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ABSTRACT: The revised Bathing Water Directive (rBWD) (2006/7/EC) of the European Parliament 

requires monitoring of bathing water quality and, if early-warnings are provided to the public, it is 

permissible to discount a percentage of exceedance events from the monitoring process. This paper 

describes the development and implementation of both Decision Tree (DT) and Artificial Neural Network 

(ANN) based machine learning models for 8 beaches in south-west England, UK, as bases for early 

warning systems (EWS) and compares their performance for one beach. Weekly bacteria-count samples 

were gathered by the Environment Agency of England (EA) over a 12-year period from 2000-2011 during 

the 20-week bathing season and this data is used to calibrate and test the models. Daily sampling data 

were also collected at 5 of the beaches during the 2012 season to provide more robust validation of the 

models. As a benchmark, models are also compared with use of simple thresholds of antecedent rainfall to 

classify water quality exceedances. Evolutionary Algorithm-based optimisation of the ANN models is 

employed using single-objective approach using area under the Receiver Operating Characteristic (ROC) 

curve as fitness function. The optimum operating point is established using a weighting factor for the 

relative importance placed on false positives (passes) and false negatives (exceedances). The models use a 

number of input factors, including antecedent rainfall for the catchment adjacent to each bathing beach. A 

possible technique for automating selection of inputs is also discussed. 
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1 INTRODUCTION 

The revised Bathing Water Directive (rBWD) (2006/7/EC) was introduced by the European 

Commission in 2006. It will take over from the current Bathing Water Directive (76/160/EEC) in 2015 

and sets more stringent water quality standards. The rBWD also places a strong emphasis on providing 

information to the public on the quality of bathing waters to allow them to make an informed choice 

where to bathe. Heavy rainfall can result in water running off the land, picking up contaminants and 

overloading the sewerage system. This can quickly have an adverse effect on water quality. 

 

The Short Term Pollution provision of the rBWD allows for up to fifteen percent of samples taken 

during short term pollution events to be discounted from the four year compliance analysis, provided the 

public are advised in advance that water quality may be unsuitable for bathing, and measures are in place 

for water quality improvements. Where a bathing water fails to meet the “Sufficient” standard of the 

rBWD in 2015, signs will be put up from 2016 advising people not to bathe. This may impact the tourist 

industry/local economy. 

 

The Environment Agency for England (EA) has developed a set of data-driven modelling tools 

which predict whether water quality is likely to be above or below a pre-determined bacteriological 

threshold each day, using multiple triggers from real-time rainfall data and tidal predictions. As part of the 

joint-agency 'Bacti' project, the University of Exeter Centre for Water Systems (CWS) has also developed 

machine-learning models, based on Artificial Neural Networks (ANNs). This paper summarises recent 

work on validation of these models and presents a comparison with water quality predictions using a 

simpler method of single rainfall triggers that can be applied to a larger number of bathing waters. 

.  
 

2 METHODS OF MODEL BUILDING AND TESTING  

2.1 Decision Tree Models 

Following previous studies conducted by the Environment Agency between 2007 and 2009 (Tyrrell, 

2010), predictive tools for eight bathing waters were built and tested in 2012. The Environment Agency's 

models were built using a script developed from the Classification Trees module within IBM SPSS™ 

Statistics software (IBM, 2011; Mola, 1998). The decision tree procedure creates a tree-based 

classification by taking a set of data points and categorising them into groups of a dependent (target) 

variable based on values of independent (predictor) variables. The target variable was the 'pass' or 'fail' of 

a bacteriological sample against a threshold of 500 faecal coliforms/100ml and/or 200 faecal 

streptococci/100ml. The predictor variables were antecedent rainfall totals for 24hrs, 48hrs, 72hrs, 96hrs, 

and 120hrs, tidal range, and tidal state. The bacteriological threshold was developed by the World Health 

Organisation (WHO) and relates to accepted health standards for bathing water quality (Kay et al., 2004). 

 

Of the various tree growing methods available in SPSSTM, previous studies showed that the CART 

(Classification and Regression Trees) method gave the most accurate results. CART is a non-parametric 

technique that produces a binary decision tree constructed by splitting a node into two child nodes 

repeatedly, beginning with the root node (parent) that contains the whole data set. The data are split into 

segments that are as homogeneous as possible with respect to the target variable. Each branch of a tree 

ends with a terminal node which is uniquely defined by a set of rules that may then be applied to predict 

future events. The complexity of the tree depends on the underlying distribution of data, and it follows 

that the stronger the relationship between target and predictor variables the simpler the tree. For this study 

we were focussed on correctly predicting poor water quality, and protecting public health, therefore the 

models were weighted to minimise the number of incorrectly predicted exceedances of the bacteriological 

threshold, but could be modified to minimise restrictions on bathing. An example decision tree is 

presented in Figure 1.  
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Target Variables
Predictor Variable

Parent Node

48hr Rain Total

12:30 wrt HW 24hr Rain Total

Tidal Range

 

Figure 1 Example Decision Tree 

 

Models were built and tested for the following bathing waters located in South West England: 

Mothecombe, Seaton (Cornwall), East Looe, Readymoney, Par, Porthluney, Ilfracombe Wildersmouth, 

and Burnham Jetty. The bacteriological and environmental data for each bathing water for 2000 to 2011 

were compiled and analysed by a database tool. Samples exceeding the bacteriological threshold in dry 

weather (quantified by a 96hr rainfall total <5mm) were removed from the dataset, since these would 

have occurred by events we cannot predict using rainfall data, e.g. wrongly connected waste water 

systems, bird and dog fouling. For each bathing water, an initial decision tree was built using the data 

from 2000 to 2006, and the resulting rules from the terminal nodes were applied blindly to the 2007 data 

for validation. The models were then rebuilt including the 2007 data and resulting rules applied blindly to 

the 2008 data. This iterative process of calibration and validation was continued until all the data to 2011 

had been included in the model, giving a total of five validation trees per bathing water plus a tree for 

investigational use in the 2012 bathing season. The results for Seaton (Cornwall) bathing water are 

presented in Table 1 (see section 3.1). 

 

2.2 ANN Models 

Using the same datasets, ANN classifier models were built and tested using MATLAB ® V2012a 

(Mathworks, 2012). The models were based on the RAPIDS package described in earlier publications: 

(Duncan et al., 2011, 2013a, 2013b). Two-layer fully-connected feedforward ANNs were used. Inputs 

were not time-lagged explicitly, due to the very long timestep for the samples. Instead, the implicit 

time-lagging present in the antecedent rainfall totals was exploited. Figure 2 illustrates the architecture of 

the learning scheme used for training the ANNs. For each beach modelled, a 

Leave-One-Out-Cross-Validation (LOOCV) methodology (Cawley and Talbot, 2003) was used, in which 

the samples for each bathing season 2000-2011 were used as the data blocks. Thus an ensemble of 12 

ANN models was trained, and then each tested on a different remaining ("left-out") block (bathing season 

of samples). The results for all 12 models were then aggregated and are summarised in section 3.2. 
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Figure 2  ANN Learning Scheme Architecture 

 

For each member of the ensemble, the same set of 12 input signals was applied to the ANN; these 

included antecedent rainfalls (x5) and tide height and state (as for DT models), plus salinity, tidal height 

at high water and at sampling time, tidal range at standard port, tide level class (spring/mean/neap) and 

timestamp. The number of neurons in the hidden layer was varied during experimentation. The 

classification responses from the single output neuron were compared to a (ramped) set of threshold 

values covering the span of actual model output values, and the area under the trade-off curve of true 

positive (pass) rate (TPR) versus false positive rate (FPR) was computed. Such a curve is known as a 

Receiver Operating Characteristic (ROC), the purpose of which is to establish the optimum trade-off 

between FPR and False Negative Rate (FNR = 1 – TPR). Optimisation of the ANN weights and biases 

was achieved using a single-objective  realisation of NSGA-II (Deb et al., 2002), a widely used 

evolutionary algorithm. In this single-objective case, crowding distance was neglected, since each rank of 

pareto dominance had exactly one member. The chromosome of values ([-1,+1] ϵ RN) in the decision 

space for each member of the population represented the values of ANN weights and biases (Yao, 1999); 

whereas the fitness function used minimization of cost (1- the area under the ROC curve) in the 

1-dimensional objective space. At each generation (epoch) of the training, fitter members of the 

population had a higher probability of being selected as parents for reproduction of the new child 

solutions for the next generation. Population size of 100 was found to be adequate and probabilities of 

crossover and mutation were also varied during experimentation to determine reasonable value ranges. 

 

Stidson et. al. (2012) proposed use of a modified F measure to evaluate model performance using a 

weighting (a=4 in (1)) to minimise the number of incorrectly predicted passes  (levels below the 

bacteriological threshold): False Positives (FP in (1)).  

 
  FNaFPTNa

TNa
F






1

1
         (1) 

where: F = modified F measure; TN = number of true negative samples; FP = number of false 

positive samples and FN = number of false negative samples (negative = fail; positive = pass). This study 

adapted this method to use ROC curves, effectively stretching the x-axis (FPR) for values of a>1 and 

shrinking it for a<1. Euclidean distance (E) of each point, to the ideal (FPR=0; TPR=1), on the scaled 

ROC curve was calculated and the optimum operating point (Eopt) determined using (2). 

 

    




 

22

opt 1min  TPRFPRaE       (2) 

 

Analysis of influence of inputs on the models' output responses was performed using:   
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WWW io 21        (3) 

where: Wio = input-to-output influence vector; W1 = ANN hidden layer weight matrix; W2 = ANN 

output layer weight vector and • represents matrix multiplication. Thus Wio has dimensions of Nin x Nout 

where Nin is number of input signals and Nout = 1, the number of output neurons (signals). By comparing 

the ranges of each coefficient in Wio, over the ensemble of ANN models produced, it may be possible to 

rank the relevance of each input based on inter-quartile range. 

 

3 RESULTS & DISCUSSION 

  

3.1 Decision Tree Models 

Table 1 shows that the Decision Tree models for Seaton (Cornwall) are capable of predicting both 

“fail” and “pass” reasonably well, with a total of 10 out of 13 “fails” predicted correctly, and 79 out of 86 

“passes” predicted correctly. The models were also tested blindly on data for a full bathing season (1st 

May to 30 September) for each year from 2007 to 2011 to count how many exceedances would typically 

be predicted (advisory signs put up). The number of public advisories per bathing season ranged from 10 

in 2009 and 2011 to 28 in 2008 (a very wet year with regard to long-term average rainfall). 

 

The final models, which included all the data to 2011, were tested in 2012. Five of the eight bathing 

waters (Seaton (Cornwall), East Looe, Readymoney, Par, and Porthluney) were sampled daily (excluding 

weekends and Bank Holidays) throughout the bathing season to provide a larger dataset, and hence a 

more robust model validation than previously available. A second assessment was completed using single 

24hr rainfall triggers of 0, 5, 10 and 15mm, and the two sets of results compared. The results are 

presented in Figure 3 and Table 2. 

 

The decision tree models gave a similar level of accuracy to that produced using a single 24hr 

rainfall trigger of 10mm (red diamonds and green squares in Figure 3). This is important because the 

decision tree method relies on having a good number (typically >10%) of data exceeding the 

bacteriological threshold in order to train the model (i.e. the bathing waters with poorer water quality), 

whereas a single 24hr rainfall trigger may be applied to any number of bathing waters of varying quality. 

 

Figure 3 Comparisons of Decision Tree Models with Simple Triggers – Advisories vs Model Accuracy 2007-2012 

 

Figure 3 also shows that as the rainfall trigger decreases, the number of “fails” correctly predicted 

increases, and so does the number of public advisories. This is important because to implement an 

operational bathing water warning system, the rainfall triggers set will be determined not only by the 

absolute accuracy of the predictions, but also with a recognition of the number of public advisories 

deemed acceptable by beach managers.  
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Table 1  Decision Tree Validation Results for Seaton (Cornwall) 
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Model Predictor Variables 

2000-06 140 2007 20 1 16 3 0 1 17 Rainfall only (24, 48, 72, 96, and 120hr) 

2000-07 160 2008 20 7 10 3 5 2 28 Rainfall only (24, 48, 72, 96, and 120hr) 

2000-08 180 2009 19 1 18 0 1 0 10 Rainfall only (24, 48, 72, and 96hr) 

2000-09 200 2010 20 3 17 0 3 0 11 Rainfall only (24, 48, 72, and 96hr) 

2000-10 220 2011 20 1 18 1 1 0 10 Rainfall only (24, 48, 72, and 96hr) 

 

Table 2 Prediction Results for 2012 

Bathing Water 
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Method 

Mothecombe 15 0 80 Poor 
10   90 70 10 Good 13 18 23 54 Simple trigger 

    84 73 7 Sufficient 7 12 33 52 Decision tree 

Seaton (Cornwall) 9 0 80 Poor 
8.5   96 72 8 Good 15 11 22 48 Simple trigger 

    94 74 6 Sufficient 11 10 12 33 Decision tree 

East Looe  13 4 80 Poor 
  19 84 75 5 Poor 17 8 25 50 Simple trigger 

    86 75 5 Poor 12 12 30 54 Decision tree 

Readymoney 8 0 80 Sufficient 
10   89 75 5 Good 11 7 22 40 Simple trigger 

    90 76 4 Good 8 13 18 39 Decision tree 

Par 6 0 80 Sufficient 
15   94 77 3 Good 10 3 11 24 Simple trigger 

    94 78 2 Sufficient 9 6 19 34 Decision tree 

Porthluney 15 2 80 Poor 
7.7   90 70 10 Sufficient 13 8 23 44 Simple trigger 

    86 72 8 Sufficient 13 15 26 54 Decision tree 

Ilfracombe  
Wildersmouth 

22 3 80 Poor 
  9 66 70 10 Poor 34 45 61 140 Simple trigger 

    70 69 11 Poor 34 38 40 112 Decision tree 

Burnham Jetty 9 0 80 Poor 
10   89 76 4 Poor 3 6 14 23 Simple trigger 

    93 76 4 Sufficient 2 14 25 41 Decision tree 
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The results for the 2012 investigations are presented in Table 2 with additional fine tuning of the 

single 24hr or 48hr rainfall trigger levels (mm). Also presented is an assessment of how the rBWD 

classification for 2012 would be improved by being able to discount samples that were correctly predicted 

to exceed the bacteriological threshold. 

 

It is clear from Table 2 that the rBWD classification can be improved with discounting, and that both 

methods are applicable. The conclusion whether to use single rainfall triggers or decision trees is a 

balance between the accuracy of the predictions, the number of advisories, and whether rBWD class 

change is achieved. The simple rainfall trigger method was considered appropriate for Mothecombe, Par, 

and Porthluney. The decision tree method was considered appropriate for Seaton (Cornwall), East Looe, 

Readymoney, Ilfracombe (Wildersmouth), and Burnham Jetty. For East Looe and Ilfracombe 

(Wildersmouth), further work will be required to improve the water quality and reduce the number of 

times water quality is impacted in dry weather, so that rBWD class change through discounting can be 

achieved. 

 

3.2 ANN Models 

Figure 4 illustrates a set of ROC curves for the Seaton catchment produced from an ensemble of 12 

ANN models, one for each of the sampling years 2000-2011. All ANNs have 12 neurons on the hidden 

layer and 12 input signals. Three trade-off curves are shown: training, validation and test. The test curve 

represents the aggregation of test results from all of the models, each model having used the sample 

results from one of the 12 (Yt) years (2000-2011) against which to test its performance following training. 

For each of these 12 models, the succeeding year of samples (Yt + 1) mod 12 was excluded from the 

training dataset and used to validate progress during training, to perform early-stopping and avoid 

over-fitting. The remaining 10-years’ samples for each model were used as the training dataset. Validation 

and training curves are similarly aggregations of results from all 12 models. Results are preliminary and 

demonstrate proof of concept. Using the FP:FN importance weighting factor, a=4, the optimum operating 

point for the ensemble, based on minimum Euclidean distance to the ideal, is also shown as -. This is 

compared to the test operating point for the ensemble of 5 DT-based models for Seaton, shown as + and 

to the simple threshold of 24-hour antecedent rainfall greater than 10mm, shown as . 

  

Figure 4  Seaton: ANN and DT model ensemble performance compared (2000-2011) 
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Although the performance of the ANN model ensemble during training exceeds the test performance 

of the ensemble of 5 Decision Tree models, the ANN test performance is significantly worse. However, 

the ROC curve approach illustrates the importance of choosing the optimum operating point based on the 

weighting factor (a). Further work is needed to ascertain if more robust and/or improved results could be 

achieved by instituting a voting scheme for the ANN ensemble members, rather than merely aggregating 

the results from all ANN models, as at present. 

 

Analysis of influence of inputs on the models' output responses is shown in figure 5 for the ensemble 

of 12 ANN models, using equation (3) for each model. Each box and whisker shows the spread of values 

of Wio=W1xW2 for the given input signal over the ensemble of 12 models. In addition to 24hrs antecedent 

rainfall (AR24), Salinity and Tidal Range at Standard Port were also shown to be relevant signals. 

 

  

Figure 5  Seaton model: 12 ANN ensemble analysis of influence of inputs on outputs  

 

By using (for example) the inter-quartile range, it may be possible to rank the input signals in terms 

of their relevance to the skill of the model ensemble and hence provide a means of automating input 

selection during a hybrid training algorithm. Further work is needed on this. 

 

4 CONCLUSIONS  

Both decision tree and artificial neural network models performed well in classifying potential 

bathing water quality exceedances and could therefore be used in a real-time EWS. However, 

performance of both has been shown only to be comparable with a classifier using a simple threshold of 

antecedent rainfall for 24 hours exceeding 10mm. Further work is needed to establish if model skill can 

be improved through improvements to optimisation through automating selection of number of ANN 

hidden units and input signals used. 
 

Ultimately, effectiveness of models will be evaluated on whether rBWD class change through 

discounting can be achieved. For deployment nationally in a live system, such models will also need to 

use only input signals that are readily available from existing data sources, although these sources are 

increasing all the time. This study has not included for example combined sewer overflow spill data as 

this was not available for the period 2000-2011. However, this may provide a means of enhancing 

performance of models for some catchments. It is expected that the performance will be significantly 

enhanced because CSO activity will provide additional valuable information, which is the next step in this 

research. 
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