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My Research Focus
Filter banks and wavelets  (signal processing branch)

Perfect reconstruction of nonuniform filter banks.
Filter banks with block sampling structures.
Compressions with applications to scalable JPEG image 
coding schemes.
Denoising with applications to image and biomedical signal 
processing such as ECG signal and ultra sound image 
denoising.
Edge detection and edge linking with applications to image 
processing such as cancer cell image diagnosis and bad 
potato diagnosis.
Signal separations such as audio signal separations for 
digital audio hearing aids applications and ECG/EMG signal 
separations, pattern recognitions such as gait recognitions 
for military applications and fault analysis such as machine 
fault detections.
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My Research Focus
Optimization (signal processing)

Semi-infinite programming and functional inequality 
constrained optimizations with applications to filter, 
filter bank, wavelet kernel, sigma delta modulator 
and transport system designs.
Nonsmooth optimizations with applications to 
motion estimations as well as filter, filter bank, 
wavelet kernel and transport system designs.
Nonconvex optimizations with applications to 
spectral allocations for wireless communication 
networks as well as filter, filter bank, wavelet kernel 
and transport system designs.
Real-time optimizations with applications to filter, 
filter bank and wavelet kernel designs.
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My Research Focus
Symbolic dynamics, fractal and chaos (control branch)

Digital filters with two’s complement arithmetic and 
saturation nonlinearity with applications to computer 
cryptography.
Sigma delta modulators with applications to analog-to-digital 
conversions.
Perceptron training algorithms with applications to pattern 
recognitions.
Random early detection mechanisms with applications to 
internet traffic control.
DC/DC converters with applications to industrial and 
consumer electronic products.
Road traffic light signaling with applications to road traffic 
system control.
Nano-particle quantum effect analysis with applications to 
nano-device fabrications.
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My Research Focus
Control theories (control branch)

Fuzzy control with applications to time delay 
feedback systems, sample data control systems 
and chaos synchronization systems.
Optimal switching control with applications to 
DC/DC converters and transport systems.
Impulsive control with applications to sigma delta 
modulators.
Chaos control with applications to TCPIP networks, 
HIV model systems and avian influenza model 
systems.
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Introduction
Jean Baptiste Joseph Fourier (21 March 1768-
16 May 1830)

Invention of the Fourier transform
Representation of the frequency 

Stephen Hawking (8 January 1942-now)
Invention of a new concept of time
Representation of the time

What happens if time meets frequency?
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Outline
Frequency analysis
Time frequency analysis
Conclusions
Q&A Session
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Frequency Analysis
Understanding of time and frequency

Example 1:
Time range: (-∞,+∞)
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Frequency Analysis
Understanding of time and frequency

Example 1:
Angular frequency = 50 radians per second
Frequency range (Bandwidth): 0
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Frequency Analysis
Understanding of time and frequency

Example 2:

Time range: (-0.5,+0.5)
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Frequency Analysis
Understanding of time and frequency

Example 2: because
Frequency range: (-∞,+∞)
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Frequency Analysis
Understanding of time and frequency

Representation with a finite duration in time will 
result to a representation with an infinite 
bandwidth in frequency. That means good 
localization in time will result to a bad localization 
in frequency.
Representation with a finite bandwidth in 
frequency will result to a representation with an 
infinite duration in time. That means good 
localization in frequency will result to a bad 
localization in time.
Are there any representations that are good 
localizations in both time and frequency?
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Frequency Analysis
Backgrounds on linear time invariant filters

Definition
A system which is linear.

A system which is time invariant.
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Frequency Analysis
Backgrounds on linear time invariant filters

Systems represented by linear time invariant 
filters

Many practical systems can be represented by linear 
time invariant filters.
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Frequency Analysis
Backgrounds on linear time invariant filters

Impulse response

A system is linear and time invariant if and only if the 
input output relationship in the time domain is governed 
by the convolution and that in the frequency domain is 
governed by the multiplication. That is

( ) ( )( )tTth δ≡ ( ) ( )( )nTnh δ≡

( ) ( ) ( )∫
+∞

∞−
−= τττ dthxty ( ) ( ) ( )∑

+∞

−∞→

−=
n

mnhmxny

( ) ( ) ( )ωωω HXY =



16

Frequency Analysis
Backgrounds on linear time invariant filters

Frequency response

Frequency response is the eigen function of linear time 
invariant filters. Hence, if the inputs of linear time invariant
filters consist of monotonic frequency only, then the 
outputs of linear time invariant filters also consist of the 
same monotonic frequency only with the gains equal to

and the phase shifts equal to              .( )0ωH ( )0ωH∠
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Frequency Analysis
Applications

Denoising
Apply a linear time invariant filter to a noisy signal with 
the bandwidth of the filter equal to the bandwidth of the 
uncorrupted signal.
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Frequency Analysis
Applications

Sampling
Shannon sampling theorem

Suppose that            is bandlimited by   , that is
for              . The signal can be reconstructed from the 
sampled sequence          via an ideal lowpass filter with the 
impulse response                          if the sampling frequency is

higher than or equal to twice of    . That is, if            , then
.
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Frequency Analysis
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Frequency Analysis
Applications

Oversampled analog-to-digital conversion

By modeling the quantizer as an additive noise source 
n(k), we have

Signal and noise can be separated.
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Frequency Analysis
Applications

Oversampled analog-to-digital conversion
Since F(z) has to be unstable, stability is an issue.
In order to design oversampled analog-to-digital 
converter, F(z) has to force the state variables to go to 
the infinity, but the quantizer has to force the state 
variables to go back to the origin.
Chaotic behaviours occur.
Linear system theory is not applied. Set theory is 
employed for the analysis.
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Frequency Analysis
Applications

Oversampled analog-to-digital conversion
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Frequency Analysis
Applications

Oversampled analog-to-digital conversion
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Frequency Analysis
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Applications
Oversampled analog-to-digital conversion

T0 is an invariant map and R0 is an invariant set.
T:ℜN→ℜN is surjective, but not injective. As there are two 
quantizer levels, we have T-1(R-1)=T(R0)=R0. This implies 
that R0 is attractive. In other words, the system is locally 
stable.
To understand why the system is globally stable, as T is 
surjective, the set ℜN∪Rk is also an invariant set.
However, the invariant set has to be near the origin. 
Hence, ℜN∪Rk is an empty set. In other words, Rk forms 
the partition of ℜN and the system is globally stable.
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Frequency Analysis
Applications

Oversampled analog-to-digital conversion
Open problems

Global stability of multibit high order oversampled analog-to-
digital converters is general unknown.
Design of oversampled analog-to-digital converters subject to 
the global stability condition is not available yet.
Could the results be applied to similar symbolic dynamical 
systems?



26

Frequency Analysis
Applications

Amplitude modulated radio systems
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Time Frequency Analysis
Fundamental building blocks in signal 
processing

Conventional upsampler
Input output relationship of conventional upsampler
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Time Frequency Analysis
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Conventional upsampler
Input output relationship of conventional upsampler

No loss of information.
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Time Frequency Analysis
Fundamental building blocks in signal 
processing

Conventional downsampler
Input output relationship of conventional downsampler
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Time Frequency Analysis
Fundamental building blocks in signal 
processing

Conventional downsampler
Input output relationship of conventional downsampler

where
There is a lost of information and aliasing occurs.
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Time Frequency Analysis
Filter banks

Filter banks are systems that contain banks of 
filters and conventional samplers.  

h0[n] ↓M0

x[n]

f0[n]↑M0

h1[n] ↓M1 f1[n]↑M1

hN-1[n] ↓MN-1
fN-1[n]↑MN-1

y[n]

s0[n]

s1[n]

sN-1[n]
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Time Frequency Analysis
Filter banks

Time localization of filter banks

For finite impulse response         , it becomes a finite 
summation of    and hence it only captures a finite time 
duration information of        . That means, filter banks 
have a good time localization property.
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Time Frequency Analysis
Filter banks

Frequency localization of filter banks
As the filters has finite bandwidths, the filtered signals 
have finite bandwidths. Hence, filter banks have a good 
frequency localization property.
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Tree structure filter banks
Tree structure filter banks is the most common 
approach for implementing discrete-time 
wavelet transforms if the filter bank in each tree 
level is paraunitary.

h0[n] ↓2
x[n] f0[n]↑2

h1[n] ↓2

f1[n]↑2

y[n]

Time Frequency Analysis

h0[n] ↓2

h1[n] ↓2

f0[n]↑2

f1[n]↑2
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Time Frequency Analysis
Tree structure filter banks

Paraunitary condition

For each ω∈[-π,π],              is constrained to be a unitary matrix. In 
other words, it is constrained to be in a high dimensional ball.
However, there are infinite number of ω in [-π,π]. Hence, this problem 
is an infinite number of high dimensional ball constrained problem.
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Time Frequency Analysis
Tree structure filter banks

Lattice structure design of paraunitary filter banks

The problem involves products of many unitary matrices, which is a 
highly nonlinear and nonconvex optimization problem. It could be
difficult to find the gradient vector of the objective function of the 
optimization problem. Hence, there is no efficient algorithm for the 
design.



37

Time Frequency Analysis
Tree structure filter banks

Real-time design of paraunitary filter banks
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Time Frequency Analysis
Tree structure filter banks

Real-time design of paraunitary filter banks

Diagonal elements of DH,1 are either 1 or -1, VH could be arbitrary 
unitary matrix.

where       is a unitary matrix.
satisfies the paraunitary condition.
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Time Frequency Analysis
Tree structure filter banks

Real-time design of paraunitary filter banks

Define

Then
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Time Frequency Analysis
Tree structure filter banks

Real-time design of paraunitary filter banks

Define
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Time Frequency Analysis
Tree structure filter banks

Real-time design of paraunitary filter banks
Then

Implication: Numerical optimization computer aided design tools are 
not required to find a locally optimal solution. Hence, we could design 
adaptive real-time wavelet kernels.

( ) T
BB

T
BBB

T
BB

ˆˆˆˆˆ

ˆˆ

2
1 VAUUDVλ

UVU

−=

=

∗

Θ



42

Time Frequency Analysis
Basis of Hilbert space

is a basis of Hilbert space    if
are linearly independent.

such that .
Example 3:        ,              for
Let and 
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Time Frequency AnalysisFrames
is a frame of Hilbert space    if

such that .
Example 4:          for                   , where 
Let ,                for

and
Assume . Let
and
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and

{ } Jii ∈x E
0, >∃ BA

222 , yyxy BA
Ji

i∑
∈

≤≤

yx ,iic ≡
[ ]TMcc 10 −≡ Lc

Nℜ=E
1,,0 −= Mi L

[ ]10 −≡ MxxX L

( ) yyXXXXyXXcX ===
−1~~ TT

N
i ℜ∈x NM >

1,,0 −= Mi L

( ) Nrank T =XX ( ) [ ]TM
TT

10
1 ~~~

−

−
≡≡ xxXXXX L

yXc ~~ ≡

2
1

0

22

1

0

2

,~

~~~~,~

yyxy

yXXyccyx

BA
M

i
i

TTT
M

i
i

∑

∑
−

=

−

=

≤≤

==

{ } Jii ∈x~

( )( )XX ~~max TeigB =

{ } Jii ∈x

( )( )XX ~~min TeigA =



44

Time Frequency Analysis
Basis of filter banks

Define the inner product of signals as

Suppose that is a dual frame 
of .( ){ }
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Time Frequency Analysis
Perfect reconstruction of filter banks

where d is the delay of the system, c is gain of 
system and
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Time Frequency Analysis
Perfect reconstruction of filter banks

If and
are biorthogonal, then the filter banks achieve 
perfect reconstruction. 
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Incompatible nonuniform filter banks
Consider a nonuniform filter bank with M0=2, 
M1=3 and M2=6.

h0[n] ↓2

x[n]

f0[n]↑2

h1[n] ↓3 f1[n]↑3

h2[n] ↓6 f2[n]↑6

y[n]

Time Frequency Analysis
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Time Frequency Analysis
Incompatible nonuniform filter banks

We have

where
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Time Frequency Analysis
Incompatible nonuniform filter banks

If perfect reconstruction could be achieved for 
arbitrary bounded inputs, then

Impossible to achieve perfect reconstruction
because aliasing cannot be cancelled.
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Time Frequency Analysis
Incompatible nonuniform filter banks

Open problem
How to design the filters and the samplers such that perfect 
reconstruction can be achieved?

P. Q. Hoang and P. P. Vaidyanathan, “Non-uniform multirate filter banks: 
theory and design,” International Symposium on Circuits and Systems, 
ISCAS, pp. 371-374, 1989. (Open problem seeking for general solutions)
Tongwen Chen, Li Qiu and Er-Wei Bai, “General multirate building 
structures with application to nonuniform filter banks,” IEEE Transactions 
on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 45, 
no. 8, pp. 948-958, 1998. (Solution based on time varying filters)
Sony Akkarakaran and P. P. Vaidyanathan, “New results and open 
problems on nonuniform filter-banks,” International Conference on 
Acoustics, Speeches and Signal Processing, ICASSP, pp. 1501-1504, 
1999. (Open problem seeking for time invariant solutions)
Charlotte Yuk-Fan Ho, Bingo Wing-Kuen Ling and Peter Kong-Shun 
Tam, “Representations of linear dual-rate system via single SISO LTI 
filter, conventional sampler and block sampler,” IEEE Transactions on 
Circuits and Systems-II: Express Briefs, vol. 55, no. 2, pp. 168-172, 
2008. (Solution based on time invariant filters)
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H0(z) ↓6

X(z)

F0(z)↑3

H1(z) ↓6 F1(z)

H2(z) ↓6 F2(z)↑6

Y(z)

z2H0(z) ↓6 z-2F0(z)

z4H0(z) ↓6 z-4F0(z)

z3H1(z) ↓6 z-3F1(z)↑2

↑2

↑3

↑3

z-1

z-1

z-2

↓3 ↑6

↓3

↓3 ↑6

↑6z

z2

↓2 ↑6

↓2 ↑6z

Incompatible nonuniform filter banks
Time varying solution

By converting the nonuniform filter bank to a uniform filter 
bank, we have

The dash rectangle is an identity system, so this 
nonuniform filter bank becomes a uniform filter bank.

Time Frequency Analysis
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H0(z) ↓2

X(z)

G0(z)

H1(z) ↓3
G3(z)

H2(z) ↓6 G5(z)↑6

Y(z)

G1(z)

G2(z)

G4(z)

↓3 ↑6

↓3

↓3 ↑6

↑6z

z2

↓2 ↑6

↓2 ↑6z

Incompatible nonuniform filter banks
Time varying solution

The dash block is a time varying system.

Time Frequency Analysis
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Time Frequency Analysis
Basic property of upsampler and 
downsampler

The upsampler and the downsampler is in 
general not commutative.

Upsampler (upsampled by L) and downsampler
(downsampled by M) is commutative if and only if 
L and M is co-prime.

↓2 ↑2 ↑2 ↓2
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Time Frequency Analysis
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L and M are co-prime.

↑L ↓Mr[n]
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Time Frequency Analysis
Linear time invariant solution

Block decimators (decimation ratio M and block 
length L)

for j=0,1,…,L-1 and k∈Z.
↓(M,L) y[n]x[n]

0 1 L-1

LL

n

L+1

L

n
2L-1

x[0] x[ML]

x[ML+1]

x[n]

L

y[n]

L

ML ML+1 ML+L-1

L LL

0 1 L-1

L

x[1]

x[L-1]

L

x[ML+L-1]

L

[ ] [ ]jkMLxjLky +=+
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Time Frequency Analysis
Linear time invariant solution

Block expanders (expansion ratio M and block 
length L)

↑(M,L) y[n]x[n]
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Time Frequency Analysis
Linear time invariant solution

∀m,n∈Z+ (no matter m and n are co-prime or not), 
all linear dual rate systems with shifting input by n 
samples resulting to shifting an output by m 
samples can be represented via a series cascade 
of ↑m, followed by a linear time invariant filter with 
an impulse response f[k], and then followed by 
↓(n,m).
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Time Frequency Analysis
Linear time invariant solution

The input output relationship of all linear dual rate 
systems is , ∀k,l∈Z, ∀m,n∈Z+

and i=0,1,…,m-1.
The input output relationship of the proposed 
representation is , ∀k,l∈Z, 
∀m,n∈Z+ and i=0,1,…,m-1.
∀k,l∈Z, ∀m,n∈Z+ and i=0,1,…,m-1, the mapping 
from {0,1,…,m-1}xZ to Z, where [i,l-kn]∈{0,1,…,m-
1}xZ and kmn-ml+i∈Z is bijective.

∑
∞+

∞→

−=+
-

][u],[g]y[
l

lknliikm

∑
∀

+−=+
l

limlkmnikm ][u][f]y[
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Time Frequency Analysis
Linear time invariant solution

Hence, ∀k,l∈Z, ∀m,n∈Z+ and i=0,1,…,m-1, there 
exists a unique time index kmn-ml+i
corresponding to the time index [i,l-kn].
As a result, there exists a linear time invariant 
filter with an impulse response f[k] satisfying 
f[kmn-ml+i]=g[i,l-kn], ∀k,l∈Z, ∀m,n∈Z+ and 
i=0,1,…,m-1, that the linear dual rate systems and 
the proposed representation are input output 
equivalent.
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Time Frequency Analysis
Linear time invariant solution

Consequently, the incompatible nonuniform filter 
bank can achieve perfect reconstruction via the 
following structure.

F0(z)

F2(z)

↑6 ↓(3,6)

F1(z)

H0(z) ↓2

H1(z)

↓6H2(z)

↓3 ↑6

↑6

↓(2,6)
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Time Frequency Analysis
Linear time invariant solution

∀m,n∈Z+ (no matter m and n are co-prime or not), 
all linear dual rate systems with shifting input by n 
samples resulting to shifting an output by m 
samples can be represented via a series cascade 
of ↑(m,n), followed by a linear time invariant filter 
with an impulse response f[k], and then followed 
by ↓n.
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Time Frequency Analysis
Linear time invariant solution

The input output relationship of all linear dual rate 
systems is , ∀k,l∈Z, ∀m,n∈Z+

and i=0,1,…,n-1.
The input output relationship of the proposed 
representation is , ∀k,l∈Z, 
∀m,n∈Z+ and i=0,1,…,n-1.
∀l∈Z, ∀m,n∈Z+, k∈{0,1,…,m-1} and i∈{0,1,…,n-1}, 
the mapping from {0,1,…,m-1}xZ to Z, where 
[k,nl+i]∈{0,1,…,m-1}xZ and kn-mnl-i∈Z is bijective.

∑ ∑
∞+
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−
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-
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Time Frequency Analysis
Linear time invariant solution

Hence, ∀l∈Z, ∀m,n∈Z+, k∈{0,1,…,m-1} and 
i∈{0,1,…,n-1}, there exists a unique time index 
kn-mnl-i corresponding to the time index [k,nl+i].
As a result, there exists a linear time invariant 
filter with an impulse response f[k] satisfying f[kn-
mnl-i]=g[k,nl+i], ∀k,l∈Z, ∀m,n∈Z+ and i=0,1,…,n-1, 
that the linear dual rate systems and the 
proposed representation are input output 
equivalent.



65

Time Frequency Analysis
Linear time invariant solution

Consequently, the incompatible nonuniform filter 
bank can achieve perfect reconstruction via the 
following structure.

F0(z)

F2(z)

↓3↑(6,3)

F1(z)

H0(z) ↓2

H1(z)

↓6H2(z)

↓3 ↓2

↑6

↑(6,2)
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Time Frequency Analysis
Linear time invariant solution

Implication: We could have arbitrarily time 
localization and frequency localization.
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Application of nonuniform filter banks
Nonuniform transmultiplexers

Perfect reconstruction

h0[n] ↓M0
x0[n] f0[n]↑M0

h1[n] ↓M1
f1[n]↑M1

hN-1[n] ↓MN-1fN-1[n]↑MN-1

y0[n]

x1[n]

xN-1[n]

y1[n]

yN-1[n]

[ ] [ ]iiii dnxcny −=

Time Frequency Analysis
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R0(z)

R2(z) ↑6

↓( ,3)↑3 6
r

R1(z) ↓( ,2)↑2 6
r

x0[n] F0(z)↑2

F1(z)↑3

F2(z)↑3

y0[n]

x1[n]

x2[n]

y1[n]

y2[n]

Application of nonuniform filter banks
Nonuniform transmultiplexers

Example 4: F0(z)=1, F1(z)=z-4+z-5, F2(z)=z-3, then 
R0(z)=1-z2+z5+z10-z13, R1(z)=z10+z13 and R2(z)=z3.

Time Frequency Analysis
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Application of nonuniform filter banks
Nonuniform image coding

Existing successive approximation technique

where B is the maximum absolute value of the wavelet 
coefficients.

B0 B/2 3⋅B/4
0 1

B0 B/4 3⋅B/4
0 1

B/2
00 11

…

Time Frequency Analysis
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Time Frequency Analysis
Application of nonuniform filter banks

Nonuniform image coding
Absolute values of wavelet coefficients follows Laplacian
distribution approximately.
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Application of nonuniform filter banks
Nonuniform image coding

Probability of assigning the symbol ‘0’ is greater than 
that of the symbol ‘1’.
Uniform distribution of the symbols gives maximum 
entropy.
So the existing successive approximation technique 
is not optimal.
A higher coding gain curve may be achieved by 
means of non-uniform successive approximation.

Time Frequency Analysis
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0 1

BB/2 3⋅B/40

Number of wavelet coefficients

Absolute values of wavelet coefficients

Time Frequency Analysis
Application of nonuniform filter banks

Nonuniform image coding
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Application of nonuniform filter banks
Nonuniform image coding

Set the thresholds Tj at B/pj, where p>2.
Let a and b are the boundaries in the region, c be the 
coded value and f(x) be the distribution of the wavelet 
coefficients, then the error introduced in the quantization 
is:

where

( ) ( ) ( )∫ ⋅−=
b

a

dxxfcxcE 2

( ) xkeAxf ⋅⋅=

Time Frequency Analysis
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B0 B/a
0 1

B0 B/a2
0 1

B/a
00 11

…

c1

c21 c22 c1 c23

Time Frequency Analysis
Application of nonuniform filter banks

Nonuniform image coding
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Time Frequency Analysis
Application of nonuniform filter banks

Nonuniform image coding
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Time Frequency Analysis
Filter window banks and Fractional Fourier 
transform

Downsampling first and then upsampling is 
equivalent to a sampling window function. What 
happens if we have general window functions?

h0[n] w0[n]

x[n]
h1[n] w1[n]

hN-1[n] wN-1[n]

y[n]

f0[n]

f1[n]

fN-1[n]



77

Time Frequency Analysis
Filter window banks and Fractional Fourier 
transform

Fractional Fourier transform is to rotate the time 
frequency plane

By designing a set of windows and filters as well as 
applying the fractional Fourier transform to rotate 
the time frequency plane, the signals could be 
extracted out precisely.
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Time Frequency Analysis
Filter window banks and Fractional Fourier 
transform
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Time Frequency Analysis
Filter window banks and Fractional Fourier transform

Open problems:
How to guarantee the perfect reconstruction?
How to design the globally optimal set of filters and the windows such 
that the filters have good frequency selectivities?
Filtering and windowing could be understood as the multiplication in 
certain particular domains, such as in the frequency domain and in 
the time domain. In fact, these domains are obtained by certain 
particular unitary transforms. For example, frequency domain is 
obtained by applying the DFT transform which is a unitary transform 
and the time domain is obtained by applying the IDFT transform 
which is also a unitary transform . What happens if the transform is 
generalized to arbitrarily unitary transforms and how to determine 
such optimal transform? 
How to apply these results to some practical problems, such as 
denoising problems, signal separation problems, pattern recognition 
problems and fault detection problems?
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Time Frequency Analysis
Applications

ECG signal denoising
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Time Frequency Analysis
Applications

Audio signal denoising for digital audio hearing aids
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Time Frequency Analysis
Applications

Signal separation

0 1 2 3 4
x 104

-20

-10

0

10

20
orignal male speech

0 1 2 3 4
x 104

-20

-10

0

10

20
separated male speech

0 1 2 3 4
x 104

-4

-2

0

2
orignal flute

0 1 2 3 4
x 104

-5

0

5
separated flute



83

Time Frequency Analysis
Applications

Machine fault analysis
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Time Frequency Analysis
Applications

Machine fault analysis
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Time Frequency Analysis
Applications

Machine fault analysis
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Time Frequency Analysis
Applications

Machine fault analysis
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Many applications, such as denoising, sampling, 
analog-to-digital conversions and amplitude 
modulation schemes, are derived based on 
frequency domain approaches.
Further applications, such as denoising, signal 
separations, fault analysis, could be derived 
based on time frequency domain approaches.

Conclusions
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Q&A Session

Thank you!

Let me think…

Bingo
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