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Ray-Tracing Method (RTM)

» Asymptotic high frequency method w — oo

» Pressure obtained by solution of ordinary differential equations
along curves in space (rays)

» Shooting procedure to target points where pressure is requested

Near field information is lost

Diffraction must be modeled

Works quite well for point sources

Complex sound sources are difficult to handle
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» Diffraction is lost in the high frequency limit. Optical analogy are
infinitely sharp shadow boundaries.
» Modeling, e.g., by
» Geometrical Theory of Diffraction (GTD) (J.B.Keller 1962)
» Difficult to implement for complex geometries
» Kirchhoff type diffraction theory

> G.A.Maggi 1888, A.Rubinowicz 1917 : Diffracted monopole field
» K.Miyamoto/E.Wolf 1962 : Diffracted arbitrary pressure field

» Kirchhoff fills up jumps at shadow boundaries!
» Diffraction is frequency dependent

>




Helmholtz Equation — Boundary Element Method

» Helmholtz Equation

Ap+k*p=0, k=21/\




Helmholtz Equation — Boundary Element Method

» Helmholtz Equation
Ap+k*p=0, k=21/\

» Incident pressure field p;(x) at surface 2
- 0~




Helmholtz Equation — Boundary Element Method

» Helmholtz Equation
Ap+k*p=0, k=21/\

» Incident pressure field p;(x) at surface 2

» Kirchhoff integral: p(x) by integral over surface pressure p(y)

ert@) = 3= [ o) G0, + o [ BV g0, = pifa)

Green’s Function G(z,y) = i
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» Surface pressure obtained by solution of an integral equation on
the surface of the geometry

» Surface triangulation gives system of linear equations for surface
pressures

» Constant pressure on every triangle
» At least 6 elements per wavelength necessary
» Number of unknowns N scales with wavelength X like NV ~ \—2

D
» Full storage of matrix limits BEM to low frequencies
» Complex sources (CRORs, Fans, etc.) are possible
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Acceleration of BEM

Iterative solver applied to BEM equations

No storage of matrix required

Split contribution of source elements in near and far field
Clever calculation of far field contributions

Acceleration of matrix-vector product from O(N?) to O(N log N)
(Multilevel implementation)

Frequencies up to some kHz possible for full scale aircraft
geometries
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Fast Multipole Method - Details

» Burton-Miller approach to guarantee uniqueness of solution

» Plane wave approximation of Green'’s function ('high frequency
FMM’)

» lterative solvers from PETSc library

» OpenMP/MPI parallelisation

» METIS library for distribution of octree among nodes
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FMM Problems

» Divergent for low frequencies (depending on formulation), but:
» FMM-Code can be run as BEM code for low frequencies!
» Slow convergence of iterative solvers for large problems (usually
for problem size N > 10)
» Appropriate preconditioner for large problems necessary

» No ’arbitrary’ accuracy achievable:

» Limited to about 1073 ...107*
» Resolution dependent
» Formulation dependent
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Source Description
» Incident sound field and its derivative needed (Burton/Miller
formulation needs derivative)
» Point sources
» monopole, dipole
» Fan noise model

» Given acoustic pressure and velocity on a Kirchhoff surface around
intake: BEM integrals can be used

» Propeller noise model

» Thickness and loading noise from blade geometry and blade forces
(S.L.A. Glegg 1991, CROR: L. Miller 2009 ).

» Rings of monopoles for thickness noise.

» Rings of dipoles for loading noise.

» Model has been extended to CRORs with different rotational speed
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Shielding Examples
» Unit sphere R =1
» Monopole at R = 1.5 above north pole
» 2.7 x 106 triangles
» A\ =0.013 — 6 elements per wavelength
» )\ =0.020 — 9 elements per wavelength
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Comparison RTM — FMM

Shielding Examples
» Monopole above unit sphere
» Monopole shielding by Low-Noise-Aircraft (LNA)

» ’Shielding’ of rear mounted CROR at a conventional Z08 aircraft
configuration
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Sphere RTM — FMM

» Attenuation factor
sphere

» Wavelength A = 0.013,0.020

» Arago spot visible

in plane centered at R = 6 below

PShielded
PIncident
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Low-Noise-Aircraft (LNA) Configuration

» DLR Low-Noise-Aircraft (LNA) — fuselage length ca. 50 m
» Designed for maximum acoustical shielding

» Overwing engine installation

» Shielding of Fan/CROR noise by wing

» Monopole source above right wing trailing edge

» 4 x 10° triangles — frequency 2841 Hz
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LNA - FMM/RTM

» Attenuation in dB
» Monopole above right wing trailing edge
» a/c shown not scaled!
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Z08 - Asymmetry - Left/Right installed CROR

» Pusher CRORs are 'faked’: inflow undisturbed by pylon
» Combination mode Br + Br — Frequency 308 Hz

» Different diffraction pattern for left/right installed CROR by
interaction of near field with geometry

» Can not be obtained by Ray-Tracing!
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Z08 - Asymmetry - Left/Right installed CROR

» Modulus of pressure 120 m below a/c
» Different diffraction pattern for left/right installed CROR
» a/c shown not scaled!

[
pTot: 0 0.10.20.30.40.50.6 0.7 | |Bf+Br: 308.7 Hz

[ 208
pTot: 0 0.10.20.30.40.50.60.7 | |Bf+Br: 308.7 Hz

y [m]

-500 -500

-1000 -500 0 x[m] 500 1000 -1000 -500 0 xm] 500 1000

() Left installed CROR (m) Right installed CROR




Summary and Outlook

» Shielding calculations as scattering problem feasible for full scale
aircraft configurations up to some kHz




Summary and Outlook

» Shielding calculations as scattering problem feasible for full scale
aircraft configurations up to some kHz

» Ray-Tracing gives good results for simple sources




Summary and Outlook
» Shielding calculations as scattering problem feasible for full scale
aircraft configurations up to some kHz
» Ray-Tracing gives good results for simple sources
» BEM/FMM allows complex sources




Summary and Outlook
» Shielding calculations as scattering problem feasible for full scale
aircraft configurations up to some kHz
» Ray-Tracing gives good results for simple sources
» BEM/FMM allows complex sources
» Taking into account mean flow




Summary and Outlook
» Shielding calculations as scattering problem feasible for full scale
aircraft configurations up to some kHz
» Ray-Tracing gives good results for simple sources
» BEM/FMM allows complex sources
» Taking into account mean flow

» Ray-Tracing:
Difficult because of Ray-Tracing diffraction correction




Summary and Outlook
» Shielding calculations as scattering problem feasible for full scale
aircraft configurations up to some kHz
» Ray-Tracing gives good results for simple sources
» BEM/FMM allows complex sources
» Taking into account mean flow

» Ray-Tracing:
Difficult because of Ray-Tracing diffraction correction
> FMM:




Summary and Outlook
» Shielding calculations as scattering problem feasible for full scale
aircraft configurations up to some kHz
» Ray-Tracing gives good results for simple sources
» BEM/FMM allows complex sources
» Taking into account mean flow

» Ray-Tracing:
Difficult because of Ray-Tracing diffraction correction
> FMM:

> Taylor transformation of convected wave equation into Helmholtz
equation




Summary and Outlook

» Shielding calculations as scattering problem feasible for full scale
aircraft configurations up to some kHz

» Ray-Tracing gives good results for simple sources
» BEM/FMM allows complex sources
» Taking into account mean flow

» Ray-Tracing:
Difficult because of Ray-Tracing diffraction correction
> FMM:

> Taylor transformation of convected wave equation into Helmholtz
equation
> Low Mach number potential flow




Summary and Outlook

» Shielding calculations as scattering problem feasible for full scale
aircraft configurations up to some kHz
» Ray-Tracing gives good results for simple sources
» BEM/FMM allows complex sources
» Taking into account mean flow
» Ray-Tracing:

Difficult because of Ray-Tracing diffraction correction
> FMM:

> Taylor transformation of convected wave equation into Helmholtz
equation

> Low Mach number potential flow

> Mean flow potential from CFD




Summary and Outlook

» Shielding calculations as scattering problem feasible for full scale
aircraft configurations up to some kHz

» Ray-Tracing gives good results for simple sources
» BEM/FMM allows complex sources
» Taking into account mean flow
» Ray-Tracing:
Difficult because of Ray-Tracing diffraction correction
» FMM:

> Taylor transformation of convected wave equation into Helmholtz
equation

> Low Mach number potential flow

Mean flow potential from CFD

» Formulated for point sources so far
>

v




Thank you for your attention!
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Shooting to Target Point

Determination initial conditions of rays to a target point

>

>

>

Target point Target plane

>

>

>

Rays are straight lines
between reflections if sound
speed and mean flow are
constant

Multiple reflections at the
geometry are possible

Fast collision check with
geometry is necessary
Hitting target point is a
nonlinear problem

Newton solver implemented

< Return
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Ray-Tracing Initial Conditions

» Initial conditions necessary for

> position x,

» phase v, and

» phase gradient g = V¢
Phase gradient g determines initial direction of ray
To be determined from appropriate source description
Additional conditions necessary for integration of Jacobian D(s)
along ray path

» D

v

v

v
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Kirchhoff diffraction for aperture/obstacle

» Kirchhoff diffraction: Calculate diffracted field by area integral
over incident field in aperture

» Babinet’s principle: Use complementary problem for obstacle

» Maggi/Rubinowicz: Area integral can be transformed into line
integral along the rim of the aperture
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» General geometries: Perform line integral along the shadow
boundaries on the body
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Taylor Transformation

» Low Mach number potential mean flow field
» Convected wave equation for acoustic velocity potential
» Calculation of velocity potential from CFD data necessary




Taylor Transformation

Taylor (1978), Agarwal & Dowling (2007)
» Convected wave equation (Mean flow potential u = Vo)

o )
<8t +VD- > g — 02V2¢g —d(x —xgp)e —wt

» Acoustic velocity potential ¢4(x,t)

¢g($7 t) _ (ih($7 w)eik é(mo):@(m) e—iwt
(W2 + AV)d), = —6(x —xy), n-Vd, =0

» Acoustic pressure

p(z,t) = (zk@h - V_ vd ) RS ot
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