
JetBench: An Open Source Real-time Multiprocessor

Benchmark

Muhammad Yasir Qadri, Dorian Matichard, and Klaus D. McDonald Maier

School of Computer Science and Electronic Engineering

University of Essex, CO4 3SQ, UK1, 3

Ecole Nationale d’Electronique, Informatique et Radiocommunications de Bordeaux,

ENSEIRB2

yasirqadri@acm.org , matichar@enseirb.fr , kdm@essex.ac.uk

Abstract. Performance comparison among various architectures is generally

attained by using standard benchmark tools. This paper presents JetBench, an

Open Source OpenMP based multicore benchmark application that could be

used to analyse real time performance of a specific target platform. The

application is designed to be platform independent by avoiding target specific

libraries and hardware counters and timers. JetBench uses jet engine parameters

and thermodynamic equations presented in the NASA’s EngineSim program,

and emulates a real-time jet engine performance calculator. The user is allowed

to determine a flight profile with timing constraints, and adjust the number of

threads. This paper discusses the structure of the application, thread distribution

and its scalability on a custom symmetric multicore platform based on a cycle

accurate full system simulator.

Keywords: Real-time, Multiprocessor, Application Benchmark

1 Introduction

Benchmarks are generally classified into two types, i.e. 1) synthetic benchmarks and

2) application benchmarks. Synthetic benchmarks are designed to exploit particular

property of a processor such as instruction per second (IPS), cache performance, I/O

bandwidth etc, whereas application benchmarks are centred towards one particular

application such as automotive, office automation, etc. The concept of using

benchmarks for performance characterization of the system is common practice and

some processor manufacturers have proposed their own benchmarks [1]. However

such benchmarks strive to give better performance on a particular platform, third

party benchmarks are a good way to compare the performance amongst various

architectures impartially and transparently.

The JetBench benchmark presented in this paper is an application benchmark

written in C, for real-time jet engines thermodynamic calculations. It is a

multithreaded application for shared memory architectures. The benchmark is based

on OpenMP [2], and could be seamlessly ported to any platform supporting it. The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/16470447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yasirqadri@acm.org
mailto:matichar@enseirb.fr
mailto:kdm@essex.ac.uk

2 Muhammad Yasir Qadri, Dorian Matichard, and Klaus D. McDonald Maier

benchmark provides user the flexibility to specify custom workload, that could be a

real flight profile with deadlines. The benchmark records the time consumed in

calculating individual data points, and reports the miss of deadlines. The benchmark

is scalable to theoretically any number of cores and could be used as a tool to measure

an operating system’s scheduling characteristics. This paper is divided into five

sections. The following section overviews the related work in the area of embedded

benchmarking, section 3 and 4 detail the proposed benchmark characteristics, and

results based on a multicore architecture. Finally the last section forms the conclusion.

2 Related Work

With the current drive towards multicore platforms, standard APIs like OpenMP,

POSIX [3] and Message Passing Interface (MPI) [4] have facilitated the development

of multicore threaded applications. Multicore platforms have been widely applied in

the real-time systems to achieve higher throughput and lower power consumption.

The embedded system community has long been using non-embedded benchmarks

such as SPEC [5], Whetstone [6], Dhrystone [7] and NAS parallel benchmarks [8], to

evaluate the performance of the target systems. A limited number of benchmarks are

specifically designed for the embedded system evaluation.

One of the few embedded system specific benchmark suites is the Embedded

Microprocessor Benchmark Consortium (EEMBC) benchmark tools suite comprising

of algorithms and applications targeting telecommunication, networking, automotive,

and industrial products. A recent addition of a so called MultiBench [9] suite has

realized the performance evaluation of shared memory symmetric multicore

processors. These benchmarks could be targeted to any platform supporting POSIX

thread library, and are delivered as customizable set of workloads, each comprising of

one or more work items. Although computationally rich and extensive the

benchmarks by no means provide real time performance statistics of the system, and

for such applications EEMBC has two applications in a separate single core

benchmark suite called AutoBench [10]. This benchmark suite comprises of real time

applications such as ‘Angle to Time Conversion’ and ‘Tooth to Spark’ [11]. The

Angle to Time Conversion application simulates an embedded automotive

application, where the processor measures the real-time delay between pulses sensed

from the gear on the crankshaft. Then it calculates the Top Dead Center (TDC)

position on the crankshaft, computes the engine speed, and converts the tooth wheel

pulses to crankshaft angle position. The Tooth-to-Spark application simulates an

automotive application that processes air/fuel mixture and ignition timing in real-time.

Another real-time single core embedded benchmark is PapaBench [12], that is based

on a unmanned aerial vehicle (UAV) control software for AVR and ARM

microcontroller systems. The benchmark provides the worst case execution time

computation which is useful for systems scheduling analysis. Guthaus et al. [13]

presented the MiBench embedded benchmark suite. This benchmark suite is a single

core, non real-time implementation of 35 applications in the areas such as

automotive/industrial, consumer, office, network, security, and telecommunication.

As all of the above mentioned benchmarks either are not using threaded

implementation or are not real-time applications, a more specific benchmark suite

JetBench : An Open Source Real-time Multiprocessor Benchmark 3

addressing the two issues altogether is developed by Express Logic Inc., i.e. the so

called ‘Thread-Metric’ benchmark suite [14]. The tool is specifically designed to

measure a real-time operating system’s (RTOS) capability to handle a threaded

application. The benchmark is not a multiprocessor implementation as the thread

model executes in a round-robin fashion and is useful to explore real-time context

switching and memory management capabilities of an RTOS.

The related research in the embedded benchmarking area is pointing to the need of

a more specific multicore real-time benchmark suite, capable to instrument

performance characteristics of shared memory architectures. The following section

introduces and overviews the JetBench benchmark application, an Open-Source tool

for real-time, multiprocessor embedded architectures.

3 Benchmark Characteristics

The JetBench application is composed of thermodynamic calculations based on three

types of jet engines, i.e. 1) TurboJet, 2) Turbojet with afterburner, and 3) a Turbofan

engine (See Fig. 1). The application contains parameters specific to the said models as

described in the NASA’s EngineSim application [15]. The benchmark allows a user

defined input flight profile to be simulated containing speed, altitude, throttle, and

deadline time, while in response to that, the processing time for various

thermodynamic calculations is monitored and reported (See Fig. 2).

(a) Turbojet (b) Jet with Afterburner (c) Turbofan

Fig. 1. Three different Jet Models used in JetBench (Adapted from [15])

An overview of the thermodynamic calculations used in the benchmark application

is given in Appendix.

Fig. 2. JetBench Application I/O Parameters

4 Muhammad Yasir Qadri, Dorian Matichard, and Klaus D. McDonald Maier

In contrast to a synthetic benchmark, an application benchmark such as JetBench,

is a realistic representation of the actual workload; however there are some deviations

one has to apply to allow portability of the application on various platforms, which

are discussed as follows. Generally, all real applications require a significant amount

of I/O operations, which if were implemented in the benchmark would have restricted

its portability [16]. Therefore the I/O performance of a platform can not be evaluated

through the proposed benchmark. Secondly, as the application has to get executed in

a target time period, excessive computations could have caused the benchmark to

perform poorly on majority of low end systems. To avoid this problem the JetBench

application covers a limited number of typical thermodynamic calculations used in jet

engines. As a consequence of the restricted workload of the computations, it may

seem small enough to high-end multicore systems that their actual performance may

not be reported well, as in contrast to a low end multicore platform. A more detailed

analysis of the benchmark on a number of cores is given in the following section.

The JetBench application not only provides the user with an overview of the real-

time performance of the system, but could also be used to discover optimum number

of threads to achieve desired performance. The JetBench benchmark is mainly

comprised of ALU centric operations such as integer/double multiplication, addition,

and division for the computation of exponents, square roots, and calculations such as

value of pi and degree-to-radian conversion. All these operations are based on real

thermodynamic equations and operations required for a jet engine control unit. The

benchmark structure is composed of 88.6% of the parallel portion as reported by

thread analysis tools, and is described in the pseudo code given in Fig. 3 and the

threading diagram in Fig. 4.

JetBench Pseudo Code

Inputs: Engine Type

Data File Defining Speed, Altitude, Throttle, Deadline

Initialization:

 Set Default Parameters

 Select Engine Type

 Open data file

Parallel Section:

 Calculate Pi

 Read an input data point

 Calculate:

 Environment variables

 Thermodynamic parameters

 Engine geometry

 Engine performance

 Print Results

 If not EOF goto Parallel Section

 Print Results

 End

Fig. 3. Pseudo code of the application

JetBench : An Open Source Real-time Multiprocessor Benchmark 5

Fig. 4. JetBench Thread Structure

4 Results

To analyze the scalability of the benchmark, un-optimized executions of the

application were carried out on shared memory multicore platform based on sixteen

x86 CPUs running at 20MHz. The platform was simulated on Simics full system

simulator [17], running Linux kernel 2.6.15 including symmetric multiprocessing

support. The input dataset comprised of 30 data points and calculation deadlines were

uniformly set as 9 sec. As the platform is running at a low clock frequency i.e. 20

MHz, a single thread per core was executed. The benchmark output timing per input

data point is shown in Fig. 5. The graph shows normalized timing values against the

set deadline time, i.e. 9 sec in this instance, which enables one to compare execution

rate instead of execution time. It is worth noting that the execution rate is inconsistent

for all the cores, also the rate decreases with the increase in number of cores. The

reason behind is that the application is not prioritized statistically by the user but has

been prioritized by the kernel itself. Secondly for any application increasing the

number of threads beyond a certain level actually decreases performance since thread

handling overhead will surpass the per thread execution time. This phenomenon is

more observable, when running multiple threads per core where context switches

depreciate the performance after a certain level of parallelism.

It can be observed from Fig. 6 and 7 that the overall execution time for the

application is around 230 sec for a 4 core machine; however the 8 core machine offers

a minimum number of missed deadlines, i.e. 2. This is due to the fact that although for

8 cores platform, threading overhead is higher than for the four core machine, which

also effects the computation time per thread. But for 4 cores or less the CPU workload

has exceeded the available resource and therefore resulted in missing more deadlines

than the later. The output from the benchmark execution thus allows the user to

analyze the impact of threading on a particular platform and could be helpful in the

process to decide optimal number of cores as well as OS scheduling characterization.

6 Muhammad Yasir Qadri, Dorian Matichard, and Klaus D. McDonald Maier

Fig. 5. Application execution rate for different number of cores

Fig. 6 Application execution time Fig. 7 Missed Deadlines

To validate the phenomenon of performance degradation with an increase in

number of threads, a more detailed analysis of the benchmark based on an Intel Dual

Core machine [18] was carried out (see Fig. 8). The benchmark is executed for up to 8

threads and processing speedup was calculated using Amdahl’s law [19] and

Gunther’s law (or alternatively termed as Universal Scalability Law (USL))[20-22].

 (1) (2)

Amdahl’s Law Gunther’s Law

where

p = Parallel fraction of the program

s = Serial fraction of the program

k = Delay associated with concurrency

N = Number of processors

Amdahl’s law is useful in the situations to set an upper limit for the performance

gain with increase of parallelization, this however does not take into account the

drawbacks of aggressive parallelization such as excessive cache coherency delays,

instruction execution, and thread scheduling delays etc. On the other hand Gunther’s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

N
o

r
m

a
li

z
e
d

 B
e
n

c
h

m
a

r
k

P
e
r
fo

r
m

a
n

c
e

Data Points

1 Core 2 Cores 4 Cores 8 Cores 12 Cores 16 Cores

200

210

220

230

240

250

260

270

280

T
o
ta

l
E

x
ec

u
ti

o
n

 T
im

e

[S
ec

]

0

5

10

15

20

25

30

35

N
u

m
b

er
 o

f
M

is
se

d

D
ea

d
li

n
es

JetBench : An Open Source Real-time Multiprocessor Benchmark 7

law provides a more realistic picture in such situations. The results shown in Fig.8

complement the results in Fig. 6, as the throughput tends to decrease with the increase

of parallelism beyond a certain limit, which however varies from platform to

platform.

Fig. 8. Comparison of actual speed-up against Amdahl’s law and Gunther’s law

5 Conclusion

In this paper, Jetbench an open-source, real-time multicore application benchmark has

been presented. The application is designed to be platform independent by avoiding

target specific libraries and hardware counters and timers. The application comprises

of thermodynamic calculations of a jet engine, and processes user defined input data

points with custom deadlines. The benchmark application was tested on a 16 core

platform and has demonstrated its usefulness for deciding optimal number of threads,

and provided timing information that could be used to deduce an estimate of CPU

core utilization and the operating system’s real-time behaviour.

Future work will include the testing of the benchmark on various architectures with

and without thread prioritization. Also the application’s behaviour on an RTOS based

platform is to be observed.

JetBench is available from http://jetbench.sourceforge.net/.

References

[1] G. Morton, "MSP430 Competitive Benchmarking," Texas Instruments 2005.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 3 4 5 6 7 8

S
p

ee
d

u
p

Number of Threads

Amdahl's law Actual Results Gunther's Law

http://jetbench.sourceforge.net/

8 Muhammad Yasir Qadri, Dorian Matichard, and Klaus D. McDonald Maier

[2] L. Dagum, R. Menon, and S. G. Inc, "OpenMP: an industry standard API for shared-

memory programming," IEEE Computational Science & Engineering, vol. 5, pp. 46-55,

1998.

[3] U. Drepper and I. Molnar, "The native POSIX thread library for Linux," White Paper,

Red Hat Inc., 2003.

[4] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, "A high-performance, portable

implementation of the MPI message passing interface standard," Parallel Computing, vol.

22, pp. 789-828, 1996.

[5] J. Uniejewski, "SPEC Benchmark Suite: Designed for today's advanced systems," SPEC

Newsletter, 1989.

[6] R. P. Weicker, "An overview of common benchmarks," Computer, vol. 23, pp. 65-75,

1990.

[7] R. P. Weicker, "Dhrystone: a synthetic systems programming benchmark,"

Communications of the ACM, vol. 27, pp. 1013 - 1030 1984.

[8] H. Jin, M. Frumkin, and J. Yan, "The OpenMP Implementation of NAS Parallel

Benchmarks and Its Performance," NASA Ames Research Center, 1999.

[9] S. Gal-On and M. Levy, "Measuring Multicore Performance," Computer, vol. 41, pp. 99-

102, 2008.

[10] P. Leteinturier and M. Levy, "The Challenges of Next Generation Automotive

Benchmarks," Journal of Passenger Car: Electronic and Electrical Systems, vol. 116, pp.

155-160, 2007.

[11] L. A. Zadeh, Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A. Zadeh

vol. 6: World Scientific, 1996.

[12] F. Nemer, H. Cassé, P. Sainrat, J. P. Bahsoun, and M. De Michiel, "Papabench: a free

realtime benchmark," in 6th Intl. Workshop on Worst-Case Execution Time (WCET)

Analysis, Dresden, Germany, 2006.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,

"MiBench: A free, commercially representative embedded benchmark suite," in 4th IEEE

International Workshop on Workload Characterization (WWC 2001), Austin, Texas,

2001, pp. 184-193.

[14] "Measuring Real-Time Performance of an RTOS ": Express Logic Inc.

[15] "EngineSim Version 1.7a ": NASA Glenn Research Center.

[16] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff, A. Sameh,

and E. Clementi, "The Perfect Club benchmarks: Effective performance evaluation of

supercomputers," International Journal of High Performance Computing Applications,

vol. 3, pp. 5-40, 1989.

[17] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F.

Larsson, A. Moestedt, and B. Werner, "Simics: A full system simulation platform," IEEE

Computer, vol. 35, pp. 50-58, 2002.

[18] Intel, "Intel Concurrency Checker v2.1," Intel Corporation, 2008.

[19] G. M. Amdahl, "Validity of the single processor approach to achieving large scale

computing capabilities," in AFIPS Joint Computer Conferences, Atlantic City, New

Jersey 1967, pp. 483-485.

[20] N. J. Gunther, "A Simple Capacity Model of Massively Parallel Transaction Systems," in

CMG Conference, San Diego, California, 1993, pp. 1035-1035.

[21] N. J. Gunther, Guerrilla Capacity Planning: a Tactical Approach to Planning for Highly

Scalable Applications and Services: Springer-Verlag New York Inc, 2007.

[22] N. J. Gunther, "Unification of Amdahl's law, LogP and other performance models for

message-passing architectures," in International Conference on Parallel and Distributed

Computing Systems, Phoenix, AZ, 2005, pp. 569-576.

JetBench : An Open Source Real-time Multiprocessor Benchmark 9

Appendix: Thermodynamic equations

With reference to the Fig. 1, thermodynamic calculations [15] covered in the

benchmark are given as follows.

Notations:

─ Point 0 is the free stream conditions

─ Point 1: the inlet entrance

─ Point 2: compressor entrance

─ Point 3: compressor exit

─ Point 4: turbine entrance

─ Point 5: turbine exit

─ Point 6: nozzle throat

Inlet performance (0->2)

 Inlet Temperature ratio

Inlet Pressure ratio for Mach < 1,

where ηi is the inlet efficiency factor

 Inlet Pressure for Mach > 1, where ηi

is the inlet efficiency factor

Spillage Drag for inlet, where K is

the lip suction factor, ṁi is the inlet

mass flow rate, V is the velocity, A is

the area, and p is denoting the

pressure.

Compressor thermodynamics (2->3)

 Compressor Pressure ratio

Compressor Temperature ratio,

where γ is the ratio of specific heats

10 Muhammad Yasir Qadri, Dorian Matichard, and Klaus D. McDonald Maier

compressor work per mass of airflow,

where ηc is the compressor efficiency

factor and cp the specific heat

Burner thermodynamics (3->4)

 Burner Pressure Ratio

Burner Temperature Ratio, where , f

is the fuel to air mass flow ratio, Q is

the heat release, ηb is the burner

efficiency factor.

Turbine thermodynamics (4->5)

 Turbine Pressure Ratio

Turbine Work Per Mass Of Airflow,

where ηt is the turbine efficiency and

cp is the specific heat.

Nozzle thermodynamics (5->6)

Nozzle Pressure and temperature

ratios

Exit velocity, where ηn is the nozzle

efficiency

Output calculations

Mach Number, where V0 is the

aircraft speed, a0 is the speed of

sound and R is the gas constant

 ,

 .

Stratospheric Temperature and

pressure for altitude < 36152 feet

JetBench : An Open Source Real-time Multiprocessor Benchmark 11

 ,

Stratospheric Temperature and

pressure for 36152< altitude < 82345

feet

 ,

 .

Stratospheric Temperature and

pressure for altitude > 82345 feet

 where,

 .

Fuel mass flow rate, where ṁa is the

airflow rate, ηb is the burner

efficiency, f is the fuel to air ratio and

Q is the fuel heating value.

 ,

 ,

 ,

 ,

 ,

 .

Thrust Specific Calculations where,

EPR is the engine pressure ratio, and

ETR is the engine temperature ratio.

