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Abstract

Inverse simulation is a technique whereby the control actions required for a modelled
vehicle to fly a specified manoeuvre can be established. In this paper the general concepts of
inverse simulation are introduced, and an algorithm designed specifically to achieve inverse
simulation of a single main and tail rotor helicopter is presented. An important element of an
inverse simulation is the design of the input functions i.e. manoeuvre definitions, and the
methods used are also detailed. A helicopter mathematical model is also discussed along with
the validation and verification of the inverse simulation. Finally, the applicability of the method
is demonstrated by illustration of its use in two flight dynamics studies.
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acceleration due to gravity

tail rotor gearing ratio

height of obstacle in hurdle-hop manoeuvre

inertia of main rotor

effective inertia of transmission and gearing
helicopter moments of inertia about centre of gravity
helicopter product of inertia about y-axis

overall gain of engine/rotorspeed governor
components of external moments on vehicle
helicopter mass

components of helicopter angular velocity at centre of gravity

engine torque output

translational velocity components of helicopter centre of gravity

helicopter flight velocity
components of external force on vehicle

angle of incidence the fuselage

main rotor blade flapping angle

angle of sideslip the fuselage

main rotor collective pitch angle

main rotor longitudinal and lateral cyclic pitch angles
engine and rotorspeed governor time constants
body roll, pitch and sideslip attitude angles
turn rate

angular velocity of main rotor

angular velocity of main rotor at idle

angular velocity of tail rotor

(m/s2)

(m)

(kg m?)
(kg m2)
(kg m?)
(kg m?)
{Nm/rad/s)
(Nm)
(kg)
(rad/s)
(Nm)
(m/s)
(my/s)
(N)

(rad)
(rad)
(rad)
(rad)
(rad)
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1. Introduction

The conventional approach to aircraft flight simulation is to develop a mathematical model
of the subject vehicle and then compute its response to a set of pil(;ting commands {12]. When
the equations of motion of the mathematical model are solved in real-time then the computed
response may be used to drive motion and visual systems. In this familiar application the
simulation is widely used for training and vehicle evaluation. In practice, sitnulation models
are more often used off-line (non real-time) to assess an aircraft's response to control stimuli or
to examine its stability characteristics.

For a helicopter, such investigations, though valuable, do not represent an adequate
coverage of the vehicle's operational activities. The crucial advantage of a helicopter is its
ability to operate close to the ground tracking a precise flight path - something which is
virtually impossible to replicate efficiently in an off-line simulation since the required control
inputs are not known g priori.

Difficult problems often attract the advice to invert the problem - which in this case would
be to supply the required flight path and recast the mathematical model so that it predicts the
piloting commands required by the helicopter. This paper describes a method by which this
may be done for a fully non-linear, flight mechanics model of a conventional helicopter. The
complexity of the helicopter configuration guarantees that the inversion of such a model is
significantly more difficult than for a fixed wing case. The method developed is in effect a
discretisation of the nonlinear differential equations of motion, allowing subsequent numerical
algebraic solution. It follows then that the method will be applicable to systems other than the
helicopter provided the equations of motion are of the same form.

The sections 2 and 3 of this paper give brief introductions to helicopter flight and the
general principle behind the inversion of the helicopter model. A feature of any inverse
simulation is to provide the input to the simulation in an appropriate form. In the present case,
a formal description of a helicopter manoceuvre is required. Although it is a relatively simple
matter to give informal descriptions of typical manoeuvres, a precise, formal description
requires a modelling strategy which can be validated in its own right. Section 4 sets out the
modelling of some typical manoeuvres. A description of the helicopter mathematical model
used in this study (HGS - Helicopter Generic Simulation) is presented in section 5. Next, the
recasting of the mathematical model into a form suitable for inverse simulation is described and
the resulting algorithm (Helinv - Helicopter Inverse Simulation) outlined. The form of the
inverse simulation is a simple time-marching calculation which is both efficient and robust. A
sample calculation using inverse simulation follows and then section 8 addresses the validation



of the flight path specifications and the inverse simulation. It is, of course, this vital validation
step that gives credibility to the simulation's subsequent use.

Having developed a validated inverse simulation environmerit, the final section of the
paper examines some studies which have practical application and shows the power and scope
of this research tool. Within the overall development of the simulation and the discussion of

some practical applications for the specific case of helicopter flight, several points of general
relevance are discussed.

2. The Basic Principles of Helicopter Flight

There are two fundamental differences between helicopter flight and that of conventional
fixed wing aircraft. Firstly the helicopter has the ability to fly at low speed and in the hover,
and secondly, as a consequence of its low speed performance, the helicopter has the ability to
follow precise trajectories and thereby manoeuvre close to obstacles such as trees, buildings
and, of course, the ground. This added flexibility is at the expense of payload and operating
cost - low speed flight implies less lift from the aerodynamic surfaces and hence lower payload
for the helicopter. Given the radically different nature of the two aircraft it is perhaps no
surprise that the method of flying them and the principles behind their operation are quite
different. Although the principles and control of fixed wing aircraft flight may be familiar to

many readers it is perhaps appropriate here to give some insight into these aspects of helicopter
flight [4, 11].

The basic control method is by varying the magnitude and direction of the main rotor
thrust vector. The magnitude of the thrust is controlled by collectively altering the pitch (and
hence lift) of all of the rotor blades together by an means of the collective lever. This collective
pitch displacement is denoted 6p. As well as collective pitch control the pilot is also able to
vary the pitch of individual blades cyclically around a complete revolution. When the pilot
applies longitudinal cyclic pitch, denoted 6; » by pushing the cyclic stick forward, the blade
travelling towards rear of the disc flaps upwards, whilst the blade travelling towards the front
of the disc flaps downwards. The net effect is that the thrust vector is tilted forward
simultaneously pitching the vehicle's nose down allowing accelerated flight in this direction.
Similarly pushing the cyclic stick to one side (i.e. applying lateral cyclic pitch, denoted 6; N
increases the pitch of the blades on the opposite side of the rotor (producing upwards flap) and
decreasing it on the other (producing downwards flap) thereby producing a net thrust tilt in the
direction of the stick motion. This can be used to produce sideways or banked flight. Finally,
the torque transmitted by the engine to the main rotor is balanced by an opposing moment
produced due to the offset of the tail rotor thrust from the centre of gravity. The tail rotor thrust



is controlled through pedal displacements which alter the pitch, denoted ng,, of the blades and

by varying this thrust (and hence "anti-torque" moment) it is possible to control the heading of
the aircraft.

The coupling problems associated with helicopter control can be appreciated by
considering the simple example of a pilot wishing to accelerate his aircraft without changing
heading or altitude. The acceleration is achieved by application of forward longitudinal cyclic,
61, which tilts the rotor disc forward. One effect of this is that the component of the thrust
vector which balances the weight of the aircraft has been reduced, and hence if altitude is to be
maintained the magnitude of the thrust vector must be increased by application of collective
pitch, 8p. The increased pitch causes increased blade drag and in order to maintain rotorspeed,
engine torque is also increased and hence a tail rotor collective pitch, 8y, , input is required to
maintain heading. If unopposed the change in side force due to the change in tail rotor thrust
will cause the helicopter to drift to the side. To overcome this an opposing input in lateral
cyclic, 6 is required. In practice, the pilot's workload is kept at acceptable levels by
introducing control mixing (via mechanical linkages or the flight control system), and
equipping the helicopter with a rotorspeed governor. This simple example where inputs to all
four control channels are required to undertake a very basic manoeuvre demonstrates the
complexity of the system being modelled - particularly so, when the example above has
ignored the aerodynamic asymmetry of a helicopter in forward flight.

3. Inverse Simulation

The exercise of calculating a system's response to a particular sequence of control inputs
is well known. It is conveniently expressed as the initial value problem:

X = flxu), x(0)=x, 1)
y =g(x) @

where x is the state vector of the system, u is the control vector and y is the output vector.
Equation (1) is a statement of the mathematical model describing the time-evolution of the state
vector in response to an imposed time history for the control vector #. The output equation (2)
is a statement of how the observed output vector y is obtained from the state vector. Inverse
simulation is so called because a pre-determined output vector y is used to calculate the control
time histories # required to produce y. Consequently, equations (1) and (2) are used in an
implicit manner. For helicopter flight the usual output is the helicopter's flight path and the
controls are the pilot's stick and pedal movements so that for the inverse problem the flight path
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becomes the input and the output to be generated is the pilot's control movements. Equations
(1) and (2) may be recast in order to demonstrate the method by differentiating (2) to give:

I Ef (x,u) ' (3)
where use has been made of equation (2). In the simple case where (3) is invertible with
respect (o & it is possible to write:

u=nhix,y) 4)
and substituting in equation (1) gives:

X = f(x,h(x,y)) = F(x,y) (5)

shows that equations (4) and (5) are indeed a complete statement of the inverse problem with y
as the input vector and & as the output vector. Equation (5) is a system forced by the rate of
change of the original output vector and, in the form shown, clarifies a number of aspects of
the practical application of inverse simulation. First, the characteristic dynamics of the system
described by equation (5) may be quite different to those of the original system described by
equation (1). The constraints imposed by the direct application of equation (2) significantly
modify the original stability properties. This effect has been explored in some depth for
helicopter inverse simulation in Reference 14 and it is important that the inverse simulation
practitioner is aware of this, quite general, phenomenon otherwise he can be misled by the
unusual behaviour of perturbations in inverse simulation compared to that of conventional
simulation. The second observation to be made is that in equation (5) it is the time rate of
change, y, which forces the system, not y, and, also, if equation (3) is not invertible with
respect to u then further differentiations of equaﬁon (2) will be necessary to provide additional
equations to support the inversion process. The consequence is that higher order derivatives of
¥ may appear as the forcing terms in the inverse formulation. The appearance of higher order
derivatives indicates that care must be taken to ensure the proper smoothness of the demanded
output y otherwise, even if a control response u can be calculated, it is unlikely to be of
practical value. This consideration does nothing more than reflect practical limitations on a
physical system. For example, the occurrence of discontinuous velocities will produce
unrealistic accelerations which, in turn, require physically unattainable forces and control
displacements. Therefore the proper definition of the required output y is a primary
consideration in inverse simulation. It is treated in detail in section 4, to follow, in advance of
a discussion of the inverse algorithm itself.



4. Manoeuvre Modelling

The helicopter's primary function is 10 manoeuvre close to the ground. Consequently in
the execution of the flying task the pilot is able to employ visual cies provided by the ground
and follow a flight path largely determined by a tracking task. Therefore, the work at Glasgow
has concentrated on manoeuvres that are defined in terms of motion specified relative to an

Earth-fixed frame of reference. In these circumstances an appropriate output equation, in the
form of equation (2) is:-

x, cosBcosy  singsinBcosy —cosgsiny  cosgsinBeosy + cosgsiny 0
Ve _| cosBsiny  singsinBsiny +cosgcosy  cosgsinBsiny — cosgcosy 0
N 0

1

Z, ~sin@ singcos@ cos¢cosd
v, 0 0 0

(6)

€ ¥ = =

The first three components of this equation relate the vetocity components of the

helicopter's centre of mass in body axes (¥, v, w) to the components of an Earth-fixed frame
of reference (%,, Y., Z.) via the Euler or attitude angles (¢, 8, y). The fourth equation
expresses the heading angle y in terms of a prescribed function of time ¥,.

Given X, ye, Zo and ¥, as functions of time, the four scalar equations represented by (6)
are to be used to define the four control inputs needed to fly the manoeuvre. The task of
manoeuvre description, therefore, is to find functions of time: %,, ., Z. and ¥, which will give
a realistic description of a given manoeuvre.

4.1 The Pop-up Manoeuvre

As an example of a relatively simple, but practical, manoeuvre consider a longitudinal
manoeuvre where the flight path is in a vertical plane. The 'pop-up' manoeuvre is used to
avoid an obstacle by a rapid change of altitude during straight and level flight (Figure 1).

Without loss of generality the manoeuvre is considered to take place in the (x,, z.) plane
so that both the heading, ¥, and lateral displacement, y,, can be set to zero throughout.

During the manoeuvre the altitude must change smoothly from its datum of zero to the height,
h, needed to clear the obstacle. The co-ordinate z, must therefore change smoothly from zero to

-h during the interval of time #,, needed to complete the manoeuvre. A smooth transition is
accommodated by the polynomial function:

5 ¢ 4 3
zJ:):-HtiJ —15(7) HO(:LJ }h; 0<t<tn N



As discussed in the previous section, the fifth order polynomial for the altitude imparts a
realistic degree of smoothness. The horizontal speed over the ground could also be specified
directly but it has been found more convenient to specify the total flight speed Vras a function
of time (it is often constant) so that the horizontal component may be found from:

$o(8) = V(1 2, (0).

The manoeuvre time 7, is determined from the horizontal distance, s, to be covered
during the pop-up:

!ﬁ‘l
s= [%(t)dt
0
which is easily solved by straightforward iteration.

The approach applied to the pop-up has wide applicability. Many manoeuvres take place
in the vertical plane, and simply require appropriate polynomial, or piecewise polynomial
functions to capture the essential characteristics of the manoeuvre. The main requirement is to
ensure a sufficient degree of smoothness at the entry to and exit from any section of the
manoeuvre. A similar approach can be applied to manoeuvres in horizontal plane. The Slalom,

for example, is a 'S’ shaped flight path flown at constant altitude and can be treated by the
same principles.

As may be expected, a general flight path can also be described by specifying %, e, Ze
and ¥, directly as functions of time following the principles discussed in the previous
example. Often, however, the indirect specification of the flight path in terms of the secondary
variables angle of climb, ¥, and track angle, , is more natural. The situation is depicted in
Figure 2 and the conversion to Earth axes is simply:

xi(t)= Vf(t)cosx(t)cosy(t)
¥ (t)= V¢(1)sing(t)cosy(t) ' (8)
(1) =V (t)siny(t)

This form is particularly useful in turning flight - for example in the specification of
banked turn to reverse the direction of flight and very good correlation between the modelled
flight path and those derived from flight data has been observed [13]. In such manoeuvres, the
specification of the heading angle, needed to complement the specification of the flight path co-
ordinates to achieve a complete description of constraints, is usually inappropriate. Control of
the angle of side-slip is often used by the pilot as part of the control strategy so the facility to



specify the side-slip angle as a function of time in included in Helinv. When this option is
selected the final component of equation (6) is replaced by:

=qin!| 22—
B(t) =sin [Vf}

where f}(1) is a predetermined function of time.

4.2 The Banked Tumm Manoeuvre

As an example, consider the banked turn through an angle y,, Figure 3(a). Let the
manoeuvre take place in the horizontal plane so that g is zero and for the purpose of this
example let the flight velocity be constant (a smooth polynomial can be employed to vary the
speed through the manoeuvre). The turn rate is the smooth pulse illustrated in Figure 3(b).
There is a smooth entry to, and exit from, an interval of constant turn rate. The duration of the
exit and entry transients are taken to be a chosen fraction of the total track angle, y.. From
comparison with flight data [13] this fraction is pre-set as 0.15; as in previous work, the
smooth transitions are described by polynomials of order 5. The unknown parameters, total
time, #,, and maximum turn rate ¥,y in the description can be obtained by specifying an
equivalent radius for the flight path and noting that the area beneath the turn rate curve must
equal to the total angle y,.

These two examples serve to illustrate the general rules of manoeuvre design. The
guiding principles are to use a simple basis for their description, and to use the most economic
form consistent with smooth output from inverse simulation. The package, Helinv,
ihcorporatcs several sets of pre-programmed, generic manoeuvre descriptions developed along
the lines described above. The sets include Nap-of the Earth [13], Offshore Operations [16]

and Mission Task Elements [3]. There is also a facility for bringing flight test data directly into
the simulation environment.

5. A Description of the Helicopter Generic Simulation (HGS)

Given the complexity of the helicopter as discussed in section 2, it will be of no surprise
that the simulation of these vehicles is a challenging problem. The focus in this paper is on the
helicopter inverse simulation package, Helinv, and therefore in this section details are given of
the helicopter model, HGS (Helicopter Generic Simulation) {15] used by Helinv. Although
this model is firmly embedded within the helicopter inverse simulation, Helinv, the HGS
mathematical model also exists independently of Helinv and can be used in a conventional
manner. For the purpose of this paper a version of the model which has simplified rotor



dynamics will be discussed (i.e. only the fuselage and rotorspeed degrees of freedom are
incorporated) so that the state vector is

x=[uvwpgro8yQQgT

where  u, v, w are the components of translational velocity relative to a body fixed
reference frame (xp, vp, 2p),
p. q,r are angular velocities about the body axes,
¢, 0, v are the Euler (or attitude) angles relating the body fixed axes set to the
earth fixed inertial frame (x,, y,, z.),
Q is the angular velocity of the main rotor and
Or is the torque output of the engines.

Other, more comprehensive, models include the rotor blade flapping and lagging as states
(individual blades have lagging motion in the plane of the "disc" to alleviate the hub moment
due to aerodynamic drag and flapping motion out of the disc plane due to aerodynamic lift) and
the dynamics of the rotor induced flow are also often included [4, 11]. In the version of the
HGS model referred to in this paper these effects are assumed to occur instantaneously and the
values of the states associated with these motions are obtained via intermediate calculations.

The control vector may be written as
u =[6p0;, 01 61T
where 6y, 8;,, 8) - and Gg” represent main and tail rotor blade pitch angles.

Considering again equation (1), the function f consists, essentially, of the following
equations. The fuselage degrees of freedom are described by the familiar Euler rigid body

equations where because of the symmetry of the fuselage about the xz plane only the I,
preduct of inertia is retained: -

u'=—(wq-vr)+£—gsin9 9.1)
m
. Y .
V=—(ur—wp)+— + gcosBsing 9.2)
m
. Z
w=—(vp —ug)+—+ gcosfcos¢ 9.3)
m

Top=(1,, -1, )qr+1,(r+pg)+L 9.4)



Lyg=(I,~I )+l (" -p*)+M (9.5)
Izzf=(In-—Iyy)pq+lxz(;i—qr)+,N (9.6)

where m, I, Iy, I;, and I, are the aircraft's mass, moments of inertia and product of inertia
respectively. The symbols used for the vehicle states have their usual meaning as indicated in
Figure 4. In order to get these equations of motion into the standard form of equation (1) it is
necessary to eliminate p and 7 from the right hand sides of equations (9.4) and (9.6) to get:

* * * *
._I,L +IM12V and  Fe I_N +I!g2L
10,1 1.1,-1,

where
L'=(I,-I,)qr+I,pg+L and N =(I, -1, )pqg—1I.qr+N

The rate of change of the attitude angles are related to the body axes angular velocities by
the kinematic expressions:

¢ =p+gsingtan @ + rcos¢tan 6 9.7
6 = gcos¢ —rsin g (9.8)
Y =gsin@gsecO + rcos¢sec 8 (9.9)

Finally, the rotorspeed governor equations as given by Padfield [9] are

QE =

T T [_(Tﬁ *7, )QE —Q: K3('Q -2, + T,Q-Q)] (9.10)

e Yey

Q=(0;— O~ gl — 0, [, +F (9.11)

where T, Tey, Te 3 K3 are the time constants and gain of the governor,
£idle is the angular velocity of the rotor in idle,
gTR tail/main rotor gearing ratio,
Or, O1R, O1r are the torques required to drive the main rotor, tail rotor and
transmission, and

IR is the effective inertia of the rotor system.

Equations (9.1 - 9.9) are of course not unique to the helicopter, they are widely used in
many rigid body simulations, and it is in the calculation of the external forces and moments X,
Y, Z, L, M, N that the modelling of specific systems is required. To derive expressions for the



external force and moments individual components of the vehicle are considered - the fuselage
(including fin and tailplane), the main rotor' and the tail rotor. The external forces and moments
on the fuselage are entirely due to the aerodynamic loading and are calculated from look-up
tables of appropriate wind tunnel data. In the context of flight simulation this is generally
accepted as the most effective solution as computational aerodynamic techniques tend to be
"processor intensive" particularly for the complex flow field and fuselage shape of a helicopter.
The look-up tables give force and moment coefficients as functions of the incidence angles &
(angle of attack) and B (angle of sideslip) which are given by

tanot=" and sinf=— (10)
u Vf

where V, =+’ +v’ +w’ = the flight velocity of the aircraft, and are therefore functions of
the state vector.

The external forces and moments from the main rotor are calculated by obtaining
expressions for the aerodynamic loads on a blade element, then surnming these along the span
of the blade. The lift and drag of each element will be a function of :

i) the local airstream velocity - this is obtained from consideration of the velocity of the centre
of gravity (u, v, w), the angular velocity of the aircraft (p, g, r), the position of the element
relative to the c.g. (dependant on hub location, spanwise position and azimuthal location of
blade), and the angular velocity of the blade element relative to the body fixed frame (a
function of the angular velocity of the rotor £ as well as the flapping velocity f3),

if) the local angle of attack - as well as being dependant the local velocity, this is a function of
the blade control angles 6 (constant for the full rotation), 8; 5 and 8;  (dependent on
azimuthal position of blade), and the blade twist. (This is a function of radial position -
rotor blades are usually twisted with leading edge down towards the tip of the blade where
the highest velocities are experienced. This is to ensure more even distribution of the

aerodynamic lift along the span thereby reducing the structural bending moment at the
root).

For the HGS model this summation has been performed symbolically to produce a series
of complex expressions for the external loads of the complete rotor disc which are, as is
apparent from above, nonlinear functions of all of the state and control variables. A more
sophisticated approach invelves performing the summations numerically for each blade. This

so called "individual blade model" is of course much more computationally intensive but is
now found in wider use [3, 6].
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Expressions for the tail rotor external forces and moments are obtained in a similar
manner to that described for the main rotor.

This model can easily be used in the conventional manner, that is solving equations (1)
for the response of the vehicle, x, to some input function, #. In the following section the
recasting of these equations into a form suitable for inverse simulation is discussed.

The derivation and use of such a helicopter inverse simulation, Helinv, is discussed in some
detail in the following section.

6. The Helinv Inverse Simulation Technigue

The procedure that has been used with some success to solve the inverse problem for
helicopters is to apply a simple first order implicit scheme to (1) and write:

X, Zw—f =f(x,,,u,)
¥, = 8(x,)

where At is the differentiation step. The procedure is, given x,,.7 and knowing y, solve these
equations for x, and u, as the basis for a simple time-marching solution method. An
acceptable method is to make an initial guess for the values of the unknown quantities and use a
discrete form of the Newton Raphson iteration to give rapid convergence to values of the state

vector and control vector at time increment n. For the current application, the state vector is

x=[uvwpqro0yQQelT
and the control vector is

u =[6p0;, 6; 6,17

To solve for these fifteen quantities there are the eleven state equations: 9.1 - 9.11, and
the four constraint equations arising from (6). These equations may be differenced as
described above and solved to obtain values for the next time value in a time marching manner.
The solution of the full non linear system of algebraic equations of order 15 can be avoided by
sequencing the calculation procedure in an appropriate way. While it is not possible to
generalise such manipulation, it is certainly valuable to examine the possibility of such
economies in any application, since the practical value of Helinv has arisen from the rapid
manner in which simulation results can be obtained. Efficient performance is very desirable in



a simulation tool which is to be used for exploratory research. The iterative procedure can be
reduced to the solution of seven equations in seven unknowns. The seven unknowns are

6, ¢ £ 0y 6;, 01, B,

From initial estimates of these quantities at time point » the solution process continues by
finding values for u,v and w from equation (6). Since the Earth fixed components and heading
angle are all known ,the estimates for 8 and ¢ enable the body axes components to be found.
The kinematic relations 9.7-9.9 may be recast to give

p=¢—sinf
g = 0cos¢ + yrcosBsin ¢
r=trcosdcosf — Gsin ¢

and in this form p,q and r at time point » may be found from backward differencing the attitude
angles. For example:

p, = (¢, — @, 1)— (W, — ¥, )sinb,
§ At

The rate of change of the rotorspeed needed for equation (9.11) is similarly obtained by
backward differencing:

Q = Qn - Qn—l
" At

and the value of Qf, follows. In this way we see that all -of the information is now available to
solve the differenced form of 9.1 - 9.6, 9.10 for the seven quantities 8, ¢, £, 8y, 8;,, 91,
Bo,, at time point 7.

7. ample Result from linv Inverse Simulation

The mathematical model described in section 5 has been implemented in a generic form
such that any helicopter of the single main and tail rotor class can be simulated by specifying an
appropriate set of configurational data. This is demonstrated by the following example of
inverse simulations of two different helicopters: the Westland Lynx and Aerospatiale
(Eurocopter) Puma flying an identical manceuvre. The configurational data is as given by
Padfield [9] whilst the manoeuvre is a Pop-up (as described above) performed at a constant
velocity (V) of 80 knots, to clear an obstacle of height (k) of 25m, whilst the manoeuvre time

-12-



(tm) 1s calculated to give a distance covered of 200m. Results for inverse simulations of the
two configurations flying this manoeuvre are presented in Figure 5.

Although both aircraft have basically the same configuration (single, 4 bladed main rotors
etc.), the basic design on the rotors are significantly different - thereby imparting different
characteristics. The Lynx, in fact, has what is termed a "semi-rigid" rotor as it does not
possess flapping hinges (the moment produced at the root being reacted by the structural
stiffness of flexible root sections) whilst the Puma has a "fully articulated” (i.e. hinged) rotor.
This gives the Lynx greater agility with faster rate response to control inputs and ultimately
smaller cyclic control inputs to achieve a particular attitude displacement. This is evident from
the plot of longitudinal cyclic (which produces the pitching moment and hence pitch attitude)
where the displacements required by the Lynx are much smaller than those of the Puma. Note
that as both aircraft are flying the same manoeuvre the kinematics of the task are the same and
therefore so is the pitch attitude. The roll attitude and tail rotor collective are in the opposite
sense to one another as the rotors rotate in opposite directions. The Puma is also a larger

aircraft with a greater disc loading than the Lynx and so larger collective inputs are also
required.

This example demonstrates one of the main advantages in using inverse simulation:
having defined the operational task it is possible to simulate several vehicles or several variants
of the same vehicle performing this task. As well as the results shown in Figure 5, it is also

possible to obtain the power and torque required as well as many other parameters providing
useful performance information.

8. \Yerification and Validation of the Helinv Algorithm

It is a fairly simple matter to assess qualitatively the accuracy of the results from inverse
simulation - the control inputs and state responses calculated to fly specific manoeuvres can
usually be explained in a convincing manner in the context of the likely response of the real
aircraft. Of course, a more rigorous approach is required and in common with other
simulations this is treated in two parts. Firstly it is important to verify that the algorithm is
functioning correctly. This verification is achieved by applying the control inputs derived from
the inverse simulation to the corresponding conventional simulation. For the Helinv algorithm
verification is a simple process as the inherent model, HGS is also available in the form of a
conventional flight mechanics simulation. The verification process then consists of obtaining
the control time histories required to fly a predetermined flight path and using these to drive the
conventional simulation. A comparison is then made between the flight path produced and the

one initially used as input to the inverse simulation. Clearly, if the inverse simulation is
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functioning correctly then the control inputs should produce the same flight path (irrespective
of whether the helicopter model is valid or not). An example of this is shown in Figure 6
where the control inputs for the Lynx shown in Figure 5 have been applied to the HGS model
to derive the flight path response. The two flight paths are shown'in Figure 6. From the plot
of altitude it is obvious that there is little difference between the two apart from a very slight
deviation at the end of the manoeuvre. The plot of the track, which should be a straight line
along the x-axis, shows a deviation of less than Scm over the 200m distance. These and

similar results provide sufficient evidence that the algorithm is functioning in the intended
manner.

The question of the validity of the results is also important - if any meaningful
information is to be derived then the mathematical model must replicate the actions of the real
aircraft. Inverse simulation provides a useful technique for validating mathematical models.
The conventional approach is to apply identical inputs to both the model and the system being
simulated and then compare the two responses. Inverse simulation allows the actual system
response to be used as an input to the model, the aim being to predict the control actions that
were required to produce it. The actual and predicted control inputs may then be compared and
the validity of the model established. It should be noted that all of the state responses are also
calculated and are comparable with the actual system data. The main advantages of this
approach are discussed in Reference 2.

An example of such a validation exercise is demonstrated in Figure 7. Data from flight
trials of a Westland Lynx helicopter were supplied by the Defence Research Agency [10] which
included time histories of all of the states and controls as well as ground based measurements
of the helicopter's position. The positional co-ordinates and heading histories were used as
inputs to Helinv, whilst the response histories are compared with those calculated by Helinv.
The manoeuvre featured in Figure 7 is a "Quick-hop” which is a rapid longitudinal translation
at constant height and heading, from a hover flight state over a specified distance (in this
example 300ft) ending in a stabilised hover. The comparison between flight data and
simulation shows that the correct trend is being predicted in all controls albeit with different
absolute displacements in some variables (lateral cyclic and tail rotor for example). Other
variable show good prediction qualitative and quantitative agreement - pitch attitude and
collective for example. These and other results suggest that the model is of sufficient fidelity to
be a useful tool for flight mechanics studies.
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9. Applications of Helicopter Inverse Simulation

So far in this paper the theory of inverse simulation as applied to helicopter manoeuvring
has been described. In this section some of the problems to which the inverse simulation
Helinv, has been applied are discussed. The aim is to show the range of problems to which
inverse simulation can contribute, often in a way which compliments conventional methods but

in many cases it provides a unique methodology upon which to base an analysis.

9.1 Configurational Design and Performance

An inverse simulation can be considered as an "analytical flight test" that is a mission goal
can be specified, and the simulated vehicle forced to fly it. As has been demonstrated, the
basic output from the simulation is in the form of time histories of states and controls. Other
information relating to the performance aspects of the helicopter such as torque and power are
also calculated and recorded. In effect, the results may be considered as "analytical flight data"
and indeed this data may be as extensive as that produced in actual flight trials. Given also a
generic mathematical model (such as that employed by Helinv, HGS) it is possible to study the

effect of varying key configurational parameters on the performance of the vehicle whilst
undertaking its operational tasks.

This is clearly demonstrated via an example where the effect of increasing mass on a
helicopter's performance whilst flying a routine task is examined. The subject helicopter is the
Westland Lynx, and the baseline configuration is assumed to have a mass of 3500kg and that
its centre of gravity is directly below the rotor hub. This is compared with the same aircraft
carrying a load of 500kg internally which is assumed to have shifted the centre of gravity a
distance of 15cm aft of the rotor hub. All other parameters in the HGS model! are identical for
both cases. The defined task for this demonstration is 180° change in direction to be initiated
from a velocity of 120 knots. The performance criteria are that the manoeuvre should be

completed in less than 10 seconds and that altitude should be maintained throughout. The
manoeuvre is modelled in the manner described in section 4.1, where ¥, = 180°, and setting ¢,

as 10s gives a turn radius of 155m, maximum turn rate, ¥uqy , as 23°/s and a maximum
normal load factor of 2.75.

Having defined the helicopter configurations and specified the manoeuvre, it is possible
to perform inverse simulations of these configurations flying it. The control time histories
generated are shown in Figure 8, from which the overall control strategy can be deduced. The
manoeuvre is initiated by a pulse in lateral cyclic to roll the aircraft, note that there is little
difference in the amount required between the two configurations. As the aircraft rolls, as
shown in Figure 9, collective (and hence thruét) must be added to maintain altitude. There is
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also a forward motion of the longitudinal stick (denoted by negative longitudinal cyclic) to
maintain constant forward speed. The manoeuvre is performed without sideslip and tail rotor
collective is used to ensure that this condition is met. The initial pulse in lateral cyclic is
opposed by a similar pulse in tail rotor collective which then increases beyond its level flight
trim position to offset the extra torque produced by increased main rotor collective. The main
differences between the time histories of the two aircraft lie in the collective and longitudinal
plots. The baseline configuration requires less collective firstly because it is lighter, but one
must also consider the effect of shifting the centre of gravity aft of the rotor hub. This
produces a nose up pitching moment which must be countered by forward stick if velocity is to
be maintained, which explains the 4.5 degrees of extra forward longitudinal cyclic required by
the loaded configuration. The longitudinal tilt of the thrust vector is in addition to the lateral tilt
required for rolling, and hence is a contributory factory in the 2.5 degrees of extra collective
required by the heavy configuration. Examination of Figure 9 shows that the roll angle history
which was suggested by the manoeuvre definition is obtained, and the maximum bank angle

reached was approximately 70 degrees, with roll rates of approximately 70 degrees/second
encountered in the transients.

The advantage of this method becomes apparent when it is realised that the collective limit
of this configuration is known to be 20 degrees. Consequently on examination of the collective
time history in Figure 9 it is clear that the loaded configuration is close to the limiting case for
this manoeuvre. It then follows that the limiting case for various aircraft masses and centre of
gravity positions could be obtained by repeated inverse simulation of the manoeuvre thereby
allowing the aircraft configuration envelope for this task to be derived. This process could, of

course, be extended to include a whole series of tasks representing the operational envelope of
the vehicle.

9.2  Assessment of Handling Qualities and Workload

The need to assess the overall handling qualities of a helicopter by its performance and
handling characteristics in a range of typical manoeuvres has been recognised by the authors of
the U.S. Handling Qualities for Military Rotorcraft [1]. As part of demonstrating compliance
with these requirements, a set of standard manoeuvres, or Mission Task Elements (MTEs) has
been defined and criteria for performance and handling have been specified. In addition, the
authors of this document have indicated that mathematical models are an appropriate basis for
evaluation and analysis at the design stage. By its nature, inverse simulation encapsulates this
-combination of precisely defined manoeuvre and mathematical modelling. As with the
performance studies described above it may then be argued that the data obtained by inverse
simulation can be processed and analysed in the same manner as that collected from flight
trials, and equivalent handling qualities information for the modetled helicopter derived.
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For example, consider a helicopter performing a Rapid Side-step MTE (a lateral
translation from the hover accelerating to some maximum sidewards velocity, Vimax, followed
by a deceleration back to the hover). A mathematical description c;f this MTE is most
conveniently achieved by assuming an acceleration profile as shown in Figure 10. In practice
the maximum acceleration, V,,qy, is specified along with the time to achieve it from a hover, #,,
and the time required to reach maximum deceleration, 74, The value ¢; is then calculated such
that the area under the acceleration phase of the profile is equal to the user specified maximum
velocity, Vypay Taking this mathematical model and using it in conjunction with the inverse
simulation results such as those in Figure 11 are obtained (WhereViy,y = Sm/s2, t, = 1.55, 14 =
3s and Vi, = 35knots).

In the context of a flight trial, using data such as this it is possible to calculate values for
the "Roll Quickness" parameter for each excursion in roll. This parameter is defined as the
peak roll rate divided by the minimum roll attitude displacement during the excursion. When
plotted against the roll displacement, this parameter gives an indication of the handling qualities
of the vehicle in terms of Levels 1 -3 of the Handling Qualities Criteria [1]. In this case the
modelled helicopter is again based on a Westland Lynx, and, as indicated in Figure 11, it is
then possible to calculate values for the Roll Quickness parameter. As this exercise is easily
repeatable for Rapid Side-steps of differing severity, it is possible to create a chart such as that
shown in Figure 12 which predicts handling qualities for the Rapid Side-step in the
Levell/Level 2 regions.

In fact, further studies have shown that parameters such as the roll quickness are
primarily kinematic and are therefore more related to the task than to the helicopter [3]. In
order to quantify those aspects of handling that are related to the pilot's control activity it is
necessary to explore alternative parameters. Since inverse simulation predicts the control
displacements needed to fly a manoeuvre it is ideally suited to studies of this kind.

10. Conclusions

This paper has described how the need to predict the pilot's control movements and the
vehicle response for a helicopter flying a specified task has led to the development of a method
for inverse simulation. The structure of the solution algorithm has been discussed in some
detail since an efficient solution procedure is essential if the method is to be used as an
exploratory research tool. Several applications in performance studies and handling qualities
analysis have been described. From the point of view of the user, the value of helicopter
inverse simulation is that attention is focused upon the practical tasks expected of the pilot and
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the helicopter, and that the helicopter can be driven through severe manoeuvres in a manner that
is achievable by no other technique.

These benefits are, in principle, applicable to a wide range of controlled dynamic
systems. In section 3, the general principles of inverse simulation have been set out in a
manner which may be readily adapted to systems other than helicopters. Some comments have
been included which apply to the general situation. First, it is essential to define outputs which
have a smoothness that is consistent with the dynamics of the constrained system. The degree
of smoothness required may be discovered by analysis [3] or by experiment. For example, in
the helicopter application described, the acceleration profile needs to have at least smooth
second order derivatives in order to predict realistically smooth control movements by the pilot.
Second, it is necessary to appreciate that the dynamics of the constrained system may be quite
different from the unconstrained. The properties of the intemal dynamics, that is, those not
constrained by fixing the output, are important to the success of inverse simulation. It should
be realised that the internal dynamics are not an artefact of inverse simulation, they are the
consequence of imposing a specific output to be followed. If the result is an unstable system
then inverse simulation will correctly reflect that property.

In this paper the usefuiness of inverse simulation as a tool in helicopter flight dynamics
has been highlighted. The methodology presented is far from being specific to this application,
indeed any dynamic system represented by a set of equations of motion may be treated in the
same way. Hence whenever very precise forms of output are required from a system, there are

substantial benefits to be gained during the research and development by inverting the system
simulation.

Finally, the impact of inverse simulation in conveying real understanding of the systems
under investigation should not be underestimated. For example, a fly-off of two competing
helicopters through identical manoeuvres gives comparative information on pilot workload,

handling qualities, and helicopter performance - and consequently gets right to the heart of
practical flight dynamics requirements.
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Figure 1 : The Pop-up Manoeuvre
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Figure 4 : The Body Fixed Reference Frame
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