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ABSTRACT 

This paper proposes a non-linear block matched motion model and solves the motion vectors 

with arbitrary pixel precisions in a single step. As the optimal motion vector which minimizes the 

mean square error is solved analytically in a single step, the computational complexity of our 

proposed algorithm is lower than that of conventional quarter pixel search algorithms. Also, our 

proposed algorithm can be regarded as a generalization of conventional half pixel search algorithms 

and quarter pixel search algorithms because our proposed algorithm could achieve motion vectors 

with arbitrary pixel precisions. 

 

Index TermsOptimal block matched motion estimation, arbitrary pixel precisions, non-linear 

block matched motion model, single step analytical solution. 
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I. INTRODUCTION 

Motion estimations play an important role in motion tracking applications, such as in a 

respiratory motion tracking application [1] and in a facial motion tracking application [2]. The most 

common motion estimation algorithm is the block matched motion estimation algorithm [3]. The 

current frame is usually partitioned into numbers of macro blocks with fixed or variable sizes. Each 

macro block in the current frame is compared with a number of macro blocks in the reference frame 

translated within a search window. Block matching errors are calculated based on a predefined cost 

function. The macro block in the reference frame that gives the minimum block matching error is 

considered as the best approximation of the macro block in the current frame. Each macro block in 

the current frame is represented by the best macro block in the reference frame, the motion vector 

(the motion vector is the vector representing the translation of the macro block in the reference 

frame.) and the residue (the residue is the difference between the macro block in the current frame 

and the best translated macro block in the reference frame). 

The most common block matched motion estimation algorithm is the full integer pixel search 

algorithm. The full integer pixel search algorithm is a centre based algorithm in which all integer 

pixel locations in the search window are examined. However, the motion vectors are not necessarily 

represented by integer pixel precisions and a large portion of macro blocks in the current frame are 

best approximated by the macro blocks in the reference frame translated within a plus or a minus 

one pixel range around integer pixel locations. Hence, block matching errors could be further 

reduced if motion vectors are represented by non-integer pixel precisions. Conventional non-integer 

pixel search algorithms start searching pixels at half pixel locations. Half pixels are interpolated by 

nearby pixels at integer pixel locations. Block matching errors at some or all half pixel locations are 

evaluated. The half pixel location with the minimum block matching error is chosen. Similarly, 

quarter pixels are interpolated by nearby pixels at half pixel and integer pixel locations. The quarter 

pixel location with the minimum block matching error is chosen. Finer pixel locations could be 

evaluated successively. Since the block matching errors at finer pixel locations are evaluated via 

interpolations from the coarser pixel locations, if motion vectors with very fine pixel precisions are 

required, then many pixel locations are required to be evaluated. Hence, computational complexities 

of these algorithms are very high and these algorithms are very inefficient. Also, existing pixel 

search algorithms could only achieve motion vectors with rational pixel precisions. If the true 

motion vector is with an irrational pixel precision, then an infinite number of pixel locations have to 

be evaluated. 

Interpolations are implemented via some predefined functions, such as a real valued quadratic 

function with two variables [4], a paraboloid function [5] and a straight line [6]. As the block 

matching error is a highly non-linear and non-convex function of the motion vector, it is very 

difficult to solve the motion vector that globally minimizes the block matching error. Hence, many 

pixel locations are still required to be evaluated and the pixel location with the lowest block 

matching error is chosen. Similar to conventional quarter pixel search algorithms, computational 

complexities of these algorithms are still very high and these algorithms are still very inefficient. 

Also, if the true motion vector is with an irrational pixel precision, then an infinite number of pixel 

locations still have to be evaluated. 
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In this paper, we propose a non-linear block matched motion model and solve the motion 

vectors with arbitrary pixel precisions in a single step. Our proposed algorithm has the following 

salient features. 1) The block matching error is evaluated in a single step which globally minimizes 

the mean square error. As the calculation of the mean square error at a fine pixel location is not 

derived from the coarser pixel locations, the computational complexity of our proposed algorithm is 

much lower than that of conventional quarter pixel search algorithms. 2) Our proposed algorithm 

could achieve the true motion vector even though the true motion vector is with an irrational pixel 

precision. Numerical computer simulation results show that the mean square errors of various video 

sequences based on our proposed algorithm are lower than that based on conventional half pixel 

search algorithms and quarter pixel search algorithms. 

The rest part of this paper is organized as follows. Our proposed non-linear block matched 

motion model is presented in Section II. The optimal motion vector which minimizes the mean 

square error is derived analytically in Section III. Motion vectors with arbitrary pixel precisions are 

discussed in Section IV. Numerical computer simulation results are presented in Section V. Finally, 

a conclusion is drawn in Section VI. 

 

II. PROPOSED NON-LINEAR BLOCK MATCHED MOTION MODEL 
Denote the size of a macro block as NN × , where +∈ ZN . +∈∀ Zk , let 1+kB  be a subset of 

pixels in the 1+k th current frame and ( )yxBk ,1+  be the pixel value of 1+kB  at the pixel location 

( )yx, . Similarly, +∈∀ Zk , let kB  be a subset of pixels in the k th reference frame and ( )yxBk ,  be 

the pixel value of kB  at the pixel location ( )yx, . +∈∀ Zk , denote the motion vector of kB  as 

( )kkkk qqpp ++ ,0,0 , , where ( ) 2
,0,0 , Zqp kk ∈  and ( ) [ ] [ ] ( ) ( ) ( ){ }1,1,0,1,1,0\1,01,0, ×≡∈ Sqp kk . +∈∀ Zk , 

( )kk qp ,0,0 ,  is the best integer pixel location which minimizes the block matching error and can be 

obtained via existing full integer pixel search algorithms. On the other hand, +∈∀ Zk , ( )kk qp ,  is 

the fine shift within S around ( )kk qp ,0,0 ,  and the values of kp  and kq  could be either rational or 

irrational. Motion vectors could be any vectors in one of the four quadrants in 2ℜ  and the motion 

vectors in different quadrants are interpolated by different pixels based on different orientations. 

+∈∀ Zk  and ( ) Sqp kk ∈∀ , , denote UL
qpk kk

B ,,

~  as the translated kB  if the motion vector moves in the 

upper left direction, UR
qpk kk

B ,,

~  as the translated kB  if the motion vector moves in the upper right 

direction, LL
qpk kk

B ,,

~  as the translated kB  if the motion vector moves in the lower left direction, and 

LR
qpk kk

B ,,

~  as the translated kB  if the motion vector moves in the lower right direction. +∈∀ Zk  and 

( ) Sqp kk ∈∀ , , denote ( )yxBUL
qpk kk

,
~

,, , ( )yxBUR
qpk kk

,
~

,, , ( )yxBLL
qpk kk

,
~

,,  and ( )yxBLR
qpk kk

,
~

,,  be the pixel values of 

UL
qpk kk

B ,,

~ , UR
qpk kk

B ,,

~ , LL
qpk kk

B ,,

~  and LR
qpk kk

B ,,

~  at the pixel location ( )yx, , respectively. In this paper, +∈∀ Zk , 
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( ) Sqp kk ∈∀ , , { }1,,0 −∈∀ Nx L  and { }1,,0 −∈∀ Ny L , ( )yxBUL
qpk kk

,
~

,, , ( )yxBUR
qpk kk

,
~

,, , ( )yxBLL
qpk kk

,
~

,,  and 

( )yxBLR
qpk kk

,
~

,,  are constructed via the following models: 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )1,11,1

,11,11,
~

,0,0,0,0

,0,0,0,0,,

++++++++−+

+++−+++−−≡

kkkkkkkkkk

kkkkkkkkkk
UR

qpk

qypxBqpqypxBpq

qypxBpqqypxBqpyxB
kk , 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )1,11,1

,11,11,
~

,0,0,0,0

,0,0,0,0,,

−++++−++−+

+++−+++−−≡

kkkkkkkkkk

kkkkkkkkkk
LR

qpk

qypxBqpqypxBpq

qypxBpqqypxBqpyxB
kk , 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )1,11,1

,11,11,
~

,0,0,0,0

,0,0,0,0,,

++−+++++−+

+−+−+++−−≡

kkkkkkkkkk

kkkkkkkkkk
UL

qpk

qypxBqpqypxBpq

qypxBpqqypxBqpyxB
kk  

and 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )1,11,1

,11,11,
~

,0,0,0,0

,0,0,0,0,,

−+−++−++−+

+−+−+++−−≡

kkkkkkkkkk

kkkkkkkkkk
LL

qpk

qypxBqpqypxBpq

qypxBpqqypxBqpyxB
kk , 

respectively. +∈∀ Zk  and ( ) Sqp kk ∈∀ , , let the mean square error between the translated kB  and 

1+kB  be ( )kkk qpMSE , . That is, +∈∀ Zk  and ( ) Sqp kk ∈∀ , , 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
























−−

−−
≡

∑∑∑∑

∑∑∑∑
−

=

−

=
+

−

=

−

=
+

−

=

−

=
+

−

=

−

=
+

1

0

1

0

2

1,,2

1

0

1

0

2

1,,2

1

0

1

0

2

1,,2

1

0

1

0

2

1,,2

,,
~1

,,,
~1

,,,
~1

,,,
~1

min,
N

x

N

y
k

LR
qpk

N

x

N

y
k

LL
qpk

N

x

N

y
k

UR
qpk

N

x

N

y
k

UL
qpk

kkk

yxByxB
N

yxByxB
N

yxByxB
N

yxByxB
N

qpMSE

kkkk

kkkk

. 

It is worth noting that ( )( ) ( ) ( ) 11111 =+−+−+−− kkkkkkkk qpqpqpqp  +∈∀ Zk  and ( ) Sqp kk ∈∀ , . 

Hence, the average intensity of UL
qpk kk

B ,,

~ , UR
qpk kk

B ,,

~ , LL
qpk kk

B ,,

~  and LR
qpk kk

B ,,

~  will not be boosted up or 

attenuated down +∈∀ Zk  and ( ) Sqp kk ∈∀ , . 

If the true motion vector is located at the integer pixel locations, then it is obvious to see that 

0== kk qp . If the true motion vector is located at the half pixel locations, then it is obvious to see 

that 0=kp  and 
2

1=kq , or 
2

1=kp  and 0=kq , or 
2

1=kp  and 1=kq , or 1=kp  and 
2

1=kq , or 

2

1== kk qp . If the true motion vector is located at the quarter pixel locations, then it is obvious to 

see that 
4

1== kk qp , or 
4

3=kp  and 
4

1=kq , or 
4

1=kp  and 
4

3=kq , or 
4

3== kk qp , or 0=kp  and 

4

1=kq , or 0=kp  and 
4

3=kq , or 1=kp  and 
4

1=kq , or 1=kp  and 
4

3=kq , or 
4

1=kp  and 0=kq , 

or 
4

3=kp  and 0=kq , or 
4

1=kp  and 1=kq , or 
4

3=kp  and 1=kq , or 
2

1=kp  and 
4

1=kq , or 

4

1=kp  and 
2

1=kq , or 
2

1=kp  and 
4

3=kq , or 
4

3=kp  and 
2

1=kq . Hence, integer pixel locations, 
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half pixel locations and quarter pixel locations are particular locations represented by our proposed 

model. 

 

III. DERIVATION OF OPTIMAL MOTION VECTOR 
The objective of the block matched motion estimation problem is to find ( ) Sqp kk ∈,  such 

that ( )kkk qpMSE ,  is minimized +∈∀ Zk . +∈∀ Zk  and ( ) Sqp kk ∈∀ , , denote 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )∑∑

−

=

−

= +











−++++++++−+
+++−+++−−

≡
1

0

1

0

2

1,0,0,0,0

,0,0,0,0

2 ,1,11,1

,11,111
,

N

x

N

y kkkkkkkkkkk

kkkkkkkkkk

kk
UR
k yxBqypxBqpqypxBpq

qypxBpqqypxBqp

N
qpMSE , 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )∑∑

−

=

−

= +











−−++++−++−+
+++−+++−−

≡
1

0

1

0

2

1,0,0,0,0

,0,0,0,0

2 ,1,11,1

,11,111
,

N

x

N

y kkkkkkkkkkk

kkkkkkkkkk

kk
LR
k yxBqypxBqpqypxBpq

qypxBpqqypxBqp

N
qpMSE , 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )∑∑

−

=

−

= +











−++−+++++−+
+−+−+++−−

≡
1

0

1

0

2

1,0,0,0,0

,0,0,0,0

2 ,1,11,1

,11,111
,

N

x

N

y kkkkkkkkkkk

kkkkkkkkkk

kk
UL
k yxBqypxBqpqypxBpq

qypxBpqqypxBqp

N
qpMSE  

and 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )∑∑

−

=

−

= +











−−+−++−++−+
+−+−+++−−

≡
1

0

1

0

2

1,0,0,0,0

,0,0,0,0

2 ,1,11,1

,11,111
,

N

x

N

y kkkkkkkkkkk

kkkkkkkkkk

kk
LL
k yxBqypxBqpqypxBpq

qypxBpqqypxBqp

N
qpMSE . 

Then +∈∀ Zk  and ( ) Sqp kk ∈∀ , , we have 

( )

( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )
∑∑

−

=

−

=

+




















−+++
++−++++
++−++++

++++++++−+++−++

=
1

0

1

0

2

1,0,0

,0,0,0,0

,0,0,0,0

,0,0,0,0,0,0,0,0

2

,,

,,1

,1,

1,1,11,,

1
,

N

x

N

y

kkkk

kkkkkkk

kkkkkkk

kkkkkkkkkkkkkk

kk
UR
k

yxBqypxB

qypxBqypxBp

qypxBqypxBq

qypxBqypxBqypxBqypxBqp

N
qpMSE

. 

This further implies that +∈∀ Zk  and ( ) Sqp kk ∈∀ , , 

( )

( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )∑∑

∑∑

∑∑

∑∑

∑∑

∑∑

∑∑

−

=

−

=
+

−

=

−

=
+

−

=

−

=

−

=

−

=

−
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−
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=

−
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−

=

−
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






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



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−++
++++++++−+++−+++

++−+++++−+++
+

++++++++−+++−++
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+

++−++++
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






































++−++++
++++++++−+++−++






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
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


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=
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0
,0,0,0,01,0,02

1

0

1

0

1,0,0

,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0

2

1

0

1

0
,0,0,0,0,0,0,0,0

,0,0,0,022

1

0

1

0

2
,0,0,0,02

1

0

1

0
,0,0,0,0

,0,0,0,0,0,0,0,02

1

0

1

0

2
,0,0,0,0,0,0,0,02

2

1

0

1

0

,0,0,0,0

,0,0,0,0,0,0,0,0

1,0,0

,0,0,0,0

,0,0,0,0

,0,0,0,0,0,0,0,0

2

,,1,,
2
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1,1,11,,

,,1,1,
2

1,1,11,,

,1,
2

,,1
2

,,1

1,1,11,,
4

1,1,11,,
2

,,1

1,1,11,,

,,

,,1

,1,

1,1,11,,

2,

N

x

N

y
kkkkkkkkkk

N

x

N

y

kkkk

kkkkkkkkkkkk

kkkkkkkkkkkk

k

N

x

N

y
kkkkkkkkkkkk

kkkkkk
k

N

x

N

y
kkkkkkk

N

x

N

y
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kkkkkkkkkkkk
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N

x

N
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N

x

N
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kkkkkkk

kkkkkkk

kkkkkkkkkkkkkk

k

kk
UR
k

qypxBqypxByxBqypxB
N

yxBqypxB

qypxBqypxBqypxBqypxB

qypxBqypxBqypxBqypxB

N
q

qypxBqypxBqypxBqypxB

qypxBqypxB
Nq

qypxBqypxB
N

p

qypxBqypxB

qypxBqypxBqypxBqypxB
Nqp

qypxBqypxBqypxBqypxB
N
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qypxBqypxB

qypxBqypxBqypxBqypxBq

yxBqypxB

qypxBqypxBp

qypxBqypxBq

qypxBqypxBqypxBqypxBqp

Np

qpMSE

. 

+∈∀ Zk , denote 

( ) ( ) ( ) ( )( )∑∑
−

=

−

=

++++++++−+++−++≡
1

0

1

0

2
,0,0,0,0,0,0,0,02,

1,1,11,,
2

2

N

x

N

y
kkkkkkkkkkkkpqk
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N
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−
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−
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2
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x
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y
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=

−
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≡

1

0

1

0
,0,0,0,0,0,0,0,0

,0,0,0,02
,
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

−++
++++++++−+++−+++

++−+++++−+++
≡

1

0

1

0

1,0,0

,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0

2,

,,

1,1,11,,

,,1,1,
2N

x

N

y

kkkk

kkkkkkkkkkkk

kkkkkkkkkkkk

qk

yxBqypxB

qypxBqypxBqypxBqypxB

qypxBqypxBqypxBqypxB

N
c  

and 

( ) ( )( ) ( ) ( )( )∑∑
−

=

−

=
+ ++−+++−++≡

1

0

1

0
,0,0,0,01,0,02

,,1,,
2N

x

N

y
kkkkkkkkkkk qypxBqypxByxBqypxB

N
c . 

Then, +∈∀ Zk  and ( ) Sqp kk ∈∀ , , we have 

( ) ( ) kkqkkqkpkkpqkkpqkk
k

kk
UR
k cqcqccqcqcp
p

qpMSE +++++=
∂

∂
,

2

,,,
2

, 22

, . 

Similarly, +∈∀ Zk  and ( ) Sqp kk ∈∀ , , 
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( ) ( )( )
( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )∑∑

∑∑

∑∑

∑∑

∑∑

∑∑

∑∑

−

=

−

=
+

−

=

−

=
+

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

= +

++−+++−+++

















−++
++++++++−+++−+++

++−+++++−+++
+

++++++++−+++−++

++−+++
+

++−++++

++−+++

++++++++−+++−++
+

++++++++−+++−++=








































++−++++
++++++++−+++−++





















−+++
++−++++
++−++++

++++++++−+++−++

=
∂

∂

1

0

1

0
,0,0,0,01,0,02

1

0

1

0

1,0,0

,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0

2

1

0

1

0
,0,0,0,0,0,0,0,0

,0,0,0,022

1

0

1

0

2
,0,0,0,02

1

0

1

0
,0,0,0,0

,0,0,0,0,0,0,0,02

1

0

1

0

2
,0,0,0,0,0,0,0,02

2

1

0

1

0

,0,0,0,0

,0,0,0,0,0,0,0,0

1,0,0

,0,0,0,0

,0,0,0,0

,0,0,0,0,0,0,0,0

2

,1,,,
2

,,

1,1,11,,

,,1,1,
2

1,1,11,,

,,1
2

,1,
2

,1,

1,1,11,,
4

1,1,11,,
2

,1,

1,1,11,,

,,

,,1

,1,

1,1,11,,

2,

N

x

N

y
kkkkkkkkkk

N

x

N

y

kkkk

kkkkkkkkkkkk

kkkkkkkkkkkk

k

N

x

N

y
kkkkkkkkkkkk

kkkkkk
k

N

x

N

y
kkkkkkk

N

x

N

y
kkkkkk

kkkkkkkkkkkk
kk

N

x

N

y
kkkkkkkkkkkkkk

N

x

N

y

kkkkkk

kkkkkkkkkkkkk

kkkk

kkkkkkk

kkkkkkk

kkkkkkkkkkkkkk

k

kk
UR
k

qypxBqypxByxBqypxB
N

yxBqypxB

qypxBqypxBqypxBqypxB

qypxBqypxBqypxBqypxB

N
p

qypxBqypxBqypxBqypxB

qypxBqypxB
Np

qypxBqypxB
N

q

qypxBqypxB

qypxBqypxBqypxBqypxB
Nqp

qypxBqypxBqypxBqypxB
N

qp

qypxBqypxB

qypxBqypxBqypxBqypxBp

yxBqypxB

qypxBqypxBp

qypxBqypxBq

qypxBqypxBqypxBqypxBqp

Nq

qpMSE

. 

+∈∀ Zk , denote 

( ) ( ) ( ) ( )( )∑∑
−

=

−

=

++++++++−+++−++≡
1

0

1

0

2
,0,0,0,0,0,0,0,02,

1,1,11,,
2

2

N

x

N

y
kkkkkkkkkkkkqpk

qypxBqypxBqypxBqypxB
N

z , 

( ) ( ) ( ) ( )( )
( ) ( )( )

∑∑
−

=

−

= ++−+++

++++++++−+++−++
≡

1

0

1

0
,0,0,0,0

,0,0,0,0,0,0,0,02
,

,1,

1,1,11,,
4

N

x

N

y
kkkkkk

kkkkkkkkkkkk
qpk

qypxBqypxB

qypxBqypxBqypxBqypxB
Nz , 

( ) ( )( )∑∑
−

=

−

=

++−+++≡
1

0

1

0

2
,0,0,0,02, ,1,

2N

x

N

y
kkkkkkqk qypxBqypxB

N
z , 
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( ) ( )( )
( ) ( ) ( ) ( )( )

∑∑
−

=

−

= ++++++++−+++−++

++−+++
≡

1

0

1

0
,0,0,0,0,0,0,0,0

,0,0,0,02
,

1,1,11,,

,,1
2

2

N

x

N

y
kkkkkkkkkkkk

kkkkkk

pk

qypxBqypxBqypxBqypxB

qypxBqypxB
Nz , 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( )
∑∑

−

=

−

=
+

















−++
++++++++−+++−+++

++−+++++−+++
≡

1

0

1

0

1,0,0

,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0

2,

,,

1,1,11,,

,,1,1,
2N

x

N

y

kkkk

kkkkkkkkkkkk

kkkkkkkkkkkk

pk

yxBqypxB

qypxBqypxBqypxBqypxB

qypxBqypxBqypxBqypxB

N
z  

and 

( ) ( )( ) ( ) ( )( )∑∑
−

=

−

=
+ ++−+++−++≡

1

0

1

0
,0,0,0,01,0,02

,1,,,
2N

x

N

y
kkkkkkkkkkk qypxBqypxByxBqypxB

N
z . 

Then +∈∀ Zk  and ( ) Sqp kk ∈∀ , , we have 

( ) ( ) kkpkkpkqkkqpkkqpkk
k

kk
UR
k zpzpzzpzpzq
q

qpMSE +++++=
∂

∂
,

2

,,,
2

, 22

, . 

+∈∀ Zk , denote a stationary point of ( )kk
UR
k qpMSE ,  as ( )∗∗ UR

k
UR
k qp , . Then, +∈∀ Zk , we have 

( )
( ) ( )

0
,

,,

=
∂

∂
∗∗= UR

k
UR
kkk qpqpk

kk
UR
k

p

qpMSE  and ( )
( ) ( )

0
,

,,

=
∂

∂
∗∗= UR

k
UR
kkk qpqpk

kk
UR
k

q

qpMSE . If 02,
≠

pqk
c  or 0, ≠pqkc  or 

0, ≠pkc , then we have 
pk

UR
kpqk

UR
kpqk

k
UR
kqk

UR
kqkUR

k
cqcqc

cqcqc
p

,,

2

,

,

2

,

2

2

++

++
−=

∗∗

∗∗
∗  and 

0
,,

2

,

,

2

,
,

2

,,

2

,

,

2

,

,

,

,,

2

,

,

2

,
,

2

,,

2

,

,

2

,

,

2

2

2

2

2

2

2

2

2

2

=+














++

++
−+















++

++
−+

















+














++

++
−+















++

++
−

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗
∗

k

pk
UR
kpqk

UR
kpqk

k
UR
kqk

UR
kqk

pk

pk
UR
kpqk

UR
kpqk

k
UR
kqk

UR
kqk

pk

qk

pk
UR
kpqk

UR
kpqk

k
UR
kqk

UR
kqk

qpk

pk
UR
kpqk

UR
kpqk

k
UR
kqk

UR
kqk

qpk

UR
k

z
cqcqc

cqcqc
z

cqcqc

cqcqc
z

z
cqcqc

cqcqc
z

cqcqc

cqcqc
zq

, 

which further implies that 

( ) ( )( ) ( )
( ) ( )( ) ( ) 0

2

,,

2

,,,

2

,,

2

,,

2

,

2

,,

2

,,

2

,,,,

2

,,

2

,,

2

,

2

,,

22222

22222

=+++++++−+++







 +++++++−++

∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗

pk
UR
kpqk

UR
kpqkkpk

UR
kpqk

UR
kpqkk

UR
kqk

UR
kqkpkk

UR
kqk

UR
kqkpk

pk
UR
kpqk

UR
kpqkqkpk

UR
kpqk

UR
kpqkk

UR
kqk

UR
kqkqpkk

UR
kqk

UR
kqkqpk

UR
k

cqcqczcqcqccqcqczcqcqcz

cqcqczcqcqccqcqczcqcqczq . (1) 

If 02,
=

pqk
c  and 0, =pqkc  and 0, =pkc , but 02,

≠
qpk

z  or 0, ≠qpkz  or 0, ≠qkz ,  

then we have 
qk

UR
kqpk

UR
kqpk

k
UR
kpk

UR
kpkUR

k
zpzpz

zpzpz
q

,,

2

,

,

2

,

2

2

++

++
−=

∗∗

∗∗
∗  and 

0
,,

2

,

,

2

,
,

2

,,

2

,

,

2

,

,
2

2

2

2

2 =+














++

++
−+















++

++
−

∗∗

∗∗

∗∗

∗∗

k

qk
UR
kqpk

UR
kqpk

k
UR
kpk

UR
kpk

qk

qk
UR
kqpk

UR
kqpk

k
UR
kpk

UR
kpk

qk
c

zpzpz

zpzpz
c

zpzpz

zpzpz
c , 

which further implies that 

( ) ( )( )
( ) 0

2

,,

2

,

,,

2

,,

2

,,

2

,

2

,,

2

2222

=+++

++++−++

∗∗

∗∗∗∗∗∗

qk
UR
kqpk

UR
kqpkk

qk
UR
kqpk

UR
kqpkk

UR
kpk

UR
kpkqkk

UR
kpk

UR
kpkqk

zpzpzc

zpzpzzpzpzczpzpzc
. (2) 
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If 02,
=

pqk
c  and 0, =pqkc  and 0, =pkc  and 02,

=
qpk

z  and 0, =qpkz  and 0, =qkz , then we have 

0,

2

, 2 =++ ∗∗
k

UR
kqk

UR
kqk

cqcqc  and 0,

2

, 2 =++ ∗∗
k

UR
kpk

UR
kpk

zpzpz . (3) 

By solving (1) or (2) or (3), ( )∗∗ UR
k

UR
k qp ,  can be found +∈∀ Zk . +∈∀ Zk , denote the total number of 

vectors ( )∗∗ UR
k

UR
k qp ,  within S  as UR

kM . If 1≥UR
kM , then denote those vectors as ( )∗∗ UR

mk
UR

mk qp ,, ,  for 

UR
kMm ,,2,1 L=  and denote ( ){ ∗∗≡ UR

mk
UR

mk
UR
k qpF ,, ,  for } ( ){ }0,0,,2,1 UL

UR
kMm= . 

However, in general it is not guaranteed that 1≥UR
kM  +∈∀ Zk . If 0=UR

kM , then there may be 

no stationary point or the stationary points are not in S. For these two cases, the global minimum 
of the ( )kk

UR
k qpMSE ,  could be on the boundaries of S. Hence, it is required to check if there exist 

some stationary points on the boundaries of S. The following procedures are employed for the 
checking. +∈∀ Zk  and [ ]1,0∈∀ kq , 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )∑∑

∑∑

∑∑

−

=

−

=
+

−

=

−

=
+

=

−

=

−

= +

−+++++−+++=

−++++++−=












−++++++++−+
+++−+++−−

=

1

0

1

0

2
1,0,0,0,0,0,02

1

0

1

0

2
1,0,0,0,02

0

1

0

1

0

2

1,0,0,0,0

,0,0,0,0

2

,,,1,
1

,1,,1
1

,1,11,1

,11,111
,0

N

x

N

y
kkkkkkkkkkk

N

x

N

y
kkkkkkkkk

p

N

x

N

y kkkkkkkkkkk

kkkkkkkkkk

k
UR
k

yxBqypxBqypxBqypxBq
N

yxBqypxBqqypxBq
N

yxBqypxBqpqypxBpq

qypxBpqqypxBqp

N
qMSE

k

. 

This implies that +∈∀ Zk  and [ ]1,0∈∀ kq , 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )∑∑

∑∑

−

=

−

= +

−

=

−

=

+

++−+++−+++
++−+++

=

++−+++
−+++++−+++

=
∂

∂

1

0

1

0 ,0,0,0,01,0,0

2
,0,0,0,0

2

1

0

1

0 ,0,0,0,0

1,0,0,0,0,0,0

2

,1,,,

,1,2

,1,

,,,1,2,0

N

x

N

y kkkkkkkkkk

kkkkkkk

N

x

N

y kkkkkk

kkkkkkkkkkk

k

k
UR
k

qypxBqypxByxBqypxB

qypxBqypxBq

N

qypxBqypxB

yxBqypxBqypxBqypxBq

Nq

qMSE

. 

+∈∀ Zk , denote 

( ) ( )( )∑∑
−

=

−

=

++−+++≡
1

0

1

0

2
,0,0,0,0,0, ,1,

2~
N

x

N

y
kkkkkkqk qypxBqypxB

N
c  

and 

( ) ( )( ) ( ) ( )( )∑∑
−

=

−

=
+ ++−+++−++≡

1

0

1

0
,0,0,0,01,0,020, ,1,,,

2~
N

x

N

y
kkkkkkkkkkk qypxBqypxByxBqypxB

N
c , 

then +∈∀ Zk  and [ ]1,0∈∀ kq  we have 

( )
0,,0,

~~,0
kkqk

k

k
UR
k cqc
q

qMSE +=
∂

∂ . 

+∈∀ Zk , denote a stationary point of ( )k
UR
k qMSE ,0  as ( )UR

kq ,0~,0 . If 0~
,0, ≠qkc , then  

( )
0

,0

,0~

=
∂

∂

= UR
kk qqk

k
UR
k

q

qMSE  implies that 
qk

kUR
k c

c
q

,0,

0,,0

~

~
~ −= . If this value is in S , that is if [ ]1,0~

~

,0,

0, ∈−
qk

k

c

c , 
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then this stationary point could be the global minimum. For this case, define 

























−≡

qk

kUR
qk c

c
F

,0,

0,
,0, ~

~
,0

~ . 

However, the following three cases could be happened. (Case i) This stationary point may be 

outside S, that is 0~
,0, ≠qkc  and [ ]1,0~

~

,0,

0, ∉−
qk

k

c

c . (Case ii) 0~
,0, =qkc  and 0~

0, =kc . Then, all the points 

on the boundary of S are stationary points. (Case iii) 0~
,0, =qkc  and 0~

0, ≠kc . Then, there is no 

stationary point on the boundary of S. For all these three cases, we do not consider that the global 

minimum is on the boundary of S. Hence, for these three cases, define φ≡UR
qkF ,0,

~ , where φ  is 

denoted as the empty set. Similarly, +∈∀ Zk  and [ ]1,0∈∀ kq , 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )∑∑

∑∑

∑∑

−

=

−

=
+

−

=

−

=
+

=

−

=

−

= +

−+++++++−++++=

−++++++++−=












−++++++++−+
+++−+++−−

=

1

0

1

0

2
1,0,0,0,0,0,02

1

0

1

0

2
1,0,0,0,02

1

1

0

1

0

2

1,0,0,0,0

,0,0,0,0

2

,,1,11,1
1

,1,1,11
1

,1,11,1

,11,111
,1

N

x

N

y
kkkkkkkkkkk

N

x

N

y
kkkkkkkkk

p

N

x

N

y kkkkkkkkkkk

kkkkkkkkkk

k
UR
k

yxBqypxBqypxBqypxBq
N

yxBqypxBqqypxBq
N

yxBqypxBqpqypxBpq

qypxBpqqypxBqp

N
qMSE

k

. 

This implies that +∈∀ Zk  and [ ]1,0∈∀ kq , 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )∑∑

∑∑

−

=

−

= +

−

=

−

=

+

+++−++++−++++
+++−++++

=

+++−++++
−+++++++−++++

=
∂

∂

1

0

1

0 ,0,0,0,01,0,0

2
,0,0,0,0

2

1

0

1

0 ,0,0,0,0

1,0,0,0,0,0,0

2

,11,1,,1

,11,12

,11,1

,,1,11,12,1

N

x

N

y kkkkkkkkkk

kkkkkkk

N

x

N

y kkkkkk

kkkkkkkkkkk

k

k
UR
k

qypxBqypxByxBqypxB

qypxBqypxBq

N

qypxBqypxB

yxBqypxBqypxBqypxBq

Nq

qMSE

. 

+∈∀ Zk , denote 

( ) ( )( )∑∑
−

=

−

=

+++−++++≡
1

0

1

0

2
,0,0,0,02,1, ,11,1

2~
N

x

N

y
kkkkkkqk qypxBqypxB

N
c  

and 

( ) ( )( ) ( ) ( )( )∑
−

=
+ +++−++++−+++≡

1

0
,0,0,0,01,0,021, ,11,1,,1

2~
N

x
kkkkkkkkkkk qypxBqypxByxBqypxB

N
c , 

then +∈∀ Zk  and [ ]1,0∈∀ kq  we have 

( )
1,,1,

~~,1
kkqk

k

k
UR
k cqc
q

qMSE +=
∂

∂ . 

+∈∀ Zk , denote a stationary point of ( )k
UR
k qMSE ,1  as ( )UR

kq ,1~,1 . If 0~
,1, ≠qkc  and [ ]1,0~

~

,1,

1, ∈−
qk

k

c

c , then 

this stationary point could be the global minimum. For this case, define 

























−≡

qk

kUR
qk c

c
F

,1,

1,
,1, ~

~
,0

~ . 

However, if 0~
,1, ≠qkc  and [ ]1,0~

~

,1,

1, ∉−
qk

k

c

c , or 0~
,1, =qkc , then we do not consider that the global 

minimum is on the boundary of S. For these two cases, define φ≡UR
qkF ,1,

~ . +∈∀ Zk  and [ ]1,0∈∀ kp , 
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This implies that +∈∀ Zk  and [ ]1,0∈∀ kp , 
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+∈∀ Zk , denote 
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−

=

−

=
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then +∈∀ Zk  and [ ]1,0∈∀ kp  we have 

( )
0,,0,

~~0,
kkpk

k

k
UR
k zpz
p

pMSE +=
∂

∂ . 

+∈∀ Zk , denote a stationary point of ( )0,k
UR
k pMSE  as ( )0,~ ,0 UR

kp . If 0~
,0, ≠pkz  and [ ]1,0~

~

,0,

0, ∈−
pk

k

z

z , then 

this stationary point could be the global minimum. For this case, define 
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However, if 0~
,0, ≠pkz  and [ ]1,0~
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0, ∉−
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z

z , or 0~
,0, =pkz , then we do not consider that the global 

minimum is on the boundary of S. For these two cases, define φ≡UR
pkF ,0,

~ . Lastly, +∈∀ Zk  and 

[ ]1,0∈∀ kp , 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )∑∑

∑∑

∑∑

−

=

−

=
+

−

=

−

=
+

=

−

=

−

= +

−+++++++−++++=

−++++++++−=












−++++++++−+
+++−+++−−

=

1

0

1

0

2
1,0,0,0,0,0,02

1

0

1

0

2
1,0,0,0,02

1

1

0

1

0

2

1,0,0,0,0

,0,0,0,0

2

,1,1,1,1
1

,1,11,1
1

,1,11,1

,11,111
1,

N

x

N

y
kkkkkkkkkkk

N

x

N

y
kkkkkkkkk

q

N

x

N

y kkkkkkkkkkk

kkkkkkkkkk

k
UR
k

yxBqypxBqypxBqypxBp
N

yxBqypxBpqypxBp
N

yxBqypxBqpqypxBpq

qypxBpqqypxBqp

N
pMSE

k

. 

This implies that +∈∀ Zk  and [ ]1,0∈∀ kp , 
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+∈∀ Zk , denote 
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then +∈∀ Zk  and [ ]1,0∈∀ kp  we have 

( )
1,,1,

~~1,
kkpk

k

k
UR
k zpz
p

pMSE +=
∂

∂ . 

+∈∀ Zk , denote a stationary point of ( )1,k
UR
k pMSE  as ( )1,~ ,1UR

kp . If 0~
,1, ≠pkz  and [ ]1,0~

~

,1,

1, ∈−
pk

k

z

z , then 

this stationary point could be the global minimum. For this case, define 





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




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
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However, if 0~
,1, ≠pkz  and [ ]1,0~

~

,1,

1, ∉−
pk

k

z

z , or 0~
,1, =pkz , then we do not consider that the global 

minimum is on the boundary of S . For these two cases, define φ≡UR
pkF ,1,

~ . +∈∀ Zk , define 

( ){ }0,0
~~~~

,1,,0,,1,,0, UUUU
UR

pk
UR

pk
UR

qk
UR

qk
UR
k FFFFF ≡ . 

Similarly, +∈∀ Zk , denote the set of motion vectors corresponding to the stationary points of 

( )kk
UL
k qpMSE , , ( )kk

LL
k qpMSE ,  and ( )kk

LR
k qpMSE ,  (including the point ( )0,0 ) as UL

kF , LL
kF  and 

LR
kF , respectively. The algorithm for finding the globally optimal motion vector can be summarized 

as follow: 

Algorithm 

Step 1: Implement an existing full integer pixel search algorithm to obtain ( )kk qp ,0,0 ,  +∈∀ Zk . 

Step 2: +∈∀ Zk , evaluate UL
kF , UR

kF , LL
kF  and LR

kF . 

Step 3: +∈∀ Zk , evaluate ( ) ( )
( )

( )
( )

( )
( )

( )
( )

























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























≡

∈∈

∈∈∗∗

kk
LR
k

Fqp
kk

LL
k

Fqp

kk
UR
k

Fqp
kk

UL
k

Fqp

kk

qpMSEqpMSE

qpMSEqpMSE
qp

LR
kkk

LL
kkk

UR
kkk

UL
kkk

,minarg,,minarg

,,minarg,,minarg
arg,

,,

,, . 

+∈∀ Zk . Take ( )∗∗
kk qp ,  as the globally optimal motion vector of kB .  

Since the global minimum of the mean square error is not necessarily located at rational pixel 

locations, while the full integer pixel search, full half pixel search and full quarter pixel search 
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algorithms only evaluate at rational pixel locations, the mean square errors based on these 

conventional methods are very large and these conventional methods are very ineffective. On the 

other hand, our proposed method guarantee to find the motion vector that globally minimizes the 

mean square error no matter the motion vector is located at either rational pixel locations or 

irrational pixel locations. Hence, our proposed method is more effective that conventional methods. 

Besides, as integer pixel locations, half pixel locations and quarter pixel locations are particular 

locations represented by our proposed model, the mean square error based on our proposed method 

is guaranteed to be lower than or equal to that based on these conventional methods. 

The computational complexity of our proposed algorithm can be analyzed as follows. As the 
orders of the polynomials in (1), (2) and (3) are 5, 4 and 2, respectively, 50 ≤≤ UR

kM  +∈∀ Zk . 

Hence, if 1≥UR
kM , then the maximum number of the evaluation points of our proposed method is 

less than or equal to 21. If 0=UR
kM , as the maximum number of the evaluation points in UR

kF  is 5, 

the maximum number of the evaluation points of our proposed method are less than or equal to 17. 

For full half pixel search algorithms and full quarter pixel search algorithms, there are 21 and 72 

evaluation points, respectively. Hence, the total number of the evaluation points of our proposed 

method is lower than that of full quarter pixel search algorithms and is lower than or the same as 
that of the full half pixel search algorithms depending on whether 1≥UR

kM  or not. As conventional 

block matched motion estimation algorithms evaluate block matching errors from coarse pixel 

locations to fine pixel locations, the computational complexities grow exponentially as the pixel 

precisions get finer and finer. From this point of view, the conventional methods are very inefficient. 

On the other hand, our proposed method does not require searching from the coarse pixel locations 

to the fine pixel locations. Our proposed method is more efficient than the conventional methods 

particularly when the required pixel precision is higher than or equal to the quarter pixel precisions. 

 

IV. OPTIMAL MOTION VECTORS WITH ARBITRARY PIXEL PRECISIONS 

For practical motion estimation applications, motion vectors are usually represented by finite 

pixel precisions. Denote ( )zround  as the rounding operator that rounds z  to the nearest integer 

and L  as the number of bits for the representation of the motion vectors. Then, define 

( )
L

L
k

Lk

pround
p

2

2
,

∗
∗ ≡  and ( )

L

L
k

Lk

qround
q

2

2
,

∗
∗ ≡ . Obviously, ∗

Lkp ,  and ∗
Lkq ,  are the L  bits 

representation of ∗
kp  and ∗

kq , respectively. It is worth noting that ∗
Lkp ,  and ∗

Lkq ,  are the 

suboptimal solution only. This is because an error may be introduced when applying the rounding 
operator to ∗

kp  and ∗
kq . Although the globally optimal solution could be found by solving the 

corresponding integer programming problem, solving the corresponding integer programming 

problem requires a numerical optimizer and the computational complexities are very high. In fact, 

the difference between the obtained suboptimal solution and the globally optimal solution is very 

small. Hence, it is more practical to solve the problem via our proposed method. Also, it is worth 

noting that the computational complexity of our proposed method is independent of the required 

pixel precisions. Hence, the computational complexity of our proposed method is lower than that of 

conventional methods when the required pixel precision is high. 

 



The American Journal of Engineering and Applied Sciences 

 13 

IV. NUMERICAL COMPUTER SIMULATION RESULTS 

In order to have complete investigations, video sequences with fast motion, medium motion 

and slow motion are studied. The video sequences, Foreman, Coastguard and Container [7], are, 

respectively, the most common fast motion, medium motion and slow motion video sequences. 

Hence, motion estimations are performed to these video sequences. Except the first frame of these 

video sequences, the mean square errors of all the frames of these video sequences are evaluated. 

Each current frame takes its immediate predecessor as the reference frame. The sizes of the marco 

blocks are chosen as 88×  and 1616×  and the sizes of the search windows are chosen as 3232×  

and 4040× , which are the most common block sizes and window sizes used in international 

standards. The comparisons are made with the full integer pixel search algorithm, the full half pixel 

search algorithm and the full quarter pixel search algorithm. 

The mean square error performances of our proposed method with the motion vectors having 

1 to 4 bits representations, the full integer pixel search algorithm, the full half pixel search 

algorithm and the full quarter pixel search algorithm with the size of the marco blocks 88×  and the 

size of the search windows 3232×  applied to the video sequences Coastguard, Container and 

Foreman are shown in Figure 1a, Figure 1b, and Figure 1c, respectively. It can be seen from the 

Figure 1 that the improvements on the average mean square errors of the full half pixel search 

algorithm, the full quarter pixel search algorithm, our proposed method with the motion vectors 

having 1 bit representation, our proposed method with the motion vectors having 2 bits 

representation, our proposed method with the motion vectors having 3 bit representation and our 

proposed method with the motion vectors having 4 bits representation over the full integer search 

algorithm for the video sequences Coastguard are 4104894.1 −× , 4102242.2 −× , 4104892.1 −× , 
4102163.2 −× , 4105293.2 −×  and 4106433.2 −× , respectively, which correspond to %8531.17 , 

%8039.28 , %8526.17 , %7715.28 , %1366.34  and %2830.36 , respectively, that for the video 

sequences Container are 6104406.1 −× , 6106476.3 −× , 6105171.1 −× , 6107159.3 −× , 5107249.1 −×  and 
5109126.1 −× , respectively, which correspond to %0115.1 , %4170.4 , %0432.1 , %4460.4 , %0415.27  

and %1629.30 , respectively, and that for the video sequences Foreman are 4105788.1 −× , 
4102863.2 −× , 4105927.1 −× , 4102883.2 −× , 4104908.2 −×  and 4105469.2 −× , respectively, which 

correspond to %7674.24 , %1977.39 , %0038.25 , %3369.39 , %2051.44  and %5749.45 , 

respectively. Similar results are obtained for different size of marco blocks and different size of the 

search windows. Figure 2 shows the improvements on the average mean square errors of various 

algorithms with the size of the marco blocks 1616×  and the size of the search windows 4040×  

applied to the same set of video sequences. The improvements on the average mean square errors of 

the full half pixel search algorithm, the full quarter pixel search algorithm and our proposed method 

with the motion vectors having 1 bit representation, our proposed method with the motion vectors 

having 2 bits representation, our proposed method with the motion vectors having 3 bit 

representation and our proposed method with the motion vectors having 4 bits representation for the 

video sequences Coastguard are 4107838.1 −× , 4105650.2 −× , 4107828.1 −× , 4105511.2 −× , 
4108711.2 −×  and 4109943.2 −× , respectively, which correspond to %4666.18 , %6579.27 , %4517.18 , 

%5624.27 , %7472.31  and %5302.33 , respectively, that for the video sequences Container are 
6108757.1 −× , 6105444.2 −× , 6100329.2 −× , 6106633.2 −× , 5104967.1 −×  and 5106661.1 −× , respectively, 

which correspond to %7710.0 , %5106.1 , %7993.0 , %5294.1 , %7783.21  and %5069.24 , 
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respectively, and that for the video sequences Foreman are 4101073.2 −× , 4109528.2 −× , 4101438.2 −× , 
4109723.2 −× , 4102154.3 −×  and 4102816.3 −× , respectively, which correspond to %6021.21 , 

%2148.34 , %7420.21 , %2884.34 , %6100.38  and %8738.39 , respectively. From the above 

numerical computer simulation results, it can be concluded that the mean square error performances 

of our proposed method with the motion vectors having 1 bit representation is very close to that of 

the full half pixel search algorithm, and that of our proposed method with the motion vectors having 

2 bit representation is very close to that of the full quarter half pixel search algorithm. For our 

proposed method with the motion vectors having more than 2 bits representations, the mean square 

error performances of our proposed method are always better than that of the full half pixel search 

algorithm and the full quarter pixel search algorithm for all of the above three video sequences. In 

particular, for slow motion video sequences, such as the video sequence Container, our proposed 

method significantly outperforms the full integer pixel search algorithm, the full half pixel search 

algorithm and the full quarter pixel search algorithm. This is because the globally optimal motion 

vectors for these slow motion video sequences are very close to the origin and far from the half 

pixel locations and the quarter pixel locations. In this case, the full half pixel search algorithm and 

the full quarter pixel search algorithm would not yield very significant improvements over the full 

integer pixel search algorithm. On the other hand, our proposed method could give a better solution 

by introducing one more bit for the representation of the motion vectors and hence yields very 

significant improvements. 
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Figure 1. The mean square error performances of our proposed method with the motion vectors 

having 1 to 4 bits representations, the full integer pixel search algorithm, the full half pixel search 

algorithm and the full quarter pixel search algorithm with the size of the marco blocks 88×  and the 

size of the search windows 3232×  applied to the video sequences Coastguard, Container and 

Foreman. 

(b) 

(c) 
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Figure 2. The mean square error performances of our proposed method with the motion vectors 

having 1 to 4 bits representations, the full integer pixel search algorithm, the full half pixel search 

algorithm and the full quarter pixel search algorithm with the size of the marco blocks 1616×  and 

the size of the search windows 4040×  applied to the video sequences Coastguard, Container and 

Foreman. 

 

V. CONCLUSION 

A nonlinear block matched motion model is proposed in this paper. The motion vector with 

arbitrary pixel precisions which globally minimizes the mean square error is solved analytically in a 

single step. As integer pixel locations, half pixel locations and quarter pixel locations are particular 

locations represented by our proposed model, the mean square error based on our proposed method 

is guaranteed to be lower than or equal to that based on these conventional methods. Also, as our 

proposed method does not require searching from coarse pixel locations to fine pixel locations, our 

proposed method is more efficient than conventional methods particularly when the required pixel 

precision is higher than or equal to the quarter pixel precisions. 
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