
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 507173, 16 pages
doi:10.1155/2012/507173

Research Article

Throughput Analysis for a High-Performance
FPGA-Accelerated Real-Time Search Application

Wim Vanderbauwhede,1 S. R. Chalamalasetti,2 and M. Margala2

1 School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK
2 Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA

Correspondence should be addressed to Wim Vanderbauwhede, wim@dcs.gla.ac.uk

Received 13 October 2011; Accepted 20 December 2011

Academic Editor: Miaoqing Huang

Copyright © 2012 Wim Vanderbauwhede et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We propose an FPGA design for the relevancy computation part of a high-throughput real-time search application. The application
matches terms in a stream of documents against a static profile, held in off-chip memory. We present a mathematical analysis of
the throughput of the application and apply it to the problem of scaling the Bloom filter used to discard nonmatches.

1. Introduction

The focus on real-time search is growing with the increasing
adoption and spread and of social networking applications.
Real-time search is equally important in other areas such as
analysing emails for spam or search web traffic for particular
patterns.

FPGAs have great potential for speeding up many types
of applications and algorithms. By performing a task in a
fraction of the time of a conventional processor, large energy
savings can be achieved. Therefore, there is a growing interest
in the use of FPGA platforms for data centres. Because of
the dramatic reduction in the required energy per query,
data centres with FPGA search solutions could operate at
a fraction of the power of current data centres, eliminating
the need for cooling infrastructure altogether. As the cost of
cooling is actually the dominant cost in today’s data centres
[1], the savings would be considerable. In [2, 3] we presented
our initial work on applying FPGAs for acceleration or search
algorithms. In this paper, we present a novel design for the
scoring part of an FPGA-based high-throughput real-time
search application. We present a mathematical analysis of the
throughput of the system. This novel analysis is applicable to
a much wider class of applications than the one discussed
in the paper; any algorithm that performs nondeterministic
concurrent accesses to a shared resource can be analysed
using the model we present. In particular, the technology

presented in this paper can also be used for “traditional,” that
is, inverted index based, web search.

2. Design of the Real-Time Search Application

Real-time search, in information retrieval parlance called
“document filtering,” consists of matching a stream of
documents against a fixed set of terms, called the “profile.”
Typically, the profile is large and must therefore be stored in
external memory.

The algorithm implemented on the FPGA can be ex-
pressed as follows.

(i) A document is modelled as a “bag of words,” that is,
a set D of pairs (t, f ), where f � n(t,d) is the term
frequency, that is, number of occurrences of the term
t in the document d; t ∈ N is the term identifier.

(ii) The profile M is a set of pairs p = (t,w) where the
term weight w is determined using the “Relevance
Based Language Model” proposed by Lavrenko and
Croft [4].

In this work we are concerned with the computation of
the document score, which indicates how well a document
matches the profile. The document has been converted to the
bag-of-words representation in a separate stage. We perform
this stage on the host processor using the Open Source



2 International Journal of Reconfigurable Computing

information retrieval toolkit Lemur [5]. We note that this
stage could also be very effectively performed on FPGAs.

Simplifying slightly, to determine if a document matches
a given profile, we compute the sum of the products of term
frequency and term weight

∑

i∈D
fiwi. (1)

The weight is typically a high-precision word (64 bits)
stored in a lookup table in the external memory. If the score
is above a given threshold, we return the document identifier
and the score by writing it into the external memory.

2.1. Target Platform. The target platform for this work
is the Novo-G FPGA supercomputer [6] hosted by the
NSF Center for high-performance reconfigurable computing
(CHREC) (http://www.chrec.org/). This machine consists of
24 compute servers which each host a GiDEL PROCStar-III
board. The board contains 4 FPGAs with 2 banks of DDR
SDRAM per FPGA used for the document collection and one
for the profile. The data width is 64 bits, which means that the
FPGA can read 128 bits per memory per clock cycle [7]. For
more details on the platform, see Section 4.

2.2. Term-Scoring Algorithm. To simplify the discussion, we
first consider the case where terms are scored sequentially,
and that, as in our original work, we use a Bloom filter to
limit the number of external memory accesses.

For every term in the document, the application needs to
look up the corresponding profile term to obtain the term
weight. As the profile is stored in the external SDRAM, this
is an expensive operation (typically 20 cycles per access).
The purpose of document filtering is to identify a small
amount of relevant documents from a very large document
set. As most documents are not relevant, most of the lookups
will fail (i.e., most terms in most documents will not occur
in the profile). Therefore, it is important to discard the
negatives first. For that purpose we use a “trivial” Bloom filter
implemented using the FPGA’s on-chip memory.

2.2.1. “Trivial” Bloom Filter. A Bloom filter [8] is a datastruc-
ture used to determine membership of a set. False positives
are possible, but false negatives are not. With this definition,
the design we use to reject negatives is a Bloom filter.
However, in most cases, a Bloom filter uses a number (k) of
hash functions to compute several keys for each element in
the set and adds the element to the table (assigns a “1”) if
element is in the set. As a result, hash collisions can lead to
false positives.

Our Bloom filter is a “trivial” edge case of this more
general implementation; our hashing function is the identity
function key = elt, and we only use a single hash function
(k = 1) so every element in the set corresponds to exactly
one entry in the Bloom filter table. As a result, the size of the
Bloom filter is the same as the size of the set, and there are no
false positives. Furthermore, no elements are added to the set
at run time.

2.2.2. Bloom Filter Dimensioning. The internal block RAMs
of the Altera Stratix-III FPGA that support efficient single-
bit access are limited to 4 Mb; on a Stratix-III SE260, there
are 864 M9K blocks that can be configured as 8 K × 1 [9].
On the other hand, the vocabulary size of our document
collection is 16 M terms (based on English documents using
unigrams, diagrams, and trigrams). We therefore used a very
simple “hashing function,” key = elt � 2. Thus we obtain
one entry for every four elements, which leads to three false
positives out of four on average. This obviously results in a
four times higher access rate to the external memory than if
the Bloom filter would be 16 Mb. As the number of positives
in our application is very low, the effect on performance is
limited.

2.2.3. Document Stream Format. The document stream is a
list of (document identifier, document term pair set) pairs.
Physically, the FPGA accepts a fixed number n of streams
of words with fixed width w. The document stream must
be encoded onto these word streams. As both elements in
the document term pair di = (ti, fi) are unsigned integers,
m pairs can be encoded onto a word if w is larger than or
equal to m times the sum of the magnitudes of the maximum
values for t and f

w ≥ m
(⌈

log2tmax

⌉
+
⌈

log2 fmax

⌉)
. (2)

To mark the start a document we insert a header word
(identified by f = 0) followed by the document ID.

2.2.4. Profile Lookup Table Implementation. In the current
implementation, the lookup table that stores the profile
is implemented in the most straightforward way; as the
vocabulary size is 224 and the weight for each term in the
profile can be stored in 64 bits, a profile consisting of the
entire vocabulary could be stored in the 256 MB SDRAM,
which is less than the size of the fixed SDRAM on the
PROCStar-III board. Consequently, there is no need for
hashing, the memory contains zero weights for all terms not
present in the profile.

2.2.5. Sequential Implementation. The diagram for the se-
quential implementation of the design is shown in Figure 1.

Using the lookup table architecture and document
stream format as described above, the actual lookup and
scoring system is quite straightforward, the input stream is
scanned for header and footer words. The header word action
is to set the document score to 0; the footer word action is to
collect and output the document score. For every term in the
document, first the Bloom filter is used to discard negatives,
and then the profile term weight is read from the SDRAM.
The score is computed and accumulated for all terms in the
document, and finally the score stream is filtered against
a threshold before being output to the host memory. The
threshold is chosen so that only a few tens or hundreds of
documents in a million are returned.

If we would simply look up every term in the external
memory, the maximum achievable throughput would be



International Journal of Reconfigurable Computing 3

BRAM
Score

Header/footer detection

Bloom
filter

External
SDRAM

Profile

Acc score

Init score= 0

Collect
score

Document stream

Header Footer

Test: t
in profile?

Document score stream

FPGA

Lookup term
in profile

(pt,w)
(t, f )

(t, f )

t

t

Score
term

0

+

Figure 1: Sequential document term scoring.

1/ΔtS, with ΔtS the number of cycles required to look up
the term weight in the external memory and compute the
term score. The use of a Bloom filter greatly improves the
throughput as the Bloom filter access will typically be much
faster than the external memory access and subsequent score
computation. If the probability for a term to occur in the
profile is PP and the access time to the Bloom filter is ΔtB,
the average access time will become ΔtB +PP ·ΔtS. In practice
PP will be very low as most document terms will not occur
in the profile (because otherwise the profile would match
all documents). The more selective the profile, the fewer the
number of document terms that match it.

2.3. Parallelising Lookups. The scoring process as described
above is sequential. However, as in the bag-of-words rep-
resentation all terms are independent, there is scope for
parallelisation. In principle, all terms of a document could
be scored in parallel, as they are independent and ordering is
of no importance.

2.3.1. Parallel Document Streams. In practice, even without
the bottleneck of the external memory access, the amount
of parallelism is limited by the I/O width of the FPGA, in
our case 64 bits per memory bank. A document term can be
encoded in 32 bits (a 24-bit term identifier and an 8-bit term
frequency). As it takes at least one clock cycle of the FPGA

clock to read in two new 64-bit words (one per bank), the
best case for throughput would be if 4 terms per document
would be scored in parallel in a single cycle. However, in
practice scoring requires more than one cycle; to account for
this, the process can be further parallelised by demultiplexing
the document stream into a number of parallel streams. If,
for example, scoring would take 4 cycles, then by scoring 4
parallel document streams the application could reach the
maximal throughput.

2.4. Parallel Bloom Filter Design. Obviously, the above
solution would be of no use if there would be only a
single, single-access Bloom filter. The key to parallelisation
of the lookup is that because the Bloom filter is stored
in on-chip memory, accesses to it can be parallelised by
partitioning the Bloom filter into a large number of small
banks. The combined concepts of using parallel streams and
a partitioned Bloom filter are illustrated in Figure 2. To keep
the diagram uncluttered, only the paths of the terms (Bloom
filter addresses) have been shown.

Every stream is multiplexed to all m Bloom filter
banks; every bank is accessed through an n-port arbiter.
It is intuitively clear that, for large numbers of banks, the
probability of contention approaches zero, and hence the
throughput will approach the I/O limit—or would if none of
the lookups would result in an external memory access and
score computation.

3. Throughput Analysis

In this section, we present the mathematical throughput
analysis of the Bloom filter-based document scoring system.
The analysis consists of four parts.

(i) In Section 3.1 we derive an expression to enumerate
all possible access patterns for n concurrent accesses
to a Bloom filter built of m banks and use it to
compute the probability for each pattern.

(ii) In Section 3.2 we compute the average access time
for each pattern, given that nH accesses out of n
will result in a lookup in the external memory. We
consider in particular the cases of nH = 0 and nH = 1
and propose an approximation for higher values of
nH .

(iii) In Section 3.3 we compute the probability that nH
accesses out of n will result in a lookup in the external
memory.

(iv) In Section 3.4, combining the results from Section 3.2
and Section 3.3, we compute the average access time
over all nH for a given access pattern; finally, we
combine this with the results from 3.1 to compute the
average access time over all access patterns.

3.1. Bloom Filter Access Patterns. We need to calculate the
probability of contention between c accesses out of n, for
a Bloom filter with m banks. Each bank has an arbiter
which sequentialises the contending accesses, so c contending
accesses to a given bank will take a time c · ΔtB, with ΔtB



4 International Journal of Reconfigurable Computing

Document stream (Streaming DMA from board mem)

FPGA

BRAM

Bloom filter
bank m

BRAM

BRAM

Bloom filter
bank 1

Bloom filter
bank 2

Demux 1

Access to profile memory

External memory arbiter

Demux n

Arbiter 1

Arbiter m

SDRAM

Document stream

SDRAM

Document stream

SDRAM

Profile

1

1

n/

n

4

· · ·

· · ·

· · ·

128 b

128 b

32 b 32 b

...

...

...

...

...

...

...

Figure 2: Parallelizing lookups using parallel streams and a multibank Bloom filter.

the time required for a single lookup in the Bloom filter.
We also account for a fixed cost of contention ΔtC . We use a
combinatorial approach; we count all possible arrangements
of n accesses to m banks. Then we count the arrangements
that result in c concurrent accesses to a bank.

To do so, we need first to compute the integer partitions
of n [10] as they constitute all possible arrangements of n
accesses. For the remainder of the paper, we will refer to “all
possible arrangements that result in x” as the weight of x.
Each partition of n will results in a particular average access
time over all accesses. If we know the probability that each
partition will occur and its resulting average access time, we
can compute the total average access time.

3.1.1. Integer Partitions. A partition p(n, k) of a positive
integer n is a nonincreasing sequence of k positive integers

p1, p2, . . . , pk with n as their sum. Each integer pi is called
a part. Thus, with n in our case being the number of access
ports to our Bloom filter, each partition is a possible access
pattern for the Bloom filter. For example, if n = 16 and k = 8,
the partition (5 3 2 2 1 1 1 1) means that the first bank in
the Bloom filter gets 5 concurrent accesses, the next 3, and
so on. For n ≤ m, k ∈ [1,n]; if n > m, we must restrict k
to k ∈ [1,m] because we cannot have more than m parts in
the partition as m is the number of banks. In other words,
k ∈ [1, min(n,m)]. We denote this as p(n, k).

3.1.2. Probability of Each Partition. For each partition, we can
compute the probability of it occurring as follows: if there are
n concurrent accesses to the Bloom filter’s m banks, n ≤ m,
then each access pattern can be written as a sequence of
numbers. We are not interested in the actual numbers, but in



International Journal of Reconfigurable Computing 5

the patterns, for example, with n = 8 and m = 16, we could
have a sequence (a a a b b c c d), a, b, c,d ∈ 0 . . . m −
1; a /= b /= c /=d which results in a partition (3 2 2 1). Conse-
quently, given a partition we need to compute the probability
for the sequence which it represents. The probability for each
number occurring is the same, 1/m. We can compute this
probability as a product of three terms. First, we consider
the probabilities for sequences of length n of events with
probability αi where each event occurs xi times. These are
given by the multinomial distribution

n!
k∏

i=1

αxii
xi!

, (3)

where 0 < xi ≤ n and n =∑k
i=1 xi.

In our case, each event has the same probability 1/m, and
the number of times each event occurs is the size of each part
pi in the partition, so

n!
mn

k∏

i=1

1
pi!

. (4)

This gives the probability for a sequence of k groups of pi
events, n events in total.

The actual sequence will consist of numbers 1 . . .m, so
we must consider the total number of different sequences of
numbers that result in a given partition. This is simply the
number of possible combinations of k numbers out of m, Ck

m.
Finally, we must consider the permutations as wells for

example, for (2 1 1) we must also consider (1 2 1) and
(1 1 2). This is a combinatorial problem in which the bins
are distinguishable by the number of elements they contain;
however, the actual number of elements is irrelevant, only
the fact that the bins are distinguishable. The derivation
is slightly more complicated. We proceed as follows: we
transform the partition into a tuple with as many elements
as the number of different integers in the partition, and the
value for each element is the number of times this integer
occurs in the partition, for example, (5 5 3 3 2 1 1) →
(2 2 1 2) and (4 3 2 2 1 1 1) → (1 1 2 3). We call the
new set the frequencies of the partition p, F(p(n, k)). As
partitions are nonincreasing sequences, the transformation
is quite straightforward.

First we create an ordered set S = {S1, . . . , Si, . . .} with
P = ⋃ Si; that is, S is a set partition of P. The elements of S
are defined recursively as

S1 =
{
∀pj ∈ P | pj = p1

}
, (5)

Si =
⎧
⎨
⎩∀pj ∈ P \

⋃

k=1...i−1

Sk | pj = p1

⎫
⎬
⎭. (6)

That is, S1 contains all parts of P identical to the first
part of P; for S2, we remove all elements of S1 from P and
repeat the process, and we continue recursively until the
remaining set is empty. Finally, we create the (ordered) set
of the cardinal numbers of all elements of S

F =
{
fi � Si, ∀Si ∈ S

}
. (7)

We are looking for the permutations with repetition of
F(p(n, k)), which is given by

n′!
∏

∀fi∈F(p(n,k))

1
fi!

, (8)

where n′ =∑ fi.
Thus the final probability for each partition of n and a

given m becomes

P
(
p(n, k),m

) = Ck
m

mn
· n!

∏

∀pi∈p(n,k)

1
pi!
· n′!

∏

∀ fi∈F(p(n,k))

1
fi!
.

(9)

We observe that

n∑

k=1

P
(
p(n, k),m

)= 1 (10)

regardless of the value of m.
In the next section we derive an expression for the access

time for a given partition, depending on the number of
accesses that will result in an external memory lookup.

3.2. Average Access Time per Pattern. The time to perform n
lookups in the Bloom filter is of course determined by the
number of contending accesses. For c contending accesses, it
will take a time cΔtB. However, not all Bloom filter lookups
will result in a subsequent access to the external memory—
in fact most of them will not, this is exactly the reason for
having the Bloom filter. We will call a Bloom filter lookup
that results in an access to the external memory a hit.

3.2.1. Case of No Hits. First, we will consider the case of 0
hits, that is, the most common case. In this case, the average
access time for a given partition p(n, k) is the average of all
the parts in the partition

ΔtH ,p,0 = k>1

k
· ΔtC +

n

k
ΔtB, (11)

where k>1 is the number of parts pi > 1. For the case of
k = n (no contention), k>1 = 0 so there is no fixed cost of
contention ΔtC . Note again that k ≤ min(n,m).

In practice, a small number of Bloom filter lookups will
result in a hit, and consequently there is a chance of having
one or more hits for concurrent accesses.

3.2.2. Case of a Single Hit. Consider the case of a single
hit (out of n lookups). The question we need to answer is,
how long on average will it take to encounter a hit? Because
as soon as we encounter a hit, we can proceed to perform
the external memory access, without having to wait for
subsequent hits. This time depends on the particular integer
partition. To visualise the partition, we use a so-called Ferrers
diagram [11], in which every part is arranged vertically as a
list of dots. For example, consider the Ferrers diagram for the
partition (8 4 1 1 1 1), that is, n = 16, k = 6. (Figure 3).



6 International Journal of Reconfigurable Computing

Figure 3: Ferrers diagram for the partition (8 4 1 1 1 1).

Figure 4: Ferrers diagram for the conjugate partition
(6 2 2 2 1 1 1 1).

Each row can be interpreted as the number of concurrent
accesses to different banks; each column represents the
number of contending accesses to a particular bank.

From this graph it is clear that the probability for finding
the hit on the first cycle is 6/16; on the second to fourth
cycle 2/16, on the fifth to eighth cycle 1/16. Consequently,
the average time to encounter a hit will in this case be

1 · 6
16

+ (2 + 3 + 4) · 2
16

+ (5 + 6 + 7 + 8) · 1
16

. (12)

To generalise this derivation, we observe first that the
transposition of the Ferrers diagram of an integer partition
p yields a new integer partition p′(n, k′) for the same
integer called the conjugate partition. In our example p′ =
(6 2 2 2 1 1 1 1) with k′ = 8 (Figure 4).

We observe that the time it takes to reach a hit in part
p′i is ΔtB · i. Using the conjugate partition p′, we can write
the lower bound for average time it takes to reach a hit in
partition p as

ΔtH ,p,1 =
(

1− k − k>1

n

)
· ΔtC + ΔtB · 1

n

k′∑

i=1

i · p′i . (13)

The term in ΔtC only occurs when the hit is in a bank
with contention, that is, in a part greater than 1. There are
k− k>1 parts of size 1, so the chance of a hit occurring in one

of them (i.e., a hit on a bank without contention) is k−k>1/n.
Thus, the probability for the term in ΔtC is

1− k − k>1

n
. (14)

And of course, as the hit results in an external access, the
average access time is

ΔtA,p,1 =
(

1− k − k>1

n

)
· ΔtC + ΔtB · 1

n

k′∑

i=1

i · p′i +
1
n
· ΔtS.

(15)

For the case of k = n, the equation reduces to

ΔtA,p,1 = ΔtB +
1
n
· ΔtS. (16)

3.2.3. Case of Two or More Hits. If there are two or more
hits, the exact derivation would require enumerating all
possible ways of distributing nH hits over a given partition;
furthermore, simply enumerating them is not sufficient; we
would have to consider the exact time of occurrence of
each hit to be able to determine if a subsequent hit was
encountered during or after the time to perform an external
lookup and compute the score (ΔtS) from a given hit. It is
easy to see that, for large nH , this problem is so complex
as to be intractable in practice. However, we can make a
simplifying assumption; in practice, ΔtS will be much larger
than the time to perform a Bloom filter lookup.

If that is the case, a good approximation for the total
elapsed time is the time until the first hit is encountered plus
nH times the time for external access. This approximation is
exact as long as the time it takes to sequentially perform all
external lookups is longer than the time between the best and
worst case Bloom filter access time for nH hits on a single
bank, in other words as long as ΔtS > piΔtB. The worst case
is of course p1 = n, but this case has a very low probability;
for example, for n = 16, the average value of all parts is 2.5;
even considering only the parts >1, the average is still <4. For
n = 32, the numbers are, respectively, 3 and 5. In practice, if
ΔtS/ΔtB > 10, the error will be negligible.

Conversely, we could consider the time until the last hit is
encountered plus nH times ΔtS. This approximation provides
an upper bound for the access time.

Therefore, we are only interested in these two cases, that
is, the lowest, respectively, highest part of the partition with
at least one hit. We need to compute the probability that the
lowest (resp. highest) part will contain a hit, and the next but
lowest (resp. highest) one, and so forth. For simplicity, we
leave off ΔtC in the following derivation.

Lower Bound. The number of all possible cases is Np′ =
C(n,nH), all possible arrangements of nH elements in n bins.
To compute the weight of a hit in the lowest part p′1, we
compute the complement, all possible arrangements without
any hits in p′1. That means that we remove p′1 from n. Then,
using the notation ¬p1 for “not a hit in p′1,” we compute

N¬p1 = C
(
n− p′1,nH

)
. (17)



International Journal of Reconfigurable Computing 7

These are all the possible cases for not having a hit in
p′1. Thus, Np1 = Np − N¬p1 is the number of possible
arrangements with 1 . . . nH hits in p′1.

We now do the same for p2, and so forth. That gives us
all possible cases for not having a hit in pi

N¬pi = C

⎛
⎝n−

i∑

j=1

p′j ,nH

⎞
⎠. (18)

Obviously, there must be enough space in the remaining
parts to accommodate nH hits, so i is restricted to values
where

n−
∑

p′i ≥ nH. (19)

We call the highest index for which (19) holds, k∗.
To obtain the weight of a hit in p′i , we must of course

subtract the weight of a hit in p′i−1, because Np −N¬pi would
give the weight for having a hit in all parts up to pi. It is easy
to show (by substitution of (17)) that

Npi = N¬pi−1 −N¬pi . (20)

Finally, the average time it takes to reach a part in a given
p′ with at least one hits out of nH is

ΔtH ,p,nH = ΔtB · 1
Np′

k∗∑

i=1

i ·Npi . (21)

With the above assumption, the average access time for
nH hits can then be approximated as

ΔtA,p,nH =
(

1− k − k>1

n

)
·ΔtC+ΔtB · 1

Np′

k∗∑

i=1

i·Npi +nHΔtS.

(22)

We observe that for nH = 1, (22) indeed reduces to (15)
as Np′ = n and Npi = p′i . For n = k the equation reduces to
ΔtB + nHΔtS.

Upper Bound. The upper bound is given by the probability
that the highest part is occupied, and so forth, so the formula
is the same as (18) but starting from the highest part pc, that
is,

N¬pc−i = C

⎛
⎝n−

c∑

j=c−i+1

p′j ,nH

⎞
⎠ (23)

with the corresponding restriction on i that

k∗∑

i=1

p′i≥ nH. (24)

As we will see in Section 3.5, in practice the bounds are
usually so close together that the difference is negligible.

3.3. Probability of External Memory Access. The chance that
a term will occur in the profile depends on the size of the
profile NP and the size of the vocabulary NV

PP = NP

NV
. (25)

This is actually a simplified view; it assumes that the
terms occurring in the profile and the documents are drawn
from the vocabulary in a uniform random way. In reality,
the probability depends on how discriminating the profile
is. As the aim of a search is of course to retrieve only the
relevant documents, we can assume that actual profiles will
be more discriminating than the random case. In that case
(25) provides a worst case estimate of contention.

The probability of nH hits, that is, contention between nH
accesses to the external memory is then

C(n,nH) · PnH
P · (1− PP )n−nH . (26)

That is, there are C(n,nH) arrangements of nH accesses
out of n, and, for each of them, the probability that it occurs
is PnH

P · (1− PP )n−nH . Furthermore, nH contending accesses
will take a time nHΔtS. Of course, if no external access is
made, the external access time is 0.

3.4. Average Overall Throughput

3.4.1. Average Access Time over All nH for a Given Pattern. We
can now compute the average access time over all nH for a
given access pattern p by combining (22) and(26)

ΔtA,p =
n∑

nH=0

C(n,nH) · PnH
P · (1− PP )n−nHΔtA,p,nH . (27)

3.4.2. Average Access Time over All Patterns for Given n and m.
Finally, using (9) and (27), we can compute the average access
time over all patterns for given n and m, that is, the average
overall throughput of the application with n parallel threads
and an m-bank Bloom filter

ΔtA(n,m) =
∑

∀p(n)

P
(
p(n, k),m

) · ΔtA,p. (28)

3.5. Analysis. In this section the expression obtained in
Section 3.4 is used to investigate the performance of the
system and the impact of the values of n, m, ΔtB, ΔtS, and
PP on the throughput.

3.5.1. Accuracy of Approximation. To evaluate the accuracy of
the approximations introduced in Section 3.2.3, we compute
the relative difference between the “first hit” approximation
and the “upper bound” approximation. From Figure 5, it can
be seen that the difference is less than 1% of the throughput
over all simulated cases. As the upper bound always over-
estimates the delay, and the “first hit” approximation will
in most cases return the correct delay, this demonstrates
that both approximations are very accurate. An interesting
observation is that for ΔtB = 4 the error is almost the same as



8 International Journal of Reconfigurable Computing

0

0.1

0.2

0.3

0.4

0.5

0.6

4 16 64

R
el

. d
if

f. 
w

rt
 u

pp
er

 b
ou

n
d 

(%
)

4, 2
8, 2
16, 2
32, 2

4, 4
8, 4
16, 4
32, 4

Number of banks m

Throughput accuracy for varying n, ,m and ΔtB

ΔtS = 20,PP = 1/1024

−0.1

n,ΔtB

Figure 5: Accuracy of the approximation for nH ≥ 2.

R
el

. d
if

f. 
w

rt
 fi

rs
t 

h
it

 a
pp

ro
x.

 (
%

)

Throughput accuracy for single-hit approximation

0

0.1

0.2

0.3

0.4

0.5

0.7

0.6

4 16 64

Number of banks m

for varying n, ,m and ΔtB ;ΔtS = 20,PP = 1/1024

n,ΔtB
4, 2
8, 2
16, 2
32, 2

4, 4
8, 4
16, 4
32, 4

Figure 6: Accuracy of the single-hit approximation for nH ≥ 2.

for ΔtB = 2, which illustrates that the condition ΔtS > piΔtB
is sufficient but not necessary.

Next, we consider a more radical approximation; we
assume that, for nH > 1, PP = 0, in other words we ignore all
cases with more than 1 hit.

From Figure 6 we see that the relative difference between
the throughput using this approximation and the “first hit”
is very small, to such an extent that in almost all cases it is
justified to ignore nH > 1. This is a very useful result as this
approximation speeds up the computations considerably.

0

2

4

6

8

10

14

12

164 64

Number of banks m

T
h

ro
u

gh
pu

t 
(t

er
m

s/
cy

cl
e)

Max. throughput for varying n and m,

ΔtB = 1,ΔtC = 3

n
2
4

8
16

Figure 7: Best case (0 hits) average access time for a Bloom filter
with m banks and n access ports, ΔtB = 1, ΔtC = 3.

3.5.2. Maximum Achievable Throughput. The throughput
depends on the number of hits in the Bloom filter. Let
us consider the case where the Bloom filter contains no
hits at all. This is the maximum throughput the system
could achieve, and it corresponds to a profile for which no
document in the stream has any matches. We can use (11)
and (9) to calculate the best-case average access time for a
Bloom filter with m banks and n access ports

Δtmin(n,m)=
n∑

k=1

∑

∀p(n,k)

((
k>1

k
ΔtC +

n

k
ΔtB

)
·P (p(n, k),m

))
.

(29)

Note that for m < n, P (p(n,n)) = 0.
The results are shown in Figure 7. The figure shows

that for ΔtB = 1, ΔtC = 3 (the values for our current
implementation), the I/O-limited throughput (4 terms/cycle
for the PROCStar-III board) is achieved with n = 8 and
m = 16. That means that we need to demultiplex both input
streams into 4 parallel streams because each 64-bit word
contains 2 terms.

3.5.3. Throughput Including External Access. Figure 8 shows
the effect of the external memory access and score compu-
tation. The important observation is that the performance
degradation is quite small for low hit rates, and still only
around 25% for a relatively high hit rate of 1/512. This
demonstrates that the assumptions underlying our design are
justified.

3.5.4. Impact of Bloom Filter Access Time. A further illustra-
tion of the impact of ΔtB is given in Figure 9, which plots
the throughput as a function of ΔtB on a log/log scale. This
figure illustrates clearly how a reduction in throughput as
result of slower Bloom filter access can be compensated for by
increasing the number of access streams. Still, with ΔtB = 4,



International Journal of Reconfigurable Computing 9

0

2

4

6

8

10

14

12

164 64

Number of banks m

T
h

ro
u

gh
pu

t 
(t

er
m

s/
cy

cl
e)

Max. throughput for varying n and m,

ΔtB = 1,ΔtC = 3,PP = 3.1−5

n
2
4

8
16

(a)

T
h

ro
u

gh
pu

t 
(t

er
m

s/
cy

cl
e)

164
0

1

2

3

4

5

6

7

8

9

10

64

Number of banks m

Max. throughput for varying n and m,

ΔtB = 1,ΔtC = 3,PP = 0.002

2
4

8
16

n

(b)

Figure 8: Average access time for a Bloom filter with m banks and n access ports, ΔtS = 20, (a) PP = 3 · 10−5 (b) PP = 0.002.

T
h

ro
u

gh
pu

t 
(t

er
m

s/
cy

cl
e)

100

10

1

0.1
1 10

Bloom filter access time ΔtB (cycles)

Effect of ΔtB on throughput

ΔtS = 20,PP = 1/1024,m = 32

4
8

16
32

n

Figure 9: Impact of Bloom filter access time on throughput.

we would need 32 parallel streams per input stream, or we
would need a very large number (�128) Bloom filter banks.
On the one hand, the upper limit is 512 (the number of M9K
blocks on the Stratix-III 260E FPGA); on the other hand,
the size of the demultiplexers and arbiters would become
prohibitive as it grows as m · n.

3.5.5. Impact of Profile Hit Probability and External Memory
Access Time. The final figure (Figure 10) is probably the most
interesting one. It shows how, for very selective profiles (i.e.,
profiles resulting in very low hit rates), the effect of long
external memory access times is very small.

0.001 0.01

T
h

ro
u

gh
pu

t 
(t

er
m

s/
cy

cl
e)

9

8

7

6

5

4

3

2

1

0

Hit probability PP

Impact of PP and ΔtS on throughput

ΔtB = 1,ΔtC = 3,m = 32,n = 16

Scoring time ΔtS (cycles)

5
10
20

50
100

Figure 10: Impact on throughput of hit probability and external
memory access time.

4. FPGA Implementation

We implemented our design on the GiDEL PROCStar-III
development board (Figure 11). This system provides an
extensible high-capacity FPGA platform with the GiDEL
PROC-API library-based developer kit for interfacing with
the FPGA.

4.1. Hardware. Each board contains four Altera Stratix-III
260 E FPGAs running at 125 MHz. Each FPGA supports a
five-level memory structure, with three kinds of memory
blocks embedded in the FPGA:



10 International Journal of Reconfigurable Computing

Document filtering
user interface

GiDEL API

HP C3000 chasis

Host system

Intel Xeon quad-core CPU

2.93 GHz, 3.5 GB of
physical memory

970/1200 MB/s
GiDEL PROCStar III board

FPGA
IC0

FPGA
IC1

FPGA
IC2

FPGA
IC3

Host system interface

256 MB
SRAM

2 GB
SODIMM

DDR2
BankC

2 GB
SODIMM

DDR2
BankB

Stratrix III
260E
FPGA

×8 PCIe

Figure 11: Block diagram of FPGA platform and photograph of experimental hardware.

(i) 5,100 MLAB RAM blocks (320 bit),

(ii) 864 M9K RAM blocks (9 Kbit), and

(iii) 48 M144K blocks (144 Kbit)

and 2 kinds of external DRAM memory:

(i) 256 MB DDR2 SDRAM onboard memory (Bank A)
and

(ii) two 2 GB SODIMM DDR2 DRAM memories (Bank
B and Bank C).

The embedded FPGA memories run at a maximum fre-
quency of 300 MHz, Bank A and Bank B at 667 MHz, and
Bank C at 360 MHz. The FPGA-board is connected to the
host platform via 8-lane PCI Express I/O interface. The host
system consists of a quad-core 64-bit Intel Xeon X5570 CPU
with a clock frequency of 2.93 GHz and 3.5 GB DDR2 DRAM
memory, the operating system is 32-bit Windows XP. The
host computer transfers data to the FPGA using 32-bit DMA
channels.

4.2. Development Environment. FPGA-accelerated applica-
tions for the PROCStar board are implemented in C++
using the GiDEL PROC-API libraries for interacting with
the FPGA. This API defines a hardware abstraction layer
that provides control over each hardware element in the
system; for example, Memory I/O is implemented using the
GiDEL MultiFIFO and MultiPort IPs. To achieve optimal
performance, we implemented the FPGA algorithm in
VHDL (as opposed to Mitrion-C as used in our previous
work). We used the Altera Quartus toolchain to create the
bitstream for the Stratix-III.

4.3. FPGA Implementation Description. Figure 12 presents
the overall workflow of our implementation. The input

stream of document term pairs is read from the SDRAM via a
FIFO. A Bloom filter is used to discard negatives (terms that
do not appear in the profile) for multiple terms in parallel.
Profile weights are read corresponding to the positives, and
the scores are computed for each term in parallel and
accumulated to achieve the final score described in (1).
Below, we describe the key modules for the implementation:
document streaming, profile negative hit filtering, and profile
lookup and scoring.

4.3.1. Document Streaming. Using a bag-of-words repre-
sentation (see Section 2) for the document, the document
stream is a list of (document id, document term tuple set) pairs.
The FPGA accepts a stream of 64-bit words from the 2 GB
DRAM (Bank B). Consequently, the document stream must
be encoded onto this word stream. The document term tuple
di = (ti, fi) can be encoded in 32 bits: 24 bits for the term id
(supporting a vocabulary of 16 million terms) and 8 bits for
the term frequency. Thus, we can combine two tuples into a
64-bit word. To mark the start and end of a document, we
insert a marker words (64 bits) followed by the document id
(64 bits).

4.3.2. Profile Negative Hit Filtering. As described in Section 2,
we implemented a Bloom filter in the FPGA’s on-chip
MRAM (M9K blocks). The higher internal bandwidth of the
MRAMs leads to very fast rejection of negatives. Although
the MRAM is fast, concurrent lookups lead to contention.
To reduce contention we designed a distributed Bloom filter.
Based on the analysis presented in this paper, the Bloom
filter memory is distributed over a large number of banks
(16 in the current design) and a crossbar switch connects
the document terms streams to the banks. As shown in our
analysis, in this way contention is significantly reduced. The
design was implemented as shown in Figure 2, but due to



International Journal of Reconfigurable Computing 11

A
rbitrator

Term
id’s w

ith
 h

its

P
rofi

le looku
p

Sorter an
d com

parator

M
B

16
M

B
1

Term
 0

Term
 1

Term
 0

cm
p

0
cm

p
1

Term
 1

Term
id com

parator (2-stage)

M
B

0

D
ocu

m
en

t stream
in

g

B
loom

 fi
lter m

odu
le

Serialiser

Term

P
rofi

le reader an
d

score com
pu

tator

Search
 in

itiator
an

d data acqu
isition

con
troller

D
D

R
FIFO

P
rofi

le
loader

Term
id

rou
ter

P
rofi

le read an
d

score w
rite to

SR
A

M
 m

em
ory

SR
A

M
m

em
ory

in
terface

Score
calcu

lator

Scorin
g an

d reportin
g

M
ain

 m
odu

le
con

troller

Figure 12: Overall block diagram of FPGA implementation.



12 International Journal of Reconfigurable Computing

an issue with the board we could only use one SDRAM to
store the collection. As a result we have only two parallel
terms in the current implementation.

4.3.3. Profile Lookup and Scoring. As explained in Section 2.2,
the actual lookup and scoring system is quite straightfor-
ward; the input stream is scanned for header and footer
words. The header word action is to store the subsequent
document ID and to set the corresponding document score
to 0; the footer word action is to collect and output the
(document ID, document score) pair if the score exceeds
the threshold. For every two terms in the document, first
the Bloom filter is used to discard negatives, and then
the weights corresponding to positives are read from the
SDRAM. The score is computed for each of the terms in
parallel and added. The score is accumulated for all terms
in the document, and finally the score stream is filtered
against a limit before being output to the host. Figure 13
summarises the implementation of the profile lookup and
scoring.

4.3.4. Discussion. The implementation above leverages the
advantages of an FPGA-based design, in particular the
memory architecture of the FPGA; on a general-purpose
CPU-based system, it is not possible to create a very fast,
very low-contention Bloom filter to discard negatives. Also, a
general-purpose CPU-based system only has a single, shared
memory. Consequently, reading the document stream will
contend for memory access with reading the profile terms,
and as there is no Bloom filter, we have to look up each
profile term. We could of course implement a Bloom filter,
but, as it will be stored in main memory as well, there is
no benefit; looking up a bit in the Bloom filter is as costly
as looking up the term directly. Furthermore, the FPGA
design allows for lookup and scoring of several terms in
parallel.

4.4. FPGA Utilisation Details. Our implementation used
only 11,033 of the 203,520 logic elements (LEs) or a 5%
utilisation of the logic in the FPGA, and 4,579,824 out
of 15,040,512 for a 30% utilisation of the RAM. Of the
11,033 LEs utilised by whole design on the FPGA, the actual
document filtering algorithm only occupied 1,655 LEs, which
is less than 1% of utilisation, and rest was used by the
GiDEL Memory IPs. The memory utilised for the whole
design (4,579,824 bits) was mainly for the Bloom filter that
is mapped on embedded memory blocks (MRAMs). The
Quartus PowerPlay Analyzer tool estimates the power con-
sumption of the design to be 6 W. The largest contribution
to the power consumption is from the memory I/O.

5. Evaluation

In this section we discuss our evaluation results. We present
our experimental methodology and the data summarising
the performance of our FPGA evaluation and comparison
with non-FPGA-accelerated baselines, and we conclude with
the learnings from our experiments.

Table 1: Summary statistics from representative real-world collec-
tions that we used as templates for our synthetic data sets.

Collection No. docs. Avg. Doc. Len. Avg. Uniq. Terms

Aquaint 1,033,461 437 169

USPTO 1,406,200 1718 353

EPO 989,507 3863 705

5.1. Creating Synthetic Data Sets. To accurately assess the
performance of our FPGA implementation, we need to
exercise the system on real-world input data; however, it is
hard to get access to such real-world data; large collections
such as patents are not freely available and governed by
licenses that restrict their use. For example, although the
researchers at Glasgow University have access to the TREC
Aquaint collection and a large patent corpus, they are
not allowed to share these with a third party. In this
paper, therefore, we use synthetic document collections
statistically matched to real-world collections. Our approach
is to leverage summary information about representative
datasets to create corresponding language models for the
distribution of terms and the lengths of documents; we then
use these language models to create synthetic datasets that are
statistically identical to the original data sets. In addition to
addressing IP issues, synthetic document collections have the
advantages of being fast to generate and easy to experiment
with, and not taking up large amounts of disk space.

5.1.1. Real-World Document Collections. We analysed the
characteristics of several document collections—a news-
paper collection (TREC Aquaint) and two collections of
patents from the US Patent Office (USPTO) and the
European Patent Office (EPO). These collections pro-
vide good coverage on the impact of different document
lengths and sizes of documents on filtering time. We
used the Lemur (http://www.lemurproject.org/) Information
Retrieval toolkit to determine the rank frequency distribu-
tion for all the terms in the collection. Table 1 shows the
summary data from the collections we studied as templates.

5.1.2. Term Distribution. It is well known (see, e.g., [12])
that the rank-frequency distribution for natural language
documents is approximately Zipfian

f (k; s;N) = 1/ks
∑N

n=1 1/ns
, (30)

where f is frequency of term with rank k in randomly
chosen text of natural language, N is number of terms in the
collection, and s is an empirical constant. If s > 1, the series
becomes a value of a Riemann ζ-function and will therefore
converge. This type of distribution approximates a straight
line on a log-log scale. Consequently, it is easy to match this
distribution to real-world data with linear regression.

Special purpose texts (scientific articles, technical
instructions, etc.) follow variants of this distribution. Mon-
temurro [13] has proposed an extension to Zipf ’s law which
better captures the linguistic properties of such collections.



International Journal of Reconfigurable Computing 13

BRAM

Score

Header/footer detection

4 doc terms

Bloom
filter

Acc score

Init score= 0

Collect
score

Document stream (DMA from host mem)

Document score stream (DMA to host mem)

Header Footer

Test: t
in profile?

External
SRAM
(2 banks, dual-port)

FPGA

Lookup
term in
profile

Cross
bar

switch

Cross
bar

switch

(pt,w)

(t, f )

(t, f )

(t, f )

t

t

0
0

0
0 S

S
S

S

+

S: score term

Figure 13: Implementing profile lookup and scoring.

His proposal is based on observation that, in general after
some pivot point p, the probability of finding a word of rank
r in the text starts to decay much faster than in the beginning.
In other words, in log-log scale, the low-frequency part of
the distribution has a steeper slope than the high-frequency
part. Consequently, the distribution can be divided into two
regions each obeying the power law, but with different slopes

F(r) =
{
a1r + b1 r < p,

a2r + b2 otherwise,
(31)

We determine the coefficients a1, a2, b1, and b2 from
curve-fitting on the summary statistics from the real-world
data collections. Specifically, we use the sum of absolute
errors as the merit function combined with a binary search
to obtain the pivot. We then use a least-squares linear
regression, with χ2 statistics as a measure of quality (taken
from [14]). A final normalisation step is added to ensure that
the piecewise linear approximation is a proper probability
density function.

5.1.3. Document Length. Document lengths are sampled
from a truncated Gaussian. The hypothesis that the doc-
ument lengths in our template collections have a normal
distribution was verified using a χ2 test with 95% confidence.
The sampled values are truncated at the observed minimum
and maximum lengths in the template collection.

Once the models for the distribution of terms and
document lengths are determined, we use these models
to create synthetic documents of varying lengths. Within
each document, we create terms that follow the fitted rank-
frequency distribution. Finally, we convert the documents
into the standard bag-of-words representation, that is, a set
of unordered (term, frequency) pairs.

5.2. Experimental Parameters. Statistically, the synthetic col-
lection will have the same rank-frequency distribution for the
terms as the original data sets. Consequently, the probability
that a term in the collection matches a term in the profile
will be the same in the synthetic collection and the original



14 International Journal of Reconfigurable Computing

collection. The performance of the algorithm on the system
now depends on

(i) the size of the collection,

(ii) the size of the profile,

(iii) the “hit probability,” that is, the probability that the
profile corresponding to a term has a nonzero weight.

To evaluate these effects, we studied a number of different
configurations—with different document sizes, different
profile lengths, and different profile constructions. Specifi-
cally, we studied profile sizes of 4 K, 16 K, and 64 K terms,
the first two are of the same order of magnitude as the
profile sizes for TREC Aquaint and EPO as used in our
previous work [2], and the third, larger profile was added
to investigate the impact of the profile size. We studied two
different document collections: 128 K documents of 2048
terms, which is representative for the patent collections,
and 512 K documents of 512 terms, similar to the Aquaint
collection. Note that the total size of the collection is not
important for the performance evaluation; for both the
CPU and FPGA implementation, the time taken to filter a
collection is proportional to its size.

We evaluated four ways of creating profiles. The first way
(“Random”) is by selecting a number of random documents
from the collection until the desired profile size is reached.
These documents were then used to construct a relevance
model. The relevance model defined the profiles which each
document in the collection was matched against (as if it
were being streamed from the network). The second type
of profiles (“Selected”) was obtained by selecting terms that
occur in very few documents (less than ten in a million). For
our performance evaluation purpose, the main difference
between these profiles is the hit probability, which was 10−5

for the “Random” profiles and 5 · 10−4 for the “Selected”
profiles. For reference, we also compared the performance
against an “Empty” profile (one that results in no hits).

5.3. FPGA Performance Results

5.3.1. Access Time Measurements. The performance of the
FPGA was measured using a cycle counter. The latency
between starting the FPGA and the first term score is 22
cycles. For the subsequent terms, the delay depends on a
number of factors. We considered three different cases:

(i) “Best Case”: no contention on the Bloom filter access
and no external memory access

(ii) “Bloom Filter Contention”: contention on the Bloom
filter access for every term but no external memory
access

(iii) “External Access”: no contention on the Bloom filter
access, external memory access for every term

These cases were obtained by creating documents with
contending/not contending term pairs and by setting all
Bloom filter bits to 0 (no external access, which corresponds
to an empty profile) or 1 (which correspond to a profile that
would contain all terms in the vocabulary).

Table 2: FPGA Cycle counts for different cases.

Case No. cycles/2 terms Probability

Best case 1 .9375

Bloom filter contention 5 .0625

External access 37 <0.00001

The results are shown in Table 2. As we read two terms
in parallel, the Best Case (i.e., the case of no contention and
no hits) demonstrates that the FPGA implementation does
indeed work at I/O rates, that is, ΔtB = 1. The table also
shows the probability for each case when filtering an actual
document collection.

The most interesting result in Table 2 is the “Bloom Filter
Contention,” which shows that in our design ΔtC = 3. The
case of “External Access,” which means no contention on
the Bloom filter, and lookup of both terms in the external
memory shows that ΔtS = 18.

As explained in Section 3, the Bloom filter contention
depends on the number of Bloom filter banks (2 parallel
terms, 16 banks), and, in the current design, the contention
probability is 1/16 (from (9)). The probability for external
access depends on the actual document collection and
profile, but as the purpose of a document filter is to retrieve
a small set of highly relevant documents, this probability
is typically very small, as demonstrated by the experiments
discussed in the next section. Consequently, the typical
performance is determined by the cycle counts for Best Case
and Bloom Filter Contention. Using (29), we get (1/2)ΔtB ·
(15/16) + ((1/2)ΔtC + ΔtB) · (1/16) = 0.625 cycles per term.
At a clock speed of 125 MHz, this results in a throughput of
200 million terms per second (200 MT/s) per FPGA.

5.3.2. Comparison with CPU Reference Systems. Table 3 pre-
sents performance results for our FPGA implementation for
various workload types. Focusing on a “Random” profile of
16 K terms for 128 K documents, our measured performance
is close to 800 million terms/second for the design—
close to the estimated performance; the earlier calculations
showed 200 million terms/second per FPGA: across the four
FPGAs in the GiDEL board, that translates to 800 million
terms/second for the design. Table 3 also shows the sensitivity
to various other parameters. The performance of the FPGA
design is comparable for different profile sizes and document
sizes. However, as expected, the performance varies based on
different hit probabilities for different profiles.

To compare the FPGA performance against a conven-
tional CPU, we ran the experiments discussed in Section 5.1
on an optimised reference implementation (compared to the
Lemur-based implementation used in our previous work),
written in C++, compiled with g++ with optimisation -O3,
and run on two different platforms: System1 (an iMac) has an
Intel Core 2 Duo Mobile E8435 CPU with clock frequency
3.06 GHz and 8 GB RAM, bus speed 1067 MHz. System2 (a
Linux server) has an Intel Core i7-2600 CPU running at
3.4 GHz, with 16 GB RAM, bus speed 1333 MHz. The higher
memory configurations are required to enable sufficient



International Journal of Reconfigurable Computing 15

Table 3: Throughput of document filtering application (M terms/s)
for (a) 128 K documents of 2048 terms and (b) 512 K documents of
512 terms.

(a)

Profile System1 System2 FPGA board

Empty, 4 K 31 48 800

Empty, 16 K 31 48 800

Empty, 64 K 31 48 800

Random, 4 K 25 42 800

Random, 16 K 24 41 800

Random, 64 K 24 41 800

Selected, 4 K 21 37 792

Selected, 16 K 18 35 792

Selected, 64 K 18 25 792

(b)

Profile System1 System2 FPGA board

Empty, 4 K 30 53 800

Empty, 16 K 32 53 800

Empty, 64 K 32 53 800

Random, 4 K 26 47 800

Random, 16 K 26 46 800

Random, 64 K 25 46 800

Selected, 4 K 20 40 796

Selected, 16 K 19 38 792

Selected, 64 K 17 27 796

memory for the algorithm; it is not possible to run the
reference implementation on the 32-bit Windows XP server
which hosts the FPGA board as the 3.5 GB of memory is not
sufficient. We could of course run the algorithm several times
on smaller data sets but then in that case the time required to
read the data from disk would dominate the performance.
We keep the entire data set in memory because the memory
I/O is much higher than the disk I/O. While this approach
might not be practical on a CPU-based system, on the FPGA-
based system this is entirely practical as the PROCStar-III
board has a memory capacity of 32 GB. This means that,
for example, the Novo-G FPGA supercomputer, which hosts
48 PROCStar-III boards, can support a collection of 1.5 TB.
Note also that the format in which the documents are stored
on the disk is a very efficient bag-of-words representation,
which is much smaller than the actual textual representation
of the document.

The results are summarised in Table 3. For example,
focusing on one example case, for the random profile
with 16 K terms and 128 K documents, compared to the
800 million terms/second performance per FPGA achieved
by our design, the System2 system achieves 41 million
terms/second, and the System1 system achieves 24 million
terms/sec. This translates to a 36-fold speedup for the FPGA-
based design relative to the System1 system and a 20-
fold speedup relative to the System2 system. Additionally,
examining the results for various workload configurations,
the FPGA’s performance is relatively constant across different

workload inputs. This bears out the rationale for our design
because in general hits are rare, the FPGA works at the
speed determined by I/O and Bloom Filter performance.
Unlike the FPGA-based design, the CPU-based system sees
more variation in performance with profile size (degraded
performance with increased profile size) and document
size (degraded performance with larger documents) and a
bigger dropoff in performance between various profile types
compared to the FPGA-based design.

6. Discussion

In the above sections we have used a preliminary imple-
mentation of our proposed design to validate the analytical
model. The design does indeed behave in line with the model,
for the case of two parallel terms and a 16-bank Bloom
filter. The performance is 200 M terms/s. This design is not
optimal for several reasons. On the one hand, the original
aim was to support four parallel terms, but an issue with the
access to one of the memories prevented this. On the other
hand, as is clear from the model, a 16-bank implementation
does not result in operation close to I/O rates. For four
parallel terms, this would require 64 banks; even for two
parallel terms, the performance is 80% of the I/O rate. Our
aim was not so much to achieve optimal performance as
to implement and evaluate our novel design and compare
it to the analytical model. We therefore decided to limit
the number of banks to 16 to reduce the complexity of the
design, as the implementation was undertaken as a summer
project.

This means that there is a lot of scope for improving the
current implementation.

(i) We will deploy our design on a PROCStar-IV board
which does not have this issue, and thus we will be
able to score 4 terms in parallel rather than 2 terms.

(ii) Even with a single SDRAM, we can be more efficient;
the SDRAM I/O rate is 4 GB/s (according to the
PROCStar-III databook); our current rate is only
1 GB/s. By demultiplexing the scoring circuit, it
should be possible to increase this rate to 4 GB/s.

(iii) Combining both improvements, an improved design
could score 16 terms in parallel. This will of course
require a Bloom filter with more banks to reduce
contention, but considering the current resource
utilisation that is not a limitation. Consequently, the
improved design should be able to operate up to 8×
faster than the current design.

In terms of the analytical model itself, there is some scope
for further refinement, in particular for the external access;
we currently use a single access time for one and more hits.
Just like for the Bloom filter, we can include a fixed cost for
concurrent accesses on the external memory. We also want
to refine the model to include the effect of grouping terms:
that is, the n parallel terms are usually grouped per two or
four depending on the I/O width. This affects the waiting
time on contention, as all terms in a single group need to
wait before a new group can be fetched. Currently, the model



16 International Journal of Reconfigurable Computing

assumes all terms are independent. For the case of two terms,
this assumption is corrects for more terms there is a slight
underestimation of the access time in the case of contention.
The counting problem for this case is complicated as it
requires enumerating all the possible groupings and working
out the effect if one or more accesses per group are in
contention.

7. Conclusion

In this paper we have presented a novel design for a
high-performance real-time information filtering applica-
tion using a low-latency “trivial” Bloom filter. The main
contribution of the paper is the derivation of an ana-
lytical model for the throughput of the application. This
combinatorial model takes into account the access times
to the Bloom filter and the external memory, the access
probability, and the probability and cost of contention on
the Bloom filter. The approach followed and the intermediate
expressions are applicable to a large class of resource-sharing
problems.

We have implemented our design on the GiDEL
PROCStar-III board. The analysis of the system performance
clearly demonstrates the potential of the design for delivering
high-performance real-time search; we have shown that the
system can in principle achieve the I/O-limited throughput
of the design. Our current, suboptimal implementation
works at 80% of its I/O rate, and this already results in
speedups of up to a factor of 20 at 125 MHz compared to
a CPU reference implementation on a 3.4 GHz Intel Core i7
processor. Our analysis indicates how the system should be
dimensioned to achieve I/O-limited operation for different
I/O widths and memory access times.

Our future work will focus on achieving higher I/O
bandwidth by using both memory banks on the board and
time-multiplexing the memory access. Our aim is to achieve
an additional 8× speedup.

Acknowledgments

The authors acknowledge the support from HP, who hosted
the FPGA board and provided funding for a summer
internship. In particular, we’d like to thank Mitch Wright for
technical support and Partha Ranganathan for managing the
project.

We’d like to acknowledge Anton Frolov who imple-
mented the synthetic document model.

Wim Vanderbauwhede wants to thank Dr. Catherine
Brys for fruitful discussions on probability theory and
counting problems.

References

[1] C. L. Belady, “In the data center, power and cooling costs more
than the IT equipment it supports,” Electronics Cooling, vol. 13,
no. 1, 2007.

[2] W. Vanderbauwhede, L. Azzopardi, and M. Moadeli, “FPGA-
accelerated information retrieval: High-efficiency document

filtering,” in the 19th International Conference on Field Pro-
grammable Logic and Applications (FPL ’09), pp. 417–422,
September 2009.

[3] L. Azzopardi, W. Vanderbauwhede, and M. Moadeli, “Devel-
oping energy efficient filtering systems,” in the 32nd Annual
International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR ’09), pp. 664–665, July
2009.

[4] V. Lavrenko and W. Bruce Croft, “Relevance-based language
models,” in the 24th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp.
120–127, September 2001.

[5] Lemur, “The Lemur toolkit for language modeling and
information retrieval,” 2005, http://www.lemurproject.org/.

[6] V. Kindratenko, R. Wilhelmson, R. Brunner, T. J. Martı́ez, and
W. M. Hwu, “High-performance computing with accelera-
tors,” Computing in Science and Engineering, vol. 12, no. 4,
Article ID 5492949, pp. 12–16, 2010.

[7] GiDEL Ltd, “PROCStar III, Data Book,” September 2009.
[8] B. H. Bloom, “Space/time trade-offs in hash coding with

allowable errors,” Communications of the ACM, vol. 13, no. 7,
pp. 422–426, 1970.

[9] Altera Corp, “Stratix III, Device Handbook,” July 2010.
[10] G. Andrews and K. Eriksson, Integer Partitions, Cambridge

University Press, 2004.
[11] C. Chen and K. Koh, Principles and Techniques in Combina-

torics, World Scientific, 1992.
[12] R. M. Losee, “Term dependence: a basis for Luhn and Zipf

models,” Journal of the American Society for Information
Science and Technology, vol. 52, no. 12, pp. 1019–1025, 2001.

[13] M. A. Montemurro, “Beyond the Zipf-Mandelbrot law in
quantitative linguistics,” Physica A, vol. 300, no. 3-4, pp. 567–
578, 2001.

[14] W. Press, Numerical Recipes: The Art of Scientific Computing,
Cambridge University Press, 2007.


