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Abstract

The problem of designing network-wide traffic signal control strategies for large-scale congested

urban road networks is considered. One known and two novel methodologies, all based on the

store-and-forward modeling paradigm, are presented and compared. The known methodology is

a linear multivariable feedback regulator derived through the formulation of a linear-quadratic

optimal control problem. An alternative, novel methodology consists of an open-loop constrained

quadratic optimal control problem, whose numerical solution is achieved via quadratic program-

ming. Yet a different formulation leads to an open-loop constrained nonlinear optimal control

problem, whose numerical solution is achieved by use of a feasible-direction algorithm. A pre-

liminary simulation-based investigation of the signal control problem for a large-scale urban

road network using these methodologies demonstrates the comparative efficiency and real-time

feasibility of the developed signal control methods.
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1 Introduction

In view of the increasing traffic congestion and lack of possibilities for infrastructure ex-

pansion in urban road networks, the importance of efficient signal control strategies, par-

ticularly under saturated traffic conditions, can hardly be overemphasized. It is generally

believed that real-time systems responding automatically to the prevailing traffic condi-

tions, are potentially more efficient than clock-based fixed-time control settings, possibly

extended via a simple traffic-actuated logic.

On the other hand, the development of optimal network-wide real-time signal control

strategies using detailed network models is deemed computationally infeasible due to the

discrete nature of the related optimization problem that leads to exponentially increasing

complexity (see e.g. Papageorgiou et al., 2003); as a consequence, the developed or imple-

mented real-time signal control strategies must include simplifications or heuristics, some

of which may render the strategies less efficient under saturated traffic conditions. A partic-

ular simplified control design avenue pursued by various works in the past is based on the

store-and-forward modeling (SFM) paradigm; a particular advantage of these approaches

is that they are applicable to large-scale congested networks; their main disadvantage is

that, due to the particular modeling simplification employed, they are only applicable for

split optimization, while cycle time and offsets must be delivered by other algorithms.

This paper presents and compares one known and two novel network-wide signal control

methodologies based on SFM. More specifically, a generic mathematical model, based on

the store-and-forward modeling paradigm, for the traffic flow process in large-scale urban

networks is presented first. Three modeling variations lead to the three alternative optimal

control methodologies for the design of signal control strategies that aim at minimizing

and balancing the link queues so as to reduce the risk of queue spillback under saturated
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traffic conditions. Based on the three control methodologies, signal control plans (splits)

may be computed in real time (once per cycle) through a linear multivariable feedback

regulator (LQ), an open-loop constrained quadratic optimal control problem (QPC), or

an open-loop constrained nonlinear optimal control problem (NOC), respectively. In order

to evaluate the comparative results and real-time feasibility of the proposed methods, a

preliminary comparison of the closed-loop behaviour of the linear multivariable regulator

with the open-loop behaviour of QPC and NOC methodologies, is carried out.

2 Background

A variety of real-time traffic signal control strategies for urban networks has been devel-

oped during the past few decades. Without attempting a survey of this vast research area

we will address a few selected strategies (for an up-to-date account we refer the reader to

Papageorgiou et al. (2003)), some of which have been implemented in real-life conditions

while others are still in the research and development stage. We may distinguish two prin-

cipal classes of signal control strategies. In the first class, strategies are only applicable

to (or efficient for) networks with undersaturated traffic conditions, whereby all queues

at the signalized junctions are served during the next green phase. In the second class,

we have strategies applicable to networks with oversaturated traffic conditions, whereby

queues may grow in some links with an imminent risk of spillback and eventually even of

gridlock in network cycles.

SCOOT (Hunt et al., 1982; Bretherton et al., 2004) and SCATS (Lowrie, 1982) are two

well-known and widely used coordinated traffic-responsive strategies that function effec-

tively when the traffic conditions in the network are below saturation, but their per-

formance may deteriorate when severe congestion persists during the peak period. Other

elaborated model-based traffic-responsive strategies such as PRODYN (Farges et al., 1983)
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and RHODES (Mirchandani and Head, 1998; Mirchandani and Wang, 2005) employ dy-

namic programming while OPAC (Gartner, 1983) employs exhaustive enumeration. Due

to the exponential complexity of these solution algorithms, the basic optimization kernel

is not real-time feasible for more than one junction.

Store-and-forward modeling of traffic networks was first suggested by Gazis and Potts

(1963) and has since been used in various works notably for road traffic control. This

modeling approach that describes the network traffic flow process in a simplified way, so

as to circumvent the inclusion of discrete variables, offers a major advantage: it allows for

highly efficient optimization and control methods with polynomial complexity to be used

for the coordinated control of large-scale congested urban networks. On the other hand,

the introduced modeling simplification allows only for split optimization, while cycle time

and offsets must be delivered by other control algorithms. A recently developed signal

control strategy of this type is TUC (Diakaki et al., 2002) that will be outlined later.

More recently, a number of approaches have been proposed employing various compu-

tationally expensive numerical solution algorithms, including genetic algorithms (Abu-

Lebdeh and Benekohal, 1997; Lo et al., 2001), multi-extended linear complementary pro-

gramming (Schutter and Moor, 1998), and mixed-integer linear programming (Lo, 1999;

Beard and Ziliaskopoulos, 2006). In Lo (1999); Lo et al. (2001); Beard and Ziliaskopoulos

(2006) the traffic flow conditions are modeled using the cell transmission model (Daganzo,

1994), a convergent numerical approximation to the first-order hydrodynamic model of

traffic flow for network links. In view of the high computational requirements, the real-

life implementation of these optimization-based approaches might face some difficulties in

terms of real-time feasibility.
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3 Store-and-forward modeling

The urban road network is represented as a directed graph with links z ∈ Z and junctions

j ∈ J . For each signalized junction j, we define the sets of incoming Ij and outgoing

Oj links. It is assumed that the offset and the cycle time Cj of junction j are fixed

or calculated in real time by another algorithm. In addition, to enable network offset

coordination within the present setting, we assume that Cj = C for all junctions j ∈ J ,

which is a quite usual assumption. Furthermore, the signal control plan of junction j

(including the fixed lost time Lj) is based on a fixed number of stages that belong to the

set Fj , while vz denotes the set of stages where link z has right of way (r.o.w.). Finally,

the saturation flow Sz of link z ∈ Z, and the turning rates tw,z, where w ∈ Ij and z ∈ Oj,

are assumed to be known and constant for LQ control but may be time-varying for the

QPC and NOC approaches.

By definition, the constraint

∑

i∈Fj

gj,i + Lj = (or ≤) C (1)

holds at each junction j, where gj,i, is the green time of stage i at junction j. Inequality

in (1) may be useful in cases of strong network congestion to allow for all-red stages. In

addition, the constraint

gj,i ≥ gj,i,min, i ∈ Fj (2)

where gj,i,min is the minimum permissible green time for stage i at junction j ∈ J , is

introduced to guarantee allocation of sufficient green time to pedestrian phases.

Consider a link z connecting two junctions M and N such that z ∈ OM and z ∈ IN
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Fig. 1. An urban road link.

(Fig. 1). The dynamics of link z are given by the conservation equation

xz(k + 1) = xz(k) + T
[

qz(k) − sz(k) + dz(k) − uz(k)
]

(3)

where xz(k) is the number of vehicles within link z (for the sake of brevity sometimes

called queues in the following) at time kT , qz(k) and uz(k) are the inflow and outflow,

respectively, of link z in the sample period [kT, (k + 1)T ]; T is the discrete time step and

k = 0, 1, . . . the discrete time index; dz and sz are the demand and the exit flow within

the link, respectively. For the exit flow we set sz(k) = tz,0qz(k), where the exit rates tz,0

are assumed to be known.

Queues are subject to the constraints

0 ≤ xz(k) ≤ xz,max, ∀ z ∈ Z (4)

where xz,max is the maximum admissible queue length. This constraint may automatically

lead to a suitable upstream gating in order to protect downstream areas from oversatura-

tion during periods of high demand.

The inflow to the link z is given by qz(k) =
∑

w∈IM
tw,zuw(k), where tw,z with w ∈ IM are

the turning rates towards link z from the links that enter junction M .

We now introduce a critical simplification for the outflow uz that characterizes the utilized
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modeling approach. Provided that space is available in the downstream links and that xz

is sufficiently high (which are surveilled by constraint (4)), the outflow (real flow) uz of

link z is equal to the saturation flow Sz if the link has r.o.w., and equal to zero otherwise.

However, if the discrete time step T is equal to C, an average value for each period

(modeled flow) is obtained (Fig. 2) by

uz(k) = Gz(k)Sz/C (5)

where Gz, is the green time of link z, calculated as Gz(k) =
∑

i∈vz
gj,i(k). The consequences

of this simplification for the derived signal control strategies are discussed further below.

Replacing (5) in (3) for all z and organizing all resulting equations in one single vector-

based equation leads to a linear state-space model for road networks of arbitrary size,

topology, and characteristics which is given by

x(k + 1) = x(k) + Bg(k) + Td(k) (6)

where x(k) is the state vector (consisting of the number of vehicles xz of each link z);

g(k) is the control vector (consisting of all the green times gj,i); d(k) is the disturbance

vector (consisting of the demand flows dz of each link z); B results from (3), (5) as a con-

stant matrix of appropriate dimensions containing the network characteristics (topology,

saturation flows, turning rates).
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As a consequence of simplification (5), i.e. due to the model time step T being equal to

the cycle time C, the model is not aware of short-term queue oscillations due to green-red

switchings within a cycle; in other words, the model describes a continuous (uninterrupted)

average outflow from each network link (as long as there is sufficient demand upstream

and sufficient space downstream). Moreover, offset and cycle time have no impact within

the SFM and must be either fixed or updated in real time independently (Diakaki et al.,

2003). These consequences of simplification (5) is the price to pay for avoiding the explicit

modeling of intra-cycle red-green switchings which would render the resulting optimization

problem discrete (combinatorial) and would lead to exponential increase of computational

complexity for its exact solution as in several previous works.

Note that the SFM (6) is simpler than the cell transmission model (CTM) employed

in some previous works (Lo et al., 2001; Lo, 1999; Beard and Ziliaskopoulos, 2006). In

fact, the CTM calls for subdivision of network links into shorter segments (cells) and

correspondingly shorter time steps T of 5 s or less. Thus the CTM describes the (inho-

mogeneous) link-internal traffic state more accurately than the SFM. However, the more

accurate description of link-internal traffic flow dynamics has a limited significance in in-

terrupted (signal-controlled) traffic network flow, in contrast to the uninterrupted freeway

traffic flow. Moreover, real-time application of a CTM-based control strategy would call

for specific measurements (or estimates) for each cell which are usually not available in

current network control infrastructures.

The most suited control objective under congested traffic conditions is to minimize the

risk of oversaturation and spillback of link queues. To this end, one may attempt to

minimize and balance the links’ relative occupancies xz/xz,max. This criterion is physically

reasonable as well as convenient from the numerical solution point of view, as we will

see later. Alternatively, one may minimize the total time spent (which corresponds to

minimization of the sum of xz) but this would lead to a linear programming problem with
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vertex solutions (e.g. xz = 0 for some links and xz = xz,max for others) that may increase

the risk of link queue spillback.

4 Control and optimization approaches

4.1 Linear-quadratic (LQ) optimal control

A first approach towards network-wide real-time signal control based on the SFM (6) is

derived as follows. We assume availability of a network-wide fixed signal control plan gN

that may have been calculated by use of any fixed-time control method based on fixed

(historical) demands dN . We also assume that, under the demand dN , the signal controls

gN lead to non-saturated network traffic conditions, i.e. to a constant state xN . Based on

(6), it is easy to see that these assumptions imply BgN + TdN = 0. We now define the

control and demand deviations ∆g(k) = g(k)−gN and ∆d(k) = d(k)−dN , respectively,

which yield from (6)

x(k + 1) = x(k) + B∆g(k) + T∆d(k). (7)

A quadratic criterion that addresses adequately the control objective mentioned in Section

3 has the general form

J =
∞
∑

k=0

(

‖x(k)‖2
Q + ‖∆g(k)‖2

R

)

(8)

where Q and R are nonnegative definite, diagonal weighting matrices with appropriate

dimensions. The diagonal elements of Q are set equal to 1/xz,max in order to minimize

and balance the relative occupancies of the network links. Furthermore, the magnitude

of the control reactions can be influenced by the choice of the weighting matrix R =

rI where I is the unit maxtrix. To this end, the choice of r may be performed via a

trial-and-error procedure (e.g. using simulation, see Diakaki (1999)). The trial-and-error
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procedure consists in fixing some r-values; simulating the corresponding control results

for representative demand scenarios; evaluating the obtained sub-criteria values; so as to

achieve a satisfactory control behaviour for a given application network. The trial-and-

error procedure may even be omitted because the control results are little sensitive for a

broad range of (usually very low) r values (Diakaki, 1999).

Minimization of the cost criterion (8) subject to (7) (assuming ∆d(k) = 0 as it is usual

for LQ control) leads to a linear multivariable feedback regulator given by

g(k) = gN − Lx(k) (9)

where the feedback gain matrix L results as a straightforward solution of the corresponding

algebraic Riccati equation. Note that, according to the LQ control theory, the gain matrix

L is constant thanks to the selection of an infinite time-horizon in the control objective

(8); it should also be noted that gN in (9) may be time-varying if there is a need for this,

while dN is not actually needed in the LQ control application.

Essentially, the regulator (9) modifies in real time the fixed plan gN appropriately, to

respond to the formation of queues x(k) in the network links. Sufficiently reliable esti-

mates of xz(k) may be obtained on the basis of one single occupancy-measuring detector

cross-section, preferably in the middle of the link, see Diakaki (1999), for details. This is

the multivariable regulator approach taken by the signal control strategy TUC (Diakaki

et al., 2002) to calculate in real time the network splits, while cycle time and offset are

calculated by other parallel algorithms (Diakaki et al., 2003). TUC has been successfully

field-implemented in large networks of 5 cities in 4 different countries, see Kosmatopoulos

et al. (2006), for recent field results.

Note that the LQ control theory does not allow for direct consideration of the constraints
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(1) and (2). For this reason, a suitable real-valued quadratic knapsack algorithm is used

after the application of (9) in order to suitably modify the calculated gj,i green times of

each junction so as to satisfy the constraints (1) and (2). More specifically, the knapsack

algorithm for each junction j reads: For given gj,i (resulting from (9)), find the modified

green times g̃j,i, ∀i ∈ Fj , that minimize

Φ(g̃j,i) =
1

2

∑

i∈Fj

(g̃j,i − gj,i)
2 /gj,i (10)

subject to (1), (2). It may be readily shown that the minimization of (10) subject to (1)

alone would lead to a solution that satisfies g̃j,i/gj,i = g̃j,l/gj,l ∀ (i, l), i.e. the modified

g̃j,i would preserve the same splits as gj,l along with satisfying (1). The above real-valued

quadratic knapsack problem approximates this solution to the extent allowed by the ad-

ditional constraint (2). The exact numerical solution of a real-valued quadratic knapsack

problem is known (Helgason et al., 1980; Diakaki, 1999) to call for at most as many itera-

tions as the number of involved variables, which, in our case, hardly exceeds 3 or 4 stages

at each junction.

The main advantage of the LQ approach to network-wide signal control is the simplicity

of required real-time calculations, thanks to the closed-loop solution (9) of the formulated

optimal control problem which circumvents the need for numerical solution of an opti-

mization problem in real-time. In fact, the real-time application of the LQ method calls

for one measurement/estimation of x(k) per cycle, based on which the control strategy

executes the control law (9), applies the constraints based on (10) and returns the green

times g(k) for application in the next cycle.

A potential disadvantage of the LQ approach is the a posteriori application of the con-

straints (1), (2), which may lead to suboptimal solutions; this is a first motivation for

the development of more complex, but potentially more efficient approaches that will be
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presented in the next sections.

It should also be stressed that the LQ strategy does not consider explicitly the queue

constraints (4). Although the balancing of the link queues via the control objective (8)

reduces the risk of overspilling links in an indirect way, it is interesting to consider more

complex approaches that account for the queue constraints (4) strictly as in the following

sections.

4.2 Open-loop quadratic-programming control (QPC)

In contrast to other SFM-based approaches (see for instance Singh and Tamura (1974)), we

will now introduce the green times Gz of each link z as additional independent variables.

The reason behind this modification is that we want to increase the control flexibility and

potential efficiency while explicitly considering the queue constraints (4) (Papageorgiou,

1995). The introduced link green times Gz are constrained as follows:

0 ≤ Gz(k) ≤
∑

i∈vz

gj,i(k), ∀ j ∈ J. (11)

In more detail, the reason for introducing independent Gz in the problem formulation

may be illustrated via the following observation: if the queue xz is not sufficiently long

or even zero; or if the downstream link queue is too long to accommodate a high inflow;

then the constraints (4) will become active and will reduce the corresponding stage greens

accordingly. As an illustrative example, assume that at a certain cycle there are two

links z and w having r.o.w. simultaneously during a stage (M, i), and that xz ≈ 0 while

xw ≫ 0 (Fig. 3). If Gz and Gw are not independently introduced, we have by definition

Gz = Gw = gM,i. Then, the stage green gM,i will be strictly limited by the constraint

xz ≥ 0 although link w may need a longer green phase for dissolving xw. In contrast, by
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Fig. 3. A two-way link connecting two junctions M and N .

introducing Gz and Gw independently, the algorithm can guarantee xz ≥ 0 by choosing

Gz accordingly short without constraining Gw and the stage green. Similarly, if the link

r downstream of link z is close to spillback (see Fig. 3), the constraint xr ≤ xr,max can

be guaranteed by choosing Gz accordingly short without constraining the green time of

other links that are having r.o.w. during the same stage.

In view of the above modification, replacing (5) in (3) leads to a linear state-space model

for road networks of arbitrary size, topology, and characteristics

x(k + 1) = x(k) + B(k)G(k) + Td(k) (12)

where G(k) is the link control vector with elements the green times Gz of each link z; B

is a matrix of appropriate dimensions reflecting the network characteristics. Note that in

this approach B may be time-variant, if the involved saturation flows or turning rates are

time-variant.

In this approach, the employed finite-horizon quadratic criterion that addresses the stated

control objective has the form

J =
K

∑

k=0

∑

z∈Z

x2
z(k)

xz,max

. (13)

Note that this criterion is identical with the criterion (8) for K → ∞, r = 0. Note also

that model (12), with independent Gz for each link, could also be used within the LQ
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approach of Section 4.1.

On the basis of the linear model (12), the constraints (1), (2), (4), plus the constraint

(11) and the quadratic cost criterion (13), a (dynamic) optimal control problem may be

formulated over a finite time-horizon K, starting with the known initial state x(0) in the

state equation (12).

In summary, the optimization problem has three types of time-dependent variables, namely

the stage green times gj,i(k), the state variables xz(k), and the link green times Gz(k). This

QP problem (with very sparse matrices) may be readily solved by use of broadly available

codes or commercial software within few CPU-seconds even for large-scale networks and

long time-horizons.

4.3 Open-loop nonlinear optimal control (NOC)

4.3.1 Model overview

In this design approach, we re-introduce the link outflow uz(k) into our problem and

recall that the outflow is given by (5) only under the assumption that xz(k) satisfies the

constraints (4). Instead of (5), we now define a nonlinear outflow function that models

the intra-cycle traffic flow process more accurately. More precisely, we assume that the

model’s time step is T ≪ C while the control time step Tc remains equal to C, i.e. control

decisions are taken at each cycle as in previous methods. Then the outflow uz(k) is given

by

uz(k) =























0 if any xd,z(k) ≥ cxd,max

min
{

xz(k)
T

, Gz(κ)Sz

C

}

else

(14)

where d is a downstream link of link z with turning rate tz,d 6= 0, and we have the

parameter c ∈ (0, 1]; note that k is now the model discrete time index (with time step
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T ≪ C) while κ is the control discrete time index (with time step Tc = C). By introducing

(14), the state variables are allowed to change their value more frequently than the control

variables. More precisely, typical discrete-time model steps T for the traffic flow model

(3) using (14) may be in the order of 5 s while the control variables change their value

in discrete-time control steps Tc, e.g. at each cycle. Note that, when using (14), the

queue constraints (4) are considered indirectly and may hence be dropped; indeed the

link outflow in (14) becomes zero if there is no vehicle in the link or if a downstream

link is full. Note also that the basic simplification of SFM, i.e. a continuous link outflow

(rather than zero flow during red and free flow during green), is still maintained in this

approach. The introduction of (14) instead of (4) and (5) improves the model accuracy

within cycles but leads to a more complex (nonlinear) model due to the switching rule in

(14).

Replacing (14) in (3) we obtain a nonlinear state-space model for road networks of arbi-

trary size, topology, and characteristics (Aboudolas, 2003)

x(k + 1) = f
[

x(k), g(κ),d(k)
]

, κ = [k/τ ] (15)

where f is a nonlinear vector function, κ is a discrete-time index of the control variables,

Tc = τT while [η] denotes the integer part of η.

The cost criterion in a nonlinear optimal control problem may have any arbitrary nonlinear

form. In the particular case the chosen cost criterion to be minimized has the form

J =
∑

z∈Z

x2
z(K)

xz,max

+
K−1
∑

k=0







∑

z∈Z

x2
z(k)

xz,max

+ af

|J |
∑

j=1

|Fj |
∑

i=1

[

gj,i(κ) − gj,i(κ − 1)
]2







(16)

where af is a positive weighting factor. This criterion, excluding the last penalty term, at-

tempts the minimization and balance of the links’ relative occupancies xz/xz,max similarly
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to (13) and (8); in fact for af = 0, (16) becomes identical with (13). The penalty term

is included in the cost criterion so that possible high-frequency oscillations of the control

trajectories be suppressed. The weight af may be adjusted via trial-and-error, striking

a balance between acceptable time-variations in the optimal control trajectories versus

traffic control efficiency.

On the basis of the nonlinear traffic flow model (15), the constraints (1), (2), and the cost

criterion (16), a (dynamic) NOC problem is formulated over a time-horizon K, starting

with the known initial state x(0) in the state equation (15). This NOC problem may

be solved numerically in about one CPU-minute even for large-scale networks and long

time-horizons by use of a feasible-direction algorithm that will be outlined in the next

sections.

4.3.2 The discrete-time optimal control problem

The general discrete-time formulation of the optimal control problem reads

Minimize J = ϑ [x(K)] +
K−1
∑

k=0

ϕ [x(k),u(κ),d(k)] (17)

subject to x(k + 1) = f [x(k),u(κ),d(k)], x(0) = x0 (18)

h1 [u(κ)] = Au(κ) − b = 0 (19)

h2 [u(κ)] = umin − u(κ) ≤ 0 (20)

where x ∈ R
n is the state vector, u ∈ R

m is the control vector, and k = 0, 1, . . . , K − 1,

κ = [k/τ ] are the discrete-time indices of the state and control variables, respectively. The

cost functional (17) expresses the control objectives in mathematical terms, whereby θ, ϕ

are smooth, nonlinear cost functions. The state equation (18), with known initial state x0,

describes the nonlinear dynamics of the system, while d is the disturbance vector which
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is assumed to be known over the optimization horizon. Equations (19), (20) express the

control constraints (1) and (2), respectively, whereby A ∈ R
|J |×m is a sparse and separable

matrix consisting of 1’s and 0’s reflecting the left-hand side of the constraints (1) while

bj = C − Lj , j = 1, . . . , |J |.

The necessary conditions of (local) optimality for problem (17)–(20) are expressed in terms

of the discrete-time Hamiltonian function that is defined as follows

H[x(k),u(κ), λ(k + 1), µ(κ), ν(κ)] = ϕ[x(k),u(κ),d(k)]+

+λ(k + 1)T f [x(k),u(κ),d(k)] + µ(κ)Th1[u(κ)] + ν(κ)Th2[u(κ)]

(21)

where λ(k + 1) ∈ R
n, µ(κ) ∈ R

|J |, and ν(κ) ∈ R
m are the Lagrange and Kuhn-Tucker

multipliers for the corresponding equality and inequality constraints.

The necessary optimality conditions for a local minimum are (notation: xy = ∂x/∂y)

Hλ(k+1) = x(k + 1) = f [x(k),u(κ),d(k)], x(0) = x0 (22)

Hx(k) = λ(k) =
∂ϕ

∂x(k)
+

[

∂f

∂x(k)

]T

λ(k + 1), λ(K) = ϑx(K) (23)

Hu(κ) =
(κ+1)τ−1

∑

k=κτ







∂ϕ

∂u(κ)
+

[

∂f

∂u(κ)

]T

λ(k + 1)







+ A
T
µ(κ) +

[

∂h2

∂u(κ)

]T

ν(κ) (24)

ν(κ)Th2[u(κ)] = 0, ν(κ) ≥ 0 (25)

h1[u(κ)] = 0, h2[u(κ)] ≤ 0. (26)

Hence, if the above equations are satisfied simultaneously by some x(k + 1), λ(k), u(κ),

µ(κ), and ν(κ), k = 0, . . . , K − 1, a stationary point of the optimal control problem has

been found.
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4.3.3 A feasible-direction algorithm for numerical solution

We now describe an algorithm that can be used for the numerical solution of the discrete-

time optimal control problem presented in Section 4.3.2.

The most crucial component of the solution algorithm is the calculation of appropriate

feasible directions in the space of the control variables based on the problem gradients.

For a given admissible trajectory u(κ), κ = 0, . . . , Kc, where Kc = [K/τ ]−1 is the control

time horizon, the corresponding state trajectory x(k) can be found by integrating equation

(22), and hence the cost criterion can be regarded as depending on the control variables

only, i.e. J = J (u). The reduced gradient of J with respect to u on the state equality

constraints surface is given by

g(κ) = Hu(κ) =
(κ+1)τ−1

∑

k=κτ







∂ϕ

∂u(κ)
+

[

∂f

∂u(κ)

]T

λ(k + 1)







(27)

where the co-state vector λ satisfies (23).

A given admissible trajectory u may activate a certain number q of constraints satisfying

h1 = 0, h2,i = 0, i ∈ E, while other constraints are inactive, i.e. h2,i < 0, i ∈ I. We define

the active set Aq to be the set of active constraints and Aq a matrix composed of the rows

of active constraints. Next we seek a feasible descent direction p which lies in the tangent

subspace defined by the active set of constraints; in the simplest case, one can project

the negative gradient onto this subspace. Such a projection can be achieved by use of a

symmetric projection matrix Pq given by (Rosen, 1960)

Pq = I −AT
q

(

AqA
T
q

)−1
Aq. (28)

Thus the projected gradient is given by γ(κ) = Pqg(κ).

18



If γ(κ) 6= 0 then a line-search routine can be applied along the p-direction (e.g. p = −γ) to

obtain a new, improved admissible control trajectory. In the presence of constraints (19),

(20) the step length α is limited by αmax = max{α |u + αp is feasible} which represents

the shortest distance to (any of) the inactive constraints, along the p-direction.

On the other hand, if γ(κ) = 0, the Lagrange multipliers for the active constraints are

given by
















µ(κ)

νi∈E(κ)

















= −
(

AqA
T
q

)−1
Aqg(κ). (29)

while νi∈I(κ) = 0. In this case, if νi∈E(κ) ≥ 0 for all i ∈ E, a stationary point (in fact a local

minimum) of the optimal control problem has been found since all necessary conditions for

optimality (22)–(26) are satisfied. If, however, at least one of those components of νi∈E(κ)

is negative, it is possible, by relaxing the corresponding inequality (i.e. by removing it

from the active set), to specify a new direction towards an improved point. Usually, the

constraint corresponding to the most negative element of νi∈E(κ) is the one selected to

be removed. Thus, a new direction is determined by projecting the gradient onto the

subspace determined by the remaining active constraints and a new iteration is started.

The solution algorithm can now be described as follows:

Step 1: Select an admissible initial control trajectory u(0)(κ), κ = 0, . . . , Kc; set the iter-

ation index ℓ = 0.

Step 2: Using u(ℓ)(κ) solve (22) from the known initial condition to obtain x(ℓ)(k + 1);

using x(ℓ)(k + 1) and u(ℓ)(κ) solve (23) from the terminal condition to obtain λ(ℓ)(k +

1), k = 0, . . . , K − 2.

Step 3: Using x(ℓ)(k +1), u(ℓ)(κ), and λ(ℓ)(k +1), calculate the reduced gradient g(ℓ)(κ).

Find the subspace of active constraints and form A, Aq. Using (28) calculate the pro-
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jection matrix Pq and the projected gradient γ(ℓ)(κ) = Pg(ℓ)(κ), κ = 0, . . . , Kc.

Step 4: Specify a search direction p(ℓ)(κ), κ = 0, . . . , Kc, e.g. steepest descent or conju-

gate gradients.

Step 5: Apply an one-dimensional search routine along the p(ℓ)-direction to obtain a

new, improved admissible control trajectory u(ℓ+1)(κ), i.e.

α(ℓ) = arg min
α∈(0,αmax]

J
{

u(ℓ)(κ) + αp(ℓ)(κ)
}

where α(ℓ) > 0 is the resulting optimal admissible step length, and

u(ℓ+1)(κ) = u(ℓ)(κ) + α(ℓ)p(ℓ)(κ), ∀κ = 0, . . . , Kc.

Step 6: If for a given scalar ε > 0, the convergence condition ‖γ(ℓ)(κ)‖ < ε, ∀κ, is not

satisfied, set ℓ := ℓ + 1 and go to Step 2; otherwise, find the Lagrange multipliers for

the active constraints from (29).

(a) If νi∈E(κ) ≥ 0 for all i ∈ E (corresponding to active inequalities), then STOP; u(κ)

satisfies the Kuhn-Tacker conditions.

(b) Otherwise, delete the row from Aq, corresponding to the inequality with the most

negative component of νi∈E(κ) and drop the corresponding index from A; set ℓ :=

ℓ + 1 and go to Step 2.

At this point, it should be stressed that the constraints (19) and (20) are separable (a

group of constraints at each junction) and hence the calculation of the projection matrix

is computationally convenient. Moreover, since the set of active constraints in the active

set changes by at most one constraint at a time, it is possible to calculate a projection

matrix based on the previous one by use of a simple recursive formula (Rosen, 1960).
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4.4 Discussion

We conclude this section with some remarks pertaining to some further consequences of the

simplification (5) and to the application of the open-loop QPC and NOC methodologies

in real time.

As a consequence of simplification (5), the updating of the control decisions cannot be

effectuated more frequently than at every cycle which, however, is deemed sufficient for fast

network-wide real-time control reactions; on the other hand, this feature limits the real-

time communication requirements between junction controllers and the central computer

to one message exchange per cycle, in contrast to the second-by-second communication

requirements of other signal control systems such as SCOOT (Hunt et al., 1982).

For the application of the open-loop QPC and NOC methodologies in real time, the cor-

responding algorithms may be embedded in a rolling-horizon (model-predictive) scheme.

More precisely, the optimal control problem may be solved on-line once per cycle using the

current state (current estimates of the number of vehicles in each link) of the traffic system

as the initial state as well as predicted demand flows; the optimization yields an optimal

control sequence for K (or Kc) cycles, but only the first control (signal control plan) in this

sequence is actually applied to the signalized junctions of the traffic network. Note that

the saturation flows Sz and the turning rates tw,z, may be assumed to be time-variant and

may be estimated or predicted in real time by well-known recursive estimation schemes

(Cremer, 1991); in addition, the predicted demand flows d(k) may be calculated by use

of historical information or suitable extrapolation methods (e.g., time series or neural

networks). This rolling-horizon procedure avoids myopic control actions while embedding

a dynamic open-loop optimization problem in a traffic-responsive environment.

Finally, it should be stressed that, in contrast to LQ, the control decisions in QPC and
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NOC methodologies are based on the explicit minimization of the cost criterion subject to

all control and state constraints. Therefore, the aforementioned methodologies could be

also utilized as off-line network optimization tools for calculating optimum signal control

plans, since their traffic flow models (12), (15), and related constraints incorporate all

necessary network characteristics.

5 A large-scale application example

To preliminarily investigate the comparative efficiency and real-time feasibility of the

developed approaches to the problem of urban signal control, the urban network of the

city centre of Chania, Greece, is considered. For this network, we compare the closed-

loop behaviour of the linear multivariable regulator with the open-loop behaviour of QPC

and NOC methodologies. To ensure fair and comparable results, all methodologies are

evaluated by use of the same simulation model, namely the nonlinear traffic flow model

(15) which is the most realistic among the three employed (or previously utilized) SFM

versions. Although this model also includes some introduced simplifications, it is deemed

quite suitable for this preliminary demonstration and comparison of methods because their

respective results are more easy to compare and analyze by use of a common model that is

similar in approach as the one used for their design. More sophisticated (e.g. microscopic)

simulators will be used at a more advanced stage of this research in order to derive more

reliable conclusions regarding the comparative method efficiencies.

5.1 Network and scenario description

The urban network of the city centre of Chania consists of 16 signalized junctions and

71 links (Fig. 4). According to the notation of Section 3, the following sets are defined:
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Fig. 4. The Chania urban road network.

J = {1, . . . , 16}, Z = {1, . . . , 71}. We omit the details on turning rates tw,z, lost times

Lj , staging vz and saturation flows Sz. The cycle time in the network is C = 90 s, and

T = C is taken as a control interval for all strategies. For the LQ approach we consider a

design parameter r = 0.0001 and a field-applied plan gN that is not fully adapted to the

traffic conditions of the test scenarios. For the NOC methodology we consider T = 5 s,

Tc = 90 s, af = 10−4, and c = 0.85 (i.e., overloaded links in (14) are considered the links

z for which xz ≥ 0.85xz,max).

Several tests were conducted in order to investigate the behaviour of the three alternative

methodologies for different scenarios. The scenarios were created by assuming more or

less high initial queues xz(0) in the origin links of the networks while the demand flows dz

were kept equal to zero. More specifically the origin link queues were selected highest for

scenario 1, moderate for scenario 2, and smallest for scenario 3. The optimization horizon

for each scenario is 450 s (5 cycles).
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Table 1
Comparison of assessment criteria.

5.2 Comparison of objective functions

For each of three distinct scenarios of initial states x(0) and for each control approach,

two evaluation criteria were calculated for comparison. The total time spent

TTS = Tc

K
∑

k=0

∑

z∈Z

xz(k) (in veh · h)

and the relative queue balance

RQB =
K
∑

k=0

∑

z∈Z

x2
z(k)

xz,max

(in veh).

Note that, as mentioned earlier, the control results of each strategy are applied to the

same nonlinear model (15). Eventually xz(k) over a whole cycle is calculated first as the

average of the corresponding 5-s values resulting from (15), before applying the above

criteria on the basis of Tc = C = 90 s.

Table 1 displays the obtained results. As can be seen, QPC and NOC lead to a reduction

of both evaluation criteria compared to LQ. More specifically, when QPC is applied, the

TTS and RQB are improved by 4.5% and 17.1%, respectively; when NOC is applied, the

TTS and RQB are improved by 6.7% and 17.6%, respectively, compared to LQ.

NOC is seen to be superior to all other strategies in terms of the TTS. This is because the

nonlinear traffic flow model used by NOC is more accurate than the linear model used by
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LQ or QPC (and is therefore used as a common simulator for the comparison).

Regarding the RQB, it can be seen that NOC is superior to all other strategies but is

quite close to QPC. Note that RQB is the exact cost criterion considered by QPC, while

in the cost criteria considered by LQ and NOC there are partially competitive subgoals

(albeit with very small weights). Nevertheless, NOC maintains its superiority due to the

considered nonlinear traffic flow model.

The average computational time per scenario for QPC and NOC is 10 seconds and 1

minute, respectively, which means that QPC would be feasible in a real-time rolling-

horizon framework as described in Section 4.4, while for NOC, the cycle time should be

higher than 1 minute for real-time feasibility.

5.3 Detailed results

In the sequel we report on some more detailed illustrative results focussing on the partic-

ular junctions 12 and 13. These two junctions carry heavy loads, since they represent a

major entrance to and exit from the city centre (see Fig. 4).

For the aforementioned scenarios, the calculated optimal state and control trajectories

demonstrate the efficiency of the three alternative methods to solve the urban signal

control problem. Figure 5 depicts some obtained trajectories for scenario 1 for the three

methods. The main observations are summarized in the following remarks:

• All strategies manage to dissolve the initial origin queues in a quite balanced way (see

Figs. 5(a), 5(c), and 5(e)) and thus, the desired control objective of queue balancing

is achieved. This holds particularly for origin links 52, 57, 58 (and many other origin

links not shown here) that are seen to empty quasi-simultaneously; link 53 is emptied
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Fig. 5. Relative occupancies within the links at junctions 12, 13 (LQ (a), QPC (c), NOC (e))
and the optimal green-phase durations of junction 12 (LQ (b), QPC (d), NOC (f)). Note that
g12,1 serves the internal link 54.

much faster because it receives r.o.w. at two consecutive stages; link 54 has a different

behaviour because it is an internal link (see below).

• The three strategies, based on different utilized traffic flow models, accomplish the
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desired goal in a very similar way.

• The outflows of the origin links 57 and 58 enter the internal link 54 (solid line in

Figs. 5(a), 5(c), and 5(e)) according to the green times of the corresponding stages. It

may be seen that QPC and NOC exhibit similar behaviour while managing particularly

the queue of link 54 (see Figs. 5(d) and 5(f)). In contrast, the LQ strategy first allows

the high initial queues to flow into the internal link 54 and then, in order to manage

the developed long queue therein, it gradually increases the green time of stage 1 (see

Fig. 5(b)) where link 54 has r.o.w. This somewhat slower behaviour is attributed to the

infinite horizon in the LQ objective criterion (8) as opposed to the finite horizon of the

QPC and NOC approaches in (13) and (16), respectively.

Both NOC and QPC deliver satisfactory results with similarly efficient control behaviour

for different scenarios. Thus, taking into account that QPC needs less computational effort

than NOC, QPC may be considered as a quite satisfactory method for the solution of the

urban signal control problem and a strong competitor of LQ in terms of efficiency and

real-time feasibility, despite the increase of real-time computation complexity.

6 Conclusions and future work

Planning new transit routes, introducing tolls in city centres, or imposing traffic restric-

tions are important ingredients for combating traffic congestion in urban road networks.

However, it is important to supplement these policies with signal control techniques that

contribute to the improvement of the traffic conditions via real-time decisions, particularly

under saturation. The presented methodological framework for real-time network-wide sig-

nal control in large-scale urban traffic networks combines store-and-forward traffic flow

modeling, mathematical optimization and optimal control. Clearly, the presented three

alternative strategies, each with its advantages and shortcomings, can be understood as
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optimal queue management tools.

Future work will deal with the comparison of the proposed open-loop QPC and NOC

methodologies when embedded in a real-time rolling-horizon scheme, with other strategies

(e.g. TUC) in more elaborated simulation involving external and internal demands and

saturated traffic conditions as well as in real-life conditions.
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