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Abstract. This study investigated changes incurred in cutaneous skin blood flux (SKBF) in the superficial veins of the lower6

limb by upper limb exercise training in the form of arm-cranking in 14 healthy participants over the age of 50 years. Changes7

in cutaneous microvascular function of the lower leg were assessed using laser Doppler Flowmetry (LDF) during a 30-minute8

exercise session undertaken over 4-exercise periods. Both SKBF and Time to reach Peak Perfusion (Tmax) were improved9

significantly during the 2nd (e.g. 121 (±107.2) vs 280 (±269.1) and 171 (±34.4) vs. 247 (±38.3) respectively) when compared10

to the first exercise period, while values approaching initial levels in the following stages. The results indicate that the ther-11

moregulatory and vasodilation mechanisms observed during exercise in middle-aged and older healthy people are different to12

the one appearing in younger age groups, suggesting a more extensive effect of the age-related structural changes than it was13

previously thought.14
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1. Introduction15

The structural and functional integrity of the microcirculation is important because it is affected not16

only by a number of diseases and conditions (e.g. varicose veins [19], sickle cell anaemia [3], systemic17

sclerosis [14]), but also by age which compromises both endothelial function [9] and vasodilation [11].18

Exercise can be beneficial in many ways for the microcirculation of older age-groups, improving19

endothelial function in both patient [4, 17] and healthy sedentary groups [18, 26]. Nevertheless, the exact20

acute effects of exercise on the microcirculation remain unknown although certain aspects have been21

clarified in a number of studies. For example, it has been suggested that exercise activates thermoregula-22

tory mechanisms which modifies endothelium before the vascular smooth muscle cells [10, 18], affecting23

glabrous and non-glabrous skin sites in a different manner [20]. It is also known that skin blood flux24

decreases in the inactive arm at the onset of leg exercise, but increases later linearly with internal temper-25

ature [23]. However, it is largely unknown what the response of the lower limbs is during arm exercise26

in an older, sedentary population. It is therefore important to understand the lower limb response during27

arm exercise and changes in the microcirculation afterwards [18]; given that microangiopathic diseases28

occur more commonly in the lower limb [1], as this will give an insight as of how exercise acutely affects29

the microcirculation in older, exercise-inactive, populations.30
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Table 1

Participant demographics (at rest)

Sex 6 female, 8 male

Age (years) 61 ± 6
Body mass (kg) 73.5 ± 15.2
Stature (cm) 171.3 ± 8.5
Body mass index (kg·m−2) 25.0 ± 3.0
Systolic blood pressure (mmHg) 120 ± 7
Diastolic blood pressure (mmHg) 72 ± 5
Mean arterial pressure (mmHg) 80 ± 5
Heart rate (bpm) 74 ± 11
Peak power output (W) 63 ± 16

Therefore, the aims of this study were to examine the behaviour of the cutaneous microcirculation31

in the non-active limb during upper-limb exercise, to explore vascular resistance during exercise in an32

older population, using “time to reach maximum perfusion” (Tmax) [16]and finally to investigate the33

association of those findings with skin temperature and the thermoregulatory ability of a healthy, older,34

sedentary population.35

2. Methods36

With Sheffield Hallam University Ethics Committee approval, 14 participants were recruited via posters37

and word-of-mouth in South Yorkshire. All participants were required to be above 50 years of age,38

normotensive, non-smokers, sedentary and were not taking any regular medications. Participants with39

past venous ulceration, lower-limb arterial disease, hypercholesterolemia, peripheral oedema or cardiac40

failure, and those with major skin changes in the gaiter area were excluded as well as those who take regular41

exercise. Female participants were studied in days 1 to 7 of their menstrual cycle to minimise the influence42

of cyclical changes in female hormones [2] an influence which however has been recently questioned43

[24]. This research was carried out in accordance with the Declaration of Helsinki of the World Medical44

Association and according to the ethical guidelines of “Clinical Hemorheology and Microcirculation”45

[6], with all volunteers providing written informed consent. Demographic data are shown in Table 1.46

2.1. Procedures47

2.1.1. Day 1 – arm-cranking fitness assessment48

After habituation to the procedures, along with providing a brief medical history and informed consent,49

resting blood pressure and heart rate was recorded, while participants completed an incremental arm-50

cranking exercise test to define compatibility. The test was performed on a Lode Angio (Lode BV,51

Groningen, Netherlands) until maximal volitional exertion was reached. It comprised 2-minute bouts of52

constant-intensity work at a pedalling rate of 50 rev per min to maximum exercise tolerance. The initial53

intensity was 7 W with power output being increased by 7 W until exhaustion was reached. Heart rate54

(HR) was continuously monitored using a HR monitor (Sports Tester, Polar, Finland). Perceived exertion55

using the Borg Ratings of Perceived Exertion (RPE) 15-graded scale and the degree of pain experienced56
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using the Borg Category Ratio-10 (CR-10) scale were also recorded during the last 30 of each exercise57

increment.58

2.1.2. Day 2- Experimental protocols for assessment of outcome measures59

Participants were instructed to abstain from ibuprofen, herbal supplements, food and caffeine within60

2 h of testing and refrain from exercise for 24 h prior to assessment. All assessments were performed in61

a temperature-controlled room (range 22-23◦C).62

The gaiter area of the left leg (chosen as such for protocol adherence purposes) was cleaned with an63

alcohol wipe and allowed to dry before applying a single point laser probe (PF383; Perimed AB, Jarfalla,64

Sweden), connected to a laser Doppler flowmeter (PF5001; Perimed AB), to the surface of the leg 4–8 cm65

proximal to the medial malleolus to obtain an index of skin blood flow and assess cutaneous red cell flux.66

It should be noted that LDF measurements are not an absolute quantification of the cutaneous blood flow67

but are an integral over flowing red blood cells and their velocity instead, represented by the formula68

“Red Blood Cells Concentration × RBC velocity = Blood Flux”. The laser-Doppler probe signals were69

monitored via an online software chart recorder (PSW; Perimed AB).70

After 5 min recording of baseline flux, while being idle, participants were exercised at 60–70% intensity71

(defined by Day 1 results) in cycles of 5 min exercise at a rate of 50 rev/min, followed by 1 min of rest72

(which the exception of the last exercise period which was followed by a 2 min rest) for a total exercise73

time of 20 min in a 30 min session. Cutaneous skin blood flux measurements were recorded during the74

whole exercise session, with the fibre optic cables of the LDF probe being secured to a solid object to75

avoid artefacts in the LDF signal as described previously [27].76

Skin temperature was continuously recorded using a temperature sensor. Heart rate (Sports Tester,77

Polar, Finland) was recorded continuously. There were no adverse effects.78

2.2. Data recording and analysis79

Peak cutaneous flux responses recorded in conventional perfusion units (PU), were used as measures80

of cutaneous microvascular perfusion during exercise. The time needed for each participant to reach81

peak perfusion (Tmax) was also calculated as described in the literature [16]. Outcome measures were82

first tested for normal distribution using the Kolmogorov-Smirnov goodness of fit test and were logarith-83

mically transformed where necessary. Acute effects of exercise on peak cutaneous flux responses were84

assessed using ANOVA for repeated measures, with paired-samples t-tests used to interpret interaction85

effects. Mauchly’s Test was used to test the assumption of data’s sphericity. Effect sizes (Cohen’s d) were86

calculated for exercise-induced changes in peak cutaneous flux responses, with 0.2, 0.5, and 0.8 repre-87

senting small, medium, and large effects, respectively [21]. Statistical significance was set at P ≤ 0.05.88

Data is expressed as mean ± standard deviation.89

3. Results90

3.1. Skin blood flux91

The assumption of sphericity was violated for maximum skin blood flux perfusion (χ2 (9) = 27.12,92

p = 0.002). Consequently, degrees of freedom were corrected using the Greenhouse-Geisser estimates93

of sphericity (� = 0.55). The results show that the period in which skin blood flux measurements were94
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taken had a statistically significant effect on cutaneous skin blood flux (p < 0.001, d = 0.94). Pair-wise95

comparisons suggested a statistically significant difference between the baseline and all 4 exercise periods96

(Fig. 1) and also between the first and all consecutive exercise periods [e.g. First vs. Second vs. Third vs.97

Fourth; 121 (±107.2) vs. 280 (±269.1) vs. 228 (±190) vs. 263 (±247)]. No significant differences were98

observed between any other exercise periods (Fig. 1).99

3.2. Tmax100

As the assumption of sphericity was violated (χ2 (5) = 21.13, p < 0.001), degrees of freedom were101

corrected using the Greenhouse-Geisser estimates of sphericity (� = 0.46). Similarly to skin blood flux,102

exercise period appeared to play a significant role in the speed of reaching peak perfusion (p = 0.03,103

d = 0.52), with values being significantly decreased on the second time period but returning to initial104

levels at the 2 consecutive periods (e.g. Second vs. First; 171 (±34.4) vs. 247 (±38.3) and Second vs.105

Third vs. Fourth; 171 (±34.4) vs. 228 (±33.9) vs. 212 (±58.3)]. No significant differences were observed106

between any other exercise periods (Fig. 2).107

Fig. 1. Peak Perfusion variations during the exercise periods. p < 0.001 (ANOVA for repeated measures).

Fig. 2. Tmax variations during the exercise periods. p = 0.03 (ANOVA for repeated measures).
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Fig. 3. Skin Temperature variations during the exercise periods. p < 0.001 (ANOVA for repeated measures).

3.3. Skin temperature108

The Greenhouse-Geisser estimates of sphericity (� = 0.43) was used to correct the degrees of freedom,109

as the assumption of sphericity was violated here in Skin Temperature as well (χ2 (9) = 48.73, p < 0.001).110

The ANOVA revealed a statistically-significant importance of the period in which skin temperature111

measurements were obtained (p = p = 0.005, d = 0.42), with values increasing from baseline in the 1st112

exercise period and stabilising afterwards (Fig. 3).113

4. Discussion114

Previous work in younger populations [12, 25] observed a progressively rising cutaneous blood flux115

and falling cutaneous microvascular tone, suggesting that the skin is a site of falling peripheral resistance116

and increasing blood volume during prolonged dynamic exercise, with Jung et al. [13] reporting an117

initial oxygen partial pressure (pO2) increase, thought to be due to the recruitment of capillaries. This118

is because during exercise, cutaneous blood flux responds to two conflicting demands: Exercise induced119

vasoconstriction and temperature induced vasodilation [15]. Consequently, this leads to an integrated120

cutaneous blood flux after a short exercise period [27] with cutaneous vasodilation facilitating heat loss,121

possibly being under control of sympathetic pathways [15].122

Our study however undertaken in an older population, resulted in a slightly different finding. Similarly123

to paraplegics [27] and in contrast to younger populations [25], we didn’t observe vasoconstriction during124

the beginning of exercise. In contrast, we detected a continuous increase in perfusion increase until the125

2nd exercise period, suggesting a passive behaviour of their lower limb vascular system, possibly due126

to limited innervations in the leg area, a finding that is common in patient populations [27]. Similar127

findings have been reported previously [25], with the only difference being that in our study perfusion128

values remained higher from the baseline and first exercise period levels, at all consecutive exercise129

periods. Additionally, and in contrast to reports from studies in younger populations [27] we observed130

a stabilised skin temperature (after an initial, statistically significant increase) throughout the different131

exercise periods. This increase reflects cutaneous thermoregulatory responses [8] and matches results132
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observed in paraplegics, suggesting an ineffective heat dissipation mechanism and a limited evaporation133

of sweat. Further studies are required to establish the importance of this observation.134

It has been suggested that active cutaneous vasodilation occurs after a body core temperature threshold135

has been reached [15]. This contributes to the preservation of thermal homeostasis during exercise, by136

dissipating heat arising in active muscles [27], with the role of exercise on blood fluidity and the NO137

system being currently under careful consideration [8]. Hence it is possible that this threshold occurs at138

an earlier stage in older populations, which would explain the earlier vasodilation increase. This however,139

does not fully account for the observed plateau or small reduction reached in both speed and peak perfusion140

during exercise. This may be explained by a skin blood shunting dysfunction, similar to those observed141

in patient populations, where dry heat exchange in the paralyzed regions is not favoured, resulting in142

higher thermal strain [22]. Therefore, further work is required to explain the mechanisms behind this143

phenomenon.144

We also observed an initial increase in Tmax during exercise, which later returned to near-starting145

levels. This may have been due to age-related structural changes occurring at arterial and vascular vessels146

[7, 25], affecting vascular compliance and resistance over a medium-duration stimulus, challenging the147

cutaneous, and “microvascular stiffness” balance even in a healthy group of participants. In order to gain148

further insight, it would be interesting to observe what the response would be in an age-matched, trained149

population.150

The lack of measurement of internal (oesophageal) temperature may be considered as one of the main151

limitations of the study. As however, conflicting interpretations exist on its effects and importance [23,152

25], a choice was made not to include it in our measurements to avoid misinterpretation. In addition, a153

decision was made to train our participants on single exercise intensity. Vasoconstriction in non-active154

limbs contributes to an increase in arterial perfusion pressure and permits redistribution mediated by155

sympathetic nerves and has been shown to be dependent in exercise intensity [25, 27]. As this has been156

well-documented in the literature, a single, moderate-to-high intensity was chosen for our experiments.157

Finally, a 30 minute exercise was only implemented, despite the possibility of perfusion or Tmax values158

returning to baseline or reducing if a longer intervention was implemented. Nevertheless, as our partic-159

ipants belonged to an older, sedentary group, it is our belief that a different choice wouldn’t have been160

tolerated well.161

In summary, we observed an increased and faster microvascular perfusion in the lower limb, in the162

initial exercise periods of our intervention when compared to the baseline, accompanied by an increase163

in skin temperature. This phenomenon appears to be less prominent at later stages of exercise, being164

similar to what is observed in patient populations [27] and younger populations in the upper body [23],165

suggesting that the age-related structural changes, which have been observed at both arterial and vascular166

vessels [7, 25] have a more extensive effect than previously considered.167
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