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Abstract. Performance comparison among various architectures is generally 

attained by using standard benchmark tools. This paper presents JetBench, an 

Open Source OpenMP based multicore benchmark application that could be 

used to analyse real time performance of a specific target platform. The 

application is designed to be platform independent by avoiding target specific 

libraries and hardware counters and timers. JetBench uses jet engine parameters 

and thermodynamic equations presented in the NASA’s EngineSim program, 

and emulates a real-time jet engine performance calculator. The user is allowed 

to determine a flight profile with timing constraints, and adjust the number of 

threads. This paper discusses the structure of the application, thread distribution 

and its scalability on a custom symmetric multicore platform based on a cycle 

accurate full system simulator. 
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1 Introduction 

Benchmarks are generally classified into two types,  i.e. 1) synthetic benchmarks and 

2) application benchmarks. Synthetic benchmarks are designed to exploit particular 

property of a processor such as instruction per second (IPS), cache performance, I/O 

bandwidth etc, whereas application benchmarks are centred towards one particular 

application such as automotive, office automation, etc. The concept of using 

benchmarks for performance characterization of the system is common practice and 

some processor manufacturers have proposed their own benchmarks [1]. However 

such benchmarks strive to give better performance on a particular platform, third 

party benchmarks are a good way to compare the performance amongst various 

architectures impartially and transparently. 

The JetBench benchmark presented in this paper is an application benchmark 

written in C, for real-time jet engines thermodynamic calculations. It is a 

multithreaded application for shared memory architectures. The benchmark is based 

on OpenMP [2], and could be seamlessly ported to any platform supporting it. The 
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benchmark provides user the flexibility to specify custom workload, that could be a 

real flight profile with deadlines. The benchmark records the time consumed in 

calculating individual data points, and reports the miss of deadlines. The benchmark 

is scalable to theoretically any number of cores and could be used as a tool to measure 

an operating system’s scheduling characteristics. This paper is divided into five 

sections. The following section overviews the related work in the area of embedded 

benchmarking, section 3 and 4 detail the proposed benchmark characteristics, and 

results based on a multicore architecture. Finally the last section forms the conclusion. 

2 Related Work    

With the current drive towards multicore platforms, standard APIs like OpenMP, 

POSIX [3] and Message Passing Interface (MPI) [4] have facilitated the development 

of multicore threaded applications. Multicore platforms have been widely applied in 

the real-time systems to achieve higher throughput and lower power consumption. 

The embedded system community has long been using non-embedded benchmarks 

such as SPEC [5], Whetstone [6], Dhrystone [7] and NAS parallel benchmarks [8], to 

evaluate the performance of the target systems. A limited number of benchmarks are 

specifically designed for the embedded system evaluation.  

One of the few embedded system specific benchmark suites is the Embedded 

Microprocessor Benchmark Consortium (EEMBC) benchmark tools suite comprising 

of algorithms and applications targeting telecommunication, networking, automotive, 

and industrial products. A recent addition of a so called MultiBench [9] suite has 

realized the performance evaluation of shared memory symmetric multicore 

processors. These benchmarks could be targeted to any platform supporting POSIX 

thread library, and are delivered as customizable set of workloads, each comprising of 

one or more work items. Although computationally rich and extensive the 

benchmarks by no means provide real time performance statistics of the system, and 

for such applications EEMBC has two applications in a separate single core 

benchmark suite called AutoBench [10]. This benchmark suite comprises of real time 

applications such as ‘Angle to Time Conversion’ and ‘Tooth to Spark’ [11]. The 

Angle to Time Conversion application simulates an embedded automotive 

application, where the processor measures the real-time delay between pulses sensed 

from the gear on the crankshaft. Then it calculates the Top Dead Center (TDC) 

position on the crankshaft, computes the engine speed, and converts the tooth wheel 

pulses to crankshaft angle position. The Tooth-to-Spark application simulates an 

automotive application that processes air/fuel mixture and ignition timing in real-time. 

Another real-time single core embedded benchmark is PapaBench [12], that is based 

on a unmanned aerial vehicle (UAV) control software for AVR and ARM 

microcontroller systems. The benchmark provides the worst case execution time 

computation which is useful for systems scheduling analysis.  Guthaus et al. [13] 

presented the MiBench embedded benchmark suite.  This benchmark suite is a single 

core, non real-time implementation of 35 applications in the areas such as 

automotive/industrial, consumer, office, network, security, and telecommunication. 

As all of the above mentioned benchmarks either are not using threaded 

implementation or are not real-time applications, a more specific benchmark suite 
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addressing the two issues altogether is developed by Express Logic Inc., i.e. the so 

called ‘Thread-Metric’ benchmark suite [14]. The tool is specifically designed to 

measure a real-time operating system’s (RTOS) capability to handle a threaded 

application. The benchmark is not a multiprocessor implementation as the thread 

model executes in a round-robin fashion and is useful to explore real-time context 

switching and memory management capabilities of an RTOS.  

The related research in the embedded benchmarking area is pointing to the need of 

a more specific multicore real-time benchmark suite, capable to instrument 

performance characteristics of shared memory architectures. The following section 

introduces and overviews the JetBench benchmark application, an Open-Source tool 

for real-time, multiprocessor embedded architectures. 

3 Benchmark Characteristics 

The JetBench application is composed of thermodynamic calculations based on three 

types of jet engines, i.e. 1) TurboJet, 2) Turbojet with afterburner, and 3) a Turbofan 

engine (See Fig. 1). The application contains parameters specific to the said models as 

described in the NASA’s EngineSim application [15]. The benchmark allows a user 

defined input flight profile to be simulated containing speed, altitude, throttle, and 

deadline time, while in response to that, the processing time for various 

thermodynamic calculations is monitored and reported (See Fig. 2).  

 

   

(a) Turbojet (b) Jet with Afterburner (c) Turbofan 

Fig. 1. Three different Jet Models used in JetBench (Adapted from [15]) 

An overview of the thermodynamic calculations used in the benchmark application 

is given in Appendix.  

 

Fig. 2. JetBench Application I/O Parameters 
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In contrast to a synthetic benchmark, an application benchmark such as JetBench, 

is a realistic representation of the actual workload; however there are some deviations 

one has to apply to allow portability of the application on various platforms, which 

are discussed as follows.  Generally, all real applications require a significant amount 

of I/O operations, which if were implemented in the benchmark would have restricted 

its portability [16]. Therefore the I/O performance of a platform can not be evaluated 

through the proposed benchmark.  Secondly, as the application has to get executed in 

a target time period, excessive computations could have caused the benchmark to 

perform poorly on majority of low end systems. To avoid this problem the JetBench 

application covers a limited number of typical thermodynamic calculations used in jet 

engines. As a consequence of the restricted workload of the computations, it may 

seem small enough to high-end multicore systems that their actual performance may 

not be reported well, as in contrast to a low end multicore platform. A more detailed 

analysis of the benchmark on a number of cores is given in the following section.   

The JetBench application not only provides the user with an overview of the real-

time performance of the system, but could also be used to discover optimum number 

of threads to achieve desired performance. The JetBench benchmark is mainly 

comprised of ALU centric operations such as integer/double multiplication, addition, 

and division for the computation of exponents, square roots, and calculations such as 

value of pi and degree-to-radian conversion. All these operations are based on real 

thermodynamic equations and operations required for a jet engine control unit. The 

benchmark structure is composed of 88.6% of the parallel portion as reported by 

thread analysis tools, and is described in the pseudo code given in Fig. 3 and the 

threading diagram in Fig. 4.  

JetBench Pseudo Code 

Inputs: Engine Type 

Data File Defining Speed, Altitude, Throttle, Deadline 

Initialization: 

   Set Default Parameters 

   Select Engine Type 

   Open data file 

Parallel Section: 

   Calculate Pi 

   Read an input data point 

   Calculate: 

        Environment variables 

        Thermodynamic parameters 

        Engine geometry 

        Engine performance 

   Print Results 

   If not EOF goto Parallel Section 

   Print Results 

   End 

Fig. 3. Pseudo code of the application 
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Fig. 4. JetBench Thread Structure 

4 Results 

To analyze the scalability of the benchmark, un-optimized executions of the 

application were carried out on shared memory multicore platform based on sixteen 

x86 CPUs running at 20MHz. The platform was simulated on Simics full system 

simulator [17], running Linux kernel 2.6.15 including symmetric multiprocessing 

support. The input dataset comprised of 30 data points and calculation deadlines were 

uniformly set as 9 sec.  As the platform is running at a low clock frequency i.e. 20 

MHz,   a single thread per core was executed. The benchmark output timing per input 

data point is shown in Fig. 5. The graph shows normalized timing values against the 

set deadline time, i.e. 9 sec in this instance, which enables one to compare execution 

rate instead of execution time. It is worth noting that the execution rate is inconsistent 

for all the cores, also the rate decreases with the increase in number of cores. The 

reason behind is that the application is not prioritized statistically by the user but has 

been prioritized by the kernel itself. Secondly for any application increasing the 

number of threads beyond a certain level actually decreases performance since thread 

handling overhead will surpass the per thread execution time. This phenomenon is 

more observable, when running multiple threads per core where context switches 

depreciate the performance after a certain level of parallelism. 

It can be observed from Fig. 6 and 7 that the overall execution time for the 

application is around 230 sec for a 4 core machine; however the 8 core machine offers 

a minimum number of missed deadlines, i.e. 2. This is due to the fact that although for 

8 cores platform, threading overhead is higher than for the four core machine, which 

also effects the computation time per thread. But for 4 cores or less the CPU workload 

has exceeded the available resource and therefore resulted in missing more deadlines 

than the later. The output from the benchmark execution thus allows the user to 

analyze the impact of threading on a particular platform and could be helpful in the 

process to decide optimal number of cores as well as OS scheduling characterization. 
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Fig. 5. Application execution rate for different number of cores 

 

Fig. 6 Application execution time   Fig. 7 Missed Deadlines 

To validate the phenomenon of performance degradation with an increase in 

number of threads, a more detailed analysis of the benchmark based on an Intel Dual 

Core machine [18] was carried out (see Fig. 8). The benchmark is executed for up to 8 

threads and processing speedup was calculated using Amdahl’s law [19] and 

Gunther’s law (or alternatively termed as Universal Scalability Law (USL))[20-22].  

 

 (1)  (2) 

Amdahl’s Law Gunther’s Law 

where 

p = Parallel fraction of the program 

s = Serial fraction of the program 

k = Delay associated with concurrency 

N = Number of processors 

 

Amdahl’s law is useful in the situations to set an upper limit for the performance 

gain with increase of parallelization, this however does not take into account the 

drawbacks of aggressive parallelization such as excessive cache coherency delays, 

instruction execution, and thread scheduling delays etc. On the other hand Gunther’s 
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law provides a more realistic picture in such situations. The results shown in Fig.8 

complement the results in Fig. 6, as the throughput tends to decrease with the increase 

of parallelism beyond a certain limit, which however varies from platform to 

platform. 

  

 

Fig. 8. Comparison of actual speed-up against Amdahl’s law and Gunther’s law 

5 Conclusion 

In this paper, Jetbench an open-source, real-time multicore application benchmark has 

been presented. The application is designed to be platform independent by avoiding 

target specific libraries and hardware counters and timers. The application comprises 

of thermodynamic calculations of a jet engine, and processes user defined input data 

points with custom deadlines. The benchmark application was tested on a 16 core 

platform and has demonstrated its usefulness for deciding optimal number of threads, 

and provided timing information that could be used to deduce an estimate of CPU 

core utilization and the operating system’s real-time behaviour. 

Future work will include the testing of the benchmark on various architectures with 

and without thread prioritization. Also the application’s behaviour on an RTOS based 

platform is to be observed. 

JetBench is available from http://jetbench.sourceforge.net/. 
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Appendix: Thermodynamic equations 

With reference to the Fig. 1, thermodynamic calculations [15] covered in the 

benchmark are given as follows. 

Notations: 

─ Point 0 is the free stream conditions 

─ Point 1: the inlet entrance 

─ Point 2: compressor entrance 

─ Point 3: compressor exit 

─ Point 4: turbine entrance 

─ Point 5: turbine exit 

─ Point 6: nozzle throat 

 

Inlet performance (0->2) 

 Inlet Temperature ratio 

 
Inlet Pressure ratio for Mach < 1, 

where ηi is the inlet efficiency factor 

 Inlet Pressure for Mach > 1, where ηi 

is the inlet efficiency factor 

  

Spillage Drag for inlet, where K is 

the lip suction factor, ṁi is the inlet 

mass flow rate, V is the velocity, A is 

the area, and p is denoting the 

pressure. 

Compressor thermodynamics (2->3) 

 Compressor Pressure ratio  

 
Compressor Temperature ratio, 

where γ is the ratio of specific heats 
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compressor work per mass of airflow, 

where ηc is the compressor efficiency 

factor and cp the specific heat 

Burner thermodynamics (3->4) 

 Burner Pressure Ratio 

 

Burner Temperature Ratio, where , f 

is the fuel to air mass flow ratio, Q is 

the heat release, ηb is the burner 

efficiency factor. 

Turbine thermodynamics (4->5) 

 Turbine Pressure Ratio 

 
Turbine Work Per Mass Of Airflow, 

where ηt is the turbine efficiency and 

cp is the specific heat. 

Nozzle thermodynamics (5->6) 

 
Nozzle Pressure and temperature 

ratios 

 
Exit velocity, where ηn is the nozzle 

efficiency 

Output calculations 

 
Mach Number, where V0 is the 

aircraft speed, a0 is the speed of 

sound and R is the gas constant 

 , 

 . 

Stratospheric Temperature and 

pressure for altitude < 36152 feet 
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 , 

 

Stratospheric Temperature and 

pressure for 36152< altitude < 82345   

feet 

  , 

 . 

Stratospheric Temperature and 

pressure for altitude > 82345   feet 

 where, 

 . 

Fuel mass flow rate, where ṁa is the 

airflow rate, ηb is the burner 

efficiency, f is the fuel to air ratio and 

Q is the fuel heating value. 

 , 

 , 

 , 

 , 

 , 

 . 

Thrust Specific Calculations where, 

EPR is the engine pressure ratio, and 

ETR is the engine temperature ratio. 

 


