
A typology of relationships and goals for
coordination and regulation

Ronald Ashri1 and Michael Luck2
and Mark d’Inverno3

Abstract.

The types of relationships that arise between interacting
agents in a multi-agent system can greatly influence the ef-
fectiveness of the entire system. However, the behaviour of
agents cannot always be anticipated, especially when dealing
with open and complex systems. Such systems must incor-
porate relationship management mechanisms that attempt to
guide the behaviour of agents towards desired outcomes. To
effectively design such mechanisms, we must first be able to
identify the types of relationships that may emerge and how
they can be understood, when faced with the constraints and
opportunities presented by inter-agent relationships. We have
previously addressed this in the limited context of restricting
malicious behaviour through the application of regulations.
In this paper we generalise that model to identify and charac-
terise a much broader range of relationships. This results in a
generic analysis tool, which can be used to achieve two crucial
tasks: to identify opportunities for more effective coordination
between agents; and to enable the analysis of the control that
agents can exert over their own goals in the context of such
relationships. Combining these types of analysis allows us to
identify conflicts and opportunities for cooperation in multi-
agent systems both at design time and at run-time, allowing
for finer-grained system control.

1 Introduction

The ability of agents to interact in order to collectively tackle
tasks is one of the central arguments for the utility of multi-
agent systems [12]. Such interactions take place whenever one
agent performs an action which, intentionally or not, affects
one or more other agents. Thus, when agents interact we can
say that they are related by virtue of the fact that they are
affecting each other. Identifying, analysing and understanding
the implications of the various types of such relationships is
of critical importance, since they can have both beneficial and
adverse effects.

In this respect, system designers have two overarching chal-
lenges. On the one hand, the system design must ensure that
the interactions that are necessary for achieving system-wide
goals take place. For example, if agents require assistance

1 University of Southampton, Southampton, SO17 1BJ, United
Kingdom, email: {ra}@ecs.soton.ac.uk

2 University of Southampton, Southampton, SO17 1BJ, United
Kingdom, email: {mml}@ecs.soton.ac.uk

3 University of Westminister, London, W1M 6UW, United King-
dom,email:dinverm@westminster.ac.uk

to achieve their goals, they must be provided with mecha-
nisms for discovering other agents able to assist them. On
the other hand, the design must also ensure that undesirable
interactions do not take place. For example, if a number of
agents depend on a limited resource, there must be appropri-
ate mechanisms in place to control access to that resource.
These challenges are compounded by the fact that in open or
simply large agent systems the possible interactions between
agents cannot all be explicitly specified at design time. This
is especially true when dealing with autonomous agents op-
erating in heterogeneous environments in which agents may
join or leave the system at any time, and no assumptions are
made about agent behaviour.

In response to these challenges, the need to provide some
external form of control over the behaviour of agents was iden-
tified long ago [5]. Currently, this is largely achieved through
the use of regulatory frameworks, stemming from work on
policies (e.g. [10, 18, 13]), institutions (e.g. [11, 20]) and norms
(e.g. [21, 3, 6]). In addition, there is significant work on coor-
dinating middleware to enhance agent infrastructure [4, 15].

However, in order for such mechanisms to be applied an im-
plicit assumption is made that the system designer is already
aware of the relationships that may arise in a multi-agent
system or of the general regulations required to lead only to
appropriate relationships. This assumption no longer holds in
dynamic systems, so there must be some method for system-

atically identifying what relationships can arise and only then
addressing the problem of identifying appropriate regulation
or coordination mechanisms.

Therefore, if coordination and regulation of agents is to be
achieved as an agent society evolves, either by external in-
tervention or through interventions by the agents themselves,
we require some means of identifying at run-time how agents
are related to other agents. Of course, this information is
only useful if we are also able to determine how the iden-
tified relationships may impact on individual agent operation
and the system as a whole. Thus, we also require a principled
and comprehensive typology for characterising agent relation-

ships. The ability to identify and characterise agent relation-
ships can be beneficial for the following reasons.

• It can guide the choice and design of appropriate regulatory
frameworks to prevent malicious behaviour or interference
between agents.

• Potentially missed opportunities for cooperation between
agents can be identified at run-time.

• It can provide a template of generic relationship types for
agents to use at run-time, allowing them to identify how

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Goldsmiths Research Online

https://core.ac.uk/display/16467143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


other agents may affect their own operation.

In order to develop the types of tools discussed here, we
begin this paper with the introduction of a model of agent
interaction, which acts as the conceptual basis on which the
rest is built. Subsequently, we introduce a typology of agent
relationships, which builds on and refines previous work in
this area [1]. Then we discuss how knowledge of the goals
agents are pursuing can be considered alongside this typology
to allow us to better model the possible relationships between
agents. Finally, we conclude with some examples and a discus-
sion on what other work can be motivated from the analytical
tools presented here.

2 Model of Agent Interaction

A number of different and interrelated issues determine why,
how and when two agents enter into a relationship. For ex-
ample, some relationships are built-in at design time. Alterna-
tively, relationships may develop opportunistically as agents
seek assistance in order to achieve goals, or unintentionally as
agents perform actions that affect the environment. It would
thus be counter-intuitive to attempt to identify relationships
by looking at the internal operation of individual agents. In
this section, therefore, we introduce a model of agent inter-
action derived from a focus on the interface between individ-
ual agents and their environment, through the capabilities of
agents. The notions that underpin this model are based on
the smart framework [9], and are discussed in more detail
in [1], so they are only briefly described below.

2.1 Agents

An agent in our model is considered as an entity that is
described by a set of attributes. Attributes are simply fea-
tures of the environment, and are the only characteristics that
are manifest. Agents are able to perform actions, which can
change the environment by adding or removing attributes.
Agents also pursue goals, which are desirable environment
states described by non-empty sets of attributes.

2.2 Agent Perception and Action

Agent actions are divided into those that retrieve the value
of specific attributes of the environment, representing the
agent’s sensor capabilities, and those that attempt to change

attribute values of the environment, representing the agent’s
actuator capabilities.

These are the only aspects of the agent’s architecture that
concern us at this point, as they form the the interface be-
tween the agent and its external environment. We are con-
cerned neither with the internal state nor the decision-making
capabilities because it means that interactions can be anal-
ysed without reference to specific agent architectures, and
without knowledge of the agent’s decision-making mecha-
nisms or internal state.

2.3 Viewable Environment and Region of
Influence

Given that agents interact with the environment through ac-
tuators and sensors, and that the environment as a whole is

defined through a set of attributes, we can intuitively think of
actuators and sensors as defining regions of the environment,
or subsets of the entire set of attributes that make up the
environment. The attributes that an agent’s actuators could
possibly manipulate define a Region of Influence (RoI), while
the attributes that an agent’s sensors could possibly view de-
fine a Viewable Environment (VE).

The VE and the RoI of an agent provide us with a model
that relates an agent and its individual capabilities to the en-
vironment. In order to model how two agents may interact, we
need to look at how their VEs and RoIs overlap. The different
ways in which these overlaps occur plays a role in determining
the possible relationships between them. 4 In Figure 1, these
concepts are illustrated by using an ellipse to represent the
VE and a pentagon shape for the RoI. We use this notation
throughout when illustrating different situations.

Agent A
Agent B

VEA VEB

RoIA RoIB

Environment

Figure 1. Region of influence affects viewable environment

2.4 Discussion

Figure 1 shows the situation in which Agent A’s RoI overlaps
with Agent B’s VE, and both agents’ VEs overlap. Given this
information, we can infer that Agent A and Agent B could
be related, with A able to directly affect the VE of B, since
it partly falls under A’s RoI. In other words, B can be in-

fluenced by the actions of A. Crucially, A cannot directly af-
fect the results of an action of B because it has no influence
in the RoI of B. For example, such a situation could occur
if the overlap between the VEs and A’s RoI represented re-
search papers that Agent A made available to other agents.
With the goal of reporting to other agents on all documents
of a specific type (for example, research papers on multi-agent
systems), B could periodically view the documents stored by
A (i.e. sample the environment) while waiting for a relevant
document to appear before informing other agents about its
existence. Thus, whenever A performs an action that adds a
relevant document to its public document store, it will eventu-
ally influence B’s actions, since B must now inform interested
parties about this addition. The illustrated situation can also
be interpreted as the ability of B to observe the results of
actions performed by A. If the document store was not pub-
lic, then appropriate steps should be taken to prevent B from
observing what documents were placed within it.

4 In defining a “canonical” view of agents, Jennings [12] also briefly
mentions the concept of an agent’s sphere of visibility and influ-
ence. However, those notions are neither developed nor formalised
as we do here.



2.5 Underlying assumptions

Before presenting the relationship typology, we clarify a num-
ber of issues relating to the diagrams and some assumptions
we make about the agents themselves that hold throughout
our analysis. Firstly, the VE and RoI are not necessarily well-
defined continuous areas of the environment as the diagrams
may suggest. In fact, there is no requirement for the VE and
the RoI of an agent to overlap at all. If the RoI of an agent
does not fall under its VE, then it is not able to view the
results of its actions, a situation that is not improbable. For
example, if an agent can save information to an external data
store but has no means to check what information is in the
data store, this could be modelled as the data store being
within the RoI but not within the VE. Secondly, the model
does not deal with the possibility that the VE of an agent
may be variable because the sensors are not always reliable.
Thirdly, we do not assume that the VE is the only kind of
information an agent can model. An agent could also have
built-in knowledge as well as communicate with other agents
that provide information about the state of the environment.
Finally, we do not assume that when an agent acts within
its RoI it can be certain that those actions take place. The
only way to verify this is by sensing the affected environment,
either through its own sensing capabilities or through com-
munication with other agents.

3 Relationship Analysis

Previously, we have presented an initial analysis in which
more details of the underlying theory described above are
given, and some exemplar types of relationships that are use-
ful in the context of developing regulations for preventing ma-
licious behaviour are described [1]. In this paper, we develop
a comprehensive typology of interactions that can provide the
building blocks for defining a wide range of different relation-
ships. To do this we systematically examine all the salient
possibilities for interactions between just two agents. First
we consider the possible types of interaction when actions of
other agents can be observed, and then consider the possibil-
ities when actions can be directly influenced by other agents
due to overlapping RoIs. To aid clarity and precision in the
definitions, we use the Z language [17] used in smart and
related work [1].

3.1 Mutually Viewable Environment

Agent A Agent B

Environment

Figure 2. Mutually Viewable Environment

We begin by examing the VEs of agents, irrespective of
the RoIs. With just VEs we can simply determine whether

there is some region where they overlap or not. The schema
MutViewEnv, which represents the mutually viewable envi-
ronment, captures this situation and Figure 2 illustrates it.

Previously [1], we defined schemas for the VE and the RoI,
named ViewEnv and RegOfInf. These schemas define a view-

able function and an roi function, which both accept as an
argument the agent state and return a set of attributes defin-
ing the VE and RoI. Agent state is defined by the AgState

schema as the state of the agent and includes the agent’s pos-

sible perceptions and actions in the current environment. All
these definitions are used in the schemas introduced here.

In the MutViewEnv schema, the mve function takes the re-
lationship between the two agent states and returns a set of
attributes (Att), as defined in the predicate part. The predi-
cates state that the mutually viewable environment of A and
B is the intersection of A and B’s VE. We should clarify that
the mve function could return an empty set, indicating that
there is no mutually viewable environment and thus describ-
ing the case where the viewable environments do not overlap.

MutViewEnv

ViewEnv

mve : (AgState × AgState) → P Att

∀ a, b : AgState; e : Environment •
mve(a, b) = viewable a ∩ viewable b

Although such a situation cannot directly identify any in-
teractions between the agents in the sense that none of the
two agents are able to affect the actions of each other, it may
be particularly important in certain environments. For exam-
ple, the knowledge that two buyers are operating in a common
online auction market and, as a result, have an overlapping
VE since they get the same information from that market,
may prove useful when attempting to explain their behaviour.

3.2 Influenced Viewable Environment

Agent A Agent B

Region 1
Region 2

Region 3

Region 4

Environment

Figure 3. Observable and Invisible actions

The next step is to introduce the RoI for just one agent.
This is done for Agent B in Figure 3 in which, from A’s point
of view, there are two clear distinct possibilities, and two fur-
ther refinements for each. Firstly, in Regions 1 and 2, the re-
sults of the actions of B are visible to A since they fall within
A’s VE. Of course, at the same time we can say that B is
able to influence the VE of A. Secondly, in Regions 3 and 4,
the results of B’s actions are not visible to A. We define these
general cases before going on to specialise them further.



The schema ObsActs defines the appropriate function for
the first case. It states that the observable actions of B are
those actions of B whose RoI is within A’s VE.

ObsActs

ViewEnv ; RegOfInf

oa : (AgState × AgState) → P Att

∀ a, b : AgState •
oa(a, b) = viewable a ∩ roi b

Similarly, the InvActs schema states that invisible actions

of B with reference to A are those that are not within A’s VE.

InvActs

ViewEnv ; RegOfInf

ia : (AgState × AgState) → P Att

∀ a, b : AgState • invacts(a, b) = roi b \ viewable a

Based on these definitions, we can now describe more re-
stricted cases. We begin with the situation in which both

agents can observe some actions of B, which would lie in Re-
gion 2 in Figure 3. The BiObsActs schema defines this situa-
tion in which actions are bilaterally observable, and are given
by the intersection of the observable actions for A on B and
for B on itself.

BiObsActs

ObsActs

boa : (AgState × AgState) → P Att

∀ a, b : AgState •
boa(a, b) = oa(a, b) ∩ oa(b, b)

Knowledge of the possibility of bilaterally observable ac-
tions can be relevant for those agents that require confirma-
tion of their actions by another party, or for those agents that
are concerned about the observability of their actions and
would perhaps prefer to avoid it.

Now, unilaterally observable actions are those actions of B
that A can observe but B cannot (Region 1). In this case, there
is perhaps a stronger incentive for B to exploit the situation
by cooperating with A so as to gain confirmation of the results
of actions. The schema UnObsActs describes this.

UnObsActs

ObsActs; InvActs

uoa : (AgState × AgState) → P Att

∀ a, b : AgState •
uoa(a, b) = oa(a, b) ∩ ia(b, b)

Bilaterally invisible actions, represented by the BiInvActs

schema are those actions of B that both A and B cannot
observe (Region 4).

BiInvActs

InvActs

bia : (AgState × AgState) → P Att

∀ a, b : AgState •
bia(a, b) = ia(a, b) ∩ ia(b, b)

Finally, we can also define unilaterally invisible actions (Re-
gion 3), as those actions of B that A cannot see but B can.
However, for the sake of space we avoid presenting the schema
here.

3.3 Mutual Influence

Agent A Agent B

Environment

Figure 4. Mutually Influenced Actions

Up to this point, we have only dealt with the issue of ob-
servability of actions. We now move on to examine the sit-
uations in which agents can influence actions of each other,
by introducing RoIs for both agents. In the first instance, as
illustrated in Figure 4, we can say that two agents are able
to directly influence each other if their RoIs overlap (the grey
shaded area). The function for determining this is defined be-
low, in the MutInf schema.

MutInf

RegOfInf

mi : (AgState × AgState) → (P Att)

∀ a, b : AgState • mi(a, b) = roi a ∩ roi b

Now, when a mutual influence relationship may occur (i.e. a
non-empty set is returned) it is important to be able to model
whether the two agents can observe the results of actions tak-
ing place in this region of the environment. We can use the
previous definitions on observability of actions to model this.

First, we define the relationship by which Agent A can ob-
serve the region of mutual influence in the ObsMutInf schema,
which includes the MutInf schema and states that this area
is the intersection of the VE of A and the area of mutual
influence between A and B.

ObsMutInf

MutInf

omi : (AgState × AgState) → (P Att)

∀ a, b : AgState •
omi(a, b) = viewable a ∩ (mi (a, b))

Similarly, Agent A may not be able to observe this region
of mutual influence. We define the case of invisible mutual
influence in the schema InvMutInf.

InvMutInf

MutInf

imi : (AgState × AgState) → (P Att)

∀ a, b : AgState •
imi(a, b) = (mi (a, b)) \ viewable a



Figure 5. Bilateral Mutual Influence

Having provided definitions from one agent’s perspective,
we consider the situation in which both agents’ VEs are exam-
ined. The first case is bilaterally observable mutual influence,
in which both agents can observe the mutual influence area,
as illustrated in Figure 5. The region under question is where
both agents’ RoIs overlap as well as their VEs. The BiOb-

sMutInf schema formalises this.

BiObsMutInf

ObsMutInf

bomi : (AgState × AgState) → P Att

∀ a, b : AgState •
bomi(a, b) = omi(a, b) ∩ omi(b, a)

The BiInvMutIf schema provides the necessary functions
for the mutual influence being bilaterally invisible.

BiInvMutInf

InvMutInf

bimi : (AgState × AgState) → P Att

∀ a, b : AgState •
bimi(a, b) = imi(a, b) ∩ imi(b, a)

Finally, we define the situation in which one agent unilat-
erally observes the region of mutual influence in the UnOb-

sMutInf schema.

UnObsMutInf

ObsMutInf

uomi : (AgState × AgState) → P Att

∀ a, b : AgState •
uomi(a, b) = (omi (a, b) \ omi (b, a))

These types of possible relationships are particularly rele-
vant for agents that wish to better coordinate their actions.
For example, knowledge of a possible bilaterally invisible mu-
tual influence can indicate that agents should be particularly
careful when performing actions in that region since not only
are they unable to observe the results of those actions, but
they can also upset actions of another agent that is also unable
to observe the results. A situation of unilaterally observable
mutual influence could give one agent the upper hand, since

only one of them is able to observe the results of its and the
other’s actions in that region. We illustrate through an exam-
ple how these relationship types can be used later on.

3.4 Generic Relationship Types

In this section we illustrate how the definitions provided above
can be used to define other types of relationships. We begin
by dealing with a relationship type presented previously [1].
There we described a Weak Influence relationship as occur-
ring when one agent could directly influence the VE of another
agent outside of that agent’s RoI. We can now define this re-
lationship more concisely by using the “building blocks” pro-
vided above. In the WeakInfluence schema, we include the Ob-

sActs schema and state that A can weakly influence B where
B can observe A’s actions and there is no overlap with B’s
RoI.

WeakInfluence

ObsActs

wi : (AgState × AgState) → P Att

∀ a, b : AgState • wi(a, b) = (oa (b, a)) \ roi(b)

Another example of an interesting type of relationship is
when one agent can be said to subsume all the sensory and
effectory capabilities of another agent. In a design situa-
tion, identifying this could raise the question of whether both
agents are required. The SubsumingInfluence schema inludes
the ViewEnv and RegOfInf schemas. It defines a subsuming
influence as occuring where the VE of B is a subset of the
VE of A and the same happens for the RoIs of A and B.

SubsumingInfluence

ViewEnv ∧ RegOfInf

si : (AgState × AgState) → P Att

∀ a, b : AgState •
si(a, b) = viewable b ⊂ viewable a ∧
si (a, b) = roi b ⊂ roi a

4 Goals Region Analysis

Knowledge of the sensor and actuator capabilities of agents
can provide us with enough information to identify a signif-
icant number of possible relationships and categorise them
along the lines of the typology introduced above. Neverthe-
less, not all the possible relationships identified will actually
be instantiated, and there may still be instantiated relation-
ships that have not been identified. The reason for this is
that the goals agents decide to pursue play an important role
in determining which of all the possible relationships agents
choose to instantiate. With the additional knowledge of what
goals an agent may actually pursue, we can narrow or expand
the space of possible relationships by identifying interactions
that an agent may pursue that are beyond its range in terms
of its RoI or its VE , or by excluding those within its VE and
RoI that it will not pursue. Therefore, a more focused analy-
sis of relationships between agents could take place if we can
incorporate knowledge of which regions of the environment
an agent’s goals refer to into the model of agent interaction



with the environment. In order to achieve this, we provide a
typology of agent goals with reference to an agent’s VE and
RoI. However, before we do that we need to differentiate be-
tween different types of goals according to whether the goal
is to retrieve information from the environment or change it.

4.1 Query and Achievement Goals

In the broadest sense agents can have only two types of goals.
On the one hand, they may want to effect some change in
the environment, which implies changing attributes of the
environment, while on the other hand, they may just want
some information about the environment, which does not lead
to any direct changes in the environment. Distinguishing be-
tween these two types of goals is important since the latter
can only be achieved directly by an agent if that goal is in the
RoI of the agent, while the former can only be achieved if the
goal is in the VEof the agent.

We distinguish between these two types of goals by using
the same terminology as the dMARS agent system, which is
formalised in [7] using the smart framework. Essentially, a
query goal is one for which an agent tries to elicit some infor-
mation, either from its internal beliefs or from the environ-
ment. As such, it can be satisfied if it falls within an agent’s
VE. Conversely, an achievement goal may require that the
agent performs certain actions in order to change the envi-
ronment, if the environment is not already in the desired goal
state. Thus, an achievement goal can be satisfied if it lies
within an agent’s RoI.

4.2 Goal Regions

Environment

VE
RoI

G1

G2

G3
G4

G5

Figure 6. Types of goals

We categorise goals according to where they occur within
the VE and RoI of the agent pursuing the goal. In Figure 6
we represent goals by a square including a capital G. The
different situations are described below.

No control — G1 The agent has a goal that describes an
environmental state falling outside of both the agent’s
VE and its RoI. As a result, this agent has no control over
satisfying that goal, irrespective of whether it is a query or
achievement goal. Some form of cooperation with another
agent would be essential in this case.

View control — G2 In this case, the agent can satisfy a
query goal but not an achievement goal, since the goal is
within the agent’s VE.

Total control — G3 A total control goal is one that lies
both within the agent’s VE and RoI. As a result, regardless
of whether it is a query or achievement goal, the agent can
satisfy it.

Blind Control — G4 In this case, the goal falls within the
agent’s RoI but not within its VE. As a result, the agent is
able to satisfy it if it is an achievement goal but not if it is
a query goal. However, the agent is not able to verify the
results of its actions.

Partial Control — G5 Finally, a goal may fall in a region
that is partially under the agent’s VE or the agent’s RoI. In
this case, the agent will have some combination of control
based on the four types described above.

The AgentGoals schema formalises the four main cases
above. It includes the AgState, ViewEnv and RoI schemas
and uses the viewable and roi functions from them.

AgentGoals

AgState; ViewEnv ; RegOfInf

canview , caninf : P Att

none, blind , total , view : P Goal

canview = viewable (θAgState)
caninf = roi (θAgState)
none =

{g : goals | ¬ g ⊆ (canview ∪ caninf )}
blind =

{g : goals | g ⊆ (caninf \ canview)}
view =

{g : goals | g ⊆ (canview \ caninf )}
total =

{g : goals | g ⊆ (canview ∩ caninf )}

With the goal typology in place, as well as the interaction
typology, we have two significant analytical tools for identify-
ing and characterising possible relationships between agents.

5 Example Analysis

Consider a situation in which we wish to develop an agent-
based infrastructure to support the collaboration and sharing
of information between researchers in a computer science re-
search lab. Each researcher is to be represented by a personal
agent that will make public their personal profile (interests,
publications, and availability) as well as research material
(links to online material, presentations, software, etc) that
they have stored locally.

An initial analysis of the domain reveals that researchers
typically use at least two devices in the lab to achieve their
day-to-day tasks, including one relatively powerful desktop or
laptop computer, as well as a more limited mobile device, such
as PDA. In order to effectively support the users, the appli-
cation should allow use of the agent-based system through all
user devices, requiring agents to be installed on each device.
Furthermore, agents serving the same user through different
devices should cooperate. Each agent is to take advantage of
the connectivity, storage and computing capabilities of their
device so as to more effectively support the user.

Given this, there are two main problems to solve from the
perspective of enabling the cooperation between a user’s de-
vices. Firstly, how can coordination and cooperation be effec-
tively supported if there is no clear knowledge, at design time,



of the exact capabilities of each of the devices or the exact
tasks that they may attempt to carry out, since this depends
on the equipment of each user and their individual choices as
to how they want to use the system. Secondly, how can the in-
frastructure deal with changes in devices and possible changes
in the application requirements as the system develops. These
two problems make it practically impossible to define coordi-
nation using any application-specific knowledge, such as the
connectivity capabilities of a device. This information will be
discovered at run-time and the type of coordination based on
the discovered information must be decided at run-time.

In this case, the ability to define coordination based on
generic relationship types is valuable. The agents belonging
to a single user are instructed to communicate, whenever pos-
sible, so as to share information on their capabilities and the
current user goals. This allows the modelling both of the rela-
tionship between them and of the goals that must be satisfied.
With such knowledge in place, we can attempt to guide co-
ordination, at run-time, by defining generic rules such as the
ones presented below.

• If there exists a goal which is of type total control for only
one device then that device should attempt to achieve the
goal, since it is the only one that can both attempt the
actions and verify the results.

• If for a common goal two devices (or more) are in a relation-
ship of Bilaterally Observable Mutual Influence (i.e. where
their RoIs and VEs overlap) it means that they could both
attempt to achieve it. In this case, we could use other infor-
mation, such as identifying the workstation and assigning
the goal to that since we can make the assumption that
its resources will be more readily available and not limited
by battery concerns or unreliable connections due to solely
wireless access.

• If a goal is of type view control for one device and blind con-

trol for the other, which implies that there is some region of
the environment in which they are in a relationship of Uni-

laterally Observable Actions, the agents should cooperate,
with one performing the actions and the other verifying the
results.

For example, while attending a presentation, a user requests
that the personal agent on a Bluetooth-enabled device col-
lects all information on the topic of the meeting that is avail-
able through other researchers in the lab and downloads any
relevant publications. The user then switches off the device,
because the battery is running out. Once back at the desk
and at the workstation, the mobile device is switched on and
communicates wirelessly or through the usual synchronisation
mechanisms with the workstation. The information on goals
and capabilities is exchanged and the two agents identify that
while they can both access information on other users, for the
PDA-based agent the VE is limited to just those users whose
information is accesible via Bluetooth-enabled devices that
are in range. The workstation on the other hand is able to
access to all relevant users through their workstation agents,
so it adopts the goal.

Through this basic example, we see how access to a rela-
tionship analysis tool that can identify generic relationship
types can play a valuable role in facilitating coordination be-
tween agents at run-time. Given the emerging landscape of

computing environments, in which constant change and het-
erogeneity become permanent features, such tools will become
increasingly important.

6 Conclusions and Further Work

In this paper we introduced a typology of relationships in sup-
port of coordination and regulation, building on a basic model
of interaction between agents and the environment. Furthe-
more, we associated these relationship types to the goals of
an agent, by defining goal regions. The combination of re-
lationship analysis with information on goals can provide a
useful tool for identifying possibilities for coordination be-
tween agents, especially in situations in which we cannot pre-
define coordination because of incomplete information about
an agent’s capabilities and goals. The same tools can also be
used to identify how a multi-agent system should be regulated
to avoid conflicts, as we discuss in [1].

The issue of relationship analysis has not in general been
sufficiently addressed by existing research. Initial attempts
such as [14] take a different approach, since the analysis tools
are geared towards learning about agent behaviour and are fo-
cused on analysing teams of agents. Although there is also a
wider body of work on conflict management (a representative
collection can be found in [19]), once more the agent identi-
fication issue is not addressed. The work presented here also
has some similarities to social dependency networks [2, 16],
which where also modeled using smart [8]. However, our ap-
proach differs, since we make minimal assumptions about
other agents, basing our models solely on agent interaction
with the environment and the observability of those actions.

The key contribution of our approach is the introduction
of a typology of relationships that can be applied to a wide
range of systems due to the minimal assumptions it makes
about agents themselves. The typology can both aid during
design, as well as form the core of a run-time agent man-
agement tool. The system ties into a wider theory on agent
systems in general [9] and as such benefits from the clarity
of exposition on the underlying concepts. Further work will
include the development of appropriate tools to allow the au-
tomated analysis of agent relationships, so that they can be
incorporated within the toolkit of agent application develop-
ers as well as the integration of such techniques within exist-
ing agent methodologies. We aim to investigate the scalability

of the approach as well as precise mechanisms that will en-
able agents to form societies based on reasoning about other
agents using the models presented here. Furthermore, we aim
to experiment with the typology as a a means to provide a
general analysis of agent systems aiming towards the defini-
tion of metrics revealing issues such as the level of potential

interference between agents.

REFERENCES

[1] R. Ashri, M. Luck, and M. d’Inverno, ‘On Identifying and
Managing Relationships in Multi-Agent Systems’, in Proceed-
ings of the 18th International Joint Conference on Artificial
Intelligence, eds., George Gottlob and Toby Walsh, pp. 743–
748. Morgan Kaufmann Publishers, (2003).

[2] C. Castelfranchi, M. Miceli, and A. Cesta, ‘Dependece rela-
tions among autonomous agents’, in Decentralised Artificial
Intelligence, eds., E. Werner and Y. Demazeau, 215–231, El-
sevier, (1992).



[3] Cristiano Castelfranchi, Frank Dignum, Catholijn M. Jonker,
and Jan Treur, ‘Deliberative Normative Agents. Principles
and Architecture’, in Intelligent Agents IV (ATAL99), eds.,
N. Jennings and Y. Lesperance, volume 1757 of LNCS, pp.
364–378. Springer, (2000).

[4] P. Ciancarini, R. Tolksdorf, and F. Zambonelli, ‘A Survey
of Coordination-Middleware for XML-Centric Applications’,
The Knowledge Engineering Review, 17(4), (2003).

[5] Daniel David Corkill and Victor Lesser, ‘The use of meta-level
control for coordination in a distributed problem solving net-
work’, in Proceedings of the Eighth International Joint Con-
ference on Artificial Intelligence, eds., Alan H. Bond and Les
Gasser, pp. 748–756. Morgan kaufmann Publishers, (1983).

[6] Frank Dignum, ‘Autonomous Agents with Norms’, Artificial
Intelligence and Law, (7), 69–79, (1999).

[7] Mark d’Inverno, David Kinny, Michael Luck, and Michael
Wooldridge, ‘A Formal Specification of dMARS’, in In-
telligent Agenrs IV: Proceedings of the Fourth Interna-
tional Workshop on Agent Theories, Architectures and Lan-
guages, eds., Munindar P. Singh, Anand S. Rao, and Michael
Wooldridge, volume 1365 of LNCS, pp. 155–176. Springer,
(1996).

[8] Mark d’Inverno and Michael Luck, ‘A Formal View of De-
pendece Networks’, in Distributed Artificial Intelligence Ar-
chitecture and Modelling: Proceedings of the First Aus-
tralian Workshop on Distributed Artificial Intelligence, eds.,
C. Zhang and D. Lukose, volume 1087 of LNCS, pp. 155–129.
Springer, (1996).

[9] Mark d’Inverno and Michael Luck, Understanding Agent Sys-
tems, Springer, 2nd edn., 2004.

[10] Naranker Dulay, Nicodemos Damianou, Emil Lupu, and Mor-
ris Sloman, ‘A policy language for the management of dis-
tributed agents’, in Agent-Oriented Software Engineering II,
eds., M. J. Wooldridge, G. Weiss, and P. Ciancarini, volume
2222, pp. 84–100. Springer-Verlag, (2001).

[11] Marc Esteva, David de la Cruz, and Carles Sierra, ‘IS-
LANDER: an electronic institutions editor’, in The First
International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 1045–1052. ACM Press, (2002).

[12] Nicholas R. Jennings, ‘On agent-based softare engineering’,
Artificial Intelligence, 117(2), 277–296, (2000).

[13] Lalana Kagal, Tim Finin, and Anupam Joshi, ‘A Policy Based
Approach to Security for the Semantic Web’, in Proceedings of
the 2nd International Semantic Web Conference, eds., Dieter
Fensel, Katia Sycara, and John Mylopoulos, volume 2870 of
LNCS, pp. 402–418. Springer, (2003).

[14] Ranjit Nair, Milind Tambe, Stacy Marsella, and Tay-
lor Raines, ‘Automated assistants for analyzing team be-
haviours’, Journal of Autonomous Agents and Multi-Agent
Systems, 8(1), (2004).

[15] Andrea Omicini, Alessandro Ricci, Mirko Viroli, and Giovanni
Rimassa, ‘Integrating Objective & Subjective Coordination in
MultiAgent Systems’, in 19th ACM Symposium on Applied
Computing (SAC 2004), pp. 485–491. ACM Press, (2004).

[16] J.S. Sichman, Y. Demazeau, R. Conte, and C. Castelfranchi,
‘A social reasoning mechanism based on dependence net-
works’, in 11th European Conference on Artificial Intelli-
gence, pp. 188–192. John Wiley and Sons, (1994).

[17] J.M. Spivey, The Z Notation, Prentice Hall, 2nd edn., 1992.
[18] Niranjan Suri, Marco Carvalho, Jeffrey Bradshaw, Maggie R.

Breedy, Thomas B. Cowin, Paul T. Groth, Raul Saavedra, and
Andrzej Uszok, ‘Enforcement of Communications Policies in
Software Agent Systems through Mobile Code’, in 4th IEEE
International Workshop on Policies for Distributed Systems
and Networks, pp. 247–250. IEEE Computer Society, (2003).

[19] Conflicting Agents: Conflict Management in Multi-Agent
Systems, eds., Cather̀ıne Tessier, Laurent Chaudron, and
Heinz-Jurgen Muller, Kluwer Publishers, 2000.

[20] Javier Vzquez-Salceda and Frank Dignum, ‘Modelling elec-
tronic organizations’, in Multi-Agent Systems and Applica-
tions III, eds., Vladimı́r Maŕık and Jörg Müller, volume 2691,
pp. 584–593. Springer, (2003).

[21] Fabiola Lopez y Lopez, Michael Luck, and Mark d’Inverno,
‘Constraining autonomy through norms’, in The First Inter-

national Joint Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 674–681. ACM Press, (2002).


