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Abstract 

After recanalization, cerebral blood flow (CBF) can increase above baseline in cerebral ischemia. 

However, the significance of post-ischemic hyperperfusion for tissue recovery remains unclear.  

To analyze the course of post-ischemic hyperperfusion and its impact on vascular function, we 

used magnetic resonance imaging (MRI) with pulsed arterial spin labeling (pASL) and measured 

CBF quantitatively during and after a 60 minute transient middle cerebral artery occlusion 

(MCAO) in adult rats. We added a 5% CO2 - challenge to analyze vasoreactivity in the same 

animals. Results from MRI were compared to histological correlates of angiogenesis. 

We found that CBF in the ischemic area recovered within one day and reached values 

significantly above contralateral thereafter. The extent of hyperperfusion changed over time, 

which was related to final infarct size: early (day 1) maximal hyperperfusion was associated with 

smaller lesions, whereas a later (day 4) maximum indicated large lesions. Furthermore, after 

initial vasoparalysis within the ischemic area, vasoreactivity on day 14 was above baseline in a 

fraction of animals, along with a higher density of blood vessels in the ischemic border zone.  

These data provide further evidence that late post-ischemic hyperperfusion is a sequel of 

ischemic damage in regions that are likely to undergo infarction. However, it is transient and its 

resolution coincides with re-gaining of vascular structure and function. 
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Introduction 

“Luxury perfusion syndrome” is a term coined by Niels Lassen in 1966. It refers to a state of 

overabundant cerebral blood flow (CBF) relative to the metabolic needs of the brain tissue, as is 

observed within seconds after reopening of a formerly occluded artery in experimental stroke 

models [1]. Early post-ischemic hyperperfusion is usually abrupt, lasts only for minutes to a few 

hours and is closely related to severity and length of prior ischemia [2,3].  High CBF in this early 

stage after ischemia has been correlated to more severe neuronal damage and worse outcome, 

mediated, in part, by the overproduction and release of toxic free radicals [4,5].   

Evidence for a similar phenomenon in humans comes from clinical studies, where CBF was 

increased above normal in some patients after vessel recanalization [6,7,8,9]. Although there is 

consensus that at least partial recanalization is a prerequisite for hyperperfusion after stroke, the 

incidence as well the meaning of hyperperfusion for patient recovery have remained 

controversial [8,10]. It may be assumed, however, that the mechanisms of early post-ischemic 

hyperperfusion in animals are distinct from late hyperperfusion observed in patients up to weeks 

after stroke [11]. Animal stroke models allow for the observation of blood flow over time 

following a controlled stroke and reperfusion paradigm. Perfusion-weighted MRI has been 

frequently applied as a non-invasive method to measure CBF [12,13]. However, only very few 

data exist about CBF at more chronic time points after experimental ischemia, which would 

better resemble the clinical observation times of hyperperfusion in stroke patients [14,15,16]. We 

used a rat stroke model and quantified CBF with pulsed arterial spin labeling (pASL) MRI. Our 

goal was to find out how CBF is maintained at different time intervals after reperfusion and how 

the capacity for vasodilation recovers in the ischemic area. 
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Materials and Methods 

Animals and experimental protocol 

All experiments were performed in accordance with the National Institutes of Health animal 

protection guidelines and approved by the local governmental authorities. 

In this study, 14 adult male Wistar rats (280-320g body weight) were used. For MRI and surgery, 

animals were anesthetized using facemask inhalation of 1.5-2.5 % isoflurane in a 2:1 N2O:O2 

atmosphere. Temperature was maintained at 37°C by a feedback-controlled heating pad.  

Six animals were subjected to a single MRI session for CBF quantification under the isoflurane 

anesthesia described above (referred to as “air”) and with an additional 5% CO2 challenge 

(referred to as 5% CO2). Using arterial blood gas analyses we found in a separate set of animals 

(using the identical set-up and performed within 6 months of the experiments presented here) 

that these anesthesia conditions resulted in normoxia (“air”) and hypercapnia (5% CO2) followed 

by a robust increase in CBF during hypercapnia [17].  In 8 rats, transient ischemia was induced 

for 60 minutes by MCAO using the intraluminal thread model [18]. Briefly, a 4-0 silicone-coated 

filament was introduced into the common carotid artery and advanced approximately 16 to 

20 mm from the carotid bifurcation until a slight resistance was felt. The thread was left in place 

for 60 min. During that time and without discontinuation of anesthesia, the animal was placed in 

the custom-built cradle for the first (day0) MRI examination. After 60 minutes, the thread was 

withdrawn and the animal allowed to recover. Animals were re-anesthetized for repetitive MRI 

after MCAO: MRI assessment was performed at the following time points: day 0 (d0), d1, d4, 

and d14 after MCAO. For induction of hypercapnia, the isoflurane concentration was kept 

constant while the inhaled gas composition was changed to 5% CO2 in medical air. A 2 minute 
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adjustment was allowed between switching the gas and initiating data acquisition. The overall 

duration of isoflurane anesthesia for the MRI scans on d1 to d14 was 45 minutes. Before MRI, 

stroke-induced functional deficits were assessed using an 18-point composite neurological score 

[19].  The test incorporated the observation of (1) spontaneous activity, (2) symmetry in limb 

movement, (3) forepaw outstretching, (4) climbing, (5) body proprioception, and (6) response to 

vibrissae touch, each scored with a maximum of three points, so that 18 points indicated no 

neurological deficit. After the last MRI, animals were killed by an overdose of pentobarbital and 

subjected to transcardial perfusion fixation with 0.1 mol/L phosphate-buffered saline (PBS), 

followed by 4% formalin in phosphate buffer. Brains were extracted for histological analysis. 

 

MRI experiments 

MRI experiments were carried out on a 3 T GE Signa Excite whole-body system with a body 

transmit coil and a custom-built passively decoupled single-loop receive-only head coil of 3 cm 

diameter [20]. For perfusion imaging, we used multislice flow-sensitive alternating inversion 

recovery (FAIR) pulsed arterial spin labeling (pASL) with the QUIPSS II modification to 

minimize the effects of transit delays [21]. Imaging parameters were as follows: multi-shot spiral; 

slice thickness: 2 mm (three slices); gap: 1 mm; field of view: 4x4 cm; matrix:  64x64; flip angle: 

90°, number of interleaves: 8, number of repetitions: 12; TE: 4.3 ms; TI1/TI2: 700/1250 ms gap 

between tagging and imaging region: 5 mm. In-plane saturation was applied immediately after the 

preparatory inversion pulse for background suppression. Artefacts from pulsations of the carotid 

arteries below the brain were suppressed with a spatial saturation pulse. The image acquisition was 

immediately followed by a global saturation (PostSat) to reset the blood signal. For details of 

equilibrium magnetization reference scan and coil sensitivity profile estimation see [20]. 
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CBF was calculated from the signal difference ∆S between tag and control ASL images according 

to:  

 

∆S = 2αM0BτCBFe-T1/T1B ,    (1) 

 

where α is the tagging efficiency, M0B is the MRI signal from a voxel full of arterial blood, τ is 

the temporal width of the blood bolus that reaches the region of interest, and T1B is the T1 of 

blood. 2αM0B is the initial magnetization difference between tagged and control blood, the 

product τCBF is the amount of tagged blood that flows into the region of interest (ROI), and the 

exponential factor reflects T1relaxation of the tag. 

In addition, anatomical images (T2-weighted, 256 x 256), as well as T1 and T2 maps were 

acquired with the same slice prescription as the ASL experiment.  

 

MRI data processing and statistical analyses 

For MRI data processing, images from all animals per group were first co-registered and then 

averaged using codes written in Matlab (Mathworks, Natick, MA, USA) software. Group values 

given in this study were obtained by ROI analysis on the co-registered and averaged MR images. 

Vasoreactivity (VR) maps were generated by subtracting the CBF map acquired in air from the 

one acquired in 5% CO2. To define voxels with hyperperfusion, the mean signal and standard 

deviation of the contralateral hemisphere (excluding the ventricles) were obtained on CBF maps. 
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Voxels with CBF values above this mean plus two standard deviations were considered as 

“hyperperfused”. Similarly, voxels with T2 values above the mean and two standard deviations 

of the contralateral hemisphere were assigned to the final infarct. Statistical analyses were 

conducted using SPSS v12.0 for Windows. All values were reported as mean ± standard 

deviation. The area of RECA-positive signal within the ROIs was compared by independent t-

test. CBF values between ischemic and contralateral voxels were compared with a paired t-test. 

The Pearson correlation coefficient was used for correlation analyses between MRI parameters. 

A Repeated Measures General Linear Model (GLM) Analysis was conducted for the comparison 

of ipsi-and contralateral CBF values (Figure 2). P values below 0.05 were considered significant.  

 

Histology 

After perfusion fixation, brains were removed, immersed in ice-cold 4% formalin in phosphate 

buffer overnight and transferred to 30% sucrose solution for at least 3 days. Coronal 40-μm-thick 

sections were cut on a freezing microtome (Leica, Nussloch, Germany). Premounted sections 

were stained with hematoxylin eosin (HE).  Immunofluorescence staining of endothelial cells 

was performed using mouse anti-rat endothelial cell antigen (RECA-1; 1:400; AbD Serotec) and 

fluorescein (FITC) -labeled donkey anti-mouse secondary antibody (1:250; Dianova). 

For analysis of RECA -staining, slices were acquired from a single staining session and 

photographed under a 20x objective of an epifluorescence microscope, while fluorescence gain 

parameters were kept constant. FITC - fluorescence signal was quantified using ImageJ software 

(NIH Bethesda, MD) within a 3 x 3 mm region of interest (ROI) positioned within the 
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subcortical border zone of the lesion and the homologous contralateral area. The ipsilateral signal 

density was compared to the contralateral ROI. 
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Results 

In a first step, CBF was determined in healthy adult Wistar rats (n=6) under normal (breathing 

air) and high-flow (breathing 5% CO2) conditions. Hypercapnia resulted in a robust increase in 

CBF throughout the brain, with an average of 58.5% (Figure 1).  

60 min of MCAO resulted in a profound drop in CBF within the ischemic hemisphere. We 

grouped voxels displaying a CBF of < 30ml/100g/min on d0 to follow tissue with severely 

compromised perfusion over the course of reperfusion and beyond (Figure 2). On day 1 after 

MCAO, CBF within the d0-defined core voxels had recovered and was on average above 

contralateral CBF values. Towards d4, CBF rose further above values derived from the 

contralateral hemisphere. Voxels with an increase in CBF of more than two standard deviations 

above contralateral were classified as “hyperperfused”. Hyperperfusion evolved in different time 

courses after MCAO when individual animals were analyzed. Overall, we observed three 

patterns of hyperperfusion after MCAO (Table 1, Figures 3 and 4A). In large hemispheric 

cortico-subcortical strokes (type A, n=2), post-stroke hyperperfusion was first visible at d4 after 

MCAO, further increasing towards d14. Animals with moderate cortico-subcortical strokes (type 

B, n=2) showed a few voxels with hyperperfusion already on d1, with a maximum on d4. 

Hyperperfusion was clearly remittent towards d14. Predominantly subcortical infarctions (type 

C, n=4) already reached the maximum of hyperperfusion on d1, remaining fairly stable or 

decreasing slightly until d14. To analyze vasodilation as an indicator of vasoreactivity, in 

addition to standard air conditions, CBF was measured during the application of a 5% CO2-

challenge on d4 and 14 (Figure 3). In type A strokes, vasoreactivity was depressed on d4 and 14. 

In type B strokes, vasoreactivity was depressed on d4, but overshooting on d14. Vasoreactivity 

was either not affected at all or increased in punctate areas within the ischemic lesion on d4, 
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more pronounced on d14, in type C strokes. The final infarct size - determined from T2 maps at 

day 14 - had a similar distribution as the region of hyperperfusion at its maximum (Figure 3: T2-

ROI). The number of hyperperfused voxels on d4 was different between infarct types (Figure 

4A) and correlated with final infarct size determined from T2w-MRI on d14 (r = 0.76; p = 

0.028); the correlation was even stronger when the number of voxels at the time of maximal 

hyperperfusion (d1, d4 or d14) were correlated with T2-lesion size (r = 0. 88; p = 0.004). The 

absolute CBF values within the hyperperfused area could not be used to discriminate infarct type 

(A, B, C) at any observation time point (Figure 4B). The maximal number of voxels with 

hyperperfusion correlated with the number of voxels with a severe perfusion restriction (CBF < 

30ml/100g/min) on d0 (r = 0.72; p = 0.04), but not with functional outcome on d14 (r = -0.49). 

The number of hyperperfused voxels on d14 was a better indicator for functional outcome (r = -

0.61), however, this did not reach significance (p = 0.1). In line with this finding, the increment 

in mean functional test score from type A and B to type C strokes (Figure 4C) was not strong 

enough to discriminate the three infarct types; whereas T2 lesion size was (Figure 4D).  

Voxels in which increased vasoreactivity was observed on d14 mapped to the region of infarct 

on T2-weighted images (Figure 5). At that time, the remaining voxels with hyperperfusion were 

localized more around the infarct border zone.  

To test if increased vasoreactivity was correlated to vascular anatomy in the border zone of 

infarction on d14, we analyzed the expression of the endothelial marker RECA. Subcortical 

regions at the borderzone of infarction showed a higher density of RECA - positive staining 

compared to the contralateral side in animals with increased vasoreactivity (Figure 6). Absolute 

area of staining (in mm2) was similar in both groups on the contralateral side (3.6 +/- 0.8mm2 vs. 

3.5 +/- 0.7mm2).  
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Discussion 

Recanalization of the occluded vessel is highly correlated with a better functional outcome in 

patients affected by stroke [22,23]. However, recanalization bears the risk of “reperfusion 

injury”, a phenomenon known and feared after surgical revascularization procedures, such as 

carotid endarterectomy [24,25]. In early reports of post-stroke hyperperfusion, this phenomenon 

was suspected to be part of reperfusion injury; and a deleterious effect on stroke recovery was 

assumed [26]. In their studies of transient ischemia in cats, Heiss et al. found that the longer the 

duration of ischemia (30 - 120 minutes), the more severe and longer the immediate post-ischemic 

hyperperfusion, and the worse the chance of survival [5]. However, while these changes in CBF 

take place within the first minutes to hours after ischemia, not much is known about the late 

hyperperfusion phase observed here, occurring after days to weeks.  

In clinical studies, depending on the time of analysis after stroke and the method used, between 

10-50% of patients have areas of post-ischemic hyperperfusion [6,7,8,10]. The fact that post-

ischemic hyperperfusion could only be detected in some, but not all stroke patients, can be 

explained by recanalization that is partial or absent in some patients, as well as the transient 

nature of hyperperfusion which can be missed with a single examination. Kidwell et al. 2001 did 

not find a difference in clinical improvement in patients displaying hyperperfusion after stroke, 

but showed that tissue with post-ischemic hyperperfusion was very likely to become part of the 

final infarct. 

 

In our study, late post-ischemic hyperperfusion between d1 and 14 was found in all rats, 

regardless of final lesion size. Similar to the findings of Kidwell et al., the area of hyperperfusion 

overlapped with the initial perfusion restriction, and even more, with final infarct volume.  
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The number of voxels with hyperperfusion was an indicator of infarct size. Small subcortical 

infarcts were characterized by an earlier onset of hyperperfusion (d1). In intermediate size 

cortico-subcortical infarcts, hyperperfusion was maximal on d4, but remittent on d14. 

Hyperperfusion was sustained and maximal on d14 in large hemispheric lesions. From such non-

uniform temporal dynamics of blood flow adaptations it is difficult to extract a prognostic 

parameter at a single observation time point. However, an earlier occurrence and fewer affected 

voxels indicate a smaller final lesion. Although the number of hyperperfused voxels on d4 

correlated to final infarct size, the correlation to functional test score on d14 was rather weak, 

which was most likely explained by our small sample size.  

Based on our observations, we postulate that late post-ischemic hyperperfusion is a common part 

of the reperfusion cascade, and secondary to the initial ischemic impact.  

Mechanistically, post-ischemic hyperperfusion may reflect a state of “vasoparalysis”, where 

endothelial cells within the affected region lose their autoregulatory capacity and remain in 

(sub)-maximal dilation. We tested this by analyzing the response to the vasodilatory stimulus 

CO2. We found that vasoreactivity within the ischemic area was depressed in most animals 

shortly after stroke, when hyperperfusion was maximal.  Interestingly, we observed animals with 

an overshooting vasoreactivity on d14 after MCAO. These animals either had subcortical strokes 

with a rather low and constant number of hyperperfused voxels from d0 on, or intermediate 

cortico-subcortical lesions with a clear reduction of the hyperperfused area from d4 to d14. Such 

locally increased vasodilatory response to CO2 after ischemia-reperfusion has not been described 

before. In the series of events leading to CBF regulation after reperfusion, this probably reflects 

recovery of the vasculature from the vasoparalytic state. However, a limitation of our study is 

that arterial blood gases before and during the CO2 – challenge were not measured in the same 
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set of animals subjected to longitudinal MRI, but in a separate group with identical settings used 

for MRI and anesthesia [17]. Our histological data, indicating a higher density of blood vessels 

in the vicinity of the infarct border in these animals, suggest that the high vasodilatory capacity 

might be due to young, still immature, blood vessels, which were formed in a compensatory 

reaction to facilitate supply to the peri-lesional tissue. Peri-lesional angiogenesis starts around 3 

days post stroke; and blood vessel density has been shown to increase markedly after 7-15 days 

[27]. This has been associated with a higher peri-lesional CBF values [28]. 

Late post-ischemic hyperperfusion has been investigated after 30 – 90 minutes of MCAO in rats 

[29]. These authors also found a congruency between voxels with hyperperfusion and voxels that 

went on to be infarcted. The peak of hyperperfusion in their study was at 48 hours. Interestingly, 

they observed hyperperfusion in all animals after 30 minutes MCAO, but only in half of the 60 

minute - and none of the 90 minute MCAO group. This is most likely due to the shorter 

observation span (only 24 hours in the 60 and 90 minute occlusion groups) in their study. As we 

show in our sample, larger infarcts have a later occurrence of hyperperfusion, so it was probably 

missed at 24 hours.  
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Summary 

In conclusion, late post-ischemic hyperperfusion was detected between d1 and 14 after transient 

ischemia in our rat model. It is likely that hyperperfusion observed in stroke patients is similar to 

this late post-ischemic hyperperfusion (in contrast to immediate or early post-ischemic 

hyperperfusion). Although voxels included in late post-ischemic hyperperfusion areas are likely 

to undergo infarction, the occurrence of hyperperfusion per se is not related to an unfavorable 

functional outcome. An early occurrence and smaller area of maximal hyperperfusion after 

stroke are associated with smaller lesions, while a late occurrence and larger area of 

hyperperfusion indicate a large infarct. Vasodilatory capacity can recover in former areas of 

hyperperfusion and even be above baseline at later time points, indicating recovery of vascular 

function or integration of newly formed blood vessels into the infarct border zone. 
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Table 1: Lesion characteristics and functional test scores in individual animals 

 

 

 

 

 

 

 

 

 CBF < 30 d0 HP d1 HP d4 HP d14 T2 d14 VR + functional Stroke 

No1 187 21 112 218 398 0 10 A 

No2 119 67 66 68 83 1 14 C 

No3 55 37 5 17 32 1 18 C 

No4 120 37 253 22 278 1 14 B 

No5 150 20 172 204 308 0 15 A 

No6 145 87 54 52 50 0 16 C 

No7 185 100 239 74 208 1 15 B 

No8 92 73 35 39 28 0 14 C 
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Titles and legends to figures 

 

Table 1: Lesion characteristics and functional test scores in individual animals 

Values from all 8 animals (No1 to No8) are shown. CBF < 30 d0: Numbers of voxels with CBF 

below 30ml/100g/min on d0 (considered severely ischemic). HP: hyperperfusion on d 1, 4 and 

14. T2 d14: number of voxels of the final infarct which was taken from T2 maps on d 14 as 

number of voxels with a T2 above the mean and 2 standard deviations of contralateral. VR+ 

refers to presence of increased vasoreactivity (overshooting CBF response to CO2-challenge) on 

d14. Functional score on d14 is shown (maximum 18 points, minimum 3 points). Stroke was 

categorized as large cortico-subcortical (A), moderate cortico-subcortical (B) or small, 

predominantly subcortical (C). 

 

Figure 1: Assessment of vasoreactivity using 5% CO2 

CBF maps from six healthy animals were averaged. A: averaged CBF map during inhalation 

anaesthesia with air and B: with 5% CO2. C: Vasoreactivity map (VR) obtained by subtracting A 

from B. D: Anatomical location of brain slices analyzed in MRI with respect to intraaural (IA) 

line. The graph on the right side displays whole brain CBF values measured with air or CO2. 

 

Figure 2: CBF in ischemic voxels over time 

Black line: CBF changes within voxels with intra-ischemic CBF of < 30ml/100g/min between d 

0 (D0; during vascular occlusion) up to d14 after MCAO. Grey line: contralateral CBF values 

from the same animals. Mean ± SD values are shown. The GLM analysis for repeated measures 
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demonstrated a significant effect of the within-subject factor “time” (p = 0.03), but not of the 

between-subject factor ipsi- or contralateral side (p=0.7), but for the interception of the two 

factors (p < 0.0001). 

 

Figure 3:  Patterns of hyperperfusion and changes in vasoreactivity 

Three representative image series (slice IA 7.5 mm) from animals with A: large cortico-

subcortical., B: moderate cortico-subcortical and C: predominantly subcortical infarction. CBF 

maps on days 0, 4 and 14; along with vasoreactivity (VR) - maps and T2 maps (from d4 and 14/ 

d14) are shown. On the right, the masked infarct area as extracted from D14 T2 maps is overlaid 

onto the CBF D4 map to show the spatial overlap between hyperperfusion and final infarct. 

White arrow: points to maximum of hyperperfusion, which occurs at different time points in A) 

and B). Red arrow in B): when the amount of hyperperfusion has declined, remaining voxels 

with hyperperfusion are localized more to the infarct border. 

 

Figure 4: Hyperperfusion and CBF in individual animals  

4A: number of hyperperfused voxels on days 1, 4 and 14 (D1, D4, D14). The three infarct types 

(A, B, C) show differences in the number of hyperperfused voxels over time. 4B: absolute CBF 

values (given in mg/100ml/min) within ischemic voxels (< 30mg/100ml/min on d0) over time 

(D0, D1, D4, D14). 4C: Mean functional test scores on D 14 (higher scores indicate less 

functional impairment) show a gradual increase between infarct types (A, B, C);  

4D: Infarct size determined from D14 T2-maps in the three different infarct types. 
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Figure 5:  Distribution of voxels with increased d14 vasoreactivity  

(A) Infarct region of one animal on d14 - CBF map with hyperperfused voxels (B, shown in red) 

overlaid onto the d14 - T2 map (B and C). These voxels were localized to the infarct border. (D) 

Day 14 – vasoreactivity (VR) map. Voxels with increased vasoreactivity are shown in red and 

overlaid on the T2 map: E. Hematoxylin-eosin stained section of the corresponding region in F. 

 

Figure 6:  Increased density of blood vessels at perilesional regions with increased d14 

vasoreactivity 

RECA-1 immunofluorescence staining (red) with DAPI nuclear staining (green) compared in 

animals without (No VR+) and with (VR+) increased vasoreactivity on d14 (n = 4 per group). 

Corresponding subcortical regions close to the infarct on d14 showed a higher density of RECA-

1 signal. One example per group is shown on the right. White arrows point to the lesion. White 

line indicates 100 µm. 
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