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1 Overview

In nature, a number of problems can be described by processes evolving with

time, which usually give rise to rather simple-looking difference or differen-

tial equations. This may happen, for example, when one wishes to predict

the future behavior of several interacting species based on their present s-

tates and a given environment. Mathematically, this means investigating the

asymptotic behavior of an orbit {f t(x)}, where x ∈ X, with X the set of all

possible states for these interaction species, and t ∈ Z or R denotes time.

Here f is the rule describing how these species interact with each other and

with the environment to produce new states in the near future. An ideal

result we usually wish for for such problems is essential stability of the itera-

tion, namely, the sequence {f t(x)} converges to a fixed point, indicating that

the species will eventually stabilize at some equilibrium states, independent-

ly of their initial state. If this fails, we would hope for a weaker property:

predictability. This means even if the present state is estimated within some

reasonable error, the orbit starting from this fake state remains close to the

true orbit. Unfortunately, it often happens that neither of these wishes is

satisfied. One usually observes various sorts of chaotic behavior, all of which

are predictable from the dynamics of {f t}.
In this thesis, our first goal is to provide estimates for the dimension of

chaotic sets in a positive entropy system. We then study a concrete model

from biology, that is, the tridiagonal competitive-cooperative system. The

dynamics for the mentioned system is proved to be simple if the experiment

is carried out in an environment which is independent of time or an environ-

ment which changes periodically with time. In these situations, no chaotic

phenomena are produced, also the essential stability and predictability are

achieved. However, if the environment changes aperiodically, then the dy-

namics becomes quite complicated, and chaotic phenomena may ocurr. In

this thesis, we study the dynamics of the tridiagonal competitive-cooperative

system in the latter case. The following is an overview of these works.

The word “chaos” related to a map was first introduced by Li and Y-

orke in their influential paper [41], to describe the complexity of a system,

although without a formal definition. Today, one can say that there are as
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many views of chaos as there are authors, see [79, Chapter 10] and references

therein for more detail and their relationships. Generally speaking, these

definitions can be divided into four classes. The first class is based on the

instability of trajectories or sensitive dependence on initial conditions, such

as Devaney chaos. The second class is Li-Yorke chaos, see [41]. Intuitively,

this means there are many different states in a dynamical system and any two

of them can approach each other for some sequence of moments in the time

evolution, and for some other sequence of moments they remain separated.

The third class is based on the concept of entropy. Measure-theoretic entropy

was first introduced by Kolmogorov [35] for a transformation f preserving a

probability measure. Adler, Konheim and McAndrew [1] then introduced the

notion of topological entropy for a topological dynamical system. These two

concepts are related to each other through the so-called variational principle

[76, Chapter 8]. Both of them measure the asymptotic growth in information

obtained through iterating f and relate to the rate at which points are being

dispersed. Since a zero entropy system has some kind of certainty, many

researchers consider systems with positive entropy to be chaotic. The fourth

class is defined by recurrence and mixing properties.

In this thesis, we focus on the Li-Yorke definition of chaos [41], whose

central idea is the existence of a scrambled set with uncountable cardinality.

By a topological dynamical system (TDS) we mean a pair (X,T ) where X is

a compact metric space endowed with the metric d, and T is a continuous

map from X to itself. When T is a homeomorphism, the TDS (X,T ) is called

invertible. A pair of points (x, y) ∈ X ×X is said to be a Li-Yorke pair if

lim inf
n→+∞

d(T nx, T ny) = 0. (.)

and

lim sup
n→+∞

d(T nx, T ny) > 0 (.)

A subset S of X containing at least two points is called a scrambled set of

the system, if, for any x 6= y ∈ S, (x, y) is a Li-Yorke pair. A TDS (X,T ) is

then called Li-Yorke chaotic if it has an uncountable scrambled set.

There are many topological dynamical systems that are Li-Yorke chaotic.

For example, the classical result by Li and Yorke says that any continu-

ous self-mapping on the interval [0, 1] with a period-three point is Li-Yorke
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chaotic. Huang and Ye [32] proved that there are “many” compacta, in-

cluding some countable compacta, the Cantor set and continua of arbitrary

dimension, admitting completely scrambled homeomorphisms. Another fa-

mous result is given by Blanchard et al [5] and says that positive entropy

implies Li-Yorke chaos.

The dynamics of systems without Li-Yorke pairs, i.e., where every pair

of points is either asymptotic or distal, is comparatively simple. Here a

pair (x, y) ∈ X × X is said to be asymptotic if limn→∞ d(T nx, T ny) = 0,

and one for which lim infn→∞ d(T nx, T ny) > 0 is said to be distal. For

example, these systems should be zero-entropy. They are minimal when

transitive and their adherence semigroup is minimal, see [5]. Note also that

the set of asymptotic pairs of any TDS is nonempty, see [6, 33]. Therefore,

to investigate the structure of a dynamical system, especially to evaluate

its complexity, the size of scrambled sets and the closure of stable sets of

the system is definitely one of the most important aspects. In general, the

size can be examined from the measure-theoretic point of view, from the

topological point of view, or from the dimension point of view. We point

out that one can also measure the size of a set from the Bowen dimension

entropy point of view. Bowen dimension entropy is a notion of conjugacy

that is a cross between the topological and measure theoretic ones. It was

first introduced by Bowen [11] and then developed by Pesin and Pitskel [54].

So, to understand the complexity of a dynamical system, we always ask:

do the chaotic set and the closure of stable set of this system have positive

measure; can they have non-empty interiors; are their Hausdorff dimensions

and Bowen dimension entropies bigger than zero? Unfortunately, the first

two properties cannot hold in general, see [7, 14, 69, 70] and references therein

for counterexamples and explanations. So we will consider the size of these

sets from the dimensional point of view.

In paper [A], we estimate the Bowen dimension entropy and Hausdorff di-

mension of the closure of stable sets and of scrambled sets in a TDS with pos-

itive finite entropy. The second part of this thesis, including papers [B-D], is

dedicated to the study of the dynamics of tridiagonal competitive-cooperative

systems. These carry no Li-Yorke pairs when they are time-independent or

time-periodic. In fact, when the system is autonomous, Smillie [71] showed
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that all solutions must converge to equilibria or diverge in a strong sense.

Smith [73] studied the time-periodic system and proved that every bound-

ed solution is asymptotic to a periodic solution whose period is the same

as the system. This implies that all pairs are asymptotic or distal in these

two cases. However, the behavior of this system becomes quite complicated

as verified by [77] when we consider the nonautonomous case. A natural

question arises: what kind of properties can one assume to guarantee the

nonexistence of Li-Yorke pairs when the system is nonautonomous? We of

course prefer properties that have some biological meaning. For example,

stability or unstability. Further, since the competitive-cooperative relation-

ship plays an important role in the real world, we are still happy to know

the dynamics of this system even if the above properties are not satisfied.

Actually, dynamical systems that describe the interaction of n ≥ 2 species

have been the object of intensive study ever since the seminal work by Lotka,

Volterra and Kolmogorov [34, 38, 75]. So whether from the mathematical

sense or from the biological sense, we are full of interest to know the whole

dynamics of the tridiagonal competitive-cooperative system.

In paper [B] we show that any minimal set of the system which is hyper-

bolic (include uniformly stable, uniformly unstable, etc.) admits no proximal

pair, i.e. the formula (.) does not hold. Together with the results in [77]

and more specific analysis we prove any ω-limit set of this system is a 1-cover

of its base. Biologically, this means the species in this model which want to

survive should evolve simultaneously with the environment. In paper [C],

we study the structure of non-hyperbolic minimal sets of the system. More

precisely, we show the dynamics on the set is conjugate to a scalar product

flow when the set has central dimension one. When the central dimension is

bigger than one, we propose a conjecture, saying that the dynamics of the

non-hyperbolic minimal set should be conjugate to a k-dimensional skew-

product flow, where k is just the central dimension of this minimal set. By

the Floquet theory established for tridiagonal competitive-cooperative sys-

tems in [B], we know that every invariant set of this system admits an ex-

ponential separation (we use a similar conception “dominated splitting” in

differentiable dynamical systems, see [D]). To understand the dynamics of

any invariant set of the tridiagonal competitive-cooperative system, we char-
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acterize exponential separation in several equivalent expressions in the paper

[D] and find an interesting connection between hyperbolicity and exponen-

tial splitting under the frame of cocyle. Simply put, we prove the difference

between exponential separation and hyperbolicity is only a functional tor-

sion. This work is also meaningful in the setting of differentiable dynamical

systems.

The rest of the introductory part is organized as follows. In the next

section, we describe the methods, outline the proofs and summarize the main

results of papers [A-D]. In Section 3, we give a short note on new progress

concerning the results in paper [A]. Finally, in the Section 4, we propose two

conjectures about the dynamics of the tridiagonal competitive-cooperative

system.

2 Methods and Summary

2.1 Dimensions of stable sets and scrambled sets

Consider a TDS (X,T ) with finite positive entropy. We already know that the

stable sets and scrambled sets exist, see [5, 33]. To estimate their dimensions,

we first give a lower bound for their Bowen dimension entropy with the

entropy of the system, then study the relationship between Bowen dimension

entropy and Hausdorff dimension and use this to give a lower bound of their

Hausdorff dimensions in terms of entropy of the system and the exponential

rate of decay of Lebesgue numbers, see also Section 3.

In order to make the argument more flexible, we divide this process into

two big steps. In the first step we deal with the invertible case, then handle

the non-invertible case in the second step. Afterwards, we apply similar ideas

to C1 self-maps of a Riemannian manifold with positive entropy and give a

lower bound for the Hausdorff dimension of the closure of stable sets and

scrambled sets in terms of the metric entropy and Lyapunov exponents.

Step 1. In this step, we build up the key lemma [A, Theorem 3.3] which

describes the relationship of entropies in a factor map, which will be

useful in the following steps 3, 4 and 6.
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Let (X,T ) and (Y, S) be two TDSs. A continuous map π : (X,T ) →
(Y, S) is called a homomorphism if it is onto and πT = Sπ. Then

(X,T ) is said to be an extension of (Y, S) and (Y, S) is said to be a

factor of (X,T ). Such a map is referred to as a factor map. The result

[A, Theorem 3.3] says that the Bowen entropy of any subset in the

extension system can be bounded above by the sum of Bowen entropy

of its image in the factor system and the topological entropy of the

fibers.

Bowen [9, Theorem 17] was the first to study the relation between the

topological entropies of the extension system and its factor system. We

also would like to point out that these results were generalized recently

by Downarowicz and Zhang [19].

Step 2. In case the TDS (X,T ) is a zero-dimensional invertible system and

carries an ergodic measure such that the measure-theoretical entropy

is positive, we estimate the Bowen dimension entropy of the closure

of stable sets in terms of the given entropy. Further, assuming the

continuum hypothesis we show there exists a strongly scrambled set

for both T and T−1 in the closure of the stable set and prove that

the Bowen dimension entropy of this scrambled set is bigger than the

measure-theoretical entropy.

Note that in this step we did not assume that the system has posi-

tive finite entropy. In fact, positive finite entropy is used to guarantee

the existence of a zero-dimensional principal extension for an invert-

ible TDS, see [A, Lemma 4.7 and Remark 4.8]. The zero-dimension

condition is technically needed during the proof so that there exists a

sequence of finite clopen partions with the diameters of these partitions

tending to zero. We also would like to point out that the continuum

hypothesis is only used in the proof of the abstract result [A, Lemma

4.3]. We conjecture this result is true even without the continuum hy-

pothesis. If this is true, then all of the results in [A] hold without this

assumption.

Step 3. We work under the supposition that the TDS (X,T ) is invertible
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and has finite positive entropy in this step. Therefore, the system

(X,T ) has zero-dimensional principal extension (Z,R) with R invert-

ible and the above results in step 2 hold for TDS (Z,R). Then we

use the key result built up in step 1 and properties of the principal

extension to estimate the lower bound of Bowen dimension entropy of

the closure of stable sets and scrambled sets in terms of entropy. Here

an extension π : (Z,R)→ (X,T ) of two TDSs is said to be a principal

extension if hµ(R) = hπµ(T ) for every invariant probability measure µ

of the TDS (Z,R).

Step 4. In this step, we consider a general TDS (X,T ) with finite positive

entropy. If T is non-invertible, we first lift this TDS to its natural

extension, which is invertible. Note that the natural extension has the

same entropy as the original system. The results obtained in step 3 hold

for this natural extension. By taking advantage of the result from step

1 again, we can estimate the Bowen dimension entropy of the closure

of the stable sets and scrambled sets of the system (X,T ).

Step 5. Given a TDS (X,T ), we investigate in this step the relationship

between the Bowen dimension entropy and Hausdorff dimension of a

set. Suppose the map T is Lipschitz continuous with Lipschitz constant

L > 1, then we can estimate a lower bound for the Hausdorff dimension

of a set in terms of its Bowen dimension entropy and logL as in [A,

Lemma 5.1]. Assume further the TDS (X,T ) has positive finite entropy.

By making use of results in step 4 and the variational principle for

entropy, one can give a lower bound for the Hausdorff dimension of the

closure of stable sets and scrambled sets in terms of topological entropy

and L.

In fact, the above results still hold if we replace logL with the expo-

nential rate of decay of Lebesgue numbers, which is introduced by Sun

in [74]. I will explain this idea in detail in Section 3.

We also give an example [A, Theorem 5.8] in symbolic dynamics to

show that the lower bounds can be achieved.

Step 6. Note that a C1 transformation of a compact manifold has finite
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entropy, see [9] or [76, Theorem 7.15]. In this final step, we apply

similar ideas to those of steps 2 to 5 to a C1 self-map on a Riemannian

manifold with positive entropy and estimate the lower bound of the

Bowen dimension entropy and Hausdorff dimension of stable sets and

scrambled sets in terms of the metric entropy and Lyapunov exponent.

2.2 Floquet theory for linear strongly tridiagonal

competitive-cooperative system

In this subsection we build up the Floquet theory for linear strongly tridiago-

nal competitive-cooperative system, which is motivated by the work of Chow,

Lu and Mallet-Paret [16, 17] for scalar parabolic equations. It is one part of

the work in [B]. This theory plays a key role in the following subsections.

Consider the following families of ODEs:

ẋ1 = b11(y · t)x1 + b12(y · t)x2,
ẋi = bi,i−1(y · t)xi−1 + bii(y · t)xi + bi,i+1(y · t)xi+1, 2 ≤ i ≤ n− 1,

ẋn = bn,n−1(y · t)xn−1 + bnn(y · t)xn,

(.)

where y ∈ Y and y · t defines a flow on the compact metric space Y . Assume

the (n × n)-matrix-valued function B(·) = {bij(·)} is continuously defined

on Y and the subtridiagonal elements satisfy bi,i+1(·), bi+1,i(·) ≥ ε0 > 0, for

some positive constant ε0 and all 1 ≤ i ≤ n − 1. Then the system (.) is

called a strongly linear tridiagonal competitive-cooperative system.

We express the Floquet theory of system (.) in the language of vector

bundles [4] and exponential separation [46, 52, 55].

Fix y ∈ Y , equation (.) has a y-independent discrete Lyapunov func-

tion σ defined on an open dense subset of Rn which can take only finite many

values {0, · · · , n− 1}, see [71–73]. As showed in [B], see also [77], this prop-

erty severely constricts the dynamics of a strongly tridiagonal competitive-

cooperative system, including (.). For example, for each value of σ there

exist an unique solution xm(t, y) (up to a constant) of (.) such that the

σ-value along this solution is constant [B, Proposition 2.3]. Further, we show

these solutions are continuously dependent on y ∈ Y and form a frame base

of the product space Rn × Y , see [B, Proposition 2.4 and Proposition 3.1].
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Naturally, they form n-subbundles of Rn×Y , which are the so-called Floquet

bundles of (.). The Floquet theory for the system (.) says these subbun-

dles are in fact exponentially separated, see [B, Theorem 3.4], which is much

finer than the well-known Sacker-Sell spectral bundles [59] for (.), see [B,

Corollary 3.8].

We end this subsection by pointing out that similar methods can be used

for other systems, for example, systems studied in [73], to get similar results.

2.3 Structure of hyperbolic ω-limit sets

Now we apply the Floquet theory obtained in the previous subsection to in-

vestigate the dynamics of strongly tridiagonal competitive-cooperative system.

This is concerned with systems of ODEs of the form

ẋ1 = f1(t, x1, x2),

ẋi = fi(t, xi−1, xi, xi+1), 2 ≤ i ≤ n− 1,

ẋn = fn(t, xn−1, xn),

(.)

where the nonlinearity f = (f1, f2, · · · , fn) is defined on R × Rn and is C1-

admissible. We assume further that the variable xi+1 forces ẋi and that

xi forces ẋi+1 strictly monotone in the same fashion (see [B, Assumption

(F)]) and that the hull of f , denoted by H(f), is minimal, see [B] for exact

definitions.

As we mentioned in the overview section, when the system (.) is time-

independent or time-periodic, then all of its bounded solutions converge to

some equilibria or periodic solutions respectively, see [71, 73]. These results

imply that the system (.) exhibits no Li-Yorke pairs in these two cases.

On the other hand, if this system is time-dependent, the dynamics becomes

more complicated. In fact, as showed in [77] that every minimal set should be

almost 1-cover [B, Definition 4.3] of H(f) and each ω-limit set of the system

contains at most two minimal sets. We shall prove that any ω-limit set that

is hyperbolic (which is biologically meaningful since similar set always exist

after a small perturbation of the environment) admits no Li-Yorke pair. More

precisely, we prove that a hyperbolic ω-limit set of system (.) is exactly a

1-cover [B, Theorem 4.6] of H(f). As a consequence, when the coefficient
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f is time almost-periodic, then this result implies the bounded solutions of

system (.) are asymptotic to some almost-periodic solutions if the system’s

ω-limit set is hyperbolic [B, Remark 4.7].

We employ techniques from skew-product flows and dynamical systems

to study these problems. Discrete skew-product flows originate in ergodic

theory, see [3, 21, 53], which won’t be used here. The study of continuous

skew-product flows arise in the study of ODEs, especially for nonautonomous

differential equations, see [47, 56–58, 62–64, 68]. Applied to our system, one

can embed (.) into a skew-product flow Π : R×Rn×H(f)→ Rn×H(f) by

Π(t, x0, g) = (x(t, x0, g), g · t), where x(t, x0, g) is the solution of ẋ = g(t, x)

with initial condition x(0, x0, g) = x0 and g · t is the time shift flow on H(f).

Therefore, to study the dynamics of (.), we only need to investigate the

structure of the ω-limit or invariant set Y of Π in Rn × H(f). For this

purpose, we follow the usual ideas and study first the linearized system of

(.) along an invariant set Y , which is actually studied in the previous

subsection. Then one can use the obtained Floquet theory for the linearized

system to investigate the properties of the original nonlinear system.

We end this subsection by giving the definition of hyperbolicity. The in-

variant set Y ⊂ Rn×H(f) is said to be hyperbolic if the Sarker-Sell spectrum

[59] of the linearized system (.) does not contain zero. Hyperbolicity in-

cludes many interesting phenomena, for example, uniform stability, uniform

unstability. Otherwise, the invariant set Y is called non-hyperbolic.

2.4 Structure of non-hyperbolic minimal sets

In this subsection, we investigate the structure of a non-hyperbolic minimal

set Y of the skew-product flow induced by system (.). This is the subject

of paper [C].

To interpret the ideas of this paper, we need to introduce a concept

from dynamical systems. Let (X, f t) and (Z, gt) be two TDSs. If there

exists a homeomorphism h : X → Y such that h ◦ f t = gt ◦ h for all t ∈
R, then we say system (X, f t) is topologically conjugate to system (Z, gt).

Speaking informally, topological conjugation is a “change of coordinates” in

the topological sense. Remember that Y is originally a subset of Rn×H(f).
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The idea in [C] is to show that the dynamics on Y is actually topologically

conjugate to some dynamics in a lower dimension. In the paper, we conjecture

and partially prove that this lower dimension is just the central dimension

of Y . More precisely, we prove in the case the central dimension is one, then

the dynamics on Y is topologically conjugate to a scalar skew-product flow.

Recall that the conjecture also true when the central dimension is zero, i.e.,

when Y is hyperbolic, see [B]. We would also like to point out that this kind

of result cannot hold in general for a dynamical system, see [13, 18].

The main reason we have these results and conjecture is due to the σ-

values-description for invariant manifolds and for the differences of every two

points of Y from the same fiber, see [C, Proposition 3.2 and Proposition 4.4].

Intuitively, when the central dimension is one, it follows that the sign of first

coordinate of these differences is not zero. Therefore, one can give an order

for the points in the same fiber. Further, one can prove their dynamics are

actually topologically conjugated.

2.5 Relationships between hyperbolicity and dominat-

ed splitting/exponential separation

Consider system (.). It follows from the Section 2.2 or [B], that the skew-

product flow induced by the linearized system (.) over an invariant set of

system (.) admits the finest exponential separation/dominated splitting,

see [B, Theorem 3.4]. Meanwhile, we have made clear the structure of a spe-

cial class of ω-limit set of system (.) whose linearized system (.) admits

an exponential dichotomy/hyperbolicity, see Section 2.3. If we compare the

definitions of exponential separation/dominated splitting and hyperbolicity,

then one could find they are quite similar and easily find hyperbolicity im-

plies exponential separation. This observation promotes us to study their

relationship from the reverse direction. We give several equivalent character-

izations of dominated splitting in terms of reducibility and lower and upper

functions in [D], and finally lead to an interesting relation from dominated

splitting to hyperbolicity.

We present these results in [D] in the frame of dynamical systems, because

we also want to use the obtained results to reprove the classical result of
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Hirsch, Pugh and Shub [30] about the existence of plaque families when the

system admits dominated splitting over some invariant set, which is part of

our future work. These results are also true for skew-product flows.

3 Notes to the paper [A]

In this notes, our goal is to replace the Lipschitz condition on the map T

in the main theorems of [A] with the exponential rate of decay of Lebesgue

numbers of open covers, which is first studied by [74] recently.

The following ideas are suggested and discussed with Peng Sun.

Let (X,T ) be a TDS and denote the Lebesgue number of an open cov-

er U of X by δ(U). Write δn(T,U) = δ(
∨n−1
i=0 T

−iU) and let h+L(T,U) =

lim supn→∞− 1
n

log δn(T,U). Then the rate of decay of Lebesgue numbers of

open covers h+L(T ) is defined as follows:

h+L(T ) = suph+L(T,U),

where the supremum is taken over all open covers of X.

The following results can be obtained by a similar argument to the one

in [74], see also the Remark and Theorem 5.1 of the same reference.

Theorem 3.1. Let (X,T ) be a TDS and Y ⊂ X. Then

Hd(Y )h+L(T ) ≥ hBtop(T |Y ).

Theorem 3.2. If T is Lipschitz with constant L, then h+L(T ) ≤ max{logL, 0}.

Therefore, by using [A, Theorem 4.10] and Theorem 3.1, we have the

following result.

Theorem 3.3. Let (X,T ) be a TDS with metric d satisfying htop(T ) < ∞.

If µ is a T -invariant ergodic measure with hµ(T ) > 0, then

Hd(W s(x, T )) ≥ hµ(T )

h+L(T )
for µ− a.e x ∈ X.

Moreover, under the continuum hypothesis, for µ-a.e. x ∈ X there exists a

scrambled set Sx ⊂ W s(x, T ) for T satisfying Hd(Sx) ≥ hµ(T )/h+L(T )

12



4 Conjectures

We propose two conjectures in this section. The first one is about the dy-

namics of a minimal invariant set of system (.). The other one is concerned

with the dynamics of 2-D tridiagonal competitive-cooperative systems.

Conjecture 4.1. Let Y be a minimal invariant set of system (.). Denote

N c the central dimension of the linearized system (.) over Y . Then the

dynamics on Y is topologically conjugate to a subflow in RNc ×H(f).

As we mentioned in the previous sections, this conjecture is true when

the central dimension is zero or one, see [B, C].

Let Π : R×Rn×H(f)→ Rn×H(f) be the skew-product flow generated

by system (.). Denote L the limit set of Π, that is the minimum closed

invariant set that contains the ω- and α-limit set of any orbit of Π.

Conjecture 4.2. Consider system (.). Then the limit set L can be de-

composed into L = I ∪ L̃ ∪R such that

(1). I is a disjoint union of finitely many normally hyperbolic arcs or simple

closed curves.

(2). R is a finite union of subflows which are topologically conjugated to

scalar skew-product flows.

(3). L̃ is hyperbolic set.

References

[1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy,

Trans. Amer. Math. Soc., 114(1965), 309-319.

[2] S. Ahmad, B. Granadosb and A. Tineo, On tridiagonal predator-prey

systems and a conjecture, Nonlinear Analysis: Real World Applications

11(2010), 1878-1881.

[3] H. Anzai, Ergodic skew product transformations on the torus, Osaka

Math. J. 3(1995), 83-99.

13



[4] M. Atiyah, K-theory, 2nd ed., Benjamin, New York, 1967.

[5] F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke Pairs,

J. Reine Angew. Math. 547(2002) 51-68.

[6] F. Blanchard, B. Host and S. Ruette, Asymptotic pairs in positive-

entropy systems, Ergod. Th. and Dynam. Sys. 22(2002) 671-686.

[7] F. Blanchard, W. Huang and L. Snoha, Topological size of scrambled

sets, Colloq. Math. 110(2008) 293-361.

[8] C. Bonatti, S. Crovisier, Central manifolds for partially hyperbolic set

without strongly unstable connections. In preparation.

[9] R. Bowen, Entropy for group endomorphisms and homogeneous spaces,

Trans. Amer. Math. Soc. 153(1971) 401-414.

[10] R. Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc. 164(1972)

323-331.

[11] R. Bowen, Topological Entropy for Noncompact Sets, Trans. Amer.

Math. Soc. 184(1973) 125-136.

[12] M. Boyle and T. Downarowicz, The entropy theory of symbolic exten-

sions, Invent. Math. 156(2004) 119-161.

[13] I. U. Bronshtein and V. F. Chernii, Linear extensions satisfying Perron’s

condition, I. Differential Equations 14(1978), 1234-1243.

[14] A. M. Bruckner and T. Hu, On scrambled sets and chaotic functions,

Trans. Amer. Math. Soc. 301(1987) 289-297.

[15] J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math.

100(1997) 125-161.

[16] S.-N. Chow, K. Lu and J. Mallet-Paret, Floquet theory for parabolic

differential equations, J. Differential Equations 109(1994), no.1, 147-200.

14



[17] S.-N. Chow, K. Lu and J. Mallet-Paret, Floquet bundles for scalar

parabolic equations Arch. Rational Mech. Anal. 129(1995), no.3, 245-

304.

[18] S. Crovisier, E. Pujals, Essential hyperbolicity and homoclinic bifurca-

tions: a dichotomy phenomenon/mechanism for diffeomorphisms, arX-

iv:1011.3836.

[19] T. Downarowicz and G. Zhang, Modeling potential as fiber entropy and

pressure as entropy, preprint.

[20] G. Fusco and W. M. Oliva, Jacobi matrices and transversality, Proc. R.

Soc. Edinburgh Sect. A 109(1988), no. 3-4, 231-143.

[21] H. Furstenberg, The structure of distal flows, Amer. J. Math. 85(1963),

477-515.

[22] E. Glasner, Ergodic theory via joinings, Mathematical Surveys and

Monographs 101, American Mathematical Society, Providence, RI, 2003.

[23] M. Gyllenberg, Dynamics of structured populations, Julkaisu No. 23,

ISBN 951-754-127-9, 1987.

[24] J. K. Hale, Ordinary differential equations, Krieger Publishing Company,

1980

[25] J. K. Hale and A. S. Somolinos, Competition for fluctuating nutrient, J.

Math. Biol. 18(1983), no.3, 255-280.

[26] D. Henry, Geometric theory of semilinear parabolic equations, Lecture

Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

[27] G. Hetzer and W. Shen, Convergence in Almost Periodic Competition

Diffusion Systems, J. Math. Anal. Appl. 262(2001), 307-338.

[28] G. Hetzer and W. Shen, Uniform persistence, coexistence, and extinction

in almost periodic/nonautonomous competition diffusion system, SIAM

J. Math. Anal. 34(2002), no.1, 204-227.

15



[29] M. W. Hirsch, Differential equations and convergence almost everywhere

in strongly monotone flows Contemp. Math., 17(1983), 267-285.

[30] M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Maniflods, Lecture

Notes in Mathematics 583, 1977.

[31] W. Huang, Stable sets and ε-stable sets in positive entropy systems, Com-

mun. Math. Phys. 297, 535-557(2008).

[32] W. Huang and X. Ye, Homeomorphisms with the whole compacta being

scrambled sets, Ergod. Th. and Dynam. Sys., 21(2001), 77-91.

[33] W. Huang and X. Ye, Devaney’s chaos or 2-scattering implies Li-Yorke’s

chaos, Topology Appl. 117(2002), no.3, 259-272.

[34] A. Kolmogorov, Sulla teoria di Volterra della lotta per l’istenzia, Ist.

Ital. Attuari, 7(1936), 74-80.

[35] A. N. Kolmogorov, A new metric invariant of transient dynamical sys-

tems and automorphisms of Lebesgue spaces, Dokl. Akad. Sci. SSSR.,

119(1958) 861-864 (Russian).

[36] F. Ledrappier, A variational principle for the topological conditional en-

tropy, Lecture Notes in Math. 729(1979) 78-88.

[37] E. Lindenstrauss, Mean dimension, small entropy factors and an em-

bedding theorem, Publ. Math. I.H.E.S. 89(1999) 227-262.

[38] A. J. Lotka, Elements of Physical Biology, Williams & Wilkins, Balti-

more, 1925.

[39] F. Ledrappier and P. Walters, A relativised variational principle for

continuous transformations, J. London Math. Soc. 16(1977) 568-576.

[40] E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J.

Math. 115 (2000) 1-24.

[41] T.-Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math.

Monthly 82(1975) 985-992.

16



[42] J. Mallet-Paret and G. Sell, Systems of differential delay equations: Flo-

quet multipliers and discrete Lyapunov functions, J. Differential Equa-

tions 125(1996), 385-440.

[43] J. Mallet-Paret and H. L. Smith, The Poincaré-Bendixson theorem for
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[45] J. Mierczyński, The C1 property of carrying simplices for a class of

competitive systems of ODEs, J. Differential Equations 111(1994), no.2,

385-409.
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Gauthier-Villars, Paris, 1931.

19



[76] P. Walters, An Introducion to Ergodic Theory, Graduate Texts in Math-

ematics 79 (Springer-Verlag, New York-Berlin, 1981).

[77] Y. Wang, Dynamics of nonautonomous tridiagonal competitive-

cooperative system of differential equaitons, Nonlinearity 20(2007), no.4,

831-843.

[78] J. C. Xiong, F. Tan and J. Lu, Dependent sets of a family of relations

of full measure on probability space, Science in china Ser. A 50 (2007)

475-484.

[79] X. Ye, W. Huang and S. Shao, A brief introduction to topological dy-

namical systems (in Chinese), Science press, Beijing, 2008.

[80] Y. Yi, Stability of integral manifold and orbital attraction of quasi-

periodic motions, J. Differential Equations 103(1993), no.2, 278-322.

[81] L. S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th.

and Dynam. Sys. 2 (1982) 109-124.

20




