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ABSTRACT 

In this paper, a nonlinear phase finite impulse response 
(FIR) filter is designed without imposing a desired phase 
response. The maximum passband group delay of the filter is 
minimized subject to a positivity constraint on the passband 
group delay response of the filter as well as a specification 
on the maximum absolute difference between the desired 
magnitude square response and the designed magnitude 
square response over both the passband and the stopband. 
This filter design problem is a nonsmooth functional ine-
quality constrained optimization problem. To tackle this 
problem, first, the one norm functional inequality constraint 
of the optimization problem is approximated by a smooth 
function so that the nonsmooth functional inequality con-
strained optimization problem is approximated as a noncon-
vex functional inequality constrained optimization problem. 
Then, a modified filled function method is applied for find-
ing the global minimum of the nonconvex optimization prob-
lem. Computer numerical simulation results show that our 
designed nonlinear phase peak constrained FIR filter could 
achieve lower minimum passband group delay than those of 
existing designs. 

1. INTRODUCTION 

Nonlinear phase FIR filters are attractive in signal process-
ing applications because they could achieve better frequency 
selectivities than linear phase filters for the same filter 
lengths. In addition, bounded input leads to bounded output 
and the stability of the filter is guaranteed. Consequently, 
nonlinear phase FIR filters are found in many science and 
engineering applications [1]. 

Although many nonlinear phase peak constrained FIR 
filter designs could be found in literature, most of these de-
signs minimize the maximum absolute differences between 
the desired magnitude square responses and the designed 
magnitude square responses [2]. However, these designs 
have not considered the maximum passband group delays of 
the filters. To tackle the maximum passband group delays of 
the filters [3], they require the desired phase responses of the 
filters. Unlike linear phase filter designs, the desired phase 
responses of nonlinear phase filters are usually unknown. By 
imposing certain desired phase responses, the maximum 
passband group delays of the designed filters are not opti-
mized. Also, the frequency selectivities of the designed filters 
could be reduced. In this paper, the maximum passband 
group delay of the filter is minimized subject to a positivity 
constraint on the passband group delay response of the filter 
as well as a specification on the maximum absolute differ-
ence between the designed magnitude square response and 
the desirable magnitude square response over both the pass-
band and the stopband of the filter. The one norm functional 
inequality constraint of the optimization problem is approxi-
mated by a smooth function so that the nonsmooth functional 
inequality constrained optimization problem is approximated 
as a nonconvex functional inequality constrained optimiza-
tion problem. Then, a modified filled function method is ap-
plied for finding the global minimum of the nonconvex op-
timization problem. Computer numerical simulation results 
show that our designed nonlinear phase peak constrained FIR 
filter could achieve lower maximum passband group delay 
than those of the existing designs. 

The outline of this paper is as follows. The problem 
formulation and the solution method are presented in Section 
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2. Computer numerical simulation results are presented in 
Section 3. Finally, a conclusion is drawn in Section 4. 

2. PROBLEM FORMULATION AND SOLUTION 
METHOD 

2.1 Problem formulation 
Denote ( )ωH , ( )ωH∠ , ( )ωτ , ( )ωD  and ( )nh  as the magni-

tude response, the phase response, the group delay response, 
the desired magnitude response and the impulse response of 
a nonlinear phase peak constrained FIR filter, respectively. 
In addition, denote 

pB , 
sB , N  and ( )( )2ωδ  as the pass-

band, the stopband, the length and the specification on the 
maximum absolute difference between the designed magni-
tude square response and the desirable magnitude square 
response of the filter, respectively. The vector of the filter 
coefficients is given as ( ) ( ) ( )[ ]TNhhh 1,,1,0 −≡ Lx , where 
T  is the transpose operator. Denote the frequency response 
kernels as 

( ) ( )( )[ ]Ts N ωωω 1sin,,sin,0 −≡ Lι , 

( ) ( )( )[ ]Tc N ωωω 1cos,,cos,1 −≡ Lι , 

( ) ( ) ( )( )[ ]Ts NN ωωω 1sin1,,sin,0 −−≡′ Lι  

and 
( ) ( ) ( )( )[ ]Tc NN ωωω 1cos1,,cos,0 −−≡′ Lι . 

Then, ( ) ( ) ( )xιxι ωωω T
s

T
c jH −= , ( ) ( )

( )xι
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ω
ωω

T
c

T
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( ) ( )
ω
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d
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( ) ( ) ( ) ( ) ( )ωωωωω T
ss

T
cc ιιιιQ ′+′≡1

 

and 
( ) ( ) ( ) ( ) ( )ωωωωω T

ss
T
cc ιιιιQ +≡2

. 

Then, we have ( ) ( )
( )xQx

xQx
ω
ωωτ

2

1
T

T

= . A specification on the 

maximum absolute difference between the designed magni-
tude square response and the desirable magnitude square 
response of the filter is given as ( ) ( )( ) ( )( )222 ωδωω ≤− DH  

sp BB U∈∀ω . This is equivalent to 

( ) ( )( ) ( )( )22
2 ωδωω ≤− DT xQx  

sp BB U∈∀ω . As the pass-

band group delay response of the filter is required to be posi-

tive, we have ( )
( ) 0

2

1 ≤−
xQx
xQx

ω
ω

T

T
 

pB∈∀ω . To minimize the 

maximum passband group delay of the filter subject to the 
positivity constraint on the passband group delay response of 
the filter as well as the specification on the maximum abso-
lute difference between the designed magnitude square re-
sponse and the desirable magnitude square response over 
both the passband and the stopband of the filter, the filter 
design problem is formulated as the following optimization 
problem: 
Problem (P ) 

x
min  ( ) ( )

( )xQx
xQx

x
ω
ω

ω
2

1max
T

T

Bp

f
∈

= , 

subject to ( ) ( ) ( )( ) ( )( ) 0, 22
21 ≤−−= ωδωωω Dg T xQxx  

sp BB U∈∀ω , 

and ( ) ( )
( ) 0,

2

1
2 ≤−=

xQx
xQx

x
ω
ωω

T

T

g  
pB∈∀ω , 

where ( )xf  is the cost function of the optimization problem, 

( )ω,1 xg  is the one norm functional inequality constraint and 

( )ω,2 xg  are the rational functional inequality constraint of 

the optimization problem. 
2.2 Solution method 
As Problem (P ) is a nonsmooth functional inequality con-
strained optimization problem, there are oscillations when 
running conventional optimization algorithms. Hence, it is a 
challenge to find the global minimum of the optimization 
problem. To address this difficulty, the one norm functional 
inequality constraint of the optimization problem is ap-
proximated [4] by a smooth function so that the oscillations 
could be avoided. This is done by defining 

( )
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sp BB U∈∀ω . It is worth noting that ( ) ( )ωωσ ,, xx gg ≈  

sp BB U∈∀ω  as +→ 0σ . Problem (P ) could be approxi-

mated as the following optimization problem: 
Problem ( σP′ ) 

x
min  ( ) ( )

( )xQx
xQx

x
ω
ω

ω
2
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Problem ( σP′ ) is a nonconvex functional inequality con-

strained optimization problem and thus it remains a challenge 
to find the global minimum of the optimization problem. For 
this, a modified filled function method [5] is applied. The 
filled function ( )xH  is used to escape from the current local 

minimum and to reach another point in a lower basin of ( )xf  

from the current local minimum. 

( ) ( )
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k
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where R  is a positive definite matrix that controls the spread 
of the hill of ( )xH  at ∗

kx . If R  is a diagonal matrix with all 

diagonal elements being the same and positive, then large 
values of these diagonal elements will result in a wide spread 
of the hill of ( )xH  at ∗

kx  and vice versa. The algorithm for 

solving Problem ( σP′ ), incorporating the filled function, is 

summarized as follows. 
Algorithm 
Step 1: Initialize a minimum improvement factor ε , an 

accepted error ε′ , an initial search point 
1

~x , a posi-

tive definite matrix R  and an iteration index 1=k . 



Step 2: Find a local minimum of the following optimization 
Problem (

fP ) via the integration approach [6] based 

on the initial search point 
kx~ . 

Problem (
fP ) 
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where ( ) 03 ≤xg  is a discrete constraint we imposed. 

Denote the obtained local minimum as ∗
kx . 

Step 3: To escape from the current local minimum and to 
reach another point in a lower basin of ( )xf  from 

∗
kx  , we find a local minimum of the following op-

timization Problem (
HP ) via the integration ap-

proach [6] based on the initial search point ∗
kx . 
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where ( ) 04 ≤xg  is a discrete constraint we imposed. 

Denote the obtained local minimum as 
1

~
+kx . Set 

1+= kk . 
Step 4: Iterate Step 2 and Step 3 until 
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Take the final vector of ∗
kx  as the global minimum 

of the original optimization problem. 
The working principle of the algorithm has been dis-

cussed in [5]. In this paper, an analytical bound on the com-
putational complexity of the algorithm is derived. Suppose 
that the algorithm takes K  iterations before the termination. 
As the constraint ( )x3g  is imposed on Problem (

fP ), a new 

local minimum of Problem (
fP ), which is ∗

kx , will not be 

located at 
kx~ , that is 

kk xx ~≠∗ , and the cost value evaluated at 

the new local minimum will be lower than or equal to ε−1  
multiplied to the cost value evaluated at 

kx~ , that is 

( ) ( ) ( )kk ff xx ~1 ε−≤∗  for Kk ≤ . Similarly, as the constraint 

( )x4g  is imposed on Problem (
HP ), a new local minimum of 

Problem (
HP ), which is 

1
~

+kx , will not be located at ∗
kx , that is 

∗
+ ≠ kk xx 1

~ , and the cost value evaluated at the new local 

minimum will be lower than or equal to ε−1  multiplied to 
the cost value evaluated at ∗

kx , that is ( ) ( ) ( )∗
+ −≤ kk ff xx ε1~
1

 

for Kk ≤ . Hence, we have 

( ) ( ) ( ) ( ) ( )kkk fff xxx ~11~ 2
1 εε −≤−≤ ∗

+  for Kk ≤ . This further 

implies that 
kx~  for Kk ≤  will not be stuck at local minima 

of ( )xf  because 110 <−< ε . Also, we have 

( ) ( ) ( ) ( )1
12 ~1~ xx ff k

k
−−≤ ε  for Kk ≤ . Let the global minimum 

of the optimization problem be •x , then we have 
( ) ( ) ( ) ( )1

12 ~1 xx ff K −• −≤ ε  for Kk ≤ . This implies that 

( ) ( )
( )ε−
−−≤

•

1log2

log~log
1 1 xx ff

K  and the algorithm always con-

verges. Let  z  be the nearest integer of z  such that   zz ≥ . 

Then, the computational complexity of the algorithm is 
bounded by that required for finding 

( ) ( )
( ) 









−
−−

•

ε1log2

log~log
12 1 xx ff  local minima of the optimization 

problem. 

3. COMPUTER NUMERICAL SIMULATION 
RESULTS 

Since desired phase responses of nonlinear phase peak con-
strained FIR filters are imposed in existing designs, it is very 
difficult to have a fair comparison. We intend to compare 
our works to that presented in [3] because the works pre-
sented in [3] are the most related works to our works found 
in literature. 

Both the length and the desired magnitude response of 
the filter are chosen the same as that in [3] in order to have a 
fair comparison, that is 30=N  and 

( )




≥
≤

=
πω
πω

ω
24.00

12.01
D . 

As the optimization problem is to minimize the maximum 
passband group delay of the filter subject to the positivity 
constraint on the passband group delay response of the filter, 
the specification on the maximum absolute difference be-
tween the designed magnitude square response and the desir-
able magnitude square response over the passband of the 
filter is set exactly the same as that over the stopband of the 
filter. Since there are tradeoffs among the maximum absolute 
difference between the designed magnitude square response 
and the desirable magnitude square response, the length, the 
bandwidth and the center frequency of the filter, ( )ωδ  is set 

to 5.34− dB for πω 12.0≤  and πω 24.0≥ . In order to 

have a good approximation between the nonsmooth func-
tional inequality constrained optimization problem and the 
corresponding nonconvex functional inequality constrained 
optimization problem, σ  should be small. Here, 610−=σ  is 
chosen. Also, to obtain a high accuracy of the obtained global 
minimum without the termination of our algorithm, both ε  
and ε ′  should be small. Here, 610−=′= εε  is chosen. The 
initial condition 

1
~x  of the global optimization algorithm is 

obtained based on the method discussed in [2]. Since local 
minima of nonlinear phase peak constrained FIR filters are 



usually located very close together, the spreads of the hills of 
( )xH  at ∗

kx  should be small and R  is chosen as the diagonal 

matrix with all diagonal elements equal to 310− . 
Based on the parameters chosen above, it only takes 

three iterations for the algorithm to terminate. Hence, our 
proposed method is very efficient. Figures 1 and 2 plot the 
maximum passband group delay as well as the square root of 
the maximum absolute difference between the designed 
magnitude square response and the desirable magnitude 
square response over the passband and the stopband of the 
filter designed via our proposed approach. It can be seen 
from the figures that they are 6.8778, 9425.56− dB and 

6062.34− dB, respectively, in which the required constraints 
are all satisfied. Compared to the results obtained in [3], 
those values are 12.43898, 7653.26− dB and 7822.44− dB, 
respectively. Although the performance on the square root of 
the maximum absolute difference between the designed 
magnitude square response and the desirable magnitude 
square response over the stopband of our designed filter is 
slightly worse than that of [3], both the maximum passband 
group delay and the square root of the maximum absolute 
difference between the designed magnitude square response 
and the desirable magnitude square response over the pass-
band of our designed filter are significantly better than that of 
[3]. This is because our proposed algorithm could find the 
global minimum of the nonconvex optimization problem, in 
which the method discussed in [3] does not optimize the 
maximum passband group delay of the filter. 
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Figure 1. The passband group delay response of our designed 

nonlinear phase peak constrained FIR filter. 
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Figure 2. (a) The square root of the maximum absolute dif-

ference between the designed magnitude square response and 
the desirable magnitude square response over the passband of 
our designed nonlinear phase peak constrained FIR filter; (b) 

that over the stopband. 

4. CONCLUSION 

This paper formulates a minimax passband group delay 
nonlinear phase peak constrained FIR filter design problem 
as a nonsmooth functional inequality constrained optimiza-
tion problem. The one norm of the functional inequality 
constraint of the optimization problem is first approximated 
by a smooth function so that the nonsmooth functional ine-
quality constrained optimization problem is approximated as 
a nonconvex functional inequality constrained optimization 
problem. Then, a modified filled function method is applied 
for finding the global minimum of the nonconvex optimiza-
tion problem. Computer numerical simulation results show 
that our proposed method could efficiently and effectively 
design a minimax passband group delay nonlinear phase 
peak constrained FIR filter without imposing a desirable 
phase response.  
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