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Abstract
We apply a new implementation of the convergent close-coupling (CCC)
method to electron–helium scattering. The target states are obtained from
one-electron He+ box-based eigenstates rather than the usual Laguerre-based
orbitals. The utility of the new method is demonstrated for 50 eV electron-
impact ionization of helium with three different energy sharings between the
two outgoing electrons. Excellent agreement is found between previous and
new CCC predictions, and also with experimental data.

1. Introduction

In recent years there has been considerable progress in the related fields of electron-impact
ionization and double photoionization of light atomic targets (see, for example, Briggs and
Schmidt 2000 and Bray et al 2002 for recent reviews). This progress has predominantly come
from computationally intensive techniques that attempt an accurate numerical evaluation of
the total wavefunction. The exterior complex scaling (ECS) approach (Rescigno et al 1999,
Baertschy et al 2001) was the first method to yield accurate triple-differential cross sections
(TDCS) for e–H ionization, and the convergent close-coupling (CCC) method followed soon
after Bray (2002). Whereas the ECS technique has thus far been applied predominantly to
model problems and the physical e–H collision system, the CCC method has been used for
electron and photon collisions with various atoms and ions (Bray et al 2002), as well as for
positron collisions with positronium formation included (Kadyrov and Bray 2002).

The present paper deals with the problem of e–He ionization. Only recently, the CCC
approach to such problems has been understood (Bray et al 2001). Earlier CCC calculations
generally yielded good agreement with experimental angular distributions but uncertain
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magnitudes. In cases of equal energy-sharing kinematics, for example, the cross sections
were a factor of 2 or so too low (Bray et al 1997, 1998, Rioual et al 1998), and substantial
magnitude differences were also found for asymmetric energy sharing (Röder et al 1997). The
latter study of double-differential cross sections (DDCSs) was recently re-examined, and a
much more satisfactory agreement with experimental data was obtained (Bray et al 2003b).

With the magnitude issues effectively resolved (Bray et al 2001), we now reconsider the
few cases, in which the CCC method was previously shown to work particularly poorly, not
just for the magnitude but also for the shape of the angular distributions. One such case is the
electron-impact ionization of helium at an incident energy of 50 eV. Three different energy shar-
ings between the two outgoing electrons were measured, and the one where the slow electron
had 10 eV yielded particularly poor results (Röder et al 1996a). We also take this opportunity
to apply a recently introduced alternative version of the CCC method to this problem. In this
new formulation, the Laguerre-based orbitals used in the original CCC method are replaced by
box-based orbitals to generate the physical and pseudo target states. This approach has been
shown to work well at very low impact energies for e–H ionization (Bray et al 2003a). We will
show below that it works equally well for the helium target and at a considerably larger energy.

2. Structure calculations

The details of the CCC approach to e–He collisions have been given by Fursa and Bray (1995).
These are just as relevant in the boxed-based CCC-B method, except that the orthonormal
one-electron orbitals are obtained by generating a set of He+ eigenstates in a box of fixed
radius R0, with the boundary conditions for the orbitals being zero at r = 0 and r � R0. This
generates a natural eigenstate discretization of the continuum, yielding true Z = 2 Coulomb
waves for those momenta kn with a node at R0. These orbitals are then used to construct two-
electron configurations, and the physical and pseudo states are generated by diagonalizing the
neutral-helium target Hamiltonian.

Note that the number of physical discrete eigenstates is controlled by the box radius.
Physical states will effectively fit in the box, while pseudo states will not. Apart from the
exponential fall-off of the Laguerre-based orbitals, compared to the sudden fall-off of the box-
based orbitals, a major difference between the two sets of orbitals is the energy spectrum.
The latter set yields an almost linear discretization in the positive momenta (the subsequent kn

values will differ by approximately π/R0), whereas the former has them growing much more
rapidly (see, for example, Bray et al 2003a). The corresponding two-electron target spectra,
as chosen in the two CCC calculations performed here for 50 eV e–He ionization, are shown
in figure 1. Note that both yield much the same negative-energy discrete and low-positive-
energy spectra. With increasing energy, however, the box-based states provide a much denser
discretization of the continuum.

Both calculations use the frozen-core approximation, in which one of the target electrons
is described by the exact He+ 1s orbital. The maximum target-space orbital angular momentum
was set at lmax = 4. In the Laguerre-based CCC-L calculation, we took the first 25 − l orbitals
for each l, as obtained from diagonalizing the He+ Hamiltonian in a Laguerre basis with
Nl = 29 − l and λ = 2.2. The four highest energy orbitals could be dropped because they
do not significantly contribute to the convergence of the ground-state description and would
generate closed helium states with energies much in excess of 25.4 eV, which is the total excess
energy E shared by the two outgoing electrons. In the CCC-L calculation presented, the total
number of coupled states was 229.

The structure considerations in the CCC-B calculation are quite different. The He+ orbitals
were obtained by setting R0 = 50 a0 and taking the first Nl = 30 − l of them to form the two-
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Figure 1. Energy levels of the 50 eV Laguerre-based (CCC-L, left column for each symmetry)
and box-based (CCC-B, right column) calculations. The total energy of 25.4 eV is indicated by
the black line.

(This figure is in colour only in the electronic version)

electron configurations and then diagonalize the neutral-helium target Hamiltonian. In this case
a balance needs to be struck between choosing R0 as large as possible while including as many
He+ orbitals as computationally tractable. Using this basis, we are somewhat constrained by the
need for a sufficient number of high-energy orbitals to obtain convergence in the description of
the ground state. Using Nl = 30 − l already leads to 279 states, even though the high energies
in the spectrum are substantially lower than those of the corresponding CCC-L states, due to
the fine discretization of the continuum. Even with the choices given above, the frozen-core
helium ground state in the CCC-B model is not quite converged. The CCC-L model reproduces
the known error of about 0.84 eV in the frozen-core approximation of the helium ionization
energy, while the corresponding error in the CCC-B model remained at around 1 eV.
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Figure 2. Single-differential cross sections predicted by the two CCC calculations for 50 eV e–He
ionization. The oscillatory curves correspond to the raw results, while the curves that are symmetric
around equal energy sharing at 12.7 eV are integral-preserving (on the [0,12.7] eV energy range)
estimates with the midpoint taken as four times the raw result. The experimental data are taken
from Röder et al (1997), marginally modified by Bray et al (2003b).

3. Results and discussion

It is only the pseudo-target structure that differentiates the CCC-B and CCC-L calculations.
The evaluation of 50 eV e–He scattering proceeds in the same manner as before (Fursa and
Bray 1995). Upon generation of the T -matrix elements the ionization amplitudes are defined
in the way specified by Bray and Fursa (1996) and elaborated further by Bray et al (2001).

We begin our test of the two CCC calculations by comparing their predictions for the total
ionization cross sections (TICS). These are obtained directly as sums of the excitation cross
sections for all positive-energy states. The experimental (Montague et al 1984, Shah et al
1988), CCC-B and CCC-L values (in 10−17 cm2) are 2.37 ± 0.11, 2.30 and 2.35, respectively.

A more detailed set of ionization data are provided by the single-differential (with respect
to the energy loss) cross section (SDCS), which may also be obtained directly from the positive-
energy integrated cross sections (Bray and Fursa 1995). The results are exhibited in figure 2.
The raw CCC results fall off rapidly to zero past E/2, but the integral from 0 to E yields the
TICS. Oscillations on the secondary energy range [0, E/2] are expected (Bray et al 2001),
but the similarity of the oscillations might at first be surprising in light of the rather different
discretizations seen in figure 1. As the oscillations are due to a Fourier-like expansion of a step
function, one might have expected that a denser discretization would yield more oscillatory
results, but this is not the case. The quality of the step-function reproduction depends on the
effective R0 in the calculation, with the larger R0 yielding more oscillations and a sharper step,
see for example Scott et al (2002) and Bartschat et al (2002). The two symmetric (about E/2)
curves are integral-preserving estimates, whose mid-point is obtained as four times the raw
result (Bray et al 2001). The similarity of the two curves is quite encouraging. These estimates
are used to rescale the subsequent angle-differential cross sections. This ensures consistency,
upon angular integration, with the estimated SDCSs.

The DDCSs are given in figure 3 and are compared with the absolute experimental data
of Röder et al (1997), subject to the minor modifications of Bray et al (2003b). We see
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Figure 3. Double-differential cross sections predicted in the two CCC models for 50 eV e–He
ionization. The experimental data are taken from Röder et al (1997), subject to the minor reanalysis
of Bray et al (2003b).

a remarkable similarity between the two sets of theoretical predictions and also excellent
agreement with the experimental data. Note that the CCC ionization amplitudes are initially
available only at the energies given in figure 1, and thus the values at the experimentally
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Figure 4. Coplanar TDCS predicted in the two CCC models for 50 eV e–He ionization, with the
4 eV electron detected at θB and the 21.4 eV electron detected at θA. The absolute experimental
data are taken from Röder et al (1996b).

measured energies EB are obtained by interpolation. Both methods have enough states to
yield accurate interpolation of the underlying complex values.

We now consider the TDCS at the three measured energy sharings. The case with the
slow-electron energy of EB = 4 eV is presented in figure 4. Four internormalized geometries
were measured by Röder et al (1996a) and put on an absolute scale with an overall uncertainty
of 30%, as indicated by the larger error bars. For a better visual fit to the theoretical predictions,
we reduced the published experimental data by 20%. This reduction is not surprising, since
the experimental SDCS at 4 eV is also about 20% higher than the theoretical value. Note
that there is little need for rescaling the theoretical results here, as the estimate and the raw
result are much the same. We see excellent agreement between experiment and the two sets
of theoretical predictions, as was the case earlier (Röder et al 1996a).

The other asymmetric energy-sharing case measured is for a slow-electron energy of
10 eV. This case provides for a particularly stringent test of CCC theory since it is close to,
but not quite at, equal energy sharing. As can be seen from figure 2, the raw CCC result for
the SDCS falls rapidly in this energy region, thus requiring substantial rescaling of the raw
magnitudes. Note the early CCC calculations failed to reproduce these data sets in both shape
and magnitude (Röder et al 1996a). The present calculations, however, exhibited in figure 5,
show very good agreement between the two theoretical curves and the experimental data in
both shape and magnitude, with only minor discrepancies remaining. The main reason for the
improvement is the much denser discretization in the present CCC calculations.

Finally, we consider the case of equal energy sharing in figure 6. The only data available
here are for the so-called ‘doubly symmetric geometry’, i.e. EA = EB and θA = −θB. These
experimental data, obtained by Rösel et al (1992), are relative and have been normalized to the
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Figure 5. Same as figure 4, except that the slow electron has an energy of 10 eV while the fast
electron has 15.4 eV.
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Figure 6. Doubly symmetric coplanar TDCS predicted in the two CCC models for 50 eV e–He
ionization. The relative data of Rösel et al (1992) were normalized to the theoretical predictions
for a good visual fit.

theory. While the shape agreement with the available experimental data are very satisfactory
for both models, we note that the CCC-B calculation yields better near-zero cross sections for
small angles. This is likely due to the denser discretization of the continuum, thereby allowing
for a more accurate interpolation of the underlying amplitudes.
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4. Summary and conclusions

We have applied a new variant of the CCC method to e–He scattering. It is based on one-electron
orbitals that are solutions of the Coulomb problem within a box of radius R0. The positive-
energy orbitals are the true continuum eigenstates which vanish at R0 and are truncated to zero
outside the box. In this respect they are very different from Laguerre-based orbitals which
fall off exponentially beyond the last node. The good agreement between all predictions from
the CCC-L and CCC-B calculations presented here suggests that the substantial differences in
the tails of the orbitals occur at sufficiently large distances to have a nearly insignificant effect
on the calculated ionization cross sections. Although the substantially denser discretization
in the CCC-B method does not necessarily yield a better representation of the underlying step
function in the SDCSs, it does assist in yielding greater accuracy in the interpolation of the
complex amplitudes that are only known at the discrete energies of the continuum pseudo
states. Another conceptional advantage of the CCC-B approach is the underlying simplicity of
the formulation. Apart from the usual angular momentum considerations, convergence studies
may be performed by simply increasing R0 while keeping the additional states generated.
Alternatively, the particularly dense discretization makes it difficult to include high-energy
orbitals which are required for convergence in the description of the initial ground state.
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Bray I, Fursa D V, Röder J and Ehrhardt H 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L101–8
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