Devon and Cornwall in relation to local radon levels. They found that
incidence rates for cancers were similar across all domestic radon categories, including the results
for lung cancer where radon had been claimed to be a risk factor. The exception was found to be
NM skin cancers where the rate of incidence was found to be elevated in high-radon areas. Similar
findings relating high radon levels with skin cancers have been reported in the literature by Eatough
and Henshaw (1991, 1992) and Sevcova et al. (1978). Eatough and Henshaw (1992) calculate the
theoretical dose of radiation received at the basal layer of the skin as 2.5 mSv/year for the population
average radon concentration of 20 Bq/m3.

The findings from this research suggesting an association between elevated radon areas and NM
squamous skin cancer are by no means conclusive but may indicate that further work in this area is
warranted to confirm or refute this apparent relationship.

6. Conclusions

This research explores the relationship between environmental exposure to potentially toxic
elements in soil and cancer disease data across Northern Ireland. As such this work is part of the
multidisciplinary field of science that has been termed medical geology examining the relationship
between the geological environment and health issues in humans. The study therefore adds to the
breadth of previous work in this field and more specifically provides a spatial framework that has
not been fully exploited within this area to date. There are several ways to approach the influence of
occupational and environmental exposures on cancer incidence. This research addresses the spatial
distribution of exposure to diseases through geocoded incidences of cancers and the lithological and
pedological associations of potentially toxic elements through soil geochemistry. The incidence of
twelve different cancer types (lung, stomach, leukaemia, oesophagus, colorectal, bladder, kidney,
breast, mesothelioma, melanoma and non melanoma skin cancer both basal and squamous, were
examined in the form of twenty-five coded datasets comprising aggregates over the 12 year period
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from 1993 to 2006. Through the use of GIS and geostatistical techniques the spatial relations
between these epidemiological, soil and geological data types have been investigated. In addition,
the fraction of the PTEs of the soil that are bioaccessible or soluble in the gastrointestinal tract have
been considered to further refine the relationship between trace element abundance and human
epidemiology in Northern Ireland.

Local Moran I analysis identified clustering of wards with high and low incidences of the different
cancers and outlierwards of high or low incidences surrounded bywards exhibiting very different dis-
ease statistics. The use of GWR allowed this analysis to be taken further and enabled the relationship
between different cancers and PTEs in the soil and radon to be investigated. The results show compar-
isons of the geographical incidence of certain cancers (stomach cancer and NM squamous skin cancer)
in relation to concentrations of certain PTEs (arsenic levels in soils and radon were identified). As ac-
knowledged by previous studies it is important to bear in mind that the spatial variation observed in
the incidences of the different cancer diseases included in this study, does not mean that the spatial
location itself causes the cancer. The influence of socio-economic differences and lifestyle factors in
the population of Northern Ireland need to be taken into account in assessing any associations found.
This is an area that has the opportunity for further work within this research. Findings from this work
have implications for regional human health risk assessments.
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