
  

 
 

 
Jabir, M. S. et al. (2014) Caspase-1 cleavage of the TLR adaptor TRIF 
inhibits autophagy and β-interferon production during pseudomonas 
aeruginosa infection. Cell Host and Microbe, 15(2), pp. 214-227. 
 
 
 
 
Copyright © 2014 Elsevier Inc. 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 

Content must not be changed in any way or reproduced in any format 
or medium without the formal permission of the copyright holder(s) 
 

 
When referring to this work, full bibliographic details must be given 
 
 
  
http://eprints.gla.ac.uk/92682 
 
 
 
Deposited on:  30 March 2015 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/92682
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Cell Host & Microbe

Article
Caspase-1 Cleavage of the TLR Adaptor TRIF
Inhibits Autophagy and b-Interferon Production
during Pseudomonas aeruginosa Infection
Majid Sakhi Jabir,1,2 Neil D. Ritchie,1 Dong Li,1 Hannah K. Bayes,1 Panagiotis Tourlomousis,3 Daniel Puleston,4

Alison Lupton,5 Lee Hopkins,3 Anna Katharina Simon,4 Clare Bryant,3 and Thomas J. Evans1,*
1Institute of Immunity, Infection and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
2University of Technology, Applied Science School, Biotechnology Department, Baghdad, Iraq
3Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES UK
4Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
5Department of Pathology, Western Infirmary, Glasgow G11 6NT, UK

*Correspondence: tom.evans@glasgow.ac.uk
http://dx.doi.org/10.1016/j.chom.2014.01.010
SUMMARY

Bacterial infection can trigger autophagy and inflam-
masome activation, but the effects of inflammasome
activation on autophagy are unknown. We examined
this in the context of Pseudomonas aeruginosa
macrophage infection, which triggers NLRC4 inflam-
masome activation. P. aeruginosa induced auto-
phagy via TLR4 and its adaptor TRIF. NLRC4 and
caspase-1 activation following infection attenuated
autophagy. Caspase-1 directly cleaved TRIF to
diminish TRIF-mediated signaling, resulting in inhibi-
tion of autophagy and in reduced type I interferon
production. Expression of a caspase-1 resistant
TRIF mutant enhanced autophagy and type I inter-
feron production following infection. Preventing
TRIF cleavage by caspase-1 in an in vivo model of
P. aeruginosa infection resulted in enhanced bacte-
rial autophagy, attenuated IL-1b production, and
increased bacterial clearance. Additionally, TRIF
cleavage by caspase-1 diminished NLRP3 inflamma-
some activation. Thus, caspase-1 mediated TRIF
cleavage is a key event in controlling autophagy,
type I interferon production, and inflammasome acti-
vation with important functional consequences.

INTRODUCTION

Microbial interactions with host immune cells can trigger macro-

autophagy (Deretic and Levine, 2009;Orvedahl and Levine, 2009)

(hereafter termed autophagy) and activation of the inflamma-

some (Franchi et al., 2012b; Martinon et al., 2009). Autophagy is

important in host defense against a number of microbes (Deretic

and Levine, 2009). The inflammasome is a multisubunit platform

for the activation of caspase-1, resulting in processing of IL-1b

and IL-18 from inactive precursors to their active secreted forms

(Franchi et al., 2009; Martinon et al., 2009; Yu and Finlay, 2008). It

also triggers a form of cell death termed pyroptosis, itself also
214 Cell Host & Microbe 15, 214–227, February 12, 2014 ª2014 Else
important in host defense (Miao et al., 2011). Although autophagy

and inflammasome activation both play significant roles in host

defense against microbial infection, they do have some clear

opposing effects. Thus, autophagy can promote cell survival

(Baehrecke, 2005) while inflammasome activation will lead to

cell death by pyroptosis (Bergsbaken et al., 2009). Additionally,

autophagy can act to downregulate inflammasome activation

by the sequestration of defective mitochondria (mitophagy) (Sai-

toh et al., 2008). This results in inhibiting the release of mitochon-

drial reactive oxygen intermediates and mitochondrial DNA that

canactivate theNLRP3 inflammasome (Martinon, 2012;Nakahira

et al., 2011; Shimada et al., 2012). The effects of inflammasome

activation on autophagy are not known.

We hypothesized that inflammasome activation would lead to

a reciprocal inhibition of autophagy. To test this hypothesis, we

used a model system of infection of macrophages with the

Gram-negative pathogen P. aeruginosa, which activates the

NLRC4 inflammasome through a type III secretion system

(T3SS)-dependent pathway (Franchi et al., 2007; Miao et al.,

2008; Sutterwala et al., 2007). We demonstrate here that P. aer-

uginosa activates autophagy in macrophages following infection

and that inhibition of inflammasome and caspase-1 activation

augments the autophagocytic response. This inhibitory effect

of caspase-1 on induction of autophagy results from caspase-

1-mediated cleavage of the signaling intermediate TRIF, an

essential part of the TLR4-mediated signaling pathway leading

to promotion of autophagy (Xu et al., 2007). Caspase-1 cleavage

of TRIF reduced the signaling required to induce type I inter-

ferons (IFNs) and attenuated macrophage phagocytosis and

reactive oxygen generation. Additionally, the caspase-1-medi-

ated downregulation of autophagy resulted in a reduction of

NLRP3 inflammasome activation by LPS + ATP.

RESULTS

P. aeruginosa Induces Autophagy that Is Enhanced in
the Absence of a Functional T3SS
P. aeruginosa PAO1 has been shown to induce autophagy (Yuan

et al., 2012). We set out to determine the influence of the

T3SS upon this process. We used a strain of P. aeruginosa,

PA103DUDT, that has a functional T3SS but does not translocate
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any exotoxins and an isogenic strain, PA103pcrV�, that lacks a

functional T3SS (Frank et al., 2002; Vallis et al., 1999). To quantify

autophagy, we followed the conversion of the protein microtu-

bule-associated protein 1 light chain 3 beta (LC3) to its lipidated

form (LC3 II) by western blot (Figure 1A) (Mizushima et al., 2010).

This clearly demonstrated a marked increase in the absolute

amount of LC3 II relative to b-tubulin following infection that

was significantly greater following infection with a P. aeruginosa

isogenic strain that lacked PcrV (Figures 1A and 1B). Specificity

of the immunoblot staining was additionally confirmed by knock-

down of Lc3b RNA using siRNA (Figure 1A).

We confirmed that the increase in LC3 II reflected an increase

in flux through the autophagocytic pathway by repeating the

experiment in the presence of inhibitors of lysosomal degrada-

tion (Figure S1A available online). These increased still further

the amounts of LC3 II following infection, showing that the in-

creased levels observed were due to greater flux of LC3 through

the autophagocytic pathway and not by inhibition of LC3 pro-

cessing. To confirm these observations, we determined the

localization of endogenous LC3 to autophagocytic vacuoles

using immunofluorescence. Following infection with P. aerugi-

nosa, we observed a marked increase in the number of LC3-

containing vacuoles within bone-marrow-derived macrophages

(BMDMs), which were consistently significantly higher in the

T3SS defective mutant (Figures 1C and 1D), and to a level com-

parable to that seen with rapamycin. We quantified changes in

Lc3b expression using RT-PCR (Figure S1B). P. aeruginosa in-

fection increased the expression of Lc3b as has been described

in the induction of autophagy in other systems, notably yeast

(Stromhaug and Klionsky, 2001). The increase in Lc3b expres-

sion was higher in the T3SS mutant, consistent with the results

obtained by western blotting and immunofluorescence.

Finally, we used a validated flow cytometric method to quan-

tify intracellular LC3 II staining following cell permeabilization

(Figure S1C). This also showed that the level of autophagy was

increased in the absence of a functional T3SS. Transmission

electron microscopy confirmed the presence of autophago-

somes containing cytoplasmic contents (Figure 1E). In these

panels, the double membrane structure of the autophagosome

is arrowed and surrounds another membrane-bound organelle,

probably a degradedmitochondrion aswell as other cytoplasmic

structures. Importantly, under the conditions of these experi-

ments, we did not observe a significant increase in cell death,

as measured by the release of LDH (Figure 1F). We tested the

dependence of autophagy following P. aeruginosa infection on

the genes Atg7 and Atg5. Infection of BMDMs lacking these

gene products showed a marked reduction in autophagy (Fig-

ures 1G–1I, S1D, and S1E).

Caspase-1 Activation by the Inflammasome
Downregulates Autophagy
The reduction in autophagy following infection with P. aerugi-

nosa in a strain with a functional T3SS suggested that this might

be due to the effects of caspase-1 activation by the inflamma-

some that is induced by the T3SS. We thus tested the effect

of a selective caspase-1 inhibitor on autophagy following

PA103DUDT infection; this drug produced the expected reduc-

tion in caspase-1 processing and secretion of IL-1b (Figures

S2A and S2B) while enhancing autophagy (Figures 2A and 2B).
Cell Host &
Infection of BMDMs lacking Capsase-1 showed increased auto-

phagy (Figure 2C). However, these Casp1�/� animals also lack a

functional Caspase-11, also important in inflammasome activa-

tion (Kayagaki et al., 2011; Rathinam et al., 2012).We tested spe-

cifically for a role of Caspase-1 by knocking down the gene using

siRNA (Figure 2D), which resulted in increased autophagy (Fig-

ures 2E–2G). Knockdown of Caspase-11 (Figure 2H) had no

effect on induction of autophagy or production of IL-1b following

infection (Figures 2I–2K). Thus, casapse-1 inhibits the process of

autophagy following infection with P. aeruginosa, but caspase-

11 is not involved.

BMDMs from Nlrc4�/� animals showed increased autophagy

following infection (Figure 2L) with complete loss of production

of secreted IL-1b (Figure S2D). Elevation of extracellular K+ in-

hibits NLRC4 inflammasome activation by P. aeruginosa (Arle-

hamn et al., 2010). We confirmed that BMDMs incubated in a

high extracellular concentration of K+ had a markedly attenu-

ated production of caspase-1 p10 and IL-1b following infection

while maintaining very similar levels of production of TNF-a

(Figures S2E–S2G). This inhibitory effect on inflammasome

activation resulted in increased autophagy (Figures S2H–S2K).

To ensure that elevation of extracellular K+ did not affect the

function of the T3SS, we tested the effects of raising K+ on

a strain expressing only the highly cytotoxic exotoxin ExoU,

PA103DUDT:ExoU. In contrast to the parent strain PA103DUDT,

the presence of ExoU induces rapid cytotoxicity; this was unaf-

fected by raising extracellular K+ (Figure S2L). Thus, activation

of the NLRC4 inflammasome following P. aeruginosa infection

leads to an inhibition of autophagy, and this is directly mediated

by Caspase-1.

Autophagy followingP. aeruginosa Infection IsMediated
via TLR4 and TRIF
LPS induces autophagy through TLR4 signaling via TRIF (Xu

et al., 2007); we hypothesized that a similar pathway might oper-

ate following P. aeruginosa infection. We confirmed that LPS

induced autophagy in BMDMs (Figure 3A); this was significantly

abrogated in BMDMs from Tlr4 knockout (KO) mice (Figures 3A–

3D). Autophagy induced by rapamycin was, as expected, not

diminished in the absence of TLR4 (Figure 3B).

We then determined the role of Myd88 and TRIF in the induc-

tion of autophagy following P. aeruginosa infection. In the

absence of Myd88, there was no reduction in autophagy

following infection (Figure 3E). In macrophages lacking Trif, we

found that autophagy was greatly reduced (Figures 3F–3H).

Thus, P. aeruginosa induces autophagy via signaling through

TLR4 and the intermediate TRIF.

Caspase-1 Cleaves TRIF
We hypothesized that one mechanism that could explain why

caspase-1 activation downregulated autophagy was through

proteolytic cleavage of TRIF. To test this hypothesis, we exam-

ined cell lysates for endogenous TRIF fragments following infec-

tion of BMDMs with P. aeruginosa (Figure 4A). After infection

with the inflammasome-activating strain PA103DUDT, we

observed immunoreactive TRIF fragments between 28 and

30 kDa at 4 hr after infection (Figure 4A). These were not seen

following infection with the T3SS inactive strain PA103pcrV–

and were also considerably reduced in the presence of a
Microbe 15, 214–227, February 12, 2014 ª2014 Elsevier Inc. 215



Figure 1. P. aeruginosa Induces Autophagy in BMDMs that Is Enhanced in the Absence of a Functional T3SS

(A)Western blot of LC3-I and LC3-II in BMDM treatedwith control or Lc3b siRNA and infectedwith the indicated strains ofP. aeruginosa for 4 hr (MOI 25). b-tubulin

is shown as loading control (repeated in three independent experiments).

(B) Ratio of LC3-II/b-tubulin in three independent experiments. BMDMs were infected as indicated for 3 hr at a multiplicity of infection (MOI) of 10. Columns are

means; error bar SEM. The symbol * indicates statistically different from PA103DUDT; p < 0.05.

(C) Representative immunofluorescence images of LC3 in BMDM left uninfected (Basal), treated with rapamycin, or infected with the indicated strains for 4 hr at

an MOI of 25. LC3 staining is shown as green and nuclei blue. Scale bar indicates 10 mm (five independent experiments).

(D) Number of LC3 puncta in BMDM cells following infection (at specified MOI) or rapamycin treatment as indicated. Columns are means of triplicates; error bar

SEM. Asterisks indicate statistically different from PA103DUDT at the same MOI; *p < 0.05; ***p < 0.001.

(E) Electron micrographs of autophagosomes in BMDM infected with PA103DUDT (left) or PA103pcrV– (for the right, 4 hr and MOI of 25 for both). Arrows indicate

autophagosomes.

(legend continued on next page)
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caspase-1 inhibitor (Figure 4A). The antibody used in these

immunoblots recognizes a C-terminal epitope, thus suggesting

that the cleavage site lies in the middle portion of TRIF (molec-

ular weight 74 kDa) to generate the �30kDa fragments seen in

Figure 4.

To confirm that these cleavage products were produced

by caspase-1, we examined lysates from BMDMs from mice

lacking the Caspase-1 gene as well as WT animals (Fig-

ure 4B). This showed that the cleavage products were

absent following infection of BMDMs lacking Capsase-1. We

obtained the same results with knockdown of Caspase-1

(data not shown). Knockdown of caspase-11 had no effect

on TRIF cleavage following infection (Figure 4C), which was

also seen with the wild-type (WT) PAO1 strain. In macro-

phages from NLRC4 knockout mice, no TRIF cleavage was

seen, either with PA103DUDT or the WT PAO1 (Figure 4D).

Similarly, infection of BMDMs in high extracellular potassium

(which inhibits inflammasome activation) also inhibited TRIF

cleavage (Figure 4E).

To prove that caspase-1 directly cleaved TRIF, we purified re-

combinant TRIF expressed in HEK cells with the FLAG epitope

tag. The previous report that suggested TRIF was a substrate

for caspase cleavage identified the aspartic acid residues at

positions 281 (VAPDA) and 289 (GLPDT) of the human sequence

as essential for caspase-mediated cleavage (Rebsamen et al.,

2008). Mutation of both of these residues to glutamic acid resi-

dues (D281E D289E) effectively abolished caspase cleavage.

Murine TRIF has similar well-conserved caspase-1 cleavage

sites at positions 286 (ILPDA) and 292 (AAPDT). We thus addi-

tionally purified recombinant FLAG-tagged D281E D289E TRIF

from HEK cells. The purified proteins were then incubated with

recombinant activated human caspase-1. This cleaved the WT

TRIF but not the D281E D289E mutant. Thus, caspase-1 directly

cleaves TRIF (Figure 4F).

Prevention of TRIF Cleavage by Capsase-1 Augments
Autophagy
To confirm that the cleavage products we observed in Figure 4

were truly derived from TRIF, we expressed FLAG-tagged hu-

man TRIF within BMDMs. Following infection with PA103DUDT,

we again saw the appearance of a cleaved product of molecular

weight�30kDa (Figure 5A). This was not seen following infection

with the T3SS-defective mutant strain PA103pcrV–, which does

not activate the inflammasome (Figure 5A). Moreover, mutation

of the sites previously identified as essential to TRIF cleavage

by caspases also inhibited the production of the cleaved prod-

ucts following infection (cells transfected with plasmid express-

ing D281E D289E TRIF-FLAG, Figure 5A). The same cleavage of

TRIF following infection was observed in human THP-1 cells

(Figure 5B).

We hypothesized that cleavage of TRIF would generate prod-

ucts that could exert a dominant negative effect and thus inhibit

TRIF function as previously described (Yamamoto et al., 2002).
(F) LDH release caused by P. aeruginosa infection in BMDM (4 hr at MOI of 5) o

Differences are not significant. Repeated three times.

(G) LC3 I and II levels in WT BMDMs and those lacking Atg7 (Vav-Atg�/�) infecte
(H) Western blot of Atg-Atg12 conjugate following knockdown (KD) of Atg5 mRN

(I) Effects of knockdown of Atg5 on LC3 II levels following infection as in (A) with

Cell Host &
To test this hypothesis, we cloned the segments of TRIF encod-

ing the N-terminal and C-terminal fragments that are generated

by caspase-1 cleavage and expressed these in BMDMs. Expres-

sion of both the N- and C-terminal fragments individually and

together potently inhibited the induction of autophagy following

infection (Figure 5C)—even at low levels of expression. The

two fragments also inhibited the induction of Ifnb mRNA induc-

tion in BMDMs following treatment with the TLR3 agonist polyIC

(Figure 5D). Thus, caspase-1 cleavage of TRIF generates prod-

ucts that inhibit TRIF induction of autophagy and Ifnb gene

expression.

Since TRIF is an essential intermediate in initiating autophagy

following P. aeruginosa infection, prevention of its cleavage by

caspase-1 should lead to increased autophagy. We tested this

directly by infecting BMDMs transfected with either WT TRIF or

the noncleavable D281E D289E TRIF construct. When cells

were transfected with the D281E D289E TRIF construct, we

observed an increase in the degree of autophagy (Figures 5E–

5I). This was under conditions where the expression level of

the different TRIF proteins was identical (Figure 5A). Previous

study of the TRIF fragments generated by caspase cleavage

clearly demonstrated that the D281E D289E mutant TRIF

had completely normal signal-transducing functions (Rebsamen

et al., 2008). We tested the effects of expression of the D281E

D289E mutant TRIF on Ifnb expression induced by PolyI:C (Fig-

ure S3). Expression of the mutant did not affect TLR3 signal

transduction; additionally, no cleavage of TRIF was seen in

response to PolyI:C, which does not activate the inflammasome

when added extracellularly (Rajan et al., 2010). Thus, the effects

of the mutant noncleavable TRIF are not due to effects on overall

TRIF function.

Functional Effects of TRIF Inactivation by Capsase-1 in
BMDMs
TRIF is required for type I IFN induction following TLR4 activa-

tion. We confirmed that in macrophages from mice lacking

Trif, type I IFN following P. aeruginosa infection was abolished

(Figure S4A). Blocking caspase-1 activation increased the induc-

tion of Ifnb1 mRNA following infection (Figures S4B and S4C).

Similarly, in macrophages from mice lacking Nlrc4, infection

also resulted in increased type I IFN induction, as expected

because of the lack of TRIF cleavage in the absence of NLRC4

(Figure 4D). Blocking inflammasome activation by incubation in

media with elevated K+ also led to greater Ifnb1mRNA induction

following infection (Figure S4E). Prevention of TRIF cleavage by

transfection of the D281E D289E mutant TRIF also resulted in

increased Ifnb1mRNA induction following infection (Figure S4F).

These data are all consistent with the NLRC4 inflammasome

negatively regulating TRIF-dependent type I IFN responses

following infection with P. aeruginosa.

Next, we determinedwhether the reduction in type I IFN induc-

tion resulting from caspase-1 cleavage of TRIF had functional

effects. First, we compared phagocytosis and production of
r rapamycin treatment. Columns are means of triplicates; error bars are SEM.

d as in (A).

A. (C) is control siRNA.

indicated strains of P. aeruginosa. See also Figure S1.
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Figure 2. Caspase-1 Downregulates Autophagy

(A and B) Western blot and quantification of LC3 as Figures 1A and 1B in presence and absence of the caspase-1 inhibitor. Five independent experiments; the

symbol *** indicates significantly different between untreated and treated cells; p < 0.001.

(C) LC3 I and II isoforms in uninfected cells (Basal), treated with rapamycin (R) or infected with PA103DUDT (MOI 25) for the indicated time in hours in WT

(Casp1+/+) or Casp1�/� mice. Experiment repeated with the same results.

(D) Western blot of pro-caspase-1 in BMDMs treated with control siRNA or siRNA specific for caspase-1 (+). Levels of b-tubulin are shown as loading control.

(E) LC3 I and II levels following infection for 4 hr atMOI of 25with strains as shown inBMDMs transfectedwith control siRNA (C) or siRNA specific for caspase-1 (+).

(F) Number of LC3 puncta per cell with indicated treatments for three independent experiments. Bars are means; error bars are SEM. The symbol ** indicates

significantly different from control siRNA; p < 0.01.

(G) As (F), but showing intracellular LC3 II after the indicated treatments.

(H) Western blot of Caspase-11 in BMDMs transfected with Control siRNA or siRNA specific for Casp11, as indicated; b-tubulin is shown as loading control.

(I) Levels of IL-1b secreted from BMDMs with treatments and infection as indicated.

(J) Assay of intracellular LC3 II after the indicated treatments.

(K) Levels of LC3 I and II in BMDMs either transfected with Control siRNA (C) or siRNA specific toCasp11 (+) and then left uninfected (basal) or infected, as shown.

Experiments in (J) and (K) repeated twice.

(L) LC3 western blot in BMDMs from WT mice (Nlrc4+/+) or Nlrc4 knockout animals (Nlrc4�/�) infected as shown. Experiment repeated with the same result. See

also Figure S2.
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Figure 3. Autophagy following Infection with P. aeruginosa Is Dependent on Signaling through TLR4 and TRIF

(A and B) LC3 I and II in BMDMs from WT or Tlr4�/� mice (KO), uninfected (Basal), treated with LPS, rapamycin (Rap), or infected with P. aeruginosa strains as

indicated (MOI 25). Experiment repeated on two occasions with same results.

(C) Representative immunofluorescence images of LC3 staining (green) in BMDMs treated by the strains as indicated under the same conditions as in Figure 1C.

Scale bar is 10 mm.

(D) Number of puncta per cell in BMDMs infected as shown under the conditions in Figure 1C. Bars are means of three independent counts for at least 50 cells;

error bars are SEM. The symbol *** indicates significantly different from WT cells; p < 0.001.

(E) LC3 I and II levels following infection with indicated strains for 4 hr at MOI of 25 in WT or Myd88-deficient macrophages (KO); b-tubulin as loading control.

(F) As (E), but with cells from wild-type or Trif knockout mice.

(G and H) Shows effects of Trif knockout on LC3 puncta accumulation. Conditions and symbols as in (C) and (D).
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Figure 4. TRIF Is Cleaved by Caspase-1 following P. aeruginosa Activation of the Inflammasome

(A) Immunoblot (WB) for TRIF in BMDM that were uninfected (Basal) or infected with the P. aeruginosa strains shown for the indicated number of hours. Where

shown, cells were treated with the caspase-1 inhibitor Z-YVAD-FMK (CI). Full-length and cleaved TRIF products are labeled. Molecular weight markers in kDa are

shown to the left; b-tubulin is shown as a loading control (lower panel). Experiment repeated with the same results.

(B) As (A), but in BMDMs from WT (Casp1+/+) or Casp1 KO mice (Casp1�/�).
(C) As (A), but cells transfected with Control siRNA or siRNA specific for Casp11, as shown.

(D) As (A), but in BMDMs from wild-type or Nlrc4 knockout mice.

(E) As (A), but with cells in 5 mM K+ (L) or 140 mM K+ (H), as shown. Both experiments repeated with same results.

(F) Purified recombinant TRIF proteins as shown incubatedwith activated caspase-1, as shown, and analyzed bywestern blot. Molecular weight markers as in (B).

See also Figure S3.
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reactive oxygen intermediates following infection of BMDMs

with the T3SS-competent strain of P. aeruginosa, PA103DUDT,

compared to the T3SS-defective strain, PA103pcrV–. This

showed that PA103DUDT led to less phagocytosis and less pro-

duction of reactive oxygen intermediates following infection

compared to the PA103pcrV– strain (Figure S5A). This is consis-

tent with the reduced levels of type I IFNs resulting from inflam-

masome activation by the T3SS-competent strain and, hence,

capsase-1 cleavage of TRIF. Importantly, adding b-IFN back to

the BMDMs infected with the T3SS competent PA103DUDT

strain restored the level of phagocytosis and reactive oxygen

production to the levels seen with the T3SS-defective

PA103pcrV– strain (Figure S5A). Thus, the defect in phagocytosis

and production of reactive oxygen observed in the strain of
220 Cell Host & Microbe 15, 214–227, February 12, 2014 ª2014 Else
P. aeruginosa that activates capsase-1 could be corrected by

addition of a product normally produced via TRIF mediated

signaling.

To establish that the reduction in these macrophage functions

was due to caspase-1 degradation of TRIF, we tested the effect

of removing TRIF or caspase-1 on phagocytosis and production

of reactive oxygen. The ability of BMDMs frommice lacking TRIF

to perform these functions was markedly reduced (Figure S5B).

This inhibitory effect was reversed by the addition of b-IFN,

demonstrating the importance of TRIF-mediated production of

this cytokine in enhancing phagocytosis and production of reac-

tive oxygen. Knock down of caspase-1 enhanced the ability of

BMDMs to phagocytose and produce reactive oxygen following

P. aeruginosa infection (Figure S5C). This enhancement in these
vier Inc.
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functions was similar to that seen following the addition of b-IFN

to BMDMs infected with the inflammasome-activating P. aerugi-

nosa strain PA103DUDT (Figure S5A). Taken together, these

results support the conclusion that capsase-1-mediated prote-

olysis of TRIF following P. aeruginosa infection of BMDMs leads

to downregulation of IFN-b production and reduction in phago-

cytosis and reactive oxygen production.

To confirm that the cleavage of TRIF was responsible for the

downregulation of phagocytosis and reactive oxygen production

following caspase-1 activation, we examined these functions in

BMDMs transfected with WT and noncleavable TRIF (D281E

D289E TRIF). Compared to cells transfected with WT TRIF,

BMDMs transfected with the D281E D289E TRIF had higher

levels of phagocytosis and reactive oxygen production (Fig-

ure S5D). Again, we could increase the lower levels seen in cells

expressing WT TRIF by addition of b-IFN. Thus, by preventing

TRIF cleavage by caspase-1, we could augment the ability of

BMDMs to phagocytose E. coli particles and produce reactive

oxygen intermediates.

Next, we examined the net effect of these changes on the

clearance of P. aeruginosa exposed to macrophages. Phagocy-

tosis of the microbe will be followed by intracellular killing; we

thus measured the numbers of viable intracellular bacteria pre-

sent within macrophages as an indicator of the ability of these

cells to clear the infection. Inhibiting caspase-1 reduced the

numbers of viable intracellular bacteria; a similar reduction was

achieved by pretreating the macrophages with type I IFN (Fig-

ure S5E). Absence of TRIF produced a rise in viable intracellular

organisms that could be reversed by IFN (Figure S5F). Knock-

down of caspase-1 had the same effect as caspase-1 inhibition

(Figure S5G). These data are all consistent with TRIF-mediated

type-I-IFN -dependent augmentation of macrophage killing

being downregulated by caspase-1 action. To show that TRIF

cleavage was important in this regard, we infectedmacrophages

transfected with either WT or mutant D281E D289E TRIF. In the

presence of the noncleavable TRIF, there was a reduction in

viable intracellular bacteria. A similar reduction was achieved

by treating the macrophages transfected with WT TRIF with

type I IFN (Figure S5H).

Effects of Caspase-1 TRIF Cleavage on Infection with
P. aeruginosa In Vivo
Next, we evaluated the effects of Caspase-1 TRIF cleavage

on the cytokine responses and bacterial killing in an in vivo

model of infection. We utilized an acute intraperitoneal model

of P. aeruginosa infection in mice. Inhibition of caspase-1

with Z-YVAD-FMK led to reduced serum levels of IL-1b, as

expected, with no reduction in TNF (Figure 6A). In cells har-

vested from the peritoneum 6 hr following infection (predomi-

nantly neutrophils), there was an increase in autophagy in

animals treated with the caspase-1 inhibitor (Figure 6A) and a

significant reduction in the numbers of viable bacteria recov-

ered from the peritoneum (Figure 6A). These data suggest

that the decreased IL-1b production and increased autophagy

produced by caspase-1 inhibition result in increased bacterial

clearance.

As a more direct test of the effect of preventing Caspase-1-

mediated TRIF cleavage during infection, we set up the following

animalmodel.Wedepleted intraperitonealmacrophagesby instil-
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lation of liposomal clodronate (Figure 6B). We then reintroduced

macrophages transfected with expression plasmids for either

WT TRIF or the D281ED289Emutant. Autophagywithin the intro-

duced transfected macrophages was increased following infec-

tion in vivo (Figures 6C and 6D), and macrophages expressing

the noncleavable TRIF mutant showed increased levels of auto-

phagy compared to the WT protein. Interestingly, animals popu-

lated with macrophages expressing the noncleavable D281E

D289E mutant TRIF had lower serum IL-1b levels compared to

those populated with macrophages expressing WT TRIF; TNF

levels were the same (Figure 6D). Expression of the noncleavable

TRIF was also associated with significantly lower intraperitoneal

protein concentrations and viable bacterial counts (Figure 6D).

Thus, in thismodel, preventing TRIF cleavage results in increased

autophagy following infection that is associated with reduced

IL-1b production but decreased numbers of viable intraperitoneal

bacteria. This suggests autophagy may well control NLRC4 in-

flammasome activation following P. aeruginosa infection, as has

been found for NLRP3 inflammasome activation (Saitoh et al.,

2008); this is considered further in the Discussion.

Effect of Caspase-1 TRIF Cleavage on Activation of the
NLRP3 Inflammasome
Activation of the NLRP3 inflammasome has been shown to be

triggered by mitochondrial damage (Nakahira et al., 2011); this

is limited by autophagy of mitochondria—mitophagy. We

reasoned that caspase-1-mediated inactivation of TRIF would

limit mitophagy and thus could act to enhance NLRP3 activation,

leading to greater capsase-1 activation and production of IL-1b.

To test this hypothesis, we examined the effects of limiting TRIF

cleavage by casapse-1 in BMDMs stimulated with LPS and ATP.

Following LPS/ATP stimulation, we observed increased levels of

capsase-1 p10 and secreted IL-1b, as expected, and cleavage

of TRIF, as we have observed with inflammasome activation by

P. aeruginosa. In the cells transfected with the D281E D289E

TRIF mutant, we observed an increase in levels autophagy

following LPS/ATP stimulation (Figure 7A). We also observed a

marked reduction in inflammasome activation (Figure 7A) but

no effect on TNF. Thus, a highly significant effect of the

caspase-1-induced cleavage of TRIF is to inhibit ongoing auto-

phagy that otherwise would severely limit the degree of inflam-

masome activation and resultant IL-1b produced.

We repeated this experiment but additionally downregulated

autophagy using siRNA (Figure 7B). In cells in which autophagy

was inhibited, the amount of secreted IL-1b and caspase-1 acti-

vation in the presence of WT TRIF was significantly increased

compared to cells transfected with control siRNA (Figure 7B).

This is consistent with autophagy downregulating the signals

required to trigger NLRP3 inflammasome activation and secre-

tion of IL-1b in response to LPS + ATP. In cells expressing the

D281E D289E-mutant TRIF with inhibition of autophagy by

Lc3b or Atg5 knockdown, there was a reduction in secreted

IL1-b, but this did not reach statistical significance compared

to cells expressing WT TRIF (Figure 7B). This is consistent with

the conclusion that the reduction in secreted IL-b in the presence

of TRIF that cannot be cleaved by caspase-1 is as a result of an

increase in autophagy and mitophagy that acts to attenuate the

triggering of the NLRP3 inflammasome by LPS + ATP. Preven-

tion of TRIF cleavage results in increased type I IFN production
Microbe 15, 214–227, February 12, 2014 ª2014 Elsevier Inc. 221



Figure 5. TRIF Cleavage by Caspase-1 Results in Downregulation of Autophagy

(A) Cells were transfected with plasmids as shown and then left uninfected (Basal) or infected for the indicated times with the P. aeruginosa strains indicated

(MOI 25). Immunoblot was probed with anti-FLAG antibody. b-tubulin immunoblot is shown as loading control.

(B) Human THP-1 cells transfected with the indicated amounts of plasmids (in mg) were left uninfected or infected as shown (4 hr; MOI 25) and probed with

antibody to FLAG. Experiment performed on two occasions with same results.

(C) BMDMs transfected with indicated amounts of TRIF expression plasmids (mg) and left uninfected (B) or infected as shown. Panel shows cell lysates blotted for

V5 (epitope tag for TRIF) and LC3; b-tubulin shown as loading control.

(D) Levels of IfnbmRNA assayed by RT-PCR following PolyI:C treatment (1 mg/ml for 5 hr) and transfection with TRIF constructs as shown. Columns are means of

triplicates; error bars SEM. The symbol ** indicates significantly different from untreated (p < 0.01).

(E) Intracellular LC3 II levels assayed by flow cytometry in cells transfected with indicated plasmids and left uninfected (Basal) or infected as indicted (4 hr;

MOI 25). Experiment performed on two occasions with same results.

(F) BMDMs transfected as in (A) and infected as shown (4 hr; MOI 25) and assayed for LC3 I and II levels by immunoblot.

(legend continued on next page)
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Figure 6. Role of TRIF Cleavage by Cap-

sase-1 in an In Vivo Infection Model

(A) Panels show LC3 immunoblot with loading

control of total cell extract from one representative

animal, mean levels of serum IL-1b and TNF (n = 3,

error bars are SEM), and recovered viable bacteria

from the peritoneal cavity at 6 hr (n = 3; error bars

SEM). Animals were pretreated with Z-YVAD-FMK

(CI) as shown. The symbols * and *** are significant

differences from untreated animals, p < 0.05 and

p < 0.001, respectively.

(B) Peritoneal macrophage population in animals

treated with liposomal clodronate as shown. Col-

umns are means of three determinations; error

bars are SEM. The symbols ** indicates signifi-

cantly different from control (p < 0.01).

(C and D) Results from animals infected intraperi-

toneally following depletion of intraperitoneal

macrophages and reconstitution with macro-

phages transfected as shown.

(C) Levels of intracellular LC3 II assayed by flow

cytometry, gated on introduced macrophage

populations, and transfected with constructs as

shown. Representative plot from one animal.

(D) Panels show mean values of indicated mea-

sures from n = 3 animals; error bars are SEM.

Values are of LC3 II mean fluorescence intensity

(LC3 MFI), serum IL-1b and TNF, peritoneal pro-

tein concentration, and recovered viable bacterial

colonies (CFU/ml3 103). Peritoneal macrophages

were transfected with constructs as shown before

repopulation of the peritoneal cavity. See also

Figure S5.
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in infection; this has been shown to suppress NLRP3 inflamma-

some activation principally through an IL-10-mediated downre-

gulation of pro-IL-1b levels (Guarda et al., 2011) as well as an

uncharacterized direct effect on the NLRP3 inflammasome that

required at least 6 hr treatment. The suppressive effect of the

noncleavable TRIF is evident after 4 hr of LPS/ATP, and we did

not observe any changes in pro-IL-b or pro-caspase-1 levels in

treated cells that had been transfected with the mutant D281E

D289E noncleavable TRIF (Figure 7B). Thus, the observed ef-

fects of preventing TRIF cleavage on inhibiting NLRP3 activation

by LPS/ATP would seem most likely mediated by the increased

levels of autophagy rather than increased type I IFN production,
(G) LC3/b-tubulin ratio for three independent experiments under the indicated conditions. Columns show m

significantly different from infected cells transfected with WT TRIF; p < 0.001.

(H) LC3 puncta in BMDMs transfectedwith indicated constructs and infected as shown (4 hr; MOI 25). The sym

cells transfected with WT TRIF; p < 0.001.

(I) Levels of Lc3b mRNA assayed with treatments as shown. See also Figure S4.

Cell Host & Microbe 15, 214–227,
although some contribution of type I IFN

directly inhibiting NLRP3 inflammasome

activation cannot be ruled out entirely. A

corollary of the observed effects of pre-

venting TRIF cleavage on NLRP3 activa-

tion is that in Trif knockout cells there

should be an increase in NLRP3 activa-

tion by LPS/ATP because of the lack of

autophagy. This is indeed the case, with
a significant increase in IL-1b secretion and caspase-1 activation

but no associated change in pro-IL-1b levels (Figure S6).

Finally, we extended these observations using the human

macrophage cell line THP-1 (Figure 7C). In the presence of the

mutant TRIF that cannot be cleaved by capsase-1, LPS + ATP

produces less capsase-1 activation, less secreted IL-1b, and a

greater amount of autophagy (Figure 7C).

DISCUSSION

In this study, we have shown that caspase-1 cleavage of TRIF

results in a number of effects on immediate host defense to a
eans; error bar is SEM. The symbol *** indicates

bol *** indicates significantly different from infected
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Figure 7. Prevention of TRIF Cleavage Attenuates NLRP3-Mediated Caspase 1 Activation and Production of Mature IL-1b
Cells were left untreated (Basal) or LPS (500 ng/ml) was added for 4 hr followed by 5 mM ATP for 20 min where indicated (LPS + ATP).

(A) BMDMs were transfected with plasmids as shown; panels show immunoblots of the indicated proteins. The bottom panel shows the levels of secreted IL-1b

and TNF from the same cells as used in the immunoblotting with the treatments as indicated. Each column is mean of 3; error bars are SEM. Filled columns are

results from cells transfected with the noncleavable TRIF and open columns from WT TRIF. The symbol *** indicates significant from WT; p < 0.001.

(B) BMDMs treated as indicated under the conditions described in (A). Cells were transfected with control siRNA or Lc3b siRNA (left panel) or control or Atg5

siRNA (right panel). Statistical differences between bracketed columns are shown: **p < 0.01; ***p < 0.001.

(C) As (A), but in human THP-1 cells. All experiments repeated two to three times. See also Figure S6.
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pathogen such as P. aeruginosa. On the one hand, the reduction

in production of type I IFNs results in a diminution in macrophage

phagocytosis and production of reactive oxygen. However, we

also found that following in vivo infection, there was a reduction

in production of IL-1b. This was associated with increased bac-

terial clearance, as has been found by others (Cohen and Prince,

2013). The reduction in IL-1b production following infection with

P. aeruginosa under conditions where TRIF cleavage is blocked

suggests that autophagy restrains NLRC4 inflammasome acti-

vation in this infection, in much the sameway as has been shown

for NLRP3 activation. We have gone on to explore this in depth

and have found that autophagy does indeed inhibit NLRC4 in-

flammasome activation by P. aeruginosa (data not shown). The

reduction in autophagy and mitophagy consequent to TRIF

cleavage prevents these processes inhibiting caspase-1 activa-

tion. If TRIF were not cleaved in this way, the degree of activation

of this inflammasome would be much less and production of

IL-1b significantly reduced. The magnitude of this effect is large

(Figure 7), and thus, we speculate that this is the principal evolu-

tionary selection pressure that has maintained the cleavage site

for caspase-1 within the TRIF protein. IL-1b is a key cytokine in

innate immunity, and without cleavage of TRIF by caspase-1,

the levels of active IL-1b following inflammasome activation

would be much less. The overall effect of increased inflamma-

some activation consequent to TRIF cleavage varies depending

on the specific infection involved. NLRC4 inflammasome activa-

tion is critical in host defense against Klebsiella pneumonia (Cai

et al., 2012) and oral Salmonella infection in Balb/c mice (Franchi

et al., 2012a), but it increases bacterial burden in a model of

P. aeruginosa pneumonia (Cohen and Prince, 2013). Moreover,

TRIF has been shown to be an important intermediate in trig-

gering autophagy not only from TLR4 but also from TLR3 stimu-

lation (Delgado et al., 2008). Thus, cleavage of TRIF may also

play a role in limiting autophagy and enhancing inflammasome

activation in infections that signal via TLR3, such as influenza.

Additionally, a previous study with Shigella flexneri-infected

macrophages suggested that capsase-1 activation limited auto-

phagy (Suzuki et al., 2007). The data presented in the work

described here suggest cleavage of TRIF would account for

this effect.

TRIF has recently been shown to be an important intermedi-

ate in the induction of NLRP3 inflammasome activation by

Gram-negative bacteria (Rathinam et al., 2012). Type I IFNs

triggered by TLR4 via TRIF mediate the induction of capsase-

11, a protease that can amplify caspase-1 activation by

NLRP3. This has been shown to be of importance in infections

caused by enterohemorrhagic E. coli and Citrobacter rodentium

(Kayagaki et al., 2011), as well as other Gram-negative organ-

isms (Aachoui et al., 2013; Broz et al., 2012). It does not

seem to play a role in the activation of the NLRC4 inflamma-

some, the mechanism by which P. aeruginosa activates the

inflammasome via its type III secretion apparatus. However, in

organisms lacking a functional type III apparatus, the TLR4/

TRIF/capsase-11 pathway can act to produce NLRP3 activa-

tion, albeit with much slower kinetics than the NLRC4-mediated

effects (Rathinam et al., 2012). We show here, by specific

knockdown of Caspase-11 using siRNA, that this protein

does not play a role in the activation of the inflammasome by

PA103DUDT or in the cleavage of TRIF. From our results, we
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would predict that TRIF cleavage by caspase-1 would serve

to downregulate activation of caspase-11 by attenuating the

continued production of type I IFNs. The overall influence of

TRIF cleavage in an infection will thus be dependent on poten-

tially complex interactions between capsase-11 dependent and

independent pathways.

Autophagy can downregulate the activation of the NLRP3 in-

flammasome by removal of damaged mitochondria (Nakahira

et al., 2011). We describe here a reciprocal process by which in-

flammasome activation of caspase-1 acts to downregulate auto-

phagy. Modulation of autophagy is thus a possible therapeutic

target—either to limit its negative effects on inflammasome acti-

vation to augment host defense or to augment its action to limit

excessive inflammation by caspase-1 and to enhance TRIF-

mediated responses.

EXPERIMENTAL PROCEDURES

Materials

Rapamycin (50 mg/ml) and Z-YVAD-FMK (10 mg/ml) were from Enzo Lifescien-

ces. Pepstatin (10 mg/ml), E64d (10 mg/ml), gentamicin, ATP, and LPS (E. coli

O127:B8) were all from Sigma. IFN-b (Peprotech UK) was used at 10 ng/ml.

PolyI:C (Invivogen) was used at 1 mg/ml for 5 hr.

Animals

Miceweremaintained according to Institutional and National (UKHomeOffice)

guidelines. C57/BL6mice were obtained from Harlan UK. The following genet-

ically modified mouse strains were used, all on the C57/BL6 background:

Tlr4�/�, (T. Mitchell, University of Glasgow), Nlrc4�/� (Mariathasan et al.,

2004) from K. Fitzgerald (University of Massachusetts), Casp1�/� (Jackson

Laboratories), Vav-Atg7�/� (Mortensen et al., 2010), Trif�/� (Yamamoto

et al., 2003), and Myd88�/� (Yamamoto et al., 2003) (provided by D. Gray,

University of Edinburgh).

Cells

Primary BMDMswere isolated as described fromC57/BL6mice (Celada et al.,

1984). The human macrophage cell line THP-1 (gift of Dr. Damo Xu, University

of Glasgow) was grown in RPMI 1640 medium supplemented with 10% fetal

calf serum.

Bacteria

P. aeruginosa PA103DUDT and PA103pcrV� were kindly provided by Dara

Frank. Bacterial strains were cultured in LB broth to mid-log phase (OD 0.4–

0.6) immediately prior to use. Cells were washed twice in sterile PBS and

used to infect cells at the indicated multiplicity of infection (MOI).

Cytokines

Cytokines in cell culture supernatants were measured by ELISA using the

following kits: Murine IL-1b, R&D Systems (Cat No. DY401); murine TNF-a,

eBioscience (Cat No. 88-7324-22); and human IL-1b (eBioscience). Murine

IFN-b was from Peprotech (London, UK).

SiRNA and Transfection

Control siRNA and siRNAs to the indicated genes were all from Dharmacon

(OnTarget plus SMART pool siRNA). Silencing constructs were introduced

into cells using HiPerfect transfection reagent (QIAGEN), according to the

manufacturer’s instructions. Transfection of BMDMs was optimized using

SiGLO Green transfection indicator (Dharmacon) and flow cytometry. We

routinely achieved transfection efficiencies greater than 90% after 24–48 hr.

Plasmids and Transfection

N-terminal FLAG-tagged WT and D281E D289E TRIF constructs (Lei et al.,

2011) in pcDNA3.1 were kindly provided by Dr. Lei. The N- and C-terminal

constructs were made in pcDNA3.1 directional TOPO (Invitrogen) by PCR;

sequences were verified by direct sequencing. Plasmids were transfected
Microbe 15, 214–227, February 12, 2014 ª2014 Elsevier Inc. 225
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into cells using Attractene (QIAGEN) according to the manufacturer’s instruc-

tions. Cells were harvested at 24 hr after transfection.

qRT- PCR

Total RNA was isolated with an RNeasy Mini kit (QIAGEN) according to the

manufacturer’s instructions. cDNA was synthesized from DNaseI-treated

RNA using Superscript II reverse transcriptase (Invitrogen) according to the

manufacturer’s instructions. Quantitative RT-PCR (qRT-PCR) was performed

using power SYBR Green PCR master mix (Applied Biosystems) using the

7900HT fast system (Applied Biosystems) and primers, as described in the

Supplemental Experimental Procedures. All determinations were performed

in triplicate.

Immunoblot

The following antibodies were used: monoclonal anti-b-tubulin (Sigma-

Aldrich), anti-Caspase-1 p10 (Santa Cruz Biotechnology), anti-LC3 (Novus

Biologicals), anti-Atg5 (Novus Biologicals), anti-TRIF (Abcam), anti-FLAG

(Sigma-Aldrich), anti caspase-11 (Santa Cruz), and anti V5 epitope (Sigma).

Immunofluorescence Microscopy

For immunofluorescence, LC3B was visualized using rabbit polyclonal LC3

(catalog number AP1802a, Abgent, USA). Sections were viewed using a Zeiss

Axiovert S100 microscope using OpenLab software (PerkinElmer) or a LSM

510 Meta Confocal microscope (Carl Zeiss) using Meta 510 software. For

quantification of LC3 puncta, image analysis was performed using Image J

(NIH, Maryland). All results show values of mean number of puncta per cell;

for each analysis at least 50 cells were analyzed.

LDH Release

Lactate dehydrogenase release determinations were performed using the

Cytotox 96 cytotoxicity assay kit, catalog number G1781 (Promega, USA).

Flow Cytometry

Blocking of nonspecific Fc-mediated binding of antibodies to Fc receptors

was performed using a rat anti-mouse CD16/CD32 antibody (BD Biosciences;

1ug/ml). Intracellular LC3B II was detected following the method described by

Eng et al. (2010). Bacterial uptake was measured in cells using pHrodo E.coli

BioParticles (Invitrogen; 1mg/ml for 2 hr at 37�C) prior to analysis by flow

cytometry. Reactive oxygen intermediates were assayed using CellRox

deep red reagent (Invitrogen; 5 mM for 30 min at 37�C) and flow cytometry.

Cells were analyzed using a CyAn ADP (Beckman Coulter) or Facscalibur

flow cytometer (BD). Flow cytometry data was analyzed with Flowjo Software

(Tree Star Inc.).

Transmission Electron Microscopy

BMDM cells infected by PA for 4 hr were washed with Sorensen’s Phosphate

buffer and prefixed with 2% glutaraldehyde, followed by postfixation with 1%

OsO4 in 6.6 mM Sorensen’s phosphate buffer. All pellets were dehydrated

stepwise in a graded series of ethanol and embedded in araldite CY212. Ultra-

thin sections were double stainedwith uranyl acetate and lead citrate (all stains

from Agar scientific). Sections were examined using a Tecnai transmission

electron microscope (model number 943205018411, FEI Company; Czech

Republic) equipped with Olympus digital camera (VELETA) at the Department

of Pathology, Western Infirmary, Glasgow.

Infection Model

Peritoneal macrophageswere depleted where indicated using clodronate lipo-

somes (Foundation Clodronate Liposomes, Amsterdam). A total of 200 ml

clodronate liposomeswere injected 96 hr and 24 hr prior to infection. Depletion

was confirmed by performing peritoneal lavage on animals injected with clodr-

onate liposomes or PBS liposome controls and performing total cell counts

and Romanowski staining after cytocentrifugation. BMDMs were stained

with eFluor 450 proliferation dye (eBioscience) at a concentration of 10 mM

according to the manufacturer’s instructions. Where indicated, mice were in-

jected intraperitoneally with 5 3 106 of eFluor-450-stained macrophages. In

some experiments, animals were treated with Z-YVAD-FMK (0.1 mg/kg) intra-

peritoneally. One hour later, mice were injected with 107 cfu of PA103DUDT or

PBS intraperitoneally. After 6 hr, mice were culled by inhalation of CO2. Perito-
226 Cell Host & Microbe 15, 214–227, February 12, 2014 ª2014 Else
neal fluid was collected by injection and subsequent aspiration of 5 ml of

cold PBS.

Neutrophils were enumerated by performing total cell counts and Roma-

nowski staining after cytocentrifugation of peritoneal lavage fluid. Cells were

then stained with Alexa Fluor 700 anti-CD11b (M1/70, Biolegend), PE anti-

F4/80 (BM8, Biolegend), Alexa Fluor 647 anti-Ly-6G (1A8, Biolegend), or

appropriate isotype controls. Following fixation and permeabilization, cells

were then stained for LC3 as already described. Macrophages were selected

on the basis of being CD11b+F4/80+Ly�6G�, and extrinsic macrophages

were then identified on the basis of staining with eFluor 450.

Statistics

Comparison between groups at one time point wasmade using unpaired t test.

A p value of < 0.05 was considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and Supplemental Experimental
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1016/j.chom.2014.01.010.

ACKNOWLEDGMENTS

The study was supported by the Ministry of Higher Education and Scientific
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flammasome: a caspase-1-activation platform that regulates immune re-

sponses and disease pathogenesis. Nat. Immunol. 10, 241–247.

Franchi, L., Kamada, N., Nakamura, Y., Burberry, A., Kuffa, P., Suzuki, S.,
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