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ABSTRACT

Context. In transverse coronal loop oscillations, two periodicities have been measured simultaneously and are interpreted as the fun-
damental kink mode (with period P;) and the first harmonic (with period P,). Deviations of the period ratio P /2P, from unity provide
information about the extent of longitudinal structuring within the loop.

Aims. Here we develop an analytical approximation that describes the shift in P, /2P, in terms of the ratio L/A. of the length 2L of a
coronal loop and the density scale height A..

Methods. We study the MHD wave equations in a low S plasma using the thin tube approximation. Disturbances are described by a
differential equation which may be solved for various equilibrium density profiles, obtaining dispersion relations in terms of Bessel
functions. These dispersion relations may be used to obtain analytical approximations to the periods P; and P,. We also present a
variational approach to determining the period ratio and show how the WKB method may be used.

Results. Analytical approximations to the period ratio P;/2P, are used to shed light on the magnitude of longitudinal structuring in
a loop, leading to a determination of the density scale height. We apply our formula to the observations in Verwichte et al. (2004) and
Van Doorsselaere et al. (2007), obtaining the coronal density scale height.

Conclusions. Our simple formula and approximate approaches highlight a useful analytical tool for coronal seismology. We demon-
strate that P, /2P; is linked to the density scale height, with no need for estimates of other external parameters. Given the accuracy of

current observations, our formula provides a convenient means of determining density scale heights.
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1. Introduction

In the past techniques in coronal seismology have rested on the
accuracy of relatively uncertain input parameters. For example,
Roberts et al. (1984) argued that radio observations of coro-
nal oscillations could be used in combination with calculations
of the magnetohydrodynamic (MHD) modes of oscillation of a
coronal flux tube to determine in situ physical conditions in the
inhomogeneous corona. More recently, Nakariakov & Ofman
(2001) used the theory of the fast kink mode combined with
TRACE observations to infer the magnetic field strength in a
coronal loop, given reasonable estimates of plasma density. An
extensive review of coronal seismology is given in Nakariakov
& Verwichte (2005).

It is important in coronal seismology to reduce the need for
input parameters. Observations of higher harmonics, together
with the more readily determined fundamental standing har-
monic of a coronal loop, promises to shed light on the longi-
tudinal structuring in a loop (Andries et al. 2005a; Andries et al.
2005b; Goossens et al. 2006; McEwan et al. 2006; Dymova &
Ruderman 2006a,b, 2007). A first observation was reported in
Verwichte et al. (2004) where the fundamental kink mode and
its first harmonic were observed simultaneously in an oscillating
coronal loop. More recently, van Doorsselaere et al. (2007) also
observed multiple harmonics oscillating in a coronal loop and
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obtained measurements of the fundamental period and its first
harmonic with a significantly improved accuracy. Observations
of multiple oscillating harmonics have also been reported in
De Moortel & Brady (2007).

Andries et al. (2005b) argued that the ratio of the period of
the fundamental mode of oscillation, P;, to its first harmonic, of
period P,, contains information about the density stratification
of the loop plasma. In a homogeneous string the ratio P,/2P,
is unity, but it deviates from this value when non-uniformity is
considered; even in the standard loop model of Edwin & Roberts
(1983), density non-uniformity between the inside and outside of
a cylindrical magnetic flux tube creates wave dispersion which,
in turn, causes the period ratio P /2P, to fall below unity, though
the effect is generally not as large as that due to longitudinal den-
sity variation (McEwan et al. 2006). McEwan et al. (2006) stud-
ied the ratio P/2P; in detail and identified the various effects
that contribute towards the shift of this ratio from unity. Their
conclusion is that longitudinal structuring of the plasma has the
greatest impact on the shift of P, /2P, from unity; consequently,
the shift contains information about the longitudinal structuring
of the plasma. Other applications involving the ratio of the fun-
damental mode of oscillation to higher harmonics are discussed
in Erdélyi & Verth (2007).

The thin tube approximation has been widely applied to the
oscillations of photospheric flux tubes, stratified by gravity (see
for example Ryutov & Ryutova 1976; Roberts & Webb 1978,
1979; Spruit 1981; Ferriz Mas & Schiissler 1989; Stix 2004).
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Recently, Dymova & Ruderman (2005, 2006a,b) showed its ap-
plication to prominences and coronal flux tubes. Here, following
Dymova & Ruderman (2006a,b) and McEwan et al. (2006), we
show that the thin tube approximation applied to coronal loops
leads to an analytical determination of the effect of longitudinal
structuring on the kink mode of oscillation. Of particular inter-
est is that we are able to shed light on the nature of the period
ratio P;/2P,, demonstrating its departure from unity as a result
of longitudinal structuring in two specific models of that struc-
turing. The period ratio is also determined by use of a variational
principle and a WKB approach.

2. Thin tube model

Consider a zero-f plasma embedded in an uniform magnetic
field By = ByZ. The plasma density pg is considered to be struc-
tured along the magnetic field, so that pg = p((z); this arises
naturally as a result of gravitational stratification, temperature
stratification or of non-uniform heating of the loop. Then linear
perturbations about such an equilibrium lead to the wave equa-
tions (Diaz et al. 2002; Diaz 2004)

62
aZT — G @Vpr =0, (1)
o? 9? 0
po(2) (@ - C/Z\(Z)a_zz) v+ VL% =0, (2)

where pr denotes the perturbation in total pressure, v, the per-
turbed velocity and the symbol L stands for the components of
the velocity and the gradient perpendicular to the equilibrium
magnetic field. Here ca(z) = Bo/ +/topo(z) denotes the Alfvén
speed which varies along the field because of density variation;
the profile for py(z) is arbitrary. Equations (1) and (2) are valid
inside the loop and also in the loop environment; the boundary
conditions of continuous total pressure and velocity across the
interface are required to connect the two regions. These equa-
tions were solved numerically in Donnelly et al. (2006) and Diaz
et al. (2007).

Dymova & Ruderman (2005, 2006a) have shown from
Egs. (1) and (2) that in the thin tube limit for non-axisymmetrical
kink oscillations the radial velocity v,e'*’ satisfies an equation of
the form

d?v, w? _
d_zz + %Ur = O, (3)
where
2B} 12
=l 4
@ [,Uo 0 (@) +pe (z))] ©@

denotes the kink speed ¢k in a tube with internal plasma den-
sity po(z) = pi(z) and environment density p.(z). Hereafter, the
subscripts “i” and “e” denote quantities internal or external to
the loop, respectively. The thin tube Eq. (3) is amenable to an
analytical treatment. Here we consider the solution of (3) for
two profiles of cﬁ(z), an exponential profile and a linear profile.
A number of other profiles have been explored by Dymova &
Ruderman (2006a,b) and Erdélyi & Verth (2007). Notice that
all the profiles discussed in this paper are symmetric around the
z = 0 plane, so we classify the solutions in even and odd modes,
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and we concentrate in the region with 0 < z < L. Using symmet-
ric profiles means also that at the apex point z = 0 there is a cusp
unless

d
L o,
dz =0

&)

which is not satisfied by some of the profiles discussed in the
paper or in previous literature. However, the effects of this cusp
are not particularly relevant for the period ratio, but it should be
kept in mind.

2.1. The exponential profile

We consider the case of an exponential density profile. Suppose
that the plasma densities p;(z) inside and p.(z) outside the loop
are both exponentials with the same scale height A.:

pi@) = pi(0)e™,  pe(2) = pe(0)e™; (6)
the density pi(z) increases from p;(0) at the loop apex (z = 0)
to pi(0)el’™ at the loop footpoint (z = L). For this choice of
profile, the square of the kink speed ci(z) = cﬁ(O)e‘z/ Ac is an
exponentially decreasing function of z, and Eq. (3) becomes
d%v, w?

ey = 0.
d2 * (0)

(N

Equation (7) may be solved in terms of the zeroth order Bessel
functions Jy and Yy (Abramowitz & Stegun 1964), yielding
0 (2) = AJo (1e2™) + BYy (2e/2), (8)
where 1 = 2A.w/ck(0).

Consider the standing modes of oscillation of a loop of
length 2L. Line-tying at the photospheric/chromospheric base
requires that v, = 0 at z = L. Conditions at the loop apex z = 0
determine the modes of oscillation. For even modes, the radial
velocity v, is symmetric about the loop apex so dv,/dz = 0 at
z = 0; the oscillation has a maximum or minimum at the loop
apex. The dispersion relation for the even modes follows from
Eq. (8) and these boundary conditions:

T () Yo (2e/2%) = ¥ () Jo (2eH*M) = 0. 9)
Here a dash (") denotes the derivative of a Bessel function:
J§(1) = dJy/dz calculated at z = A.

Similarly, the odd modes have a radial motion v, that has a
node at the loop apex z = 0 as well as the loop base z = L, and
these modes satisfy the dispersion relation
Jo (1) Yo (2e/2%) = ¥, () Jo (2eH*M) = 0. (10)
We consider approximate solutions of the dispersion rela-
tions (9) and (10). Since

2 1172
e peif )

a0 T2l ta (an

2 CAe

the parameter A is large whenever w > ¢x(0)/2A.. Standing kink
waves in a uniform loop of length 2L result in periods 4L/ncy,
withn = 1,2,..., giving 4 > 1 whenever L/A. < nr; so we
may expect A > 1 in loops that are much shorter than 7A.. This
is essentially the case of weak longitudinal stratification.
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Suppose, then, that A is large. We may then employ the ex-
pansions for Bessel functions of large arguments (Abramowitz
& Stegun 1964):

2 9
Jo(Z2) = = ((1 - 128Z2)C0S Z-n/4)
v o sin (Z—7r/4)), (12)
2 9
Y()(Z) = &((l—m)sln(z—ﬂ'/él)
1
- gcos(Z—ﬂ/él)), (13)
I (Z) ~ 1,71'%(—C0S(Z—37l'/4)
3 .
+ 3z sin(Z — 371'/4)) , (14)
and
Y, (2) = ,/ﬂiz(—sin(Z—snm)
3
A Z- 377/4)) . (15)

Substituting these expansions into Eq. (9), we obtain for the even
mode

1 6 9
(oo - 22

xcot[ﬁ(eL/2A°—l)]+$3e:;% =0, (16)

we have neglected terms of order 173,

Writing 2 = (2Q)/(L/A;) and Q = 7/2 + (L/7A)Q; +
(LITA)*Qy + ..., we may obtain an equation approximating
the first zero of Eq. (16), i.e. the fundamental period P; for
L/A. < 7

L 1 2 L\ Q Vg

__Ql__ — — 4+ —

A\ 2 8 A b 16
ﬂ'Q] 7T3 L 3

+QH+—+—|+0 =0.
S 48) (ﬂAC)

This determines Q; and €,. Thus, for the even mode, Q = Qeven
where

A7)

P& T 1 L\
r_r I
+(96 16 Zﬂ)(ﬂAc) i (18)

Equation (18) determines the period P, = 27/w of the funda-
mental mode of the loop as a whole:

19)
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where Py is the fundamental period of a fast kink wave in a uni-
form loop (A, — ),

12
4L L1 ot

Py = =4— |- 1+_1 .

£ 0) CA1[2( 2 H

cAe

(20)

In the limit of a uniform loop (A, — o), Eq. (19) reduces to
P; = Px.

In a similar way, expanding Eq. (10), we obtain for the odd
mode

1 2 1 2 1
T 12842\ 9el/2Ad + eL/A:

x tan [ 2 (et - 1)] + é -1 _ 0, 1)

which, expanded as a series in L/wA., yields

eL/2A

n( L oo LY
- — +[—=-= . 22
Todd ST Y (ﬂAC) (48 32)(77AC) @2)
This gives the approximation of P, to second order:
Py/2
Py = L/ - 23)

-5 (k) + (5 - 5) (k)

Equation (23) gives the period of the first harmonic of the loop
as a whole.

2.2. The linear profile

It is of interest to consider other profiles of ci(z) in addition
to the exponential case. Consider the case when the kink speed
squared, ci, varies linearly with z:

(@) = ¢ (0)(1 - a2). (24)
The corresponding density profiles are
pi(0) pe(0)
]' = N e = . 25
PO =TS D= s (25)

The density pj(z) increases from p;(0) at the loop apex to
pi(0)/(1 — aL) at the loop base. The parameter « plays the same
role as A;'; indeed, near the loop apex, the exponential profile
gives

_, Z
¢ (2) = c;(0)e ™M =~ ¢} (0) (1 - A—), 2] < Aec. (26)
C
For the profile (24), Eq. (3) becomes
d2 . 2
Sl @7)
dz ¢ (0)(1 - az)
which has solution
0 (@) = (1= (A (4 (1 - a)'?)
+BY, (4 (1 - a2)'?)), (28)

where A; = 2w/cx(0)a.

The dispersion relation for the even kink modes of oscillation
in a thin coronal loop of length 2L, with a linearly varying kink
speed squared (embedded in an atmosphere also with a linearly
varying kink speed squared) is

Jo (D) Y1 (4b) = Yo (A1) J1 (41b) =0 (29)
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where

b=(-al)'* = c(L)/ck(0) (30)

is the ratio of the kink speed at the base to that at the apex. The
odd modes satisfy

Ji () Y (4b) = Y1 (A1) J1 (A1b) = 0. 3D

Again, we may obtain approximate solutions of these dispersion
relations, much as in the exponential case. Following similar
steps than those in Sect. 2.1, one can obtain the following ex-
pressions for the periods of the fundamental mode and its first
harmonic:

(32)

(33)

2= - s
1-5(x)+ (5 -%) %)
where again Py is the fundamental period of a fast kink wave in a
uniform loop. We can see that up to first order they are identical
to their counterparts for the exponential profile, which might be
expected, since the linear profile can be viewed as a first order
approximation (Eq. (26)).

2.3. A variational approach

The thin tube equation, Eq. (3), is amenable to an approximate
treatment, as well as the exact solutions for certain specific pro-
files. Multiplying Eq. (3) by v, and integrating along the loop
from the apex to the base gives

L 2 L
dv; 1
fvr—I;dz+w2f vrz2 dz = 0.
o dz (e ¢9)

The first integral arising here may be treated using integration
by parts. The boundary conditions, v, = 0 at the base (z = L) and
vrdv/dz = 0 at the loop apex, which apply for the even or odd
modes, leads to the results that

(34)

1
2
=, 35
W=7 (35
on use of integration by parts. Here
L 2 L
do 1
I= — | dz, J= v2dz. 36
fo(dz) : fo 2@ (30)

Thus, evaluation of the integrals / and J, given a specific profile
for clz( (z) together with knowledge of the eigenfunction v; (z), de-
termines the frequency w. Equation (35) provides a variational
formulation of our eigenvalue problem used in the Rayleigh-Ritz
procedure (e.g. Morse & Feshbach 1953). We can exploit this
approach here for any specific profile ci (z), by taking trial func-
tions for v, which satisfy the boundary conditions at the loop
apex and base. For example, we may choose

sm(f), for P;.

These trial functions are chosen to give the appropriate be-
haviour for v, (z) that accords with the fundamental mode of pe-
riod P and its first harmonic of period P,. Equation (35) deter-
mines the frequency w (and so the periods P; and P,) for any
choice of profile cﬁ (2), by evaluating the integrals I and J.

(37)
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2.4. WKB approximation

The variational approach leading to Eq. (34) requires trial func-
tions which may either be chosen for simplicity (as in Sect. 2.3)
or by methods that lead to more accurate representations of the
actual eigenfunctions. The WKB method provides a powerful
and convenient means of generating such functions (Bender &
Orszag 1978).

We write Eq. (3) in the form

d2v,
57 TS =0, (38)

s
where

wL (0

= , 7) = , s=2z/L, 39)
Eaor 19T a0 (
Notice that f(0) = 1.

Considering u > 1, we expand v;(s) as

0e(s) = ei(‘DoH+‘D|+(l>z/H)’ (40)

with @g(s), @;(s) and D,(s) to be determined. Substituting
Eq. (40) into (38) allows us to equate powers of u, obtaining
a hierarchy of equations starting with:

—OF +f=0= Dy(s) = fo VFndr

0] - 20,®] =0 = Dy(s) = % log (f(s))
o) — 02 - 20d, =0 =
L) = 4f(f ()
[0) =
- fo RGN

Both @ and @, are real functions of f(s), so the solution to
Eq. (38) may be written in the form

dr.  (41)

ve(s) [A cos (Do + D2 /)

B 1
(fsnt*

+Bsin (Oou + O /p1)] . (42)

The boundary conditions determine the -eigenfrequencies.
Firstly, for the odd modes we require v:(0) = 0, so A = 0; then
the line-tying boundary condition v,(z = L) = 0 leads to

1+ A[n2 = 40(1)Dy(1)

2@0(1) ’

Mo = (43)
which determines u = o, the value of u for the first harmonic
choosing the positive sign. It turns out numerically that the neg-
ative root in Eq. (43) leads to a small u, incompatible with the
assumption u > 1 in the WKB expansion Eq. (40).

Obtaining an explicit expression for the first eigenvalue u =
(1 is more difficult. For the even modes, v/(0) = 0; this gives a
relation between A and B in Eq. (42). The line-tying boundary
condition v.(z = L) = 0 then implies a transcendental equation
for u;:

324 = 57(0) + 4f7(0)
81 f7(0)

Equations (43) and (44) can be solved numerically, and then used
it to obtain an approximation to the period ratio as

tan [@o( Dy + Oo(1)/p1] = (44)

Pr _

Eal 45
2Py 2y “43)
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Higher orders in the WKB approximation could be used if more
accurate approximations are necessary.

Expressions (43) and (44) may be used to approximate the
period ratio for the exponential and linear profiles discussed ear-
lier, and the agreement they give is excellent. These formulae
may also used to approximate the period for different density
profiles, even if analytical or numerical solutions are difficult to
obtain, needing only the integrals in Eq. (41) to be evaluated for
s = 1 and then the transcendental Eq. (44) to be solved to obtain
an approximation for the period ratio.

3. Discussion

We have pointed out a number of ways in which the period ratio
Py /2P, may be determined, using either analytical solutions and
their approximations for specific profiles of ci(z) or by consider-
ing a variational or WKB formulation for these profiles or other
choices. We now return to the exponential profile, with the aim
of using our analytical results to deduce the scale A. of variation
in ci(z) from observations. Other profiles give similar results to
the exponential case.

Consider then the periods P; and P, in a loop that is ex-
ponentially structured (with density profiles given by Eq. (6)).
Equations (19) and (23) determine these periods in terms of Py,
the period of a kink mode in a loop that has no longitudinal
structuring; Px depends upon the loop length 2L, the internal
and external Alfvén speeds, and the internal and external den-
sities. However, by combining P; and P, to form their ratio we
may eliminate Py, obtaining a period ratio P;/2P, which de-
pends upon the ratio L/ A of loop half length L to density scale
height A.:

P 1L (2 5 \LY
=]t ——— || — .
2P, 12 Ac (7T4 327T2)(AC)
It is interesting to note that the linear profile gives a very similar
result to this, with the only change being that the coefficient 5/32
is replaced by 17/32.

Figure 1 shows the variation of P;/2P, with L/A. as deter-
mined for the exponential profile; we show the approximate for-
mula (46) together with the exact solution of the full dispersion
relations (9) and (10). The agreement is excellent (and inciden-
tally also agrees with a full numerical solution of Egs. (1) and (2)
carried out by Diaz et al. 2007).

The distance A. is a measure of the scale of longitudinal
variation in the square of the kink speed, cﬁ. In the exponen-
tial profile, A. is the scale height of ci at all points along the
loop. The assumption of similar profiles in internal plasma den-
sity pi(z) and external plasma density p.(z) allows us to relate A,
to the density scale height. We can express these quantities in
terms of the ratio papex/Pvase Of internal density papex = pi(z = 0)
at the loop apex to the density ppase = pi(L) at the loop base:

(46)

-L L
AC = Papex = ' (47)
n(52) (,’j—)

It is of interest to plot the period ratio P; /2P, as a function of
the density ratio p = pPgpex/Poase- Figure 2 displays the results.
For comparison we have also considered several other profiles:
the linear profile (using the dispersion relations (29) and (31));
the profile discussed by Dymova & Ruderman (2006a), viz.

2712
() = ;(0) [1 ~(1-p") %] : (48)
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Fig. 1. The period ratio P, /2P, for a thin tube with exponential longi-
tudinal structuring. The dashed curve corresponds to the numerically
determined solution of the dispersion relations (9) and (10). The solid
curve corresponds to the analytical approximation Eq. (46).
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S [T
o

Fig.2. The period ratio P,/2P, as a function of the density ratio
Papex/Prase Of internal density p;(z = 0) at the loop apex to density p;(L)
at the loop base. The solid curve corresponds to the exponentially struc-
tured density profile, numerically determined by the solution of disper-
sion relations (9) and (10). Also shown for comparison are the results
for a selection of other profiles, considering the linear profile (dashed
line), the profile discussed by Dymova & Ruderman (2006a), Eq. (48)
(dotted line), the tanh profile (Eq. (50)) with kL = 1 (dot-dashed line)
and the profile discussed by Andries et al. (2005b) (Eq. (49), dot-dot-
dashed line); for these profiles we have used the variational formulation.

the profile discussed by Andries et al. (2005b) (after some al-
gebraic operations to adapt it to our variables), with exponential
structure and the curvature effect on the length along the loop,
viz.

2(2) = cf(0)p' ¢ 2L (49)
and the profile
cﬁ(z) = cﬁ(O) p+-p) tanh k(L —2) | (50)

tanh (kL)

The tanh profile is of particular interest since it recovers the lin-
ear profile in the limit of small kL, but for large kL (e.g. kL = 5
or 10) it produces a boundary layer of rapid change at the base
of the loop. For all of these profiles, when p is close to unity,
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Table 1. Coronal seismology using P;/2P,: scale heights.

M. P. McEwan et al.: Analytical determination of coronal parameters using P,/2P,

Case P /2P, Analytical A (Mm) Numerical A, (Mm) Analytical H. (Mm) Numerical H. (Mm)
C 0.91 £0.04 117 £ 98 121 +97 75+ 62 77 + 62
D 0.79 £ 0.03 49+9 48+ 9 31+6 31+7
E 0.90 +0.03 192 + 68 182 + 68 122 + 43 116 +43
Table 2. Coronal seismology using P;/2P,: density ratio papex/Ovase-
Case P /2P, Exponential Linear Eq. (48) Eq. (49) Eq. (50)

C 091+£0.04 039+0.19 034+022 025+024 0.35+020 0.27+0.24

D 0.79+0.03 0.09 +0.03 - 0.05+0.04 0.07+0.04 -

E 090+0.03 035+0.11 029+0.15 0.20+0.13 0.31+0.11 0.21+0.16

i.e. when papex = Poase, longitudinal structuring is weak and so
P /2P, = 1, the thin tube value in a uniform medium. When lon-
gitudinal structuring is strong, so that papex << Ppase, then P1/2P;
departs strongly from unity. The value of the period ratio, in the
limit of papex < Ppase, 1s calculated using the variational tech-
nique outlined in Sect. 2.3. For the exponential profile, using the
trial functions given by Eq. (37), the period ratio P; /2P, ~ 0.50
when longitudinal structuring is strong. By comparison, for the
linear profile P;/2P; =~ 0.80 when papex < Poase-

The main conclusion to be drawn from Fig. 2 is that all pro-
files give similar period ratios when p.pex is not greatly different
from ppase, but for papex much smaller than ppage there is a sig-
nificant variation in the period ratio with choice of cﬁ(z) profile.
Consequently, other considerations are needed before any con-
fident deduction of pPapex/Pbase May be made from observational
knowledge of the period ratio. Moreover, notice that different
profiles give a range of values for the density ratio, once a value
for P;/2P, has been fixed. Therefore, it should be taken into
account when using Eq. (46) that other density profiles might
give different values, although it provides a handy approxima-
tion for a simple estimation of pupex/Obase Which roughly agrees
with similar profiles. Notice also that the profile in Eq. (49) sat-
isfies the condition in Eq. (5), showing that the profiles which
include such cusps at the apex behave similarly, and thus this
cusp is a minor feature regarding the period ratio.

With this in mind, we consider the application of the
results for the exponential profile to observations. Consider
Eq. (46) applied to the data observed in Verwichte et al. (2004).
van Doorsselaere et al. (2007) reanalysed this data obtaining
a higher accuracy in determining periods and found P;/2P,
for two cases (labelled C and D in Verwichte et al. 2004; and
van Doorsselaere et al. 2007) to be

Py Py

=0.79 £ 0.03.
2P2 2P2 D §

=0.91 £ 0.04,
C

(51

van Doorsselaere et al. (2007) also reported a new oscillation
(labelled case E) that exhibited multiple harmonics, finding that

P

= 0.90 + 0.03.
2P,

E

(52)

These observations, of cases C, D and E, allows us to employ
formula (46) in order to deduce the scale height A, of longitudi-
nal structuring in these events.

Calculating the associated value of L/A. from Eq. (46), for
the exponential case, gives

L

=1.1+0.3.
ACC

clID

clE

=09+04, =23+04, (53)

Using the loop lengths of 2L 218 Mm for case C, 2L
228 Mm for case D and 2L = 400 Mm for case E we can de-
termine the values of the density scale heights, from Eq. (46),
for these three oscillating coronal loops, for the exponential
profile. For case C we find A, = 117 = 98 Mm, for case D
we determine A, = 49 + 9 Mm and for case E we determine
A¢ = 192 + 68 Mm. The three cases are summarised in Table 1,
where we deduce the scale A, of longitudinal density variation
in the loops from Eq. (46) for the exponential case. We also in-
clude results from numerical solution of dispersion relations (9)
and (10). Additionally, in Table 1 we have given the associated
vertical scale H. = 2A./n which arises if the loop has a semi-
circular shape reaching a height of H, at the loop apex (see also
Andries et al. 2005b; and van Doorsselaere et al. 2007).

Finally, using Fig. 2 we may calculate the density ratio
Papex/Poase Tor the three cases assuming an exponential profile.
For case C we find papex/Poase = 0.41 = 0.20 and for case D
we find papex/Poase = 0.09 + 0.03. For case E we determine
Papex/Poase = 0.35 = 0.14. If other profiles are assumed we ob-
tain the results in Table 2, where we deduce the density ratio
Papex/Prase in the loops for different equilibrium profiles using
the results in Fig. 2 (a “— sign means that this ratio cannot be
achieved with that particular equilibrium profile). These values
lay in the error margin given by the uncertainty in the measure-
ment of the periods. We conclude that in the current available
observations, the choice of model is a minor source for the error
in Eq. (46) compared with observational uncertainties.

4. Conclusions

McEwan et al. (2006) showed that the dominant cause of a
shift in Py /2P, from unity is the longitudinal structuring of the
plasma, exceeding shifts caused by other effects such as disper-
sion. The observational determination of P;/2P, thus yields in-
formation about the longitudinal structure. In the thin tube limit,
the ratio P,/2P, depends only upon the ratio L/A. of the loop
half-length L to the scale height A.. It is independent of other
parameters, such as the propagation speed cx. Thus by using
Eq. (46) one can determine the coronal density scale height A,
without relying on other input parameters. In the three currently
known observational determinations of the periods P; and P,
significant error bars arise in the determination of A. in each
case. However, instruments and techniques for measuring peri-
ods are more advanced than those for determining number den-
sity or magnetic field strength, so we have here a method for
coronal seismology that relies on relatively well known input
parameters. In conclusion, the period ratio P; /2P, is potentially
a powerful tool for atmospheric seismology.
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Potentially, formula (46) has applications for stellar observa-
tions also. The determination of input parameters for stellar seis-
mology is difficult, mainly due to the great distances involved.
However, observations of stellar coronal oscillations have been
reported (Mathioudakis et al. 2003, 2006; Mitra-Kraev et al.
2005), although only single harmonics have so far been detected.
With observations of higher harmonics it should prove possible
to determine stellar density scale heights.
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