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Gender Classification via Lips: Static and

Dynamic Features

Darryl Stewart, Adrian Pass, Jianguo Zhang

Abstract

Automatic gender classification has many security and cawialeapplications. Various modalities
have been investigated for gender classification with faased classification being the most popular.
In some real-world scenarios the face may be partially @®=ziu In these circumstances a classification
based on individual parts of the face known as local featurast be adopted. We investigate gender
classification using lip movements. We show for the first tiimat important gender specific information
can be obtained from the way in which a person moves theirdiptg speech. Furthermore our study
indicates that the lip dynamics during speech provide gregénder discriminative information than
simply lip appearance. We also show that the lip dynamics amgearance contain complementary
gender information such that a model which captures boitstgaves the highest overall classification
result. We use Discrete Cosine Transform based feature$andsian Mixture Modelling to model lip
appearance and dynamics and employ the XM2VTS databaserf@xperiments. Our experiments show
that a model which captures lip dynamics along with appesraan improve gender classification rates

by between 16-21% compared to models of only lip appearance.

. INTRODUCTION

The ability to automatically classify an individual accargdito gender holds potential for a wide range
of commercial applications. For example it may be desirabkailor automatic advertisements according
to the individuals gender or perhaps restrict access toagapkcific facilities. It may also be used as part
of an automatic census system or in security/surveillaalzed applications. For instance CCTV systems
have become widely deployed in the monitoring of passengersavel networks. Despite this increase
in the use of CCTV, the impact on anti-social and criminal b&rahas been minimal. Passenger assaults

on trains and buses are still a major problem for transpoetaiprs. This is largely due to the fact that



there is too much CCTV footage to be monitored in real-time bynén security operatives. Automatic
gender profiling is seen as one of the fundamental tasks felligent surveillance on a CCTV system
as it may help an automatic system determine the potenti@atiposed to or by certain individuals or
groups of individuals.

With these applications in mind and with improvements in patational ability and classification
algorithms there has been a good deal of recent interestsiravbased automatic gender classification
systems. Much of the work has been concerned with full fat&$2] [3] [4], though promising results
have also been obtained using alternative representasgiacts as gait [5] or full body images [6] and
even hands [7]. It is understood however that individualdeursurveillance by CCTV are not always
cooperative (knowingly or unknowingly) and it may be diffictd capture certain traits cleanly in video
footage. For instance a person’s face may be partially deduby sunglasses and/or a hat. In such
circumstances it would be inadvisable to base the classificatn their whole face and instead only
the unoccluded parts of the face should be used. Indeed, my me@l-world scenarios it may be most
effective to use a fusion of various classifiers using difiéreaits as they are captured over time as in
[8]. For such a system to work there needs to be an underamdihow effective the various parts of

the face can be in determining a persons gender.

A. Gender classification from face-parts

While there have been numerous studies on face recogriitgra have been many fewer studies focused
on gender recognition by using faces and even fewer studiessing individual face parts for gender
recognition. One comprehensive study into the efficacy ofsthéc appearance of various facial features
for gender classification can be found in [9]. In that work, thehors compare the performance of the
mouth, chin, nose, eyes, full face and inner/outer facasgusiill images from both the FERET [10] and
XM2VTS databases for a number of different classifiers. Dinmradity reduction was performed using
Principal Component Analysis (PCA). Although the work reparonflicting results as to the superior
individual facial feature, it is nonetheless the mouth apdsethat perform consistently well providing
results comparable to that of the global facial featurethdlgh no dynamic information is considered,
the work clearly demonstrates that mowthpearancecontains significant discriminatory information.
In [11] the authors combine head and mouth movement withafagpearance using a bespoke video

dataset in a what we classify asspeaker-dependemgender classification task. By speaker-dependent



we do not mean that the same data has been used for trainintestmy the system, we mean that
the system has been trained using data for a specific set okesgeand then tested using new data
for the same set of speakers. Head and mouth movement isrdedofor using normalised tracking
coordinates along with mouth width and height parametefsistvfacial appearance is encoded using
a PCA baseatigenfaceapproach. Modelling is performed using Gaussian MixturedMe (GMMs) for
the individual subsystems followed by a score fusion steprésults are given for mouth features alone,
though it is clearly demonstrated that they provide addéldnformation complementary to the other
modalities. It is to be noted that due to the way in which theNbkiandles multiple frames or samples,
the final classification decision can be considered a formmajbrity votingof the individual scores from
each static video frame when used in this way. In contrast,atiithors of [12] attempt to capture the
dynamics of the speakers entire face by extracting spatiggbral, Local Binary Pattern (LBP) features
which make use of widthX, heightY and timeT such that the feature transformation is applied over
three orthogonal planeXY, XT andYT. Using Support Vector Machines (SVMs) the authors compare
the gender classification performance of this spatio-tealpgpproach to a spatial only LBP approach
with majority voting, for both speaker dependent and indeleat paradigms. They show that full facial
dynamic information can be beneficial tpeaker-dependergender classification. However they also
conclude that such features can be detrimental in the speadependent scenario, and that static only
features may be superior when considering the full face.

In this work we wish to investigate whether the dynamic moeata of the mouth hold gender specific
information which could benefit a gender classification sysbeyond the mere static appearance of the
lips. Unlike the work in [11] we are focusing on speaker-independenask where the people being
classified are not used in the training data. This is a significaifferent and more challenging problem
which is more closely related to the real-world scenaricsassed above where an unknown individual
needs to be classified. Also unlike the work in [12] we are fowipurely on the mouth region of the
face rather than the full face as again we are interesteckiefficacy of the mouth region for applications
where the face is partially occluded.

To be very clear, in this work it is not our intention to propate lips as a better form of gender
biometric than the full face or even other parts of the faostdad we are specifically focusing on the

utility of dynamic lip movements in conjunction with statip appearance for applications where the



face may be partially occluded. As far as we are aware thikasfitst attempt at performing gender
classification usingolely lip dynamics for a speaker-independent task. Therefore drieecimportant
outcomes of this work is a baseline for comparison by othdre merform similar experiments on the
widely used XM2VTS database [13].

The rest of the paper is organised as follows. In Section Il weerlee the methods which have been
proposed for modelling lip movements in other related waaksl describe the approach taken in this
work in detail. In Section Il we present the experimentautessand finally a summary and concluding

remarks are given in Section IV.

[I. LiP MODELLING FRAMEWORK

Petajan [14] showed that visual information derived from aasers lip movements may be used as
an additional modality in Automatic Speech Recognition (ASKR3tems, improving robustness to the
effects of noise corruption in the audio. It has since beamdothat complementary speaker specific
information also exists in these lip movements, allowing tireation of robust multi-modal speaker
identification/verification systems [15] [16]. Additional mlgmic modalities such as this make it much
more difficult for an impersonator attempting to fool the syst whilst the use of individual facial features
can improve robustness to partial facial occlusions suchuagjlasses, or a shadow cast by headgear.
Speech and speaker recognition using lips are analogoukeprsitio the one we are investigating in this
paper and so we can learn a great deal about how to capture aahel the appearance and dynamics

of the lips by examining the features and model types usethfuse problems.

A. Lip Features

Lip features are usually extracted from the video framesguaiprocess similar to that shown in Figure
1. Depending on the content of the video (i.e., does it cantadre than one speakers face), it may be
necessary to start with a face detection stage which rethmsost likely location of the speakers face
in the video frame. The consecutive stages of face locabzatnd mouth localization provide a cropped
image of the speakers mouth.

The lip parameterization stage may be geometric based oreirtragsform based. Petajan’s original
system [14] is an example of geometric based feature eiiraethich used simple thresholding of the

mouth image to highlight the lip area, and then measuremahtaouth height, width and area were
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Fig. 1. The general process of visual feature extraction.

taken from that. Since then many approaches have been dedeldnich exploit our knowledge of the
shape of a human mouth to fit more complex models to speakersh®o[17]-[19].

Whereas geometric methods utilize knowledge of the straabéithe human mouth to extract features
which describe its shape, image transform methods attemjpansform the image pixel values of each
video frame into a new lower-dimensional space, which resaeedundant information and provides bet-
ter class discrimination. As with geometric-based appneagcthere have also been numerous studies using
different image transform methods. These methods includerBie Cosine Transform (DCT) [20]-[22],
Discrete Wavelet Transform (DWT) [23], Principal Componemiadysis (PCA) [20], Linear Discriminant
Analysis (LDA) [24].

In [20] Potamianos et al. give a comparison of DCT, DWT, Walshthunen-L&ve transform (KLT)
and PCA transforms and concludes that the DWT and DCT tramsfare preferable to other transforms
such as PCA which require training. They also tested the featunder several noisy video conditions
including video field rate decimation, additive white noiseda]PEG image compression and showed
that image transform based features are quite robust te ttmwditions. Other similar studies [25] have
drawn the same conclusion on the effectiveness of DCT featior modelling the appearance of the lips
and based on this we will be applying the DCT transform toasttfeatures of the static lip appearance
in each video frame. A common and widely accepted approackedtimating dynamic features of the
lips has been to calculate the first and second order demgt¥ the static features which correspond
to the velocity and acceleration of the DCT components ardéeliwill be the dynamic features we will
be applying in our work.

We follow a standard Discrete Cosine Transform (DCT) basetufe extraction process which has
been shown to be state of the art for visual speech recogH@®]. Following mouth region of interest

(ROI) cropping using the mouth tracking coordinates sugapivith the dataset detailed in section IlI-A,



Fig. 2. From left to right: original lip image, sub sampledxi ROI, DCT output showing 65 triangle coefficient selection.

the video frames were then converted to greyscale, subiedrnpl6 by 16 pixels and a 2D DCT applied.
The top 15 high energy coefficients were taken for each frameZiyzag pattern from the top left of
the DCT to create the per frame static feature vector. Figutiigrates this approach.

At this point, where used, 1st and/or 2nd order derivatieduiees were calculated across each session,
corresponding to velocity and acceleration of DCT comptsieand concatenated to make the total feature
vector. In this work we consider all 7 concatenations ofistand 1st/2nd order derivatives. Finally the

features were mean and variance normalised across eacbnsiesividually.

B. Lip Models

In the visualspeechrecognition domain it is common to empldyidden Markov ModelfHMMSs)
to model each unit of speech (i.e., the words or sub-wordskribwn as visemes). Each HMM uses a
number of states to model temporal changes in the signaleackl state uses@aussian mixture model
(GMM) with a small number of mixtures to model visual variatiin the features [25]. In the visual
speakerrecognition domain, where the aim is to model the speakerpaddently of the text which is
spoken, each individual speaker can be modeled using a&dBigM with typically a very large number
of mixtures [26]. Our intention in this work is to model purethe characteristics of the two genders
independent of the specific content of the speech. In that Wwaysystem will be able to classify the
persons gender regardless of the words they speak. Thereforproblem can be viewed as analogous
to the speaker recognition problem where in this case we balyetwo identities to model, i.e. male
and female. Therefore we will model each identity, i.e. gendsing a single GMM to capture all the

variation in the features for that gender.



We adopt the following GMM approach to modelling the two gendasses, with a likelihood function

of the form;

K
p(o|A) = H Z Wik gtk (0t) QD)

t k=1
The summation is over alk mixture components of Gaussigrnwith corresponding weights, whilst
the product over time allows for variable length observation sequences. The itiedggender of a
particular sequence can then be found as the model emitting the highest accuwaillaig-likelihood,

i.e.

argmax  p(o|A) (2)
Ae{AnLalm)\female}

All GMMs in this work used 64 mixture components, this beiryrid optimal during preliminary
testing, with a diagonal covariance matrix. Models werdiatized by uniformly segmenting training

utterances, followed by training via Expectation-Maxintica (EM).

Ill. EXPERIMENTAL SETUP
A. Database

In order to set a baseline for comparison by others, this witises the Lausanne protocol of the
publicly available XM2VTS dataset [13]. The dataset considt295 subjects split into 158 males and
137 females, uttering the digits 0 ('zero’) to 9, with eaclbjeat uttering 20 digits per session over 8
sessions, providing 160 digits per subject in total. 109em&872 sessions) and 91 females (728 sessions)
were used for training, with the remaining 49 males (392ieas} and 46 females (368 sessions) used
for testing. Some sample images form the database can be rsdégure 3 For the baseline results,
each session of 20 digits is considered to be a single tginmntesting sample. However we also
provide results using individual digits in order to investie the efficacy of different mouth movements
for gender classification. Audio Hidden Markov Models (HMMggre trained for each individual digit
using TIDGITS [27] audio data and the Hidden Markov Toolkit (HT[R8], enabling forced alignment
to be performed on the audio from XM2VTS. Where gaps betweerisdigere calculated, start and
end points of digit boundaries were extended to fill these gamsder to capture visual lip transitions

between digits. The process is illustrated in Figure 4



Fig. 3. Example full head shot video frames from XM2VTS dataset
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Fig. 4. Process used to isolate individual digits in the XM2VTS database

1) Facial hair: We felt it important in our experiments to isolate and inigee the effect that facial
hair had on the performance of the classifier. Therefore we ainimspected and annotated each male
video session in which the speaker had visible facial haie. fdlnd there to be 216 sessions in the
training data and 148 sessions in the testing data, contafiaicial hair. Figure 4 shows some example
video frames from each set of data. To ensure that our expatgrascertained the gender classification
performance of lip movement alone, a second train-testwpl also created by omitting these utterances

leaving 88 different males for training and 32 for testingaisning 656 and 244 sessions respectively.

B. Speaker Identification/Speaker-Dependent Gender ditzgiin

Prior to testing our modelling approach for the speakdependengender classification problem we
initially ran some preliminary experiments to verify thaetDCT lip features and GMM models were
capable of capturing the lip appearance effectively. Tohde we carried out some speaker identification
experiments using the same features and models. We traiGdM for each speaker in the XM2VTS
database using 6 sessions and then used the remaining 3tfputposes. We repeated these experiments

6 times using different combinations of static DCT featusesl 1st/2nd order derivatives.



Bearded male

Beardless male

Fig. 5. Example video frames from XM2VTS dataset. Top: Males anrobtaith facial hair. Middle: Males annotated without
facial hair. Bottom: Females.

The results are shown in Table I. It can be seen that in all dhseglentification rates are very high
which verifies that the DCT features and GMM modelling apphoaeffective in capturing the variations
in lip appearance for each speaker. It can also be seen thatdidition of dynamic features improved
recognition accuracy significantly. Adding. features reduced the error rate by approximately 50%.
Adding AA features improved it further but the improvement was muchllem It is worth noting that
A features on their own outperformed static features on their. This suggests that most of the useful
discriminatory information is coming from the actual lip wemnents rather than the static appearance of
the lips and mouth.

When the specific errors made by the system were examined fiowad that none of the misclassifica-
tions crossed gender boundaries, i.e. no males were migrised as females or vice versa. Therefore, if
we consider these tests as speaker-dependent gendeficdtiosi tests then a 100% gender classification
accuracy was achieved. Again this is further verificatiort D&T features and GMMs are suitable for

this application.
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TABLE |
SPEAKER IDENTIFICATION ERRORRATE OF DCT FEATURES USING DIFFERENT COMBINATIONS OF STATIC AND DYNAMC

FEATURES
Static | A | AA | Identification Rate(%)

o 97.59

o 98.80

o 95.70

. ° 98.80

° ° 97.77

° ° ° 98.97

Given that this was on a set of 295 speakers (158 males/13@ldsjnthese results compare very
favourably with other similar speaker-dependent studigshsas in [11] where 96.2% accuracy was

achieved on a considerably smaller data set consiting ofpgakers.

C. Speaker-Independent Gender Identification

In this section and in all the remaining sections we repastilte for the speaker-independent gender
classification task which we view as being most useful for-vealld applications, as explained in Section
I. For this, we trained GMM models for each gender as desdribeSection II,B.

Tables Il and Il show the gender identification rates achdefa the full dataset and the subset
omitting facial hair respectively, using all 7 combinatoof static, 1st and 2nd order derivative (marked
A and AA) features. The results give both individual male/wfemalenidication rates along with the
averaged identification rate. Averaging the score in this vesyoves any bias resulting from any uneven
split of male/female test utterances.

Comparison of the two tables clearly highlights the influentdacial hair on classification scores,
particularly in the case of static anfl features where the male recall rates are most affected by the
presence or absence of facial hair. Most of the male specfficnivation appears to be contained within
the appearance based static features, even in the absefamabtair. In contrast, thé only features
appear to provide more female specific gender informatiencomplementary to the static features, and
so bias classification the other way. It is the\ features that provide the best average accuracy when
comparing individual features in each case, also givingnlest equal balance between male and female

recall rates. Interestingly the two orders of dynamic fesguappear to provide conflicting information
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TABLE I
IDENTIFICATION RATES (%) FOR ALL FEATURE COMBINATIONS ON FULL DATASET

Static | A | AA | Male | Female| Avg

. 83.93| 73.70 | 78.81
. 79.59| 81.64 | 80.62

e |80.36| 81.92 | 81.14

. ) 84.69| 77.26 | 80.98

. e | 81.63| 76.71 | 79.17
e | 8546 78.36 | 81.91
. e | 8520 79.18 | 82.19

TABLE 1l
IDENTIFICATION RATES (%) FOR ALL FEATURE COMBINATIONS ON SUBSET DATA(NO FACIAL HAIR)

Static | A | AA | Male | Female| Avg

° 77.46| 69.04 | 73.25

° 71.72| 77.53 | 74.63

e | 77.05| 75.07 | 76.06

° . 78.28| 76.44 | 77.36
o e | 78.28| 71.23 | 74.76

° e |81.97| 74.79 | 78.38
° ° ° 83.20| 75.07 | 79.13

when combined, as shown by the reduction in female recasradthis would appear to indicate that some
form of decision fusion or feature weighting may be more appate than straightforward concatenation
of features. Nonetheless, it is the combination of statit d@ynamic features that provides the best overall
classification score of 82.19% for the full dataset.

To further illustrate the effect of lip movement on gendeassification, figure 6 shows the gender
classification performance when classification is performasetl on shorter utterances containing only
one digit and using combined static add features. Results are given as raw accuracies and were
obtained using two different models. Firstly the GMMs frome threvious experiments which were
trained using utterances containing all digits were usedl secondly, new GMMs trained only on the
same corresponding digit were also used, i.e. a GMM wasedaim utterances only containing the digit

‘one’ and then tested on utterances containing only the thgit’. Although the latter approach appears
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BModels trained on all digits M Maodels trained on corresponding digit
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Fig. 6. Gender classification performance of individual digits, usingliglits model and individual digits’ models, showing
average duration of each digit (video frames)

superior, the general trends across digits remain the sathit ia the digits that require the most extensive
lip/mouth movements that provide the highest overall aacies. In particular digit&ero’ and ‘seven’
which each contain 2 syllables, along with the digito’ which generally requires a significant pursing of
the lips appear to contain the greatest gender specific dotetontrast the digitnine’ which is mostly
articulated within the mouth cavity, thus producing a predwantly neutral mouth shape, shows the
poorest classification performance. It is also worth notiogrf figure 6 that the duration of an utterance
bears very little correlation with classification accuraecyther suggesting dependence upon ¢batent

of the utterance.

D. Speaker-Independent Gender Verification

As a second performance metric we also report results basea genderverification task using
the Receiver Operating Characteristic (ROC) curve of eastes. The log-likelihood scores of each
test utterance belonging to the malé),,;.) and female(\ f..mq.) Models was obtained, and then a

normalised score was calculated by subtracting the fermala the male scores;

P(Onorm) = P(0|)\male) - P(OlAfemale) (3)

The gender classification then depends on a threshold vallretsat values ofP (0,.-,) €xceeding
this threshold correspond to a male classification and vabaéswv correspond to female. From these

normalised scores we generated ROC curves depicting thee Hositive Rate (TPR) and False Positive
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Rate (FPR) for a range of threshold values, and used the Equal Eate (EER) and Area Under the
Curve (AUC) for each curve as the performance measure. The EERfirsed as the point on a curve
where the accept and reject error rates are equal, i.e. wigmeses through the line FPR = 1-TPR where
1-TPR = False Negative Rate (FNR). A lower EER indicates a systeam higher accuracy. The AUC
gives a measure of the discriminative ability of the systém, the probability that a random positive
sample will produce a higher score than a random negativglsam

Figure 7 shows the ROC curves for the 3 individual feature sygued the combination of all 3 using
the full dataset (incl. beards). For clarity only the sheuldf the curve is shown. In line with the recall
rates the static features alone give the lowest performamroiding the highest EER here of 21.1%.
The EER threshold indicates a bias toward male model logikelils which is backed up by the higher
male idntification rates in both tables 2 and 3. In additiore, 8&JC appears to suggest that there may
be more of an overlap between male and female scores tha@ dtifidkse dynamic features giving lower
discriminative ability. The combination of all 3 feature gggives the lowest EER of 18.36%, however
the EER threshold again indicates a bias toward the male moddikelihoods. TheAA features on
the other hand achieve a comparable EER of 18.63% at a much tbreshold value, whilst also giving
the highest AUC. This suggests that the dynamic featuressghwovide the most even distribution of
male/female scores with the most pronounced separatios,pbtentially providing higher discriminative
ability than the static lip appearance and indeed the coatibim of features.

In order to provide some further insight into this last ola&pn, we analysed the kurtosis of the
distributions for individual feature components from maled female feature vectors separately. This
gave us a measure of the peakedness of their distributiorigglier kurtosis equates to a distribution
with a sharper peak about the mean, with most of the variaeicgyltaused by infrequent extreme values,
in contrast to a lower kurtosis where the variance lies inenfoequent and modest values. The difference
between the kurtosis of corresponding feature componesgscaiculated across male and female classes,
i.e. the female kurtosis was subtracted from the male kisctdbierefore a positive difference corresponds
to a higher male component kurtosis and vice versa. The seardtshown in figure 8 for both static and
A features separately. Although more prominent in shéeatures, in the majority of cases the difference
is positive, showing that the male feature components gélgdorm distributions with a higher kurtosis

than those of the females. Furthermore, given that all thaksgss in the tests were saying exactly the
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Fig. 7. ROC curves (shoulder only) for individual static/dynamic fezguand all 3 combined using full dataset (incl. beards).
Showing EERs, the thresholds at which EER occurs and AUCs.

same utterances, from the plots in figure 8 it appears that #le subjects generally exhibit a smaller

degree of lip movement and velocity during speech than tmalies with the exception of a few extremes.

IV. CONCLUSION& FUTURE WORK

Automatic gender classification of unknown individuals hasasiety of potential commercial and
security related applications. In some applications wteperson’s face may be partially occluded by
sunglasses or headgear a gender classification system wdgshthe full face may not be appropriate.
For these challenging applications it is likely that a diésstion framework which combines the outputs
of a series of different classifiers would be used, for ingaclassifiers based on body shape and any
unoccluded facial parts. With these applications in mindthis paper we focus on the problem of

gender classification of unknown people using only the moetjion of the face. The mouth region has
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the advantage that it is often a part of the face which is leftowered in order to aid communication. We
presented a lip modelling framework based on Gaussian kixtdodels and Discrete Cosine Transforms
which captures both the lip appearance and dynamics forsnaald females. This modelling approach
was shown to be highly effective in speaker-dependent gecidssification experiments, giving 100%
accuracy on the large XM2VTS database. In our speaker-imdiggme experiments it was shown that
the dynamics of speakers’ lips during speech provide morelgespecific information than the static
appearance of the lips alone. This has been shown both thrngalisis of the features and the use of
seqguences rich in lip movements. We have also shown dynamdictatic features to be complementary
to one another in terms of the gender specific information tlegyesent, and that the highest overall

classification rates are achieved through their combinaflonthe best of our knowledge this is the
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first demonstration of the efficacy of lip dynamics themselas dender classification on unknown
speakers. These results demonstrate that lip appearenceéyaadhics could be a useful additional
modality for automatic gender classification, particulamlyder conditions of partial facial occlusion.
Possible extensions to this work which we will be investigaitin the future include an examination
of how the system performs under different illumination ditions and changes in the speaker’s pose.
We also will be investigating ways in which this work can bégrated with other modalities such as

audio-based gender classification for applications whetk the video and audio stream is present.
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