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 EVALUATION OF THE ASSOCIATION OF PARASITISM WITH MORTALITY OF WILD

 EUROPEAN RABBITS ORYCTOLAGUS CUNICULUS (L.) IN SOUTHWESTERN AUSTRALIA

 Russell P. Hobbs, Laurie E. Twigg*, Aileen D. Elliot, and Amanda G. Wheeler*
 Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch WA 6150, Australia

 ABSTRACT: Abundances of the parasitic nematodes Trichostrongylus retortaeformis and Passalurus ambiguus, and 8 Eimeria
 species were estimated by fecal egg and oocyst output in 12 discrete free-ranging populations of wild rabbits (Oryctolagus
 cuniculus) in southwestern Australia. Comparisons of parasite egg and oocyst counts were made between those rabbits known
 to have survived at least 2 mo after fecal samples were collected and those rabbits that did not survive. There were significant
 negative relationships between parasite egg and oocyst counts and survival when all age groups and collection periods were
 pooled for several species of coccidia and for T. retortaeformis. However, when the same comparisons were made within rabbit
 age groups and within collection periods, there were very few significant differences even where sample sizes were quite large.
 The differences indicated by the pooled analysis for coccidia were most likely due to an uneven host age distribution with respect
 to survival, combined with an uneven distribution of the oocyst counts with rabbit age. The result for T. retortaeformis was
 similarly affected but by a seasonal pattern. Parasitism by nematodes and coccidia did not appear to be an important mortality
 factor in these rabbit populations, at least at the range of host densities we examined. This suggests that other factors must have
 been responsible for the observed pattern of density-dependent regulation in these rabbits.

 There is increasing interest in the role of infectious diseases
 in regulating their host populations. In order to regulate host
 populations, parasites must cause a decrease in survival, or fe-
 cundity, or both, and their abundance should increase with in-
 creasing host density at least over most of the range in abun-
 dance of their hosts (Scott and Dobson, 1989). Current popu-
 lation models for macroparasites contain assumptions that dis-
 ease agents such as parasites increase host mortality (Anderson
 and May, 1979; Roberts et al., 1995), but there have been very
 few field studies that have tested this assumption (for discussion
 see Gulland [1995]).

 In 1992, a field experiment was established to measure the
 effect of reducing the fertility of female rabbits Oryctolagus
 cuniculus (L.) on rabbit abundance. The experiment was carried
 out in the southwest of Western Australia (Twigg et al., 1998).
 Twelve discrete rabbit populations were created by a combi-
 nation of rabbit-proof fences and maintenance of buffer zones.
 Breeding stops (warrens) were confined to areas of native shrub
 habitat adjacent to the pasture where rabbits fed. Thus, the ex-
 perimental rabbits were living under essentially natural condi-
 tions. All rabbits were live-trapped at 4-6 weekly intervals that
 allowed for repeated nondestructive sampling of parasite abun-
 dance by fecal egg counts. In contrast, most parasitological
 studies of wild mammal populations involve the destructive
 sampling of hosts for the determination of actual parasite num-
 bers by postmortem (e.g., Dunsmore and Dudzinski, 1968; Gul-
 land, 1992). Fecal egg counts are effective in detecting patterns
 in parasite abundance related to the age and sex of the host and
 seasonal differences for Trichostrongylus retortaeformis and
 Passalurus ambiguus in European rabbits (Hobbs et al., 1999).
 The abundance of coccidia (Eimeria spp.) in rabbit populations
 can also be estimated by fecal oocyst output (Hobbs et al.,
 1999). These techniques allowed the relationship of parasite
 abundance with host survival to be examined for the nematodes

 T. retortaeformis, which is suspected of regulating rabbit pop-
 ulations (Bull, 1964; Dunsmore, 1981), and P. ambiguus, which
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 is considered nonpathogenic (Soulsby, 1982). The relationship
 was also examined for the 8 most prevalent species of coccidia
 (Eimeria spp.) in these rabbits (Hobbs and Twigg, 1998), some
 of which are known to cause mortality in laboratory studies
 (Coudert et al., 1995).

 MATERIALS AND METHODS

 Details of the study area, experimental design, and parasitological
 methods are given in Twigg et al. (1998) and Hobbs et al. (1999),
 respectively. Rabbit numbers were determined by live-trapping and rep-
 resent the minimum number of animals known to be alive (MNKA) at
 the site for each collection period. Although host populations were mon-
 itored every month, fecal samples were collected only 6 times during
 1994-1996. All rabbits were individually tagged. For each collection
 period, rabbits were deemed to be survivors if they were known to be
 alive for at least 2 mo after the mean collection time (Table I). In the
 sterility trial, female rabbits were surgically sterilized by tubal ligation
 in the proportion of 0%, 40%, 60%, and 80%, with 3 replicates of each
 treatment. Sham operations were included such that 80% of females
 received some form of surgery.

 We tested the density dependence of survival by regression analysis
 of the proportion of rabbits that survived, against rabbit abundance
 (MNKA). Each data point corresponds to a single site (rabbit popula-
 tion) at 1 collection period. Data points based on less than 10 rabbits
 were excluded. Two methods were used to explore the relationship be-
 tween parasite abundance and host mortality. The first method used
 regression analysis of survival against site means of log-transformed
 fecal egg and oocyst counts. The second was based on individual rabbits
 and simply compared fecal egg and oocyst counts of survivors to that
 of nonsurvivors, regardless of site. Comparisons were made using non-
 parametric Mann-Whitney U-tests. Because egg counts of the nema-
 todes were found to be influenced by season (Hobbs et al., 1999), and
 both coccidian oocyst counts and host mortality were strongly influ-
 enced by the age of the host (Twigg et al., 1998; Hobbs et al., 1999),
 samples were split by sampling period (time) and rabbit age for further
 statistical analysis. Significance levels were set at P - 0.01.

 RESULTS

 Survival of rabbits

 The estimated survival of rabbits for each age group over the
 6 collection periods is shown in Table II. These estimates were
 based only on the rabbits included in the parasitological study
 from which fecal samples were obtained. Trends in the changes
 in rabbit abundance were similar between sterility levels (Fig.
 1). Rabbit numbers increased at the end of 1994, declined over
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 TABLE I. Collection dates and the dates used to determine the survival

 of rabbits for each of the 6 fecal collection periods.*

 Collec- Mean

 tion collection Date for

 period Collection dates date survival

 A 11 Oct-7 Dec 1994 24 Oct 94 1 Jan 95

 B 28 Feb-5 Apr 1995 10 Mar 95 1 Jun 95
 C 1 Aug-13 Sep 1995 20 Aug 95 1 Nov 95
 D 27 Sep-10 Nov 1995 9 Oct 95 1 Jan 96
 E 22 Nov-7 Dec 1995 28 Nov 95 1 Feb 96

 F 27 Feb-11 Apr 1996 9 Mar 96 20 May 96

 * Rabbits were scored as survivors for the collection period if they were known
 to be alive at the subsequent survival date.

 180

 160 -

 Z 140-
 z

 e 120-
 N
 Cn

 c 100-

 3 80-

 . 60 -

 40-

 20-

 0

 the first half of 1995, then increased late in 1995 before de-

 clining over the summer/autumn of 1996. Survival was gener-
 ally highest in adults and lowest in kittens (Table II). Survival
 in subadults was slightly higher on average than for kittens.
 Survival was highest for all age groups in early spring (August)
 1995. For the kittens, there was very poor survival from early
 summer (November-December) 1995 into late summer 1996, a
 time when survival for the other age groups was quite high.
 Sites with high rabbit numbers generally had relatively low sur-
 vival (Fig. 2), suggesting density-dependent regulation of the
 host populations.

 Nematode parasites

 There was a negative regression of rabbit survival against T.
 retortaeformis egg counts (P = 0.002), but for the nonpatho-
 genic P. ambiguus, the slope was positive (P = 0.004) (Fig. 3).
 The negative slope found for T. retortaeformis is indicative of
 a relationship between infection and mortality. However, closer

 A  B  C D E F

 SO N D J F M A M J J A S O N D J F M A
 1994 I 1995 I 1996

 Mean Collection Date

 FIGURE 1. Population sizes for each of the samples of rabbits esti-
 mated from trapping data (minimum number known alive at that plot
 for that collecting period), plotted against mean date of collection. Plots
 are labeled according to sterilization regime.

 scrutiny of the regression suggests that the relationship may be
 due to the seasonality of both infection and rabbit mortality,
 rather than a direct effect of parasite abundance on mortality.
 Solid points on the graph are late summer samples (March
 1995, 1996) where survival of adult rabbits was high and fecal
 egg output low, and if these are considered separately, the re-
 gression slopes are not significantly different from 0 (summer,
 P = 0.661; other, P = 0.055). Conversely, with P. ambiguus
 the only samples that had high mean egg counts were the sum-
 mer samples, and if summer and other samples are considered

 TABLE II. Comparisons of Trichostrongylus retortaeformis egg counts between rabbit survivors and nonsurvivors.*

 Mann-

 Sampling Survival Sample sizes Geometric mean epg Whitney Sampling Survival Whitney U
 Age group period (%) Nonsurvivors Survivors Nonsurvivors Survivors significance

 Kittens 50-699 g A 56 23 29 13.77 6.08 0.093
 C 71 26 63 7.06 9.19 0.659

 D 37 38 22 7.42 12.78 0.313

 E 20 40 10 7.77 13.85 0.427

 A-F 49 131 125 7.83 8.99 0.564

 Subadults 700-1,199 g A 47 43 38 22.55 20.15 0.639
 C 74 8 23 23.93 29.37 0.416

 D 62 40 64 22.60 25.92 0.588

 E 49 36 34 27.00 25.62 0.893

 A-F 56 139 177 19.14 20.42 0.591

 Adults >1,199 g A 79 17 63 18.86 13.45 0.378
 B 69 35 78 6.61 3.12 0.010

 C 90 11 96 19.21 8.73 0.162

 D 82 15 69 11.70 13.65 0.559

 E 64 43 75 13.63 11.22 0.931

 F 83 38 183 8.01 5.26 0.110

 A-F 78 159 564 10.76 7.48 0.016

 All ages A-F 67 429 866 11.83 9.49 0.020

 * Rabbits were scored as survivors for the sampling period if they were known to be alive at the date for survival (see Table I). Age groups were determined by body
 mass. Summer samples in kittens and subadults were not tested due to low sample sizes.
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 FIGURE 2. Scatterplot and regression line of the proportion of rabbits
 that survived versus rabbit abundance (minimum number known alive)
 for site and collecting period where there was at least 10 fecal samples.
 Dates used in calculating the proportion of rabbits surviving are shown
 in Table I.

 separately, slopes were not significantly different from 0 (sum-
 mer, P = 0.264; other, P = 0.322).

 Egg counts of T. retortaeformis for surviving rabbits were
 compared with counts of nonsurvivors using nonparametric
 Mann-Whitney U-tests. There were insufficient kittens or sub-
 adults from the late summer (March 1995, 1996) collections,

 but of the remaining 14 comparisons, only 1 produced a sig-
 nificant difference (Table II), and that was the case with the
 lowest egg counts. There were no significant differences for P.
 ambiguus (data not shown).

 Coccidian parasites

 Regressions of rabbit survival against logarithms of the
 means of oocyst counts had significantly negative slopes in 5
 species and a positive slope for 1 species (Table III). Significant
 regression slopes may have been due to the fact that oocyst
 counts differed between age groups (Hobbs et al., 1999). For
 all of the coccidia species with negative slopes, abundance was
 lowest in adult rabbits. For example, Eimeria intestinalis was
 found in very few rabbits older than 4 mo (Hobbs et al., 1999).
 Late summer samples (March) had very few young rabbits and,
 therefore, low mean abundance of E. intestinalis. Rabbit sur-

 vival was also relatively high in late summer. In contrast, Ei-
 meria piriformis was more abundant in adult rabbits (Hobbs et
 al., 1999), and this could account for the positive slope.

 With the more direct approach of comparing oocyst counts
 of rabbit survivors and nonsurvivors (Table IV), rabbit mortal-
 ity for 5 of the 8 species of coccidia was associated with higher
 oocyst counts, when all age groups and sampling periods were
 pooled. However, because rabbit survival is lowest in kittens
 (Twigg et al., 1998), and most species of coccidia are more
 abundant in kittens (Hobbs et al., 1999), significant associations
 were inevitable and can neither imply nor exclude causality.
 Therefore samples were split by age group. Only 1 species (Ei-
 meria media) was associated with mortality in subadult rabbits,

 and 1 different species (Eimeria perforans) in adults, when
 sampling periods were pooled. There were no such associations
 in kittens. After samples were further split by collecting period,
 because survival differed between collecting periods, very few
 associations remained (Table IV), even though sample sizes re-
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 FIGURE 3. Scatterplot and regression line of the proportion of rabbits
 that survived versus mean of the logarithm of number of (a) Tricho-
 strongylus retortaeformis and (b) Passalurus ambiguus eggs per g feces
 (epg), for each of the collection periods where fecal samples were col-
 lected from at least 10 rabbits per site. Survival dates used in calculating
 the proportion of rabbits that survived are given in Table I. The F-
 value, significance of the regression slope (P), and r2 values are shown
 for each graph.

 mained quite high. Particularly noteworthy is the similarity of
 oocyst counts between surviving and nonsurviving kittens, be-
 cause kittens are subject to the greatest mortality. In subadult
 rabbits, high counts of E. intestinalis and E. media were asso-
 ciated with mortality. In adult rabbits, high counts of E. per-
 forans were associated with mortality in late summer (March)

 TABLE III. Slopes, F-values, significance of slope, and r2 for the re-
 gression of the proportion of rabbits that survived on the logarithm of
 means of fecal oocyst counts, for sites and collection periods with sam-
 ple sizes of at least 10 rabbits.*

 Species Slope F Pt r2

 Eimeria exigua -0.101 1.69 ns 0.032
 Eimeria perforans -0.124 6.77 0.012 0.115
 Eimeria intestinalis -0.279 10.98 0.002 0.174

 Eimeria piriformis 0.213 9.80 0.003 0.159
 Eimeria media -0.200 9.38 0.004 0.153

 Eimeria fiavescens 0.047 0.39 ns 0.007
 Eimeria magna -0.144 4.20 0.046 0.075
 Eimeria stiedai -0.147 8.32 0.006 0.138

 * Sample size for each of the regressions is 54 cases. Survival dates used in
 estimating the proportion of rabbits that survived are given in Table I.
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 TABLE IV. Comparisons of Eimeria spp. oocyst counts between survivors and nonsurvivors.*

 Collection Survival Sample E. flaves-
 Age group period (%) size E. exigua E. perforans E. intestinalis E. piriformis E. media cens E. magna E. stiedai

 Kittens

 50-699 g A 56 52 ns ns ns ns ns ns ns ns
 C 71 89 ns ns ns ns ns ns ns ns

 D 37 60 ns ns ns ns ns ns ns ns

 All periods 51 233 ns ns ns ns ns ns ns ns
 Subadults

 700-1,199 g A 47 81 ns ns ns ns 0.006 ns ns ns
 D 62 104 ns ns ns ns ns ns ns ns

 E 49 38 ns ns 0.010 ns ns ns ns ns

 All periods 56 284 ns ns ns ns 0.005 ns ns ns
 Adults

 >1,199 g A 79 80 ns ns ns ns ns ns ns ns
 B 69 113 ns 0.002 ns ns ns ns ns ns

 C 90 107 ns ns ns ns ns ns ns ns

 D 82 84 ns ns ns ns ns ns ns ns

 E 64 81 ns ns ns ns ns ns ns 0.005

 F 83 221 ns ns ns ns ns ns ns ns

 All periods 79 686 ns 0.0003 ns ns ns ns ns ns
 All age groups All periods 68 1,203 ns <0.0001 <0.0001 <0.0001t <0.0001 ns <0.0001 <0.0001

 * Rabbits were scored as survivors for the collecting period if they were known to be alive at the date for survival. Rabbit age groups were determined by body mass. Summer samples (collections B and F) for
 kittens and subadults were not tested due to low sample sizes. Kitten samples in period E and subadult samples in period C were not tested due to low sample sizes within survival group. Statistical significance
 of Mann-Whitney U-tests are given for each case where P was less than or equal to 0.01, otherwise it is marked ns. Unless otherwise indicated, significant values indicate that survivors had lower oocyst counts
 than nonsurvivors.

 t Survivors with higher oocyst count.
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 1995. Although high counts of Eimeria stiedai were also as-
 sociated with higher mortality in early summer 1995, only 7
 adult rabbits were infected at this period, so the association
 must be regarded with some suspicion.

 DISCUSSION

 Although the abundance of P. ambiguus was not expected to
 be associated with rabbit mortality, T. retortaeformis is a known
 pathogen of European rabbits (Barker and Ford, 1975). Other
 species of Trichostrongylus have also been associated with
 mortality, for example in domestic sheep (Gordon, 1950) and
 wild red grouse (Hudson et al., 1992). Although Bull (1964)
 and Dunsmore (1981) have shown that T. retortaeformis can
 reduce fecundity and weight gain in rabbits, there have been
 no field studies that indicate that this species affects survival
 of European rabbits. Furthermore lason and Boag (1988) found
 no evidence that T. retortaeformis had any effect on mortality,
 fecundity, or weight gain in mountain hares (Lepus timidus) in
 Scotland. In our study, rabbit mortality did not appear to be
 associated with high egg counts of T. retortaeformis.

 In experimental infections, several species of coccidia are
 known to cause mortality in European rabbits (Bull, 1958;
 Coudert et al., 1995). There have also been claims that coccidia,
 particularly E. stiedai, are associated with rabbit mortality in
 the wild (Tyndale-Biscoe and Williams, 1955; Bull, 1958;
 Dunsmore, 1971). However, these studies were based on de-
 structive sampling, so rabbit survival was only able to be in-
 ferred. Furthermore, conclusions in these field studies were
 based on observations that coccidia were most abundant at the

 time of high mortality, particularly in the age group experienc-
 ing that mortality. Thus, Bull (1958) and Dunsmore (1971) sug-
 gested that E. stiedai would be particularly important in kittens
 from litters born late in the breeding season. In our study sit-
 uation, Twigg et al. (1998) have shown that late-born kittens
 suffered increased mortality also. However, we could find no
 evidence that oocyst counts were higher in late-born kittens
 (Kruskal-Wallis tests, data not shown) or that coccidia were
 associated with this reduced survival, with the possible excep-
 tion of E. media and E. intestinalis (Table IV). The results
 shown in Table IV do indicate that higher oocyst counts of
 some species of coccidia are associated with reduced survival
 at those times when survival was lower than normal. Thus, it

 is possible that E. media caused mortality in subadult rabbits
 in late spring 1994, and E. intestinalis in late spring 1995. Sim-
 ilarly, E. perforans may have increased mortality of adults in
 late summer 1995. We found no evidence that other species
 were associated with mortality, and it appears that other factors
 may have caused most of the mortality in our study.

 The protocol used in the present study that allowed a direct
 measure of the association of parasitism with survival was sim-
 ilar to that used by Mykytowycz (1962) on an enclosed popu-
 lation near Canberra. He was unable to show any differences
 in oocyst output between survivors and nonsurvivors on a with-
 in-litter basis. For many of his analyses, all species of coccidia
 were pooled; however, E. stiedai was the most common species
 in his young rabbits. Mykytowycz (1962) did find that the rab-
 bits that were disappearing from his site were those at that age
 when E. stiedai was most prevalent, but he was able to show
 that other factors such as predation and myxomatosis were more

 important causes of mortality. We suggest that other factors
 may have caused the mortality patterns in the studies of Tyn-
 dale-Biscoe and Williams (1955), Bull (1958), and Dunsmore
 (1971).

 Parer (1977) found that the highest mortality rate for rabbits
 at a site with a drier climate in south-central New South Wales

 was in kittens aged 21-30 days old, before the onset of coccid-
 iosis, so in that area also, other factors must have been more
 important causes of mortality. Other studies in semiarid areas
 of Australia have either discounted or ignored parasitism as a
 significant cause of mortality (Wood, 1980; Richardson and
 Wood, 1982; Wheeler and King, 1985). In a survey of rabbit
 population dynamics in Australia and New Zealand, Gilbert et
 al. (1987) concluded that while diseases and predators may ex-
 ert a large influence on population size in some circumstances,
 there was no common pattern across sites.

 Coudert et al. (1995) have warned that in rabbits there is no
 correlation between oocyst excretion and severity of disease
 and have recommended that oocyst counts only be used when
 other methods are not available, such as in field studies like

 ours. It is quite possible therefore that coccidiosis was a major
 mortality factor in our rabbits, but that it was not possible to
 detect this using our methods. However, in our study, we could
 not demonstrate a clear relationship between parasitism and
 host density (Hobbs et al., 1999). We were able to find little
 evidence for a relationship between mortality and nematode egg
 counts or coccidian oocyst counts. We therefore consider that
 factors other than parasitism caused most of the observed mor-
 tality.
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