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Abstract

With the goal of building an hierarchical design methodology for quantum-dot cellular automata

(QCA) circuits, we put forward a novel, theoretically sound, method for abstracting the behavior of

circuit components in QCA circuit, such as majority logic, lines, wire-taps, cross-overs, inverters,

and corners, using macromodels. Recognizing that the basic operation of QCA is probabilistic in na-

ture, we propose probabilistic macromodels for standard QCA circuit elements based on conditional

probability characterization, defined over the output states given the input states. Any circuit model

is constructed by chaining together the individual logic element macromodels, forming a Bayesian

network, defining a joint probability distribution over the whole circuit. We demonstrate three uses

for these macromodel based circuits. First, the probabilistic macromodels allow us to model the

logical function of QCA circuits at an abstract level – the “circuit” level – above the current practice

of layout level in a time and space efficient manner. We show that the circuit level model is orders

of magnitude faster and requires less space than layout level models, making the design and testing

of large QCA circuits efficient and relegating the costly full quantum-mechanical simulation of the

temporal dynamics to a later stage in the design process. Second, the probabilistic macromodels

abstract crucial device level characteristics such as polarization and low-energy error state configu-

rations at the circuit level. We demonstrate how this macromodel based circuit level representation

can be used to infer the ground state probabilities, i.e. cell polarizations, a crucial QCA parameter.

This allows us to study the thermal behavior of QCA circuits at a higher level of abstraction. Third,

we demonstrate the use of these macromodels for error analysis. We show that that low-energy state

configurations of the macromodel circuit matches those of the layout level, thus allowing us to isolate

weak points in circuits design at the circuit level itself.
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I. INTRODUCTION

Quantum-dot Cellular Automata (QCA) is an emerging technology that offers a revolutionary

approach to computing at nano-level [1]. What sets it apart is that it exploits, rather than treat as

nuisance properties, the inevitable nano-level issue of device to device interaction at nano-scales

to perform computing. Each cell consists of two electrons that can occupy four dots, resulting in

two ground states configurations, which can be taken to represent the logic states of zero or one.

Two or more cells interact by Coulombic interaction, with an arrangement of cells settling to the

lowest energy state. Since there is no flow of electrons involved, there is no need for traditional

interconnects, and it has potential for extremely low-power computing, even below the traditional

kT [2]. Both individual QCA cell (semi-conductor and metallic) and multiple QCA arrangement

have been fabricated and tested [3], [4]. Significant progress is also being made in using molecules

to implement QCAs [5], [6], which will make it possible to operate in room temperature, possibly

alleviating the initial criticisms of this technology. It will also connect the areas of molecular

computing and QCAs.

Time is ripe to look beyond just device level research in emerging devices and explore circuit

level issues so as to scope out the types of circuits that can be built [7], [8], [9], [10], [11], [12].

However, QCA modeling tools available for such designs have been at the layout level. There are

several approximate simulators available at the layout level, such as the bistable simulation engine

and the nonlinear approximation methods [13], [14], [15]. These methods are iterative and do not

produce steady state polarization estimates. In other words, they estimate just state assignments

and not the probabilities of being in these states. The coherence vector based method [16], [15]

does explicitly estimate the polarizations, but it is appropriate when one needs full temporal dy-
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namics simulation (Bloch equation), and hence is extremely slow; for a full adder design with

about 150 cells it takes about 500 seconds for 8 input vectors. Perhaps, the only approach that can

estimate polarization for QCA cells, without full quantum-mechanical simulation is the thermody-

namic model proposed in [17], but it is based on semi-classical Ising approximation. In [18], [19],

it was shown that layout-level QCA cell probabilities can be modeled using Bayesian probabilistic

networks.

To advance design with QCA, it is necessary to look beyond the layout level. Hierarchical

design at multiple levels of abstraction, such as architectural, circuit, layout, and device levels, has

been a successful paradigm for the design of complex CMOS circuits. It is only natural to seek

to build a similar design structure for emerging technology. Henderson et al. [20] proposed an

hierarchical CMOS-like top-down approach for QCA blocks that are analyzed with respect to the

output logic states; this is somewhat similar to functional logic verification performed in CMOS.

We also advocate building an hierarchical design methodology for QCA circuits. However, such an

hierarchy should be built based on not just the functionality of the circuit, but it should also allow

the abstraction of important nano-device parameters. It is not sufficient just to abstract a QCA

circuit in terms of 0-1 boolean logic based majority gates and other logic components, we have to

also represent the probabilistic nature of the operations. Thus, for each logic variable X , we have to

assign the probabilities associated with the logic values, i.e. P(X = 1) or P(X = 0). In the parlance

of QCA, the specific design variable is the “polarization” of cell, which is P(X = 1)�P(X = 0).

These probabilities (or polarizations), which are governed by quantum mechanics, are dependent

on temperature, which is an important design variable for QCAs that needs to be represented at

upper design levels. Another need for probabilistic representations arise due to the nature of the

QCA operations. QCA circuits are designed so that the intended logic is mapped to the lowest-

energy (ground state) of the cell arrangement. So, it is important that the circuit be kept near
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ground state during operations, using mechanisms such as four-phased adiabatic clocking. Logical

errors in QCA circuits can arise due to the failure to the settle to the ground state. It is important

to compute the difference between the probability of lowest-energy state configuration that results

in correct output and the lowest-energy state configuration that results in erroneous output. It

would indeed be useful to be able to compute these erroneous configurations at higher levels of

design. Building a device-level characterization sensitive macromodel will facilitate answering

the following kinds of questions at higher design levels of abstraction itself. What is expected

polarization of the outputs? How does it change with temperature? How sensitive is the design

with respect to operational errors?

In this work, we formulate a probabilistic framework for higher level of abstraction of QCA

circuits that would enable one to characterize designs with respect to thermal profiles and errors,

the two most important design issues in nano-circuit design. Standard QCA circuit elements such

as majority logic, lines, wire-taps, cross-overs, inverters, and corners are represented using con-

ditional probability distributions defined over the output states given the input states. The proba-

bilistic macromodels allow us to model QCA circuits at an abstract level above the current practice

of layout level; we term this higher level as the “circuit” level. The full circuit level model is

constructed by chaining together the individual logic element macromodels. This circuit repre-

sented using the graphical probabilistic models known as Bayesian networks, where the nodes of

the graphs are the individual macromodels and the links represent the connection between them.

The nodes are quantified by the macromodel conditional probabilities. The complete network rep-

resents a joint probability distribution over the whole circuit. Since conditional distribution over

the inputs and outputs are obtained based on quantum mechanical probabilistic characterization,

the circuit level model is also faithful to the underlying quantum-mechanical phenomena.

Computations using the macromodel translates to different kinds of probabilistic inference
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problems. For instance, computation of ground state polarization is done using the average like-

lihood propagation on the built Bayesian network macromodel. Similarly, the most-likely con-

figuration of the internal nodes corresponding to first-excited, also called near-ground state or the

most likely error state at the outputs, can be isolated at the macromodel circuit level itself using

maximum likelihood propagation on the same Bayesian network macromodel. We demonstrate

and validate our model using commonly studied QCA circuits and elements, whose behaviors are

pretty well understood by others. First, we show that the ground state polarization probabilities

of the output nodes as well as the intermediate nodes in the macromodel of the QCA logic circuit

closely match with those obtained from a full layout level implementation [18] at different tem-

peratures. We show examples of characterization of thermal behavior of a QCA logic circuit that

can be carried out. Second, we demonstrate that both the ground and the next excited (error) state

configuration of the macromodel exactly match the corresponding configurations of the detailed

layout cells. The mismatch between the ground and the next excited error state configuration can

be used to identify weak spots in circuit design. Using the macromodel, this can now be done at

an higher level of abstraction. Isolation of error-prone components would be useful in applying

redundancy selectively to the necessary components rather than to the whole circuit. Third, we use

the circuit level implementation to vet between alternate design choices. We show examples of this

design space exploration process with the example of two adders. We find that one adder design,

Adder-1, in spite of its larger area, is better in terms of polarization which is an extremely important

measure for the QCA circuits. Also, we see that for Adder-1, number of error-prone components

is less than a second adder design, Adder-2, and hence the needed redundancy measures would be

less for Adder-1.

The organization of this paper is as follows. In Section II, we begin by explaining the hier-

archical modeling scheme used in this work. Then we proceed in Subsection A to summarize the
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quantum-mechanical nature of the probabilities associated with the QCA cells. In Section II( B),

we show how an arrangement of QCA cells can be modeled by a joint probability function, rep-

resented as a Bayesian network. Further down in Section II( C) we present the theory behind the

macromodels. We demonstrate how using these macromodels we can (i) model full circuits Sec-

tion II( D), (ii) explore design space exploration in QCA circuit layouts (Section IV( C)), and (iii)

conduct error studies (Section III). We comment on the computational advantage of the circuit

level representation over the layout level one in Section IV and we conclude with Section V.

II. MODELING THEORY

In this section, we explain the hierarchical modeling scheme. We focus on two levels: the lay-

out level and the circuit level, where groups of QCA cells, corresponding to a basic logic element,

are represented as one macroblock. For both these levels, we will use the graphical probabilistic

model called Bayesian Networks to represent the underlying joint probability of the entire set of

nodes. Note that probabilistic representation is essential to capture the inherently uncertain nature

of the computing with QCAs.

Bayesian Networks[21] are efficient representations of the joint probability distribution over a

set of random variables using a Directed Acyclic Graph (DAG). Each random variable of interest

is represented as a node and links between the nodes denote direct dependencies (cause-effect

interactions) between the random variables. For our problem, the random variables are the states

of the QCA cells at the layout level or the I/O states of the macromodels. The links are guided

by the interaction neighborhood of the cells and the logical flow of information from inputs to

the outputs. For QCA circuits these cause-effect directions would be determined by direction

of propagation of quantum-mechanical information propagation with change in input. Clocks

determine the causal order between cells. Within each clock zone, ordering is determined by the

direction of propagation of the wave function [22]. Since the Coulombic interaction between cells
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Fig. 1. A NAND logic gate (a) QCA layout (b) Bayesian model of QCA layout (c) Macromodel block diagram (d)

Bayesian network of macromodel block diagram.

fall off faster than the fifth power of the distance between them, we need to consider links between

cells that are within a small neighborhood of each other, typically 2 cell distance.

In Fig. 1(a), we show the QCA layout of a NAND gate. Fig 1(b) shows the layout level

Bayesian representation. Note that we have 18 random variables representing the state of 18 QCA

cells. Fig. 1(c) shows the circuit level abstraction of a NAND gate. The Bayesian representation

of circuit level abstraction as shown in Fig. 1(d) has fewer cells. Note that each node at the circuit

level is the collection of cells from the layout level.

In this work, we will use X to represent the random variable denoting the states of a QCA cell

at the layout level (Fig. 1(b)). The input cell states will be denoted by X1; � � � ;Xr, the non-input

QCA cells will be Xr+1; � � �XN and Xs will denote one of the output cell where r + 1 � s � N.

Similarly for the circuit level, we will use Y to represent the random variable denoting the line

states. The Y1; � � � ;Yr are set of input cells, Yr+1; � � �YM are the non-input QCA cells and Ys denotes

one of the output cell where r + 1 � s � M.

The nodes of the Bayesian network are quantified by the conditional probabilities. At the lay-

out level, we need to specify the conditional probability of the state of a cell given the states of
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parent neighbors, i.e. P(xjpa(X)) where Pa(X) are the direct causes of the random variable X or

the parents of the node X in the directed graph representation1. We estimate this using the quan-

tum mechanical modeling of QCA cells. At the circuit level, we need to specify the conditional

probability of the output states of a macromodel given the states of the inputs, P(yjPa(Y)). These

conditional probabilities are estimated from the conditional probabilities for in the layout level

model of the QCA cells comprising the macromodel, at different temperatures.

In general, a Bayesian network encodes the joint probability function as a set of factored

conditional probabilities, of minimal representational complexity. Proof of minimality can be

found in standard Bayesian network texts such as [21].

P(x1; � � � ;xn) =

m

∏
k=1

P(xkjpa(xk)) (1)

In the conditional probability term P(xjpa(X)), pa(X) represents the values taken on by the parent

set, Pa(X).

Inference or computation with Bayesian networks exploits the sparsely connected graph struc-

ture. The most common schemes involve passing messages among the nodes. As we shall see, for

we will need to conduct both average case and maximum likelihood inferences. For both the av-

erage and maximum likelihood propagation, we adopt the cluster based exact inference scheme.

We refer the reader to [21], [23], [19] for details on the inference scheme. However, it suffices to

note that the propagation schemes are based on message passing and are similar, differing only in

the kinds of messages that are passed. The original Bayesian network, which is a DAG structure,

is first transformed into a junction tree of cliques and then marginal probabilities are computed by

local message passing between the neighboring cliques. These methods result in exact inference

of probabilities.

In the rest of this section, we provide details of the process. We start with discussion of the

1 We use lowercase to indicate value of a random variable. i.e. P(x) denotes the probability of the event X = x or P(X = x)
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macromodel construction process by the Bayesian network model at the layout level, which was

proposed in [19]. Then, we present the construction of the macromodels and circuit level Bayesian

representation.

A. Quantum Mechanical Probabilities

We sketch how the state probabilities of a QCA cell are dependent on the state probabilities

of its layout neighbors, distance to the neighbors, and temperature. Each cell has 2 electrons that

can occupy 4 possible dots. Among all the possible occupancy configurations, there are two lowest

energy configurations corresponding to the diagonal occupancy of the cells. These represent the

two logical states, 0 or 1. So, following Tougaw and Lent [22] and other subsequent works on

QCA, we use the two-state approximate model of a single QCA cell. We denote the two possible,

orthogonal, eigenstates of a cell by j1i and j0i. The state at time t, which is referred to as the wave-

function and denoted by jΨ(t)i, is a linear combination of these two states, i.e. jΨ(t)i= c1(t)j1i+

c2(t)j0i. Note that the coefficients are function of time. The expected value of any observable,

hÂ(t)i, can be expressed in terms of the wave function as hÂi = hΨ(t)jÂ(t)jΨ(t)i or equivalently

as Tr[Â(t)jΨi(t)hΨ(t)j℄, where Tr denotes the trace operation, Tr[� � �℄ = h1j � � � j1i+ h0j � � � j0i. The

term jΨ(t)ihΨ(t)j is known as the density operator, ρ̂(t). Expected value of any observable of a

quantum system can be computed if ρ̂(t) is known.

A 2 by 2 matrix representation of the density operator, in which entries denoted by ρi j(t) can be

arrived at by considering the projections on the two eigenstates of the cell, i.e. ρi j(t) = hijρ̂(t)j ji.

This can be simplified further.

ρi j(t) = hijρ̂(t)j ji

= hijΨ(t)ihΨ(t)j ji= (hijΨ(t)i)(h jjΨ(t)i)�

= ci(t)c
�

j(t)

(2)

The density operator is a function of time and using Loiuville equations we can capture the tem-
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poral evaluation of ρ(t) in Eq. 3.

ih̄ ∂
∂t

ρ(t) = Hρ(t)�ρ(t)H (3)

where H is a 2 by 2 matrix representing the Hamiltonian of the cell and using Hartree approx-

imation. Expression of Hamiltonian is shown in Eq. 4 [22].

H =

2

4

�

1
2 ∑i EkPi fi �γ

�γ 1
2 ∑i EkPi fi

3

5

=

2

4

�

1
2
EkP̄ �γ

�γ 1
2
EkP̄

3

5 (4)

where the sums are over the cells in the local neighborhood. Ek is the “kink energy” or the energy

cost of two neighboring cells having opposite polarizations. fi is the geometric factor capturing

electrostatic fall off with distance between cells. Pi is the polarization of the i-th cell. And, γ is

the tunneling energy between two cell states, which is controlled by the clocking mechanism. The

notation can be further simplified by using P̄ to denote the weighted sum of the neighborhood

polarizations ∑i Pi fi. Using this Hamiltonian the steady state polarization is given by

Pss
=�λss

3 = ρss
11 �ρss

00 =
EkP̄

q

E2
k P̄2

+4γ2
tanh(

q

E2
k P̄2

=4+ γ2

kT
) (5)

Eq. 5 can be written as

Pss
=

E

Ω
tanh(∆) (6)

where E = 0:5∑i EkPi fi, the total kink energy, Ω =

q

E2
k P̄2

=4+ γ2, the Rabi frequency, and ∆ =

Ω
kT

is the thermal ratio. We use the above equation to arrive at the probabilities of observing (upon

making a measurement) the system in each of the two states. Specifically, P(X = 1) = ρss
11 =

0:5(1+Pss
) and P(X = 0) = ρss

00 = 0:5(1�Pss
), where we made use of the fact that ρss

00+ρss
11 = 1.

B. Layout Level Model of Cell Arrangements

To enable us to form macromodels of various cell arrangements, we need to represent the joint

state probabilities of a collection of cells at the layout level. In this section, we summarize how this
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Fig. 2. Majority logic (a) QCA cell layout (b) Bayesian network model (c) Macromodel (d) Probability of the correct

output value for a 5 cell majority gate at different temperatures and for different inputs.

joint probability can be efficiently represented using Bayesian networks, as shown in [19], [18].

We will use the majority logic arrangement of QCA cells in Fig. 2(a) to illustrate the process.

Each cell is represented by a random variable, taking on two possible values, shown in the

Bayesian network in Fig. 2(b). Each node in the network has a conditional probability table (CPT),

capturing the probabilities of that node, given the states of the parent (cause) nodes. For example,

the center node X4, will be associated with the conditional probability P(x4jx1;x2;x3). The prod-

uct of these CPTs determine the joint probability distribution over all the variables in the network.

Thus, the joint probability P(x1;x2;x3;x4;x5) = P(x4jx1;x2;x3)P(x5jx4;x3;x2;x3). The polariza-

tion of the output cell X5 is a function of the remaining four cells in the layout. The center node X4

is actually the one which gets polarized based on the majority of inputs. The output cell depicted

here receives the polarization of the central cell X4 and also the three inputs, X1, X2, and X3. The

interaction between the output cell and the central cell will be much more than the inputs. This

is because the kink energy (which determines the amount of interaction between two neighboring

cells), decays as the fifth power of distance.

For a given set of possible parent node assignments, the conditional probability values are

computed using the Hartree-Fock approximation, applied locally. The parent states are constrained

to be as specified in the required conditional probability. We fix the children states (or polarization)
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so as to maximize Ω =

q

E2
k P̄2

=4+ γ2, which would minimize the ground state energy over all

possible ground states of the cell. Thus, the chosen children states are

ch�(X) = arg max
ch(X)

Ω = arg max
ch(X)

∑
i2(Pa(X)[Ch(X))

EkP̄ (7)

The steady state density matrix diagonal entries (Eq. 6 with these children state assignments are

used to decide upon the conditional probabilities in the Bayesian network (BN).

P(X = 0jpa(X)) = ρss
00(pa(X);ch�(X))

P(X = 1jpa(X)) = ρss
11(pa(X);ch�(X))

(8)

Note that once the conditional probabilities between the nodes and its parents are obtained the

Bayesian Network is quantified completely. Some of the important parameters used in this model

that effect the polarization of a cell apart from temperature are: relative permitivity = 12.9, radius

of effect = 4, cell dimension = 20nm, cell to cell pitch = 10nm, CLOCK HIGH = 6:1 � 10�2eV

and CLOCK LOW = 1:9 � 10�15eV .

C. Macromodel

The basic circuit elements of a QCA circuit consists of typical logic elements, such as Ma-

jority, NAND, AND, OR, and NOT, and QCA specific elements such as wires and crossbars. The

macromodels of different circuit elements are the conditional probability of output cells given the

values of the input cells. We compute this by marginalizing over the internal cells. The underlying

premise of the macromodeling is that if the joint probability distribution function P(x1; � � � ;xn) over

all the n cells in the layout is available, using the process outlined in the previous subsection B,

then we can always obtain the exact distribution over subset of cells by marginalizing the proba-

bilities over rest of the variables. For instance, the joint probability over just three cells, xi;x j; and

xk, can be obtained by

P(xi;x j;xk) = ∑
8xm;m 6=i; j;k

P(x1; � � � ;xn) (9)
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TABLE I

MACROMODEL DESIGN BLOCKS

Macromodel QCA Layout Bayesian Model Block Diagram Thermal Properties
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TABLE II

MACROMODEL DESIGN BLOCKS

Macromodel QCA Layout Bayesian Model Block Diagram Thermal Properties
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Hence, at the circuit level, we do not represent all the m internal cells. Note that at circuit level, we

only represent P(xi;x j;xk) and represent them with different variable Y , which essentially captures

the input-output dependence but is faithful to the layout level quantum interaction since the macro-

model is built by marginalizing the layout level cells. This marginalizing is achieved by conducting

average likelihood inference [21], [23] on the Bayesian network representation over all the cells in

the macromodel unit. Note that Eq. 9 will yield different results at different temperatures and we

store the conditional probabilities at various temperature points.

Fig. 2(d) shows the thermal models for the majority gate in Fig. 2(a). The macromodel proba-

bility distribution is defined over the output and the 3 input nodes. At a temperature of 1K, if inputs

are 0, 0 and 0 then the probability of output node is at state 0 is ”0.999963”. As the temperature is

increased, this probability decreases. We also notice that the thermal behavior is dependent on the

input values. Note that, for correct operation, the probability of correct output should be greater

than 0.5.

In the rest of this section, we present results for other basic building blocks: clocked major-

ity gate (Table. I(a)),inverter (Table. I(b)), line (Table. I(c)), corner (Table. I(d)), inverter chain

(Table. I(e)), even tap (Table. II(a)), odd tap (Table. II(b)), crossbar (Table. II(c)), AND gate (Ta-

ble. II(d)) and OR gate (Table. II(e)). For each macro-cell, we show the QCA layout, layout level

Bayesian model, circuit level input-output relation and magnitude of polarization drop with tem-

perature. All the conditional probabilities are stored at various point of temperatures.

We make three important observations. First, a clocked majority gate, which is necessary

to synchronize all the input signals reaching the majority gate, has weaker polarization at higher

temperature compared to the simple majority shown in Fig. 2(d) as number of cells are higher in the

clocked majority gate. Hence if inputs to a majority gate are arrive at the same time, then simple

majority yields better polarizations at higher temperatures. Second, inverters have larger drop of
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TABLE III

ABBREVIATIONS USED FOR MACROMODEL BLOCKS FOR DESIGNING QCA ARCHITECTURES OF FULL ADDERS

AND MULTIPLIER

Symbol Macromodel

Maj Simple Majority Gate
CM Clocked Majority Gate
Inv Inverter
Line Line Segment
CO Corner
IC Inverter Chain
OT Odd Tap
ET Even Tap
CB Crossover
AND And Gate
OR Or Gate
ZL z-line

polarization over the odd-tap structure at higher temperatures. Third, the crossbar structure, which

allows two signal to cross each other in a coplanar way, has a different drop for the two signals.

D. Circuit Level Modeling

Table III lists all the symbols used for macromodel design blocks that we have used in our

designs. A macromodel library stores the input-output characteristics (output node probabilities

for each input vector set) of each macromodel block based on temperature. That means for each

temperature, we have a library of macromodel blocks listed in the Table III. Once we know the

logic components required to build a circuit, we simply extract the macromodel logic blocks and

the required connectivity blocks (e.g. Line, Corner, Inverter Chain, etc.) from the library at a

given temperature and use them to build the logic circuit. We form a Bayesian macromodel using

the input-output probabilities of each block. The output from one macromodel block is fed to the

input(s) of next macromodel block.

We illustrate the process using the full adder circuit, Adder-1, shown in Fig. 3(a). It consists

of five majority gates with no inverters. Fig. 3(b) shows the corresponding layout level Bayesian

network. We model the circuit level QCA macromodel shown in Fig. 3(c) which is the circuit

level abstraction of Fig. 3(a). The Bayesian macromodel is shown in Fig. 3(d). Each signal (node)
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Fig. 3. A full adder circuit (Adder-1) (a) QCA cell layout (b) Layout level Bayesian network representation. (c)

Circuit level representation. (d) Circuit level Bayesian network macromodel.
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can either be a primary input, or an output cell of a macroblock like line, inverter etc. The links

are directed from the input to the output of each macroblock and are quantified by the device

macromodels. Thus, we arrive at directed acyclic graph easily from the circuit model in Fig. 3(c).

III. ERROR COMPUTATION

Apart of the computation of the polarization of each QCA cell or macromodel line, which

we can arrive at by using average case propagation, another analysis of interest when compar-

ing designs is the comparison of the least energy state configuration that results in correct out-

put versus those that result in erroneous outputs. What is the probability of the minimum en-

ergy configuration that results in error at the output, xs, for a given input assignment, x1; � � � ;xr?

This can be arrived at by conditional maximum likelihood propagation. In essence, we compute

argmaxx1;x2;���;xr
P(xr+1; � � � ;xN jx1; � � � ;xr;xs) and the minimum energy configuration of all the cells

that generates the erroneous output xs is fxe
1;x

e
2; � � �x

e
r+1; � � �x

e
Ng. This configuration corresponds to

the most likely error state at the output xs. Whenever we have x
g
i 6= xe

i , the ith cell is considered

sensitive to error at output xs (also termed as weak spots).

The above computational problem of maximization of a product of probability functions can

be factored as product of the maximization over each probability functions, these maximizations

can also be computed by local message passing [21]. The exact maximum likelihood inference

scheme is based on local message passing on a tree structure, whose nodes are subsets (cliques)

of random variables in the original DAG [23]. This tree of cliques is obtained from the initial

DAG structure via a series of transformations that preserve the represented dependencies. The

details of the inference scheme can be found in [19]. At this transformed point, we have a tree

of cliques where each clique is a sub-set of random variables. Two adjacent cliques that share a

few common variable play a key role in inference. The joint probability of all the variables can

be proven to be the product of individual clique probabilities. Since the problem of maximization
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of a product of probability functions can be factored as product of the maximization over each

probability functions, this maximization can also be computed by local message passing [23]. The

overall message passing scheme involves the neighboring cliques using the maximum operator

where the clique probabilities are updated till the marginal probability of the shared variables are

the same.

This kind of maximum likelihood analysis can be conducted both at the layout and the circuit

levels. Let us say that the circuit level macroblocks have Y1; � � � ;Yr as inputs and Yr+1; � � � ;YM as

internal circuit level lines (nodes). Let us say that the ground state macroblock cell polarizations are

denoted by fy
g
1;y

g
2; � � �y

g
r+1; � � �y

g
Mg. With respect to the the erroneous output ys, let the minimum

energy configuration is fye
1;y

e
2; � � �y

e
r+1; � � �y

e
Mg. As in the case of layout, whenever we have y

g
j 6= ye

j,

the j-th cell is considered sensitive to error at output ys.

In the next section, we will presents results that show that the error modes of the circuit and

layout levels match. That is, whenever Yj is sensitive to the first-excited error state for output Ys, the

corresponding layout level model, shows the set of fXig that constituted the macroblock Yj is also

sensitive . This is an extremely important finding that indicates that weak spot in the design can

be identified at the circuit level itself without obtaining the cell layout. Also this is an important

design metrics and can be used to vet one design over and above the thermal profile of the output

polarization.

IV. RESULTS

We present results using the full adder design, which has been widely studied by others. We

also use a multiplier design, which is a somewhat larger design. First, we will show that the

ground state polarization probabilities of the output nodes as well as the intermediate nodes in the

macromodel of the QCA logic circuit closely match with those obtained from a full layout level

implementation [18] at various temperatures. Second, we demonstrate that both the ground and
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Fig. 4. Probability of correct output for sum and carry of Adder-1 based on the layout-level Bayesian net model and
the circuit level macromodel, at different temperatures, for different inputs (a) (0,0,0) (b) (0,0,1) (c) (0,1,0) (d) (0,1,1).
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the next excited (error) state configuration of the macromodel exactly match the corresponding

configurations of the detailed layout cells for two full adders designs. Third, we use the circuit

level implementation to vet between alternate design choices. We show examples of this design

space exploration process with the example of two adders.

A. Polarization

Fig. 4 plots the polarization estimates at the layout and the circuit levels for various temper-

ature, and for different inputs for Adder-1 architecture shown inFig. 3a (layout level) and Fig. 3c

(circuit level). Fig. 5(a) shows second adder architecture (Adder-2), consisting of three majority

gates and two inverters [24]. Fig. 6 plots the polarization estimates at the layout and the circuit

levels for various temperature, and for different inputs. We see that the difference in probability of
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Fig. 6. Probability of correct output for sum and carry of Adder-2 based on the layout-level Bayesian net model and

the circuit level macromodel, at different temperatures, for different inputs (a) (0,0,0) (b) (0,0,1) (c) (0,1,0) (d) (0,1,1).

correct output node between circuit and layout level model design is low for both the adders. We

also see that in both layout and circuit level designs, the probability of the output node is dependent

on the input vector set.

Similar trends is also seen for the 2x2 multiplier circuit shown in Fig. 7(a). The multiplier

circuit is somewhat larger than the full adder circuit and consists of two AND gates and two half

adders. We made use of a half adder similar to Adder-2 full adder design, for the simple reason

that it occupies less area. The polarization of the output nodes in the multiplier layout is almost

similar to that obtained at the outputs of multiplier circuit designed using the macromodel blocks.

In Fig. 9 and 10, we show the variation of output nodes C0,C1,C2 and C3 of the multiplier with

respect to temperature for both layout and macromodel design.

B. Error Modes

We compute the near-ground state configurations that results in error in the output carry bit

Cout of the QCA full adders (Adder-1 and Adder-2) using both the layout and circuit level models.

These are shown in Fig. 11 and 12 and Fig. 13 and 14. We show four cases, for input vectors

(0,0,0), (1,0,0), (0,1,0) and (1,1,1). The other four input vector sets will have similar results due

to symmetry in design. We use red marker to point to the components that are weak (high error

probabilities) in both the layout and circuit level. We can easily see that the nodes with high
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error probabilities in QCA layout are the ones that are clustered to form an erroneous node in the

macromodel circuit design. In other words, if a node (a macromodel block) in macromodel circuit

layout is highly error prone for a given input set, then some or all the QCA cells forming that

macromodel block are highly prone to error. This indicates that weak spot in the design can be

identified early in the design process, at the circuit level itself.

C. Design Space Exploration

We show that even at the macromodel circuit level, we have the ability to explore the design

space with respect to different criteria. In addition, to obvious criteria such as gate count, we can

use polarization as a design metric. The probabilistic macromodel allows us very fast estimates

of polarization that correlate very well with layout level estimates. As an example we use the two

adders in Fig. 3(a) and Fig. 5(a). The two adders shown here have been designed using different

macromodel blocks, occupying different design areas.

The outputs of Adder-1 circuit is given by

Sum = A �B �Cin + Ā � B̄ �Cin + Ā �B � C̄in +A � B̄ � C̄in

= m(m(Ā;B;Cin);m(A;B;C̄in);m(A; B̄;Cin))

Cout = m(A;B;Cin)

(10)

where m(A;B;Cin) is the majority gate containing A,B and Cin as inputs. Similarly, for Adder-2

circuit the outputs are given by [24]

Sum = m(

¯Cout ;Cin;m(A;B;C̄in))

Cout = m(A;B;Cin)

(11)

We see that Adder-1 circuit uses five majority gates and three inverters for implementation

while Adder-2 circuit uses three majority gates and two inverters. Hence the design circuit design

of Adder-2 is certainly superior to Adder-1 in terms of area. However, as it can be seen from

the thermal study, inverter has one of the worst polarization drop with respect to temperature and
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Bayesian net model and the circuit level macromodel, at different temperatures, for different inputs (a) (0,0),(0,1) (b)
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Fig. 10. Probability of correct output at the four output nodes of 2x2 Multiplier circuit based on the layout-level

Bayesian net model and the circuit level macromodel, at different temperatures, for different inputs (a)(1,0),(0,1) (b)

(1,0),(1,1) (c) (1,1),(0,1) (d) (1,1),(1,1).

inverters in series path will reduce the overall polarization by a great extent. Hence for larger

circuits, a design criteria might look at Adder-1 in a different light.

Note that in the context of error modes, presented earlier, we saw that Adder-1 again shows less

number of error-prone nodes than Adder-2 (Fig. 11 shows error-prone nodes for first-excited state

at carry output) for most likely errors in the outputs. Note that, ideally this conclusion requires the

detailed layout, however, maximum-likelihood propagation of the circuit level Bayesian Network

yields the same error modes as the detailed layout. This measure indicates that cost of addition

error correction required for Adder-2 would be more than that of Adder-1.

Last but not the least, we observe that an odd tap shown in Section II is a good target for

one inverter as the polarization loss is less than an inverter and an even tap works better than an
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Fig. 11. Error-prone nodes for first-excited state at carry output QCA Adder-1 Circuit and its Macromodel design. It

can be seen that the erroneous nodes in the layout are effectively mapped in the macromodel design. Input vector set

for (a) and (b) is (0,0,0) and that for (c) and (d) is (1,0,0).
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Fig. 12. Error-prone nodes for first-excited state at carry output QCA Adder-1 Circuit and its Macromodel design. It
can be seen that the erroneous nodes in the layout are effectively mapped in the macromodel design. Input vector set

for (a) and (b) is (0,1,0) and that for (c) and (d) is (1,1,0).June 1, 2006—7 : 01 pm DRAFT
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Fig. 13. Error-prone nodes for first-excited state at carry output QCA Adder-2 Circuit and its Macromodel design. It

can be seen that the erroneous nodes in the layout are effectively mapped in the macromodel design. Input vector set
for (a) and (b) is (0,0,0) and that for (c) and (d) is (1,0,0).

even number of inverter chains. The multiplier design that we show, utilizes these facts to arrive at

better design with respect to output polarization and this, in turn, improves the multiplier’s thermal

characteristics.

D. Computational Advantage

To quantify the computational advantage of a circuit level macromodel with a layout level

model, we consider the complexity of the inference based on the Bayesian net models for each of

them. As we mentioned earlier, in the cluster-based inference scheme, the Bayesian Network is

converted into a junction tree of cliques and the probabilistic inference is performed on the junction
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Fig. 14. Error-prone nodes for first-excited state at carry output QCA Adder-2 Circuit and its Macromodel design. It
can be seen that the erroneous nodes in the layout are effectively mapped in the macromodel design. Input vector set

for (a) and (b) is (0,1,0) and that for (c) and (d) is (1,1,0)

tree by local computation between the neighboring cliques of the junction tree by local message

passing [21], [25]. Space complexity of Bayesian inference is O(n:2jCmaxj
) where n is the number of

variables, jCmaxj is the number of variables in the largest clique. Time complexity is O(p:2jCmaxj
),

where p is the number of cliques in the junction tree. We tabulate the complexity terms for the two

adder designs in Table IV, along with the corresponding values for n, p and jCmaxj. We can see that

macromodel is order of magnitude faster especially due to the reduction in jCmaxj which would be

important in synthesizing larger networks of QCA cells. Another observation is that Adder 2 is less

expensive in terms of computation even though polarization drops are more due to the presence of

inverters.

As we can see from the Table V, the simulation time required to evaluate a circuit is orders
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TABLE IV

LAYOUT AND MACROMODEL TIME (Tc) AND SPACE (Ts)COMPLEXITIES. PLEASE SEE TEXT FOR AN

EXPLANATION Cmaxj, n, AND p.

Adder 1 Adder 2 Multiplier
Parameters Layout

model
Macromodel Layout

model
Macromodel Layout

model
Macromodel

Cmax 15 8 10 5 15 5
p 215 57 96 30 436 119
n 278 64 125 34 539 130

Tc = p:2jCmaxj 7045120 14592 98304 960 14286848 3808

Ts = n:2jCmaxj 9109504 16384 128000 1088 17661952 4160

TABLE V

COMPARISON BETWEEN SIMULATION TIMING (IN SECONDS) OF A FULL ADDER AND MULTIPLIER CIRCUITS IN

QCADESIGNER(QD) AND GENIE BAYESIAN NETWORK(BN) TOOL FOR FULL LAYOUT AND MACROMODEL

LAYOUT

Simulation Time Adder-1 Adder-2 2x2 Multiplier

278 cells 125 cells 539 cells
QD Coherence Vector 566 253 966
QD Bistable Approx. 5 3 15
QD Nonlinear Approx. 3.5 2 8
BN Full Layout model 0.240 0.030 0.801
BN Macromodel Layout 0.010 0.000 0.08

of magnitude lower than that in QCADesigner tool. Moreover, we see that the simulation timing

for bayesian macromodels of the adder circuit are much lower than bayesian full layout model.

The graphs depicted in Fig. 4, Fig. 6, Fig. 9 and Fig. 10 present the crux of this work. The

drooping characteristic of output node polarization with rise in temperature is a universally known

fact. What we have shown in this work (as depicted in these graphs) is that the polarization of

the output node in our macromodel design is showing the same drooping characteristics and is

almost the same as that of the full layout. We can see that macromodel is order of magnitude faster

specially due to the reduction in jCmaxj which would be important in synthesizing larger networks

of QCA cells. Another observation is that Adder 2 is less expensive in terms of computation even

though polarization drops are more due to the presence of inverters.
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Fig. 15. Validation of the Bayesian network modeling of QCA circuits with Hartree-Fock approximation based
coherence vector-based quantum mechanical simulation of same circuit. Probabilities of correct output are compared

for basic circuit elements.

V. CONCLUSION

We proposed an efficient Bayesian Network based probabilistic macromodeling strategy for

QCA circuit that can estimate cell polarizations, ground state probability, and lowest-energy error

state probability, without the need for computationally expensive quantum-mechanical computa-

tions. We showed that the polarization estimates at layout and circuit levels are in good agree-

ment. In our previous work [19], we had validated the layout level Bayesian network model

with quantum-mechanical simulation Hartree-Fock, Self Consistent Analysis (HF-SCA) based es-

timates (see Fig. 15). In this work, we illustrate our macromodeling idea using two full adder

macro model design implementations and a somewhat larger QCA design of a 2x2 Multiplier im-

plementation. We found that both the polarization and the error mode estimates at the circuit level

match those at the layout level.

June 1, 2006—7 : 01 pm DRAFT



32

The Bayesian macromodel should be useful for vetting QCA circuit designs at higher levels

of abstraction in terms of not only the ground state, but also polarization, thermal dependence,

and error modes. The contributions of this work can be broadly classified to be in the area of

“Design for low Error” that considers error-tolerant circuit synthesis, taking into account circuit

overhead considerations. The developed models in this work can be used to selectively identify

weak components in a design early in the design process. It would then be possible to reinforce

those weak spots in the design using reliability enhancing strategies. The error modes can also be

used to compare multiple designs early on in the process.

One possible future direction of this work involves the extension of the BN model to handle

sequential logic. This is possible using an extension called the dynamic Bayesian networks, which

have been used to model switching in CMOS sequential logic [26].
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