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Background

Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken
from a non-empty finite set A (alphabet).

Examples:

001

(001)∞ = 001001001001001001001001001001 · · ·

1100111100011011101111001101110010111111101 · · ·

100102110122220102110021111102212222201112012 · · ·

1121212121212 · · ·
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Background

Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken
from a non-empty finite set A (alphabet).

Examples:

001

(001)∞ = 0.
↑
01001001001001001001001001001 . . .

1100111100011011101111001101110010111111101 · · ·

100102110122220102110021111102212222201112012 · · ·

1121212121212 · · ·
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Background

Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken
from a non-empty finite set A (alphabet).

Examples:

001

(001)∞ = 0.01001001001001001001001001001 . . . = (2/7)2

1100111100011011101111001101110010111111101 · · ·

100102110122220102110021111102212222201112012 · · ·

1121212121212 · · ·
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Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken
from a non-empty finite set A (alphabet).

Examples:

001

(001)∞ = 0.01001001001001001001001001001 . . . = (2/7)2

1.
↑
100111100011011101111001101110010 . . .

100102110122220102110021111102212222201112012 · · ·

1121212121212 · · ·
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Background

Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken
from a non-empty finite set A (alphabet).

Examples:

001

(001)∞ = 0.01001001001001001001001001001 . . . = (2/7)2

1.100111100011011101111001101110010 . . . = ((1 +
√

5)/2)2

100102110122220102110021111102212222201112012 · · ·

1121212121212 · · ·
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Background

Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken
from a non-empty finite set A (alphabet).

Examples:

001

(001)∞ = 0.01001001001001001001001001001 . . . = (2/7)2

1.100111100011011101111001101110010 . . . = ((1 +
√

5)/2)2

10.
↑
0102110122220102110021111102212222201112012 . . .

1121212121212 · · ·
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Background

Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken
from a non-empty finite set A (alphabet).

Examples:

001

(001)∞ = 0.01001001001001001001001001001 . . . = (2/7)2

1.100111100011011101111001101110010 . . . = ((1 +
√

5)/2)2

10.0102110122220102110021111102212222201112012 . . . = (π)3

1121212121212 · · ·
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Background

Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken
from a non-empty finite set A (alphabet).

Examples:

001

(001)∞ = 0.01001001001001001001001001001 . . . = (2/7)2

1.100111100011011101111001101110010 . . . = ((1 +
√

5)/2)2

10.0102110122220102110021111102212222201112012 . . . = (π)3

[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .] =
√

3
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Background

Words . . .

Depending on the problem to be solved, it may be fruitful to study
combinatorial and structural properties of the words representing the
elements of a particular set or to impose certain combinatorial
conditions on such words.
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Background

Words . . .

Depending on the problem to be solved, it may be fruitful to study
combinatorial and structural properties of the words representing the
elements of a particular set or to impose certain combinatorial
conditions on such words.

Most commonly studied words are those which satisfy one or more
strong regularity properties; for instance, words containing many
repetitions or palindromes.
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Background

Words . . .

Depending on the problem to be solved, it may be fruitful to study
combinatorial and structural properties of the words representing the
elements of a particular set or to impose certain combinatorial
conditions on such words.

Most commonly studied words are those which satisfy one or more
strong regularity properties; for instance, words containing many
repetitions or palindromes.

The extent to which a word exhibits strong regularity properties is
generally inversely proportional to its “complexity”.
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Background

Words . . .

Depending on the problem to be solved, it may be fruitful to study
combinatorial and structural properties of the words representing the
elements of a particular set or to impose certain combinatorial
conditions on such words.

Most commonly studied words are those which satisfy one or more
strong regularity properties; for instance, words containing many
repetitions or palindromes.

The extent to which a word exhibits strong regularity properties is
generally inversely proportional to its “complexity”.

Basic measure: number of distinct blocks (factors) of each length
occurring in the word.
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Background Complexity & Sturmian words

Words: Factor Complexity

Given a finite or infinite word w, let Fn(w) denote the set of distinct
factors of w of length n ∈ N

+.
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Background Complexity & Sturmian words

Words: Factor Complexity

Given a finite or infinite word w, let Fn(w) denote the set of distinct
factors of w of length n ∈ N

+.

The function Cw(n) : N → N defined by

Cw(n) = Card(Fn(w))

is called the factor complexity function of w.
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Background Complexity & Sturmian words

Words: Factor Complexity

Given a finite or infinite word w, let Fn(w) denote the set of distinct
factors of w of length n ∈ N

+.

The function Cw(n) : N → N defined by

Cw(n) = Card(Fn(w))

is called the factor complexity function of w.

Example

x = (
√

2)2 = 1.0110101000001001111 . . .
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Background Complexity & Sturmian words

Words: Factor Complexity

Given a finite or infinite word w, let Fn(w) denote the set of distinct
factors of w of length n ∈ N

+.

The function Cw(n) : N → N defined by

Cw(n) = Card(Fn(w))

is called the factor complexity function of w.

Example

x = (
√

2)2 = 1.0110101000001001111 . . .

F1(x) = {0, 1}, Cx(1) = 2
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Background Complexity & Sturmian words

Words: Factor Complexity

Given a finite or infinite word w, let Fn(w) denote the set of distinct
factors of w of length n ∈ N

+.

The function Cw(n) : N → N defined by

Cw(n) = Card(Fn(w))

is called the factor complexity function of w.

Example

x = (
√

2)2 = 1.0110101000001001111 . . .

F1(x) = {0, 1}, Cx(1) = 2

F2(x) = {00, 01, 10, 11}, Cx(2) = 4

Amy Glen (MU, Perth) On a generalisation of trapezoidal words December 2011 4



Background Complexity & Sturmian words

Words: Factor Complexity

Given a finite or infinite word w, let Fn(w) denote the set of distinct
factors of w of length n ∈ N

+.

The function Cw(n) : N → N defined by

Cw(n) = Card(Fn(w))

is called the factor complexity function of w.

Example

x = (
√

2)2 = 1.0110101000001001111 . . .

F1(x) = {0, 1}, Cx(1) = 2

F2(x) = {00, 01, 10, 11}, Cx(2) = 4

F3(x) = {000, 001, 010, 100, 101, 110, 111}, Cx(3) = 8
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Background Complexity & Sturmian words

Words: Factor Complexity

Given a finite or infinite word w, let Fn(w) denote the set of distinct
factors of w of length n ∈ N

+.

The function Cw(n) : N → N defined by

Cw(n) = Card(Fn(w))

is called the factor complexity function of w.

Example

x = (
√

2)2 = 1.0110101000001001111 . . .

F1(x) = {0, 1}, Cx(1) = 2

F2(x) = {00, 01, 10, 11}, Cx(2) = 4

F3(x) = {000, 001, 010, 100, 101, 110, 111}, Cx(3) = 8

Conjecture: Cx(n) = 2n for all n as it is believed
√

2 is normal in base 2.
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Background Complexity & Sturmian words

Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is eventually periodic if and only if Cw(n) ≤ n for
some n ∈ N

+.
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Background Complexity & Sturmian words

Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is eventually periodic if and only if Cw(n) ≤ n for
some n ∈ N

+.

That is: w is aperiodic ⇔ Cw(n) ≥ n + 1 for all n ∈ N.
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Background Complexity & Sturmian words

Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is eventually periodic if and only if Cw(n) ≤ n for
some n ∈ N

+.

That is: w is aperiodic ⇔ Cw(n) ≥ n + 1 for all n ∈ N.

An infinite word w is called Sturmian if and only if Cw(n) = n + 1 for
each n.

Amy Glen (MU, Perth) On a generalisation of trapezoidal words December 2011 5



Background Complexity & Sturmian words

Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is eventually periodic if and only if Cw(n) ≤ n for
some n ∈ N

+.

That is: w is aperiodic ⇔ Cw(n) ≥ n + 1 for all n ∈ N.

An infinite word w is called Sturmian if and only if Cw(n) = n + 1 for
each n.

Sturmian words are the aperiodic infinite words of minimal complexity.
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Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is eventually periodic if and only if Cw(n) ≤ n for
some n ∈ N

+.

That is: w is aperiodic ⇔ Cw(n) ≥ n + 1 for all n ∈ N.

An infinite word w is called Sturmian if and only if Cw(n) = n + 1 for
each n.

Sturmian words are the aperiodic infinite words of minimal complexity.

Their low complexity accounts for many interesting features, as it
induces certain regularities in such words without, however, making
them periodic.
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Background Complexity & Sturmian words

Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is eventually periodic if and only if Cw(n) ≤ n for
some n ∈ N

+.

That is: w is aperiodic ⇔ Cw(n) ≥ n + 1 for all n ∈ N.

An infinite word w is called Sturmian if and only if Cw(n) = n + 1 for
each n.

Sturmian words are the aperiodic infinite words of minimal complexity.

Their low complexity accounts for many interesting features, as it
induces certain regularities in such words without, however, making
them periodic.

Applications in: Combinatorics, Symbolic Dynamics, Number Theory,
Discrete Geometry, Theoretical Physics, and Computer Science.
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Background Complexity & Sturmian words

Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is eventually periodic if and only if Cw(n) ≤ n for
some n ∈ N

+.

That is: w is aperiodic ⇔ Cw(n) ≥ n + 1 for all n ∈ N.

An infinite word w is called Sturmian if and only if Cw(n) = n + 1 for
each n.

Sturmian words are the aperiodic infinite words of minimal complexity.

Their low complexity accounts for many interesting features, as it
induces certain regularities in such words without, however, making
them periodic.

Applications in: Combinatorics, Symbolic Dynamics, Number Theory,
Discrete Geometry, Theoretical Physics, and Computer Science.

Numerous equivalent definitions & characterisations . . .

Amy Glen (MU, Perth) On a generalisation of trapezoidal words December 2011 5



Background Complexity & Sturmian words

A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let Pw(n) denote the palindromic

complexity function of w, which counts the number of palindromic factors
of w of each length n ≥ 0.
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Background Complexity & Sturmian words

A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let Pw(n) denote the palindromic

complexity function of w, which counts the number of palindromic factors
of w of each length n ≥ 0.

Theorem (Droubay-Pirillo 1999)

An infinite word w is Sturmian if and only if

Pw(n) =

{

1 if n is even

2 if n is odd
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Background Complexity & Sturmian words

A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let Pw(n) denote the palindromic

complexity function of w, which counts the number of palindromic factors
of w of each length n ≥ 0.

Theorem (Droubay-Pirillo 1999)

An infinite word w is Sturmian if and only if

Pw(n) =

{

1 if n is even

2 if n is odd

Note:

Any Sturmian word is over a 2-letter alphabet since it has two distinct
factors of length 1.
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Background Complexity & Sturmian words

A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let Pw(n) denote the palindromic

complexity function of w, which counts the number of palindromic factors
of w of each length n ≥ 0.

Theorem (Droubay-Pirillo 1999)

An infinite word w is Sturmian if and only if

Pw(n) =

{

1 if n is even

2 if n is odd

Note:

Any Sturmian word is over a 2-letter alphabet since it has two distinct
factors of length 1.

A Sturmian word over the alphabet {a, b} contains either aa or bb,
but not both.
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Background Complexity & Sturmian words

A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let Pw(n) denote the palindromic

complexity function of w, which counts the number of palindromic factors
of w of each length n ≥ 0.

Theorem (Droubay-Pirillo 1999)

An infinite word w is Sturmian if and only if

Pw(n) =

{

1 if n is even

2 if n is odd

Note:

Any Sturmian word is over a 2-letter alphabet since it has two distinct
factors of length 1.

A Sturmian word over the alphabet {a, b} contains either aa or bb,
but not both.

What do such words look like?
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Background Complexity & Sturmian words

A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let Pw(n) denote the palindromic

complexity function of w, which counts the number of palindromic factors
of w of each length n ≥ 0.

Theorem (Droubay-Pirillo 1999)

An infinite word w is Sturmian if and only if

Pw(n) =

{

1 if n is even

2 if n is odd

Note:

Any Sturmian word is over a 2-letter alphabet since it has two distinct
factors of length 1.

A Sturmian word over the alphabet {a, b} contains either aa or bb,
but not both.

What do such words look like? And how can we construct them?
Amy Glen (MU, Perth) On a generalisation of trapezoidal words December 2011 6



Background Complexity & Sturmian words

Constructing Sturmian words

Let’s consider a nice geometric realisation of infinite Sturmian
words . . .
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Background Complexity & Sturmian words

Constructing Sturmian words

Let’s consider a nice geometric realisation of infinite Sturmian
words . . .

Consider a line (call it ℓ) of the form:

y = αx + ρ

where α is an irrational number in (0, 1) and ρ ≥ 0.
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Background Complexity & Sturmian words

Constructing Sturmian words

Let’s consider a nice geometric realisation of infinite Sturmian
words . . .

Consider a line (call it ℓ) of the form:

y = αx + ρ

where α is an irrational number in (0, 1) and ρ ≥ 0.

Let P denote the path along the integer lattice that starts at the
point (1, 0) below the line ℓ with the property that the region in the
plane enclosed by P and ℓ contains no other points in Z × Z besides
those of the path P.
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Background Complexity & Sturmian words

Constructing Sturmian words

Let’s consider a nice geometric realisation of infinite Sturmian
words . . .

Consider a line (call it ℓ) of the form:

y = αx + ρ

where α is an irrational number in (0, 1) and ρ ≥ 0.

Let P denote the path along the integer lattice that starts at the
point (1, 0) below the line ℓ with the property that the region in the
plane enclosed by P and ℓ contains no other points in Z × Z besides
those of the path P.

The so-called Sturmian word of slope α and intercept ρ is obtained by
coding the steps of the path P.
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Background Complexity & Sturmian words

Constructing Sturmian words

Let’s consider a nice geometric realisation of infinite Sturmian
words . . .

Consider a line (call it ℓ) of the form:

y = αx + ρ

where α is an irrational number in (0, 1) and ρ ≥ 0.

Let P denote the path along the integer lattice that starts at the
point (1, 0) below the line ℓ with the property that the region in the
plane enclosed by P and ℓ contains no other points in Z × Z besides
those of the path P.

The so-called Sturmian word of slope α and intercept ρ is obtained by
coding the steps of the path P.

– A horizontal step is denoted by the letter a.
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Background Complexity & Sturmian words

Constructing Sturmian words

Let’s consider a nice geometric realisation of infinite Sturmian
words . . .

Consider a line (call it ℓ) of the form:

y = αx + ρ

where α is an irrational number in (0, 1) and ρ ≥ 0.

Let P denote the path along the integer lattice that starts at the
point (1, 0) below the line ℓ with the property that the region in the
plane enclosed by P and ℓ contains no other points in Z × Z besides
those of the path P.

The so-called Sturmian word of slope α and intercept ρ is obtained by
coding the steps of the path P.

– A horizontal step is denoted by the letter a.

– A vertical step is denoted by the letter b.
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Background Complexity & Sturmian words

Sturmian words: Construction by example

y =

√
5−1

2
x −→ Fibonacci word (Standard Sturmian word of slope

√

5−1

2
)

(0, 0)
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Background Complexity & Sturmian words

Sturmian words: Construction by example

y =

√
5−1

2
x −→ Fibonacci word (Standard Sturmian word of slope

√

5−1

2
)

(0, 0)

a
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Background Complexity & Sturmian words

Sturmian words: Construction by example

y =

√
5−1

2
x −→ Fibonacci word (Standard Sturmian word of slope

√

5−1

2
)

(0, 0)

a

a a

a
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b

b
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Sturmian words: Construction by example
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Sturmian words: Construction by example
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Background Complexity & Sturmian words

Fibonacci word: f = abaababaabaababaaba · · ·

The Fibonacci numbers show up in connection with many
combinatorial properties of the Fibonacci word f
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The Fibonacci numbers show up in connection with many
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For instance, the Fibonacci word begins with arbitrarily long
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Fibonacci word: f = abaababaabaababaaba · · ·

The Fibonacci numbers show up in connection with many
combinatorial properties of the Fibonacci word f (hence the name!).

For instance, the Fibonacci word begins with arbitrarily long
palindromes, starting with

ε (empty word), a, aba, abaaba, abaababaaba, . . .

And it can be shown that the palindromic prefixes of f have lengths

{Fn+1 − 2}n≥1 = 0, 1, 3, 6, 11, 19, . . .

where {Fn}n≥0 is the sequence of Fibonacci numbers
1, 1, 2, 3, 5, 8, 13, 21, . . ., defined by: F0 = F1 = 1, Fn = Fn−1 + Fn−2

for n ≥ 2.
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Background Complexity & Sturmian words

Standard Sturmian words

Sturmian words (such as the Fibonacci word) that correspond to lines
that pass through the origin (zero intercept) are said to be standard
or characteristic.
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Standard Sturmian words

Sturmian words (such as the Fibonacci word) that correspond to lines
that pass through the origin (zero intercept) are said to be standard
or characteristic.

It turns out that all Sturmian words of the same slope have the same
set of finite factors, and so for most purposes it suffices to consider
just the standard ones.

As in the case of the Fibonacci word, any standard Sturmian word
begins with infinitely many different palindromes.

In fact, such words have a purely combinatorial construction using the
iterated palindromic closure operator . . .
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Background Complexity & Sturmian words

Iterated Palindromic Closure

The iterated palindromic closure operator (Justin, 2005) is denoted by
Pal and is defined as follows.
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The iterated palindromic closure operator (Justin, 2005) is denoted by
Pal and is defined as follows.

For a given word v, let v+ denote the unique shortest palindrome
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Background Complexity & Sturmian words

Standard Sturmian words: Palindromic Construction

Theorem (de Luca 1997)

An infinite word s over {a, b} is a standard Sturmian word if and only if
there exists an infinite word ∆ = x1x2x3 · · · over {a, b} (not of the form
ua∞ or ub∞) such that

s = lim
n→∞

Pal(x1x2 · · · xn) = Pal(∆).
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Standard Sturmian words: Palindromic Construction

Theorem (de Luca 1997)

An infinite word s over {a, b} is a standard Sturmian word if and only if
there exists an infinite word ∆ = x1x2x3 · · · over {a, b} (not of the form
ua∞ or ub∞) such that

s = lim
n→∞

Pal(x1x2 · · · xn) = Pal(∆).

∆: directive word of s

Example: Fibonacci word is directed by ∆ = (ab)(ab)(ab) · · ·

Amy Glen (MU, Perth) On a generalisation of trapezoidal words December 2011 12



Background Complexity & Sturmian words

Recall: Fibonacci word
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Trapezoidal Words

From Sturmian Words to Trapezoidal Words

Trapezoidal words were first introduced by de Luca (1999) when studying
the behaviour of the factor complexity of finite Sturmian words (i.e., finite
factors of infinite Sturmian words).
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From Sturmian Words to Trapezoidal Words

Trapezoidal words were first introduced by de Luca (1999) when studying
the behaviour of the factor complexity of finite Sturmian words (i.e., finite
factors of infinite Sturmian words).

Theorem (de Luca 1999)

If w is a finite Sturmian word of length |w|, then the graph of its
complexity Cw(n) as a function of n (for 0 ≤ n ≤ |w|) is that of a regular
trapezoid (or possibly an isosceles triangle).

Amy Glen (MU, Perth) On a generalisation of trapezoidal words December 2011 14



Trapezoidal Words

From Sturmian Words to Trapezoidal Words

Trapezoidal words were first introduced by de Luca (1999) when studying
the behaviour of the factor complexity of finite Sturmian words (i.e., finite
factors of infinite Sturmian words).

Theorem (de Luca 1999)

If w is a finite Sturmian word of length |w|, then the graph of its
complexity Cw(n) as a function of n (for 0 ≤ n ≤ |w|) is that of a regular
trapezoid (or possibly an isosceles triangle).

That is:

Cw(n) increases by 1 with each n on some interval of length r .

Amy Glen (MU, Perth) On a generalisation of trapezoidal words December 2011 14



Trapezoidal Words

From Sturmian Words to Trapezoidal Words

Trapezoidal words were first introduced by de Luca (1999) when studying
the behaviour of the factor complexity of finite Sturmian words (i.e., finite
factors of infinite Sturmian words).

Theorem (de Luca 1999)

If w is a finite Sturmian word of length |w|, then the graph of its
complexity Cw(n) as a function of n (for 0 ≤ n ≤ |w|) is that of a regular
trapezoid (or possibly an isosceles triangle).

That is:

Cw(n) increases by 1 with each n on some interval of length r .

Then Cw(n) is constant on some interval of length s.
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Trapezoidal Words

From Sturmian Words to Trapezoidal Words

Trapezoidal words were first introduced by de Luca (1999) when studying
the behaviour of the factor complexity of finite Sturmian words (i.e., finite
factors of infinite Sturmian words).

Theorem (de Luca 1999)

If w is a finite Sturmian word of length |w|, then the graph of its
complexity Cw(n) as a function of n (for 0 ≤ n ≤ |w|) is that of a regular
trapezoid (or possibly an isosceles triangle).

That is:

Cw(n) increases by 1 with each n on some interval of length r .

Then Cw(n) is constant on some interval of length s.

Finally Cw(n) decreases by 1 with each n on an interval of length r .
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Trapezoidal Words

Example

Graph of the factor complexity of the finite Sturmian word aabaabab
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Trapezoidal Words

Trapezoidal Words . . .

This “trapezoidal property” does not characterise Sturmian words.
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Trapezoidal Words . . .

This “trapezoidal property” does not characterise Sturmian words.

For example, aabb is trapezoidal ([1, 2, 3, 2, 1]), but not Sturmian.
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Trapezoidal Words

Trapezoidal Words . . .

This “trapezoidal property” does not characterise Sturmian words.

For example, aabb is trapezoidal ([1, 2, 3, 2, 1]), but not Sturmian.

Note: If w is a trapezoidal word (i.e., its “complexity graph” has the
same behaviour as that of Sturmian words), then necessarily
Cw(1) = 2.
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Trapezoidal Words . . .

This “trapezoidal property” does not characterise Sturmian words.

For example, aabb is trapezoidal ([1, 2, 3, 2, 1]), but not Sturmian.

Note: If w is a trapezoidal word (i.e., its “complexity graph” has the
same behaviour as that of Sturmian words), then necessarily
Cw(1) = 2.

This is because there is 1 factor of length 0, namely the empty word ε.

So any trapezoidal word is on a binary alphabet and the family of
trapezoidal words properly contains all finite Sturmian words.
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Trapezoidal Words

Trapezoidal Words . . .

This “trapezoidal property” does not characterise Sturmian words.

For example, aabb is trapezoidal ([1, 2, 3, 2, 1]), but not Sturmian.

Note: If w is a trapezoidal word (i.e., its “complexity graph” has the
same behaviour as that of Sturmian words), then necessarily
Cw(1) = 2.

This is because there is 1 factor of length 0, namely the empty word ε.

So any trapezoidal word is on a binary alphabet and the family of
trapezoidal words properly contains all finite Sturmian words.

F. D’Alessandro (2002): classified all non-Sturmian trapezoidal words.
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Trapezoidal Words A Generalisation

Inspired by a question of Ian Wanless at the 2010 AustMS conference, we recently
introduced the following natural generalisation of trapezoidal words.
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Trapezoidal Words A Generalisation

Inspired by a question of Ian Wanless at the 2010 AustMS conference, we recently
introduced the following natural generalisation of trapezoidal words.

Generalised Trapezoidal Words (G.-Levé 2011)

We say that finite word w with alphabet A (of size |A| ≥ 2) is a generalised
trapezoidal word (or GT-word for short) if the graph of its factor complexity
Cw(n) as a function of n (for 0 ≤ n ≤ |w|) is either constant or a regular
trapezoid (possibly an isosceles triangle) on the interval [1, |w| − |A| + 1].
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Inspired by a question of Ian Wanless at the 2010 AustMS conference, we recently
introduced the following natural generalisation of trapezoidal words.

Generalised Trapezoidal Words (G.-Levé 2011)

We say that finite word w with alphabet A (of size |A| ≥ 2) is a generalised
trapezoidal word (or GT-word for short) if the graph of its factor complexity
Cw(n) as a function of n (for 0 ≤ n ≤ |w|) is either constant or a regular
trapezoid (possibly an isosceles triangle) on the interval [1, |w| − |A| + 1].
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Inspired by a question of Ian Wanless at the 2010 AustMS conference, we recently
introduced the following natural generalisation of trapezoidal words.

Generalised Trapezoidal Words (G.-Levé 2011)

We say that finite word w with alphabet A (of size |A| ≥ 2) is a generalised
trapezoidal word (or GT-word for short) if the graph of its factor complexity
Cw(n) as a function of n (for 0 ≤ n ≤ |w|) is either constant or a regular
trapezoid (possibly an isosceles triangle) on the interval [1, |w| − |A| + 1].
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Clearly these words coincide with the (original) trapezoidal words when |A| = 2.
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Trapezoidal Words A Generalisation

Some Examples

Length 10 over A = {a, b, c}

GT-word C (n) for n = 0, 1, 2, . . . , 10

aaaaaaaabc 1, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1
abcbcbcbca 1, 3, 4, 4, 4, 4, 4, 4, 3, 2, 1
abcbcbcbab 1, 3, 4, 5, 5, 5, 5, 4, 3, 2, 1
abcbcabcab 1, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1
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aaaaaaaabc 1, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1
abcbcbcbca 1, 3, 4, 4, 4, 4, 4, 4, 3, 2, 1
abcbcbcbab 1, 3, 4, 5, 5, 5, 5, 4, 3, 2, 1
abcbcabcab 1, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1

Length 8 over A = {a, b, c, d}

GT-word C (n) for n = 0, 1, 2, . . . , 8

aaaaabcd 1, 4, 4, 4, 4, 4, 3, 2, 1
aaaabacd 1, 4, 5, 5, 5, 4, 3, 2, 1
aaabcdab 1, 4, 5, 6, 5, 4, 3, 2, 1
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Trapezoidal Words A Generalisation

Some Basic Properties

The language of all GT-words is closed . . .

Theorem (G.-Levé 2011)

If w is a GT-word, then each factor of w (containing at least two different
letters) is also a GT-word.
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Trapezoidal Words A Generalisation

Some Basic Properties

The language of all GT-words is closed . . .

Theorem (G.-Levé 2011)

If w is a GT-word, then each factor of w (containing at least two different
letters) is also a GT-word.

Moreover, the language of all GT-words is closed under reversal.

Theorem (G.-Levé 2011)

A finite word w is a GT-word if and only if its reversal is a GT-word.
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Trapezoidal Words A Generalisation

Binary Case

In the case when |A| = 2, we have proved the following.

Theorem (de Luca-G.-Zamboni 2008)

Let w be a binary palindrome. Then w is trapezoidal if and only if w is
Sturmian.
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Binary Case

In the case when |A| = 2, we have proved the following.

Theorem (de Luca-G.-Zamboni 2008)

Let w be a binary palindrome. Then w is trapezoidal if and only if w is
Sturmian.

Theorem (de Luca-G.-Zamboni 2008)

Let w be a binary trapezoidal word. Then w contains |w| + 1 distinct
palindromes (including ε).

That is, trapezoidal words (and hence finite Sturmian words) are “rich” in
palindromes in the sense that they contain the maximum number of
distinct palindromic factors, according to the following result.
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Trapezoidal Words A Generalisation

Binary Case

In the case when |A| = 2, we have proved the following.

Theorem (de Luca-G.-Zamboni 2008)

Let w be a binary palindrome. Then w is trapezoidal if and only if w is
Sturmian.

Theorem (de Luca-G.-Zamboni 2008)

Let w be a binary trapezoidal word. Then w contains |w| + 1 distinct
palindromes (including ε).

That is, trapezoidal words (and hence finite Sturmian words) are “rich” in
palindromes in the sense that they contain the maximum number of
distinct palindromic factors, according to the following result.

Theorem (Droubay-Justin-Pirillo 2001)

A finite word w contains at most |w| + 1 distinct palindromes (including ε).
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Trapezoidal Words Palindromic Richness

Rich Words

Definition (G.-Justin 2007)

A finite word w is rich iff w contains exactly |w| + 1 distinct palindromes.
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Trapezoidal Words Palindromic Richness

Rich Words

Definition (G.-Justin 2007)

A finite word w is rich iff w contains exactly |w| + 1 distinct palindromes.

Examples:

abac is rich, whereas abca is not rich.
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Rich Words
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The word rich is rich . . . and poor is rich too!

Any binary trapezoidal word is rich, but not conversely.

E.g., aabbaa is rich, but not trapezoidal (C (1) = 2, C (2) = 4)

Roughly speaking, a finite or infinite word is rich if and only if a new
palindrome is introduced at each new position.
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Trapezoidal Words Palindromic Richness

Richness & GT-words when |A| ≥ 3

Unlike in the binary case (|A| = 2), not all GT-words are palindromic-rich.
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Trapezoidal Words Palindromic Richness

Richness & GT-words when |A| ≥ 3

Unlike in the binary case (|A| = 2), not all GT-words are palindromic-rich.

Example

The GT-word ababadbc is not rich since it contains a non-palindromic
complete return to b, namely badb.
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Example
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complete return to b, namely badb.

However, all palindromic GT-words are rich by the following more general
result.
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Trapezoidal Words Palindromic Richness

Richness & GT-words when |A| ≥ 3

Unlike in the binary case (|A| = 2), not all GT-words are palindromic-rich.

Example

The GT-word ababadbc is not rich since it contains a non-palindromic
complete return to b, namely badb.

However, all palindromic GT-words are rich by the following more general
result.

Theorem

Suppose w is a GT-word and let v denote the unique factor of w such that
w = bve where b is the longest (possibly empty) prefix of w such that
|w|x = 1 for each x ∈ Alph(b) and e is the longest (possibly empty) suffix
of w such that |w|x = 1 for each x ∈ Alph(e).

If v is a palindrome, then w is rich.
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Trapezoidal Words Palindromic Richness

Examples

The GT-word w = abacabade has v = abacaba (a palindrome) and w

is indeed rich.
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Trapezoidal Words Palindromic Richness

Examples

The GT-word w = abacabade has v = abacaba (a palindrome) and w

is indeed rich.

The converse of the theorem does not hold.
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Trapezoidal Words Palindromic Richness

Examples

The GT-word w = abacabade has v = abacaba (a palindrome) and w

is indeed rich.

The converse of the theorem does not hold. For example, the
GT-word ababadac is rich, but the corresponding v is ababada

(non-palindromic).
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Thank You!

Dammit, I’m mad!

U R 2 R U?

* Both phrases are (rich) palindromes! *

Amy Glen (MU, Perth) On a generalisation of trapezoidal words December 2011 24


	Background
	Complexity & Sturmian words

	Trapezoidal Words
	A Generalisation
	Palindromic Richness


