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Abstract 
Artificial Neural Networks (ANN) have been used very successfully for a number of classification 
problems in the molecular biology field. Protein secondary structure prediction is one of the oldest and 
best defined of these classification problems. Yet despite the considerable amount of work conducted in 
this field there still remain a number of  fundamental computational issues that have not been thoroughly 
investigated, if considered at all. One important issue is identifying an appropriate data representation 
for input into the ANN. In this paper, we have investigated a range of new encoding schemes and 
evaluated their performance using recently introduced evaluation criterion. We have done this by 
preserving the redundant information of DNA codons that is lost when they are translated into amino 
acids. Interestingly, with our new data representation, the p-strand prediction performance was 
consistently higher (14% improvement) over the accuracy of the A " s  trained when the conventional 
representation was used. 

from the primary sequence involves immensely 
complex transformations that result from countless 
interactions between indeterminate factorsr31. To date 

Introduction 
- _  

A gene is a sequence of DNA bases that translate into the Of 

a protein, while a protein is a sequence of amino acids. 
Once a gene is known it is a relatively simple systemunattainable. 

has proved 
intractable making the creation of a fully automated 

translation process to determine the sequence of amino 
acids that will types of Despite this, automated prediction systems have been 

bases in a gene, referred to as a codon, translate into As the name suggests secondary structure is an 

translate into the same amino acid. A translation table the structure. There are forms Of 
may be Seen here'. ne codon form carries redundant secondary structure: an 8 state version and a simpler 3 
information, as there are 43 = 64 possible codons and state version. The 3 state version is the most 
just 20 amino acids. commonly used in automated secondary structure 

prediction. In this simpler version that will just be 
Determining the structure of a protein expefimentally referred to as secondary structures for the rest of this 
has always been an extremely slow and arduous Paper, there are 3 categories of sub-structures that each 

the protein. There are 
DNA bases named A, C, G and T. Every 3 consecutive usefu1 

one amino acid, although different codons may h X I l d i a t e  step between the primary structure and 

determining protein secondary L4i. 

process [I] [2]. This difficulty has provided a to. 
motivation to seek a computational solution to protein These categories are: a-he1ix (H), btrand (B), and 
structure evaluation. A protein's amino acid sequence loop (c>. These represent shapes but are 

folds into a 3 dimensional (tertiary) smcwe .  For predicting secondary structure from primary structure 

amino acid in the primary sequence be 

or primary sequence as it is commonly known described in a one-dimensional form. That makes 

several decades attempts have been made at a 1D to 1D mapping Problem [31. Current Prediction 
developing automated tools to predict the tertiary systems are hmited by how much evolutionW 
structure from the primary sequence but to this date information is incorporated and the difficulty in 
their performance has remained quite low [2]. This is Predicting long-range interactions Of b t rands [31 
because the process of deriving the tertiary structure [4]. 

Tables httd/mell .angis.org.au/Documents/Tables An example OfsecondW structures that make UP a 
tertiary structure can be seen below: 

41 1 Last Viewed 22/8/01 Copyright 0 1995, AGIC 
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loops a-helices B-strands 

Representation of the 3D structure of Leishmania 
mexicana triose phosphate isomerase, accession 

number lamk in the Protein Data Bank [ll] 

A typical secondary structure format would look 
something like the following: 
Primary Sequence: 

Secondary Structure: 

That is a secondary structure is assigned to each amino 
acid in the protein sequence. 

The standard data representation for amino acids used 
for ANNs is to use an orthog 
digit binaly number. Thus 1 

AGCGTPSREWQNVTGHLKPCYCVAAHGIKVLHTGLDRAVKNNDNIA 
AGGDPSR. 

HHHHHHHBBBBBBBHHHHHHHHHHHHCCCCBBBBBBHHHHHHHH~H 
HHHBBBB 

ent the amino acid Alanine, and 
0000 would represent Cystine, and so 

on. The ANNs were then trained to predict the 
secondary structure of one amino acid at a time in its 

indow’ where 
rmined length 
the secondary 
as the target. 

The target secondary structure would be represented as 
a 3 digit binary number, 100 for a-helices, 010 p- 
strands and 001 for loop. The amino acid 
representation was improved by using frequency 

similar proteins when training 

with an input window width of 11 are around 60% 
secondary structures predicted correctly [4]. 

There have been a few notable advances in the 
methods made over the last decade to improve the 
performance of ANNs used for secondary structure 
prediction. One of the most significant advances 
involved training ANNs with frequency profiles of 
similar proteins rather than just individual proteins. 
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This takes advantage of evolutionary information 
where proteins with similar primary sequences will 
always have similar structures [ 6 ] .  More recently 
research has been directed towards polling systems 
where the results from multiple A N N s  or heterogenous 
prediction systems predictions are combined 
efficiently to maximise overall accuracy [7] [8]. The 
most current progress has been in using more 
sophisticated algorithms to identify related proteins to 
use in the frequency profiles [ 5 ] .  

In this paper we have experimented with a number of 
different representations that include evolutionary 
meaningful information. Our work is based on the 
premise that important information in the codon form 
may be lost or obscured when translated into the 
amino acid format. We tested this theory by preserving 
this information and training ANNs using various 
representations of the codon form. We evaluated them 
using new evaluation methods, and trained and tested 
the A N N s  using a commonly used set of proteins for 
this purpose [7] .  We found significant improvement in 
@-strand prediction, and the overall performance of 
A N N s  using the new representation is comparable to 
the system using the conventional orthogonal 
representations. We discuss these important findings. 

Methods 
For these experiments we used a multi-layer back- 
propagation ANN [9]. The topology used consisted of 
one hidden layer and 3 output units corresponding to 
each type of secondary structure. The input layer was 
varied to match the representation and window size 
used and the number of hidden nodes varied. We chose 
this representation as it captures the redundancy of the 
codons that define particular common units. That is, 
evolutionary information is captured. 

Two main codon representations were tested. 
The first binary representation was as follows: A: 
1000, C: 0100, G: 0010, T: 0001, 
A or G: 1010, A or T: 1001, C or G: 01 10, C or T: 
0101, A or C or T: 1101, Aor C or G or T: 1 1 1 1  

The second representation was a more expanded 
representation of the possible bases used: 

A: 1000000000, C: 0100000000, G: 0010000000, T: 
0001000000, A or G: 0000100000, 
A or T: 0000010000, C or G: 0000001000, C or T: 
0000000100, A or C or T: 0000000010, 
A or C or G or T: 0000000001 

Thus an amino acid such as Alanine A would be 
encoded as: 001 0000000 01 00000000 000000000 1 
and Cystine as: 0001000000 0010000000 0000000100. 
The amino acid representation was the conventional 
orthogonal representation consisting of a 20 digit 
binary number with one bit switched on to represent 
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each of the 20 amino acids. For a good review of ANN random selection was conducted for each comparison 
applications in protein secondary structure see [4]. in tables 1 and 2. 

Format 
Amino 
Codon 
Amino 
Codon 
Amino 
Codon 
Amino 
Codon 

The CB396 [7] set of proteins developed by James 
Cuff and Geoffrey Barton was used for the testing and 
training of the neural network with training sets 
consisting of a minimum of 20 000 patterns (the 
remaining patterns were used for testing). Due to the 
size of the data set and time constraints neither a full 
nor limited jack knife test was possible. Hence a 
program was developed to randomly select proteins for 
the training set which was then manually checked to 
ensure it had a minimum of 20 000 patterns. The 

Qa-helu QB-slrand QIOW Q3 Qs 
Hid nodes 
2 0.672795 0.342071 0.730052 0.621261 0.62713 
2 0.541506 0.312051 0.693481 0.552682 0.559591 
5 0.657473 0.308527 0.748085 0.61281 1 0.615737 
5 0.598215 0.310078 0.700297 0.572523 0.577272 
10 0.63601 0.360901 0.746039 0.621426 0.628758 
10 0.621625 0.402718 0.701265 0.606765 0.615976 
20 0.657904 0.309591 0.735352 0.608901 0.61 1997 
20 0.685484 0.32598 0.694094 0.604786 0.608362 

The typical measure of accuracy for secondary 
structure prediction systems is Q3, which measures the 
percentage correct for each secondary structure 
individually and overall. A more recent evaluation 
method referred to as Q8 measures the number of 
incorrect predictions as well as the ratio correct and 
determines the Euclidean distance in a four 
dimensional space between the perfect prediction point 
and the one achieved to rate performance [lo]. 

Results 
The first set of test results is shown in table 1 in which 
an ANN was trained with an input layer consisting of 9 
amino acids and a varying configuration of hidden 
nodes. In this test the first and simplest codon 
representation was used. It is interesting to note the 

performance of the amino acid representation degrades 
with additional nodes in the hidden layer while the 
codon representation achieves higher scores in general 
with more hidden nodes. 

Table 1 : Results for First Codon Representation Comparison 

Codon 
Amino 
Codon 
Amino 
Codon 
Amino 
Codon 

2 
10 
10 
15 
15 
20 
20 

I I I I 
0.666903 1 0.302557 I 0.71094 10.604261 10.611342 
0.525348 
0.633718 
0.619166 
0.64052 1 
0.629163 
0.617569 
0.619698 

0.265027 
0.335938 
0.3 2 0 5 0 2 
0.33941 1 
0.315871 
0.356874 
0.339701 

0.683809 
0.702842 
0.678547 
0.690978 
0.685769 
0.64543 3 
0.672564 

0.53336 
0.596288 
0.577491 
0.594595 
0.583085 
0.571233 
0.579463 

0.540347 
0.605839 
0.586001 
0.603549 
0.591063 
0.5824 12 
0.588782 

Table 2 shows a comparison between the standard 
amino acid representation and the expanded codon 
representation. For this comparison an input window 
width of 1 1 was used. Again it is interesting to note the 
improved codon representation performance with 

additional hidden nodes while the opposite is true of 
the amino acid representation. The P-strand prediction 
accuracy improved to over 0.40, 14% above the amino 
acid representation. 
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Format 
Amino 
Codon 

Discussion 

Qmhelir Q0-strand Q~oop 4 3  QS 

Hid nodes 
2 0.656591 0.348354 0.7371 I1 0.624647 0.632672 
10 0.627944 0.403004 0.708615 0.613566 0.622718 

the ANN to recognise non-local interactions more 
efficiently. In table 3 and 4 the overall accuracy of the 
expanded codon representation is equivalent to that of 
the conventional amino acid representation. Table 4 
also demonstrates how the extra 

Recent developments in polling 
tems could make use of the 

results are extremely encouraging. 

Format 
Amino 
Amino 
Codon 

Other interesting observations were made during these 

This can be observed intuitively by noting that amino 
acids with common properties have codon 
representations with evolutionary similarities. For 
instance, hydrophobic amino acids have a T "  at the 
2nd codon base position. The improvement in 
performance with the greater numbers of hidden nodes 
adds further evidence that the codon representations 
present the neural network with more sophisticated 
and subtle relationships that must be learned. 

These new representations while incorporating more 
information also have the potential to increase the 
'noise' in the system that may account for some of the 
lower overall accuracies. Other reasons may be due to 
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Qmhelir Q0-strand Q~oop 4 3  QS 

Hid nodes 
2 0.631489 0.342585 0.741077 0.613501 0.621817 
5 0.613931 0.380712 0.747221 0.618999 0.628201 
15 0.373984 0.723669 0.616825 0.624899 

uneven use of the input units in the first codon 
representation where some codons set 7 input bits to 1 
and others just 3. In addition some input bits are used 
by almost half the codons while others are used just 
once. This may be causing unnecessary ambiguity 
although it would be possible for new representations 
to correct this. 

While data representation is clearly an important issue 
and recognised in other applications of intelligent 
systems these issues have been largely ignored for 
protein secondary structure prediction. Although 
considerable progress has been made in secondary 
structure prediction over the last decade the 
fundamental data representations and architectures 
used have changed minimally. 

Conclusion 
In this research we analysed some of the fundamental 
approaches to using ANNs for the problem of protein 
secondary structure prediction. The largest advances in 
secondary structure prediction with ANNs occurred 
when relatively minor changes were made to the data 
representation so there is good reason to investigate 
this. However the base representation has not been 
altered since ANNs were first applied to this problem. 
In this experiment we have trained ANNs with codon 
representations to take advantage of the information 
that is lost when they are translated into the amino acid 
format. 

The experiments conducted in this research have 
shown however that fundamentally different 
representations can achieve comparable results to the 
conventional ones currently used and in some areas 
achieve superior prediction accuracies. Further 
research will be conducted in this area. Another 
important area for future investigation is into the 
appropriate ANN architectures. 
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