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My Research Focus
< Filter banks and wavelets (signal processing branch)
= Perfect reconstruction of nonuniform filter banks.
= Filter banks with block sampling structures.

«= Compressions with applications to scalable JPEG image
coding schemes.

«= Denoising with applications to image and biomedical signal
processing such as ECG signal and ultra sound image
denoising.

«= Edge detection and edge linking with applications to image
processing such as cancer cell image diagnosis and bad
potato diagnosis.

= Sighal separations such as audio signhal separations for
digital audio hearing aids applications and ECG/EMG signal
separations, pattern recognitions such as gait recognitions
for military applications and fault analysis such as machine
fault detections. A



My Research Focus
< OQptimization (signal processing)
«=Semi-infinite programming and functional inequality
constrained optimizations with applications to filter,

filter bank, wavelet kernel, sigma delta modulator
and transport system designs.

«=Nonsmooth optimizations with applications to
motion estimations as well as filter, filter bank,
wavelet kernel and transport system designs.

«=Nonconvex optimizations with applications to
spectral allocations for wireless communication
networks as well as filter, filter bank, wavelet kernel
and transport system designs.

«=Real-time optimizations with applications to filter,
filter bank and wavelet kernel designs.
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My Research Focus
<« Symbolic dynamics, fractal and chaos (control branch)

= Digital filters with two’s complement arithmetic and
saturation nonlinearity with applications to computer
cryptography.

«= Sigma delta modulators with applications to analog-to-digital
conversions.

«= Perceptron training algorithms with applications to pattern
recognitions.

«= Random early detection mechanisms with applications to
Internet traffic control.

«= DC/DC converters with applications to industrial and
consumer electronic products.

«= Road traffic light signaling with applications to road traffic
system control.

«= Nano-particle quantum effect analysis with applications to
nano-device fabrications. 4



My Research Focus
< Control theories (control branch)

«=Fuzzy control with applications to time delay
feedback systems, sample data control systems
and chaos synchronization systems.

«=0Optimal switching control with applications to
DC/DC converters and transport systems.

«=Impulsive control with applications to sigma delta
modulators.

«=Chaos control with applications to TCPIP networks,
HIV model systems and avian influenza model
systems. 5



Introduction

« Jean Baptiste Joseph Fourier (21 March 1768-
16 May 1830)

«Invention of the Fourier transform
«=Representation of the frequency

« Stephen Hawking (8 January 1942-now)
«Invention of a new concept of time
«=Representation of the time

<« What happens if time meets frequency?



Outline

<+ Frequency analysis
<« Time frequency analysis



Frequency Analysis

<« Understanding of time and frequency
=Example 1: x(t)=sin(50t)
+Timg range: (-oo,+x)
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<+ Understandin

Freguenc y Analysis
of time and frequency

«=Example 1: X (@ 21(5(0) 50)—&(w+50))
<Angular frequency = 50 radians per second
wFrequency range (Bandwidth): O

IX(e)]
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Frequency Analysis

<+ Understanding o
«=Example 2: x(t)=1

" time a?d frequency
1| <

0 otherwise

+Time range: (-0.5,+0.5)

X(t)

08 S !
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04 S !
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«=Example 2: x(o)-=

Frequency Analysis
< Understanding of time and frequency

2sin —

2 pecause X(w)=[" x(t)edt
4

+Frequency range: (-00,+x)

X(w)]
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Frequency Analysis
<« Understanding of time and frequency

«=Representation with a finite duration in time will
result to a representation with an infinite
bandwidth in frequency. That means good
localization in time will result to a bad localization
In frequency.

«=Representation with a finite bandwidth in
frequency will result to a representation with an
Infinite duration in time. That means good
localization in frequency will result to a bad
localization in time.

«RAre there any representations that are good
localizations in both time and frequency?
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Frequency Analysis

< Backgrounds on linear time invariant filters

«=Definition

<+ A system WhICh |s linear.
N-1

Eeaxt)-Zeax®) 1{Sax)-Sayo

1=0

<A system which is time invariant.
T(x(t-t,)=y(t-t,) Ve®  T(x(1-n,)=y(n-n,)¥n, 2
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Frequency Analysis

< Backgrounds on linear time invariant filters

x=Systems represented by linear time invariant
filters

-

ayn p ban
2 Z

<Many practical systems can be represented by linear
time invariant filters.
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Frequency Analysis

<+ Backgrounds on linear time invariant filters
«=Impulse response
h(t)=T(s(t)) h(n)=T(5(n))
<A system is linear and time invariant if and only if the

iInput output relationship in the time domain is governed
by the convolution and that in the frequency domain is
governed by the multiplication. That is

y(t)= [ “X(eht-r)r  y(n)= 3 x(mh(n-m)

Y(@)=X(w)H (o) o
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Frequency Analysis
< Backgrounds on linear time invariant filters

«=Frequency response

H(w)= [ h(t)e dt H(o)= n;oh(n)e"“’”

<+ Frequency response Is the eigen function of linear time
iInvariant filters. Hence, if the inputs of linear time invariant
filters consist of monotonic frequency only, then the
outputs of linear time invariant filters also consist of the
same monotonic frequency only with the gains equal to

H (@, Jand the phase shifts equal to ZH () .

y(t) — -‘-+Ooh(T)ejwo(t_T)dZ' :eja)ot H (a)o) y(n) — Z h(m)ejwo(n—m) — eja)on H (0)0)

—00
N——oo

Y(a)) H(w)g(a)_wo):H(wo)g(w_a)o) 16



Frequency Analysis
< Applications
«=Denolising

+Apply a linear time invariant filter to a noisy signal with
the bandwidth of the filter equal to the bandwidth of the
uncorrupted signal.

(t) | h(t) —— y()
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Frequency Analysis

< Applications
«=Sampling
*Sighngn semplingigheorem™ S
X, (N -
e —(—)» n(t) — K(t
s(t-nT)

«=Suppose that X ( )is bandlimited by B, thatis X ( ) 0

for ‘a)‘ > B . The signal can be reconstructed from the
sampled sequencex (n)wa an ideal lowpass filter with the
impulse response sm( 7t )) if the sampling frequency is

h(t) v 7Z'(t) p.
higher than or equal to twice of B. That is, if — > B, then

)= 3 x o) il ©

nN—>—o0 i




uency Analysis

Impulse to _X_i@_), hit) -+ X(t)

sequence
5(t—nT)
% ()=x0) 35 -nT)= Y x(nT)o(t-nT)
X,(@)=[ "x,(tle "dt = jw[ S x,(nT)s(t—nT )jejgtdt = > x (nT)e
L 27 27k _ 1 & 27k
=— X (Q)*— oLd——— |=— ] | () =B
L0 % $ o021 $ x[a-2)

z(t-n
) 19
z(t-n




Fr ncy Analysis
ooAppllcatlonseque ¢y y

«=QOversampled analog-to-digital conversion

K
u()—— = Jry PO o O P

< By modeling the quantizer as an additive noise source
n(k), we have

S(z) _ F(z) i S(z) _ i S_Z):
0@ 1rFGE) AUt AeuE)
S(Z) : lim ﬂ:O l[im iZ):l

N( ) 1+F(z) F@>=N(z) F(z)>0 N(z)
»Signal and noise can be separated.
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Frequency Analysis

< Applications
«=Oversampled analog-to-digital conversion

<+Since F(z) has to be unstable, stability is an issue.

<In order to design oversampled analog-to-digital
converter, F(z) has to force the state variables to go to
the infinity, but the quantizer has to force the state
variables to go back to the origin.

<+ Chaotic behaviours occur.

<+Linear system theory is not applied. Set theory is
employed for the analysis.
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Fr ncy Analysi
X Appli(:ationseque ¢y - g

«=Oversampled analog-to-digital conversion

—— Design using Matlab toolbox
—— Design using SIP approach
140 | —— Design using Butterworth filter

120
100

80

60

40

Signal to noise ratio (dB)

20

0

-20

-40

o0 | | | | | | |



_Frequency Analysis

< Applications

«=QOversampled analog-to

: |

[ %
Ql i Yo
Y

2

X5
—

*«.ﬂ
-

'
(2]

-dig

12 ‘

ital conversion

10r




< Applications Freq UENCY AN alys IS
«=Oversampled analog-to-digital conversion
To(Ro): R,
T, (R_)=R fork <0

JR =%"
vk

RIAOR, =@fori= j
“+Ty 1S an Invariant map and R, is an invariant set.

+T:RN—>RN is surjective, but not injective. As there are two
quantizer levels, we have T ;(R_1)=T(Ry)=R,. This implies

that R, Is attractive. In other words, the system is locally
stable.

< To understand why the system is globally stable, as T is
surjective, the set RNUR, is also an invariant set.

<+However, the invariant set has to be near the origin.

Hence, RNUR, is an empty set. In other words, R, forms
the partition of RN and the system is globally stable.



Frequency Analysis

< Applications
«=Oversampled analog-to-digital conversion

<+0Open problems
«Global stability of multibit high order oversampled analog-to-
digital converters is general unknown.

«Design of oversampled analog-to-digital converters subject to
the global stability condition is not available yet.

«Could the results be applied to similar symbolic dynamical
systems?

25



Frequency Analysis
< Applications
«=Amplitude modulated radio systems

xo(t)@——»@——» s »(%@——» h(t) —— %(t)

e—ja)ot eja)ot
(t —P@—’ h(t) __’)zN—l(t)
XN-1 )'@_—
A eja)N—lt
e -1
N-1 _
S(t)=2_x,(te "
n=0

X (t)z fOOS(T)ejw”Th('[—T)dT 26



Time Frequency Analysis
<« Fundamental building blocks in signal

processing

«=Conventional upsampler x[n]——

TL

— yIn]

“+Input output relationship of conventional upsampler

27



Time Frequenc¥ Analysis
S

<« Fundamental building bloc

In signal

processing

«=Conventional upsampler
+Input output relationship of conventional upsampler

yln]=-

Y(a)):

Y(z)=

x[% n is integer multiple of L

0 otherwise
Sy = 3 x(n)e " = X (Lo)

i y(n)z™" = ix(n)z‘nL =X (zL)

n——o0

N——o0 :
+No loss of information.

28



Time Frequency Analysis

<« Fundamental building blocks in signal
processing

«=Conventional downsampler M [ v
<Input output relationship of conventional downsampler

; SEREAE

M 2M 2M+1 3M
)y/
x[3M]
X[

0 ] 2 3
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Time Frequency Analysis
« Fundamental building blocks in signal

processing

«=Conventional downsampler

“Input output relationship of conventional downsampler
y[n]=x[Mn] yln],,, =x[n] > &[n—Mk]

7 27 & k—>-0 2 7k 1 = 2 7k
— X(60)— ol 80—ow——— |df = — X —
7 ()MZ( ”Mj M (a)M

k——o0

1
T
M -1 .
M & M

<+ There is a lost of information and aliasing occurs.  *°

)



Time Frequency Analysis

< Fllter banks
«=Filter banks are systems that contain banks of

filters and conventional samplers.

———

X[n]—

foln]

|

- .——YIn]

f,[n]

|

4 1M, o,
M, ullll ™,
i ‘LMN-l SLl[n’ TMN-l

fn-a[n]
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Time Frequency Analysis

<+ Filter banks
«xTime localization of filter banks

s.(n)="> x(m)h,(M,n—m)

Mm-—>—o0

< For finite Impulse response hj(n), It becomes a finite
summation of Mand hence it only captures a finite time
duration information of x(n) . That means, filter banks
have a good time localization property.
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Time Frequency Analysis

< Filter banks

«=Frequency localization of filter banks

<+As the filters has finite bandwidths, the filtered signals
have finite bandwidths. Hence, filter banks have a good
frequency localization property.
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Time Frequency Analysis

< Tree structure filter banks

«Tree structure filter banks Is the most common
approach for implementing discrete-time
wavelet transforms if the filter bank in each tree
level Is paraunitary.

ho[N] J2 12 foln]
| ] {72 {2} {an o
SN hl[n] \1/2 _\J j,, Tz fl[n]
hy[n] | 2 || 12 f,[n]

34



Time Frequency Analysis

< Tree structure filter banks
xR Paraumtarh}/ condition

ZZ kEnk( )

Eo,(?(z) EO,M.—l(Z)

E(Z)E

_EM—l,O(Z) EM—l,M—l(Z)

E(ZE(z)=z"T ,

< For each wel[-n,n], E(eja’) IS constrained to be a unitary matrix. In
other words, it is constrained to be in a high dimensional ball.
However, there are infinite number of o in [-rt,x]. Hence, this problem
IS an infinite number of high dimensional ball constrained problem.

35



Time Fre

% Tree structure filter banks

uenc

= Lattice structure design of paraunitary filter banks

B JM/2

—_

y Analysis

L o o — "'H’O(Z)
¢ & —P -
—— @ 0 —{e ot ’
HL—I(Z)
—* z_;‘T -H | (2)
| s @
Z_'ﬁ— Jmn o
0 —pu
7 M - H ?)

< The problem involves products of many unitary matrices, which is a
highly nonlinear and nonconvex optimization problem. It could be
difficult to find the gradient vector of the objective function of the
optimization problem. Hence, there is no efficient algorithm for the

design.



Time Frequency Analysis

< Tree structure filter banks

coaReal time design of paraunitary filter banks

Zh() (k= pM)=5(m-n)5(p)

) ho(O) hM—l(O) ]
Ft = : :

_ho(N _1) hM—l(N _1)_
ip _s y Opr(N—pM) OprpM

_I(N—plvl M(N-pM) O(N—pM xpM

‘%Tip‘% > 5(p)IM><M



Time Frequency Analysis

< Tree structure filter banks
= Real-time design of paraunitary filter banks

#=U,D.V,

U, =[Uy, UH,2]69RNXI\I
D

D, = e jghM
_O(N—M)xM

It :UH,lDH,1VI:

< Diagonal elements of D, , are either 1 or -1, V|, could be arbitrary
unitary matrix.
D, =diag (U®,---,U®)where U, is a unitary matrix.

D ¢ satisfies the paraunitary condition.
38



Time Frequency Analysis

< Tree structure filter banks
== Real-time design of paraunitary filter banks

min tr((D(aUH,l‘A]H _g'é)T (D®UH’1‘A]H —52))

Vi

subject to VIV, =1, .,

< Define
=T T
B=U], D%

88



Time Frequency Analysis
< Tree structure filter banks
«= Real-time design of paraunitary filter banks

rgin tr((D(aUH,l\A’H _gz)T (D@UHJ‘A]H _‘72))

subject to u,U, =1,
<+ Define N
T . YETYIE
ﬁm E|: TO ﬁTN1:| bl = Zm_onz_ohm,n,lgmn
. B = b b,
ﬁmn:[hm,no hmnM—l]T [0 N Ml]
~ LT
U, .V, EQE[QO Q|\/|—1] A=2M_1M 0O O
T r;; m,n m,n
Q, Z{ﬂfno Q' Nl} A=U,D,V]
‘M ~
B=U.D.V!

40



Time Frequency Analysis
< Tree structure filter banks
«= Real-time design of paraunitary filter banks
< Then
U, =V,U;
A :%Vé(])é -UzAU, )V;

< Implication: Numerical optimization computer aided design tools are
not required to find a locally optimal solution. Hence, we could design
adaptive real-time wavelet kernels.

41



Time Frequency Analysis
« Basis of Hilbert space

X fi., is a basis of Hilbert space # if

+{x,}_, are linearly independent.
» JA,B >0 such that AHYH < Z‘ X;,y ‘ <BHYH

ied

anxampIe 3:£=R)c, =(x,,y)fori=o0,---,N -1
Letcs[co CN_l]TandXE[Xo X|\|—1]

42



= Frames TIme Frequency Analysis

® {x;},., Is a frame of Hilbert space # if
«3JA, B >0 such that AHyH <Z‘ Xi,y ‘ <BHYH

=Example 4:x, e ®"fori=0,-~,M -1, where M > N
Letf=5RN,CiE<Xi,y> fori—O M -1
CE[CO CI\/I—l]T and XE[XO XI\/I—l]
Assume rank(XTX)z N. LetX=X"(XX" " =[%, - %y,]

andc_xy
'\)A(C—XXy XX (XX [y =y

~

> (%) =T =y"X Xy
=0

il 2
Ayl SZOIKXwYN <Bly

(%) is the dual frame to {x;

=N

A= min(eig(f(Ti)) and B = max(eig(f(Ti)) 43



Time Frequency Analysis

< Basis of filter banks

«=Define the inper product of signals as

(x(n).g(n))= > x(m)g(m)

Mm——o0

= Suppose that {f,(n—M m)j is a dual frame

j=0,---,N-1,neZ

of {hj(l\/ljn—m)}

j=0,--\N-1,nez

44



Time Frequency Analysis
& Perfec_t reconstruction of filter banks

1(@)=Y(x@H @), ) F@)

=0 ™;

B i Ny |v|i k |\/|i k
-2 M_sz%x zW.OH | 2w F,(z)
~ J ™

]

S S o -t

j=0 MJ k=0
-1F. j—1
=3 1S > X (2w 5 H (2w, )= cz X (2)
j=0 Mj k;=0
where d Is the delay of the system, c Is gain of
system and o .

sze "



Time Frequency Analysis

<+ Perfect reconstruction of filter banks
CDRIf {fJ (n -M jm)}j:O,---,N—l,neZ and {hl (M jn r m)}j:O,---,N—l,neZ

are biorthogonal, then the filter banks achieve
perfect reconstruction.

46



Time Frequency Analysis

< Incompatible nonuniform filter banks
«Consider a nonuniform filter bank with My=2,

M;=3 and M,=6.

e

o 42

J{ T2

foln]

X[n]—

13

13

1 filn]

- O——yIn]

| 16

16

fo[n]
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Time Frequency Analysis

< Incompatible nonuniform filter banks
«=We have

1 1 1
SH@)  SH(@E)  SH.()

0 0 %HZ(ZW)
I 0 IHw?) ih,(w?)[RE)]
) - xfe], s g
§H0<ZW3) 0 EHZ(ZW"‘) F(2)

0 %Hl(zw“) %HZ(ZW“)

0 0 %H2(2W5)

127

wherew —o 6




Time Frequency Analysis

< Incompatible nonuniform filter banks

If perfect reconstruction could be achieved for
arbitrary bounded inputs, then _

1 1 1

EHo(Z) ng(Z) EHz(Z) i
0 0 %HZ(ZW) cz*

. 0

0 %Hl(zwz) %HZ(ZWZ) RE) |

1 ; 1 ] Fl(z) = 0

SHo(W?) 0 ZH(W?)| g ()

: 1 : 4 i
0 M ZW*) EHZ(ZW“) 0
0 0 %H2(2W5)

«=Impossible to achieve perfect reconstruction

because aliasing cannot be cancelled.

49



Time Frequency Analysis
< Incompatible nonuniform filter banks

«=Open problem

< How to design the filters and the samplers such that perfect
reconstruction can be achieved?

= P. Q. Hoang and P. P. Vaidyanathan, “Non-uniform multirate filter banks:
theory and design,” International Symposium on Circuits and Systems,
ISCAS, pp. 371-374, 1989. (Open problem seeking for general solutions)

«=Tongwen Chen, Li Qiu and Er-Wei Bali, “General multirate building
structures with application to nonuniform filter banks,” IEEE Transactions
on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 45,
no. 8, pp. 948-958, 1998. (Solution based on time varying filters)

«= Sony Akkarakaran and P. P. Vaidyanathan, “New results and open
problems on nonuniform filter-banks,” International Conference on
Acoustics, Speeches and Signal Processing, ICASSP, pp. 1501-1504,
1999. (Open problem seeking for time invariant solutions)

«= Charlotte Yuk-Fan Ho, Bingo Wing-Kuen Ling and Peter Kong-Shun
Tam, “Representations of linear dual-rate system via single SISO LTI
filter, conventional sampler and block sampler,” IEEE Transactions on
Circuits and Systems-Il: Express Briefs, vol. 55, no. 2, pp. 168-172, 59
2008. (Solution based on time invariant filters)



Time Frequency Analysis

< Incompatible nonuniform filter banks

«=Time varying solution
< By converting the nonuniform filter bank to a uniform filter

bank, we have ...

Ho@ [{ V6| 13 J (43 | 16 { Fo(2) |—

| 22Hy(2) 16 H 13 Z. Zi 13 *’ 16 | Z2F(2) \

- 2 | 7-4E
o 2%Hy(2) |+ 16 22l s 16 2F(2) ><7‘D%Y(z)

M@ {6 |12 [ 2 0= T6 | Fy(2)
2°H,(z) || V6 12 P L2 2 H T6 | Z°F(2)
H,(z) .+ 16 - 16 Fy(2)

<+ The dash rectangle is an identity system, so this
nonuniform filter bank becomes a uniform filter bank.



Time Frequency Analysis

< Incompatible nonuniform filter banks

«=Time varying solution
<+ The dash block is a time varying system.

* Ho(2)

X(2) H,(2)

o Hy(2)




Time Frequency Analysis

+ Basic property of upsampler and
downsampler

= The upsampler and the downsampler is In
general not commutative.

— 12

>

T2

=Upsamp

L and M Is co-prime.

er (upsamplec

—

—

12

>

$2

—>

by L) and downsampler
(downsampled by M) is commutative if and only if

53



Time Frequency Analysis

| L[] WM
:
[M-L+L] qM-L]  r[M-L-L ML-2L] L 10
rr[ML++LIVI LLl[ M-L-M] r [ N]LH[ML ;L] - [] rH/l
{ M2M+L] z|v|] OM-L]  reMZL] - (2M +L-ML] r[2-M -M-L] -
M+L] 1* iM L] r[M-2-L] : [M+LML fMML]
r[-2-L] r[L-M-L] M-L] .
0\ 2 W
L and M are co-prime.
X
1{g. [a i A -
a

54



Time Frequency Analysis

A
ety Sl i
[[2-M+a-M . e 13M M M
s M B . GO
IR 5 r[aM] S 1{ ... 1M] r r-M]
1 0 " L 4 'l A
L=a-M



Time Frequency Analysis

<+ Linear time invariant solution

«=Block decimators (decimation ratio M and block
length L)

y[Lk+ j]=xfkmL+ j] for j=0,1,...,L-1 and keZ.

A0l x[n] — [ (M,L) |—vnl

X[L-1] yinl / [ML+L-1] /

» n
| J
x[0] X[ML]
T x[1] T X[ML+1]
0 1 L-1 L« L+1 2L-1 7




Time Frequency Analysis

<+ Linear time invariant solution

«=Block expanders (expansion ratio M and block
length L)

- ){k — molc\i/l(k, I\/IL)+ mod(k, ML)} k —mod(k, ML) < k < k —mod(k, ML)+ L
0 k —mod(k, ML)+ L <k <k +ML—mod(k, ML)

x[n] x[2L-1] X[n] —» T(M,L) ——y[n]

-




Time Frequency Analysis

<+ Linear time invariant solution

«®Vm,neZ* (no matter m and n are co-prime or not),
all linear dual rate systems with shifting input by n
samples resulting to shifting an output by m
samples can be represented via a series cascade
of Tm, followed by a linear time invariant filter with
an impulse response f[k], and then followed by

L(n,m).

58



Time Frequency Analysis

<+ Linear time invariant solution

«=The Input output relationship of all linear dual rate
Systems IS yim+ij= >qhi1-knuny, VK,IleZ, Vm,neZ*
and i=0,1,....m-1."”~

«=The Input output relationship of the proposed
representation Is ylkn-+1] = Z.ffkmn =l + 1ull, vk,leZ,
vm,neZ* and i=0,1,...,m-1.

xVk,leZ, Vm,neZ* and i=0,1,...,m-1, the mapping
from {0,1,...,m-1}xZ to Z, where [i,|-kn]€{0,1,...,m-
1}xZ and kmn-ml+ieZ is bijective. 50



Time Frequency Analysis

<+ Linear time invariant solution

«=Hence, Vk,leZ, Vm,neZ* and i=0,1,...,m-1, there
exists a unigue time index kmn-ml+i
corresponding to the time index [i,I-kn].

«RAS a result, there exists a linear time invariant
filter with an impulse response f[k] satisfying
flkmn-ml+i]=g[i,l-kn], Vk,leZ, Ym,neZ* and
1=0,1,...,m-1, that the linear dual rate systems and

the proposed representation are input output
equivalent.
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Time Frequency Analysis

<+ Linear time invariant solution

«=Conseqguently, the incompatible nonuniform filter
bank can achieve perfect reconstruction via the
following structure.

Ho(2) 12 16 R | | V(&e) =

H,(2) 13 T6 @ | e *’@—’

»LG T6 Lo F2(Z) ]

| HZ(Z) —» —

61



Time Frequency Analysis

<+ Linear time invariant solution

«®Vm,neZ* (no matter m and n are co-prime or not),
all linear dual rate systems with shifting input by n
samples resulting to shifting an output by m
samples can be represented via a series cascade
of T(m,n), followed by a linear time invariant filter
with an impulse response f[k], and then followed
by 4n.
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Time Frequency Analysis

<+ Linear time invariant solution

«The input output relationship of all linear dual rate
systems is¥ld= 2 zdlonl+ilint+l Nk le 7 Vm,neZ?

— -0i=0

and 1=0,1,...,n-1.

«xThe input output relationship of the proposed
representation isylkl= 2 2fkn=mnl=ijulni+il "7k [ Z,

| > -w0i =

vYm,neZ*tand i=0,1,..., 1

xVleZ, Vm,neZ* ke{0,1,...,m-1} and i€{0,1,...,n-1},
the mapping from {0,1,...,.m-1}xZ to Z, where
[k,nl+1]€{0,1,...,m-1}xZ and kn-mnl-ieZ Is bijective.



Time Frequency Analysis

<+ Linear time invariant solution

«Hence, VleZ, vm,neZ*, ke{0,1,...,m-1} and
1€{0,1,...,n-1}, there exists a unique time index
kn-mnl-i corresponding to the time index [k,nl+i].

«RAS a result, there exists a linear time invariant
filter with an impulse response f[k] satisfying f[kn-
mnl-i]=g[k,nl+i], Vk,leZ, Ym,neZ* and i=0,1,...,n-1,
that the linear dual rate systems and the
proposed representation are input output
equivalent.
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Time Frequency Analysis

<+ Linear time invariant solution

«=Conseqguently, the incompatible nonuniform filter
bank can achieve perfect reconstruction via the
following structure.

Ho(2)

a2

o 1(6,3)

Fo(2)

H,(2)

F:

i3

1(6,2)

F,(2)

2

H,(2)

16

16

F,(2)

oy

———

|
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Time Frequency Analysis

<+ Linear time invariant solution

«=Implication: We could have arbitrarily time
localization and frequency localization.
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Time Frequency Analysis

< Application of nonuniform filter banks
«=Nonuniform transmultiplexers

SR S TIM, [——yIn
Xo[N]— TMO folnl —— L : o
J h,[n] IM;  ——In]
X [N]— TM, filn] @O Z
fle[n] J {0l [ Myt

Xna[N]—— TMN—l T

< Perfect reconstruction
Yi [n]: Ci Xi [n _di]
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Time Frequency Analysis

< Application of nonuniform filter banks

«=Nonuniform transmultiplexers

<~Example 4: F,(z)=1, F,(2)=z4+z>, F,(z)=z3, then
R,(2)=1-z2+z>+2%0-z13, R (z)=z1%+z'3 and R,(z)=z3.

XolN}—

T2

Fo(2)

————>»

13

J{ Ro(2)

e

X1 [n]—

13

Xo[N]}—

Fi(2)

o T2

+ Ry(2)

13

F,(2)

s
1

R,(2)

‘L(é13) 4>y0[n]
1©2) = ViInl
o 16 ——YaIn]
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Time Frequency Analysis

< Application of nonuniform filter banks

«=Nonuniform image coding
< EXisting successive approximati8n technique

6 BI? 3-B/4 B

< O >< 1 > O >< 1 > 0 >< 1 >
0 B/4 B/2 3-B/4 B

where B Is the maximum absolute value of the wavelet
coefficients.
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Time Frequency Analysis
< Application of nonuniform filter banks

«=Nonuniform image coding

< Absolute values of wavelet coefficients follows Laplacian
distribution approximately.

S




Time Frequency Analysis

« Application of nonuniform filter banks

«=Nonuniform image coding

< Probability of assigning the symbol ‘0’ is greater than
that of the symbol ‘1’

< Uniform distribution of the symbols gives maximum
entropy.

<+ S0 the existing successive approximation technique
IS not optimal.

<A higher coding gain curve may be achieved by
means of non-uniform successive approximation.
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Time Frequency Analysis
< Application of nonuniform filter banks

«=Nonuniform image coding

Number of wavelet coefficients

0 B2

Absolute values of wavelet coefficients

3B/4 B
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Time Frequency Analysis

< Application of nonuniform filter banks

«=Nonuniform image coding
+Set the thresholds T, at B/p), where p>2.

<+Let a and b are the boundaries in the region, c be the
coded value and f(x) be the distribution of the wavelet
coefficients, then the error introduced in the quantization
IS: b

E(c)= j(x—c)2 - £ (x)dx

where f (x)= A-e**

d
—E(c)=0
- EC)
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Time Frequency Analysis
< Application of nonuniform filter banks

«=Nonuniform image coding
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Time Frequency Analysis

< Application of nonuniform filter banks
«=Nonuniform image coding

36

34

30

/Gniform successive approximation

PSNR

24

16 0.05 0.1 0.15 0.2 by 025 0.3 0.35 0.4 0.45 0.5
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Time Frequency Analysis

< Filter window banks and Fractional Fourier
transform
«=Downsampling first and then upsampling is

equivalent to a sampling window function. What
happens if we have general window functions?

o hglnl o weln] |——{ foln] J

hy[n] wn] —— fin +——o— Yl

X[n]— , : : J
o hnealn] 1 Wh1[N] o fualnl -
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Time Frequency Analysis

<+ Filter window banks and Fractional Fourier
transform

«=Fractional Fourier transform iIs to rotate the time
frequency plane

uj | cosé sing |t
v| |-sind cosé|w
«=BY designing a set of windows and filters as well as
applying the fractional Fourier transform to rotate

the time frequency plane, the signals could be
extracted out precisely.

&



Time Frequency Analysis
< Filter window banks and Fractional Fourier

transform
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Time Frequency Analysis

<+ Filter window banks and Fractional Fourier transform

«=Open problems:
< How to guarantee the perfect reconstruction?

< How to design the globally optimal set of filters and the windows such
that the filters have good frequency selectivities?

< Filtering and windowing could be understood as the multiplication in
certain particular domains, such as in the frequency domain and in
the time domain. In fact, these domains are obtained by certain
particular unitary transforms. For example, frequency domain is
obtained by applying the DFT transform which is a unitary transform
and the time domain is obtained by applying the IDFT transform
which is also a unitary transform . What happens if the transform is
generalized to arbitrarily unitary transforms and how to determine
such optimal transform?

<+ How to apply these results to some practical problems, such as
denoising problems, signal separation problems, pattern recognition

problems and fault detection problems? E



Time Frequency Analysis

< Applications

Signal levels

«=ECG signal denoising

——Ideal signal
2 Noisy signal
3 f f i i i Filtered Signal
I e R ]
1 /1 1 1 1 1
ob—— S R R ]
| Yol - | |
'1{/// ’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ 7
-277777777777777777777777777\777777777777717777777777777—3( 7777777777777777777777777777777777777777777777777777 ]
_3————————————4—————————————\—————————————F————————————A: ———————————————————————————————————————————————————— —
| |
57 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i
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Time Frequency Analysis

< Applications

«=Audio signal denoising for digital aud
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Time Frequency Analysis

< Applications
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Time Frequency Analysis
< Applications
«=Machine fault analysis
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Time Frequency Analysis
< Applications
«=Machine fault analysis
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Time Frequency Analysis
< Applications
«=Machine fault analysis
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Time Frequency Analysis
< Applications
«=Machine fault analysis
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Frequency Analysis

Time

Applications

«=Machine fault analysis
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<+ Many applications, such as denoising, sampling,
analog-to-digital conversions and amplitude
modulation schemes, are derived based on
frequency domain approaches.

« Further applications, such as denoising, signal
separations, fault analysis, could be derived
based on time frequency domain approaches.
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Thank you!

Let me think...
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