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Many discussions of biological motion provide a standard list of human capabilities 

in the recognition of gender, emotion, action and identity from point light displays 

(PLDs) of human movement.  While above-chance recognition of these stimuli is a great 

feat considering the limited information available in PLDs, what receives less attention is 

the low levels of performance and variability of response that sometimes occur.  For 

example, a review and meta-analysis of gender recognition (Pollick, Kay, Heim & 

Stringer, 2005) showed that the average percentage correctly recognizing the gender of a 

walker was 66% from a side view and 71% from other viewpoints, and that there was a 

range of performance from 46% to 86% correct over all actions and viewpoints.  An 

immediate thought would be that the quality of these displays and general experimental 

methods contributed to these differences.  Another possibility would be that the important 

information for recognition is distributed across time and space and participants are 

intrinsically variable in their efficiency in accessing such information (Pollick, Lestou, 

Ryu, & Cho, 2002).  Both these explanations suggest that the information available to 

observers to make their decisions varies, and thus so does performance (Loucks & 

Baldwin, 2009; Pollick & Paterson, 2008).  However, another possible source of 

variability in recognizing biological motion could be the ability of the observer, and in 

this chapter we will explore this possibility.  We propose that by studying the variability 

between how different groups perceive biological motion, we will not only inform more 

complete models of perception and the development of expertise, but also provide 

potentially important comparisons for particular conditions such as autism. 

In the following introductory paragraphs we try to convince the reader of two views 

of biological motion perception that help to frame the variety of topics presented later in 

this chapter.  The first is that understanding the variability among observers in biological 

motion perception is at least an interesting issue, if not a crucial one in developing a 

comprehensive theory of biological motion perception.  The second is that, since the 

perception of biological motion is achieved via a distributed network of brain areas 

across the entire brain, there is ample opportunity for variability to arise as this brain 

network experiences new tasks and environments.   

In any typical experiment in biological motion perception there is variability in 

responses of observers in achieving their task; if this is modest then it is typically 
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accounted for by a statistical distribution of responses, or if the variability is severe the 

results are likely never published.  However, as the chapter by Kaiser & Shiffrar points 

out, variability of performance can sometimes be explained by taking properties of the 

observer into account.  For example, the autism-like traits of observers go a long way 

towards explaining performance on a social task in biological motion perception.  Other 

differences due to the experience of the participants might also influence how biological 

motion is processed for different tasks.  Thus, it is possible that in the existing published 

data there are essential differences in mechanisms of biological motion processing that 

could explain the difference between the observer who performed the best and the one 

who performed the worst.  Being able to explain such mechanisms would make our 

understanding of biological motion more complete.  Similarly, to be able to interpret how 

autism impacts biological motion perception, it is useful to know whether autism is 

unique at impacting the perception of biological motion or whether effects found due to 

visual or visuomotor expertise might be similar in magnitude to those observed across the 

autism spectrum.  Additionally, at the highest levels of movement appreciation, such as 

those associated with dance and athletic performance, we could ask whether there is any 

basis for the preferences shown by performers and audiences.   

Recent years have witnessed a great increase in our understanding of the neural 

basis for human movement perception.  An in-depth review of this topic would reveal 

controversies among models; we avoid this controversy by taking the perspective that 

each model is valid for at least some aspect of biological motion perception.  Indeed, it is 

possible even that certain models might be more appropriate for particular populations.  

There are two essential dimensions that these neural models span: one dimension regards 

whether the form or the motion of the viewed action provides critical information; the 

second dimension regards whether recognition is mediated via visual processes alone or 

includes additional processes that incorporate knowledge of performing the actions.  An 

umbrella term for this knowledge about how to perform an action is “simulation theory”.  

The total span of these two conceptual dimensions includes a variety of brain areas that 

are shown schematically in Figure 1.  What this schematic reveals are several areas 

distributed across the brain that are presumed to be relevant for different aspects of 

understanding viewed actions.  A complex distributed network does not necessarily 
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guarantee that performance will vary between individuals or groups of individuals.  

However, such a complicated system is exposed to the risk that, due to disease, 

experience or differences in development of any one of its subcomponents, or 

connections among its subcomponents, it might perform in a manner that would 

negatively affect the perception of human movement.  Thus, although it is speculative to 

say that variability in performance is a result of basic design principles of the brain in 

creating a system competent to cope with the challenges of recognizing actions, it 

certainly is plausible.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  This diagram provides a simple schematic of some of the areas of the 

brain implicated in the processing of biological motion, and to illustrate that these regions 
are widely distributed.  The posterior Superior Temporal Sulcus (pSTS) was one of the 
first regions identified for biological motion processing (Grossman & Blake, 2002), and 
has been shown to be divided into form and motion processing in the macaque 
(Vangeneugden, Pollick, & Vogels, 2009).  Further processing of biological motion has 
been reported (Jastorff & Orban, 2009; Peelen, Wiggett, & Downing, 2006) to extend 
into form-selective areas which include the Extrastriate Body Area (EBA) (Downing, 
Jiang, Shuman, & Kanwisher, 2001) and the Fusiform Body Area (FBA) (Peelen & 
Downing, 2005).  Finally, fronto-parietal circuits involving homologues of monkey 
mirror neurons that include the Inferior Frontal Gyrus (IFG) and the Inferior Parietal 
Lobule (IPL) have also been implicated in matching viewed actions to actions within 
one’s own motor repertoire (Rizzolatti, Fogassi, & Gallese, 2001).   

 
We have thus sketched out a case for the importance of understanding variability 

between observers in recognizing biological motion, and argued that the neural 

architecture for action recognition makes it plausible that such variability could exist.  In 
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the subsequent sections we discuss how experience and development can influence the 

perception of human actions.  For experience we consider visual, motor, multisensory 

and cognitive influences, while for development we consider the case of autism spectrum 

disorders (ASD).  We primarily discuss results from the authors, and whenever possible 

consider data from functional brain imaging that could help to explain behavioural data.  

What we strive to achieve is a broad discussion of factors that contribute to performance 

in the perception of human actions.   

 

Visual and Visuomotor Experience in Action Observation 

As mentioned above, one of the primary dimensions discussed in human action 

recognition research is whether purely visual means are used or whether motoric 

encodings of how to achieve these actions are recruited.  These two modes of recognition 

have been termed ‘visual’ and ‘direct matching’ respectively (Rizzolatti et al., 2001).  

The mechanisms of direct matching are provided by simulation theory, where watching 

human motion will automatically produce internal simulation in the viewer of the 

observed movements.  Any recognition subsequent to this can involve a direct matching 

of the observed action to its internal representation of how it is achieved.  However, the 

existence of direct matching mechanisms does not preclude that visual matching occurs 

alongside direct matching, and it seems likely that the interpretations supplied by both 

mechanisms are combined at some level.  In addition, both our visual and motor systems 

are affected by experience and thus we can expect our recognition of biological motion to 

be a dynamic process shaped by experience.  In the rest of this section we discuss 

evidence for both visual and motor experience modulating the recognition of biological 

motion.   

One particularly appropriate example that demonstrates an effect of visual 

experience in recognizing human action is provided by Troscianko and colleagues, who 

studied how experience levels of video surveillance operators influenced their ability to 

judge hostile intent from short clips of video taken from actual surveillance cameras 

(Troscianko et al., 2004).  In their study, experienced surveillance operators were 

compared to a novice group in their ability to predict whether a criminal activity was 

about to occur, indicating their prediction for 100 excerpts of video footage, each lasting 
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15 seconds and concluding prior to any criminal act.  The data were analyzed using signal 

detection theory, with sensitivity (d’) and bias calculated from observers’ hits and false 

alarms.  Results showed that while the two groups were indistinguishable in sensitivity, 

they did show a difference in bias.  Experts showed no bias, while novices were biased to 

responding that displays were unlikely to result in incident.  The case of expertise in 

viewing surveillance video provides a fascinating situation to explore how individuals 

can become skilled in judging the intent of others.  We are currently starting to explore 

this topic using a combination of behavioural and brain imaging measures, and consider it 

a useful testbed for theories of action understanding in the real world.  However, one 

concern is that the complexity of real-world scenarios makes visual analysis problematic 

and thus we are also examining other situations of complex movement that allow more 

control of events. 

One such situation we are researching is watching dance.  Dance is a fluid sequence 

of events which allows some control over the creation of the visual stimuli with which to 

explore expertise effects.  In addition, watching dance supposedly involves action 

understanding, but predicting the intention of the dance movements or simply 

‘recognizing’ them is not necessary when watching dance: a dance performance can also 

be enjoyed on emotional and sensory levels that may not require complete understanding 

of individual actions.  The audience members experience a sense of motion and emotion 

through observing the performed movements, the performers’ expressions, and from the 

narrative of the dance piece.  Thus, dance enables us to study the transformation from 

perception of biological motion in a complex natural setting, without requiring processes 

primarily related to the various levels of action understanding (Hickok, 2008).  The more 

basic sensations can be – and have been – described as kinesthetic empathy (Foster, 

2008; Lipps, 1903 and 1906; MacFarlane, Kulka, & Pollick, 2004; Martin, 1939; Smyth, 

1984).  Following these concepts, the spectator should experience a kinesthetic sensation 

as if they themselves are executing the movements, possibly antecedent to action 

understanding.  Previous research using dance as stimuli in execution (Brown, Martinez, 

& Parsons, 2006) and observation (Calvo-Merino, Glaser, Grezes, Passingham, & 

Haggard, 2005; Cross, Hamilton, & Grafton, 2006) found enhanced brain activity in areas 

typically classified as mirror areas, including premotor and parietal cortices, and others 
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linked to biological motion perception such as STS.  These and other studies indicate that 

dance spectators show sensorimotor brain activation that could be linked to the 

experience of a kinaesthetic sensation.  Most authors have used dance to study whether 

there is an internal resonance while observing familiar movement, but with an emphasis 

on action understanding.  For instance, Calvo-Merino et al. (2005) found that the 

intensity of spectators’ brain activity is dependent on their motor experience; dancers 

showed higher brain activity when they were watching movements in the style they were 

trained in (i.e. ballet vs.  capoeira).  They concluded that motor familiarity enhances 

action simulation which, they suggest, serves action understanding.  In a following study, 

which controlled for effects of visual familiarity with the observed movements, they 

showed stronger brain activity for movements with which the observers were motorically 

familiar, over and above any visual experience (Calvo-Merino, Grezes, Glaser, 

Passingham, & Haggard, 2006).  These results showed that motor familiarity is an 

important factor in elaborating a state of embodiment that allows mentally generated 

sensations to occur when watching biological motion, whether action understanding is 

involved or not.   

It is, however, quite difficult to disentangle visual from motor expertise in 

biological motion perception.  An individual may be able to detect their own movements 

among the movements of other people using knowledge of their own motor repertoire 

(Loula, Prasad, Harber, & Shiffrar, 2005), but it is impossible to recognize oneself in a 

point-light display performing a movement not previously executed, and as such, a 

certain level of movement experience is always involved in these kinds of experiments 

(see also chapter by Calvo-Merino).  Nevertheless, some of our recent experiments 

examining cortical excitability provide evidence for the idea that visual expertise alters 

the perception of dance movements in the observer.  Motor-evoked potentials (MEP) 

created by single pulses of transcranial magnetic stimulation (TMS) have been used as a 

measure of cortical excitability: the bigger the average MEP, the higher the cortical 

excitability.  It has been shown that the mere observation of an action enhances cortical 

excitability in a muscle-selective manner, as though the observed actions were executed 

(Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995).  In a study on basketball shots, this distal 

muscle response was found to be selectively enhanced for actions in both motor and 
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visual expert groups, but the motor expertise of the athletes modulated their response in a 

time- and muscle-specific anticipatory manner (Aglioti, Cesari, Romani, & Urgesi, 

2008).  Beyond the framework of action understanding, we conducted a study to 

determine whether visual expertise in particular styles of dance could modulate 

corticospinal excitability in spectators with no motor experience in any type of dance.  

For this we compared corticospinal excitability of dance spectators who were 

experienced in watching ballet, to that of dance spectators who were experienced in 

watching a classical form of Indian dance known as Bharatanatyam.  Our results showed 

that corticospinal excitability can be modulated by the spectator’s visual experience in a 

muscle-specific manner (Jola, Grosbras, Kuppuswamy, & Pollick, submitted).  Thus we 

know that visual experience alone is sufficient to modulate the motor response to 

watching dance.  We are currently exploring this issue further using fMRI to compare 

responses to watching ballet between ballerinas, experienced ballet spectators and total 

novices to better understand how visual and motor experience influences perception.   

Next, we discuss how mentally generated actions, or motor imagery, compares to 

the perception of movement.  Research into simulation theory indicates how knowledge 

of movement can be used in a top-down fashion to influence visual perception.  However, 

in this case we study how transforming symbolic representations of movement can be 

used to internally generate movement.  To investigate this capability we examine the 

perception of motion based on Labanotation.  Labanotation is an abstract symbol system 

for coding movements (see Figure 2), and is often used in dance to notate dance works of 

great value.  The movement, however, has to be inferred by the reader.  First, one has to 

translate the non-bodily symbols on the staff into a mental representation of the body.  

Second, once two consecutive postures – written from the bottom to the top – have been 

transformed into mental representations of body postures, the reader then has to find the 

most direct natural body movement between the two postures.  A highly experienced 

Labanotationer is able instantly to translate the symbols from the notation into 

movements.  In fact, Karen Hermes, a professional Labanotationer, claims to experience 

Labanotation herself as so realistic that instead of ‘watching dance’ in a theatre, she 

suggests that it is possible that one could enjoy it in the mind from simply reading the 

notation.   
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Figure 2: Example of Labanotation from the dance ‘Flügel an Flügel’ performed by 

dance company Hermesdance and choreographed and notated by Karin Hermes.  The 
body positions seen in the image on the left are represented in the shaded region of 
Labanotation on the right.  Labanotation is read from bottom to top, and the unshaded 
regions represent previous and subsequent postures respectively.  The Labanotation 
includes components for each performer: the female dancer is represented in the left 
column of notation and the male dancer on the right.  This example provides detailed 
notation, including aspects such as gaze direction and torso rotation, allowing exact 
reconstruction of the dance. 
 

Evidence to support the plausibility of this claim by Karen Hermes for a direct 

embodiment of biological motion without the actual visual stimulation comes from the 

research of Mast, Berthoz, & Kosslyn (2001).  They demonstrated that mentally 

generated motion, in this case visualizing a rotating configuration of dots, elicited similar 

effects (inducing a sense of motion) to actually viewing the dots.  In a series of 

unpublished experiments, we thus investigated whether observers are able to instantiate 

mentally generated human movement percepts, as previously shown with induced motion 

percepts.  The aim of these studies was to assess whether mentally generated movements 

engage the same movement observation mechanisms as do the perception of real stimuli.  

If mentally generated biological motion follows the same principle as visually perceived 

biological motion, we expect to find effects known from biological motion perception in 

visualized motion percepts.  For this, we tested undergraduate students from Laban 

Trinity College in London who have been taught Labanotation for at least three terms by 

adapting two different research paradigms to Labanotation displays of movement.  The 
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first paradigm examined the fact that body motion principles can be violated for 

alternating presentation of human body postures only under certain time constraints 

(Shiffrar & Freyd, 1990, 1993).  The second paradigm examined the Stroop effect for 

evidence of automatic encoding processes (Stroop, 1935).  For instance, previous studies 

have found evidence that individuals who were trained in reading music notation are able 

to automatically encode and embody the information gathered from notes (Stewart et al., 

2003; Stewart, Walsh, & Frith, 2004).  However, the results for both the alternating body 

postures task and the Stroop task failed to conclusively show evidence of similarity 

between mentally generated movements and observed movements.  One possible 

explanation for this failure to find similarity is that mentally generated motion is 

represented in a different format from biological motion based on visual stimulation.  

This assumption is supported by a study showing that mentally transforming body 

postures using the Labanotation stimuli did not require additional mental rotation time, 

though pictures with real human bodies did (Jola & Haggard, 2006, see also Jola & Mast, 

2005).  The other possible explanation is that the participants of these studies simply did 

not have enough experience in reading the Labanotation.  When students learn the 

notation in class, they have to transform the symbols into real body postures and usually 

need to execute the movements to be able to read the notation.  Even once they are 

experienced enough to read the notation while sitting still (i.e. without motor execution) 

it remains a high-level cognitive task.  Thus, the motor expertise of the dancers did not 

help them encode the notation into movements, and only once the reader is highly 

experienced are they able to embody the symbols directly to evoke a sensory experience.  

To conclude, the issue of what conditions are necessary and sufficient for the experience 

of movement notation to mirror the effects of visually experiencing movement remains 

an open question.   

 

Visual aesthetics and the enjoyment of watching dance 

One aspect of the visual experience of human movement, and of relevance to 

dance, is that certain types of dance seem generally more appealing to view than others, 

and that some people enjoy watching dance much more than others.  This is particularly 

important for dance, where the movements are carefully crafted by a choreographer to 
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obtain an intended audience response to either the movement itself or the meaning it 

conveys.  For example, viewing an action might result in transmission of a feeling 

primarily of kinesthesis, or it might result in transmission of emotion and narrative.  It 

has been argued by Zeki (1999) that we can consider the artist to be a kind of 

neuroscientist who manipulates their art form to elicit particular brain responses.  Thus by 

taking a scientific approach to reverse-engineer dance performance we can potentially 

illuminate fundamental aspects of biological motion perception.   

In this section we consider some of the contributing factors that lead to aesthetic 

preferences when watching dance.  A spectator can achieve visual expertise in certain 

types of biological motion, such as dance, by extensive exposure and engagement.  

However, this does not allow any conclusion to be drawn as to why people gain visual 

experience in the first place.  It is not clear whether aesthetic preference is the driving 

force to watch particular types of dance or whether exposure itself is able to modify our 

aesthetic preferences.  Daprati, Iosa and Haggard (2009), for example, found correlations 

between perceptual preferences and aesthetic changes in dance postures.  Individuals had 

to rate the aesthetic value of abstract figures that symbolized the dance postures from the 

ballet Sleeping Beauty without being informed of their representational function.  Those 

figures representing the most current modifications of the postures have been rated as 

more attractive than those representing postures from many decades ago.  Thus, the 

authors concluded that changes in dance postures signified common aesthetic 

preferences.  A number of publications have studied the neural mechanisms that are 

implicated in aesthetic preference, focusing on either individual differences or universal 

aesthetic principles (for a review see Nadal, Munar, Capo, Rossello, & Cela-Conde, 

2008).  However, it is only recently that the neuronal network of aesthetic appreciation in 

biological motion perception was investigated (Calvo-Merino, Jola, Glaser, & Haggard, 

2008).  This particular study, for example, showed that novices rated movements as 

aesthetically more pleasing when they involved certain biological motion parameters.  In 

particular, vertical movements (e.g. jumps) were preferred to translational displacements 

(e.g. steps, on one level from the right to the left side).  Correlations with brain data for 

the most liked versus most disliked movements showed a consensus network involving 

parietal and visual areas.  These results are consistent with an fMRI study using a dancing 
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humanoid robot showed that the smoothness of motion is a critical parameter for motion- 

and body-sensitive visual areas (Miura et al., 2009).  However, the authors also found 

that personal attitudes correlated strongly with the inter-participant variability in the 

parieto-frontal network, suggesting that action understanding is influenced by personal 

attitudes.  In line with this, it was found that the aesthetic evaluation network partially 

overlaps with brain regions processing social and moral behaviour (Jacobsen, Schubotz, 

Hofel, & Von Cramon, 2006).  As most types of dance involve a wide range of 

movements and movement qualities, we need further research not only on why certain 

movements are perceived as more aesthetically pleasing than others, but on why certain 

dance styles are preferred over others.  It may be that these aesthetic preferences for 

certain types of biological motion are pre-dispositional.  

Nevertheless, dance movements are aesthetic as well as emotionally expressive.  

Therefore, we hypothesized that empathic ability as a pre-dispositional personality factor 

may be related to individual preferences in watching dance, which may well be related to 

emotion processing.  We studied dance because it has the advantage of invoking sensory 

sensations without requiring action understanding.  However, it may be that action 

understanding affects which style of dance we prefer.  We compared experienced 

spectators of ballet and the classical Indian dance form Bharatanatyam (which mainly 

consists of gestural actions and a clear narrative supported by the musical structure and 

prosody).  We correlated the amplitude of TMS-evoked motor potentials measured during 

dance observation with the participants’ individual self-rating in the inter-personal 

responsive index (IRI (Davis, 1980)) and the Autism Spectrum Quotient (AQ (Baron-

Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001)).  We found that people with 

higher empathic abilities showed greater TMS motor-evoked potentials when viewing 

affective gestures.  Thus, our data suggest that empathic abilities are relevant for the 

encoding of biological motion to kinesthetic and emotional information.  To understand 

how observers become emotionally and cognitively engaged with a performance, or feel 

empathetic towards the performers, may lead to a greater appreciation of how biological 

motion is processed.  Our results suggest that, especially in classical dance forms such as 

ballet, both the motion and the properties of the spectator influence how a performance 
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impacts on the audience, and this leads to a more complete understanding of how 

biological motion is processed. 

 

The sound of movement:  Expertise affects multisensory representations 

The previous sections describe how being expert with certain actions can change 

the way we perceive and process biological motion.  Here we attempt to take this subject 

further and examine how expertise influences the way biological motion and its resulting 

sounds integrate.  In general we find that human movement is accompanied with other 

sensory information, such as sound, and it is reasonable to assume that we usually need to 

integrate different sensory information to achieve a complete understanding of what 

another human agent is doing (Saygin, Driver, & de Sa, 2008).  In watching dance, for 

instance, music is an important component of performance, framing the movement along 

with the stage setting, the costumes, and the level of literality of the actions.  We have 

started exploring how the presence of music modifies the perception of dance, but this 

work is in the early stages and we do not yet have results to report.  We have, however, 

already examined how experience influences the integration of music perception itself by 

using drumming actions with the corresponding acoustic information.  We present these 

results below.   

The combination of sight and sound requires a system able to integrate complicated 

sets of signals.  These signals have different processing latencies due to dissimilarity in 

physical and neural transmission (Fain, 2003; King, 2005; King & Palmer, 1985; Spence 

& Squire, 2003).  The human brain overcomes these differences by allowing the auditory 

and visual information to be processed as pertaining to the same event even when the 

signals are physically asynchronous (Dixon & Spitz, 1980).  However, the neural 

tolerance for audiovisual temporal asynchrony is not unlimited, and the extent of this 

tolerance provides us with a measure known as the ‘Temporal Integration Window’ 

(TIW).  The neural processes involved with integrating sight and sound might appear 

effortless for us, as do the processes underlying the spontaneous integration of individual 

point lights into a human form (Johansson, 1973); nevertheless, they are essential for our 

wellbeing.   
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An intuitive way to investigate the effect of expertise on multisensory integration of 

action is to measure changes in sensitivity to audiovisual asynchrony (Arrighi, Alais, & 

Burr, 2006; Hollier, Rimell, Hands, & Voelcker, 1999; Miner & Caudell, 1998; van 

Wassenhove, Grant, & Poeppel, 2007; Vatakis & Spence, 2006a, 2006b, 2007).  By 

altering the degree of asynchrony between the visual and auditory stimuli, we obtain an 

indirect measure of the changes in the neural tolerance of audiovisual asynchrony, and 

can apply this measure to study expertise.  To study expertise in multisensory processing, 

we need a domain where it is possible to differentiate between an expert and a novice 

population that do not share knowledge about certain multisensory actions.  We chose 

music since it shares many characteristics not only with speech and dance, but also with 

object action (Vatakis & Spence, 2006a, 2006b) and is a very effective form of social 

communication.  Furthermore, musicians possess knowledge about certain actions that is 

not shared with non-musicians, and this makes music events a perfect tool to study 

differences between experts and non-experts.   

Drumming movements are very visually salient, in contrast to some other musical 

instruments, where asynchrony could be much harder to detect.  For this reason we used 

drumming point light displays (Luck & Sloboda, 2007) in combination with a synthetic 

sound originating from a professional jazz drummer playing a swing groove (Figure 3), 

where “swing” denotes a jazz style (Waadeland, 2003, 2006).  Point light displays 

(PLDs) allow us to isolate the effects of perceiving biological motion from contextual 

factors, and the specific rhythmic pattern of the swing groove makes a perfect simple 

stimulus to differentiate between novices and experts.   
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(a) (b)  

 

Figure 3.  (a) Frame sample of the jazz drummer point light displays recreated 
from 3D data set (Waadeland, 2003; 2006); (b) waveform sample of the nine impacts 
sound selections, with relative three-beat cyclic pattern for accent on the second beat in 
the swing groove (see Waadeland (2006) for more details).  The numbers 1, 2 and 3 at the 
top of the figure indicate respectively the first, second and third beats in the pattern, while 
> indicates the accented beat.  Note: the drawing representing the drummer and/or the 
drum in displays (a) is shown only to describe the point light positions (white circles) and 
was not presented during the experiments.  (With kind permission from Springer 
Science+Business Media:  Experimental Brain Research, Multisensory integration of 
drumming actions: musical expertise affects perceived audiovisual asynchrony, volume 
198, 2009, page 342, Petrini, et al., Figure 1.) 
 

One of the questions that can potentially be answered using this kind of drumming 

action display is whether drummers, who are expert in the represented biological motion, 

are more sensitive to temporal asynchrony between the drummer’s movement and the 

resulting sound than novices.  Petrini, Dahl et al. (2009) showed that not only are 

drummers more sensitive to asynchrony (i.e.  less tolerant of audiovisual asynchrony), 

but also that, unlike novices, their sensitivity depends less on the manipulation of other 

physical characteristics, such as drumming tempo (Arrighi et al., 2006; Petrini, Dahl et 

al., 2009) or audiovisual incongruency (Macdonald & McGurk, 1978; McGurk & 

Macdonald, 1976; van Wassenhove et al., 2007; Vatakis & Spence, 2007; Petrini, Dahl et 

al., 2009).  Indeed, while novices are facilitated in detecting asynchrony for drumming 

displays with faster tempos (Arrighi et al., 2006; Petrini, Dahl et al., 2009; Petrini, 

Russell, & Pollick, 2009), and also for drumming displays where the covariation between 
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the sound and the drummer’s movement has been eliminated (Petrini, Dahl et al., 2009; 

van Wassenhove et al., 2007; Vatakis & Spence, 2007), drummers are not.  The evidence 

that musicians can tap at slower tempos than non-musicians (Drake, Jones, & Baruch, 

2000) may explain why drummers are not affected by changes in drumming tempo when 

judging audiovisual simultaneity.  Through practice, drummers acquire the ability to 

perform drumming actions at a wide range of tempos, which could be why changes in 

tempo do not affect the way drummers bind the familiar biological motion and its sound.  

These findings seem to indicate that, after a long period of musical practice, the binding 

of biological motion and its sound changes in such a way that additional factors are no 

longer used by our neural system to integrate the multisensory information.  This is 

probably because the system reaches a very high and unbiased level of precision itself, 

and recent findings seem to further corroborate this conclusion.  Petrini, Holt & Pollick 

(in press), for instance, found that only novices’ simultaneity judgments were affected by 

the rotation of a drumming display (Figure 4a rotated at 90, 180 and 270 degree), while 

drummers’ were not.  That is, the tolerance to asynchrony of novices increased when 

viewing rotated audiovisual drumming displays, while that of the drummers remained 

relatively unchanged.  This extends the findings of Saygin, Driver and De Sa (2008) to 

another kind of audiovisual biological motion event, and indicates that the gestalt of 

upright point light drumming enhances the detection of audiovisual asynchrony for 

musical novices but not for expert drummers.  Hence, the nature of the visual stimulation 

can affect the perceived synchrony between the two sensory signals, but the extent of this 

effect is constrained by the level of experience with a particular multisensory event.   

If drummers are better able to detect asynchrony because of their experience and 

familiarity with that certain biological motion and its resulting sound, then they should 

still be better than novices when only a part of the body information is presented in the 

drumming displays (Figure 4b).   
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                (a)         (b)            (c) 

Figure 4.  (a) Display a: frame sample of the jazz drummer point light displays 
representing the shoulder, elbow, wrist, hand, grip, drumstick tip, and drumhead as a 25 
degree rectangle.  (b) Display b: frame sample of the jazz drummer point light displays 
representing the shoulder, elbow, and wrist.  (c) Display c: frame sample of the jazz 
drummer point-light displays representing the drumstick tip, and the drumhead as a 25 
rectangle.  (Reprinted from Cognition, Volume 110, Petrini, Russell & Pollick, When 
knowing can replace seeing in audiovisual integration of actions, pages 432-439, 2009, 
with permission from Elsevier.) 
 

In other words, while the drummers could have acquired, through practice, internal 

models specific to drumming biological motion that they can use to predict the sound 

occurrence when no impact point is presented, this should not be the case for the novices.  

In a further study (Petrini, Russell et al., 2009) we addressed this possibility and 

demonstrated that this is exactly what happens.  Not only were drummers found to be 

better than novices at detecting asynchrony between the drummer’s biological motion 

and the sound, but also they were the only group that could still bind the information 

from both sensory domains.  Indeed it was found that novices were completely unable to 

discriminate between synchronous and asynchronous drumming displays when the 

impact point was eliminated (Figure 4b).  However, when presented with either the intact 

drumming information (Figure 4a) or only the impact point (Figure 4c), drummers 

demonstrated a lack of difference in sensitivity to asynchrony, indicating that as long as 

the impact point is there they will use it as much as the novices, although maintaining a 

narrower audiovisual temporal integration window.  Thus, while drummers can use both 

kinds of information, novices can only refer to the impact point when deciding whether 

or not the sound and the drummer’s movement are part of the same action.  These 



18 

findings suggest that expertise with a certain action enhances the ability to maintain a 

coherent representation of the multisensory aspects of biological motion.  This 

assumption is strengthened by the finding that when drummers judged the simultaneity 

between the drumming biological motion and the sound of the aforementioned display 

from which the impact point information was eliminated (Figure 4b), their results were 

reminiscent of tapping tasks (Aschersleben & Prinz, 1995; Miyake, Onishi, & Pöppel, 

2004), indicating that the acquired information for that specific action was used.  In other 

words, when presented with only the point light arm information of the drumming 

display, drummers’ points of subjective simultaneity occurred in some instances when the 

sound was leading the sight, showing the same anticipatory effect as that found in tapping 

tasks (Aschersleben & Prinz, 1995; Miyake, Onishi, & Pöppel, 2004).  This interpretation 

suggests that drummers do not possess only a general enhanced ability to determine the 

co-occurrence of the auditory and visual information for any kind of multisensory event, 

but a more specific ability to use the representation of that action to bind sight and sound. 

The idea that musical training with different instruments gives rise to specialisation 

is also supported by studies revealing differences in brain structures and functions when 

comparing different kinds of musicians (see Tervaniemi, 2009 for review).  What we 

need to understand next is how these differences between experts and novices reflect 

different processes in the brain, in terms of recruitment in the integration of the 

multisensory aspects of biological motion.  This is a fundamental question we tried to 

answer by using brain imaging techniques (Pollick et al., submitted).  Specifically, we 

used functional Magnetic Resonance Imaging (fMRI) to measure the brain activity of a 

group of drummers and novices while watching synchronized or asynchronised 

drumming displays.  The task was to determine whether the biological motion of the 

drummer and the sound matched or not (Petrini, Dahl et al., 2009; Petrini, Russell et al., 

2009).  The timings for the synchronous and asynchronous displays were determined for 

each participant immediately prior to entering the MRI scanner by a separate behavioral 

experiment (Petrini, Dahl et al., 2009).  This predetermination of the optimal timings was 

necessary to exclude any difference in brain processes between drummers and novices 

that could be due to differences in task difficulty, rather than in the multisensory 

processing of biological motion.  Behavioral results from subjects in the scanner 
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indicated that both groups were almost perfect in detecting when the drummer’s 

movement and corresponding sound mismatched; yet despite this, the brain areas 

involved and their patterns of activation were different between novices and drummers.  

For example, the novices appeared to have greater activation in the middle frontal gyrus 

for both synchronous and asynchronous displays.  Additionally, the parahippocampus and 

cerebellum revealed greater activation for asynchronous displays in the drummers and for 

synchronous displays in the novices.  These results are complementary to those of 

Hodges, Hairston & Burdette (2005) who showed greater activity in audiovisual regions 

for experienced conductors when integrating sight and sound.   

Taken together, it appears that the narrow tuning for audiovisual asynchrony 

exhibited by the drummers (Petrini, Russell & Pollick, 2009; Petrini, Dahl et al., 2009; 

Petrini, Holt & Pollick, in press) and potentially also the ability to fuse sight and sound 

from incomplete visual displays (Petrini, Dahl et al., 2009) results from both involvement 

of higher order (cognitive) processes for the novices in fusing together the audio and 

visual tracks as well as enhanced perceptual and simulation processes of the drummers in 

detecting asynchronous events.  Further research is needed to examine how other kinds of 

extensive experience shape the processes of audiovisual integration.  However, the 

current results allow us to conclude that drumming expertise enhances multisensory 

representations of biological motion and changes the brain areas involved.   

 

Biological Motion Processing in Autism Spectrum Disorders 

In this final section we will move from groups that show enhanced processing of 

biological motion, to a group that reputedly has difficulties in biological motion 

processing, specifically those who have a diagnosis of having an Autism Spectrum 

Disorder (ASD).  The term ‘Autism Spectrum Disorders’ (ASDs) is used to refer to a 

range of disorders, usually autism and Asperger syndrome/disorder, that are typified by 

having, to a varying degree, impairments in three main areas known as the triad of 

impairments: social understanding, communication, and flexibility of thought (Frith, 

2003).  Recently, there has been increasing debate as to whether people with ASDs have 

a specific difficulty when it comes to processing biological motion.  The relevance of this 

is that if biological motion processing is impaired in people with ASDs, then this could 
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either contribute to or be the cause of the social communication and relationship 

difficulties found in varying degrees among this population.  Although there is an ever-

expanding literature on this topic, researchers are divided as to the extent, or even the 

existence, of such impairments.  Here we will discuss some of the most relevant literature 

in this area, with an emphasis on the possible differences in processing abilities that exist 

between people with ASDs and those without.  This literature has also been recently 

considered by Kaiser & Shiffrar (2009). 

The first study to examine biological motion processing in people with ASDs was 

carried out by Moore, Hobson and Lee (1997).  Using point-light displays (PLDs), they 

compared biological motion processing in a group of 17 children and young adults with 

ASDs to a chronologically and verbally age-matched control group.  As the ASD group 

had impaired language abilities the control group all had learning disabilities but were not 

diagnosed with an ASD.  The stimuli were PLDs depicting either a person walking or an 

inanimate household object such as an opening and closing pair of scissors.  The 

participants’ task was to say what they thought the moving points were attached to.  The 

stimuli were presented in increasing durations starting from 40ms and rising to 5000ms in 

varying increments.  The participants in each group who could correctly identify the 

stimuli at each stimulus duration were then fitted with a psychometric function.  

Although there was a slight difference in the ASD group’s ability to correctly identify 

PLDs of walkers when they consisted of only five points, Moore et al. (1997) concluded 

that there was no significant difference in performance overall between the two groups, 

though there were no details of the statistical tests used given in the paper.   

Moore et al. (1997) did, however, find differences between the two groups in their 

ability to attribute the correct emotional state to PLDs containing depictions of different 

affects.  Despite their ability to correctly describe the mechanics of the biological motion 

stimuli, they were poorer than the control group in their ability to correctly identify the 

affect of a point-light actor.  Moore et al. (1997) concluded that there were no differences 

in the two groups’ ability to process biological motion and that, instead, the ASD group’s 

main difficulty was in the correct attribution of mental states to others. 

More recently, and in support of the initial Moore et al. (1997) findings, Hubert, 

Wicker, Moore, Monfardini, Duverger & Da Fonseca (2007) found that an adult group of 
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people with ASDs were poorer in relation to controls when asked to subjectively describe 

emotions, but not when asked to categorize subjective states, actions, or to identify an 

object’s motions.  Furthermore, similar results were found using the same experiment in a 

group of children (Parron et al., 2008).  It must be noted, however, that these were 

subjective reports of what the motions depicted and, as such, were deemed as correct or 

incorrect by the experimenter rather than with an objective measure.  Furthermore, there 

was no mentioned attempt to control the motion energy of the stimuli across conditions, 

so it is perhaps the case that the ASD group found the object motion easiest and that the 

differences were due to the increasing complexity of the PLDs. 

Some studies, however, have demonstrated that, in addition to difficulties in 

attributing emotions to PLDs, there are low-level biological motion processing deficits in 

people with ASDs.  The first to demonstrate this were Blake, Turner, Smoski, Pozdol & 

Stone (2003), who used a technique that systematically manipulated the temporal phase 

relations between the points on a PLD, which substantially reduces the perception of the 

human form (Bertenthal & Pinto, 1994).  Blake et al. (2003) showed one-second displays 

of unscrambled and temporally scrambled PLDs of various everyday actions to a group 

of children with ASDs and a group of typically developing children whose chronological 

ages matched the mental ages of the ASD group.  The participants’ task was simply to 

say whether the displays, which were presented in a random order, depicted a person or 

not.  In contrast to Moore et al. (1997), Blake et al. (2003) showed a clear difference in 

discrimination of the stimuli between the control group and the ASD group, with d’ 

scores being two and a half times higher in the former than in the latter, suggesting 

impaired biological motion processing in the ASD group.  Furthermore, Blake et al. 

(2003) found negative correlations with performance on the task and the levels of 

severity of symptoms, as measured by the Autism Diagnosis and Observation Schedule, 

the Childhood Autism Rating Scale, and also, though only in the ASD group, mental age.  

It was also noted that of the 16 participants with ASDs, only 12 were actually able 

complete the task. 

 The contradictory nature of these studies poses an interesting question – if the 

participants in the Blake study had difficulty just stating whether the PLDs depicted a 

person, why were the participants in Moore et al. (1997), Hubert et al. (2007) and the 
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Parron et al. (2008) studies comparable to their respective control groups in all tasks 

except in the emotion categorization task?  A key point to note is that the displays used 

by Blake et al. (2003) were far shorter than those of the other studies, being one second 

long compared with five seconds in the other studies.  It is also possible that the 

difference may be due to the variation in ages of participants between the studies, with 

the participants in the Blake et al. (2003) study being considerably younger than those in 

the other studies.  As such, it may be that people with ASDs can process the same 

information from biological motion as controls, but just take longer to do so. 

To examine the issue of age, Annaz, Remington, Milne, Coleman, Campbell, 

Thomas & Swettenham (in press) used one-second PLDs to test the ability of children 

between the ages of 5 and 12 to discriminate intact from scrambled biological motion.  

They found that children with autism were impaired in the perception of biological 

motion and that their sensitivity to distinguishing between intact and scrambled PLDs did 

not improve with development.  There are also reports of dysfunctional biological motion 

processing at even younger ages than those reported by Blake et al. (2003) and Annaz et 

al. (2009).  In a recent study Klin, Lin, Gorrindo, Ramsay, & Jones (2009) showed that, 

unlike typically developed two-year-old children, children with autism failed to orientate 

to PLDs.  In addition, when viewing displays of biological motion, the viewing behavior 

of children with ASDs was determined not by social cues, but by physical non-social 

contingencies that are disregarded by typically developed children.  At this age it is likely 

that any problem with processing biological motion is present from birth, reflecting a 

lower level of a basic processing that is undeveloped, with a probable root in a 

dysfunctional neural system.   

 It must be noted, however, that there is some evidence that this deficit may be 

more deep-rooted than biological motion processing.  A paper by Atkinson (2009) found 

that, in line with Moore et al. (1997), people with ASDs were impaired at attributing 

emotions and categorizing instrumental actions to both PLDs and full light displays.  

Atkinson attributed this not to a difficulty in processing biological motion, but to a 

difficulty in integrating low-level motion cues.  This was based on regression analysis in 

which hit rates in predicting emotions were inversely related to log-scaled motion 

coherence thresholds.  However, although motion coherence thresholds were significant 
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predictors of the number of correct responses in the affect categorization task, there was 

no significant difference between the two groups in terms of motion coherence 

thresholds.   Additionally, Atkinson did not use a measure of biological motion 

processing per se, but instead moved straight from low level motion coherence thresholds 

to categorization of human actions and as such, despite the apparent link between motion 

coherence thresholds and categorization of human actions, the question of whether 

biological motion processing was intact in people with ASDs was not addressed. 

A key point to note about the aforementioned behavioral studies is that typically 

there is a larger range of scores within the ASD group, regardless of whether there were 

significant task differences, suggesting more variability within the ASD population than 

the control populations.  This is despite most studies exercising rigorous, usually paired, 

matching techniques between the various experimental and control groups on such items 

as age, gender and verbal and performance IQ, wherever possible.  This may be due to 

the wide range of symptoms covered by diagnosis of ASDs and also the heterogeneity of 

symptoms seen within autism or Asperger syndrome when taken as distinct diagnoses.  

People with ASDs typically vary considerably in the extent to which they show 

difficulties within the triad of impairments.  In addition, there are a number of sensory 

issues in ASDs that may or may not have an influence on biological motion processing, 

and the extent to which people experience these is also variable (for a full review see: 

Simmons, Robertson, McKay, Toal, McAleer, & Pollick, 2009).  Given the variability on 

all these dimensions in people with ASDs, it is perhaps not unexpected that studies 

investigating biological motion processing will produce more conflicting than 

complementary results.   

  

Neural Correlates of Impaired Biological Motion Processing in ASDs 

 

A number of studies have looked for a potential neural correlate for the differences 

found in biological motion processing in people with ASDs.  A recent study by 

Herrington et al. (2007) showed that several regions were less active in people with 

ASDs than in controls when contrasting an intact point light walker with fixation, such as 

the fusiform gyrus, middle temporal gyrus, superior temporal gyrus and the inferior 
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parietal lobule.  Each of these regions has been implicated in motion and/or biological 

motion processing.  Furthermore, Freitag et al. (2008) showed that although in an age- 

and IQ-matched control group, these regions, among many others, activated differentially 

to an intact versus a scrambled point light walker, none of these regions activated 

differentially in the ASD group.  Additionally, the ASD group showed increased 

activation to intact versus scrambled point light walkers in regions that were not apparent 

in the control group, such as the hippocampus, thalamus, posterior cingulate gyrus and 

the precuneus.  Recent work in our own lab suggests that even when biological motion 

processing appears intact in a group with ASDs, there are significant differences both in 

activation and patterns of effective connectivity to and from key regions between this 

group and age- and IQ-matched controls.  More specifically, it appears that while the 

typically developed control group utilize a network comprising inferior-temporal and 

parietal connections, the ASD group seem to recruit a network comprising temporal 

regions, such as MT+ and the parts of the fusiform gyrus.  This may be due to neural 

rewiring in some adults with ASDs that compensates for reduced connectivity between 

temporal and parietal regions or disrupted processing in specific temporal or parietal 

areas, and may reflect experiential strategies learned by this group to overcome 

difficulties experienced in childhood. 

It seems therefore that there are many regions involved in the complex processing 

of information salient to biological motion, and that these might be differentially 

disrupted in subpopulations of individuals with ASD.  A cause of this may be that, given 

an early neural disruption in people with ASDs, in some cases the brain has compensated 

by utilizing other regions, but has not done so in others.  As such, it seems plausible that 

the extent to which the brain has adapted itself could reflect the degree to which people 

with ASDs have difficulties with biological motion processing, and that this may in part 

explain the high levels of variability reported for this population in processing ability. 

We have seen that a number of studies have reported biological motion processing 

difficulties in people with ASDs.  Some suggest that the main problem is attributing 

emotional states to PLDs (Hubert et al., 2007; Moore et al., 1997; Parron et al., 2008), 

while others claim that it may be a more deep seated problem with processing low level 

features of biological motion (Annaz et al., in press; Blake et al., 2003; Klin et al., 2009) 
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or even low level motion integration (Atkinson, 2009).  One thing seems clear: the 

picture is complex and more investigation is needed to determine the specific difficulties 

people with ASDs have in processing biological motion, and also to determine whether 

these difficulties are uniform across the group or whether and how they vary across the 

autism spectrum. 

General Discussion 

In the introduction we proposed that the study of how different groups perceive 

biological motion would inform more complete models of expertise and the perception of 

biological motion, as well as provide important comparisons for conditions such as 

autism.  In this final section we’d like to come back to this proposal, as well as highlight 

potential linkages between the topics presented. 

We begin with a brief summary of the findings reported about watching dance, 

audiovisual integration in drumming and the perception of biological motion in autism.   

In watching dance we reviewed results suggesting that the empathic abilities and both the 

motor and visual experience of an observer influences their neurophysiological responses 

to observed movements.  For audiovisual integration in drumming, we discussed how 

drummers’ judgments of synchrony are unaffected by a wide range of factors that do 

influence the perception of novices.  Moreover, the brain activity of drummers and 

novices showed marked differences when judging synchrony, even when both groups 

performed the task with high accuracy.  Overall, these differences in brain activity were 

consistent with drummers using multisensory perceptual regions to perform asynchrony 

judgments, while novices recruited more frontal regions.  For the perception of biological 

motion in autism, we reported that although there was little evidence to show that adults 

with ASD perform differently from matched controls on biological motion recognition 

tasks, there was evidence that the brain mechanisms used by this population are different.  

Namely we found that, for our ASD group, effective connectivity was restricted mainly 

to the temporal cortex when viewing biological motion, while for the matched controls 

effective connectivity included connections between parietal and temporal cortices. 

This summary demonstrates that different groups do show systematic differences in 

their responses and ability to perform biological motion tasks.  In addition the brain 

imaging data, although some of it preliminary, revealed differences in possible neural 
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mechanisms even when behavioral measures were equivalent between groups.  

Contrasting these results with the distributed network presented in the introduction 

reveals two possible ways in which experience shapes this network.  The watching dance 

results suggest that experience enhances communication between distant aspects of this 

network, allowing visual and motoric representations to interact.  The drumming data 

implicates a different mechanism, where enhanced multisensory representations in 

posterior regions of cortex appear to support the combination of sight and sound in the 

brains of drummers.  These proposals of enhanced communication across distant brain 

regions and enhanced local representations provide a means to develop and test 

hypotheses of how experience shapes biological motion perception. 

Both enhanced global communication and local representation can thus be 

characterized as properties of expertise and be applied to the case of biological motion 

perception in autism.  The lack of effective connectivity between temporal and parietal 

regions in the ASD group would suggest a lack of expertise in processing biological 

motion.  However, our behavioral data argues against this, as does the more extensive 

effective connectivity in the temporal lobe.  This greater connectivity in temporal lobe is 

consistent with expertise mediated by more extensive local representations, similar to 

those that appear to exist in the multisensory brain regions of drummers.  An interesting 

parallel between the drumming data and theories of ASD is found in the theory of 

Enhanced Perceptual Function (EPF) which states that individuals with ASD use more 

posterior regions in complex perceptual tasks and rely less on higher order perceptual 

processing (Mottron, Dawson, Soulieres, Hubert & Barack, 2006).  Similar also to “Weak 

(Central) Coherence” (Happe & Frith, 2006) EPF results in perception where the context 

in which a stimulus is embedded has less influence on perception of the stimulus.  Such 

descriptions are broadly consistent with the performance of our drummers in synchrony 

perception, where drummers show more posterior brain activations and a failure for 

higher order stimulus properties such as tempo and orientation to affect synchrony 

judgments of the drummers.  While such a connection is speculative, and might not 

explain how drummers can judge synchrony when visual information is removed, it does 

lead to the hypothesis that the same principles that shape the development of 
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multisensory processing in drumming are at work in the development of biological 

motion in the temporal cortex of individuals with ASD.   

Clearly, there is much work yet to be done to understand how we perceive 

biological motion.  We believe that studying how experience and development shape 

biological motion processing in different groups is essential to understanding what are the 

core capabilities and mechanisms in biological motion perception.  While an emphasis on 

variability and individual differences provides challenges to unite disparate data, the 

diversity of situations where specialized performance is obtained reveal that it is an 

essential aspect of behavior that needs to be understood.   
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