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Gender Classification via Lips: Static and

Dynamic Features

Darryl Stewart, Adrian Pass, Jianguo Zhang

Abstract

Automatic gender classification has many security and commercial applications. Various modalities

have been investigated for gender classification with face-based classification being the most popular.

In some real-world scenarios the face may be partially occluded. In these circumstances a classification

based on individual parts of the face known as local featuresmust be adopted. We investigate gender

classification using lip movements. We show for the first timethat important gender specific information

can be obtained from the way in which a person moves their lipsduring speech. Furthermore our study

indicates that the lip dynamics during speech provide greater gender discriminative information than

simply lip appearance. We also show that the lip dynamics andappearance contain complementary

gender information such that a model which captures both traits gives the highest overall classification

result. We use Discrete Cosine Transform based features andGaussian Mixture Modelling to model lip

appearance and dynamics and employ the XM2VTS database for our experiments. Our experiments show

that a model which captures lip dynamics along with appearance can improve gender classification rates

by between 16-21% compared to models of only lip appearance.

I. I NTRODUCTION

The ability to automatically classify an individual according to gender holds potential for a wide range

of commercial applications. For example it may be desirableto tailor automatic advertisements according

to the individuals gender or perhaps restrict access to gender specific facilities. It may also be used as part

of an automatic census system or in security/surveillance related applications. For instance CCTV systems

have become widely deployed in the monitoring of passengerson travel networks. Despite this increase

in the use of CCTV, the impact on anti-social and criminal behavior has been minimal. Passenger assaults

on trains and buses are still a major problem for transport operators. This is largely due to the fact that
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there is too much CCTV footage to be monitored in real-time by human security operatives. Automatic

gender profiling is seen as one of the fundamental tasks for intelligent surveillance on a CCTV system

as it may help an automatic system determine the potential threat posed to or by certain individuals or

groups of individuals.

With these applications in mind and with improvements in computational ability and classification

algorithms there has been a good deal of recent interest in visual based automatic gender classification

systems. Much of the work has been concerned with full faces [1] [2] [3] [4], though promising results

have also been obtained using alternative representationssuch as gait [5] or full body images [6] and

even hands [7]. It is understood however that individuals under surveillance by CCTV are not always

cooperative (knowingly or unknowingly) and it may be difficult to capture certain traits cleanly in video

footage. For instance a person’s face may be partially occluded by sunglasses and/or a hat. In such

circumstances it would be inadvisable to base the classification on their whole face and instead only

the unoccluded parts of the face should be used. Indeed, in many real-world scenarios it may be most

effective to use a fusion of various classifiers using different traits as they are captured over time as in

[8]. For such a system to work there needs to be an understanding of how effective the various parts of

the face can be in determining a persons gender.

A. Gender classification from face-parts

While there have been numerous studies on face recognition there have been many fewer studies focused

on gender recognition by using faces and even fewer studies on using individual face parts for gender

recognition. One comprehensive study into the efficacy of thestatic appearance of various facial features

for gender classification can be found in [9]. In that work, theauthors compare the performance of the

mouth, chin, nose, eyes, full face and inner/outer faces using still images from both the FERET [10] and

XM2VTS databases for a number of different classifiers. Dimensionality reduction was performed using

Principal Component Analysis (PCA). Although the work reports conflicting results as to the superior

individual facial feature, it is nonetheless the mouth and eyes that perform consistently well providing

results comparable to that of the global facial features. Although no dynamic information is considered,

the work clearly demonstrates that mouthappearancecontains significant discriminatory information.

In [11] the authors combine head and mouth movement with facial appearance using a bespoke video

dataset in a what we classify as aspeaker-dependentgender classification task. By speaker-dependent
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we do not mean that the same data has been used for training andtesting the system, we mean that

the system has been trained using data for a specific set of speakers and then tested using new data

for the same set of speakers. Head and mouth movement is accounted for using normalised tracking

coordinates along with mouth width and height parameters, whilst facial appearance is encoded using

a PCA basedeigenfaceapproach. Modelling is performed using Gaussian Mixture Models (GMMs) for

the individual subsystems followed by a score fusion step. No results are given for mouth features alone,

though it is clearly demonstrated that they provide additional information complementary to the other

modalities. It is to be noted that due to the way in which the GMM handles multiple frames or samples,

the final classification decision can be considered a form ofmajority votingof the individual scores from

each static video frame when used in this way. In contrast, the authors of [12] attempt to capture the

dynamics of the speakers entire face by extracting spatio-temporal, Local Binary Pattern (LBP) features

which make use of widthX, heightY and timeT such that the feature transformation is applied over

three orthogonal planesXY , XT andY T . Using Support Vector Machines (SVMs) the authors compare

the gender classification performance of this spatio-temporal approach to a spatial only LBP approach

with majority voting, for both speaker dependent and independent paradigms. They show that full facial

dynamic information can be beneficial tospeaker-dependentgender classification. However they also

conclude that such features can be detrimental in the speaker-independent scenario, and that static only

features may be superior when considering the full face.

In this work we wish to investigate whether the dynamic movements of the mouth hold gender specific

information which could benefit a gender classification systembeyond the mere static appearance of the

lips. Unlike the work in [11] we are focusing on aspeaker-independenttask where the people being

classified are not used in the training data. This is a significantly different and more challenging problem

which is more closely related to the real-world scenarios discussed above where an unknown individual

needs to be classified. Also unlike the work in [12] we are focusing purely on the mouth region of the

face rather than the full face as again we are interested in the efficacy of the mouth region for applications

where the face is partially occluded.

To be very clear, in this work it is not our intention to propose the lips as a better form of gender

biometric than the full face or even other parts of the face. Instead we are specifically focusing on the

utility of dynamic lip movements in conjunction with staticlip appearance for applications where the
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face may be partially occluded. As far as we are aware this is the first attempt at performing gender

classification usingsolely lip dynamics for a speaker-independent task. Therefore one of the important

outcomes of this work is a baseline for comparison by others who perform similar experiments on the

widely used XM2VTS database [13].

The rest of the paper is organised as follows. In Section II we describe the methods which have been

proposed for modelling lip movements in other related worksand describe the approach taken in this

work in detail. In Section III we present the experimental results and finally a summary and concluding

remarks are given in Section IV.

II. L IP MODELLING FRAMEWORK

Petajan [14] showed that visual information derived from a speakers lip movements may be used as

an additional modality in Automatic Speech Recognition (ASR)systems, improving robustness to the

effects of noise corruption in the audio. It has since been found that complementary speaker specific

information also exists in these lip movements, allowing the creation of robust multi-modal speaker

identification/verification systems [15] [16]. Additional dynamic modalities such as this make it much

more difficult for an impersonator attempting to fool the system, whilst the use of individual facial features

can improve robustness to partial facial occlusions such assunglasses, or a shadow cast by headgear.

Speech and speaker recognition using lips are analogous problems to the one we are investigating in this

paper and so we can learn a great deal about how to capture and model the appearance and dynamics

of the lips by examining the features and model types used forthose problems.

A. Lip Features

Lip features are usually extracted from the video frames using a process similar to that shown in Figure

1. Depending on the content of the video (i.e., does it contain more than one speakers face), it may be

necessary to start with a face detection stage which returnsthe most likely location of the speakers face

in the video frame. The consecutive stages of face localization and mouth localization provide a cropped

image of the speakers mouth.

The lip parameterization stage may be geometric based or image transform based. Petajan’s original

system [14] is an example of geometric based feature extraction which used simple thresholding of the

mouth image to highlight the lip area, and then measurementsof mouth height, width and area were
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Fig. 1. The general process of visual feature extraction.

taken from that. Since then many approaches have been developed which exploit our knowledge of the

shape of a human mouth to fit more complex models to speaker’s mouths [17]–[19].

Whereas geometric methods utilize knowledge of the structure of the human mouth to extract features

which describe its shape, image transform methods attempt to transform the image pixel values of each

video frame into a new lower-dimensional space, which removes redundant information and provides bet-

ter class discrimination. As with geometric-based approaches, there have also been numerous studies using

different image transform methods. These methods include Discrete Cosine Transform (DCT) [20]–[22],

Discrete Wavelet Transform (DWT) [23], Principal Component Analysis (PCA) [20], Linear Discriminant

Analysis (LDA) [24].

In [20] Potamianos et al. give a comparison of DCT, DWT, Walsh,Karhunen-Lòeve transform (KLT)

and PCA transforms and concludes that the DWT and DCT transforms are preferable to other transforms

such as PCA which require training. They also tested the features under several noisy video conditions

including video field rate decimation, additive white noise and JPEG image compression and showed

that image transform based features are quite robust to these conditions. Other similar studies [25] have

drawn the same conclusion on the effectiveness of DCT features for modelling the appearance of the lips

and based on this we will be applying the DCT transform to extract features of the static lip appearance

in each video frame. A common and widely accepted approach for estimating dynamic features of the

lips has been to calculate the first and second order derivatives of the static features which correspond

to the velocity and acceleration of the DCT components and these will be the dynamic features we will

be applying in our work.

We follow a standard Discrete Cosine Transform (DCT) based feature extraction process which has

been shown to be state of the art for visual speech recognition [25]. Following mouth region of interest

(ROI) cropping using the mouth tracking coordinates supplied with the dataset detailed in section III-A,
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Fig. 2. From left to right: original lip image, sub sampled 16×16 ROI, DCT output showing 5×5 triangle coefficient selection.

the video frames were then converted to greyscale, sub-sampled to 16 by 16 pixels and a 2D DCT applied.

The top 15 high energy coefficients were taken for each frame in azigzag pattern from the top left of

the DCT to create the per frame static feature vector. Figure 2illustrates this approach.

At this point, where used, 1st and/or 2nd order derivative features were calculated across each session,

corresponding to velocity and acceleration of DCT components, and concatenated to make the total feature

vector. In this work we consider all 7 concatenations of static and 1st/2nd order derivatives. Finally the

features were mean and variance normalised across each session individually.

B. Lip Models

In the visualspeechrecognition domain it is common to employHidden Markov Models(HMMs)

to model each unit of speech (i.e., the words or sub-word units known as visemes). Each HMM uses a

number of states to model temporal changes in the signal, andeach state uses aGaussian mixture model

(GMM) with a small number of mixtures to model visual variation in the features [25]. In the visual

speakerrecognition domain, where the aim is to model the speaker independently of the text which is

spoken, each individual speaker can be modeled using a single GMM with typically a very large number

of mixtures [26]. Our intention in this work is to model purely the characteristics of the two genders

independent of the specific content of the speech. In that way the system will be able to classify the

persons gender regardless of the words they speak. Therefore, our problem can be viewed as analogous

to the speaker recognition problem where in this case we haveonly two identities to model, i.e. male

and female. Therefore we will model each identity, i.e. gender, using a single GMM to capture all the

variation in the features for that gender.
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We adopt the following GMM approach to modelling the two gender classes, with a likelihood function

of the form;

p(o|λ) =
∏

t

K∑

k=1

wtkgtk(ot) (1)

The summation is over allk mixture components of Gaussiang with corresponding weightsw, whilst

the product over timet allows for variable length observation sequences. The classified gender of a

particular sequenceo can then be found as the model emitting the highest accumulative log-likelihood,

i.e.

argmax
λ∈{λmale,λfemale}

p(o|λ) (2)

All GMMs in this work used 64 mixture components, this being found optimal during preliminary

testing, with a diagonal covariance matrix. Models were initialized by uniformly segmenting training

utterances, followed by training via Expectation-Maximisation (EM).

III. E XPERIMENTAL SETUP

A. Database

In order to set a baseline for comparison by others, this workutilises the Lausanne protocol of the

publicly available XM2VTS dataset [13]. The dataset consistsof 295 subjects split into 158 males and

137 females, uttering the digits 0 (’zero’) to 9, with each subject uttering 20 digits per session over 8

sessions, providing 160 digits per subject in total. 109 males (872 sessions) and 91 females (728 sessions)

were used for training, with the remaining 49 males (392 sessions) and 46 females (368 sessions) used

for testing. Some sample images form the database can be seen in Figure 3 For the baseline results,

each session of 20 digits is considered to be a single training or testing sample. However we also

provide results using individual digits in order to investigate the efficacy of different mouth movements

for gender classification. Audio Hidden Markov Models (HMMs)were trained for each individual digit

using TIDGITS [27] audio data and the Hidden Markov Toolkit (HTK) [28], enabling forced alignment

to be performed on the audio from XM2VTS. Where gaps between digits were calculated, start and

end points of digit boundaries were extended to fill these gapsin order to capture visual lip transitions

between digits. The process is illustrated in Figure 4
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Fig. 3. Example full head shot video frames from XM2VTS dataset

Fig. 4. Process used to isolate individual digits in the XM2VTS database

1) Facial hair: We felt it important in our experiments to isolate and investigate the effect that facial

hair had on the performance of the classifier. Therefore we manually inspected and annotated each male

video session in which the speaker had visible facial hair. We found there to be 216 sessions in the

training data and 148 sessions in the testing data, containing facial hair. Figure 4 shows some example

video frames from each set of data. To ensure that our experiments ascertained the gender classification

performance of lip movement alone, a second train-test split was also created by omitting these utterances

leaving 88 different males for training and 32 for testing, spanning 656 and 244 sessions respectively.

B. Speaker Identification/Speaker-Dependent Gender Classification

Prior to testing our modelling approach for the speaker-independentgender classification problem we

initially ran some preliminary experiments to verify that the DCT lip features and GMM models were

capable of capturing the lip appearance effectively. To do this we carried out some speaker identification

experiments using the same features and models. We trained aGMM for each speaker in the XM2VTS

database using 6 sessions and then used the remaining 2 for test purposes. We repeated these experiments

6 times using different combinations of static DCT featuresand 1st/2nd order derivatives.
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Fig. 5. Example video frames from XM2VTS dataset. Top: Males annotated with facial hair. Middle: Males annotated without
facial hair. Bottom: Females.

The results are shown in Table I. It can be seen that in all casesthe identification rates are very high

which verifies that the DCT features and GMM modelling approach is effective in capturing the variations

in lip appearance for each speaker. It can also be seen that the addition of dynamic features improved

recognition accuracy significantly. Adding∆ features reduced the error rate by approximately 50%.

Adding ∆∆ features improved it further but the improvement was much smaller. It is worth noting that

∆ features on their own outperformed static features on theirown. This suggests that most of the useful

discriminatory information is coming from the actual lip movements rather than the static appearance of

the lips and mouth.

When the specific errors made by the system were examined it wasfound that none of the misclassifica-

tions crossed gender boundaries, i.e. no males were misreocgnised as females or vice versa. Therefore, if

we consider these tests as speaker-dependent gender classification tests then a 100% gender classification

accuracy was achieved. Again this is further verification that DCT features and GMMs are suitable for

this application.
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TABLE I
SPEAKER IDENTIFICATION ERRORRATE OF DCT FEATURES USING DIFFERENT COMBINATIONS OF STATIC AND DYNAMIC

FEATURES.

Static ∆ ∆∆ Identification Rate(%)
• 97.59

• 98.80
• 95.70

• • 98.80
• • 97.77

• • • 98.97

Given that this was on a set of 295 speakers (158 males/137 females) these results compare very

favourably with other similar speaker-dependent studies such as in [11] where 96.2% accuracy was

achieved on a considerably smaller data set consiting of 13 speakers.

C. Speaker-Independent Gender Identification

In this section and in all the remaining sections we report results for the speaker-independent gender

classification task which we view as being most useful for real-world applications, as explained in Section

I. For this, we trained GMM models for each gender as described in Section II,B.

Tables II and III show the gender identification rates achieved for the full dataset and the subset

omitting facial hair respectively, using all 7 combinations of static, 1st and 2nd order derivative (marked

∆ and∆∆) features. The results give both individual male/wfemale identification rates along with the

averaged identification rate. Averaging the score in this wayremoves any bias resulting from any uneven

split of male/female test utterances.

Comparison of the two tables clearly highlights the influenceof facial hair on classification scores,

particularly in the case of static and∆ features where the male recall rates are most affected by the

presence or absence of facial hair. Most of the male specific information appears to be contained within

the appearance based static features, even in the absence offacial hair. In contrast, the∆ only features

appear to provide more female specific gender information, i.e. complementary to the static features, and

so bias classification the other way. It is the∆∆ features that provide the best average accuracy when

comparing individual features in each case, also giving themost equal balance between male and female

recall rates. Interestingly the two orders of dynamic features appear to provide conflicting information
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TABLE II
IDENTIFICATION RATES (%) FOR ALL FEATURE COMBINATIONS ON FULL DATASET

Static ∆ ∆∆ Male Female Avg
• 83.93 73.70 78.81

• 79.59 81.64 80.62
• 80.36 81.92 81.14

• • 84.69 77.26 80.98
• • 81.63 76.71 79.17

• • 85.46 78.36 81.91
• • • 85.20 79.18 82.19

TABLE III
IDENTIFICATION RATES (%) FOR ALL FEATURE COMBINATIONS ON SUBSET DATA(NO FACIAL HAIR )

Static ∆ ∆∆ Male Female Avg
• 77.46 69.04 73.25

• 71.72 77.53 74.63
• 77.05 75.07 76.06

• • 78.28 76.44 77.36
• • 78.28 71.23 74.76

• • 81.97 74.79 78.38
• • • 83.20 75.07 79.13

when combined, as shown by the reduction in female recall rates. This would appear to indicate that some

form of decision fusion or feature weighting may be more appropriate than straightforward concatenation

of features. Nonetheless, it is the combination of static and dynamic features that provides the best overall

classification score of 82.19% for the full dataset.

To further illustrate the effect of lip movement on gender classification, figure 6 shows the gender

classification performance when classification is performed based on shorter utterances containing only

one digit and using combined static and∆ features. Results are given as raw accuracies and were

obtained using two different models. Firstly the GMMs from the previous experiments which were

trained using utterances containing all digits were used and secondly, new GMMs trained only on the

same corresponding digit were also used, i.e. a GMM was trained on utterances only containing the digit

‘one’ and then tested on utterances containing only the digit‘one’. Although the latter approach appears
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Fig. 6. Gender classification performance of individual digits, using alldigits model and individual digits’ models, showing
average duration of each digit (video frames)

superior, the general trends across digits remain the same and it is the digits that require the most extensive

lip/mouth movements that provide the highest overall accuracies. In particular digits‘zero’ and ‘seven’

which each contain 2 syllables, along with the digit‘two’ which generally requires a significant pursing of

the lips appear to contain the greatest gender specific content. In contrast the digit‘nine’ which is mostly

articulated within the mouth cavity, thus producing a predominantly neutral mouth shape, shows the

poorest classification performance. It is also worth noting from figure 6 that the duration of an utterance

bears very little correlation with classification accuracy,further suggesting dependence upon thecontent

of the utterance.

D. Speaker-Independent Gender Verification

As a second performance metric we also report results based on a genderverification task using

the Receiver Operating Characteristic (ROC) curve of each system. The log-likelihood scores of each

test utteranceo belonging to the male(λmale) and female(λfemale) models was obtained, and then a

normalised score was calculated by subtracting the female from the male scores;

P (onorm) = P (o|λmale)− P (o|λfemale) (3)

The gender classification then depends on a threshold value such that values ofP (onorm) exceeding

this threshold correspond to a male classification and valuesbelow correspond to female. From these

normalised scores we generated ROC curves depicting the True Positive Rate (TPR) and False Positive
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Rate (FPR) for a range of threshold values, and used the Equal Error Rate (EER) and Area Under the

Curve (AUC) for each curve as the performance measure. The EER isdefined as the point on a curve

where the accept and reject error rates are equal, i.e. whereit passes through the line FPR = 1-TPR where

1-TPR = False Negative Rate (FNR). A lower EER indicates a system with higher accuracy. The AUC

gives a measure of the discriminative ability of the system,i.e. the probability that a random positive

sample will produce a higher score than a random negative sample.

Figure 7 shows the ROC curves for the 3 individual feature types and the combination of all 3 using

the full dataset (incl. beards). For clarity only the shoulder of the curve is shown. In line with the recall

rates the static features alone give the lowest performance, providing the highest EER here of 21.1%.

The EER threshold indicates a bias toward male model log-likelihoods which is backed up by the higher

male idntification rates in both tables 2 and 3. In addition, the AUC appears to suggest that there may

be more of an overlap between male and female scores than those of the dynamic features giving lower

discriminative ability. The combination of all 3 feature types gives the lowest EER of 18.36%, however

the EER threshold again indicates a bias toward the male model log-likelihoods. The∆∆ features on

the other hand achieve a comparable EER of 18.63% at a much lowerthreshold value, whilst also giving

the highest AUC. This suggests that the dynamic features alone provide the most even distribution of

male/female scores with the most pronounced separation, thus potentially providing higher discriminative

ability than the static lip appearance and indeed the combination of features.

In order to provide some further insight into this last observation, we analysed the kurtosis of the

distributions for individual feature components from maleand female feature vectors separately. This

gave us a measure of the peakedness of their distributions. Ahigher kurtosis equates to a distribution

with a sharper peak about the mean, with most of the variance being caused by infrequent extreme values,

in contrast to a lower kurtosis where the variance lies in more frequent and modest values. The difference

between the kurtosis of corresponding feature components was calculated across male and female classes,

i.e. the female kurtosis was subtracted from the male kurtosis. Therefore a positive difference corresponds

to a higher male component kurtosis and vice versa. The results are shown in figure 8 for both static and

∆ features separately. Although more prominent in the∆ features, in the majority of cases the difference

is positive, showing that the male feature components generally form distributions with a higher kurtosis

than those of the females. Furthermore, given that all the speakers in the tests were saying exactly the



14

Fig. 7. ROC curves (shoulder only) for individual static/dynamic features and all 3 combined using full dataset (incl. beards).
Showing EERs, the thresholds at which EER occurs and AUCs.

same utterances, from the plots in figure 8 it appears that the male subjects generally exhibit a smaller

degree of lip movement and velocity during speech than the females with the exception of a few extremes.

IV. CONCLUSION & FUTURE WORK

Automatic gender classification of unknown individuals has avariety of potential commercial and

security related applications. In some applications wherea person’s face may be partially occluded by

sunglasses or headgear a gender classification system which uses the full face may not be appropriate.

For these challenging applications it is likely that a classification framework which combines the outputs

of a series of different classifiers would be used, for instance classifiers based on body shape and any

unoccluded facial parts. With these applications in mind, in this paper we focus on the problem of

gender classification of unknown people using only the mouth region of the face. The mouth region has
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Fig. 8. Difference between Kurtosis of DCT coefficients between male and female features. Top: static features, Bottom:∆

features

the advantage that it is often a part of the face which is left uncovered in order to aid communication. We

presented a lip modelling framework based on Gaussian Mixture Models and Discrete Cosine Transforms

which captures both the lip appearance and dynamics for males and females. This modelling approach

was shown to be highly effective in speaker-dependent gender classification experiments, giving 100%

accuracy on the large XM2VTS database. In our speaker-independent experiments it was shown that

the dynamics of speakers’ lips during speech provide more gender specific information than the static

appearance of the lips alone. This has been shown both throughanalysis of the features and the use of

sequences rich in lip movements. We have also shown dynamic and static features to be complementary

to one another in terms of the gender specific information theyrepresent, and that the highest overall

classification rates are achieved through their combination. To the best of our knowledge this is the
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first demonstration of the efficacy of lip dynamics themselves for gender classification on unknown

speakers. These results demonstrate that lip appearence anddynamics could be a useful additional

modality for automatic gender classification, particularlyunder conditions of partial facial occlusion.

Possible extensions to this work which we will be investigating in the future include an examination

of how the system performs under different illumination conditions and changes in the speaker’s pose.

We also will be investigating ways in which this work can be integrated with other modalities such as

audio-based gender classification for applications where both the video and audio stream is present.
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