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Abstract
The adoption of agent technologies and multi-agent systems constitutes an emerging area in bioinformatics. In this
article, we report on the activity of theWorking Group on Agents in Bioinformatics (BIOAGENTS) founded during
the first AgentLink III Technical Forum meeting on the 2nd of July, 2004, in Rome. The meeting provided an
opportunity for seeding collaborations between the agent and bioinformatics communities to develop a different
(agent-based) approach of computational frameworks both for data analysis and management in bioinformatics and
for systems modelling and simulation in computational and systems biology. The collaborations gave rise to applica-
tions and integrated tools that we summarize and discuss in context of the state of the art in this area.
We investigate on future challenges and argue that the field should still be explored frommany perspectives ranging
from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative
languages to be used by information agents, and to the adoption of agents for computational grids.
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INTRODUCTION
The avalanche of data that has been generated,

particularly in biological sequences and more

recently also in transcriptional and structural data,

interactions and genetics, has led to the early

adoption of tools for unsupervized automated

analysis of biological data during the mid-1990s

[1, 2]. Computational analysis of such data has

become increasingly more important, and many

more tools and models for the interpretation of

biological data have been developed in recent years.

However, not all of these are publicly available or

permit bulk submissions via the web. Moreover,

some tools require training, particularly for indi-

vidual organisms, and tools may be mutually

interdependent.

The reason for establishing a Working Group on

Agents in Bioinformatics (BIOAGENTS) was to

achieve improvements in the field of bioinformatics

by designing and implementing new flexible infor-

mation and communication technologies tools

able to support biological science data analysis and

to distribute, at least partially, the computation

burden, while reducing the need for the transfer

of huge amounts of data. From this perspective,

it is believed that software agents can play a major

role. The scope of the Working Group was

to promote a collaboration between the agent

and bioinformatics communities, with the aim

of creating synergies for modelling complex bio-

logical systems. As suggested by the AgentLink II

Roadmap [3], one of the most promising emerging

application domains for agent technologies is the

biological sciences, both in relation to multi-agent

systems for simulating and modelling biological

systems, and for supporting the automation of

information-gathering and information-inference

processes.

AgentLink III (http://www.agentlink.org) was

a coordination action for agent-based computing,

funded by the European Commission’s 6th

Framework Programme, which provides support

for researchers and developers with a common

interest in agent-based computing. One of the

most important and visible activities of AgentLink

III has been concerned with organizing a periodic

Technical Forum (AL3-TF), in which Technical

Forum Groups (TFGs) meet to discuss issues of key

interest to the agent community. In 2004, AgentLink

organized the first Technical Forum, held from

the 30th of June to the 2nd of July, in Rome, Italy,

at which the first BIOAGENTS Technical Forum

Group founded the Working Group [4].

Here, we report on the state of the art in using

agents in bioinformatics, presenting the activities

and results of the Working Group and future

perspectives. In particular, subsequent sections first

introduces ‘Agents and multi-agent systems’, then

motivates the use of ‘Agents in bioinformatics’ by

discussing recent experiences within BIOAGENTS

& points out ‘Future challenges’ of agents in

bioinformatics & finally concludes the article.

AGENTSANDMULTI-AGENT
SYSTEMS
Agents can be considered as a distinct kind of

software abstraction, in the same way that methods,

functions and objects are software abstractions.

More specifically, an agent is a high-level software

abstraction that provides a convenient and powerful

way to describe a complex software entity in terms

of its behaviour within a contextual computational

environment. It differs from an object in the

capability to control its own state. The weak notion

of agents is of flexible problem-solving computa-

tional entities that are reactive (respond to the

environment), proactive (maintain overarching

goals), autonomous (not externally controlled) and

interact with other such entities. By contrast, the

strong notion views agents as composed of particular

mental or cognitive abilities, suggesting agent

architectures based on the belief–desire–intention

model. The weak form has relatively low-level

agents that do little computation processing, and the

outcomes emerge from the results of the interactions

of large numbers of agents. The coarser grained

agents yield higher-level of communication and

stronger individual problem-solving capabilities.

Building on this premise, multi-agent systems, in

which multiple agents interact in some overarching

system architecture, have been argued to be a

particularly suitable level and means of abstraction

for solving complex problems. This is achieved

through the modelling and engineering of complex

systems [5], which are characterized by organization

structures and coordination processes that are

increasingly better articulated and more dynamic

than alternative forms [6].

In this view, an agent is a computer system

capable of flexible, autonomous problem-solving
actions; it is capable of operating as a stand-alone
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process, and performing actions without user inter-

vention by maintaining a description of its own

processing state and the state of environment in

which it is situated. The environments in which

agents operate are typically dynamic, open, unpre-

dictable and populated by other agents. An agent

must therefore also be able to communicate with

other agents and the execution environment

itself [7, 8].

A communication act between two agents is

facilitated if a suitable ontology exists, shared by

both agents. The communication itself is distinct,

however. For example, agent communication lan-

guages such as KQML [9] or FIPA ACL (http://

www.fipa.org) provide the performatives (or types

of message) that may be required here, but both

allow for the specification of a particular ontology

to ensure that the content of the message is

understood by both the parties. The use of

ontologies guarantees agreement on the semantics

of the exchanged data. Moreover, whenever an

agent acquires additional information, it can integrate

it with its personal knowledge base. Each agent is

responsible for the consistency and the correctness

of this operation.

Agents provide designers and developers with

a way of structuring an application around auton-

omous, communicative elements, and lead to the

construction of software tools and infrastructure

to support the design metaphor. In this sense, they

offer a new and often more appropriate route to the

development of complex systems. In order to

support this view of systems development, particular

tools and techniques need to be used: from agent

computing platforms to support the design and

engineering of agents and multi-agent systems, to

more general infrastructures supporting the integra-

tion of current technologies, such as web services.

However, agent technologies are distinct in spanning

a range of specific techniques and algorithms for

dealing more specifically with interactions with

others in these dynamic and open environments.

Such techniques include those for learning from,

and about, other agents in the environment and user

preferences, finding ways to negotiate and cooperate

with agents, and developing appropriate means of

forming and managing coalitions. With the increas-

ing prevalence of agent-based computing in recent

years, research on agent-oriented software engineer-

ing (AOSE) [6, 10] has also led to the proposal of

several models, methodologies and tools to guide the

analysis and design of complex systems in this

context.

AGENTS IN BIOINFORMATICS
Agent technology deals with entities typically

equipped with information management and

coordination capabilities. The notion of agents in

bioinformatics thus suggests the support of integra-

tion of information by designing domain-aware

information agents for knowledge management and

problem-solving within a biological domain. The

use of agents in computational and systems biology

suggest the design of agent-based systems, tools and

languages for modelling the biological processes

themselves.

At the dawn of the ‘omics’ age, bioinformatics

was defined [11] as a computational discipline aiming

at the management and analysis of biological data.

Nowadays, we should also include in this definition

the capability to address information and knowledge

overflow as well—integration has become the

password. Computational biology focuses more on

the algorithmic aspects, often taking into account

biomolecular concepts or even mimicking them

[12]. Systems biology attempts to understand the

emerging behaviour of biological systems as a whole

[13]. The three disciplines are so strongly correlated

and integrated that in the rest of the article we

dwell on them.

Agents proved to be useful for the applications

that imply: repetitive and time-consuming activities;

knowledge management, such as integration of

different knowledge sources and modelling of

complex, dynamic systems. All of these are typical

tasks in the aforementioned disciplines. In particular,

the kinds of resources available in the bioinformatics

domain, with numerous databases and analysis

tools independently administered in geographically

distinct locations, lend themselves almost ideally to

the adoption of a multi-agent approach. Here, the

environment is open, distributed and dynamic, with

resources entering and leaving the system over time.

There are likely to be large numbers of interactions

between entities for various purposes, and the need

for automation is substantial and pressing. Some early

work in this direction, using agents for genome

analysis, is demonstrated by the GeneWeaver project

in the UK [14], and work using DECAF in the US

[15, 16]. Earlier work [1, 17] does not mention

agents explicitly but shares many similar concepts.
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Recently, Keele and Wray [18] reviewed the issues

concerning applications of software agent technology

to genomics. In Italy, results in the application of

agents to data and tools integration, have been

provided by the BioAgent project [19–22]. For

biological systems simulation, early work demon-

strates the use of agent technology to model

intracellular signalling pathways [23], and in visual

tools for cell modelling [24]. More substantial

work is now underway on the use of distributed

components as part of the UK’s myGrid [25]

e-Science project (http://www.mygrid.org.uk),

developing a Bioinformatics Grid testbed, which

may also merit the application of the agent paradigm

[26]. Another project, with a special applications for

biology, is the Italian Grid.it (http://www.grid.it);

this project aims to provide platforms for

high-performance computational grids oriented at

scalable virtual organizations. Promising experi-

mental studies on the integration of Grid and

agent technology are also being carried out in the

framework of a new project, LITBIO (Interactive

Laboratory of Bioinformatics Technologies; http://

www.litbio.org).

Recent experiences
In this section, we report on some recent experiences

in using agents in bioinformatics, and discuss the

results obtained in employing them both as assistants

for bioinformaticians and as problem solvers for

biologists. More details of each application can be

found in the corresponding references.

Bioinformatics process automation
In order to illustrate the role of agents in bioinfor-

matics process automation, we consider the experi-

ence of GeneWeaver [14], which is a multi-agent

system aimed at addressing concerns with the

management of data and analysis methods for

bioinformatics. It comprises a community of agents

that interact with each other, each having a particular

role, in an overall effort to automate processes

involved in bioinformatics. The system was targeted

at genome annotation, but should not really be

viewed as satisfying a single need, with each agent

being able to deliver its own expertise at solving

particular problems. If we consider the kinds of

problems that are common in such applications,

including filtering and prioritizing information

resulting from matched proteins, integrating several

distinct analysis programs possibly in sophisticated

ways, managing multiple remote sources of data

in different formats, and so on, no solution for

automation suggests itself quite as much as a multi-

agent approach. In fact, this kind of problem is

not really novel—it fits what might be considered

a standard model of a multi-agent system in a

traditional information systems domain with the

addition of some extra complications and a different

set of data.

Agents in the system can be concerned with

management of the primary databases, performing

sequence analyses using existing tools, or with storing

and presenting resulting information. The important

point to note is that the system does not offer

new methods for performing these tasks, but

organizes existing ones for the most effective and

flexible operation.

There are five types of agents present in the

GeneWeaver community.

� Broker agents are facilitators rather than points

of functionality, needed to register information

about other agents in the community.

� Primary database agents are needed to manage

remote primary sequence databases and keep the

data contained in them up-to-date, and in a

format that allows other agents to query that data.

� Non-redundant database agents construct and

maintain non-redundant databases from the data

managed by other primary database agents in the

community.

� Calculation agents encapsulate some pre-existing

methods or tools for analysis of sequence data,

and attempt to determine the structure or function

of a sequence. Whenever possible, they are also

responsible for constructing and managing any

underlying data that they rely on.

� Genome agents are responsible for managing the

genomic information for a particular organism.

Agents for the analysis of polygenic diseases
It is often not clear if a gene is expressed or

differentially expressed. It is even more difficult to

determine if an observed change is relevant for

a disease. Humans are not good in ranking these

findings, particularly not for complex diseases, with

many contributing factors. A laboratory investigating

a particular disease is likely to have both RNA and

protein expression data from many different sources.

The data are likely to include information from

cell cultures, experiments prior, and post, to the
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inhibition of a particular set of genes, nucleotide

polymorphisms and the same for animal models of

the disease from multiple strains. Also of particular

interest is the genotyping of animals, from which

identifications of chromosomal loci that contribute

to the disease may be inferred.

The use of agents for the analysis of polygenic

diseases and preliminary results on combining RNA

and protein expression levels, genotyping and

intergenomics by adopting BioAgent, a program-

ming environment based on mobile middleware

[20], are encouraging. Agent technology supports

uniform access to local and public data (through a

facilitator, i.e. a wrapper of web services or local

tools, as implemented by EDITtoTrEMBL and other

efforts [1, 17, 27]). Agent technology helps in

understanding links between data sources and their

association with diseases, providing reasoning over

these data to yield a model of the disease in terms of

the minimal number of genes/pathways that explain

the maximal number of observations of the disease.

Agents gather annotation of protein or genomic

sequences and establish a consensus, as implemented

for information from protein domain databases and

trans-membrane protein sequence annotation [28].

In this context, agents are viewed not only as a

technical implementation of distributed computing,

but also as a manager of different views on the

collected data, from which a complete model needs

to be inferred.

Many other sources of information are available as

web services that agents may provide. These include

selection of nucleotide polymorphisms [29], conver-

sion between genetic and physical distances [30]

and inter-genomic consensus regions of disease

association [31] which, today, are queried only

manually and independently.

Agents could also be used to select preferred

investigations of particular regions of 2D-gels,

e.g. zooming in on gels, mass spectrometry (MS)-

identification of spots, and searching for predicted

variants. They might also suggest investigation of

genes that are not on a microarray chip by

intelligently supporting the huge computational

effort required, which could benefit from load

sharing in the context of grid computing.

myGrid practical experience in tasks automation
One of the key problems facing bioinformaticians is

the task of finding the services and the data that they

need to perform in silico experiments. This task is

complex for several reasons. First, the tools are often

widely distributed, maintained by many different

decentralized groups. Secondly, there are many

different tools, performing many different kinds

of operation, on many different kinds of data. And,

finally, this is further complicated by the lack of formal

standards for representing the data of bioinformatics.

It is against this backdrop that the myGrid project

operates. The project has built a service-oriented

system that enables the publication and composition

of tools as services [32], recognizing that service

autonomy and heterogeneity are the key challenges

in bioinformatics, rather than the requirement for

high performance, which was the original focus of

computational Grid technologies. While this simpli-

fies some of the difficulties described earlier—it is

no longer necessary to ‘screen scrape’ web pages—it

does not address the difficulties of complexity.

This environment is one that seems ripe for

the application of agent technology; coping with

distribution, decentralization and complexity are

some of the biggest perceived advantages of this

technology. However, to enable the use of agents,

large amounts of knowledge are required in a form

that can be processed by the agent. Towards this

aim, myGrid has made heavy use of semantic web

technologies, focusing on providing descriptions

of the services that support the task of discovering

and composing services, in a manner that facilitates

and supports the work of the bioinformatician [33].

Currently, this work is very much ‘user-oriented’:

the knowledge is provided by the user and the

main service discovery agent is the user. However,

it is now investigating techniques for making

more automated use of this knowledge, in particular

shim services—those services that align closely

related data—enabling the bioinformatician to

combine services without having to worry about

complexity and reducing the difficulties resulting

from the use of the flat files and informal

representations [34].

In addition to the task of discovery of tools and

data sets, myGrid has attempted to address some of

the difficulties in organizing and storing knowledge

about the derivation or provenance of data generated

by its service-oriented architecture [35]. This is

traditionally a difficulty in bioinformatics, where it is

often hard to determine what information was used

to draw a given conclusion, resulting in databases

that are error prone and possibly circular. Again,

the focus has been on user interaction with this data,
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but using formats that should be computationally

accessible to agents.

The experiences of myGrid highlight some of

the barriers to the adoption of agent technology.

There is a continual tension between the desire for

agents to use rich and expressive knowledge, with

the complexity of actually obtaining this informa-

tion. myGrid has generally used simpler technologies

and much less expressive representations. This

reduces the effort required to obtain the knowledge,

but, probably, also reduces the application of it.

Despite these difficulties, myGrid is an evidence of

the importance of marrying computer science

research with bioinformatics. Semantic web and

agent technologies offer much for reducing the

complexity of the tasks of bioinformatics, while

bioinformatics offers a rich domain with real world

problems for the computer scientist. As bioinfor-

matics continues to increase the formalization in

the data and the desire for automation, both the

resources needed and the requirements for multi-

agent systems are becoming clearer.

An agent-based semantic web for bioinformatics
The power of ontologies and the idea of the

semantic web is evident from novel applications

such as GoPubMed (www.gopubmed.org), an

ontology-based literature search engine [36]. In a

first step, GoPubMed automatically identifies

GeneOntology [37] terms in PubMed literature

abstracts and tags the abstracts accordingly. In this

respect, GoPubMed changes web contents to

semantic web contents. In a second step, it allows

users to explore PubMed search results with the

GeneOntology. The categories of the ontology help

users quickly to survey and group abstracts according

to relevant categories rather than working through

a list of papers. And, it allows task automation by

providing agents with a large amount of knowledge

in a form that can readily be processed.

www.Prova.ws: rule-based java scripting
Semantic web applications such as GoPubMed

integrate ontologies and other data sources such as

PubMed. In general, there is therefore a need

for bioinformatics system integration specifically

supporting reasoning over structured vocabularies.

Prova [38], a language for rule-based Java-scripting,

aims to address this need. Prova has been used

e.g. to implement the first GoPubMed prototype.

The use of rules allows one to specify declaratively

the integration needs at a high-level without any

implementation details. The transparent integration

of Java caters for easy access and integration of

database access, web services and many other Java

services. This way, Prova combines the advantages

of rule-based programming and object-oriented

programming in Java. The Prova language is

positioned as a platform for knowledge-intensive

ontology-rich (most likely, agent-based) applications

in biomedical research. It aims to satisfy the

following design goals: combine the benefits of

declarative and object-oriented programming; merge

the syntaxes of Prolog as a rule-based language and

Java as an object-oriented language; expose logic as

rules; access data sources via wrappers written in Java

or command-line shells like Perl; make all Java

Application Programming Interfaces (APIs) from avail-

able packages directly accessible from rules; run within

the Java runtime environment; be compatible with

web-based and agent-based software architectures

and provide functionality necessary for rapid applica-

tion prototyping and low-cost maintenance.

Differently from other reasoners (e.g. RACER

[39]), Prova supports the use of agents for reasoning

over such ontologies and integrating them with

databases and web services. Karasavvas and colleagues

[40] also argue for the importance of an agent

communication language (and a standard derived

from it) in the perspective of bioinformatics integra-

tion systems. Furthermore, they evaluate criticality

issues concerning the decisions to be taken in

bioinformatics integration systems [41].

Protein secondary structure prediction
The problem of predicting protein 3D-structure

is very complex, as the underlying process involves

biological, chemical and physical interactions. A

simplified task is to predict the secondary structure,

i.e. the local conformation of the peptide chain

projected into a one-dimensional sequence. Despite

this simplification, information about secondary

structure often provides useful information for

predicting protein functional sites, which justifies

the interest of researchers in this particular and

exciting field. Artificial neural networks (ANNs)

have been widely applied to this task [42, 43] and

represent the core of many successful secondary

structure prediction methods, thanks to their ability

to find patterns without the need for predetermined

models or known mechanisms. In fact, all modern

methods actually resort to ensembles of ANNs,

usually organized into different functional levels.
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In relation to agents, one architecture in which the

existence of separate ‘experts’ is clearly articulated

has been proposed in [44]. To predict the secondary

structure of a protein, the corresponding system,

called MASSP (MultiAgent Secondary Structure

Predictor), resorts to a population of homogeneous

experts—each expert being implemented by a

software agent that embodies a genetic and a

neural component (i.e. guard and embedded pre-

dictor, respectively). Guards and predictors perform

different tasks and are supplied with different

information. In particular, a guard is aimed at

(soft-)partitioning the input space, insomuch as

assuring both the diversity and the specialization of

the corresponding embedded predictor, which in

turn is devoted to perform the actual prediction.

Guards deal with inputs that encode information

strictly related with relevant domain knowledge,

whereas embedded predictors process other relevant

inputs, each consisting of a limited window of

residues. In the current release of the system, agent

technology in its full potential is used, Jade [45]

being adopted as underlying programming frame-

work. Although, experimental results are already

promising—an accuracy of about 76%, measured in

terms of Q3, has been reached—the adoption of the

agent technology is mainly due to the requirements

imposed on the next release of the system—which is

expected (i) to implement complex interactions, (ii)

to implement heterogeneous experts and (iii) to

integrate predictions performed by other predictors

disseminated over the Internet. In fact, software

agents are perfectly suited to fulfil the requirements

above, as they offer a new paradigm for very large-

scale distributed heterogeneous applications, focused

on the interactions of autonomous, cooperating

processes (for further details see, for instance,

Bradshaw [46]). Regarding the first of the above

issues, let us stress that the environment in which

MASSP experts operate basically stems from that

dictated by the basic rules of evolutionary computa-

tion, in which the main schema of interaction is

based on competition. Thus, more complex and

flexible forms of interaction may be difficult to

implement, in particular to enable experts to apply

different policies in accordance with the current state

of the computation and with the current operational

context. Fortunately, interaction is a key focus

of agent technology (see, for instance [47]), which

involves communication languages and inter-

action protocols. As for the second issue

(i.e. heterogeneity), it is clear that the ability to

deal with experts able to process different kinds of

data, either locally available, or downloaded from

the Internet, creates a scenario in which automated

experts can mimic the workflow activity performed

by human experts, which are able to cooperate in

predicting secondary structures despite the fact that

their ‘expertise’ may derive from different bodies of

domain knowledge. Due to their capability of

exchanging information, despite their heterogeneity,

software agents appear to be the most suitable

technology able to deal with this kind of problem.

In relation to the third issue (i.e. openness), there is a

growing amount of evidence that consensus methods

may outperform the accuracy of single predictors

[48]. Although MASSP has been designed and

implemented to exploit this phenomenon on a

local basis, nothing prevents the extension of this

approach in such a way that remote predictors may

become part of the overall population of experts.

This is relatively easy to do by resorting to software

agents, as they are also particularly well-suited to

acting as wrappers, each hiding the details of the

corresponding remote predictor while interacting

with other experts involved in the prediction activity.

Stem cell analysis and simulation
In recent years, there has been a growing debate

about how stem cells behave in the human body;

whether the fate of stem cells is pre-determined

or stochastic, and whether the fate of cells relies

on their internal state, or on extra-cellular micro-

environmental factors. More recent experimental

evidence has suggested that stem cell development

may be more complicated than was originally

thought [49]. New theories challenged the prevailing

view suggesting that stem cell fate is both reversible
(cells can become less differentiated or behave more

like stem cells) and plastic (cells can migrate from one

cell lineage to another). More recently, there has

been a growing body of work that is concerned

with building predictive formal models of stem cell

behaviour that can be simulated. In this direction,

much work has been done in building agent-based

simulations of stem cells [50–53].

Work to date has used existing, well-established

techniques for specifying and modelling agent-based

systems in general [54] and progressed along two

parallel strands. The first strand has been an attempt

to develop an agent-based model of Theise’s theory

of stem cell behaviour and organization [53].
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The second strand has been to use the same agent-

based approach to analyse and re-develop existing

models to ensure that the agent framework is

sufficiently flexible to model more than one theory

and to understand how other work differs.

Two of the most common approaches to formal

models of stem cells use cellular automata [55] and

equational or probabilistic models [56]. In order to

support the claim that the agent approach is more

suitable than other modelling approaches, existing

approaches have been taken and re-cast in the agent-

based modelling and simulation framework, which

has demonstrated a number of clear advantages of

the agent approach over existing approaches [57].

Specifically, the agent model has more biological

plausibility, and is thus appropriate as a computer

modelling metaphor for interdisciplinary collabora-

tion between modellers and wet lab experimentalists.

For example: in the CA models, cells magically

appear; in the probabilistic-based models cells have

access to global system information; and in the

differential-based models we cannot begin to

investigate how individual cell–cell interaction leads

to the well-documented global system behaviour of

cell systems. This is not to say that agents are in any

way better than other approaches in general; each has

its own merits, of course. It is simply that in this

context the agent-based approach has, to date,

demonstrated a clear number of advantages.

Furthermore, arguably the most sophisticated

current equational-based model of stem cell activity,

has been re-caged in an agent framework, demon-

strating a number of clear advantages. First, it shows

how the environment may limit the behaviour

of cells. For example, division is not necessarily

guaranteed if there is insufficient space. The agent-

based simulation increases the biological intuition

and plausibility, and allows the investigation

of behaviours due to subtle changes in micro-

environmental effects for each cell. This was not

possible before. Modelling cells as agents responding

autonomously to their local environment is much

more fine-grained than using an equational/

probabilistic-function approach to model cell transi-

tions, and therefore allows for a much greater degree

of sophistication in the possibilities of understanding

how self-organization actually takes place in the

adult human body.

In this view, the agent approach is more

biologically plausible since it does not rely on getting

information about the overall system state, and

instead its behaviour is based solely on its internal

state, its perception of the local environment state,

and the actual physical state of the local environ-

ment. Biological plausibility at this abstract model-

ling level is important to attract biologists to use and

work with models and simulations in general. Stem

cells are a prime example of a self-organizing system

where individual agents react to their local physical,

chemical and biological environment.

To date, we have produced formal and mutually

consistent specifications of the leading of many of the

key predictive models of stem cell behaviour within

our agent framework. In addition, we have produced

simulations and visualizations of these models. And

having worked in this field now for around 3 years, it

is our belief that visualization of stem cell simulations

may hold the key for the integration of new models

of stem cell organization into the wet lab culture.

Moreover, using the application of our agent

framework we have introduced more biological

plausibility to the models (cells as agents is a natural

and engaging metaphor for biologists), we have

introduced cell mechanisms in place of statistical or

probabilistic methods that rely on information about

the entire cell population being instantaneously

available to all cells, we have produced visualizations

that enable a dialogue between wet lab researchers,

and we have made predictions about stem cell

behaviour that can be investigated in the wet lab. For

example, according to our models, stem cell activity

pulses around the stem cell niche. We are currently

in negotiation with stem cell laboratories to develop

an experiment to test our hypothesis relating to this

system behaviour (predictions about individual cells

cannot be tested in the human body) and thus the

corresponding model on which it is based. We are

aware of course, that our model is incredibly simple

compared with the sophistication of the human

body. Nevertheless, we are increasingly confident

that the theoretical simplifications inherent in any

model will provide crucial understandings into cell

interaction mechanisms, and that the agent metaphor

provides exactly the right metaphor for continued

interdisciplinary collaboration between biologists and

the developers of predictive models.

FUTURE CHALLENGES
In this section, we report on several areas for which

agents appear to offer a promising technology in

support of a new approach.
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Analysis of mutant proteins: an exercise in motivation
A potential application of agents could be the

problem of collecting data on mutations and

analysing their effects on protein structure. Many

diseases are caused by DNA mutations which

lead to protein mutations: cystic fibrosis, Favism

(G6PD), Niemann Picks disease, OTC deficiency

(urea cycle—hyper-ammonaemia—brain damage),

Cancer (p53, BRCA-1, APC, MYH). Often,

biologists who study protein mutations attempt to

analyse the protein structure, since structure deter-

mines function. Could agents in some way help to

provide an answer to the problem of verifying SNPs

and confirming whether they are coding, leading to a

protein mutation [58]? If so, where is the mutation in

the protein sequence and is there a structure already

known for such proteins? How does the mutation

affect the structure? We could encode a workflow to

describe the possible answers to these questions.

The automation of the workflow implies mid-

dleware suitable for supporting the specification,

execution and coordination of very complex activ-

ities. The use of information agents, in the context

of the semantic web, could help significantly in

retrieving and integrating meaningful information

from heterogeneous and distributed data repositories.

In collecting information from diverse sources,

however, technology is often not the problem:

ontologies, web services and agent-based systems are

all well-established [59]. Rather, the problem can be

in persuading the biologist to agree to use ontologies

(The Open Biomedical Ontologies website lists all

the available ontologies in the biomedical field

http://obo.sourceforge.net/) and nomenclatures

[60]. If the technologies are too complex, or

perceived to be too complex, then why should the

biologist bother? They need to see a direct benefit in

making use of such systems. Clearly, if one

technology is obviously better than another, then

there will be no hesitation in its adoption. However,

what may be ‘better’ for the community as a whole

may not be of direct benefit to an individual

biologist. In addition, the technology may well be

so outside the scope of expertise of a bench biologist

that he or she has no concept of how and why it may

be useful. Thus, the problem is one of motivation—

persuading the biologist who may have collected

some interesting data and put it up on the web (e.g.

one of the several hundred websites listing mutations

for specific proteins [61]), to adopt standards and

ontologies [62] that can be used by agents and the

semantic web. Thus, to be successful, biologists,

bioinformaticians and computer scientists must work

closely, but most importantly, must be driven by the

needs of the biologist.

LIMS as an agent-based laboratory
An area that would certainly benefit from the agent

paradigm is that of Laboratory Information

Management Systems (LIMS). More than 160

packages and programs [63] are available for

laboratory automation necessities. Most of them

represent commercial products, provided from hard-

ware vendors, specifically designed for their labora-

tory machinery and solutions. The enormous

amount of data and metadata [64] produced from

high-throughput technologies and projects in the

plethora of ‘-omics’ fields (e.g. genome sequencing,

microarrays and transcriptomics, proteomics) and

in a number of others (e.g. immunofluorescence

imaging, flow cytometry, chemical analysis, envir-

onmental sciences) require such an information

management framework. Very little academic

research has been performed on this topic, mainly

because of its very strict connection to dedicated

equipment and to laboratory-specific data format,

requirements and procedures. Without aiming to

be exhaustive, we can cite some ad-hoc academic

solutions to specific problems: QuickLIMS [65]

developed for microarrays production, MMP-LIMS

[66] used for integrated genetic and physical map in

the maize genome project, CLIMS [67] for a

crystallography laboratory and the LIMS setup for

building the Pseudomonas aeruginosa gene collection

[68]. LabBase [69] represented a general-purpose

database management system for implementation

of laboratory information systems. Based on a

community-agreed data model and already looking

in the e-Science dimension is the MOLE project

[63] aiming to serve protein production laboratories

in the UK and Europe.

The requirements for a system that would be

flexible, scalable and capable to easily adapt to any

change, without engendering any traumatic event

for the laboratory [70] are evident. It should also be

noted that until recently automation has focused

primarily on improving hardware. Future advances

will concentrate on intelligent software to integrate

physical experimentation and result analysis with

hypothesis formulation and experiment planning

[64, 71]. We argue that the agent metaphor,

integrated with appropriate and detailed domain
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ontologies, could intuitively describe and manage

distributed environments populated by autonomous

entities that wrap robotized stations, interface human

operators, describe laboratory objects (e.g. samples,

well, plates), operations and procedures. Intelligent

agents would also be capable of successfully coping

with fast-changing (due to the ever increasing

technological turnover) and unpredictable

conditions.

Cellular processes modelling
The modelling of cellular processes is difficult due to

the complexity of the organization of biological

systems and of its cellular processes. Modelling

complex systems implies a deep understanding of

the system both in terms of its structure and its

behaviour [13]. Once we have identified some

of the components, some of their functions, their

topological relationships and the parameters of each

relation, we can start to analyse the system behaviour

trying to understand the mechanisms behind the

robustness and stability of the system. At present,

the unavailability of complete knowledge, leads to

an unavoidable degree of uncertainty in our models.

To this end, agent technology can be exploited to

develop a suitable conceptual framework for simula-

tion in order to analyse system behaviour and

eventually to infer new components and functions.

One proposed exercise is to analyse the cell in terms

of the known active components, the roles and

behaviours these play in the cell processes, their

interactions with the living environment. But, in

approaching the agent-based cell simulation, at what

abstraction level should we model the cell system—

the fine grained level? What would be the main

features of an agent-based conceptual framework

for simulation of biological systems? What would

be a good bioagent conceptual language?

Based on the consideration that biological systems

are complex, consisting of a set of components

interacting with each other and with an external

(dynamic) environment, a conceptual framework

for engineering an agent society that simulates the

behaviour of a biological system has been proposed

[72]. In contrast to the classical mathematical

descriptions mainly based on ordinary differential

equations, the specification of complex systems is

based on behavioural modelling. For example, an

agent-based model of the carbohydrate oxidation in

the cell, describing each engineering step by Unified

Modelling Language (UML) graphical notation has

already been suggested [73]. Other recent examples

of application of agent technology in systems biology

concern the tissue homeostasis in human epidermis

[74], bacterial chemotaxis [75], molecular self-

organization [76] and T-cell recognition [77].

Other approaches, not agent-based, are relevant in

the cell modelling and simulation context: Cell-

DEVS [78], based on discrete-events systems speci-

fication, E-CELL [79], for modelling biochemical

and genetic processes, Virtual Cell [80], a general

framework for the spatial modelling and simulation

of cellular physiology and Physione [81], for mod-

elling human body from a fine to coarse grain level.

Formal and semiformal methods in bioinformatics
In addition to the expected contribution of agents

in bioinformatics as a technological framework,

we see another challenge to deal with, i.e. the

possibility of designing incredibly complex systems,

through models suitable for representing and analys-

ing biological systems from different viewpoints:

static-structural, dynamic and functional [73, 82].

In fact, the use of models to represent a biological

system at different abstraction levels helps us to

understand the biological system itself. The specifi-

cation model, e.g. agent-oriented, can help by

identifying the system structure, critical component

roles and responsibilities, functions and interactions

(which are generally poorly identified). Of course,

to create models we need languages and suitable

notations.

In the literature, a wide range of formal and semi-

formal languages and notations can be found. These

depend on the level considered, on the properties in

which the designer is interested, and on the tools

available to perform the analysis and verify proper-

ties. Proving properties in biological models can

mean verifying properties related to the system/

process behaviour (e.g. safety properties; liveness

properties; simulations of system dynamics; checking

for causal relationships . . .). Any property can be

formally proved by using well-known methods such

as equivalence checking, model checking, simulation

and model synthesis.

In a very simple scenario, a semi-formal notation,

based on PetriNets [82] and UML Activity Diagrams

[83], is used to graphically describe the workflow

activities for a biological process. In particular,

Figure 1 shows four different models to represent

the malaria parasite invading human host erythrocytes
system at different levels of abstraction with bold
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arrows indicating the steps (modelling, analysing,

simulation and validation) to derive one model from

another.

Starting form the biological knowledge of a

system, a graphical (semi-formal) description can be

derived. Then on the one hand, this model is

translated to a formal specification (by process

algebra) to verify the model’s properties, and on

the other hand, the graphical description can be

compiled into a low-level specification (in an agent-

oriented language) to generate the agent-based

simulation of the biological system. The last step,

the software validation [84] of the multi-agent

system [85], can give rise to an enrichment of the

formal model by including properties to make the

model more faithful to the biological system [86].

The natural question, therefore, is how we can know

what kind of system properties biologists want to

verify. Are they interested in having clear evidence

of how the simulation system behaves, being able to

modify the system’s properties at run-time? And

should it be possible to incrementally build, maintain

and refine the system? What kind of conceptual

simulation framework would be useful to fulfil

biologists’ expectations? Would an agent approach

be sufficient to create a framework with these

features [72]? Would mobility be a meaningful

feature to simulate biological systems through agent

technology? (Note that in Figure 1 some system

components are mobile.)

CONCLUSION
It is clear that the combination of agents and

bioinformatics presents a 2-fold opportunity. On

the one hand, the domain of bioinformatics, with its

extensive and growing resources of databases and

analysis tools, provides an appropriate domain for the

application of agent technologies. It offers the

possibility for deploying and testing agent systems

in a real-world setting with the possibility of making

substantial contributions to human society. On the

other hand, there is a distinct and identified need for

good solutions to improve the performance of

existing bioinformatics systems, and agents may be

able to contribute to that improvement. In this sense,

there is a very strong synergy between the two

domains.

This picture is both enhanced and complicated

by the introduction of relevant infrastructural

technologies that facilitate both bioinformatics and

agent-based computing. For example, the Grid

has become increasingly important to both the

communities, and suggests a convergence to a

service-oriented vision of bioinformatics under-

pinned by Grid-based virtual organizations.

However, there are still significant challenges.

Researchers from both communities generally

require education in the other, and work must be

undertaken to ensure that any solutions across both

areas satisfy both needs. In many cases, the language

of discourse is so distinct that discussion of key issues

becomes problematic. Additionally, the introduction

of new technologies like the Grid requires further

efforts, both in terms of understanding and adoption,

and in terms of its immaturity in fully deployed

systems. Maturity at the interface is thus the key

challenge. While many agent techniques may be

used to address the concerns of bioinformaticians, the

lack of a complete understanding across domains

suggests that it may still be too early to develop more

sophisticated systems than the current generation of

essential management and mediation systems.
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