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Abstract 

Stagonospora nodorum is the causal agent of Stagonospora nodorum blotch (SNB) of wheat. This 

fungus has cost the Australian grains industry upwards of 100 million dollars (AUD) p.a. in recent 

growing seasons, making it one of the most agriculturally damaging pathogens in Australia.  

Disease severity is governed by the polycyclic lifecycle of S. nodorum, requiring a succession of spore 

inoculum arising from the asexual fruiting body of the fungus, known as the pycnidium. The 

resultant fungal density will determine the level of damage and ultimately influence the grain yield 

of the plant. G-protein signalling through the heterotrimeric G-protein is a biochemical mechanism 

used by S. nodorum in the host-pathogen interaction and has been linked to important biological 

processes including asexual sporulation. In this work, the unique phenotypes of three mutant strains 

of S. nodorum; each lacking either the Gα (Gna1), Gβ (Gba1), or Gγ (GgaA) subunit of the 

heterotrimeric G-protein were explored, and the biochemistry underpinning the phenotypes 

assessed by metabolomics.  

The mutant strain S. nodorum ggaA was created by homologous recombination of the GgaA gene 

for comparison with the previously created gna1 and gba1 strains. All strains possessed 

developmental defects and reduced pathogenicity on the wheat plant. Growth assays uncovered 

differences in carbon source utilisation between the strains. Asexual sporulation was monitored by 

light microscopy; with the differentiation of mutant mycelia into pycnidia found to occur only after a 

comparatively longer culture time than in wild type, and at a reduced temperature. Until this time, 

asexual sporulation is completely abolished in the mutant strains. The matured pycnidia also 

possessed an irregular morphology. These results identified an association of all three G-protein 

subunits in asexual sporulation in S. nodorum.  

Metabolites were isolated from S. nodorum mycelia for gas chromatography-mass spectrometer 

(GC-MS) analysis.  An assessment of existing metabolomic methods identified some key steps in the 

sample preparation employed prior to injection into the GC-MS. Quenching the fungal metabolism 



VI 
 

upon harvesting, drying the fungal mycelia prior to metabolite extraction and isolation, and 

lyophilisation of the fungal metabolites in preparation for chemical derivatisation; each improved 

the metabolite recovery and overall reliability of the metabolomic analyses. These methods were 

applied to the metabolomic characterisations that followed. 

Metabolite extracts from the in vitro cultured fungal strains were analysed using a single-quadrupole 

GC-MS and the recorded analytes cross-refereces to purchased metabolite standards for 

identification. Changes in the accumulation of various carbohydrates were apparent in the mutant 

metabolomes. Of those, the altered abundances of the metabolites glucose and trehalose are 

believed to in part explain or be consequential to the sporulation phenomena of these strains. 

Metabolomic analysis of the mutant strains in differentiating from a non-sporulating to a sporulating 

phenotype revealed the specific association of a number of metabolites with each of the two 

phenotypic classifications. Many of which have been targeted for identification in future studies. 

Among those identified was again trehalose, providing further evidence for it having a role in the 

asexual sporulation of this fungus.  

These results have demonstrated the requirement for Gna1, Gba1 and GgaA in regulating 

developmental processes and the pathogenesis of S. nodorum, and added significantly to the 

biochemical dissection of asexual sporulation in this fungus. 
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(eg. abc1).  Fungal mutant strains are identified by the deactivated gene name, italicised and in 

lowercase, as described for deleted genes. 
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3' 
 

3 prime 

5' 
 

5 prime 

ATP 
 

adenosine triphosphate 

aa 
 

amino acid 

AUD 
 

Australian Dollars 

ACNFP 
 

Australian Centre for Necrotrophic Fungal Pathogens 
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0.22μm Millipore membrane-filtered deionised water 
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dNTPs 
 

deoxyribonucleotide triphosphate 

DLA 
 

detached leaf assay 

L-DOPA 
 

dihydroxyphenylalanine 

dpi 
 

days post inoculation 

EI 
 

electron ionization 

ESI-MS/MS electrospray ionisation tandem mass spectrometry 

E.C 
 

Enzyme Commission/accession number 

fmol 
 

femtomoles 

FTMS 
 

fourier transform  MS 

FT-ICR 
 

fourier transform ion cyclotron resonance 

GC 
 

gas chromatographer 

GC-MS 
 

gas chromatography mass spectrometry 
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GC-(Q)MS 
 

GC single quadrupole MS 

gDNA 
 

genomic DNA 

Gα 
 

G-protein alpha subunit 

Gβ 
 

G-protein beta subunit 

Gβγ 
 

G-protein beta-gamma subunit dimer 

GPCR 
 

G-protein coupled (plasma membrane) receptor 

GFP 
 

green fluorescent protein 

Gγ 
 

G-protein gamma subunit 

g 
 

gram 

g 
 

gravitational force 

GTPase 
 

GTP hydrolase 

GDP 
 

guanisine diphosphate 

GTP 
 

guanisine triphosphate 

G-protein guanisine-binding protein 

Hz 
 

Hertz 

HSD 
 

honestly significant difference 

HST 
 

host-specific toxin 

Gs 
 

inhibitory G-protein 

Pi 
 

inorganic phosphate 

IT 
 

ion trap 

kb 
 

kilobase pairs 

LOD 
 

limit of detection 

MS 
 

mass sectrometer 

MST 
 

mass spectral tag 

m/z 
 

mass-to-charge 

MEOX 
 

methoxylamine hydrochloride 
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metre 

μg 
 

microgram 

μl 
 

microlitre 

μM 
 

micromolar 

mg 
 

milligram 

ml 
 

millilitre 

mm 
 

millimetre 

mm2 
 

millimetres squared 

mM 
 

Millimolar 

MYA 
 

million years ago 

MM 
 

minimal medium 

M 
 

molar 

MW 
 

molecular weight marker 

NIST 
 

National Institute of Standards and Technology 

NE 
 

necrotrophic effector 

MSTFA 
 

N-Methyl-trimethylsilyltrifluoroacetamide 

NS 
 

not significant 

NTC 
 

no-template control 

NMR 
 

nuclear magnetic resonance 

nt 
 

nucleotide 



XXI 
 

p.a 
 

per annum 

PPP 
 

pentose phosphate pathway 

PFTBA 
 

perfluorotributylamine  

PEG 
 

polyethylene glycol 

PCR 
 

polymerase chain reaction 

PDA 
 

potato dextrose agar 

PC 
 

principal component 

PCA 
 

principal component analysis 

PKA 
 

protein kinase 

Q 
 

quadrupole 

QTOF 
 

quadrupole TOF 

Res. 
 

resolution 

RT-qPCR 
 

quantitative real-time PCR 

RI 
 

retention index 

RT 
 

retention time 

rpm 
 

revolutions per minute 

SCH 
 

short-chain dehydrogenase  

SNB 
 

Stagonospora nodorum blotch 

SN15 
 

Stagonospora nodorum strain 15 (wild-type) 

Std 
 

standard deviation 

SNOG 
 

Stagonospora nodorum gene 

Gs 
 

stimulatory G-protein 

TBE 
 

tris-borate EDTA buffer 

TWA 
 

tap water agar 

MS/MS 
 

tandem mass spectrometry 

TOF 
 

time of flight 

TIC 
 

total ion count/chromatogram 

TCA 
 

tricarboxylic acid 

TMS 
 

trimethylsilyl (Si(CH3)3) 

QQQ 
 

triple quadrupole 

GC×GC 
 

two dimensional gas chromatography 

LC×LC 
 

two dimensional liquid chromatography 

U 
 

Unit 

UTR 
 

untranslated region 

V 
 

volts 

v/v 
 

volume per volume 

wk 
 

week 

w/v 
 

weight per volume 

WT 
 

wild-type 

YPD 
 

yeast potato dextrose 

 

 


