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ABSTRACT

In this paper, a nonlinear phase finite impulse response
(FIR) filter is designed without imposing a desired phase
response. The maximum passband group delay of thefilter is
minimized subject to a positivity constraint on the passband
group delay response of the filter as well as a specification
on the maximum absolute difference between the desired
magnitude sguare response and the designed magnitude
square response over both the passband and the stopband.
This filter design problem is a nonsmooth functional ine-
guality constrained optimization problem. To tackle this
problem, first, the one norm functional inequality constraint
of the optimization problem is approximated by a smooth
function so that the nonsmooth functional inequality con-
strained optimization problem is approximated as a noncon-
vex functional inequality constrained optimization problem.
Then, a modified filled function method is applied for find-
ing the global minimum of the nonconvex optimization prob-
lem. Computer numerical simulation results show that our
designed nonlinear phase peak constrained FIR filter could
achieve lower minimum passband group delay than those of
existing designs.

1 INTRODUCTION

Nonlinear phase FIR filters are attractive in slgmacess-
ing applications because they could achieve b&tguency
selectivities than linear phase filters for the eaffilter
lengths. In addition, bounded input leads to bodnolgtput
and the stability of the filter is guaranteed. Gangently,
nonlinear phase FIR filters are found in many stéeand
engineering applications [1].

Although many nonlinear phase peak constrained FIR
filter designs could be found in literature, mostiwese de-
signs minimize the maximum absolute differencesvben
the desired magnitude square responses and thgneesi
magnitude square responses [2]. However, thesegrdesi
have not considered the maximum passhand groupsdefa
the filters. To tackle the maximum passband graelpyé of
the filters [3], they require the desired phas@aeases of the
filters. Unlike linear phase filter designs, thesided phase
responses of nonlinear phase filters are usuakypanmn. By
imposing certain desired phase responses, the maxim
passband group delays of the designed filters areopti-
mized. Also, the frequency selectivities of theiglesd filters
could be reduced. In this paper, the maximum paskba
group delay of the filter is minimized subject tasitivity
constraint on the passband group delay responte dilter
as well as a specification on the maximum absddifter-
ence between the designed magnitude square respodse
the desirable magnitude square response over hetpass-
band and the stopband of the filter. The one nametfonal
inequality constraint of the optimization problesnapproxi-
mated by a smooth function so that the nonsmoatttitanal
inequality constrained optimization problem is apgmated
as a nonconvex functional inequality constrainetinupa-
tion problem. Then, a modified filled function methis ap-
plied for finding the global minimum of the noncaxvop-
timization problem. Computer numerical simulati@sults
show that our designed nonlinear phase peak coredtr&IR
filter could achieve lower maximum passband groefayl
than those of the existing designs.

The outline of this paper is as follows. The prable
formulation and the solution method are presemniegection
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2. Computer numerical simulation results are prteseim
Section 3. Finally, a conclusion is drawn in Setdo

2. PROBLEM FORMULATION AND SOLUTION
METHOD

2.1  Problem formulation

Denote|H (w), OH(«), 7(w), D(e) andh(n) as the magni-
tude response, the phase response, the grouprdsfanse,
the desired magnitude response and the impulsenssf
a nonlinear phase peak constrained FIR filter, eethgely.
In addition, denoteBp, B.. N and (5(w))’ as the pass-

band, the stopband, the length and the specifitatio the
maximum absolute difference between the designeghima
tude square response and the desirable magnitugiesq
response of the filter, respectively. The vectorth# filter
coefficients is given ag =[h(0), h(1), h(N -1)]", where

T is the transpose operator. Denote the frequersporse
kernels as

1 (w)= [O, sinw,

oy sin(N-2)a)]" .

w, cod(N -2,

oy (N=D)sin(N -De)]

(@)=L cosw,
v(w)=[0, sinw,

and
. (N=2)cog(N -1)a)] -

Then, H(a) =7 (i~ il (@ OH () = - tar (@)X and
1 (w)x

v (w)=[0, cosw,

r(w)= _dDdLa(“). Define

Qu(@) =1 (@) (@) + 1, (@h (@)

Qu (@) = te(@h{ (@) +1.(wh? ().

Then, we haver(y) = X'Qu(w)x A specification on the
x'Q, ()

maximum absolute difference between the designeghima

tude square response and the desirable magnitudiesq

response of the filter is given an(w)‘z - (D(w)| < (8(w))
Oa0B,UB, This equivalent

x'Q,(@x-(D(w)|=(8(w)f DaDB,UB,. As the pass-
band group delay response of the filter is requioelde posi-

and

<

is to

tive, we have_ x"Q, (w)x <0 DOa0OB, . To minimize the
x'Q,(w)x P
maximum passband group delay of the filter subjedhe
positivity constraint on the passband group dedgponse of
the filter as well as the specification on the maxin abso-
lute difference between the designed magnitudersqgus
sponse and the desirable magnitude square respwese
both the passband and the stopband of the filier,fitter
design problem is formulated as the following ojetation

problem:
Problem (P)
mxin f(X): maxm ,

a8, X' Q,(w)x

sublect 0 g,(x, ) = x'Q, (k- (D(@)f] - (3(w)) <0

Dw01B,UB,,
and _ XQuwk o peps,,
92(X1w) XTQz(a))X < p

where f(x) is the cost function of the optimization problem,
0,(x,«) is the one norm functional inequality constraind a
g,(x,c.) are the rational functional inequality constradrft

the optimization problem.

2.2 Solution method

As Problem @) is a nonsmooth functional inequality con-
strained optimization problem, there are oscilladiovhen
running conventional optimization algorithms. Henités a
challenge to find the global minimum of the optiatinon
problem. To address this difficulty, the one notmdtional
inequality constraint of the optimization problem ap-
proximated [4] by a smooth function so that theillzmons
could be avoided. This is done by defining

XQu(@x-(D(@)|-(6(@)f  [xQ(wk-(D@)|=
X' Q,(whx-(D(@)) , % (B}

g
De0B,UB, - It is worth noting thatg, (x,«)= g(x,)

De0B,UB, @so - 0". Problem @) could be approxi-

g
2

ga(x’ W)=
otherwise

mated as the following optimization problem:
Problem (P!)

f(x)=
g B, X'Q, (w)x

subject to g, (x,«)<0 0a0B,UB;,

x'Q,(w)x
gz(X’w):_ TQl( )

X Qz(w)x

Problem @) is a nonconvex functional inequality con-
strained optimization problem and thus it remaichallenge
to find the global minimum of the optimization pteim. For
this, a modified filled function method [5] is apgd. The
filled function H(x) is used to escape from the current local
minimum and to reach another point in a lower basi(x)
from the current local minimum.
T
H(x)= maxXTQl(w)X + Tl '

w8, X' Q, (@) (x—xf) R(x—xE)
whereR is a positive definite matrix that controls theesul
of the hill of H(x) atx!. If R is a diagonal matrix with all
diagonal elements being the same and positive, trge
values of these diagonal elements will result wide spread
of the hill of H(x) atx{ and vice versa. The algorithm for

solving Problem p!), incorporating the filled function, is

summarized as follows.

Algorithm

Step 1: Initialize a minimum improvement factpr, an
accepted errog’, an initial search poir, , a posi-

tive definite matrixR and an iteration indek =1.

X"Q,(e)x

min
X

and <0 Ua0B,-




Step 2: Find a local minimum of the following optation ~ minimum will be lower than or equal fio- ¢ multiplied to
Problem @, ) via the integration approach [6] basedthe cost value evaluated g, that is f(%,,,)< (1-£)f (x;)

on the initial search poirg, . for k<K . Hence, we have
Problem (p, ) f(X..)<@-£)f(x))<@-£)? 1 (x,) for k<K . This further
. X"Q,(w)x implies thatx, for k< K will not be stuck at local minima
min f(x)= Tg"é‘,,xixTQl(a))x ’ of f(x) because 0<l-£<1 . Also, we have
subject to g, (x,&.)<0 Oa0B,UB,, f(x,)<(@-£)*(x,) for k<K . Let the global minimum
o) (w)x of the optimization problem bex’ , then we have

gz(x,a)):_xTQl(w)X <0 UalBy» f(x')s(l_g)z(‘(‘l)f(il) for k<K . This implies that

2
. - log f(%,)~10g f(x') and the algorithm al )
and _ o XQuax (%) Q,(w)x, K<l- 1 and the algorithm always con
gg(X)—naggl:(XTQz(w)x (1 f)%@}WSO 2log(L-¢)

4.verges. Lef z] be the nearest integer pfsuch thafz|>z.

where g.(x) < 0 is a discrete constraint we impose
: o Then, the computational complexity of the algorithsn
Denote the obtained local minimum gs bounded by that required for finding

Step 3: To escape from the current local minimurm &n o f(i )—Io f(x‘) o N
reach another point in a lower basin k) from 2{1— g 2|;g(1_g£) 1 local minima of the optimization

x., we find a local minimum of the following op-

kT ] . i problem.
timization Problem @, ) via the integration ap-
proach [6] based on the initial search paint 3. COMPUTER NUMERICAL SIMULATION
Problem (P, ) RESULTS
: x"Q, (w)x 1 Since desired phase responses of nonlinear phakecpe-
min H(x)= pognre (@) + (x—xD)TR(x—xD), strained FIR filters are imposed in existing desjgnis very
) z k k difficult to have a fair comparison. We intend tongare
subject to g, (x,«)<0 0a0B,UB,, our works to that presented in [3] because the svqe-
xTQl(a))x sented in [3] are the most related works to ourkeidound
gZ(X’w):_XTQ (w)XSO UeUB,» in literature.
! 2 v ; Both the length and the desired magnitude respohse
and = max Q@ M< ; the filter are chosen the same as that in [3] ifepto have a
0,00 = ma’ S _(1_g)may or the . .
w8, X'Q,(ew)x 8, (x7) Q, (@) fair comparison, that il =30 and
where g,(x)< 0 is a discrete constraint we imposed. 1 |aof< 0127
Denote the obtained local minimum &s, . Set D( )_ 0 M > 02471'
k=k+1. _ As the optimization problem is to minimize the nmaxim
Step 4. lIterate Step 2 and Step 3 until passband group delay of the filter subject to tbsitvity
(XD)TQ (w? (XD )TQ (e ‘ constraint on the passband group delay resporibe diter,
k 1 k _ v A\ k=1 1 k-1 <o

o\ o o\ o= the specification on the maximum absolute diffeecie-

o (Xk) Qz(w)xk oo (Xk'l) Qz(w)xk'l‘ . tween the designed magnitude square response @uigsh-
Take the final vector ok’ as the global minimum aple magnitude square response over the passbatit of

of the original optimization problem. filter is set exactly the same as that over thptsiad of the

The working principle of the algorithm has been- dis filter. Since there are tradeoffs among the maxinalasolute

cussed in [5]. In this paper, an analytical boundhe com- difference between the designed magnitude squapomse

putational complexity of the algorithm is derivesuppose and the desirable magnitude square response, rtgth)ehe

that the algorithm takeK iterations before the termination. bandwidth and the center frequency of the filgge) is set

As the constraing3(x) is imposed on Problenp( ), a new to -345dB for WS 0127 and WZ 02477 . In order to

local minimum of Problem g, ), which isx_, will not be  have a good approximation between the nonsmootb- fun
located aty,, that isx” # %, and the cost value evaluated attional inequality constrained optimization problemd the
corresponding nonconvex functional inequality caaised
optimization problemg should be small. Herer=10° is
chosen. Also, to obtain a high accuracy of theinbthglobal
f(x')<@-¢)f(x,) for k<K . Similarly, as the constraint minimum without the termination of our algorithmoth &
g4(x) is imposed on Problenplg ), a new local minimum of and £ should be small. Hereg=¢=10° is chosen. The

Problem @, ), which is%, ., will not be located at”, that is initial condition X, of the global optimization algorithm is
and the cost value evaluated at the new IOC(,ﬂbtained based on the method discussed in [2].eSoeal
minima of nonlinear phase peak constrained FlRr§iltare

the new local minimum will be lower than or equallt ¢
multiplied to the cost value evaluated &, that is

ik+l # XE !



usually located very close together, the spreadseohills of
H(x) at x; should be small ang is chosen as the diagonal

matrix with all diagonal elements equaliig?®.

Based on the parameters chosen above, it only takes. -

three iterations for the algorithm to terminate.nek our
proposed method is very efficient. Figures 1 angd? the
maximum passband group delay as well as the sqoatref

the maximum absolute difference between the dedigne
magnitude square response and the desirable magnitu

square response over the passband and the stopbamel
filter designed via our proposed approach. It cansben
from the figures that they are 6.877856942tdB and

—-34.6062d0B, respectively, in which the required c:onstraintsf

are all satisfied. Compared to the results obtaime¢B3],
those values are 12.4389826765:dB and -44.7822dB,
respectively. Although the performance on the sejuaot of

the maximum absolute difference between the dedigne
magnitude square response and the desirable magnitu

square response over the stopband of our desigiterdi$
slightly worse than that of [3], both the maximursgband
group delay and the square root of the maximum lateso
difference between the designed magnitude squapomee
and the desirable magnitude square response ovqyass-
band of our designed filter are significantly bettean that of
[3]. This is because our proposed algorithm cound the
global minimum of the nonconvex optimization prabjan
which the method discussed in [3] does not optintfz

maximum passband group delay of the filter.
7,

6.5]

Group delayt(w)

»
3]

0.2
Frequency w

Figure 1. The passband group delay response afesigned
nonlinear phase peak constrained FIR filter.
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Figure 2. (a) The square root of the maximum absalif-
erence between the designed magnitude squarensespad
the desirable magnitude square response over $isbanad of
our designed nonlinear phase peak constrainediltdR (b)
that over the stopband.

4, CONCLUSION

This paper formulates a minimax passband groupydela
nonlinear phase peak constrained FIR filter degigiblem

as a nonsmooth functional inequality constrainetinupa-
tion problem. The one norm of the functional indijya
constraint of the optimization problem is first amxmated

by a smooth function so that the nonsmooth funetiome-
quality constrained optimization problem is appnoaied as

a nonconvex functional inequality constrained ojgation
problem. Then, a modified filled function methodajsplied
for finding the global minimum of the nonconvex iogiza-
tion problem. Computer numerical simulation resgh®w
that our proposed method could efficiently and cifely
design a minimax passband group delay nonlineasgha
peak constrained FIR filter without imposing a daisie
phase response.
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