

Milway, V.A., Tuna, F., Farrell, A.R., Sharp, L.E., Parsons, S., and Murrie, M. (2013) Directed synthesis of {Mn18Cu6} heterometallic complexes. Angewandte Chemie (International Edition), 52 (7). pp. 1949-1952. ISSN 1433-7851

Copyright © 2013 Wiley

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

The content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/77161/

Deposited on: 27 March 2013

Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk

Heterometallic Complexes

DOI: 10.1002/anie.201208781

Directed Synthesis of {Mn₁₈Cu₆} Heterometallic Complexes**

Victoria A. Milway, Floriana Tuna, Andrew R. Farrell, Laura E. Sharp, Simon Parsons, and Mark Murrie*

Dedicated to Professor David Collison on the occasion of his 60th birthday

The development of new synthetic strategies to assemble high-nuclearity transition metal complexes is a key target in modern coordination chemistry.^[1] One of the driving forces for this is their fascinating magnetic properties for example, single-molecule magnets^[2] or magnetic refrigerants^[3] and molecules with large spin ground states^[4] or large anisotropy barriers.^[5] The use of two, or more, different metal ions to assemble these clusters is an attractive synthetic target and controlling the bottom-up assembly of large heterometallic molecules is a considerable challenge. [6,7] However, the potential rewards are significant, as there is a real possibility of control/design over the individual magnetic parameters that contribute to the overall molecular properties.^[8] Furthermore, new functionality can be added, such as the combination of magnetic and optical properties, [9] or the production of catalysts or catalyst precursors with high activity and/or selectivity.[10]

Previously, polydentate ligands with specific binding sites/ donor atoms, [11] linear linkers such as cyanide [12] or rigid structure-directing ligands^[13] have been used to prepare heterometallic complexes. Herein, we describe a new stepby-step approach to synthesize large 3d-3d' heterometallic oxo-bridged clusters. Firstly, we use a preformed CuII complex, which contains multiple, latent hydroxy binding sites, to target the trapping and encapsulation of an inner metal-oxo core. Secondly, the choice of Cu^{II} as the central ion increases the flexibility further, due to its range of typical coordination environments from [4] to [4+2]. We report two compounds that contain a striking "core-shell" {Mn₁₈Cu₆} complex as either a hexa- or dication, where the Cu^{II} precursors

[*] Dr. V. A. Milway, A. R. Farrell, L. E. Sharp, Dr. M. Murrie WestCHEM, School of Chemistry, University of Glasgow Glasgow G12 8QQ (UK)

E-mail: mark.murrie@glasgow.ac.uk

Dr. F. Tuna

EPSRC National UK EPR Facility, School of Chemistry and Photon Science Institute, The University of Manchester Manchester M13 9PL (UK)

Prof. S. Parsons

EaStCHEM School of Chemistry, The University of Edinburgh Edinburgh, EH9 3JJ (UK)

[**] We thank EPSRC (EP/I027203/1) and The University of Glasgow for financial support as well as Dr. Jennifer Mathieson and Prof. Leroy Cronin for mass spectral data.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201208781.

Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://angewandte.org/open.

encapsulate a hexacapped cuboctahedral manganese oxide {Mn^{III}₁₂Mn^{II}₆O₁₄} nanocluster.

The Cu^{II} center is enclosed using the bis-tris propane ligand {2,2'-(propane-1,3-diyldiimino)bis[2-(hydroxymethyl)propane-1,3-diol] (H₆L, Scheme 1) forming the precursor

Scheme 1. Bis-tris propane (H₆L).

complex [Cu(H₆L)Cl]Cl·1.25H₂O (1·1.25H₂O) (see Supporting Information, Figure S1) in almost quantitative yield (see Experimental). This is then redissolved and utilized in a second reaction to generate the heterometallic complexes: addition of base to a solution of 1, followed by addition of MnCl₂·4H₂O leads to the formation of [Mn₁₈Cu₆O₁₄- $(H_2L)_6Cl_2(H_2O)_6]Cl_6\cdot H_2O$ (2·H₂O) using NMe₄OH/EtOH or $[Mn_{18}Cu_6O_{14}(H_2L)_6Cl_6]Cl_2\cdot 10H_2O\cdot 6CH_3OH$ (3·10H₂O· 6CH₃OH) using NEt₃/MeOH. Both compounds can be prepared reproducibly, albeit in low yields, which is not uncommon in the area of high-nuclearity complexes.^[14] We have been unable to obtain these complexes using a range of one-pot reactions and preformation of the Cu^{II} complex appears to be essential.

The structure of the cationic cluster in 2 is based upon a $\{Mn^{III}_{12}Mn^{II}_{6}O_{14}\}^{20+}$ core, encapsulated by six $\{Cu(H_{2}L)\}^{2-}$ groups. Oxidation states have been confirmed by bondvalence sum (BVS) calculations and by consideration of charge balance/coordination environments. The twelve Mn^{III} and fourteen O²⁻ anions, form a hollow cube (ca. 3.8 Å O-O edge) (Figure 1a). The Mn^{III} cations describe a cuboctahedron, capped on each square face by a MnII, forming a giant octahedron (Figure 1b). Six faces of this giant octahedron are capped by a Cu^{II} center, which resides off-center, above one of the smaller constituent {MnIIMnIII} triangular faces (Figure 1c). The Cu^{II} ions describe a further octahedron, twisted with respect to the $\{Mn^{II}_{\ 6}\}$ octahedron, giving a remarkable level of self-assembly: polyhedral shells of expanding size describing archimedian $\{Mn^{II}_{12}\}$ < platonic $\{Mn^{II}_{6}\}$ < platonic {Cu^{II}₆} solids (Figure 2).

The outer (final) coordination site of each Mn^{II} center is occupied by either a terminal water {Mn(1), Mn(3) and symmetry equivalent (s.e.) or chloride ligand (Mn(2) and s.e.) (Figure 1b). Each H₂L⁴⁻ ligand displays the same bonding

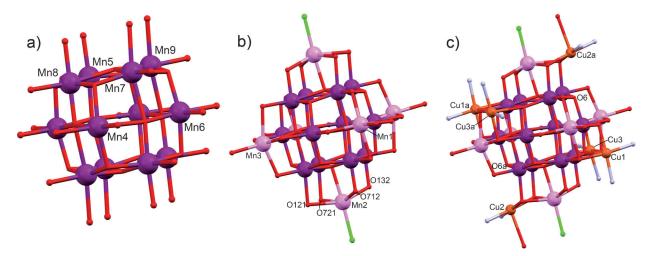
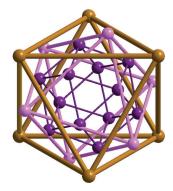




Figure 1. POV-Ray depictions of a) the $\{Mn^{II}_{12}O_{14}\}$ core of 2, b) expansion to include the Mn^{II} octahedron encapsulating the core, c) the overall heterometallic core of 2. Mn^{III} , purple; Mn^{III} , pink; Cu^{II} , bronze; CI, green; CI, green; CI, red (oxide = capped stick, alkoxide = ball and stick); CI, blue (CI and CI and CI are constant of the core, CI are constant of the core, CI and CI are constant of the core, CI are constant of the core, CI and CI are constant of the core, CI and CI are constant of the core, CI and CI are constant of CI and CI are constant of the core, CI are constant of the core, CI and CI are constant of CI are constant of CI and CI are constant of

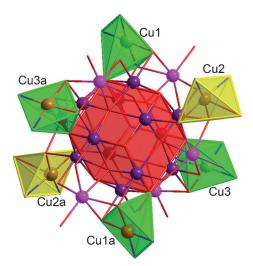


Figure 2. Expanding polyhedral shells $\{Mn^{III}_{12}\} < \{Mn^{II}_{6}\} < \{Cu^{II}_{6}\}$ in **2** (colors as previously described).

Figure 3. H_2L^{4-} ligand binding mode in **2**; the apical bond of Cu2 is pointing outwards from the core, to a H_2O ligand. Colors are as previously described, plus C, gray (H atoms not shown).

mode $\eta^3:\eta^3:\eta^2:\eta^1:\eta^1:\mu_6$ (Figure 3) and each Cu^{II} center is bridged to a Mn^{II} and two Mn^{III} centers via two μ_3 ligand alkoxide arms (Figures 1 c and 3). The Cu^{II} centers are best described as distorted [4+1] coordinate, with the apical bond (ca. 2.6 Å) to either a core oxide anion {for Cu(1), Cu(3)} or an (outer) water ligand {for Cu(2)}. Hence, four { $CuN_{2(eq)}O_{2(eq)}O_{(ax)}$ } pyramids point towards the core and

Figure 4. Differing coordination environments of the Cu^{II} cations; yellow pyramids indicate Cu^{II} centers where the apical bond points away from the core, green pyramids have the apical Cu^{II} bond pointing to the core. Red cube represents the core Mn^{III}-oxide cube. Cu1a = Cu1 $\{1.5-x, 0.5-y, 1-z\}$.

two point away (Figure 4) and the coordinative flexibility of the Cu^{II} center (i.e. the direction of the Cu^{II} axial bonds) modulates the shape of the $\{Mn_{18}Cu_6\}$ complex. For Cu(1) and Cu(3) there is an additional (outer) weak interaction with a lattice chloride anion $\{2.9808(1), 2.959(3) \text{ Å}\}$ and for Cu(2) an additional (inner) weak interaction with a cube corner oxide anion $\{O(6), 2.986(3) \text{ Å}\}$ (Figure 1 c).

Compound **3** contains a similar $\{Mn_{18}Cu_6\}$ complex, as a dication, where the core structure is largely the same as for compound **2** (Figure S2 and Tables S5 and S6). However, in this case, each Mn^{II} center is equivalent and has a terminal chloride ligand (cf. either Cl^- or H_2O in **2**) (Figure 5). If we describe each Cu^{II} center as [4+1] as in **2**, then each apical ligand (ca. 2.6 Å) bonds to a core oxide anion (cf. two of these were to an {outer} water ligand in **2**, that is, pointing away

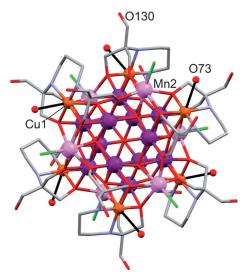


Figure 5. 3, viewed along the three-fold axis. Bonds to oxygen atoms of neighboring clusters, utilized in forming a 3D net are shown as solid black lines.

from the core). These structural changes result in a more compact core with higher symmetry (S_6). If we describe the Cu^{II} centers as distorted [4+2] instead, the second axial position is occupied by the oxygen atom of a CH₂OH ligand arm on an adjacent molecule (Cu1–O73′ ca. 2.75 Å) (Figure S3) and each {Mn₁₈Cu₆} cluster is connected to six nearest neighbor clusters via double {Cu-OCCN-Cu'} bridges (Cu···Cu' ca. 6.2 Å), creating a 3D network (Figure 6, S4). Hence, the subtle change to the reaction conditions also induces a new level of self-assembly of the {Mn₁₈Cu₆} complexes in 3; this is not possible in 2, due to the presence of the two centers (Cu2 and s.e.) with H₂O ligands.

The largest heterometallic 3d-based cluster is a mixed-valent {CuI₄CuII₁₃MnII₄MnIII₁₂MnIV₁₂} cluster, prepared from Cu powder, Mn(OAc)₂ and triethanolamine in DMF.^[15]

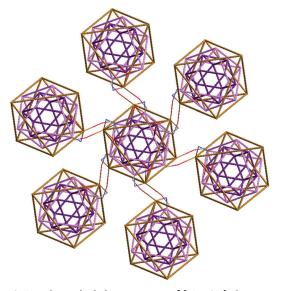


Figure 6. Pseudo-octahedral arrangement of $\{Mn_{18}Cu_6\}$ clusters in the extended structure, linked by Cu-OCCN-Cu bridges.

Further high-nuclearity Mn/Cu complexes include: $\{Mn^{II}Cu^{II}_{8}\}$ and $\{Mn^{II}_{5}Cu^{II}_{4}\}^{[11]}$ or $\{Mn^{III}_{6}Cu^{II}_{10}\}$ and $\{Mn^{III}_{8}Mn^{IV}_{4}Cu^{II}_{8}\}.^{[16]}$ However, none of these one-pot reactions result in either similar metal ion topologies or oxidation levels to those found in **2** and **3**. Interestingly, the $\{Mn^{III}_{12}\}$ core structure of the $\{Mn_{18}Cu_{6}\}$ complexes is related to the smaller Mn-oxo clusters, $[Mn^{IV}Mn^{III}_{6}Mn^{II}_{6}O_{8}(OEt)_{6}-(O_{2}CPh)_{12}]^{[17]}$ and $[Mn^{III}Mn^{III}_{12}(\mu_{4}-O)_{8}(\mu_{4}-CI)_{6}(tBu-PO_{3})_{8}]^{[18]}$ where the central position is occupied by a Mn^{IV} or a Mn^{II} cation, respectively (cf. empty in **2** and **3**). Hence, our approach may provide a more general route to trap and build upon stable metal-oxo core architectures: here trapping a $\{Mn^{III}_{12}\}$ core and adding $\{Mn^{II}_{6}\}$ and $\{Cu^{II}_{6}\}$ shells.

Structurally closest to **2** and **3** is perhaps the polyoxometalate anion $[Ti_{12}Nb_6O_{44}]^{10-}$, which also has an empty central cavity, in which Ti^{IV} and Nb^V take the place of Mn^{III} and Mn^{II} , respectively. $^{[19]}$ Comparisons can also be drawn with Pd^0 clusters: $[Pd_{23}(CO)_{20}(PEt)_{10}]$ consists of a centered cuboctahedral $\{Pd_{13}\}$ core, with square faces capped by Pd atoms in the sites occupied by the six Mn^{II} in $\{Mn_{18}Cu_6\}.^{[20]}$ The resulting $\{Pd_{19}\}$ giant octahedron is capped on four of its eight faces by additional Pd atoms, in positions close to those occupied by Cu^{II} in **2** and **3**.

The core of **2** is observed by ESI-MS (Figure S5, Table S7). All labile aquo ligands are lost and ion-pairs are observed for $\{[Cu^{II}_{6}Mn^{II}_{6}Mn^{III}_{12}(H_{2}L)_{6}O_{14}Cl_{2}]Cl_{3}]\}^{3+}$ (m/z 1146.7) and $\{[Cu^{II}_{6}Mn^{II}_{6}Mn^{III}_{12}(H_{2}L)_{6}O_{14}Cl_{2}]Cl_{4}]\}^{2+}$ (m/z 1737.5) and some fragmentation of the parent ion is observed, $[Cu(H_{5}L)]^{+}$ (m/z 344.1). The solution stability provides further potential for using these reaction systems to probe heterometallic cluster assembly.

The bridging in **2** is complex and each metal cation is bridged to between three and eight others, via single oxygen bridges. Bridging angles range from 88.28–107.83°. The overall picture is similar for **3**, except that the higher symmetry of the molecule results in a minimum of four bridging connections to neighboring metal ions. The majority of the bridging angles are large, and as a result, we would expect antiferromagnetic coupling to dominate; which proves to be the case (Figure S6). Magnetization vs. field data (Figure S7) suggests a large number of excited states with similar energies, and a poorly defined ground state. AC measurements do not show any evidence of frequency dependence; this is unsurprising as the Jahn–Teller axes of the Mn^{III} centers are nearly perpendicular, leaving little net magnetic anisotropy.

Using our step-by-step approach, starting with a preformed Cu^{II} complex, we can trap and encapsulate manganese oxide nanoclusters. Reactions changing the anion (Cl⁻), precursor (Cu^{II}) and core metal ion (Mn) are all underway, in order to assemble new heterometallic clusters and to explore the self-assembly of high-nuclearity complexes.

Experimental Section

All reagents and solvents were obtained from commercial suppliers and used without further purification.

Synthesis of 1: H_6L (5.70 g, 20.2 mmol) and $CuCl_2 \cdot 2H_2O$ (5.28 g, 31.0 mmol) were combined in ethanol (120 mL) and heated to 60 °C.

1951

A dark green solution formed, followed by precipitation of a pale blue solid (15 mins). The mixture was heated for 5 h. After cooling, the blue precipitate [Cu(H₆L)Cl]Cl·1.25 H₂O (1·1.25 H₂O) was collected by filtration and washed with ethanol. Yield 8.63 g, 96%. IR: $\tilde{\nu}=3140,\,3018,\,2943,\,1470,\,1428,\,1307,\,1263,\,1114,\,1077,\,1064,\,1011,\,761\,\text{cm}^{-1}.$ Elemental analysis (C₁₁H₂₆N₂O₆CuCl₂·1.25 H₂O) [%], found: C 30.01, H 6.50, N 6.38; calcd: C 30.07, H 6.54, N 6.38. Single crystals suitable for X-ray study were obtained by recrystallization from ethanol yielding 1·0.5 EtOH (see Supporting Information).

Synthesis of **2**: **1**·1.25 H₂O (109 mg, 0.263 mmol) was dissolved in hot ethanol (60 mL at 60 °C). NMe₄OH·5 H₂O (166 mg, 0.842 mmol) was added, and immediately dissolved, resulting in a clear royal blue solution, which was heated for 30 min. MnCl₂·4 H₂O (166 mg, 0.837 mmol) was added, resulting in an immediate color change to dark gray, followed by formation of a precipitate. The mixture was heated for 4 h, and the precipitate (108 mg) was removed by filtration. Black crystals of [Mn₁₈Cu₆O₁₄(H₂L)₆Cl₂(H₂O)₆]Cl₆·H₂O formed in the filtrate over 1 month (ca. 6 mg, 4%) (see Supporting Information). IR: $\tilde{\nu}$ =3351, 3262, 3212, 2921, 2864, 1634, 1455, 1426, 1393, 1260, 1154, 1100, 1079, 1027, 925, 791, 761 cm⁻¹. Elemental analysis (C₆₆H₁₄₄N₁₂O₅₆Cu₆Mn₁₈Cl₈, **2**) [%], found: C 21.81, H 4.08, N 4.60; calcd: C 21.72, H 3.97, N 4.61. MS (ESI⁺, *m/z*): 344.1, 1146.7, 1737.5 (see Table S7).

Synthesis of 3: 1·1.25 H₂O (108 mg, 0.259 mmol) was dissolved in methanol (30 mL). NEt₃ (0.07 mL, 0.502 mmol) was added, and immediately dissolved, resulting in a clear royal blue solution which was stirred at ambient temperature for 30 min. MnCl₂·4H₂O (110 mg, 0.557 mmol) was added, resulting in an immediate color change to blue-black. The solution was heated for 3 h, and filtered. Black crystals of $[Mn_{18}Cu_6O_{14}(H_2L)_6Cl_6]Cl_2\cdot 10H_2O\cdot 6CH_3OH$ formed in the filtrate over 3 weeks (ca. 4 mg, 3%) (see Supporting Information). IR: $\tilde{\nu} = 3361$, 3234, 3215, 2947, 2868, 1622, 1458, 1429, 1390, 1262, 1156, 1101, 1084, 1061, 1026, 940, 932, 793, 720 cm⁻¹. Elemental $analysis \quad (C_{66}H_{144}N_{12}O_{50}Cu_{6}Mn_{18}Cl_{8}\cdot 4.5H_{2}O\cdot 4CH_{3}OH, \quad \textbf{3}\cdot 4.5\,H_{2}O\cdot$ 4CH₃OH) [%], found: C 22.39, H 4.59, N 4.62; calcd: C 22.38, H 4.21, N 4.47. A further 17 mg microcrystalline black solid was collected from the solution after removal of the single crystals. IR, as above. Elemental analysis (3·4.5 H₂O·4 CH₃OH) [%], found: C 22.31, H 4.59, N 4.60. Total yield; 21 mg, 18%.

CCDC 907989 (1), 907990 (2), and 907991 (3) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Received: November 1, 2012 Revised: December 11, 2012 Published online: January 10, 2013

Keywords: copper · heterometallic complexes · magnetic properties · manganese · polynuclear clusters

- a) D. Gatteschi, M. Fittipaldi, C. Sangregorio, L. Sorace, Angew. Chem. 2012, 124, 4876; Angew. Chem. Int. Ed. 2012, 51, 4792;
 b) J. Bunzen, J. Iwasa, P. Bonakdarzadeh, E. Numata, K. Rissanen, S. Sato, M. Fujita, Angew. Chem. 2012, 124, 3215; Angew. Chem. Int. Ed. 2012, 51, 3161; c) S. P. Argent, H. Adams, T. Riis-Johannessen, J. C. Jeffery, L. P. Harding, M. D. Ward, J. Am. Chem. Soc. 2006, 128, 72.
- [2] a) S. Hill, R. S. Edwards, N. Aliaga-Alcalde, G. Christou, *Science* 2003, 302, 1015; b) D. Gatteschi, Adv. Mater. 1994, 6, 635; c) T. Glaser, Chem. Commun. 2011, 47, 116.

- [3] a) Y.-Z. Zheng, E. Moreno Pineda, M. Helliwell, R. E. P. Winpenny, Chem. Eur. J. 2012, 18, 4161; b) A. Ghirri, S. Carretta, G. Amoretti, S. Piligkos, G. A. Timco, R. E. P. Winpenny, Appl. Phys. Lett. 2004, 84, 3468; c) M. Evangelisti, O. Roubeau, E. Palacios, A. Camón, T. N. Hooper, E. K. Brechin, J. J. Alonso, Angew. Chem. 2011, 123, 6736; Angew. Chem. Int. Ed. 2011, 50, 6606.
- [4] A. M. Ako, I. J. Hewitt, V. Mereacre, R. Clérac, W. Wernsdorfer, C. E. Anson, A. K. Powell, *Angew. Chem.* 2006, 118, 5048; *Angew. Chem. Int. Ed.* 2006, 45, 4926.
- [5] a) C. J. Milios, A. Vinslava, W. Wernsdorfer, S. Moggach, S. Parsons, S. P. Perlepes, G. Christou, E. K. Brechin, J. Am. Chem. Soc. 2007, 129, 2754; b) J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, Nat. Chem. 2011, 3, 538; c) R. J. Blagg, C. A. Muryn, E. J. L. McInnes, F. Tuna, R. E. P. Winpenny, Angew. Chem. 2011, 123, 6660; Angew. Chem. Int. Ed. 2011, 50, 6530.
- [6] F. K. Larsen, E. J. L. McInnes, H. El Mkami, J. Overgaard, S. Piligkos, G. Rajaraman, E. Rentschler, A. A. Smith, G. M. Smith, V. Boote, M. Jennings, G. A. Timco, R. E. P. Winpenny, Angew. Chem. 2003, 115, 109; Angew. Chem. Int. Ed. 2003, 42, 105.
- [7] R. W. Saalfrank, R. Prakash, H. Maid, F. Hampel, F. W. Heinemann, A. X. Trautwein, L. H. Böttger, *Chem. Eur. J.* 2006, 12, 2428.
- [8] a) Y. Pei, Y. Journaux, O. Kahn, A. Dei, D. Gatteschi, J. Chem. Soc. Chem. Commun. 1986, 108, 1300; b) J.-P. Costes, J.-P. Laurent, J. M. Moreno Sanchez, J. Suarez Varela, M. Ahlgren, M. Sundberg, Inorg. Chem. 1997, 36, 4641.
- [9] G. J. Sopasis, M. Orfanoudaki, P. Zarmpas, A. Philippidis, M. Siczek, T. Lis, J. R. O'Brien, C. J. Milios, *Inorg. Chem.* 2012, 51, 1170.
- [10] D. S. Nesterov, V. N. Kokozay, V. V. Dyakonenko, O. V. Shishkin, J. Jezierska, A. Ozarowski, A. M. Kirillov, M. N. Kopylovich, A. J. L. Pombeiro, *Chem. Commun.* 2006, 4605.
- [11] L. N. Dawe, K. V. Shuvaev, L. K. Thompson, *Inorg. Chem.* 2009, 48, 3323.
- [12] J. J. Sokol, A. G. Hee, J. R. Long, J. Am. Chem. Soc. 2002, 124, 7656.
- [13] a) P. J. Stang, B. Olenyuk, Acc. Chem. Res. 1997, 30, 502; b) S. R. Seidel, P. J. Stang, Acc. Chem. Res. 2002, 35, 972.
- [14] a) G. N. Newton, T. Onuki, T. Shiga, M. Noguchi, M. Nihei, M. Nakano, L. Cronin, H. Oshio, Angew. Chem. 2011, 123, 4946;
 Angew. Chem. Int. Ed. 2011, 50, 4844; b) P. Alborés, E. Rentschler, Angew. Chem. 2009, 121, 9530; Angew. Chem. Int. Ed. 2009, 48, 9366; c) N. T. Tran, D. R. Powell, L. F. Dahl, Angew. Chem. 2000, 112, 4287; Angew. Chem. Int. Ed. 2000, 39, 4121.
- [15] W.-G. Wang, A.-J. Zhou, W.-X. Zhang, M.-L. Tong, X.-M. Chen, M. Nakano, C. C. Beedle, D. N. Hendrickson, J. Am. Chem. Soc. 2007, 129, 1014.
- [16] S. Yamashita, T. Shiga, M. Kurashina, M. Nihei, H. Nojiri, H. Sawa, T. Kakiuchi, H. Oshio, *Inorg. Chem.* 2007, 46, 3810.
- [17] Z. Sun, P. K. Gantzel, D. N. Hendrickson, *Inorg. Chem.* 1996, 35, 6640
- [18] L. Zhang, R. Clérac, P. Heijboer, W. Schmitt, Angew. Chem. 2012, 124, 3062; Angew. Chem. Int. Ed. 2012, 51, 3007.
- [19] C. A. Ohlin, E. M. Villa, J. C. Fettinger, W. H. Casey, Angew. Chem. 2008, 120, 5716; Angew. Chem. Int. Ed. 2008, 47, 5634.
- [20] E. G. Mednikov, J. Wittayakun, L. F. Dahl, J. Cluster Sci. 2005, 16, 429.