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A novel inverse simulation scheme is proposed for application to rotorcraft dynamic
models. The algorithm is based on a model predictive control scheme that allows for a
faster solution of the inverse simulation step, working on a lower–order, simplified helicopter
model. The control action is then propagated forward in time on a more complete model.
The algorithm compensates for discrepancies between the models by means of a simple
guidance scheme.

The proposed approach allows for the assessment of handling quality potential on the
basis of the most sophisticated model, adopted for the forward simulation, while keeping
model complexity to a minimum level for the computationally more demanding inverse
simulation algorithm. This allows for a faster solution of the inverse problem, if compared
with the computational time necessary for solving the same problem on the basis of the
full–order, more complex model. At the same time, the results are not affected by modeling
approximations at the basis of the simplified one. The reported results, for an articulated
blade, single main rotor helicopter model demonstrate the validity of the approach.

I. Introduction

Helicopter inverse simulation1 has been an active topic of research since its first development over two
decades ago with the seminal works of Thomson and Bradley2 and Hess and Gao.3 This technique in based
on the determination of control inputs that allow a helicopter model to fly a specified manoeuvre. A wide
plethora of methods for solving inverse simulation problems in flight mechanics has been considered in the
past, which can be grouped into three major categories: (i) differential methods,4 suitable for nominal
problems only, where the number of control inputs equals that of the tracked variables; (ii) integration
methods,5 where the required control action is evaluated over a discrete time interval and can handle also
redundant problems (e.g. by means of a local optimization approach6); and (iii) global methods,7 where
the time-history of the control variables is determined over the whole duration of the tracked manoeuvre by
means of a variational approach.

As underlined in Ref. 1, the solution of the inverse problem is a task significantly more challenging for the
rotorcraft case than for a conventional airplane, especially when individual blade dynamics is incorporated
in the model.8 Moreover, the issues related to the presence of transmission zeros and non-minimum phase
response affect rotorcraft dynamics more seriously than fixed-wing aircraft models.

Among other methods, one of the advantages of integration methods is represented by their capability of
dealing with complex, high order mathematical models of the vehicle on the basis of a solution scheme that
can be applied with only minor variations to dynamical models of various order and complexity, provided that
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the issue of unconstrained states is properly addressed. Although computation efficiency can be increased
by application of a two-time-scale approach,9 this remains a major concern in performing inverse simulation
of complex high order models.

Bagiev et al.10 have shown that a modification of the inverse simulation method to include a predictive
step is able to provide more realistic solutions to the inverse simulation problem. Considering that the
baseline algorithm may predict values which exceed the physical limits of the real vehicle, in this framework
the predictive step is used in order to identify in advance such violations of physical limits or constraints,
which might include mechanical limitations of control travel or control rates (based on hydraulic actuator
stroke or other characteristics), limitations of rotor and tail rotor torque, and even structural limits of critical
components.

Model Predictive Control may provide an answer to both the computation and the constraint violation
problems. On one side the combined use of a low–order model to represent system behaviour together
with the implementation of a receding horizon approach reduce the computational cost. At the same time
the resulting algorithm allows for the identification and correction of trajectories which lead to constraint
violations. In Model Predictive Control19 the evaluation of the control law usually results from the solution
of a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state.
The optimization yields an optimal control sequence and the first control in this sequence is applied to the
plant which is then integrated until the next control step, when the same procedure is repeated. The control
objective is usually to follow a user defined trajectory y(t) = ydes(t) where ydes(t) is the desired evolution
for the components of the vector of tracked outputs. The optimization problem is aimed at minimizing a
stage cost based on the difference between real and desired output at any time step in the predictive space
as well as on control activity and a terminal cost evaluated at the end of the integration (i.e. the receding
horizon).

The algorithm proposed in this paper for the solution of inverse simulation problems uses a MPC scheme
for the inverse simulation part of the routine. The complex model is substituted in the inverse simulation
scheme by a lower–order model that requires a significantly smaller CPU time to solve the inverse problem
(between 5 and 10 times faster). The architecture of the system allows for a continuous transmission of data
on control activity and state position between the two models which limits the drift of the system output
from the desired one. The scheme proposed in the paper is based on a special case of the optimization
process, in particular on the solution of a nominal MPC problem (where the number of algebraic conditions
matches that of control problem unknowns) enforced on the sole terminal cost (the output at the end of the
integration step has to be equal to the desired one). At the present level the ability of the scheme to prevent
violations of constraints has not yet been implemented.

The use of Model Predictive Control in the aerospace field is not new, as several control techniques based
on prediction schemes have been proposed in literature20–22 as a possible approach for the design of high
performance controllers, often based on linear system. As a major contribution, the present research aims
at the development of a nonlinear MPC step used for the precise and fast solution of an inverse simulation
problem based on a complex individual blade helicopter model.

In what follows, the inverse simulation scheme will be presented in detail in the next section. Some
manoeuvre examples are then proposed and discussed in the following paragraph, where two different lower–
order, simplified models are used for the inverse simulation step, thus demonstrating that the algorithm can
handle various degree of model complexity. A section of Conclusions ends the paper.

II. MPC scheme for IS

The proposed scheme allows the evaluation of the solution of an inverse simulation problem for a com-
plex rotorcraft model, starting from the solution of the inverse simulation step obtained for a lower–order,
simplified model. The complex model is used only in the forward simulation step, which is by far the com-
putationally least demanding, while a great amount of time and computational burden can be saved by
using a lower–order model in the inverse simulation step, which requires the numerical solution of a set of
non-linear conditions on rotorcraft output at the final time of the discretization interval by means of an
iterative procedure.
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A. Models used for IS

The reference model used in the analysis is an individual blade representation of the UH60 based on the
description by Howlett,13 where fuselage is described by a full aerodynamic database of forces and moments
depending on aerodynamic angles αfus and βfus. Blades dynamics include flap, lag and twist degrees of
freedom. Main rotor inflow model is taken from Ref. 14. The reference model is represented by the 37-
elements state vector x = (xB , xR, xIn)T where xB = (u, v, w, p, q, r, φ, θ, ψ)T collects fuselage rigid body

states, xR = (xTR1
,xTR2

, ...,xTRNb
)T , with xRi

=
(
βi, β̇i, ζi, ζ̇i, ϕi, ϕ̇i

)T
, lists rotor flap, lag and twist angles

and their derivatives, xIn = (ν0, ν1c, ν1s, ν0T R
)T represents main rotor and tail rotor inflow states.

The reference model is defined by a set of 37, time variant, nonlinear ordinary differential equations in
the form

ẋ = f (x,u,Ψ(t))
y = g (x)

(1)

where the helicopter control vector u = (θ0, A1c, A1s, θ0T R
)T contains pilot commands on main rotor collec-

tive, lateral and longitudinal cyclic pitch and tail rotor collective pitch, whereas Ψ is rotor anomaly angle.
For a constant rotor angular speed, it is Ψ(t) = Ωt. Finally the reference model output vector y contains all
the output variables needed for the guidance and inverse simulation steps.

The reference model, based on an individual blade approach, is inherently time variant and, in particular,
oscillations in every state variable are expected at a frequency equal to (or multiple of) blade rotational speed,
Ω, assumed constant in the sequel. As a consequence the trim conditions cannot be enforced in an algebraic
way by setting to zero all states derivatives. A periodic trim18 needs to be found by enforcing a periodicity
condition on all the states in the form

x (t) = x (t+ 2π/Ω)

for a constant value of controls, u0. The values of control variables are chosen so as to determine (on average)
a desired flight condition, defined in terms of airspeed, V , climb rate, ḣ, heading, χ (or turn rate, ψ̇). The
mean value of states over one rotor revolution

xi0 =
Ω
2π

∫ t+2π/Ω

t

xidt (2)

is used as a reference for defining the state variables at trim. Several techniques can be found in the
literature for solving the problem of helicopter periodic trim. In particular harmonic balance, periodic
shooting, autopilot techniques have been proposed and compared,17 also in the framework of helicopter
performance evaluation.11 In the present work, a periodic shooting approach derived from the work by
McVicar and Bradley18 is used. This technique has the advantage of being not particularly demanding for
the considered model and at the same time it is flexible, being easily adapted to the evaluation of trim
conditions for models of various levels of complexity.

The model used for the inverse simulation step is in general simpler than that used for forward simulation.
In the present analysis the simplified model describes the main rotor with tip–path–plane dynamics and
linear aerodynamics, which allow to analytically derive average rotor loads on fuselage, as in the work by
Talbot et al.16 The resulting 19 elements of the state vector x̃ of the simplified model can be partitioned
as in the previous case in the form x̃ = (x̃B , x̃R, x̃In)T , with the same fuselage rigid body and the
inflow states, x̃F and x̃In, respectively, while rotor is represented by tip–path–plane second order dynamics,

x̃R =
(
β̃0,

˙̃
β0, β̃1c,

˙̃
β1c, β̃1s,

˙̃
β1s

)T
where β̃0, β̃1c, β̃1s are respectively coning, longitudinal and lateral flapping

coefficients.
The dynamics of the simplified model is thus defined by means of a set of 19 nonlinear time–invariant

ordinary differential equations, in the form

˙̃x = f̃ (x̃, ũ)
ỹ = g̃ (x̃)

(3)

where ũ =
(
θ̃0, Ã1c, Ã1s, θ̃0T R

)T
is the command vector and ỹ is the output vector. Note that the states,

commands and outputs of the model used for the inverse simulation step are defined by symbols with a
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Figure 1. Description of the approach for the solution of the inverse simulation problem

tilde, in order to underline the fact that, in general, they may assume different values with respect to their
counterparts in the reference models due to the difference in modelling level and tracking error of the output
variables during the procedure. The time-variant reduced-order model can be trimmed by means of algebraic
tools, simply enforcing the condition

f̃ (x̃0, ũ0) = 0

where x̃0 and ũ0 are the state and control variables at trim.
Since the two models may generate slightly different trim conditions, during the routine the variation of

states and commands from their trim value is used rather than their actual values. Using this approach the
difference between equilibrium states has no impact and causes no drift in the evaluation of the dynamic
behaviour. The symbols ∆u = u − u0 and ∆ũ = ũ − ũ0 thus indicate control variable increments with
respect to the considered reference trim condition. Similarly, for the state vector the following increments
are defined ∆xR = xR − xR0 , ∆xF = xF − xF0 ,∆xIn = xIn − xIn0 for rotor, fuselage and inflow states,
respectively.

B. Inverse simulation algorithm

The approach for the solution of the inverse problem is described in Fig. 1. Three major blocks form
the architecture of the algorithm. The forward simulation block performs the forward simulation of the
reference model. The inverse simulation block is responsible for the evaluation of the command time–history
that achieves the desired increment ∆y? for the tracked output variables. Finally the guidance block provides
the desired output to the inverse simulation block based on the desired trajectory and the actual output
function of the reference system.

More in detail, at any time step tk the inverse simulation bloc evaluates the control action ũ which is
then passed to the forward simulation as command displacement from trim condition, assuming ∆u = ∆ũ.
From the knowledge of the initial trim condition the forward simulator integrates the equations of motion
for the reference model assuming a constant value of the control variables, u = u0 + ∆u, over a time step
equal to the inverse simulation step ∆t.

Since the model used in the forward simulation is different from that used in the inverse simulation,
both the states ∆x (tk + ∆t) and output variables y (tk + ∆t) achieved at the end of the simulation step
are (hopefully only slightly) different from their counterparts for the IS step, ∆x̃ (tk + ∆t) and ỹ (tk + ∆t),
determined on the basis of a simplified model. It is thus reasonable that the output variables y (tk + ∆t)
are somewhat different from ydes (tk + ∆t), as enforced for the simpler model during the IS step.

Moreover, the matching condition between the outputs and their desired values is enforced at a time
tk + T , with T > ∆t, where the receding time–horizon T provides a sufficient settling time for uncontrolled
dynamics, as discussed in detail below and in Ref. 12. On the converse, the output of the reference system is
taken at time tk + ∆t. As a consequence a guidance step is added to the inverse simulation process in order
to limit the drift of the system from the desired trajectory, by updating the desired output variables as a
function of the error exhibited by the reference model at the end of the forward simulation step. The desired
output ydes for the following step tk+1 = tk + ∆t is thus corrected as a function of the forward simulation
output y (tk + ∆t) at the end of the k–th step using an approach later described in Eq. (9).

The IS problem is solved by means of an integration algorithm. In a standard inverse simulation ap-
proach,12 once a desired variation with time of the output, ydes(t), is available (i.e. a manoeuvre profile like
those required by ADS–33 specifications15) the helicopter equations of motion are integrated from an initial
condition xI = xk at time tk over a time interval ∆t (the inverse simulation time step) for a piece–wise
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constant value u?k of the control variables. The resulting value yF = g(xF ) of the output variables at time
tF = tk+1 = tk + ∆t is therefore a function of the (given) initial state xk and of the (unknown) constant
control action, u?k, which is thus evaluated iteratively.

This approach is extremely demanding from the computational point of view especially for individual
blade models featuring as many as 37 states, such as the helicopter model adopted for this study. The
resulting computational time may become considerable high, also on modern CPUs. In order to reduce the
computational burden, the inverse problem is here solved on the basis of a lower–order, simplified model.
Some changes to the inverse simulation integration method are required, in order to achieve robustness and
in general better performances.

As a first issue, since a reduced order model is adopted for the IS step, at any time tk a proper set
of initial conditions is required for integrating the set of ODE represented by Eq. (3). The ideal choice of
setting x̃I = xk is ruled out by the fact that the two vectors have a different number of components and,
moreover, some of the states would not be accessible to direct measurements, if the algorithm is implemented
as a MPC controller for an actual vehicle, rather than an off–line inverse simulation method for a complex
helicopter model. For this reason, the issue of state initialization at the beginning of every integration step
needs to be addressed especially for the inverse simulation block. For the forward simulation, the states
at the beginning of the k–th step are simply given by the value assumed at the end of the previous one
xIk

= x(tk) = x(tk−1 + ∆t) = xFk−1 .
For the inverse simulation step, on the converse, the initialization of states must rely at least partially on

the knowledge of the states of the reference forward model in order to prevent a drift between the two models
and consequent loss of control when implementing the control action derived from the simplified model on
the full–order one. Two options are here considered. In the first case (technique A) as much information
as possible is passed from the complete model to the reduced order one. Increments for fuselage and inflow
variables are evaluated and the initial states for the inverse simulation step are given by

x̃B (tk) = x̃B0 + [xB (tk)− xB0 ] (4)
x̃In (tk) = x̃In0 + [xIn (tk)− xIn0 ] (5)

where xB0 and x̃B0 are the rigid body state trim conditions for the reference and inverse model respectively
and xB (tk) is the reference model rigid body state at the end of the previous forward integration step.
Similarly xIn0 and x̃In0 represent the inflow states for the reference and inverse models, and xIn (tk) is the
reference model inflow state at the end of the previous forward integration step. As for rotor states, coning,
longitudinal and lateral flapping coefficients at tk are evaluated by means of multiblade coefficients:

β0 (tk) =
1
Nbl

Nbl∑
j=1

βj (tk)

βs (tk) =
2
Nbl

Nbl∑
j=1

βj (tk) sinψj (6)

βc (tk) =
2
Nbl

Nbl∑
j=1

βj (tk) cosψj

where Nbl is the number of blades. Letting β = (β0, βs, βc)
T , the initial condition for rotor states is defined

as

x̃R (tk) = x̃R0 + [β (tk)− β0] (7)

Technique B is based on the hypothesis that only rigid body states xB of the reference model are truly
observable as it would happen in a real-time application of the algorithm in the form of an actual MPC
scheme. The same displacement of fuselage states from trim condition is enforced in the inverse model initial
states as in Eq. (4), but inflow and rotor states are not updated. Inflow and rotor states are assumed as
not observable and therefore they are initialized with the value at the end of the last inverse simulation run
xR,In(tk) = xR,In(tk−1 + ∆t).
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The choice of selecting rigid body states only as observable states maintains a link to Model Predictive
Control procedures. In fact, if a real system replaces the forward simulation model, only some states would
be observable. In particular linear and angular velocities as well as attitude variables are usually available
from GNC sensors and as a consequence they can be fed to the inverse model in the above mentioned routine.
On the converse, rotor and inflow states are in general non-observable states and therefore no feedback of
their actual value from the controlled plant can be provided to the inverse simulation model in a realistic
scenario.

In both cases, simplified model states are integrated over a time interval T = N∆t, that is, a time
interval longer than the inverse simulation step ∆t, using a piece–wise constant value ũ?k for the control
variables. The longer integration time allows for some fast uncontrolled dynamics to settle down before
the instant when the objective function is evaluated. The selection of the integration time results from a
trade-off between computational time and stability of the method. In fact short integration time may excite
uncontrolled dynamics and lead to an unstable or highly oscillatory response of the system, both of which
should be discarded as poor and/or impractical solutions of the inverse problem. Furthermore this approach
is common practice in Model Predictive Control, where the receding horizon used for the forward prediction
of system behaviour and evaluation of control activity is usually 3 to 10 times the controller time step.

In the routine developed for the present work the integration time T is selected so that T = N∆t with
N = 3 for the results proposed in the following section. The resulting value ỹF = g̃(x̃F ) of the output
variables at time tF = tk + T = tk + N∆t is thus a function of the (given) initial state x̃k and of the
(unknown) constant control action, ũ?k.

Control variables can then be determined in such a way that ỹF matches the value of ydes at time tF ,
that is, the inverse problem can be stated in terms of a set of p algebraic equations in the form

ỹF = F̃ (x̃k, ũ?k) = ydes(tF ) (8)

with m unknowns. When m = p, the problem is nominal and, if well posed, it can be solved by means of
standard numerical techniques, such as Newton–Raphson (NR) method. If m > p the problem is redundant,
as in many aeronautical applications for fixed and rotary–wing aircraft, when 4 controls are available for
tracking 3 trajectory variables.

As a further variation to a standard integration method, a different definition of the algebraic system
is adopted in this paper, where, rather than directly solving Eq. (8) in terms of the actual value of the
tracked variables at time tF , their increments over the time step between tI and t?F are required to be equal.
Equation (8) is thus replaced with

∆ỹ? = F̃ (x̃k, ũ?k)− y(tk) = (9)
= F̃ (x̃k, ũ?k)− g(xk) =
= ydes(tF )− ydes(tI) +K [ydes(tI)− g(xk)]

where the additional term in square brackets multiplied by a gain K avoids that the actual solution “drifts”
away from the desired path because of the incomplete implementation of the considered step during the
forward propagation, as outlined above. This term also enforces asymptotic convergence on the tracked
variables when they achieve a steady value.

If on one side the condition on the output function is enforced on the model used in the inverse simulation
step described by Eq. (3), on the other hand the correction of the desired output due to the discrepancies of
actual value of the output function is done independently in the Guidance step described in Fig. 1. Since the
actual system output y(tk) is available, the correction of the drift term is based on this value, as described
in Eq. (9). By some simple manipulation, Eq. (9) can be rearranged as

F̃ (x̃k, ũ?k) = ydes(tF ) + (K − 1) [ydes(tI)− g(xk)]

where for K = 0 the additional term disappears and one simply requires that the increment of the actual
output variables at the end of the whole inverse simulation step T = tF − tI equals the increment for the
desired variation of y.

As described above, in order for the inverse problem to be nominal and therefore to be solved via Newton–
Raphson method, the number of algebraic equations has to match the number of controls (i.e. 4 for the
present case). In the inverse simulation problem the helicopter must follow a desired trajectory. The flight
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Figure 2. Maneuvers trajectories: (a) hurdle-hop; (b) slalom; – IS problem solved with reference model, – IS
problem solved with inverse model, – IS problem solved with MPC approach.

task element can be enforced on the model by setting as objective function at every time step the inertial
position, the inertial velocity components or the inertial acceleration. A choice between the possible objective
functions is required, where setting the position as desired variables may lead to instability in the algorithm,
while choosing the acceleration components may lead to large drift from the desired trajectory as the system
integrates twice the error on the considered problem objective function. The inertial velocities were then
chosen as the baseline desired output to be tracked by means of the inverse problem.

As a final issue, setting one of the previous conditions to follow the desired variation with time enforces
only 3 conditions, when 4 control variables are available. A further objective function needs to be selected
to make the problem nominal. In particular ψ = 0 is chosen in those cases when the helicopter is required
to face a particular direction during the whole manoeuvre (e.g. hurdle-hop or lateral repositioning) whereas
a condition of zero lateral acceleration in body reference frame (ay = 0) is enforced in lateral-directional
manoeuvres.

III. Results and Discussion

The approach described in the previous section is tested in this paragraph with a series of manoeuvres
taken from ADS-33 E standard15 or from inverse simulation literature.1,9, 12 In particular a longitudinal
manoeuvre (a hurdle hop) and a lateral-directional one (a slalom) are used to show the effectiveness of the
approach. In both cases, the trim conditions of the reference and the inverse simulation models need to
be evaluated for initializing the procedure. Then, following the approach described in the previous section,
the inverse solution is calculated using inertial velocities as desired output function. The nominal MPC
problem is closed imposing the terminal conditions ψ = 0 in the longitudinal hurdle-hop and ay = 0 in the
slalom. Results produced by means of “full state feedback” from the complete to the simplified model at
the end of the simulation step (technique A) almost perfectly match the inverse solution obtained from the
reference model alone. For this reason only results produced by technique B (feedback on rigid body states
only) will be presented in the sequel. These results are compared with the solution of the inverse simulation
problem based on the same manoeuvres obtained by a more traditional inverse simulation method12 where
the forward and inverse simulation phases are based on the same model. Trajectory and command time
histories are compared to the results of these two inverse simulation problems based on the complete and on
the simplified models, respectively.

Figure 2 represents the trajectory realized by the three different approaches in the two manoeuvres. It is
clear that in the hurdle-hop manoeuvre the three algorithm are able to follow the reference trajectory with
great precision. In the slalom manoeuvre the performance of the MPC approach is still good even if a small
drift from the desired trajectory emerges in the last segment.

The command time histories in the two manoeuvres show that the approach based on MPC is able to
generate the correct command to the reference model, at a fraction of the computational cost if compared to
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Figure 3. Command time-histories in hurdle-hop manoeuvre: (a) total command travel and (b) displacement
from trim. – IS problem solved with reference model, – IS problem solved with inverse model, – IS problem
solved with MPC approach.

the inverse solution of the full, individual blade model. Figure 3 compares the command time histories for
the three approaches in a hurdle-hop manoeuvres. The commands are scaled with respect to their maximum
travel. In particular main rotor collective θ0 can vary between 0 and 1, while all other commands are scaled
between minimum and maximum values set respectively at −1 and +1. Figure 3.a represents the command
travel, while figure 3.b plots the displacement from command trim condition in order to remove the impact
of differences in equilibrium conditions. The result of the inverse simulation problem based on the complete
model is taken as a reference, represented in the figures by the blue line. Furthermore the MPC approach
(black line) is expected to behave not worse than the IS approach based on the lower–order model (red line).
It is clear that the MPC approach is able to represent very well the behaviour of the reference model. A
small vibration is present for both the reference model and the MPC solution during the descent phase of the
hurdle hop. This is a very critical phase of the manoeuvre due to the quick change of aerodynamic conditions
around the rotor during a steep unsteady descent. Nevertheless, apart from this small “vibration”, the MPC
approach performs really well in predicting the complex model command required to perform the manoeuvre.

A similar behaviour can be seen in Fig. 4 where the results for a slalom manoeuvre are shown. In this
case the results of the MPC approach are still satisfactory and, considering all command lines, better than
the solution evaluated using only the lower–order model (red line). Nevertheless the predicting capability
of the MPC approach is not as precise as in the previous manoeuvre. This may be due to the fact that the
slalom manoeuvre couples the longitudinal and lateral variables of main rotor and inflow models. The level
of rotor modelling is very different between the two models (individual blade with flap, lag and twist degrees
of freedom compared to a simple 2nd order tip path plane dynamics). As a consequence some differences in
rotor response to such a complex aerodynamic environment appear as reasonable. Furthermore, as described
above, there is no rotor state feedback from the reference model to the simpler one, so the inverse simulation
and the forward one may start from quite different rotor and inflow initial conditions. This leads to the
evaluation of a control ∆u? which meets the output requirement for the lower order model, but fails to
provide a very accurate estimate for the reference one. The introduction in the MPC approach of rotor and
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Figure 4. Command time-histories in slalom manoeuvre: (a) total command travel and (b) displacement from
trim. – IS problem solved with reference model, – IS problem solved with inverse model, – IS problem solved
with MPC approach.

inflow states feedback enables a more precise estimation of complex model commands.
Since the scheme works well with the lower–order model described in the second section, it has been

tested with an even simpler model. This lower–order model is represented by system state x̂ = (x̂B , x̂R )T

where x̂B =
(
û, v̂, ŵ, p̂, q̂, r̂, φ̂, θ̂, ψ̂

)T
represents fuselage states and x̂R =

(
β̂0, β̂1c, β̂1s

)T
represents first–

order dynamics rotor states (coning, longitudinal and lateral states). Further simplifying assumptions of
this model include the inflow which is assumed uniform and quasi–steady and the fuselage aerodynamic
description which is based on parasite drag area and not on complete aerodynamic database as in the
previous models. Figure 5 collects the results of the MPC inverse simulation problem based on this minimum
complexity model. It can be seen that even if the model used for the inverse simulation step is very simple,
the results are still satisfactory.

From a computational point of view the solution of the classical inverse simulation problem as described
in Ref. 12 with the lower–order model is 4 time faster than the reference complex model. Using the MPC
approach the computational burden is almost identical to the inverse simulation problem based on the simple
model as the forward simulation performed with the complex model absorbs just a marginal time in the whole
process. As a consequence with the same computational burden (4 times faster than the traditional inverse
simulation based entirely on the complex model) it is possible to evaluate almost exactly the command
time history required to perform the manoeuvre. Using the minimum complexity rotorcraft model described
before a further 20% computational time is saved.

IV. Conclusions and Future Work

A novel approach to the solution of inverse simulation problems based on a model predictive control
scheme was proposed. The approach is able to significantly reduce the computational burden required
by the inverse simulation of a complex nonlinear helicopter model by using a lower–order model in the
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Figure 5. Command time-histories in hurdle-hop manoeuvre with minimum order inverse simulation model:
(a) total command travel and (b) displacement from trim. – IS problem solved with reference model, – IS
problem solved with lower order inverse model , – IS problem solved with MPC approach.

inverse simulation step. In this framework, the standard integration approach to the solution of the inverse
simulation problem was modified in order to be more robust and flexible.

The approach was tested on a series of manoeuvres used for the analysis of rotorcraft handling qualities.
The results show the ability of the MPC approach to generate trajectories and command time–histories very
similar to the desired ones. Furthermore the approach was tested on a minimum complexity model and the
performance of the technique proved to be still absolutely adequate.

Future work will be focused on the tuning of many parameters which are left to the user in the present
techniques. Objective function, size of the receding horizon, states provided as feedback to the lower–order
model can all be tuned to provide better performances. Further research will be also dedicated to the
evaluation of the minimum order model capable of providing satisfactory results in the MPC approach,
including linear ones.
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