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Abstract

A challenging problem in systems biology is the quantitative modelling
of transcriptional regulation. Transcription factors (TFs), which are the
key proteins at the centre of the regulatory processes, may be subject
to post-translational modification, rendering them unobservable at the
mRNA level, or they may be controlled outside of the subsystem being
modelled. In both cases, a mechanistic model description of the regula-
tory system needs to be able to deal with latent activity profiles of the key
regulators. A promising approach to deal with these difficulties is based
on using Gaussian processes to define a prior distribution over the latent
TF activity profiles. Inference is based on the principles of non-parametric
Bayesian statistics, consistently inferring the posterior distribution of the
unknown TF activities from the observed expression levels of potential
target genes. The present work provides explicit solutions to the differ-
ential equations needed to model the data in this manner, as well as the
derivatives needed for effective optimisation. The work further explores
identifiability issues not fully shown in previous work and looks at how
this can cause difficulties with inference. We subsequently look at how the
method works on two different TFs, including looking at how the model
works with a more biologically realistic mechanistic model. Finally we
analyse the effect of more biologically realistic non-Gaussian noise on the
biologically realistic model showing how this can cause a reduction in the
accuracy of the inference.

1 INTRODUCTION

Quantitative modelling of transcriptional regulation is a highly topical and chal-
lenging research problem in contemporary systems biology. Over the last few
years, a whole plethora of methods have been developed that aim to infer tran-
scriptional regulatory networks from gene expression and DNA sequence data;
see work by Lin and Husmeier [9] for a concise review. A particular challenge
is that transcription factors (TFs), the regulatory proteins at the heart of tran-
scriptional regulation, are frequently subject to post-translational modification,
which may affect their DNA binding capability. Consequently, gene expres-
sion levels of TFs contain only limited information about their actual activities.
Various authors have applied latent variable and factor analysis models to infer
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genome-wide patterns of TF-gene interactions from high-throughput transcrip-
tion profiles while allowing for the fact that the concentrations of active TFs
may actually be unknown [9, 11, 13, 14].

An alternative and complementary research objective is to develop less ab-
stract mechanistic models, based on differential equations, for smaller biochem-
ical systems. Recent advances in computational statistics have demonstrated
that kinetic parameters and interaction structures can be reliably inferred from
completely observed concentration profiles of the molecular components involved
[17]. However, the application of these methods to transcriptional regulation is
impeded by the fact that concentrations of active TFs are often not directly
observable, as discussed above. In addition, the dynamics of TF activities may
be controlled outside of the subsystem being modelled, e.g. regulated by exter-
nal protein signalling pathways. In both cases, the dynamics of TFs must be
inferred indirectly, based on the response of the genes whose expression they
control.

A promising approach to deal with these difficulties was proposed by Gao et
al. [4], inspired by the work of Barenco et al. [1]. The authors advocate the use
of Gaussian processes to define prior distributions over the latent TF activity
profiles. Inference is soundly based on the principles of non-parametric Bayesian
statistics, consistently inferring the posterior distribution of the unknown TF
activities from the observed expression levels of potential target genes, and
inferring regulatory network structures after marginalizing over the unknown
TF activity profiles. The work has more recently been extended to incorporate
a model of translation, which improves the quality of TF profile inference when
TFs are primarily regulated at the transcriptional level [5], and to generalize
the approach to multiple co-regulating transcription factors [16].

Problems with this method however come in the form of identifiability issues.
Using a Gaussian process prior over the TF due to data being unobservable
leads to a large level of flexibility within the estimates of the TF profile. Under
these modelling assumptions some of the characteristic of the TF profile can be
incorporated into the parameters of the model leading to a misestimation of the
TF profile. We show how this is possible and show how not correcting for this
can lead to problems with the inference.

The choice of a non-parametric prior distribution from the Gaussian process
family is not a restrictive modelling assumption, as Gaussian processes have
been shown to possess universal approximation capability [10]. Somewhat more
restrictive is the assumption of Gaussian noise, which can be found in all previ-
ous applications [4, 5, 16]. A common approach is to assume that transcriptional
data follows a log-normal distribution and to subject transcription profiles to
a logarithmic transformation. However, Durbin et al. [3] and Huber et al. [6]
showed that mRNA concentrations obtained from microarray experiments are
only asymptotically log-normally distributed, in the limiting case of high tran-
scription rates, and that the noise distribution for intermediate rates is of a
more complex form. We look at how this can affect the inference of the model
proposed by Gao et al. [4] which assumes an idealised Gaussian noise.
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Table 1: Notation description

Symbols Description
G number of genes
T number of time points

xi(t) true gene expression level of gene i
yi(t) noisy measurements of gene expression level of gene i
Bi basal transcription rate of gene i
Si sensitivity to binding of TF of gene i
Di decay rate of gene i
θc hyper parameters of the Gaussian process prior
θ′ parameters in covariance function Kf ,f

θ parameters in eq. (5)
f TF activity

2 METHODOLOGY

An overview of the notation used in the following exposition can be found in
Table 1. A linear model of gene expression was proposed by Barenco et al. [1]

dxi(t)

dt
= Bi + Sif(t)−Dixi(t) (1)

where i ∈ {1, . . . , G} is a set of genes regulated by the same transcription factor
TF, xi(t) are the (unknown) true gene expression levels at time point t, f(t) is
the (unknown) TF activity, Bi is the basal transcription rate of gene i, Si is the
sensitivity to binding of TF, and Di is a decay rate. We assume that (noisy)
measurements of xi(t) can be obtained, and f(t) is unobservable. Eq. (1) has
the analytic solution

xi(t) =
Bi
Di

+ Si

∫ t

0

exp(−Di(t− u))f(u)du (2)

where transient terms have been ignored.

2.1 GP Inference

Lawrence et al. [8] and Gao et al. [4] proposed a non-parametric Bayesian
approach to inference in this model by placing a Gaussian process prior on the
unknown TF activities f = (f(t1), . . . , f(tT )) at time points t = (t1, . . . , tT )

p(f) = N (f |0,Kf ,f ) (3)

that is, the prior probability of the TF activities, p(f), is a zero-mean multi-
variate Gaussian distribution with covariance matrix Kf ,f . The linear form of
eq. (2) implies that the joint prior distribution of the expression profiles of all
regulated genes

xi = [xi(t1), . . . , xi(tT )]; i = 1, . . . , G (4)

is described by a Gaussian process prior with a covariance matrix, K, that
depends on the hyper parameters θc and the parameters that characterise the
transcriptional regulation processes via eq. (1):

p(xi|θ′) = N
(

Bi

Di
,K

)
; K = K(θ′) (5)

θ′ = (θc, B1, . . . , BG, S1, . . . , BG, D1, . . . , DG)
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where Bi/Di is divided in a point-wise manner. See [4, 5, 8] for explicit expres-
sions.

In order to derive an expression for the covariance matrix K, we firstly define
the linear operator relating to the latent function f and the gene expression level
xj(t) as shown by Lawrence et al. [8]

Lj [f ](t) = Sj exp(−Djt)

∫ t

0

f(u) exp(Dju)du. (6)

This contains all the time varying elements of eq. (2) and implies a covariance
of

cov(Lj [f ](t), Lk[f ](t′)) = Lj ⊗ Lk[kf,f ](t, t′). (7)

This ultimately results in the elements of the covariance matrix being expressed
as

kxj ,xk
(t, t′) = SjSk exp(−Djt−Dkt

′)

∫ t

0

exp(Dju) (8)

×
∫ t′

0

exp(Dku
′)kf,f (u, u′)du′du

where kf,f (t, t′) is the covariance matrix associated with f(t). If we then let this
be the Radial Basis Function (RBF) kernel, such as given in eq. (9), where l is
the length scale and a2 is the amplitude parameter, then the integral becomes
tractable and can be solved using Laplace transformations (see Appendix A).

kf,f (t, t′) = a2 exp

(
− (t− t′)2

l2

)
. (9)

From Appendix A, the resulting covariance elements are given by

kxj ,xk
(t, t′) = a2SjSk

√
πl

2
[hkj(t

′, t) + hjk(t, t′)] (10)

where

hkj(t
′, t) =

exp(γ2k)

Dj +Dk

{
exp[−Dk(t′ − t)]

[
erf

(
t′ − t
l
− γk

)
+ erf

(
t

l
+ γk

)]
− exp[−(Djt+Dkt

′)]

[
erf

(
t′

l
− γk

)
+ erf(γk)

]}
.

Here we define γk = Dkl
2 and erf(x) = 2√

π

∫ x
0

exp(−y2)dy. This then allows us

to compute the likelihood dependent on parameters θ′.
In order to infer the unknown TF activity, a covariance matrix must be

found relating xj(t) and f(t). This is similarly given as

kxj ,f (t, t′) = Sj exp(−Djt)

∫ t

0

exp(Dju)kf,f (u, t′). (11)

Again when the RBF kernel is used the integral is solvable with a Laplace
transformation (see Appendix B), with the covariance matrix given as

kxj ,f (t, t′) = a2Sj

√
πl

2
exp(γ2j ) exp[−Dj(t− t′)]

×
[
erf

(
t− t′

l
− γj

)
+ erf

(
t′

l
+ γj

)]
.
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Standard regression techniques, such as shown by Rasmussen and Williams [12],
then lead to f being modelled such that

f |x ∼ N (Kf,xK
−1
x,x(x− B

D ),Kf,f −Kf,xK
−1
x,xKx,f ) (12)

where x denotes the vector of observed variables all genes, K is the matrix which
arises from evaluating the covariance functions between all time points and B/D
is the point-wise division of the vectors of B and D where the parameters come
from the ODE of the genes they correspond to.

To relate the unknown true gene expression profiles xi to noisy measurements
yi = [yi(t1), . . . , yi(tT )]; i = 1, . . . , G, the standard approach (e.g. [2], Section
6.4.2) assumes additive Gaussian noise of constant variance σ2:

p(y|x, σ2) = N (y|x, σ2I) (13)

where I is the identity matrix. The marginalisation over y is analytically
tractable and gives, with the definition θ = (θ′, σ2):

p(y|θ) =

∫
p(y|x, σ2)p(x|θ′)dx = N (y|0,C(θ))

C(θ) = K(θ′) + σ2I (14)

giving a log likelihood of

ln(y|θ) = −T2 ln(2π)− 1
2 ln |C(θ)| −

(
y− B

D

)>
C(θ)

−1 (
y− B

D

)
. (15)

Inference of the parameters θ can then be achieved in a maximum likelihood
or Bayesian framework, as described in standard textbooks on Gaussian process
modelling [2, 12]. For non-linear optimisation methods, the gradient of the log
likelihood with respect to the parameters θ helps to improve the optimisation
and these are derived in Appendix C.

Implementing these methods is often harder than suggested within the orig-
inal papers from which they were proposed. For instance when inferring param-
eters within either a maximum likelihood or Bayesian framework, problems can
also occur in the form of ill-conditioned matrices. Errors within the computa-
tion can lead to spikes in the likelihood in the tails of the distribution and it is
necessary to specify that the likelihood should be reduced to zero in the case of
the covariance matrix having small or negative eigenvalues, where the negative
eigenvalues are due to a limited computational precision.

2.2 Identifiability Issues

The identifiability issues within the model come from the original make up of
eq. (1) proposed by Barenco et al. [1] and the fact that data from the TF is
unobservable. With only data from the downstream genes and no data from the
TF activity, the Gaussian process effectively learns the shape of the TF, but can
fail to accurately estimate the baseline activity and exact concentration levels of
the profile. This can lead to problems as the method will still continue to give
accurate estimates for the Gene profiles, so it may be naturally expected that
the TF profile is similarly accurate. We show how this is not always the case
and similarly how this can affect some of the estimates of the model parameters.
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The misestimation can happen in two ways and we show how this can happen
by looking at f̃(t), the unscaled profile of the TF, as was shown by Barenco
et al. [1]. We can think about the true TF, f(t), as being related to this
unscaled profile through eq. (16) where additive and multiplicative terms, α
and β respectively, have been introduced;

f(t) = α+ βf̃(t). (16)

We show below how this can be manipulated into the form of eq.(1), where the
g(t) can be seen as the TF and incorrect parameters can be learnt for the ODEs.

dxi(t)

dt
= Bi + Sif(t)−Dixi(t) (17)

= Bi + Si{α+ βf̃(t)} −Dixi(t)

= {Bi + Siα}+ {Siβ}f̃(t)−Dixi(t)

= B̃i + S̃if̃(t)−Dixi(t).

The problem relating from this is that the scaling parameters α and β cannot
be obviously learnt, so to address this issue we fix some of the parameters, B1

and S1, to a set value as close as possible to their true value. Although this is
not ideal, it is biologically possible, and will ensure we get accurate estimates
for the TF profile.

2.3 Noise Assumptions

Previous publications, such as [4, 5, 16], have assumed white additive Gaussian
noise of the form of eq. (13). This assumption leads to a closed-form solution of
the convolution integral given in eq. (14). The result is a simple and straight-
forward modification of the noise-free scenario, in which the noise variance is
added to the diagonal elements of the covariance matrix.

Unfortunately it has been shown by both Durbin et al. [3] and Huber et al.
[6] that transcriptional data are subject to noise of a more complex form;

yi(t) = c+ xi(t) exp(µt) + εt (18)

µt ∼ N (0, σ2
µ); εt ∼ N (0, σ2

ε).

Maximising the log likelihood under the assumption of white additive noise is
equivalent to minimising the residual sum of squares difference between the
observations and the interpolant, which is equivalent to finding the mean. How-
ever,

yi(t) = xi(t) exp(µt) + εt (19)

E[yi(t)] = xi(t)E[exp(µt)] + E[εt]

= xi(t)E[exp(µt)]

≥ xi(t) exp(E[µt]) = xi(t) exp(0) = xi(t)

by Jensen’s inequality. Replacing the true signal xi(t) in eq. (19) by the
smoothed signal x̃i(t) = E[yi(t)] from the Gaussian interpolation will lead to a
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systematic distortion as a consequence of the overestimation x̃i(t) ≥ xi(t). This
implies that

dx̃i(t)

dt
= Bi + Sif(t)−Dix̃i(t) ≤ Bi + Sif(t)−Dixi(t) =

dxi(t)

dt
(20)

will be systematically underestimated. We will look at how in practise this
incorrect assumption of Gaussian noise effects the predictions of the model pa-
rameters and the profiles of both the downstream genes and also the TF.

3 EVALUATION ON SIMULATED DATA

To assess the model performance, we carried out evaluation procedures on two
known forms of TF profile. The first TF profile is in the form of a Gaussian
mixture model while the second is based on a far more biologically realistic TF
profile based on Michaelis-Menten kinetics. Here, we exploit the fact that the
ground truth is known and that the performance of the model can therefore be
objectively assessed.

xi xGx1

y1 yi yG

f

Figure 1: TF simulated from a synthetic system. The active form of the
TF is given by f and regulates G genes with expression values x1,. . . ,xi,. . . ,xG,
whose noisy measurements are y1,. . . ,yi,. . . ,yG.

3.1 Data Generation

We tested the performance of the proposed scheme on data simulated from the
regulatory networks shown in Figure 1. A single TF regulates three downstream
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genes linearly according to eq.(2). We generate data with both Gaussian noise,
such as in Gao et al. [4], and also with more realistic non-Gaussian noise from
eq. 18, i.e. using the model proposed in Durbin et al. [3]. The simulations
require the specification of the latent TF profile.

We approached this in two different ways. In the first approach, we followed
Lawrence et al. [7] and chose the TF profile to have the following fixed functional
form:

f(t) =

4∑
j=1

aj exp

(
− (t− µj)2

σ2

)
(21)

For the parameters, we chose the same values as Lawrence et al.[7], namely
σ = 1.5, a1 = a2 = 1.5, a3 = a4 = 0.5, µ1 = 4, µ2 = 6, µ3 = 8.5 and µ4 = 10.5.
For our empirical evaluation studies, we generated the TF signal between time
units 0 and 100, out of which we sampled 18 values regularly spaced in [0, 100].

In the second approach, we chose a more realistic simulation, where we
explicitly modelled the post-translational modification of the TF. To this end, we
combined the regulatory network of the previous figure, Figure 1, with a simple
protein signalling pathway taken from work by Vyshemirsky and Girolami [17];
see Figure 2. The active form of the TF is Rpp, which is derived from the
native form of the protein, R, via phosphorylation. The phosphorylation is
catalysed by the enzyme S via formation of the dimer RS, where the enzyme S
can irreversibly decay into its degraded form dS. The kinetics of these processes
are described by the following system of mass action and Michaelis-Menten type
differential equations:

d[S]

dt
= −k1 · [S]− k2 · [S] · [R] + k3 · [RS]

d[dS]

dt
= k1 · [S]

d[R]

dt
= −k2 · [S] · [R] + k3 · [RS] +

V · [Rpp]
km + [Rpp]

(22)

d[RS]

dt
= k2 · [S] · [R]− k3 · [RS]− k4 · [RS]

d[Rpp]

dt
= k4 · [RS]− V · [Rpp]

km + [Rpp]

where the square brackets, [.], denote concentrations, and the kinetic parameters
were set in the same way as Vyshemirsky and Girolami [17]: k1 = 0.07, k2 =
0.6, k3 = 0.05, k4 = 0.3, V = 0.017, km = 0.3.

In this way we emulate the scenario described in the Introduction, where the
TF activity profiles are unobservable due to post-translational modification, and
the processes leading to the formation of active TFs are controlled outside of
the subsystem being modelled (which only consists of the TF and the three
downstream genes). Again, we generated the TF signal between time units 0
and 100, and sampled 18 values regularly spaced in [0, 100].

From the TF profiles, the three downstream genes are then generated by
solving eq. (2) with the kinetic parameter values given in Table 2. All values
are the same for both TFs with the exception of D1 which was changed in order
to give more reasonable profiles in the case of the second TF. In the case of the
Gaussian mixture model, eq. (2) can be solved explicitly using similar techniques
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xi xGx1

y1 yi yG

Rpp

RS

R

S dS

V, km

k2,3 k4

k1

Figure 2: Transcriptional regulation by a TF that is subject to post-
translation modification. The active form of the TF is Rpp, which is derived
from the native form of the protein, R, via phosphorylation. The phosphory-
lation is catalysed by the enzyme S via formation of the dimer RS, where the
enzyme S can irreversibly decay into its degraded form dS. The TF regulates
G genes with expression values x1,. . . ,xi,. . . ,xG, whose noisy measurements are
y1,. . . ,yi,. . . ,yG.
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to those used for finding the covariance matrix. Where we explicitly modelled
the post-translational modification of the TF standard numerical approaches
such as Simpson’s method can be used, where only grid values of the TF are
required to find the true genes profiles. Data points can then be simulated for
the downstream genes with either Gaussian or non-Gaussian noise of different
sizes as required.

Table 2: Kinetic Parameter values used to generate Downstream Genes

Bi Si Di

i = 1 0.0 1.0 1.0/0.2
i = 2 7.5× 10−2 0.4 5× 10−2

i = 3 2.5× 10−3 0.4 1× 10−3

3.2 Evaluation Procedure

We emulate a real experiment, in which only the expression time series of the
downstream genes are observed, and the objective is to infer both the unknown
TF activities as well as the kinetic parameters, i.e. the set of {Bi, Si, Di}i=1,2,...,G

with G = 3 in eq. (1). For the TF activity levels coming from Figure 2 we sim-
ulated 10 independent data sets generated under identical conditions for each
data set, where each data set is given different values for σµ and σε. In each
case both standard deviations are given the same values and we use a roughly
log scale so σµ, σε = {0.01, 0.03, 0.1, 0.3}. We then choose values for σ to be a
numerical estimate of this standard deviation in Gaussian form, such as to give
a fair comparison between methods. We represent the results in the form of box
plots of the errors of the parameter and profile estimates.
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(b) Transcriptional Factor

Figure 3: A summary of the expected distribution of data for the simulated
(a) Downstream Genes and (b) Transcriptional Factor, based on the Gaussian
mixture model TF. Solid red lines indicate the true mean of the distributions,
the solid black lines give the best prediction and the dotted lines indicate the
region within two standard deviations. Solid points indicate the observed data
from the gene profiles. They are modelled with Gaussian noise.

4 SIMULATION RESULTS

We firstly explore the model for data with Gaussian noise similarly to Lawrence
et al. [8] and Gao et al. [4], comparing this for both of the TFs and looking
at how the predictions are affected by the issues with identifiability. We then
use the data simulated with the more biologically realistic noise from eq. (18),
looking at how this effects our ability to make predictions on the more realistic
TF activity from Figure 2. We look at this over a variety of different values for
σµ and σε with the aim of comparing the effect of this as this values increases.

4.1 Gaussian Noise

Scientific interest leads to the desire to estimate both the original TF profile and
the kinetic parameters of the down steam genes. Figure 3a shows the observed
points available (in the form of black dots), with no points observed directly
observable from the TF profile in Figure 3b. Using the Gaussian noise model
as in Lawrence et al. [8] leads to an accurate estimate in this case with only
a limited number of points. Estimates were found to vary in accuracy and
be dependent on the number of observed points as well as their spacing and
location. More points, evenly spaced will ultimately lead to the best prediction.
However if points are not observed accurately or are not observed at crucial
points on the profile then estimates can lose the shape of the profile. For instance
in this case without accurate points on the bumps, inference can miss the double
peak of the profile.
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(b) Transcriptional Factor

Figure 4: A summary of the expected distribution of data for the simulated
(a) Downstream Genes and (b) Transcriptional Factor, based on the TF that is
subject to post-translation modification. Solid red lines indicate the true mean
of the distributions, the solid black lines give the best prediction and the dotted
lines indicate the region within two standard deviations. Solid points indicate
the observed data from the gene profiles. They are modelled with Gaussian
noise.

However further simulations on the TF activity profile generated for Figure 2
showed that there appeared to be identifiability issues with regards to predicting
f(t). This was further investigated and it was found that there were both issues
with both of the TF activity profiles used in this paper. It was found that the
accurate results given in Figure 4 were coincidental and it was still possible this
model could still deviate away from the true profile of f(t). In a more practical
sense this is a worrying problem as it can mean that predictions can easily be
interpreted as accurate when this is not the case.

This was further investigated and it can be seen in eq. (17) and eq. (19) how
these identifiability issues occur. In practical terms it comes from the original
form of the ODEs given in eq. (1), where part of the size and shape of f(t) can
be easily absorbed into the parameter as seen in eq. (17). For this reason we
choose to fix both B1 and S1 to their true values. The effect of this can be seen
in the difference between Figures 4 and 5. Although in both Figures the profiles
of the downstream gene activity can be estimated accurately, in Figure 4b we
can see how this is no longer the case with the TF profile. Fixing B1 and S1

fixes this problem, as shown in Figure 5b, and these parameters remain fixed
for the remainder of this paper.
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(b) Transcriptional Factor

Figure 5: A summary of the expected distribution of data for the simulated
(a) Downstream Genes and (b) Transcriptional Factor, based on the TF that is
subject to post-translation modification. Solid red lines indicate the true mean
of the distributions, the solid black lines give the best prediction and the dotted
lines indicate the region within two standard deviations. Solid points indicate
the observed data from the gene profiles. They are modelled with Gaussian
noise and in this case the parameters S1 = 1 and B1 = 0 are fixed.

4.2 Non-Gaussian Noise

Durbin et al. [3] and Huber et al. [6] showed that transcriptional data is
subject to noise of the form given in eq. 18. However previous work, [4, 5, 16],
has been completed under the assumption of Gaussian noise to make the method
tractable. But intuitively there is a significant difference between these types
of noise and this can be seen in the form of QQ-plots given in Figure 6. In
Figure 6b the non-Gaussian noise from eq. 18 shows considerable deviations
from Gaussian noise, violating the modelling assumptions.
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(a) Gaussian Noise
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(b) Non-Gaussian Noise

Figure 6: QQ-plots showing the deviations from Gaussian error for data gener-
ated with Gaussian and non-Gaussian noise.

Figure 7 gives box plots of the errors in the estimation of the parameters from
eq. (1). It shows that there is very little difference between the estimates based
on data with Gaussian and non-Gaussian noise when the standard deviation is
low. However when the standard deviation becomes greater we find that the
non-Gaussian noise begins to have a far more negative influence on the inference.
Often the estimates have a strong bias away from the true parameter values and
there also appears to be an increase in the variance of the estimates over the
situation where we have Gaussian noise. This could be partially down to use
of numerical estimates for the variance of the equivalent Gaussian noise model,
however part of this increase is still likely to come from the noise model.

Figure 8 shows box plots illustrating the accuracy of estimates for the gene
and TF profiles generated from the model based on Michaelis-Menten kinetics.
The results show that for the gene profile, x1 in Figure 8a, where the expression
levels are low, estimates are very similar and the differences occur relatively
randomly. For the genes with higher expression levels however, the differences
are very much more pronounced and our results have shown that the non-
Gaussian noise can cause a strong bias within the estimates, where this effect
is exaggerated when the standard deviation get larger. Interestingly Figure 8c
shows only an increased variance for the non-Gaussian noise and only a small
bias when the standard deviation is increased. This seems unusual as this would
likely be the gene with the most differences in terms of the comparison between
Gaussian and non-Gaussian noise and in hindsight more simulations should
possibly be run to give more comprehensive results.
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Figure 7: Box plots of the error of ODEs parameters. Box plots for the Gaussian
and non-Gaussian noise are given in yellow and green respectively, also indicated
by ‘A’ and ‘M’ relating to where the noise is additive or multiplicative. The
standard deviations used for σµ and σε are given under each box plot and
represent the values {0.01,0.03,0.1,0.3}.

5 DISCUSSION AND FURTHER WORK

In this paper we have looked at the method proposed by Gao et al. [4] and shown
how this can be used on a a more realistic TF profile based on Michaelis-Menten
kinetics. We have looked at some of the issues associated with the method as
well as providing explicit solutions to the equations required to fit the model.
We have further looked at how a more realistic non-Gaussian noise proposed by
Durbin et al. [3] affects the ability of the model to provide accurate parameter
and profile estimates, showing how the estimates can give a strong bias when
gene expression levels are high and this is not accounted for.
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(b) Gene Profile, x2
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Figure 8: Box plots of the error of gene and TF profiles. Box plots for the
Gaussian and non-Gaussian noise are given in yellow and green respectively also
indicated by ‘A’ and ‘M’ relating to where the noise is additive or multiplicative.
The standard deviations used for σµ and σε are given under each box plot and
represent the values {0.01,0.03,0.1,0.3}

This noise form has been shown in a variety of microarray data experiments
and ideally we would want to take account of this if possible. The work of
Snelsen et al. [15] has shown potential for this through the use of the warped
Gaussian process, however this method has proved difficult to implement when it
is necessary to fix parameters due to the identifiability issues shown by Barenco
et al. [1]. There is potential for finding a way of implementing this method into
our current method, however the level of variance in microarray data must be
taken into account when considering the worth of such work. Consultation with
biologists in this field would provide an idea as to what level of variance are
likely to be, at which point our results may help to give guidance as to whether
such work is necessary.
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Other further work in this area leads to looking at non-linear examples
through the use of a MAP-Laplace approximation, such as in Lawrence et al.
[8]. In this case eq. (1) and eq. (2) are extended to the form;

dxi(t)

dt
= Bi + Sigi(f(t))−Dixi(t) (23)

xi(t) = αi exp(−Dit) +
Bi
Di

+ Si

∫ t

0

exp(−Di(t− u))gi(f(u))du (24)

where g(.) is a non-linear function of the concentration of the active TF. Note
also that the transient terms now become necessary for this model.

One example of a biologically meaningful non-linear function is

gi(f(t)) =
exp(f(t))

exp(f(t)) + γi
(25)

where an additional parameter γi has to be estimated for each downstream
gene. This helps to correct two key issues with the more simple linear model.
Firstly it takes into account that the concentrations must always remain positive
by modelling the log concentrations, meaning that exp(f(t)) now models the
concentration. Secondly it takes into account that the concentrations begin to
become saturated at higher levels of TF activity.
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Appendices

A Cross-Covariance between Target Genes

The expression levels of the target genes over time, {xi(t)}Gi=1, are given in
terms of the transcription factor in eq. (2). This gives the formula for the
cross-covariance shown in eq. (8) and repeated below

kxj ,xk
(t, t′) = SjSk exp(−Djt−Dkt

′)

∫ t

0

exp(Dju)

×
∫ t′

0

exp(Dku
′)kf,f (u, u′)du′du

where the transient terms have been ignored. As stated, when using an RBF
kernel this integral becomes tractable and can be solved using a Laplace trans-
formation. The solution to the integral can then be derived in the following
manner

kxj ,xk
(t, t′) = SjSk exp(−Djt−Dkt

′)

∫ t

0

exp(Dju)

×
∫ t′

0

exp(Dku
′)a2 exp

(
− 1
l2 [u− u′]2

)
du′du

= a2SjSk exp(−Djt−Dkt
′)

∫ t

0

exp(Dju)

×
∫ t′

0

exp

(
− 1

l2
[u2 − 2uu′ + u′2 −Dkl

2u′]

)
du′du.

We can then complete the square and move any factors that are constant out
of the integral

kxj ,xk
(t, t′) = a2SjSk exp(−Djt−Dkt

′)

∫ t

0

exp

(
1

l2
[u+ 1

2 l
2Dk]2

)
× exp

(
Dju−

u2

l2

)∫ t′

0

exp

{
− 1

l2
[u′ − (u+ 1

2 l
2Dk)]2

}
du′du

= a2SjSk exp(−Djt−Dkt
′) exp(γ2k)

∫ t

0

exp((Dj +Dk)u)

×
∫ t′

0

exp

{
− 1

l2
[u′ − (u+ 1

2 l
2Dk)]2

}
du′du.

where γk = Dkl
2 . At this point the manipulation becomes clearer if a substitution

is used, in this case let s = 1
l [u
′ − (u+ 1

2 l
2Dk)] so

kxj ,xk
(t, t′) = a2SjSkl exp(−Djt−Dkt

′) exp(γ2k)

×
∫ t

0

exp((Dj +Dk)u)

∫ s′′

s′
exp(−s2)dsdu

where the l comes from the change of variable and the upper and lower bounds of
the second integral are given as s′′ = 1

l [t
′−(u+ 1

2 l
2Dk)] and s′ = 1

l [−(u+ 1
2 l

2Dk)]
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respectively. Defining the error function to be erf(x) = 2√
π

∫ x
0

exp(−y2)dy and

splitting the integral gives

kxj ,xk
(t, t′) =

√
π

2
a2SjSkl exp(−Djt−Dkt

′) exp(γ2k)

×
∫ t

0

exp((Dj +Dk)u)[erf(s′′)− erf(s′)]du

=

√
π

2
a2SjSkl exp(−Djt−Dkt

′) exp(γ2k)

×
∫ t

0

exp((Dj +Dk)u)

[
erf

(
t′ − u
l
− γk

)
+ erf

(u
l

+ γk

)]
du.

Solving the first integral ultimately leads to a further integral still being required
to be solved. In order to make this calculation visibly easier to follow, the
integral is derived separately from the main formula in two separate parts (see
Appendix A.1). Once this has been solved it can be put back into the formula
in order to find the solution

kxj ,xk
(t, t′) =

√
πa2SjSkl

2(Dj +Dk)
exp(−Djt−Dkt

′) exp(γ2k)

[
exp((Dj +Dk)t) erf

(
t′ − t
l
− γk

)
− erf

(
t′

l
− γk

)
− exp(−γ2k)

× exp(γ2j ) exp((Dj +Dk)t′)

{
erf

(
t− t′

l
− γj

)
+ erf

(
t′

l
+ γj

)}
+ exp((Dj +Dk)t) erf

(
t

l
+ γk

)
− erf(γk)

− exp(−γ2k) exp(γ2j )

{
erf

(
t

l
− γj

)
+ erf(γj)

}]
where γj =

Dj l
2 and γk = Dkl

2 . This can then be rearrange to give the solution
stated in eq. (10).

A.1 Integral Solutions

In order to calculate the cross-covariance between two target genes, the following
integral must be solved∫ t

0

exp((Dj +Dk)u)

[
erf

(
t′ − u
l
− γk

)
+ erf

(u
l

+ γk

)]
du.

This can derived most simply by firstly splitting it into two and then integrating
by parts. In this way the first part of the integral is given by

I1 =

∫ t

0

exp((Dj +Dk)u) erf

(
t′ − u
l
− γk

)
du
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which can be solved in the following manner

I1 =
1

Dj +Dk

[
exp((Dj +Dk)u) erf

(
t′ − u
l
− γk

)
+

2

l
√
π

∫
exp((Dj +Dk)u) exp

(
−
(
t′ − u
l
− γk

)2
)
du

]t
0

=
1

Dj +Dk

[
exp((Dj +Dk)t) erf

(
t′ − t
l
− γk

)
− erf

(
t′

l
− γk

)
+

2

l
√
π

∫ t

0

exp((Dj +Dk)u) exp

(
− 1

l2
[t′ − u− 1

2 l
2Dk]2

)
du

]
.

Again to make the formula more manageable we make a substitution, so let
P = exp((Dj + Dk)t) erf( t

′−t
l − γk) − erf( t

′

l − γk). Then as before we work
towards a situation where we can complete the square

I1 =
1

Dj +Dk

[
P +

2

l
√
π

∫ t

0

exp((Dj +Dk)u)

× exp

(
− 1

l2
[u2 − 2u(t′ − 1

2 l
2Dk) + (t′ − 1

2 l
2Dk)2]

)
du

]
=

1

Dj +Dk

[
P +

2

l
√
π

exp

(
− 1

l2
[t′ − 1

2 l
2Dk]2

)
×
∫ t

0

exp

(
− 1

l2
[u2 − 2u(t′ + 1

2 l
2Dj − 1

2 l
2Dk + 1

2 l
2Dk)]

)
du

]
=

1

Dj +Dk

[
P +

2

l
√
π

exp(γ2j − γ2k) exp(t′(Dj +Dk))

×
∫ t

0

exp

(
− 1

l2
[u− (t′ + 1

2 l
2Dj)]

2

)
du

]
.

We then once again make a substitution to simplify, z = 1
l [u − (t′ + 1

2 l
2Dj)].

This then gives the upper and lower bounds as z′′ = 1
l [t − (t′ + 1

2 l
2Dj)] and

z′ = 1
l [−(t′ + 1

2 l
2Dj)] respectively. Then splitting these as before gives the

solution

I1 =
1

Dj +Dk

[
P + exp(γ2j − γ2k) exp(t′(Dj +Dk)){erf(z′′)− erf(z′)}

]
=

1

Dj +Dk

[
exp((Dj +Dk)t) erf

(
t′ − t
l
− γk

)
− erf

(
t′

l
− γk

)
+ exp(γ2j − γ2k) exp(t′(Dj +Dk))

{
erf

(
t− t′

l
− γj

)
+ erf

(
t′

l
+ γj

)}]
.

The second part of the integral is given as

I2 =

∫ t

0

exp((Dj +Dk)u) erf
(u
l

+ γk

)
du
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which again be solved through integration by parts

I2 =
1

Dj +Dk

[
exp((Dj +Dk)u) erf

(u
l

+ γk

)
− 2

l
√
π

∫
exp((Dj +Dk)u) exp

(
−
(u
l

+ γk

)2)
du

]t
0

=
1

Dj +Dk

[
exp((Dj +Dk)t) erf

(
t

l
+ γk

)
− erf(γk)

− 2

l
√
π

∫ t

0

exp((Dj +Dk)u) exp

(
− 1

l2
[u+ 1

2 l
2Dk]2

)
du

]
.

Again for simplicity, we denote Q = exp((Dj +Dk)t) erf
(
t
l + γk

)
− erf(γk).

I2 =
1

Dj +Dk

[
Q− 2

l
√
π

∫ t

0

exp((Dj +Dk)u)

× exp

(
− 1

l2
[u2 + l2Dku+

l4D2
k

4
]

)
du

]
=

1

Dj +Dk

[
Q− 2

l
√
π

exp(−γ2k)

×
∫ t

0

exp

(
− 1

l2
[u2 − 2u( 1

2Dj l
2 − 1

2Dkl
2 + 1

2Dkl
2)]

)
du

]
=

1

Dj +Dk

[
Q− 2

l
√
π

exp(γ2j − γ2k)

∫ t

0

exp
(
− 1
l2

[
u− 1

2Dj l
2
]2)

du

]
.

Again we use a similar substitution to before, letting v = 1
l [u −

1
2Dj l

2]. This
gives the upper and lower bounds respectively as v′′ = 1

l [t −
1
2Dj l

2] and v′ =
1
l [−

1
2Dj l

2]. Splitting the integral then leads to the solution to I2

I2 =
1

Dj +Dk

[
Q− exp(γ2j − γ2k){erf(v′′)− erf(v′)}

]
=

1

Dj +Dk

[
exp((Dj +Dk)t) erf

(
t

l
+ γk

)
− erf(γk)

− exp(γ2j − γ2k)

{
erf

(
t

l
− γj

)
+ erf(γj)

}]
.

B Cross-Covariance between Target Genes and
the Transcription Factor

In a similar manner to finding kxj ,xk
(t, t′) we must also find kxj ,f (t, t′). In order

to do this we must solve the integral in eq. (11), given below

kxj ,f (t, t′) = Sj exp(−Djt)

∫ t

0

exp(Dju)kf,f (u, t′)du
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where the transient terms have again been ignored. Again when an RBF kernel
is chosen we can use Laplace transformation to solve the integral as follows

kxj ,f (t, t′) = Sj exp(−Djt)

∫ t

0

exp(Dju)a2 exp

(
− 1

l2
[u− t′]2

)
du

= a2Sj exp(−Djt)

∫ t

0

exp

(
− 1

l2
[u2 − 2ut′ + t′2 −Dj l

2u]

)
du.

We can then complete the square and move all of the factors that are constant
outside of the integral

kxj ,f (t, t′) = a2Sj exp(−Djt) exp

(
[t′ + 1

2Dj l
2]2

l2

)
exp

(
− t
′2

l2

)
×
∫ t

0

exp

(
− 1

l2
[u− (t′ + 1

2Dj l
2)]2
)
du

= a2Sj exp(−Dj(t− t′)) exp(γ2j )

×
∫ t

0

exp

(
− 1

l2
[u− (t′ + 1

2Dj l
2)]2
)
du

where γj = 1
2Dj l. A substitution of s = 1

l [u − (t′ + 1
2Dj l

2)] then makes the
manipulation easier to manage

kxj ,f (t, t′) = a2Sj l exp(−Dj(t− t′)) exp(γ2j )

∫ s′′

s′
exp(−s2)ds

where l comes from the change of variable and the upper and lower bounds are
given by s′′ = 1

l [t−t
′− 1

2Dj l
2] and s′ = 1

l [−t
′− 1

2Dj l
2] respectively. Defining the

error function erf(x) as before and splitting the integral allows the derivation of
the final solution

kxj ,f (t, t′) =a2Sj l exp(−Dj(t− t′)) exp(γ2j )

×

[∫ s′′

0

exp(−s2)ds−
∫ s′

0

exp(−s2)ds

]

=

√
π

2
a2Sj l exp(−Dj(t− t′)) exp(γ2j )[erf(s′′)− erf(s′)]

=

√
π

2
a2Sj l exp(−Dj(t− t′)) exp(γ2j )

×
[
erf

(
t− t′

l
− γj

)
+ erf

(
t′

l
+ γj

)]
.

C Gradients of the Log Likelihood for GP

In order to learn the hyper parameters, θ, of the model it is necessary to max-
imise the likelihood function p(y|θ) obtained from eq. (14). This is given in the
form of a multivariate Gaussian distribution, given as

ln p(y|θ) = −1

2
ln |C(θ)| − 1

2

(
y− B

D

)>
C(θ)−1(y− B

D )− N
2 ln(2π).
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For non-linear optimisation techniques, such as the conjugate gradients and
Quasi-Newton methods, the gradient of the log likelihood is helpful for giving
accurate and consistent estimates. Using some basic results for the deriva-
tion of matrices, see [2], the gradient is given as follows for the parameters
a2, l, S1, S . . . , SG and σ2

∂

∂θi
ln p(y|θ) = −1

2
Tr

(
C(θ)−1

∂C(θ)

∂θi

)
+

1

2

(
y− B

D

)>
C(θ)−1

∂C(θ)

∂θi
C(θ)−1(y− B

D ) (26)

where the trace function is defined as to be the sum of the elements of the main
diagonal of the matrix. The result is also useful for B1, . . . , BG and D1, . . . , DG,
although not directly applicable due to the parameter values also occurring
outside of C(θ).

For the linear model θ = (a2, l, B1, . . . , BG, S1, . . . , SG, D1, . . . , DG, σ
2) where

G = 3 in the example and a gradient function must be found for each of these
hyper parameters. All of these gradient functions can be found through dif-
ferentiation by parts, although the expression often becomes very large. The
expression for the derivative of l is given by

∂

∂l
kxj ,xk

(t, t′) =
1

l
kxj ,xk

(t, t′) + ldif1 + ldif2

where kxj ,xk
(t, t′) are elements of K(θ), so have no noise, and where

ldif1 =

√
πla2SjSk

2(Dj +Dk)

[
1

2
D2
kl exp(γ2k)

×
{

exp(Dk(t− t′))
[
erf

(
t′ − t
l
− γk

)
+ erf

(
t

l
+ γk

)]
− exp(−(Djt+Dkt

′))

[
erf

(
t′

l
− γk

)
+ exp(γk)

]}
+

1

2
D2
j l exp(γ2j )

×
{

exp(Dj(t
′ − t))

[
erf

(
t− t′

l
− γj

)
+ erf

(
t′

l
+ γj

)]
− exp(−(Djt+Dkt

′))

[
erf

(
t

l
− γj

)
+ exp(γj)

]}]
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and

ldif2 =
la2SjSk
Dj +Dk

[
exp(Dk(t− t′)) exp(γ2k)

×
{

exp

(
−
(
t′ − t
l
− γk

)2
)(
−Dk

2
− t′ − t

l2

)

+ exp

(
−
(
t

l
+ γk

)2
)(

Dk

2
− t

l2

)}
− exp(−(Djt+Dkt

′)) exp(γ2k)

×
{

exp

(
−
(
t′

l
− γ2k

)2
)(
−Dk

2
− t′

l2

)
+ exp(−γ2k)

Dk

2

}
+ exp(Dj(t

′ − t)) exp(γ2j )

×
{

exp

(
−
(
t− t′

l
− γj

)2
)(
−Dj

2
− t− t′

l2

)

+ exp

(
−
(
t′

l
+ γj

)2
)(

Dj

2
− t′

l2

)}
− exp(−(Djt+Dkt

′)) exp(γ2j )

×
{

exp

(
−
(
t

l
− γ2j

)2
)(
−Dj

2
− t

l2

)
+ exp(−γ2j )

Dj

2

}]
.

This can be put into eq. (26) to give the function for the gradient for l.
The gradient functions for B1 is given by

∂

∂B1
ln p(y|θ) = −1

2

[
(y− B

D )>C(θ)−1(− 1
D1
,0,0)

+ (− 1
D1
,0,0)>C(θ)−1(y− B

D )
]

where the vector (− 1
D1
,0,0) has the same length as y with each part having

a length corresponding to the number of observations from the related gene.
Similar gradient functions are available for B2, B3, etc., where the above vector
is replaced by (0,− 1

D2
,0) for B2 for example when G = 3.

The gradient function for S1, . . . , SG and D1, . . . , DG is more complicated
due to the varying occurrence of the Si and Di within the covariance matrix.
This can be illustrated if we think of the covariance matrix as being made up
of G2 equal sized smaller matrices. Thinking in this manner means that for the
parameter S1 for example, the small matrix at the top left of the larger matrix
has Sj = Sk = S1. Similarly the small matrices in the same row or column
as this have either Sj = S1 and Sk 6= S1 or Sj 6= S1 and Sk = S1. For all of
the other matrices Sj 6= S1 and Sk 6= S1, which ultimately means that different
elements of the matrix have different equations for calculating the gradient.

Looking specifically at the parameters, S1, . . . , SG, where Sj = Si and Sk =
Si the differential is given by

∂

∂Si
kxi,xi

(t, t′) =
2

Si
kxi,xi

(t, t′).
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Similarly for Sj = Si and Sk 6= Si or Sj 6= Si and Sk = Si the differential is
given by

∂

∂Si
kxj ,xk

(t, t′) =
1

Si
kxj ,xk

(t, t′).

Finally where Sj 6= Si and Sk 6= Si, the differential is equal to zero. Combining
these various elements gives the matrix for the differential and this can be put
into eq. (26) to give the function for the gradient for Si.

The gradient function for D1 is given by

∂

∂D1
ln p(y|θ) = −1

2
Tr

(
C(θ)−1

∂C(θ)

∂D1

)
− 1

2
(B1

D2
1
,0,0)>C(θ)−1(y− B

D )

− 1
2 (y− B

D )>C(θ)−1(B1

D2
1
,0,0)

+
1

2
(y− B

D )>C(θ)−1
∂C(θ)

∂D1
C(θ)−1(y− B

D ). (27)

Again similarly to B1, . . . , BG, this can be adapted for D2, D3, etc., where the
vector (B1

D2
1
,0,0) is replaced (0, B2

D2
2
,0) for example for D2 when G = 3.

We are now required to work out the differential of Di to put into eq. (27).
Again different elements of the matrix have varying differentials, so firstly where
Dj = Di and Dk = Di we have

∂kxi,xi(t, t
′)

∂Di
= ( 1

2Dil
2 − 1

Di
)kxi,xi(t, t

′) +Di,i,dif1 +Di,i,dif2

where

Di,i,dif1 =

√
πla2S2

i

4Di
exp(γ2i )

×
[
(t− t′) exp(−Di(t

′ − t))
{

erf

(
t′ − t
l
− γi

)
+ erf

(
t

l
+ γi

)}
+ (t+ t′) exp(−Dj(t+ t′))

{
erf

(
t′

l
− γi

)
+ erf(γi)

}
+ (t′ − t) exp(−Di(t− t′))

{
erf

(
t− t′

l
− γi

)
+ erf

(
t′

l
+ γi

)}
+ (t+ t′) exp(−Dj(t+ t′))

{
erf

(
t

l
− γi

)
+ erf(γi)

}]
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and

Di,i,dif2 =
l2a2S2

i

4Di
exp(γ2i )

×
[
exp(−Di(t

′ − t))
{
− exp

(
−
(
t′ − t
l
− γi

)2
)

+ exp

(
−
(
t

l
+ γi

)2
)}

− exp(−Di(t+ t′))

{
− exp

(
−
(
t′

l
− γi

)2
)
− exp(−γ2i )

}

+ exp(−Di(t− t′))
{
− exp

(
−
(
t− t′

l
− γi

)2
)

+ exp

(
−
(
t

l
+ γi

)2
)}

− exp(−Di(t+ t′))

{
− exp

(
−
(
t

l
− γi

)2
)

+ exp(−γ2i )

}]
Similarly when Dj = Di and Dk 6= Di, then the differential is given by

∂kxi,xk
(t, t′)

∂Di
= − 1

Di +Dk
kxi,xk

(t, t′) +Di,k,dif1 +Di,k,dif2 +Di,k,dif3

where

Di,k,dif1 =

√
πla2SiSk

2(Di +Dk)

{
t exp(γ2k) exp(−(Dit+Dkt

′))

×
[
erf

(
t′

l
− γk

)
+ erf(γk)

]
+ 1

2Dil
2 exp(γ2i ){

exp(−Di(t− t′))
[
erf

(
t− t′

l
− γi

)
+ erf

(
t′

l
+ γi

)]
− exp(−(Dit+Dkt

′))

[
erf

(
t

l
− γi

)
+ erf(γi)

]}
,

Di,k,dif2 =

√
πla2SiSk

2(Di +Dk)
exp(γ2i )

{
(t′ − t) exp(−Di(t− t′))

×
[
erf

(
t− t′

l
− γi

)
+ erf

(
t′

l
+ γi

)]
+ t exp(−(Dit+Dkt

′))

×
[
erf

(
t

l
− γi

)
+ erf(γi)

]}
and

Di,k,dif3 =
l2a2SiSk

2(Di +Dk)
exp(γ2i )

{
exp(−Di(t− t′))

×
[
− exp

(
−
(
t− t′

l
− γi

)2
)

+ exp

(
−
(
t′

l
+ γi

)2
)]

+ exp(−(Dit+Dkt
′))

[
exp

(
−
(
t

l
− γi

)2
)
− exp(−γ2i )

]}
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There is also a similar expression also available for Dj 6= Di and Dk = Di, where
t and t′ are swapped and Dj replaces Dk. Then similarly to S, when Dj 6= Di

and Dk 6= Di, then this part of the differential is equal to zero. Once calculated,
all parts of the differential can be combined and used within eq. (27).

Finally an expression must be found for the gradient of σ2 and a2. By
eq. (14) it immediately become obvious that that the derivative for σ2 is simply
the identity matrix of the appropriate length. This can then be easily be used
in eq. (26) to give the gradient function as required. The derivative for a2 can
also be simply used eq. (26) and this is given by

∂

∂a2
kxj ,xk

(t, t′) =
1

a2
kxj ,xk

(t, t′).
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