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Abstract 

This thesis is concerned with SG Fourier Integral Operators (FIOs). In particular 

we define two principal classes of Fourier Integral Operator which we call Type 

P and Type Q operators. Our main results are that generalised versions of these 

operator classes are closed under composition. 
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Notation 

Spaces of differentiable functions: 

Let U c 	Cr (U, C) denotes the space of functions f : U C with the property 

that all partial derivatives of order < r exist and are continuous. We will often 

abbreviate Cr (U, (C) to Cr (U) . We define Cr (U, R) in the obvious way. Cr (U, 

is the space of functions f = 	, fn ) with fi  E Cr  (U, C) for i = 1, 	, n. 

C°(U) := 	(U)  . If f E C°(U) we will say that f is "smooth." Define 

C(T(U) as the space of smooth functions f : U C such that the support of f is 

compact. 

Derivative notation: A multi-index a = (al , 	, an) is an n tuple of non- 

negative integers. For a multi-index a and x E Ilan , we define 

l a l := Ei-1 at ,  

na 	aal 	(9-n, u 	— --A-T. • • • "n X 	ax i 	,Xn 

ax  := faXi)1 

xa := 	X ictl . 
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Let X C Rn and Y C Rni be such that X x Y is open. Suppose that f y) E 

Cr  (X x Y). Let a and Q be 71 and m dimensional multi-indices respectively. Let 

w be the n m dimensional multi-index obtain by taking the cartesian product of 

a and j3. That is, w = (ai, 	, an o3i, • • • /3m) For (x, y) EXxY we will write 

v)jf(x, y) to mean Ow f . For such functions f, x will be called the "first variable" 

and y the "second variable." We will also write 0374f to mean Of`ai:f(x,y). 

Vx  and Ax  denote the gradient and Laplacian operators respectively. ( in the 

x variable.) For example, given a function f(x, y) E C (Rn  X IV, R) , we have 

Vs.f :=(axlf,..., axJ) • 

Miscellaneous: For x E Rn , define (x) := V1 + lx12 . S (Rn ) denotes the space 

of smooth functions f : Rn 	C such that for any non-negative integer N and 

multi-index a we have supxeilln (x)N a" f < oo. S' (1R) is the dual space of S (Rn) . 

For s = (si , s2) with <91, s2  E IR define Hs  as the pseudo with symbol (x)82  (e)8' • 

The weighted Sobolev space Hs is the following set: 

fu E S' : 11u E L2  (Rn)} 

Let f, g : Rn 	C. We write f 	g if there exists a constant C such that 

(x) 1< Clg(x)1 for all x E Rn. We write f N g if f g and g f . 

7 



Chapter 1 

Introduction 

This thesis is devoted to the study of Fourier Integral Operators with amplitudes 

in the SG symbol class. In particular, our goal was to define a class of SG Fourier 

Integral Operators which is closed under composition. 

We begin this introductory chapter with an informal introduction in which we 

present some basic notation and terminology. We'll then discuss some existing 

work in the field of SG Fourier Integral Operators as well as the possible applica-

tions of a class of SG Fourier Integral Operators which is closed under composition. 

The introduction finishes with an outline of the content of the later chapters. 

Given u E S(Rn) define the Fourier Transform it of u by the following integral: 

ft(e) =
IR  e

-ix*u(x)dx. 
n 

The Fourier transformation 	: u 	u sends S(R) to S(R) and it's invertible 
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CHAPTER 1. INTRODUCTION 	 9 

with 

u(x) = (27)-n f e1 x.qt(e)ck. 
Rn 

Now, by integration by parts, for u E S(W1) we have aau = (K)ait. This property 

is useful when trying to solve certain partial differential equations with constant 

coefficients; loosely speaking we apply the Fourier Transform, "convert" derivatives 

into multiplications by ie, "divide" and invert. As Shubin and Egorov remark in [9], 

Pseudodifferential Operator Theory developed when people tried to apply Fourier 

Transform methods to non-constant coefficient PDEs. 

We now show how to represent a differential operator in integral form using 

the Fourier Transform. This is the standard way to introduce Pseudodifferential 

Operators (Odos), see [25]. Define Dxa = (—OH and consider the operator 

A := E aa(x)14 , 

where aa(x) E C°° (RR , C) . For u E S(lEin) we have u = 	o .Fu. Writing the 

inverse Fourier transform as an integral we have 

u(x) = (27)-71 f 
n 

ezx uOd~ 	 (1.1) 

Applying the differential operator A to both sides of (1.1) we have 

Au(x) = (27)-n f eix Qt(x, )71(0d .. 	 (1.2) 

where a(x, = Elod<m, a„(x)a . So, when we restrict the general differential op- 

erator A to S(Rn), we can represent A as an integral. The function a(x, 	is 
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called the "symbol" of the operator A. Writing the Fourier transfrom in (1.2) as 

an integral gives the basic form of a ado: 

Au(x) = (27)-n  f f el( x-Y ).ea(x, )u(y)dyd, 	 (1.3) 
Rn 

with the usual distributional interpretation. By allowing the symbol to depend on 

y, we obtain the general form of a Pseudodifferential Operator. These operators 

have been defined and studied for symbols chosen from various spaces, perhaps the 

most well known of which is the class Sm(Rn x Rn  x Rn), introduced by Hormander 

[18]. The space Sm(Rn x Rn x Rn), defined for m E R, is the class of functions 

a(x, y, e) E C'(Rn  x R x Tr) such that for all multi-indices a, )3, there exists 

ca ,0  > 0 with 1(9`19011a(x, y, e)1 < ca,0,,,,<e)m-1131  for all x, y, E Rn. 

Pseudodifferential Operators are useful in the study of elliptic equations, see 

[2], [22], [26]. For hyperbolic problems we use a generalisation of (1.3); loosely 

speaking, we replace (x — y) • with a function 0(x, y, e) (with carefully chosen 

properties) to obtain a "Fourier Integral Operator" (FI0). Informally, a general 

Fourier Integral Operator A acting on u E S is an integral operator of the form 

Au(x) := J f exp{i0(x , y, e)}a(x, y, e)u(y)dyde, 
Rn 

where 0(x, y, is called the "phase" and a(x, y, e) is called the "amplitude" of the 

operator, again with the usual distributional interpretation of the integral. 

The symbol space Sm and its variants are most useful in the analysis of dif-

ferential operators where the spatial variable x is restricted to some compact 
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subset of IR'. In order to study problems which are global in the spatial vari-

able the "SG " symbol space was introduced, which we now define. For real 

numbers ml , m2  and m3, we say that a(x, y, e) E SCxmyi 'm2'n13 (Rn  x Rn  x Rn ) if 

a E C°°  (Rn  x 	x Rn, C) and for all multi-indices a, /3, 'y there exists some constant 

ca,,3,1, such that I ax  gal < 	 (y)rn2-171(e)"13-1,31, for all x, y, E Rn. 

We will now introduce the SG Fourier Integral Operators defined by Coriasco 

in [3]. A real valued function 0 E Sql , belongs to the class PE  if there exist 

constants C, c, E > 0 such that Vx, E Rn we have 

c(x) < (V (x, e)) < C(x), 

c() 	(vx0(x, e)) C c KO, 

	

I det (ax,a ;  0(x, )),:j=1  > E, 	 (1.4) 

where (x) := J1 + IxI 2  for x E Rn. For a(x, e) E SG,T7r2  with ml, m2  arbitrary 

and cb E PE  Coriasco defines his Type 1 Fourier Integral Operator Ao,a  acting on 

u E S as follows: 

240,,,u(x) = (271)7, f n  expli0(x, )}a(x, e)/a(e)d. 

For b(x, e) E SG7r2  and 0 E Tic  he also defines a Type 2 operator Bo, t, as 

Bcp,bu(e) =fRn  exp{ 	)}b(x, e)u(x)dx. 

In [3] Coriasco establishes the following composition structure for Type 1 oper-

ators. If 4, is any Type 1 operator and P is an arbitrary SG '0do, then ( modulo 
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operators with kernel in S(Rn x 	- defined in Chapter 2) we have: 

o P and P o Ac,, are Type 1 operators with the same phase 0 and some 

amplitudes, 

• A; ,a  0 ilo,a  and Ao,,, 0 .24;,a  are '0dos, 

where A*0a  is the adjoint operator of Ao,ot  . (see Chapter 2.)A similar composition 

structure is also established for Type 2 operators. 

In [4], Coriasco applies his calculus to the study of Hyperbolic PDEs. See also 

[7]. He examines systems of the form 

atu(t,x) — iK(t)u(t, x) = f (t, x), 	for t E J = (To, T1), with To  < 0 < Tl  

u(0, x) = uo(x) 	 (1.5) 

• 	K is avxv matrix of Odos with symbols kw  = kio  (t; x, e C"(J, SGx110 

• uo(x) is a v dimensional vector valued function in the weighted Sobolev space 

HS (see Notation section for the definition), 

• f = f (t, x) E C"(J, Hs) 

• The matrix of symbols of k has the form k = k1  + ko  where 

— k1  = diag(Ai , 	,A- p,) where 	= diag(Ai , 	, A) is a /i  x /i  diagonal 

matrix with v > > 1. The number 13  is the multiplicity of )\ and 
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— A3  E C°°(J, 

— koi , j  E C°°(J, SC x°',° ), 

Coriasco also assumes that the A are real valued and satisfy the following sepa-

ration condition: For j = 1, . . . , a — 1 there exists c3+1,3  > 0 such that 

Ai+1(t; x, 	— 	(t; x, 	ci+1,i(x)(0, 
	 (1.6) 

for t E J and x, E Rn. In [4] it is shown that systems of the form (1.5), have a 

unique solution u E C (J' , Hs) on a subinterval J' C J and that for homogeneous 

systems, the solution operator is a matrix of Type 1 Fourier Integral Operators. 

(modulo operators with kernel in S(Rn x 1111.) Coriasco also studies scalar Cauchy 

problems 

Lu(t, x) = f (t, x), t E J, 

1:41.1(0, X) = 	tl xic 	k = 1, . , v — 1 	 (1.7) 

where L = Dt + Pi(t)Dri  + . .+ P„ (t) and the symbols pi  of the bdos P3  are such 

that p3  = p3  (t; x, E C°°(J, SG1',3e ). The operator L is assumed to be "hyperbolic 

with constant multiplicities," meaning that the roots of the characteristic equation 

are real and satisfy the condition (1.6). For homogeneous problems of the form 

(1.7) which satisfy a certain factorisation condition (called the Levi condition), 

Coriasco shows that solution operator is a sum of Type 1 FIOs. (modulo operators 

with kernel in S(W' x RTh).) These higher order scalar equations satisfying the Levi 
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condition written as can be reduced to equivalent systems of the form (1.5), see 

[4]. 

The main aim of this thesis is to define an SG FIO class which is closed under 

composition and which generalises the Coriasco class. This is interesting for its 

own sake, but there are also possible applications of such a closed SG FIO class 

to hyperbolic PDEs of the form (1.7). If we follow methods of Treves [26], it 

should be possible to obtain the solution operator to the homogeneous problem 

(1.7) as a sum of compositions of Coriasco Type 1 FIOs, without the need for 

the Levi condition. By our results, the solution operator would then be a sum of 

generalised FIOs. This is a desirable situation as the following example shows. 

Define Pl(Rn x Ilan x11171 ) as the class of Fourier Integral Operators with ampli- 

tude a(x,y,e) in Sm(Rn x 	xIn), with compact support in x and y and phase 

x • e — cb(y, 0 where cb(y, e) E C°° (Rn x (Ilan \0)) with 0(y, A) = A0(x, 0 (fora > 0 

and e 0) and det (314 06, cbrw_ 	0. Given an operator Ta  E rn, we can extend 

its definition to S' in the standard way, as discussed in chapter 3. The operator 

class Im is well understood and there exist results about the action of operators 

Ta  E im  on singularities of u. In particular, in [24], in is proved that if Ta  E /0  

then 

Ta  : LP,4_7(p)  —> Lf,x , 	 (1.8) 

continuously, where 'Y(P) (n-1)1, — a and 1 < p < oo. Suppose that Ta , Tb E , 
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then by (1.8) 

7', o Tb : LP 	LP  a-I-27(P) 	a • 

Each application of an operator in I°  leads to a loss of -y(p) derivatives. However, 

by results in [8] the composition Ta o Tb is a generalised FIO which can be reduced 

to a FIO in I° by the Hormander equivalence of phase function theorem. [8] So, 

we only lose derivatives 'y(p) once when we apply operators in 1-0. 

If similar results to (1.8) about losses of derivatives are proved my generalised 

FIOs are applied are proved, then there would be applications of my work to 

the study of regularity of solutions to equations of the form (1.7) which do not 

satisfy the Levi factorisation condition. I had hoped to investigate these possible 

applications but due to time restrictions I was not able to do so. 

We also seek to define FIO classes with the properties that 

• the composition of a FIO with a Odo gives a FIO with the same phase 

• the composition of a FIO with its adjoint is a ado, 

by placing as few restrictions on the phase as possible. In this thesis, I say an 

operator class has a "calculus " structure if it has the two properties above. 

Now we outline what is to come in the subsequent chapters. In the next chapter 

we give the basic definitions and set up the machinery which we will use in later 

chapters. 
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In chapter 3, the Type P Fourier Integral Operator is defined. This is the 

most general operator class I could define with the property that composition of 

a FIO with a Odo gives a FIO with the same phase. For the Type P operator we 

choose phases from the class P defined as the collection of functions (I)(x, y, e) E 

C"(R3n, R) satisfying the following criteria: 

Vj, 	axj  43(x, y, e) E SG°x',°y',1> 	 (1.9) 

Vj, 	a yj(i)(x, y, e) E SG°'v" x,,C 7 	
(1.10) 

	

(Vs(I)(x,Y,V 	 (1.11) 

	

(VA(x, Y,6) 	O, 	 (1.12) 

3c4, > 0 : I x — 	c4,(Y) 	1\7e(i,Y, )1 	(y), 	(1.13) 

	

]c4, > 0 : I x — y1 > ca,(x) 	I'VeCx,Y, 	(x) 	(y), 	(1.14) 

	

y, e) 	((x) 	(0)( 1-1 -Y1, 	 (1.15) 

where for f, g : R3n 	C, the notation f(x, y, e) 	g(x, y, ) means that there 

exists c> 0 such that If (x, y, e)1 < clg(x, y, 01 for all x, y, E lik". For a(x, y,) E 

SGZ y'72 '7n3  (Rn  x Rn  x Rn) with ml, m2  and m3  arbitrary real numbers we define 

the Type P FIO 	acting on 'u E S(Rn) as follows: 

Ad),„u(x) = limo 	f expli(13(x, Y, Ola(x, Y) 07(E0u(y)dyck, 
IRTh Ftn 

where '-y(E) is a mollifier (as defined in Chapter 2). The basic properties of these 

operators are presented in Chapter 3. 
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We present several technical results in Chapter 4. These are mostly very small 

generalisations of proofs of corresponding results in Coriasco. [3]. We follow the 

arguments there exactly. I have tried to avoid repetition where possible and results 

in Chapter 4 are often used in later chapters. 

We show in Chapter 5 that composition of Type P FIOs with pseudodifferential 

operators gives a Type P operator with the same phase and modified amplitude, 

modulo operators with kernel in S(Rn x Rn). 

In Chapter 6 we present some results about SG structure preserving changes 

of variables. These are used in Chapters 7, 8 and 9. 

Chapter 7 sees us define the Type 2 FIO, which for a long time was the most 

general operator I could define with a calculus structure. This operator is defined 

as for the Type P FIO but with phases 41)(x, y, e) = f (x, e) g(y, e) where f and 
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g have the following properties: 

f (x, e) e SG x:e (Rn x R", 111), 	 (1.16) 

g(y, e) E S G JR' x W1, R), 	 (1.17) 

	

(Vxf(x,0) — (), 	 (1.18) 

(Vx.9(x, 	rs-J (e), 	 (1.19) 

1C7ef (x, e)) 	(x), 	 (1.20) 

(Vo(x,e)) 	(x), 	 (1.21) 

Idet 3,2 (9,3  f (x, e) 	>- 1, 	 (1.22) 

Idet ay2 ae  g(y, e) 	1, 	 (1.23) 

where for f, g : R'n —> C the notation f(x, y, e) N g(x,y,e) means f(x, y, e) 

g(x,y,e) and g(x,y,e) f (x, y, e). The Type 2  operator class is a sub-class of the 

Type P FIO class. We shall sometimes call the function f the first component of 

the phase and call g the second component. Note that a Coriasco Type 1 operator 

is the sub-class of Type 2 FIOs where the second component is —y • e and the 

amplitude is independent of y. In addition to establishing the calculus structure, 

we show that if we compose two Type 2  FIOs A and B with the second component 

of the phase of A equal to minus one times the first component of B's phase, then 

the composition is a Type 2 FIO. 

Chapter 8 is the main part of the thesis in which we generalise the definitions of 
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the Type P and Type Q operators and show that each of these generalised operator 

classes are closed under composition. For both classes, we modify the conditions 

on the phase to allow the frequency variable to have dimension greater that of 

the spatial variables x and y. As shown in [8], when we compose two operators in 

PT' we obtain a generalised operator with dimension of the frequency variable equal 

to 3n. In this case, the dimension of the frequency variable can be reduced back to 

n by the Hormander equivalence of phase function theorem. There is no version 

of this in the global setting, so we developed our closed composition structure for 

operators with different frequency variable dimensions. For the Type P operator, 

the generalisation was obvious. The situation for the Type Q operator was more 

delicate as the Type Q phase has additional structure; we can make certain changes 

of variables involving the phase which preserve the SG structure of the amplitude. 

The main difficulty was generalising the conditions on the phase whilst retaining 

the capacity to make the natural SG structure preserving changes of variables. 

This is discussed in more detail in Chapter 8. 

In Chapter 9, we define the Type R. FIO. This is an operator class with a 

calculus structure without the somewhat unnatural assumption that the mixed 

spatial derivatives of the phase are identically zero, i.e. we do not assume that 

ax,ay,(1)(x, y,) - 0 for all i, j as we did for the Type Q operator. It should be 

possible to generalise the Type R. class and obtain closedness under composition. 
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Due to time restrictions, I was not able to do this. 



Chapter 2 

SG Function Space 

In this chapter we give a brief introduction to the SG function space and present 

some definitions and notation which we will use later. 

2.1 SG Function Space Definition 

For x E Rn, define (x) := V1 + lx12. The function (.) behaves like I • 1 for large 

arguments but it's smooth everywhere. We collect a few simple properties of (.) 

in a Proposition. 

21 
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Proposition 2.1.1. For all x, y E Rn, the following inequalities hold: 

1. (x + y) < (x) + (y), 

Proof. Statement 1 follows from the triangle inequality. The first statement implies 

the second and the second implies the third since (x) > lx1 for all x E Rn. For 

statement 4, we use the fact that (x + y) > I x + yI and Ix  + 	 for all 

x,y E Rn. 	 0 

Notation. Let f , g : Rn 	C. We write f g if there exists a constant C such 

that I 	< Clg(x)1 for all x E R. We write f ti  g if f g and g -< f. 

Definition 2.1.2. For mx ,mc  E R, let SG xm,rn  (Rnx x Rne) denote the space 

of all functions f E C°°  (IV' x Rne , C) satisfying the following estimates for all 

multi-indices a, 3: 

ax 	 f (x, 	-‹ (x)mx Ia (077/-101. 	 (2.1) 
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Remarks. Definition 2.1.2 just means that for every pair of multi-indices (a, 0) 

there exists a constant cco  > 0 such that 

< c,03(x)rn--H()rn -loi, Vx E Rnx,  E Rn4 . 

  

It is clear that C(7° (Rn) C SG' (Rn) for any m E R. So, all SG classes are non-

empty and we observe that whether or not a C' function is in an SG class depends 

on its behaviour at infinity. 

SGxmx'nle  (Rn. x Rne) is called the SG class of order (ms, me) • 

SGxmex' IN (Rnx x Rne, Cn) denotes the space of functions f : Rnx x 	—> Cm 

with each component fi (x, E SGxmr (Rnx x RN) , 1 < i < n. 

Let f : Rnx x Rnc —> C. Suppose that for some mx , mt  E R the derivatives 

Vtf(x,) exist for all a„3 and satisfy (2.1) for all (x, y) in some set W C 

Rnx x R. Then we say " f satisfies SGxr71 'm  estimates on W." 

Examples of SG functions supported on Rn. For x E R'', define f(x) := x 

and g(x) := (x). Then f E SG1 (Rn, W1) and g(x) E SG Ix-  (Rn, R) . 

We now collect some basic consequences of the SG class definition. These facts 

will be used frequently. 



CHAPTER 2. SG FUNCTION SPACE 	 24 

Proposition 2.1.3. Suppose f E SGx7n 'rn (Rnx x iln) and g E SGx8xse (Rnx x 

Then: 

1. For any A E C, we have )f E SGx7n'771C (Rnx x 1[1n{ 

2. f g E SG ' inrx' n11±s (ffinx X W IC) 

3. f g E o ax(m.,s.),max(m,s0 (IR% x Rnc) , uTxm,c 

4. If Sx < M x and se < me then SGxsr7 (Rnx x Rae) C SGxffix'rne (Rnx X Rne . 

Proof. These statements follow from the triangle inequality and the product rule. 

Remark. Proposition 2.1.3 changes in the obvious way when the functions f 

and g depend on more or fewer variables. The results of Proposition 2.1.3 will 

often be referred to as " basic facts about SG functions." 

By parts one and three of Proposition 2.1.3, SG classes are vector spaces over 

C. For f E SGx"lex 'm (Rnx x Ilan{ ), define 

= 	sup 	(x)lal-mx(e)101--rn 
xeRnx,CEllIn 

aaa~ f (x, ) 

 

The collection {11 • Hao : a, multi-indices} is a family of semi-norms on 

SGxmrne (Rnx x Rnq The space SGsmr (Rnx x RN) is given the topology gen-

erated by these semi-norms. Indeed, SG,rnex'me (Rnx x Rne) is a Frechet space. See 

[2]. 
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2.2 Ellipticity 

Let f(x,") E S Grxi (Rm. x RN, C). We now present standard sufficient condi- 

tions under which fE SG x rex 	(Rnx  x RN, C). 

Proposition 2.2.1. Let f (x, e) E S 	(Rns x 	C) and suppose that f (x, e) >-- 

(X)rx  (01.  . Then 

1  
E SGx,rcx '—r  (Rnx x RN, C) . 

f (x, e) 

A function satisfying the conditions of Proposition (2.2.1) will be called "glob-

ally md-elliptic of order (rx ,re)" or simply "elliptic" and we'll write f(x,0 E 

ESGrxx;e  (Rnx x RN) . 

Remark. If f (x, e) E SG,Txp (Rnx x RN, C) and f (x, e) >- (x)r. (Ore for (x, e) E 

W C Rnx x RN. Then fsatisfies SG x rex' 1'4  estimates for (x, e) E W C Rnx x Rn4  

and we say " f is md-elliptic on W" or just "f is elliptic on W." 

Example. The function f (x) = (x) belongs to ESGx1  (Rn , IR) . 



CHAPTER 2. SG FUNCTION SPACE 	 26 

2.3 Integral Operators with Schwartz Kernel 

Definition 2.3.1. Let 1C denote the space of integral operators with kernel in 

S (R2n) i.e. the set of integral operators K acting on S (Rn) such that 

K f (x) = f k(x , y) f (y)dy ,  , 	 (2.2) 
illn 

with k(x,y) E S(R2n). 

Proposition 2.3.2. Let K E /C. Then, 

1. K : S (Rn) -- S (Rn) continuously. 

2. K : S' (Rn) -- S (Rn) . 

For the proof of Proposition 2.3.2, see [9]. 

Remarks. Operators of the form (2.2) are called "globally smoothing" or simply 

"smoothing" because of Proposition 2.3.2 part 2. 
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2.4 Mollifiers. 

Definition 2.4.1. A mollifier is a real valued function 7(6) depending on a pa-

rameter E > 0 such that 7 E Cr (Rn , R) with y = 1 in some neighborhood of the 

origin. We will always restrict e to the open interval (0, 1). 

Proposition 2.4.2. Let y(E) be a mollifier. Then: 

1. For all E Rn, y(e) —> 1 as c —› 0, 

2. For 	>1, as E -> 0 we have (9F [7(ce)] —> 0 for all ERR, 

3. a? [-y(Ee)] -< 	with the implicit constant independent of E. 

Proof The first two statements are obvious. For the third statement note that as 

•-y is compactly supported, for any a there exists a constant c, such that 

(601'1  (3  y) (e) C cQ, 	 (2.3) 

for all E Rn. As E E (0, 1), we have (0101€1a1 < (€e)Ial for any non-negative integer 

So, by (2.3), we have 

oalelcd (,91,7) (<) 5_ cc„ 	 (2.4) 

for all E E (0, 1) and E IV. Since 61'1  (0-y) (f0 = a [7(60], we're done. 	❑  
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2.5 Some Operators 

In later arguments we will establish estimates of oscillatory integrals by applying 

differential operators which send the exponential term to itself and then integrating 

by parts. We introduce our two main differential operators in this section. 

Definition 2.5.1. For functions u, v E S, define (u, v) = fin  u(x)v(x)dx . Let 

A : S (Rn) 	S (Rn). The transpose AT of A is the operator such that 

(Au, v) = (u, AT  v) 	Vu, v E S (R) . 

Definition 2.5.2. For w E C°°  (Rn, R), define 

1 — An  Ly,w(y) 	(vyw)2 — 
Ay w 

By construction, Ly,w(y) (ei{w(Y)}) = ei{"( Y)}. We also note that 

Liy,w(y) = (1 - Ay) 

(VyW)2  i Ay W • 

Definition 2.5.3. Let w E C°° 	R) be such that IVry wl 	0 for all y E 

Define 

Uy,w(y) = Iv 	w12 
 I  (aykw) ayk. 

Y I  k=1 

By construction, Ile' = eiw. Also, for any natural number r, we have 

In the above, Pa,r 

1 (uyT,w(y
))

r 	

I 
Ywl4r E Pa,r1  ; • 

loKr 

is a linear combination terms of the form (V y w)7 41 w ay6rw 

with, I YI = 2r, 18i1 > 1 and led + Eir=1 145 j 1 = 2r. 

1 
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The operators introduced in Definitions 2.5.2 and 2.5.3 are taken from Coriasco, 

[3]. 

2.6 SG Cut-Off Functions 

In later proofs we'll establish estimates of integrals using different arguments in 

different parts of the domain of integration. We will use SG cut-off functions to 

divide up the region of integration. The class of cut-off functions defined below is 

taken from Coriasco [3]. 

Definition 2.6.1. For k > 0, let 17,°(k) denote the set of all functions x(x, y) E 

SG°4 (Rn x 	R) such that: 

I x — yl 5- 2(Y) 	X(x,Y) = 1, 

— yl > k(y) = x(x, y) = O. 

The notation IT°(k) is as in Coriasco [3]. As an example, let k > 0 and 

f E Co (R, R) with 

1 if 

0 if  

lx1 < 

xl > k. 
f(x) = 

Then, f (lx(; 212 )E E°(k). 

We also use the following facts, stated in [3]. 
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Proposition 2.6.2. Let x E F.(k). 

1. If k < 1, then (x) ti (y) on SuPP(X(x,Y)), 

2. For any k > 0, on Supp(1 — X(x,y)) we have Ix — YI 	(x) + (y). 

2.7 Asymptotic Expansions 

In proving composition results, we will need some results which tell us when a sum 

of SG functions plus a remainder is of SG type. 

Definition 2.7.1. An infinite sum E7 a j(x,y,0 is an asymptotic expansion if 

it satisfies the following three conditions. 

1. Vj E N, ai  E 	 (Rnx X WY X Rnq 

2. Vj E N,mx,j+1  mx, j , my, j+1 C  my, j  and 	 . 

3. limj,(rnx,3 , Y, , 	= (—oo, —Do, —oo). 

Further, we write a — E71 a j  if VN E N we have, 

N 
a — 	a esG x,N+1,my,N +1,7N,N +1 rnx m RaY  X Rae) . j=1 

 

The definition changes in the obvious way when the a j  depend on more or fewer 

variables. 
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Remark. Asymptotic expansions do not necessarily converge for all points x, E 

Rn. For example, consider fn(x,e) = n(x)-n (0'. Clearly En'ti  f n  is an asymp-

totic expansion but Enc'cii  fn (0, 0) does not converge. 

We shall need the following results about asymptotic expansions. 

Proposition 2.7.2. Let E7_i ai(x,y,e) be any asymptotic expansion. Then: 

	

I. There exists a E 	 (Rnx X RnY X Rne ) such that a — 

2. If a, a' — E7=1  a3 , then a — a' E S (Rnx+nY+nc). 

Proposition 2.7.2 above is proved with fewer variables in Cordes [2]. 

The following Proposition 2.7.3, stated in [3], will be useful. 

Proposition 2.7.3. Let 	 13 Ecc p be an asymptotic expansion and suppose that 3= 

p E C"(R3n ) satisfies the following two conditions: 

1. For all a, )3,7 there exist ki (a),k2(),k3(7) E R such that 

	

(9C:aCffeYp(x,  y ,  e) 	 (X)kl (a) (0k2(0) ) k3( -Y).  

2. There exists a sequence {1,} of real numbers with 1, —÷ —co such that 

P(x Y • e) Ej=i P j (41  r (Or  W I?' • 

Then, we have p E.71 P j • 
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Chapter 3 

Type P SG Fourier Integral 

Operator 

3.1 Definition 

Definition 3.1.1. (Phase Assumptions) Denote by P the collection of func-

tions 1,(x,y,e) E Cc°(R31,R) satisfying the following criteria: 

	

V j = 1, ... ,11 axi i)(x,y,e) E Sex0y,,lc (Rn x  Rn x  Rn) 	 (3.1) 

Vi = 1, 	n, a y,(13(x,y,e) E Sex' ,° 
 (Rn x  Rn x  Rn) 	 (3.2) 

(Vx(1)(x, Y, 
	 (3.3) 

(Vy(1)(x, y, )) >- 	(c), 	 (3.4) 

3c4, > 0 : lx — 	cci,(Y) 	IVeb(x, 	(x) + (y), 
	(3.5) 

3ccp > 0 : 	— 	c4)(x) 	 (x) + (y), 
	(3.6) 

V-y, a2b(x,y, -< ((x) (y))(01-171. 	 (3.7) 
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Remark The variables x and y will sometimes be referred to as the "spatial 

variables" and e may be called the "frequency variable." Later we will allow the 

frequency variable to have dimension ne  > n. 

Definition 3.1.2. Let (I)(x, Y, 	E P, a(x,Y,e)  E SG7y172'in3  with mi ,m2 ,m3  

arbitrary and let '-y(ee) be a mollifier. Define the Type P operator Aci,,a  acting on 

u E S(118n) as follows: 

,L1.4,,au(x) =1).9 f fro ei4)( x'Y'°a(x, y, e)-y(Ee)u(y)dyde 
	

(3.8) 

Notation The operator A.4),„ will also be denoted by FIO (4)(x, y, e), a(x , y, 

Remarks It will be shown later that the operator ,44i,a  is independent of the 

choice of mollifier -y(Ee). Also, the operators defined by Coriasco in [3] are of type 

P. 

3.2 Continuity on S(Rn). 

We start with a result about the form of the transpose of the operator Ly,(1, ( see 

Definition 2.5.2 ) when (I) E P. Again we employ the notation of Coriasco [3]. 
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Lemma 3.2.1. Let d)(x, y, 0 E P and let 

LY,4)(x,Y,C) :- (p y40)2 _ 	i  A 4)  

Then for r E N, 

, 
(LT,cx,y,c)) = E focx,y,0 y 	 4 1 ,51 <2r 

where f j(x,y,e) E SG°',°y':c 2r  

Proof. Given that (I) is real valued, it follows from assumption (3.4) that Lymx,y,c)  

is well-defined for all x, y, e E Rn. By integration by parts, we have 

1 
L Y,Cx,Y,6 = (1  - AY )  (Vy(D)2 _ i Ay  (1) .  

Define g(x,y,e) := (V )2  — i Ay 1. As 1 E P, it follows from the basic facts 

about SG functions that g(x,y,e) E SG,°',°y',2 . As (I) is real valued and (VA) 	(e) 

we have g >- V. So, g E ESG°x',°y',2c  and therefore 

_1 E  cc-PA-2 
g

•L''-xx,y, • 

The result follows by induction. 	 El 

1 — Ay  

The following result will shorten many subsequent proofs. 
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Theorem 3.2.2. Let a(x, y, e) c SGx77;:en 	(Rn  x Ian x Rn) for any mx ,m y,?N E 

Ill and let 'y(€) be a mollifier. Suppose also that 

(13(x, y, e) E C" (Rn  x llin x Rne , R) has the following properties on Supp(a): 

	

V.I=. 	(x) + (y), 	 (3.9) 

	

V multi-indices a, 0, -y, ( t'ap.Y 4) 	((x) + (y)) W I-1'Y' 	(3.10)  

Then the integral operator 

Bu(x) = limo  I I exp{i(13(x, y, 0}a(x, y, 0-y(60u(y)dyd, 
E—,  Rn Rn  

acting on functions u E S (Rn), has kernel in S (R2n). 

Proof. By definition, 

Bu(x) = lim I J explii:13.(x, y, 0 	0 1a(x, y, -y(60u(y)dyde. 
f—O Rn  Din  

For fixed 6, the integral f f expli41)(x, y, e)}a(x, y, e)-y(60u(y)dyde is absolutely 

convergent for any x E Ilan. Therefore the order of integration can be changed, so 

that 

Bu(x) =lim
° 
 i f exp{i4)(x, y, 01a(x, y, 0-y(e0u(y)d0y. limo  J 

rinC 

We assumed that iVe(1)(x, y, 01 >- (x) + (y) on Supp(a). Therefore the operator 

L/61,(x,y,0  = ivo,Cx,y,o, Enki  ack (D(X, y, )(%, is well-defined on the support of the 

integrand. 



CHAPTER 3. TYPE P SG FOURIER INTEGRAL OPERATOR 	37 

By construction Ue,(1)(x,y,oe = e'. Applying this operator s times to the 

exponential term and integrating by parts s times gives 

Bu(x) = limo  I 	expli0(x, y, 	(UT,4) ) 8  [a(x, y, )•.),(€e)1u(y)dedy. 
E--+ IRn  lire 

Recall that 

(U4)s  = Po,s(x, y, 

e 	101<, 

In the above, P f9,s  is a finite sum of terms of the form (Ve:Drat (I) ... (4.'4) , with, 

2s, 	1 for all j = 1, 	,sand   171 = 	I ,(5j  I 1 61 + Esj=i 16.i I = 2s for each term in the 

sum. 

We have assumed that, for all multi-indices a, Q and 0 we have ,t'OM(13(x, y, e) -< 

((x) + (y)) (01-10 on Supp(a). Therefore, 

a c; 'V (V eib)7 	((x) + (Y))17I 
	

(3.11) 

on Supp(a). 

Recalling the definition of Po ,s (x, y, e) and using (3.10) and (3.11) we obtain, 

y, e) 	(( x ) 	(y))3s  (OOHS. 	 (3.12) 

Since by assumption IVO)(x, y, e)1 >- (x) + (y) on the support of a, it follows that 

((x) + (0)-4s  
1VeI(x, y, 014s 

1 
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on Supp(a). It follows from assumption (3.10) that for any multi-indices a, (3 we 

have 

1  ag 17J'(x,Y,01' 	((x) + (Y))-4s , 

on Supp(a). As -y(€e) is a mollifier and a E SGxm;TY'me  , we have, 

a4.a‘z [a(x, y, e)-y(e)] -< (x)n. (y)mv (e)ne-161. 

(3.13) 

(3.14) 

where the constant implicit in (3.14) is independent of E. To obtain (3.14) we used 

part 3 of Proposition 2.4.2. Recalling the form (U )8  and using (3.12) , (3.13) 

and (3.14) we see that 

ag g ,DY5  [a(x, y, 07( 60] -‹ (x)rnx-1(Y)mY-1(Orn-s 
	

(3.15) 

with implicit constant independent of E. For large enough s, we can apply the 

Lebesgue Dominated Convergence Theorem to see that 

Bu(x) = .1 J exp(id )(x , y , 0) (U1:4) )s  [a(x, y, 0] u(y)ckdy. 
in Rne 

To obtain the above we used the fact that limo  (U ,D ) [a(x,y,e)-gx,y, 0] = 

(q:4,) 5  [a(x, y, 0] . So, the kernel k(x, y) of B is 

k(x, y) := L,exp(i.( x,y,,))(ci:(o s [a(x, y, )](:k. 

By similar work to that which produced (3.15 ), we have 

ag (u4)8  [a(x, y, 0] -< (x)mx -1  (Y)mY-1  (Orn  -5• 	(3.16) 
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To show that k(x, y) E S (R2n) it suffices to show that for any non-negative in- 

teger N and multi-indices a„3 we have (x)N (y)N(V:k(x,y) 	1. This follows 

easily from the definition of k(x,y), assumption (3.10) and the estimates (3.16), 

by choosing s to be sufficiently large. 	 111 

Theorem 3.2.3. Let (I)(x, 	E P and let a E 	(Rn x Rn  x Rn ) with 

mi., m2, m3  arbitrary real numbers. Then FIO(1(x, y, e),a(x, y, e)) is a continuous 

mapping from S(118n) to S(IIV). 

Proof. Consider 

Acti(X) := f 
IRn f 

e' 4)( x'Y a(x, y, 0-y(€e)u(y)dyk 

By definition, Au(x) = lim,_o  A,u(x). Let x(x,y) E E°(k), where k > 2c4). This 

means that that on Supp(1 — x(x,y)), we have V 	(x) + (y). Define 

AE, iu(x) 

AE,2u(x) 

Aou(x) 

A,,,4u(x) 

:= 	 fRnfln 
ei(1)(X'Y'e)X(X, Y)X(Y) x)a(x, y, e)7(60u(Y)dYde, 

:=
f 
 eicl.(x'Y'°(1 — X(x, Y)) X(Y, x)a(x,  y, )7(60u(Y)dYde, 

etci) 
IRn  := I • 

(x,y,e)(1_x(x,0)(i_x(y, x)) a(x, y, e)7( 6 )11(Y)dYcle ,  
f n  

:= 	 e24)(T'Y'e) ( 1  — X(Y, x))X(x, y)a(x, y, 07(6e)u(Y)dYde• 
f nIn 
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By construction, A.,u(x) = Aou(x) + Aou(x) + Aou(x) + A,,4u(x). Define 

Aiu(x) := 

A2u(x) := lim Aou(x), 

A3u(x) := lim Aou(x), 

A4u(x) := lim 4u(x). €—>o ' 

By Theorem 3.2.2, the operators A2, A3 and A4 belong to 1C and therefore they 

send S to S continuously. So if we can show that for any (N, a) the semi-norm 

is bounded by a linear combination of semi-norms of u, the proof will 

Ly  be complete. To prove this we will use the operator Ly,4)(x,y,c)  := (vy4))2 _ iz\u . (We 

will abbreviate Ly,(1)(x,y ,e)  to Ly.) Consider A6,1. By construction, 

Lv  : 	1-4 e:4' 

So, for r E N, 

AE 1 = f f Lry(e14)(x ' Y'C) )X(x Y)X(Y x)a(x, Y, e)Y(E0u(y)dycl 
liRn an 

Integrating by parts in y r times gives 

A6,1  = f 	eici)(x'Y'°(4)r  [X(x, Y)X(Y, x)a(x, y, )u(y)] 7(E )dyCk 
Rn Rn 

By Lemma 3.2.1, we have, 

(4)r [ a( x,  y, ))((x, Y)X(Y, x)u(y)] 

E fs(x, 	[x(x, Y)X(Y, x)a(x, y, e)7(Ee)u(Y)] 
1 ,5K2r 

(3.18) 

(3.17) 
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where fo  (x, y, E 	2r It follows from the product rule and the basic facts 

about SG functions, that 

(LDr  (X(x, Y)X(Y, x)a(x, y, )u(y)) = E b6(x, y,0a5u(Y) 
	

(3.19) 
lo152r 

where bs (x, y, 	E SGxml' y, n12 'rn3 -2r  and we have (x) 	(y) on Supp(ba) for all 6. C 

Since u E S (I11n) and (x) 	(y) on Supp(ba ) it follows that for r > m3+2n+1  we 

have, 

(L yT )r [X(x, Y)X(Y, x)a(x, y, e)u(Y)] 	E (Y)—
(n+1) ()—(n-1-1) 

Imi+77/214-n+1,6 ) 
151<2r 

(3.20) 

where 	IN,5  is the N, 6 semi-norm on S. Therefore we can apply the Lebesgue 

dominated convergence theorem and conclude that 

= 	 f el'(x'v'e)(4)r(X(x, Y)X(Y, x)a(x, y, .)7/(y))dycl. 
n Rn 

Inserting the expression (3.19) for (LyT )r [x(x, Y)X(Y, x)a(x, y, )u(y)] , we have 

Aiu(x) 	I 
151,2r  , 

ei4)( x'Y'e )bo(x, y, e),*L(y)dyd. (3.21) 

For a non - negative integer N, consider 

(41  \ (9t  I n
f 

ei  ' Y  ) 6 	 y, )(9`y5 u(y)dyde. 	 (3.22) 

By similar arguments to those which produced (3.20), taking derivatives of any 
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order inside the integral can be justified. So, 

(x) NO2 eiflx'Y'°b6(x, y,e)(4u(y)dyck = 

(x) N(92 [ez(1)( x'Y'°1)5 (x, y, e)] ayu(y)dyde. 	(3.23) 

Since E P, bj(x, y, e) E SG Z yi 72'm3-2'.  and (x) ti  (y) on Supp(b.5),  we have 

(x)N3 [ei(1)( s' 9'°b6 (x y,e)] 	ori+m2+N(0.3+1.1-2r. 	(3.24) 

For any ml , m2  E R and any non-negative integer N we have (y)Tn'+'2+N  

(Y)Imi±m21+N. So, by (3.24) we have 

(x) Na2  [eiflx,y,e )bo(X y, e)] 	(y)Irni+17121+N(e)m3+Ickl-2r. ,  

Using this fact, it follows from (3.23) that for r > 7n3-1-1  V+1  we have 

(3.25) 

(x) N a2 	f e i flx'The )b8(x, y, e).4u(y)dyde 
Rn Rn 

H U  H 	 1CL  Irni -f-m2I+N-Fr1+1,6 	(Y)—(n+1)  (e)—(n+l)dY 
R 
f  

n Rn 	
Inl1+rn2I+N-Fn+1,(5. (3.26) 

So, by (3.21) and (3.26) we have 

(x)Nax-Alu(x)- E I IUI I Im1+m21+N+n+1,b.  

I61<2r 

Therefore Al  sends S(Rn) to S(Rn) continuously. 

In the proof of this Theorem and of Theorem (3.2.2) we saw that the functions 

Aiu(x), A2u(x), A3u(x) and A4u(x) were independent of the choice of mollifier 
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7. Since Au(x) = Alu(x) + A2u(x) + A3u(x) + A4u(x) it is clear that Au(x) is 

independent of y and the following proposition is also proved. 

Proposition 3.2.4. For a(x,y,e) E SG71T 2'' with ml , m2 , m3  arbitrary real 

numbers, and I E P, the function A4,,au(x) is independent of the choice of molli-

fier. 

Recall that for functions u, v E S(Rn), 

(u,v) := 	u(x)v(x)dx 
irkr,  

Clearly this integral converges for any pair of functions in S(Rn). Suppose 

B : S(Rn) 	S(Rn). Then (Bu, v) is well defined. The transpose of B, denoted 

by BT , is the operator sending S(IR') to S(Rn) such that (Bu, v) = (u, BT  v) for 

all u, v E S(Rn). 

Theorem 3.2.5. Let a(x,y,e) E SGx71' ern2'' with ml , m2, m3  arbitrary real num-

bers, let (1) E P and define A = FI0(41,(x,y,e),a(x,y,e)). Then we have; 

1. AT  u(x) = 	f fRn  expi(1)(y, x, e)a(y,  , x, e)7(€0u(y)dy4, 

2. AT  is continuous from S(Rn) to S(Rn), 

3. A : Si(Rn) 	S'(RJ) continuously. 

Proof. The first two statements are straightforward given that the phase assump-

tions are symmetrical in x and y. See Definition 3.1.1. 
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Given that statement 2 of the Theorem is true we can extend the definition of 

A to S'(Rn) in the usual way. That is, for u E S'(Rn), we define the operator Au 

acting on v E S(Rn) by 

Au(v) := u(ATv). 

To show that Au E S'(Rn) we need to show that Au is a continuous linear func-

tional on S(Rin). As AT  is linear, it is obvious that Au is a linear functional. We 

have to show that it is continuous. Suppose fvk l is a sequence such that vk  —› v 

in S(Rn). Since AT  is continuous from 8(R71 ) to S(Rn) and u E S'(Rn), we have 

Au(vk) = u(ATvk ) —p u(ATv) = Au(v), 

in C. So, Au E S'(Rn). Having established that A sends S'(111n) to S'(Rn), we now 

need to check that A is continuous from S'(Rn) to S'(Rn). 

Let {uk} be a sequence in S'(Rn) such that uk  —> u in S'(Rn). This means 

that for all v E 8(Rn), we have uk (v) —› u(v) in C. Clearly then, for any v E 8, 

we have, 

Auk (v) = uk (ATv) —> u(ATv) = Au(v), 

in C. So, uk  -> u in Si(IR.n) implies that Auk  -- Au in S'(Rn). So the map A is 

continuous from S'(Rn) to S'(Rn) 

111 

A FIO with phase (I) E P and amplitude a(x,y,) e SGx"W''' will be called 

a "Type P FIO." 
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3.3 	Reduced form of the Type P FIO modulo J. 

Proposition 3.3.1. Let 4)(x, y , 0 E P, a(x, y, 0 E SG7x1T'n13  for mi, m2, Trt3 

arbitrary real numbers and let x(x, y) E "E°(k), where k > 24. Then, modulo /C 

F I 0(4)(x, y, e), a(x, y, e)) = FIO (4)(x, y, e), a(x, y, e)x(x, y)x(y,  , x)) 

Proof. This was proved in the process of proving Theorem 3.2.3. 	 111 

Let A = F./0(4)(x, y, ), a(x,y,e)) with a(x,y,e) E SGtx%T 2'm3  and 1(x,y,e) E 

P. For any x(x, y) E ELs'(k), with k > 2c4), we will call 

FIO (4)(x, y, e), a(x,y,e)x(x,y)x(y,x)) the "reduced form" of A modulo /C. 



Chapter 4 

Some Technical Lemmas. 

In this chapter we present a series of technical results which will shorten the proofs 

of later composition theorems. 

The first result tells us that when considering compositions of Type P operators 

modulo K, we only need to look at the composition of their reduced forms modulo 

K. 

Proposition 4.0.1. Let A, A1 , B, B1  be Type P operators. Suppose that 

A = Al  modulo k and 

B = B1  modulo K. 	 (4.1) 

Then we have 

A a B = Al a B1  modulo K. 

Proof. The proof is straightforward by integration by parts. 	 ❑  

46 
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The next result will be used frequently. 

Theorem 4.0.2. For any mi ,m2 ,m3 ,m4 , m5  E R, let 

a(x , y, z, , n) E 	ml,m2 In23 
	

(Rn x 1<8n x 	x Rnc x Rnn) be such that (x) 

(y) 	(z) on the support of a. Let 7(ce),7(671) be mollifiers. Suppose also that 

E C°°  (Rn  x 1W' x Rn  x In x Rn), R) has the following properties on Supp(a): 

Vy(1) 	(e) + (7/), 
	 (4.2) 

V multi-indices 	 ((c) + 	(y) 
	

(4.3) 

Then the integral operator 

Bu(x) = lirn Ern f 
€-4) b—+0 fRfl Lnn f 

exp{i,(13(x,y,z,e,17)}a(x,y,z,e,q)x 

x 7(c)-y(Sii)u(z)dzdridyde, 	(4.4) 

acting on functions u E S, has kernel in S (R2n ). 

Proof. For fixed c and b, the integral in (4.4) is absolutely convergent. So we can 

change the orders of integration around. Doing so, we have, 

Bu(x) = lim lim f /If exp{ic1)(x, y, z, e, 77)}a(x, y, z, e, n ) x 
E-03 	Rne R.„,n 	n  

x-y(c)7(.571)u(z)dydzdride. 	(4.5) 

We assumed that V >- 	+ (n) on Supp(a). So, the operator 

UY,(1)  = •c7,12  Enk=l ayk .: )(x , y, z, e,q);, is well-defined on the support of the in-

tegrand. We will abbreviate (4,4, to Uy. Applying Uy  to the exponential term s 

times and integrating by parts s times gives 
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Bu(x) = lirn exp{i(1.(x, y, z, 77)}  (Un s  [a(x, y, z, e, 77)] x 
e—d)(5—. 

x -y(<)-y(6n)u(z)dydzdirle. 

(4.6) 

Recall that 

	

( Lici)s = 	E po,s(x, y, 	77)4. 
Ivy(14s 101<s 

In the above, P0 ,3  is a finite sum of terms of the form (V.1)7,V(I)... ay(580 , with, 

	

= 2s, 16j1 > 1 for all j = 1, 	, s and 101 + Eis=1 	2s for each term in the 

sum. 

By assumption (4.2), we have, ivy1,1,1 „ 	+ (TO 4s  on Supp(a). It follows 

from assumption (4.3) that differentiating with respect to x and z does not destroy 

the improvement of these estimates with s. Precisely, for any multi-indices a, 3, 

we have 

	

aP' 	1 	((c) + ( 77))-4s  , 	 (4.7) 
z  IVArs  

on Supp(a). 

Using the definition of P0 ,3 , and assumption (4.3) we see that for any multi- 

indices a, 0, we have 

V93'0,8 	((c) + (77))3s  (Y)181-s, 	 (4.8) 

on Supp(a). 
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As a(x, y, z,,  77) E SGx7y7,t7743'm4 'm5 , we obviously have 

a2a,1:4a(x, y, z, e) 77) 	(x)m1  (en2-1°1(z)m3  (0m4  (77)7T15 ' 
	(4.9) 

Using the estimates (4.7) , (4.8) and (4.9) it follows from the form of UT  that 

a (V ((U,(D)s [a(x, y, z7 77 77)]) 	((c) + (n))-S  (x)'(v)"22-s (z)m3 (e)m4 (n)m5. 

(4.10) 

By the Cauchy- Schwartz inequality, we have ((c) (rl))--s  < (0-- 2(n)--2 for any 

s E N. Using this fact and since (x) ti  (y) 	(z) on Supp(a), we have 

(1)N  (Z)Naal: (Uy:4)).3  [a (X, Y, Z, 
17)] ) 

(y)M1+7n2+M3+2N.S  (0M4 (77)7715 2. 

(4.11) 

for any N E N.  

The result follows from the estimates (4.11), assumption (4.3) and the Lebesgue 

Dominated Convergence Theorem. 

The following Theorem is proved by similar arguments. 

Theorem 4.0.3. For any m l , m2, m3, m4 , m5  E R, let 

a(x, y, 	E 	 x Rn x Rn x 	 x Rnn) be such that (x) 

(y) 	(z) and (0 N Mon the support of a. Let -y(€e), 7(8 n ) be mollifiers. Suppose 

also that 
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4) E C°  (Rn  x Rn  x Rn  x RN x Rm./ R) has the following properties on Supp(a): 

Vezt. (x), 

	

V multi-indices a, 0, 	 (x)(e) 

Then the integral operator 

Bu(x) = limlim f 	 y, z, e, 77)}a(x, y, z, e, 71) x 
€—C1 	11;En 	 fEtn 

(4.12) 

(4.13) 

x-y(ce)7(bri)u(z)dzdndyde, (4.14) 

acting on functions u E S, has kernel in S (IR2n). 

The next Proposition is the main result of this chapter. For its proof and 

for the proofs of the necessary Lemmas, we follow the corresponding results in 

Coriasco [3] exactly. 

Proposition 4.0.4. Let (I) E P and 

a(x,y, 	 17 M2 ,m3 ,m4,m5 E SGx771,,y,z,cm  (Rn x Rn x Rn x Rn x Rn) be such that on Supp(a) 

we have (x) ti (y) 	(z),  (9) ti(e) and Ix 	< k(y). Also let -y(6) be a mollifier. 

Define 

h(x, z, 	:= Inn f 	e"(Y'z'n)-1)(x'z'17)+(x-Y)"e}a(x, y, z, 77)-y(€e)dyde. 
Ezn, f n 

Then, for small enough k, the function h(x, z, i7) E SG,nizi +Tim2,m3,m4+m5  (Rn  x Rn  x Rn) 

and 

h( x, z, 7)) 	E 
a! 

 [D
Y 
 [eio(x'Y'z'n) (04a) (x, y, z, Vx (I)(x, z , 77), a)] y=x 
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where 71)(x, y, z, ri) :----- 4)(Y, z, 71) — J(x, z, 71) + (x — y) . V xcl (x, z, 77). 

Remark. The notation 8 denotes differentiation in the ith variable. 

Remark. Since a(x, y, z, e, n) E SG7yx:71m z 'm 'nin  (Rn  x Rn x Rn x Rn x Rn) and 

(x) ti  (y) N (z) on Supp(a), it follows that a e SGPxrz'7r1  (Rn x Rn  x Rn  x Rn  x Rn ) 

where p, q, r are real numbers such that p+q+r = mx+m y+mz . So, if we can prove 

the Theorem we will actually also have h(x, z, ri) E SG;',t,!,rnri -Fmn  (Rn  x Rn  x Rn) 

where s and t are any real numbers such that s + t = mx  + my + mz• 

The proof of Proposition 4.0.4 will require several Lemmas which we now 

present. 

Lemma 4.0.5. Let (1,  E P and 

„mx  ,77/y,Mz /M7) a(x, y, z, e, 	E 	 x Rn  x118n x 	x Rn) with (x) 	(y) 	(z) 

and (ri) ti  (e) on Supp(a). Define 

1 
ca (x, z, n) := — [D

Y 
 fei'b(x'Y' z' n)  ((ti'et) (x,  y, z, Vx 4:13(x, z, 77) ,  77 )1] y=x . a!  

where 71)(x, y, z, 77) := 1(y, z, 77) -'(x,  z, 	+ (x - y) • Vx(1)(x, z, 77). Then, we have, 

m +m 	m 	m  +m  la I 
V 	4 ' z 	4 ' 	V 	2 E SGx,zxm 

That is, a cc, is an asymptotic expansion. 

Proof. All variables are 71, dimensional, so we will write SCmyx:zmLiinz'm°7" to mean 

mLim.,rne,m SGT y z 	, (Rnx Rnx Rn x 	x Rn) and similarly when we have fewer 
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variables. Also, as always, f means fr, 

We assumed that a(x, y, z, e, 77) E SG7xn;':7 '77 	" 7n z'm 'm  . So, we obviously have 

mx, imi • (4a)(x,y,z,e, n) E SGx my,mz M14 — lak 
 

Now, since (Vx4)(x, z, e)) ti(e) and ax, (1)(x, z, e) E SGx°',°;,c  for j = 1, . . , n, we 

have 

(a,a)(x, y, z, V x4)(x, z,e),71) E SGmx'inv'mz'rn  x,y,z4,77 

Putting e = 77, it follows that 

Ma)(x, y, z,V x4) (x, z, 77), 77) E 
sG772;:zMiT771z,111H-rrtn-lal 

By similar arguments 

Do aaa y( 4 )( x l z, VA(z, 77), 77)1y=x  E SGx7%,+,77nv  

Since (x) ti  (z) on Supp(a), it follows from (4.15) that 

x +my _ ll31 onz  _ 111 
ay° (4a)(x, y, z,V x(I)(x, z 	) 	SG ,17), 711 y=x E 	T,z,n 	 " 

(4.15) 

(4.16) 

Now let's consider (Veilb( x'Y'z'77) 1 	. Recall that by definition y=x 

71)(x, y, z, 77) := 43. (y , z, 77) — 4.(x, z, ii)  + (x — y) • Vx(1)(x, z, 77). Define 

fo(x, y, z, 77) := e-i*(x ,Y ,z ,n)a:ei2P(x ,y ,z ,n). 

For 101 > 1 we have 

c=„Eii  
in: 

Mx, Y z n)ly=x (4.17) 
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where the sum over ji  is finite , cj1,32  e C and nji  E N for all ji . Note that for any 

ji  we have 

E 	= 101. 
.12=1 

Observe that for all Q such that 101 = 1, 

40(x, y, z, 71) l y=x 	0. 

Therefore in the expression (4.17) we have 

1731,321 > 21 	V31, j2. 

It follows that 
nil 

E 	2n31. 
.j2=1 

In order to satisfy (4.18), we conclude from (4.21) that 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

2n 	101. 	 (4.22) 

for all ji . Now, as 1 E P, and since 1-y31 ,32 1 > 2, (we assumed afjcx, y, 	E 

for 1,31 > 1) we have 

	

aylr"'32 43(y, z, //)1 y 	E =x 

Therefore, by the basic facts about SG functions, 

nil 	 n • 
'5-̀  31 

11 6; 	 x 21' 2 2 43 (Y1 Z1 in y= E 
j2=1 
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By (4.18), E37:l l'Y 2 I= 13 1 ,, so 

nil 

E SGxr1,31,77 a;"'321:1)(Y, 77)y=x 

:72=1  

We have n3•1 < k3-1  for all ji, so 

nil 
1°1 -101 0 1131  

I  II
ay,i,32cy, 

Z ' 71)  y=x E 
SGx,z,77 

, , 2 . 

71 .i2=1 

Simplifying the SG order of the x variable gives 

nj, 

Ez, 77) l y=x  SG4'°' 14  E X,Z,71 	• 

Recalling that Tr. 31 0 (p 1,22 (y,  
Z-d,91 1131 	Y 	 z,71)1y=x, 

we have 

_1,01 0 1131 
Mx, Y, z, 77) I y=x E SGx,z2,7; 2  

By definition, 

ayoe  w.,y,z,77) = fo(x, y,  z,  77)ei0(X,Y,Z 07) 

Noting that el y=x  = 1, it is clear that 

101 0 la( 

XT 

	

a/  ei(T'Y ' Z'17) 	E SG-  2  " 2  • y=x 	 ,Z,1  
(4.23) 

The result follows from (4.16) and (4.23) by the product rule. We also use the 

fact that (x) 	(z) on the support of 4(act)(x, y, z, Vx0(x, z, 77), 77)1 
y—x .  

0 
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Proof of Proposition 4.0.4 By definition 

h(x, z, 7/) := 	etWv,z,n)-(1)(x,z,77)+(x-y).0a(x,y, z, e, 77)-y(cOdycl 

We have, (0 rs-,  (II) and (x) 	(y) 	(z) on Supp(a). So for fixed x,z,r) we 

have 

iwy,z,n)-cx,z,77)+(x-y).cla(x, y, z, 0.y(fo 	(y)-r (e) r , 	(4.24) 

for any r E N with the implicit constants independent of c. Therefore, by the 

Lebesgue Dominated Convergence Theorem, 

h(x, z, n)  = if e ilcy,z,n)-cx,z,77)+(x_Y).C}a(x, y, z, e, ii)dyde. 

Expanding a(x, y, z, 71) in a Taylor series about e = V,(11.(x, z, 77) gives 

a(x,y, z, e ,71) (e - Vx(D)a 
 (84a)(x, y, z, 	17) 

I.1<m 

E M('— vx(1))ara(x, z, e — a! 
lal=m 

1 

where ra (x,y, z, - 	ri) := 
	

(1 - t)A1-1(a4a)(x, y, z, VA) + t(e - 	71)dt. 

Inserting the Taylor series for a and defining the new variable 0 := e - V), 

we have 

Oa n)dyclO h(x, z, 77) = 	e if 	i[(Y'z' ?7)-4)(s' z' 77)+(x—Y)•(0+Vx(1)(x,z,77))] 	((Tea) (x,  y ,  z, v cp 
a!` 

JOr
MO'  ei[4)(y,z,n)-cx,z,n)+(x-y).(e+v.Cx,z,71))1 	ra ( x , y, z , 0, 71)dyd0 

lal=m 	
a! 	\ 
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Define 

a if ez14)(Y,z,n)-4,(x,.,n)+(x-y)•(e+vxflx,z,n))1 cct (x, z, 7/) 	 (qa)(x, y, z, Vx(1), n)dydO, a l 

Ra  := if eiwy,zm-cx,z,n)+(x-y).(e+vicx,z,n))1 111(°)a  r (x 7  v z 	n)dvd0 co  a 	7 , - • 

Ea  c,„(x, z, n ) is an asymptotic expansion. As before, define 

y, z, 71) = ((Y, z, 11) — (1)(x7 z, 7))+(X—y).Vx1:1)(X7  z, 77). Letting 	denote the 

Fourier transform sending f(x) to f (0, we have, (up to a multiplicative constant 

Ca  = I .F  0—T   [0( 	n[ez*(x 	'77)  (a a) (x,  y, z, V x(I)(x, z, 71), n )]] 
a. 

Note that the (x, z, 71) section of ei0(x ,Y ,z ,n)(qa)(x, y, z, Vx(I)(x, z, 77), /7) belongs to 

S(Rn). Converting multiplications by 0 into y derivatives in the standard way gives 

1 
ca  (x, z, 71) = — [D

Y 
 (e"P(x'Y'z'")  (0( a) (x, y, z, Vz(1)(x, z, 77), 77))1 Y=x  . !  

By Lemma 4.0.5, Ea  ca  (x, z, 7i ) is an asymptotic expansion. 

Define RM  := 	R. By Proposition 2.7.3, we will have h Ea  ca  if it 

can be shown that 

Rm ( x )IM (n)IM 	 (4.25) 

where /m 	—oo as M 	oo. (It is easy to show that the first condition of 

Proposition 2.7.3 is satisfied.) 

Then, by Proposition 2.7.2 part 1, there will exist a function r(x, z, j) E 

SGT1r2''3'"141-m5  with r(x, z,7)) 	Ea  ea(x, zo7 ). If h = r we'll be done. If 
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h 	r then we'll have h = r up to an additive element of S (R3n) by Proposition 

2.7.2 part 2. This will imply that h belongs to the same SG class as r. 

that h(x, z, 71) belongs to the stated SG class. 

We will prove the estimates (4.25) in two steps. We introduce the cut - off 

x*(), where x* E Co IV) such that x*(x) = 1 when lx1 < 4 and x*(x) = 0 

when lx1 > 

Define 

/,(x, z, 7) 	g el(x-Y).°X*  ( 7 	! 
0 ) M

a
(Or  ei0(x,y,z,w rQ(x, y, z, 0, 77)dydO (4.26) :=  

M(0) 
	eio(x,y,z,n)r,  (x ,  y,  z, 0, n )dycl9 Ka(x, z, n) := I f e'( x-Y ).9  (1 — x*) (0 

)) (77a! 

(4.27) 

By Lemmas which we prove later, for small enough c > 0, we have 

a
Ia 	

l 
(x)m1+m2- 4 (z)7n3— 

l 
 (77) 

4+n, 5+2,_ l 2al  

and given any c > 0, we can choose k to be small enough so that 

Ka 	(x)-Ial(z)-1a1(71)-Ial. 

(4.28) 

(4.29) 

Recall that c is the constant in the definition of the cut-off function x* and we 

assumed that Ix — < k(y) on Supp(a). 

Using the estimates (4.28) and (4.29) , we see that Ra  = Ia  + Ka  and that 

Ra 	 (x)rn1+Tri2 — 	m lal 

	

4 (z) a 	07)171,4-I-M5+2n—i='24 
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So 

Re  -< ( x )max{0 ,mi -Em2}- 4 (Z)MaX{O,n13}- 4 yraX{°,M4±In5+2n}.._ 4 

. As Rm  := EH=,,„ Ra  we have 

Rm 	(X)MaX{0'ini+M2}— (Z)na)CO,M31-11 ()max{0,m4 +m5+20- j̀--41.  

0 
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Lemma 4.0.6. Let a(x, y, z, 77) E SGTa773'7714fin5  (Rn  x IV x R" x Rn x IRT1 

with (x) ti  (y) 	(z) and (77) ti  (e) on Supp(a). Let .1) E P and define 

ra(x, y, z, 9, 77) := fol  ( 1—t)m  (0.Za)(x, y, z, VA(x, z, n)+0, '0dt. Let x* E Ci0 (Rn) 

be such that x*(x) =1 whenlx1 < 4 and x*(x) = 0 when lx1 > 2 Define, 

f,,o(x,y,z,n) := f dOei( s-Y ).°  (apr,(x,y,z,0,71))x* (-F1).6  

Then we can choose c to be small enough so that for any L E N, we have 

fc,„0 --< (x)ml+m2- 2 (zyn3-y (Vn4-1-rn5+n-lal  (1  + Ix - yl  (7 ))* 

Proof. We start by estimating 

1 
y, z, 0, 71) := I (1 — t) 	(3a)  (x,  y, z, x(1)(x, z, 71) + t(0), i7)dt. 

We can take y, 0 derivatives inside, so 

11 

a-gra (x, y, z, 0 , n) = J (1  — t)m-1(6:a:r7a)(x,  y, z, Vr(I)  + t(0), n)t171 dt 

We have 

1 

(1 — t)111-1(a1:3 4-700(x, y, z, Vx(I)(x, z, 77) + t(0), 71)t171dt 

 

1 
(40r7a)(x,y,z,VA(x, z, 77) + t(0), n) J t171 (1 — 	(4.30) < sup 

tE [0,11 

As (Vx421)(x, z, 77)) — (n), we can choose c small enough so that on SuPP(X1 we 

have, 

(vxcx, z, 77) + to) — (77). 	 (4.31) 
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More precisely, (4.31) means that there exist constants c1, c2  such that 

(V 	(x, z, n) + to) < ci 	vt E [0, 1], x, z E Ir and n, B E Supp(X*) 

c2  (n) < (V (1)(x, z, n) + to) vt E [0, 1], x, z E W and 71, 0 E Supp(X* ) 

The integral fol (1 — t)m-1e71  converges for all M E N and multi-indices 7, so 

it follows from (4.30) that 

(9P:r ,(x , y,  z, 0, ri) < sup 
te[o,i] 

(af2304+7a)(x,y, z, V + 40), n) (4.32) 

  

x ,My ,rnz,rne 'Int) As a E SGT 	and (x) (y) (z) on Supp(a), it follows from (4.31) x,y,z,em 

and (4.32) that, 

	

ao'a:ra(x, y, z, e, 77) 	(x)rni+rn2_y \zi , 101 
(7r4+7/15 	-H 
	

(4.33) 

on SuPP(X* ) • We now use the estimates (4.33) to obtain a bound on the y, 0 

derivatives of fa,o. Recall that by definition 

f.,0(x,Y,z ,77) := f dOei(x-Y)•
00,:ria  (x ,  y, Z, 8, 77)x

*  
(e

) • 

Set u = x — y. Using this notation, we have 

	

fa ,o(x, x — u, z, 71) = Y0 . Ply5r,(x, x — u, z, 0, 77)x* 	. 

We remark that for fixed y, the function x* () has compact support in O. By 

integration by parts, we have, 

	

, 	, 

	

of,,o( x,x—u,z,n) 	[D,o,  (vra ( x,x _ u, z, 0,711x (—))] (n) 
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Let Eim  = {0 e Iign :101< 2(77)}. We have, Supp(X*) C  E_,71 . Letting ite(Ei,n) 

denote the measure of Ec n , we have 

  

 

De 	
, 0 ) , 

(4r,„(x, y, z, 9, '171X
* , 

 07)  1 

 

x — u, z, 	-< bt e(E) sup 2 eeE,  
n 

. (4.34) 

 

As x* is compactly supported, it is clear that 

a k*  (7) -< ( 11) 
	

for all multi-indices w. 

Using this fact and (4.33), we have 

\ 
rig (0:ra(x, x — u, 9, 77 )X* (71

0 

 )

)) 	
(X/ rn 1±m2 	(Z)m3 	(7C14+7n5-1(11-1w1 

(4.35) 

We also have 

tte(E,n ) -< (7))n. 	 (4.36) 

To obtain (4.36), note that 

,u0(E,n ) = f 	d0. 
(ri) 

Define s 	°). Then po(Ec ) = (n)n f ds Or. 1 

By (4.34) (4.35) and (4.36), we conclude that 

ef,,o(x, X — 2L , Z, 1)) 	(X)m1+n12-4 (z)ma —Li (y)m4+Tn5+n—H—Pl. 	(4.37) 

Multiplying both sides of (4.37) by (77) 1 wI we see that 

(77)1 w1 uwf a ,o(x, x — u, z, n ) 	(x)m1+-2-Y (z)m3-  I2or4+7-5-0---1-1 	• (4.38) 



CHAPTER 4. SOME TECHNICAL LEMMAS. 	 62 

It will now be shown that (4.38) implies that for any r G N, 

)r  f c1,0 (X , x — u, n)(x, x — u, z, 	--< (x)mi+m2-4 (z)7,23-Y (7).4+,n5+n-lal .  

(4.39) 

To this end, note that (4.38) holds for any multi-index cv. Since (4.38) holds for all 

u), (4.39) will be proved if we can show that aul Mr can be bounded by a finite sum 

Ei  u13j(77 )r with 101 = r for all i.(The /3i are multi-indices ) If l u1(ri) < 1, (4.39) 

follows by taking u.) = 0 in (4.38). If lul(77) > 1, then we have (17/1(77))T  5_ 	( 77))2r  

and expanding we have the desired bound. So we have shown that for any r E N, 

(0)luDr  fa,o(x, x — u, z, 77) --< (x)-i+m2-Y (z)m3-V o)r`t4+m5+„_iai. 

It follows easily that for any non-negative integer L, 

(1 + Ittl(70L  f oi ,o (x, x — u, z, 77 ) 	(x)m1-Fin2-4 (z)n3-4 orn44-51-n-ial. (4.40) 

Hence 

fa ,o(x, x — u, z, 	(x)rni+ni2-4 (4.3-4 Or4-Frn5-Fri-lal (1 + 1711 (7))-L 

Recalling that u = x — y completes the proof. 	 ❑  
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Lemma 4.0.7. Let 0 E P and let 

'0(x, y, z, n) := Cy, z, n) — 0(x, z, + (x — y) • vx0(x, z, n). If — 	k(y) with 

k < 1, then we have 

a;ei* 'Y ' z'71)  -< 	+ ly — (7 ))H  (71)4  ( x ) 	' 

Proof. We start by determining estimates of y derivatives of 1P(x, y, z, q). Let W := 

{(x, y) E Rn  x EV : l x — y1 < k(y)}. We note first that 1 x — y1 < k(x) with k < 

implies that (x) ti  (y). Also, as 0 E P, for 1a1 > 1 we have el 0(y, z, j) E 

First we show that for any j = 1, .. , n, we have 

ay,0(x, y, z, 7i) -‹ (1  + 1 y — x1) %) for (x, y) E W. 

By the definition of,  we have 

av;tP = 	(1)(y , z, n) — ax,o(x, z, 77). 

By the Mean Value Theorem, we have 

ay  0(y, z, 77) — ax, 0(x, z, = 
n  

k= L 
1 

dtalk al,cx+ t(y — x), Z 71)(Y k X k) 

Taking moduli, we have 

ay, 	z, 	— 	z, 71) -< ly — xlsup (11) + t(y — x))-1  t to i]   

For (x, y) E W, we have suptE[om (n)(x + t(y — x))-1  < (1)) (x)-1. (We used the fact 

that k < 2 which means that on W we have lx — yi < c(x) for some c < 1.) 
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Therefore 

() 	 (n) a yi cNy, z, 77) — ax ,43(x, z, ri) 	— x17 	(1+ - xl) (x) , 

for (x, y) E W. To obtain the second inequality we used the fact that 

ly — xl < 1 + ly — xl for all x, y E Rm. Recalling that a 	= a y  Cy, z, q) — 

axi(1)(x,z, n) we have established that 

ay,*(x, 	1/) -< (1  + 	x1(17)) (x)-1. 
	 (4.41) 

for (x, y) E W. As 1 E P, it follows that for l  a  l > 2 we have, 

a';(x, y, z, 	( n ) 	 (4.42) 

Since (x) (y) on W we have 

0;0(x, y, z, 77 ) 	07 ) 	 (4.43) 

for (x, y) E W. 

Case led = 0. Obvious since eiO 1. 

Case l al = 1. Follows immediately by (4.41). 

Case lcxl = 2. Let a = ei+ e3  for i, j arbitrary. Recall that ei  is the multi-index 

with 1 in the ith place and zeroes elsewhere. Then 

ayaeitgx,y,z,n) = [ (vvoct 	a yeiv ja yejoi eit P(x,y,z,n) .  

The result for l  cl  l = 2 follows from (4.41) and (4.43). 
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Case 	> 3 Now, by induction, we have 

nil  
(veill)(x,y,z,n) 	E  [ 

(V (x, 

y, z, '0)031 	 auo,,,,2 (,)(y, z,  71)+ 

71 	 j2=1  

(Vy0(x,y,z,7/))a + 
m21 

H a;Y:71 ,i2 (1)(y ,  z, 	 ei*(.,y,z,71), 

:72=1 

(4.44) 

where the sum over j1  is finite and we have the following statements holding: 

10317321 	2 Vji , j2  

2 	Vj1, j2  

Ti J1 
+ E 	= 

J2=1 
m31 

EIYj1,921 — 
32=1 

m n < I CI 
31 ,  3 	2 

(4.45) 

The Lemma follows from the above statement about the structure of derivatives 

of ezO(s'Y'z'n )  using the estimates (4.41) and (4.43). 
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Lemma 4.0.8. Let 4)(x, y, E P and define 

0(x, y, z, 17) := 43(y, z, 77) - (D(w, z, n) + (x - y) • vx(13(x, z, 77)- 

Let a(x, y, z , , n) E SGx7 y1 :zmLim3' m4' rn5  (Rn  X Rn  X Rn  X Rn  X Rn ) with (x) 	(y) ,- 

(z) , (y) - () and lx - y1 5_ k(y) for k < 2on Supp(a). Define r,(x, y, z, B, 77) := 

fol  (1 -0'1  (aN(x, y, z, V ,4)+40),i7)dt. Let x* E Co Rn ) be such that x* (x) = 1 

when 1x1 < 4and x* (x) = 0 when 1x1 > aDefine, 

n) := ff ei(x-v).°x* 
(n) 	a!

e"/'( ''Y'z'T" )ra(x,y, z,0, 77)dyd0. 

Then, if we choose the constant c in the definition of x* to be small enough, we 

have 

1,„(x, z, 77) 	(x)rni+,-y \z) - n„_11 
4 (77)rn4+77/5+2n_1.1 2 

Proof By definition 

la =f eix•Ox* ( 9  ) M( 0 )a  
(77) 	a! 	Fy.--q9 [ev°(x'Y'z''1)ra(x, y, z, 0,17)] de 

The (x, z, r7 , 0) section of ei*( x'Y 'z'71) r,(x , y, z, 0, ri) is in S(Rn). Converting B mutli-

plications into y derivatives, we have, up to multiplicative constants, 

la  = f el'ex* (
Y 
 ,e (a' 	(x, y, z, 0, n)] ) dO. 

Inserting the definition of the Fourier transform gives 

f f ez(x-y).0X *
7y  

) 	[ en,b(x,y,z,ri)r,,( x,  y, z, e, 77)] dydO. 	(4.46) 
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Define 

fa ,3(x, y, z, 77) := f dOei( x-Y ).°47-,(x, y, z, 9, 71)X*  

Using this notation, (4.46) becomes 

Ia  = 
13 ct f fa,o(x, y, z ,n)aa-i3e*(x,y, z ,n) 

up to multiplicative constants. By Lemma 4.0.6, we have 

131 , 
fa,(3(X, y, z, 77) 	(X)rni±m2 	(z)m3_1

2 (n)
m4+77, 

5
+ 

n-lal (1  + I x — Y 7-1 ))-L , (4.47) 

for sufficiently small c. Now, recall that 

I„(x, z, n ) = 
(3<a f fa,0(x ,  y, z, 71)a; '301'(''Y'z'n)dy 

On Supp(f,,o ), we have Ix — < k(x) with k < 2. So, by Lemma 4.0.7 we 

have 

	

ay -OciO(X,y,ZA) 	
(1 + 

	 (n))1a_ol (n)  la2P1 (x)  	

(4.48) 

with (4.48) holding on Supp(f„,0 ). By (4.47) and (4.48) ( and since (x) ti  (z) on 

Supp(f,o ) ) we have 

fc0(x, y, z,71)(9;-'3eiiP ( x'Y'z'" )  -< (x)rni-Fm2-Y (z)-  q1-J2(0"24±rn5+n-2— 

(1 ± 	x1(77))1a-'31  (1  + 	— Y1(77))-L - 

(4.49) 
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Therefore, taking the maximum in each exponent when )3 ranges over its pos-

sible values (i.e. )3 < a)) we have 

(x)ni+m2- 1÷1  (z)m,- ort4+7n5+„_41  

1(1 + 	— x1(71))1a1(1  + 	— Y1(71))-Ldy. 	(4.50) 

Let L = Ic + L2, where L2  E N. Then, (4.50) becomes 

(x)ni+m2_ iczio (z),n3 _141 orn4+7n54_n_101 

f (1  + 	y10))-L2dY• 	 (4.51) 

Once we show that for sufficiently large L2 

f (1 + I x - (n))-L2dY Or, 
	 (4.52) 

we'll be done by (4.51). To see this, define the new variable u := x - y and choose 

L2  even. Setting L2  = 2s, observe that 

(1 + 17/1(702s 	(1711(77))2s  = 	n  
=1 

Define v := (y )u. Changing variables again we see that 

J (1  + I x - yI  (70-1'24 < (7/r f 	1  2 s dv. 

For s > -Tr1+1 , the integral fRn 1v1125 dv converges, so 

f (1 ± — OW L2  ClY Or • 

0 
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Lemma 4.0.9. Let (13(x, y, 	E P and define W (x , y, z,71) := (1)(y, z, 77)—(I)(x, z, 77)+ 

(x — y) • Let a(x,y,z,e, n ) E SGx7;:zniLiinz'm°7'n  (Rn  x Rn x Rn x Rn x Rn) with 

(x) 	(y) 	(z), (17) 	(e) and Ix — 	< k(y) for k < 1 on Supp(a). Define 0 := 

— Vx(D(x, z, 'II) and ra (x,y, z, 0 , 7)) := fol  (1 — t)m -1(aea)(x,y, z, Vx4)(x, z,71) + 

tO,n)dt. Let x* E CcT(Rn ) be such that x*(x) = 1 when lx1 < 4and x*(x) = 0 

when lx1 > 2Define, 

)) (Or 
Ka(x, z, n) 	 ob(x,y,z,n)rQ(x,y,z,e,n)dyd0 := 	i(X-Y).9 1  - ( 	(7

0
) 	al 

Then, given any c > 0, we can choose k to be small enough so that we have the 

following estimates for large lal; 

K, -< ( x )- 1 ,11( z )- Ial 

Proof. We assumed that Ix— < k(y) for k < 1 and (T) (y) (z) on Supp(a). 

It follows from the definition of r, that these statements also hold of the support 

of r,. We remark that the implicit constants do not depend on a. 

We now show that, given any c (the constant in the definition of x*), we can 

choose k small enough so that on the support of r, (1 — x*), we have Vy (x, y, z, 77)+ 

(x — y) • 0] 	(0) + (ii). Clearly 

VI,[1P(x, y, z, y) + (x — y) • 01= V yW(x,y,z,n) — 0. 

By definition, qp(x,  y, z, 1]) := 	z, 71) 	(x, z, 17) + (x — y) • V x(I)(x, z, 	So, 

y, z, 7/) = V 	(Y, z, 1)) — Vx4)(x, z,17). 
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We assumed that (9 ?(y, z, n) E SG°::,71  for 1a1 = 1. Since lx — y1 < k(y) on 

the support of r„, it follows from the mean value theorem that there exists some 

constant C such that 

vy(1)(y, z, 17) - vxd)(x, z, n) < kc(n), 

on the support of r,. Therefore, on the support of the integrand of r, we have 

Obviously 

1Vy [11)(x, 	q) + (x - y) •611 > 101 - kc(77)• 

1 01 	 1 01 101 —  kC(77) = —2 + ( 2 — kC(n)) • 

(4.53) 

(4.54) 

On the support of (1 — x*), we have 101 > 51 0). So given any c, we can choose k 

small enough so that 

— kC(77)) 	(n), 	 (4.55) 

on the support of r,(1 — x*). Also, 101 > i(n) implies that 101 > E(0), for some 

E > 0. So, it follows from (4.55) and (4.54) that given any c, we can choose k to be 

sufficiently small so that 1Vy[0(x, y, z,71) + (x — y) • MI 	(0) (q) on the support 

of the integrand of ra(1 — X*). 

Therefore, the operator Uy,„, is well defined (with w := 7,b(X, y, z,g)±(x — y) • 0.) 

We will abbreviate Uy,„ to Uy. Applying Uy  s times and integrating by parts gives, 
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„,„, 	ei{.(.,,,z,,,,0)}(1_ x* ) 	x 

x ((In s  {ra(x,y, z, 9, n)} dydO 	 (4.56) 

Recall the form of (I/jps; 

(uTv. = 	 
) 	Fyw 14s E 

In the above, up to multiplicative constants, Po  is a sum of terms of the form 

(V yw)ryaltv....Vw , with, 171 = 2s, lbj1 > 1 and K1 Esi=i 	= 2s. As 1 E P 

we have 

-< ((9) + (a)) (Y)1-161, 	 (4.57) 

on the support of rot . Recalling the definition of Pcr, we can use (4.57) to see that 

Pc,, 	((0) 	0))3s  (y)s—E1 loil ,  

on the support of r„. Since El 	= 2s — ICI, we have 

Pc,s 	(( 9 ) + (7 ))3s (y )1(1-s,  

on the support of r,. We showed earlier that 

Ivywl >- (e) + (a), 

on the support of r,. Now we need to estimate 

z,0,71). 

(4.58) 

(4.59) 
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Recall that by definition 

1 
r 	, y,  z,  0,  n) := f (1 — t)m -1(a a)(x, y,  z, V s(I) + t(0), q)dt. 

13 

Differentiating under the integral sign we have 

	

a - ra (x, y, z , , 77) = I (1 — t)m  ((9(9.` a)(x y, z, 	t(0), ri)Oldt 

Recall that a(x, y, z, e , 77) E SGxmyl'zmt773 ''''. We are interested in the behaviour 

for large 	so we may assume that m4 — 	< 0. For 	> m4 , we have 

4r,(x, y, z, 0 , 71) -‹ (x)rn' y( )ri2-1CI (z)m3 (q)M5 
	

(4.60) 

Using (4.58),(4.59) and (4.60), we have 

(U yT )S  roi (x,y, z, 0, 77) 

(x).1(y)mz-s(z)m3 (77), ((77)  + (0)), 	 (4.61) 

The proof is complete when we recall that (x) ti  (y) 	(z) on Supp(r a ) and 

((n) + (e))-r 	(77)-2 (e)- 'i (by choosing s to be sufficiently large). 	111 



Chapter 5 

Composition of Type P operator 

with Pseudo. 

This will be a short chapter as most of the results we need were proved in chapter 

4. Again, we follow the proof of the corresponding result in [3]. 

Theorem 5.0.1. Let a(x, y, E SG xrri2'rri3  (Rn  X Rn  X Ilan ) for any m1 , rn2, m3 E 

II 	and 4.(x,y,e) E P. Define A := F 10 (.1)(x,y,e),a(x,y, 	.Let p(x, y, 	E 

SatxV3  (Rn x Rn x WI) for any t1 ,t2 ,t3  E R and let P := Op(P(x,Y,0)• Then, 

modulo 1C, 

P o A = F I 0 (4)(x, z, 	c(x, z, 

where c(x,z,n) E SGx71-1-7;m2 ,t2,m3-1-t3 We also obtain an asymptotic expansion for 

c(x, z, 71). 

73 
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Proof. In this proof, all integrals are over Rn. Let x(x, y) E 	(k), with k > 24 

and let Xl  e 17°(k1) with kl  E (0, 1). Define ARed  and PRed  as follows: 

ARed 	FIO (4)(x, y, 	a(x, y, e)x(x, Y)x(Y, x)) , 

PRed 	Op(p(x, 2J, ))(1(x, Y)Xi(2J, x)). 
	 (5.1) 

We have A = ARed  and P = PRed  modulo IC. So, by Proposition 4.0.1 we have 

A 0 P = ARed 0 PRed modulo IC. 

Define 

ARed,ou(Y) := if expli(13(y, z, 71)}a(Y, z, 77)X(z, Y)X(Y, z)'7(67 )u(z)dzdn. 	(5.2) 

By definition 

ARedu(y) = p9ARed,o(y). 	 (5.3) 

Now, ARed,01  tends to ARedu in S (111n) . So, as PRed sends S (11n) to S (IV) con-

tinuously, we have 

(PRed 0 ARed ) u(x) = lim lim fill exp{i (4.(y, z, n) (x — y) • 11-p(x, y, e)a(y, z, 77) x 

x(z, Y)x(Y, z)Xi (x, Y)Xi(Y, x)7(67/)7(6 )u(z)dzdndyd. 

(5.4) 

For convenience define 6,(x, y, z, 7)) 	p(x, y, e)a(y, z, 17)X(z, Y)X(Y, z)Xi(x, Y)Xi(y, x). 
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So, using this notation, we have 

(PRed ° ARed) u(x) = lin iir f f
JJ  
 explz (1(y, z, ri) + (x — y) • 0} x 

	

x a(x, y, z, e, 7))7(Jr))7(€)u(z)dzdydyde. 	(5.5) 

Let X2  E F..°(k2 ) where k2  E (0, 1). By making a partition of unity using 

X2 (Vy(1)(y, z, 7/), e), we can use Theorem 4.0.2 to see that 

(PRed 0 ARed) u(x) = Ern Ern fill exp{i (4)(y, z, n) + (x — y) • ell x 
6—o E—o 

	

x a(x, y, z, 17)X2(VyCY, z, 77), )7(677)7(6 )u(z)dzdydyde, 	(5.6) 

modulo Ku where K E IC. Define b(x, y, z, 7)) := a(x, y, z, 7))X2(Vy(1)(Y, z, 7 )), e) 

and let g6 ,,(x , y, z, e, 7)) denote the integrand in (5.6). Now, on Supp(b), we have 

(x) N (y) 	(z) and (e) N (07). Also, for fixed 6 we have (7)) -< 1 on Supp(go,,). 

Using these facts and as u E S, it follows that for fixed 6 we have 

.98,e(x, Y, z, e, n) 	Kxr (Y)-r(z)-r 	(77)-r , 
	(5.7) 

for any r E N, with the implicit constant independent of E. So, we can apply the 

Lebesgue Dominated Convergence Theorem to obtain 

(PRed ° ARed) u(x) = 	iffi exp{i (Cy, z, 77) + (x — y) . ell x 

x b(x , y, z, 77)-y(oy)u(z)dzd77dyde. 	(5.8) 
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By the estimates (5.7) we can re-order the integrals in (5.8) to get 

(PRed 0 ARed) u(x) = lim o ffff 
exp{i (4)(y, z, n)  + ( x — y) • ell x 

xb(x, y, z, , 7/)-y(677)u(z)dydOzdn. 	(5.9) 

Multiplying by expli(1)(x, z, 77)1 exp{ 	z, 77)} which is just 1 we have 

	

(PRed 0  ARed) u(x) = 	f expfiCx, z, rill x 

[ if exp{i (4)(y, z, n)  — 4)(x, z,ri) + (x — y) • e)}b(x, y, z, e, y)dycli x 

xry(A)u(z)dzdn. (5.10) 

Define 

c(x, z, 17) := if exp{i (4,(y, z, 77) — 4c.(x, z, n) + (x — y) • )}b(x, y, z, e, ri)dyde. 

The proof will be complete it we can show that c(x, z, 77) E SGT.1-17-7777,+ti ,t277Tt3-1-t3 The 

function b in the definition of c(x, z, 77) satisfies the conditions of Proposition 4.0.4. 

Therefore, for small enough 14, (the constant in cut-off xi) we have c(x, z, ri) E 

scn1d-m2+t1 ,t2,7113±t3 and 

c(x,z,77) — E_ a!  [DY  [e2.0(x,Y,z,70(a4 b)(x,y,z,vx4)(x, z, 77), 71)] y=x  , 
a 

where 7/)(x, y, z, 77) := 	z, 71) — 4)(x, z, 17)  + 	— y) • Vx(1)(x, z, 7)). Recall that 

b := p(x, y, )a(y, 77)X(z, Y)X(Y, z)Xi(x, Y)Xi(Y, x)x2(VA(Y,z,17), e) 
	

0 



CHAPTER 5. COMPOSITION OF TYPE P OPERATOR WITH PSEUD0.77 

Remark By the remarks following Proposition 4.0.4, we actually have c(x, z, n) E 

SGU7,1 3-Ft3  where p and q are any real numbers such that p+ q = m2  + m1  + t2  +t1. 

Let A be a Type P FIO and let P be a pseudodifferential Operator. As we 

shall see, the fact that the composition A o P is a FIO follows from the previous 

Theorem. 

Theorem 5.0.2. Let a(x, y, E SG,777n2'n13  (Rn  x Rn  x Rn) for any m1 , m2 , m3 E 

R and (1,(x, y, 	E P. Define A := F IO (4)(x, y, 	a(x, y, 	. Let p(x, y, 	E 

SG'xi:V 3  (Rn  x Rn  x Rn) for any t i , t2 , t3 E R and let P := Op(p(x, y, 0). Then, 

modulo 1C, the composition 

A 	P = FIO (4)(x, z, 77), c(x, z, 77 )) 

where c(x, z, 77) E SGMX,  2+ini -Ft2 ,m3 A-t3 We also obtain an asymptotic expansion for Z,71 

c(x, z, n). 

Proof. Consider (A 0 P)T  . This is PT  0 AT  . Now, 

AT u(x) = 	if exp{illf (x, y,)}0,0(x, y, 07(60u(y)dyde, 

where 111(x, y, e) 	(I)(y, x, e) and ao(x, y, = a(y, x, e). This is a FIO because of 

the symmetry of the phase assumptions in x and y. Also, 

PT u(x) = li ff 
exp{i(y — x) . e}p(y,x, 07(6.0u(y)dyde, 

Define e = —e and changing variables we have 

PT u(x) = li 
ff 

exp{i(x — y) • e}p(y, x, 
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Since 7(-6. ) is also a mollifier, PT  is a Odo with symbol p(y, x, —O. Define 

po(x, y, 	p(y, x, —0. We can now apply the previous Theorem 5.0.1 to see 

that 

PT  o AT = F io(w(x, z, 77), c(x, z,7-1)) 

where c(x, z, 17) E SCxmz2+Tim'd-t2,ti,n13-Ft3  and 

c(x, z , n) ti E 	[eio(x,Y,z,n) (0°1̀ b) (x, y, z, V,111(x, z, 77), 77)]] y=x 	(5.11) 
a 

where 7b(x, y, z, 77) := W(Y• z,  17) — T(x, 	+ (x — y) • VxIll(x, z, 77). with b 

Po(x,y, e)ao(y, z , n)X(z ,  Y)x(Y, z)Xi(x, y)Xi(y, x)x2(VyW(y, 17), 	Taking trans- 

poses again, we have 

(PT  a AT )T  = F I 0 ( 4:13(X 71), co(x, Z 

where co (x, z, 77) = c(z, x, 71). (Recall that xif(x, y, 	:= (13(y, x, 	Since (PT 0  AT)T  

AoP we have AoP = 	z, 77), co(x, z, 77)) with co(x, z, 77) E Satx1,7+mi+t2,77/3+t3. 

We also have 

co(x, z, — [D
Y 
 [e'aNz'Y 'x'17)  (a::4'$) (z, y, x, V24)(x, z, 71), 77)] ] y=z  a!  

a 

where 0(z, y, x, 77) := Cx, y, 71) — flx, z, 77)+(z—y).V 2(1)(x, z , 71). with b(z, y, x, 77) := 

p(y, z, 	1/)X(x ,  Y)X(Y, x)Xi(z, y)Xi(y, z)X2(VA(x, y, 77), 	We obtained the 

above asymptotic expansion from (5.11) by inserting our definitions of po  and 

ao  and interchanging z and x. 

0 
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Remark In the above Theorem, we actually have c(x, z, 71) E SGV413±t3  where 

p and q are any real numbers such that p + q = m2 + m1 + t2 tl. 



Chapter 6 

SG Diffeomorphisms 

In this chapter we shall discuss changes of variable which preserve the SG structure. 

6.1 Global Inverse Function Theorem 

Let V C Rn be open and let f E C1  (V, Rn) . The Jacobian matrix of f at x0 E V 

is the n x n matrix with i, j entry —aaxfi j x=x0 . The "jacobian" of f at xo E V is the 

determinant of the Jacobian matrix of f at 10 . 

Theorem 6.1.1. (Inverse Function Theorem) Let f E Cl  (E, Rn ) for some 

open set E C R. Suppose that the Jacobian off is non-zero at some point xo  E E. 

Then there exist open sets U, V C Rn  with xo  E U such that: 

• f is a bijection from U to V, 

80 
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• The inverse map f -1  : V 	U belongs to C i (V, Rn ) 

We now state a global version of the Inverse Function Theorem. 

Theorem 6.1.2. (Global Inverse Function Theorem) Let f E Cl  (Rn, Rn ). 

The function f is a diffeomorphism if and only if the Jacobian of f is non-zero 

for all x E Rn  and f (x)1 —› co as lx1 —> oo. 

Theorem 6.1.2 is proved in [12]. For more details about global diffeomorphisms 

see [1] and [21]. There are also results, due to Hadamard, about global diffeomor-

phisms between more general manifolds. These are discussed in [21]. 

We state the local Implicit Function Theroem for completeness. 

Theorem 6.1.3. (Implicit Function Theorem) 

Let f(x,y) E C1  (U, Ilan) where U is an open neighborhood in Rm  x Rn. Suppose that 

for some point (x 0 , yo) E U we have f (xo, Yo) = 0 and (a y, 	j=i  has non-zero 

determinant at (xchYo)•  Then there exists a unique function g : V 	WI defined 

in an open neighborhood V C Rm of xo , such that g(x0 ) = yo  and f (x, g(x)) = 0 

for all x E V. Furthermore, g E C1  (V, Rn ) . 

6.2 	SG Changes of Variable. 

In this section we prove some results about SG structure preserving changes of 

variable. All of the results presented here generalise to cases involving more vari- 
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ables. 

We start with a standard result. See [3]. 

Lemma 6.2.1. Let a e SCxrir (Rnx x RT) and let the function h = (h1 , h2 ) be 

such that h1  E 	(Rns x Rne, RrIx ) with (h1 ) ti  (x) and h2  E SGx(311e-  (Rnx X RN RNA) 

with (h2 ) ti  (c). Then the composition a o h E SGxmr (Rnx x 

Proof. By induction. 	 ❑  

Lemma 6.2.2. Let V C Rnx x Rnc be open and let F(x, = (Fi (x, F2(x, 

belong to C' (V,Rnx x RTh4) with F1  E 	(V,Rns) and 

F2 E C" (V, RT) . Assume that the following statements hold on W C V : 

I. For i = 1, ...nx , (F1 )i , the ith component of F1 , satisfies 	estimates, 

2. For i = 1, . . . rq,(F2 )i  , the ith component of F2 satisfies SG°x' l  estimates. 

Let JM (F) denote the Jacobian matrix of F and let Adj (JM (F)) denote its 

adjugate matrix. Then, 

(A(x,e) B(x,e)) 	 A(x, e) B(x,e) 
JM (F) = 	 , Adj (JM (F)) = 

C(x,e) D(x,e), 	 (x , e) n(x , e), 

where 

I. A(x,e) and A(x,e) are nx  x nx  matrices of functions in C°° (V, IR) satisfying 

SG°'°  estimates on W, x.e 
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2. B(x,e) and 13(x, e) are nx  x ne  matrices of functions in C°° (V, R) satisfying 

SG1xV estimates on W, 

3. C(x,e) and a (x, e) are ne x nx  matrices of functions in C°° (V, R) satisfying 

SG Zci' l  estimates on W, 

4. D(x, ) and D(x,e) are ne  x ne  matrices of functions in C°° (V, R) satisfying 

SG°'°x,e estimates on W. 

Proof. By definition, for the Jacobian matrix, Ai  = axj  (Fi ) , Bi,i = aei  (Fo i  , 

ci,i  = ax, (F2) i  , and Di  = aej  (F2) i . So, by assumptions 1 and 2, the Jaco-

bian matrix has the stated form. Now consider Adj (JM (F)) . (We will shorten 

Adj (JM (F)) to Adj.) By definition, the i, j entry of Adj is 

= (-1)i+i det 	 (6.1) 

where Mi'i is the matrix obtained by deleting row j and column i from JM (F) . 

We will show that each entry of B satisfies SGlxV estimates on W. That A, C and 

D have the stated properties follows in exactly the same way. By (6.1), the r, s 

entry of B is 

Er,s= (-1)r -"+" det Mr'nx+s. 

It then follows from the structure of the Jacobian matrix JM (F) that 

(E F mr,x1x+s = G  H,  
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where 

1. E(x,e) is an nx  x (nx  — 1) matrix of functions in C°° (V, R) satisfying SG°x'°e  

estimates on W, 

2. F(x, e) is an nx  xne  matrix of functions C°° (V, R) satisfying SGsl'il  estimates 

on W, 

3. G(x,e) is an (ne  — 1) x (nx  — 1) matrix of functions C°° (V, R) satisfying 

SGxl'i  estimates on W, 

4. H(x, ) is an (ne  — 1) x ne  matrix of functions C" (V,118) satisfying SG°',°c  

estimates on W. 

We are required to show that det Mr'nx+s satisfies SGx1V estimates on W. To 

do this, we will multiply rows and columns by SG functions to reduce Mr,Thx±s to 

a matrix of functions satisfying SGx°' estimates on W. To do so, we carry out the 

following steps: 

1. Multiply the first nx  rows by *, 

2. Multiply the last ne  — 1 rows by +), 

3. Multiply the first nx  — 1 columns by (x), 

4. Multiply the last ne  columns by (c). 
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After cancellation, we have LQ - det Mr>nx+s is equal to the determinant of a matrix (x) 

of functions satisfying SG°x'°  estimates on W. So, 

det Mr'nx+s satisfies SG°'°  estimates on W. x,c (x) 

Since (may E ESG x—  1'1  (Rn x Rn) , it follows that 

det /1/Pnx+s satisfies SGT' estimates on W. 

As f3,,8  = (-1)r+s+n. det Mr'nx+s we're done. [11 

Proposition 6.2.3. Let F(x,e) = (F1(x,e),F2(x,e)) be a C°° diffeomorphism 

from V C Rnx x Rnc onto its range with F1  E C" (V, Rnx) and 

F2 E C°°  (V, Rn ) . The variables in V are denoted by x, e and those in F(V) are 

denoted by x,e. We also write 

F-1(±, 0 = ((F-i)1  (, 0, (F- )2  (i, -..)) . 

We assume that 

1. (F1 ) — (x) and F1  satisfies SGx1'(Rnx x Rrq , Rnx  ) estimates on W C V, 

2. (F2 ) ,---, (e) and F2 satisfies SG°;, (Rnx xRnc,Rne) estimates on W c V, 

3. the Jacobian of F satisfies ESG°'°  estimates on W C V. 

Then, we have 
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I. ((F -1 )1 ) 	(") and (F -1 )1  satisfies SG1'°- (Ra. x 	Rnx) estimates on ±- ,e 

F (W) , 

2. ((F-1 )2 ) 	() and (F-1 )2  satisfies SG°:1- ,e (Rn. x Rae ,Rne) estimates on x 

F (W) , 

3. The Jacobian of F-1 	1 and satisfies SG°'°- (Ra. x Rae ,R) estimates on 

F (W) . 

Proof. As F is a diffeomorphism from V onto F (V) , we have the following equality 

for all x , E F(V): 

(:) = (Fi 	 (F-1 )2  (±-, )) 

F2  ((Pi-% (I, e), (F-1)2  (I, 	• 
	 (6.2) 

As F, (x, — (x) and F2  (x, — (0 on W, it follows from (6.2) that 

((F-1)1 ) (i) on F(W) 

((F-1 ) 2 ) 	on F (W) . 	 (6.3) 

All functions are smooth so we can differentiate (6.2). Define ft) := 	Differ- 

entiating (6.2) with respect to iv, gives 

ei = JM(F)(x,e) lx=(F-1)1(±',)4-(F-1)2() Api (F 1 ) , 
	(6.4) 

where JM(F) is the Jacobian matrix of F and ei  is the nx  + nt  dimensional vector 

with ith entry equal to 1 and zero otherwise. So, 

athi  (F-1) = (JM(F))-1 	 ei 
	(6.5) 
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1  
F)(x,0 By assumption 3, det JM( 	satisfies SGx°',(1  estimates on W. So, using Lemma 

6.2.2, we have that for (x, e) E W 

(JM(F))-1  (x, = 
A(x, e) B(x, e) 

C(x, e) D(x, 01  

where 

1. A(x, e) is an nx  x nx  matrix of functions in C" (V, R) satisfying SGxci esti- 

mates on W, 

- 2. B(x, e) is an nx  x ne  matrix of functions C°° (V, R) satisfying SGx' 1  estimates 

on W, 

3. C(x, e) is an ne  xnx  matrix of functions C" (V, R) satisfying SGx-1e- '1  estimates 

on W, 

4. D(x, e) is an ne  x ne  matrix of functions CO  (V, R) satisfying SGx(3'°  estimates 

on W. 

By (6.4) and the structure of the inverse, we have 

	

al ( F1-1 ) z = A1,7 ( F 1 	F2 1  ( 11 )) 

( F2 1 )i = C 	 F2 1  (±
CC  

(96 ( F1 1 )i = Bz, (F 1 (±, 	F21(±, 

	

Dill ( F1 1 	F21(±1 0)1 
	 (6.6) 
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where Ai,j, Bi , , Ci,j, Di,j  satisfy SG 	SG1; 1 ,SG; '1 and SG°'°  estimates respec- 

tively on W 

Recall that 

((F-1)1 (e)) ^ (i.) on F (W) 

(V -1 ) 2  ( 	 (e) on F (W) . 	 (6.7) 

It follows from (6.6) and (6.7) by induction that (F -1 )1  and (F -1 ) 2  satisfy 

(Rnx x 	, Rnx) and S G°  ' 1- (Rnx x 	Illn0 estimates respectively on F (W) 	. 

Part 3 follows from parts 1 and 2 using similar arguments to those used in 

the proof of Lemma 6.2.2. (We multiply rows and columns by (x), (c), (x)-1(e)-1  

to reduce to a matrix of functions satisfying SG" estimates and everything we 

multiply by cancels.) We also use the fact that the jacobian of F ti  1 on W. 

1=1 
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Proposition 6.2.4. Let V be an open subset of Rmx x 	and let a(x,e) E C" (V). 

Suppose that a(x,e) satisfies SG xnr c  estimates onWcVcEtnxxlEkrq. Let 

G(x,e) 	(Gi (x,e),G2(x,e)) be a C°° diffeomorphism from V to G(V), with 

G1  (x, 0 E C' (V, Rnx ) and G2  (X, e) E C" (V, Rn0 . Assume that 

I. Gi (x,e) satisfies SG (Rnx x Rnc,Rn.) estimates on W, 

2. (Gi (x,e)) 	(x) on W, 

3. G2(x,e) satisfies SG° Rrix x WIC 111ne estimates on W, 

4. (G2(x, 	(e) on W, 

5. The Jacobian of G satisfies ESG°'°  estimates on W. e 

Then the function a((G-1 )1  (- e), (G-1 )2  (a-c, c),) belongs to C°° (G(V)) and satis- 

fies S 	•X- '771  estimates on G (W) . 

Proof. The fact that a((G-1)1 	e), (G-1)2  ("±', e), ) belongs to C°° (G(V)) is obvi- 

ous. By Proposition 6.2.3, the assumptions 1,2,3,4 and 5 imply that 

1. ((G-1)1  (,e)) — (x) on G (W) 

2. ((G-1)2 	— (e) on G (W) 

3. (G-1)1  satisfies SG': estimates on G (W) , 

4. (G-1)2  satisfies S G°',14. estimates on G (W) . 
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Therefore a((G-1)1 	(G-92  ( -i, )) satisfies SiGm'''N estimates on G (W) . (by 

an obvious variant of Lemma 6.2.1.) 	 0 

The next result is important when considering changes of variables in integrals. 

Proposition 6.2.5. Let a(x,e) E SGnix'm  (Rnx x Rne) and suppose that Supp(a) c 

V, where V is an open subset of Rnx x 	. Let G = (Gi(x,e),G2(x,e)) be a C°° 

diffeomorphism from V onto its range G (V) . (with Gi(x,e) E C°° (V,Rnx) and 

G2(x,e) E C'(V,Rnc) ) Assume that 

I. 	Gi (x,e) satisfies SG xi':3e  estimates on Supp(a), 

2. (Gi (x, 	(x) on Supp(a), 

3. G2(x,e) satisfies SG°x'l estimates on Supp(a), 

4. (G2(x,0) - 	on Supp(a), 

5. The Jacobian of G satisfies ESGx°'!le  estimates on Supp(a). 

Then the function 

a ((G-1 ) (x,  e) , (G-1 ) 2  , e)) det (± • , - )G-11, 

(where det 0(±- )G-1  is the Jacobian of G-1 ) satisfies SG imlme estimates on G (V) . 

Further, the extended function 

{

_ 	a ((G.-% (x, e), (C-92  (i, )) , -., e  E G (V) 
aE(±- , e) = 

0, 	 otherwise 
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belongs to SG Imre (111n. x Ekn) . 

Proof The fact that a ((c-')1 	(G-1)2 	is smooth on G (V) is obvious. 

The SG estimates of a ((G-1)1 	(G-1)2 	on G (Supp(a)) follow from 

Proposition 6.2.4. The Jacobian of G-1  is smooth on G(V) and satisfies ESG°1 

estimates on G (Supp(a)) by Proposition 6.2.3. So, 

a ((G-1)1 	(C-1) 2 (x,  e)) I det  a(,,)G-11, 

satisfies SGm x:me estimates on G (Supp(a)) . 

The only real issue is the extension. If G(V) = IIBnx x 	then there is 

nothing to check - the extended function is just the function. So we assume that 

G(V) Iftnx x Rne. 

We claim that G(Supp(a)) is closed in Rn.±nc. If we can show this then it's 

clear that the extension aE  is smooth on IR".+11c. 

We assume that G(Supp(a)) is not closed in IfInr -Fae. This means that there 

exists a point (xo, 6) E Rni+ne\G(Supp(a)) and a sequence {(x3, .2 )} of points 

belonging to G(Supp(a)) which tends to (x0, 6) in Rn-±nc. We will use the prop-

erties of G to show that this sequence has a subsequence tending to a different 

limit. 

Since {(x3 , .7 )} is a convergent sequence of points in G(Supp(a)) then the 

sequence {(x j , .3 )} is contained in a bounded subset of G(Supp(a)). It follows from 

assumptions 1,2,3 and 4 that (G1-1(x, 47)) 	(X- ) and (G21(x, )) 	(). It follows 
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that the pre-image of {(x3 , 0} is contained in a bounded subset of Supp(a). So 

the sequence {G-1(x j , e3 )} is contained in a compact set and therefore it has a 

convergent subsequence {G-1(x,,,, er, )}, tending to a limit (x, e) E Supp(a), by 

the Bolzano - Weierstrass Theorem. Given that G is continuous, the image of 

this convergent subsequence under the map G, i.e. {(x„ , er, )} tends to G(x, E 

G(Supp(a)). Since the limit of {(x3 , e3 )} belongs to Rn.+N\G(Supp(a)) we have 

shown that {(xi ,ei ) } has a subsequence tending to a different limit. 

We have shown that the function aE  is smooth everywhere and satisfies SGmx'mc 

estimates on its support. So, aE  E SGmxoN (Rnx 	. 

0 



Chapter 7 

Type Q Fourier Integral Operator 

We now introduce a new class of SG FIO. The basic structure of the operator is 

the same as for the Type P Operator but we place more restrictions on the phase 

(13(x, y, e)• 

93 
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7.1 Definition 

Definition 7.1.1. We denote by Q, the set of real-valued smooth functions (1)(x,y,e) --= 

f (x, e) + g(y,e) where f and g have the following properties; 

f (x, 	E 	S G 	(Rn x Rn,R), (7.1) 

g(y, 	E 	SGy, (IRn  x Rn, R), (7.2) 

(V.f(x,)) 	(c), (7.3) 

(Vvg(y, 	(e), (7.4) 

(Vd(x,0) 	(x), (7.5) 

(V c g(y, e)) 	(y), (7.6) 

det (axikf)in,j=i (x,  e) >- 	1, (7.7) 

det (ayi(9g)n,j=1  1. (7.8) 

Remark We will call a real valued function f satisfying (7.1) , (7.3) , (7.5) and 

(7.7) a "phase component." 

Definition 7.1.2. Let a(x, y, e) E SG x7 y1 :7'' (Eln X Rn  X Rn ) for arbitrary ml, m2, m3  E 

R and let f (x, e) + g(y,e) E Q. The Type Q FIO A is defined for u E S (Ilan ) by 

the following integral; 

Au(x) = ciLmo in eiff(X7C)+9(Y,M 	 0 a(X )  y, -y(Ee)u(y)dyck, 

where 'y(e) is a mollifier. 
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We collect some properties of Type Q operators in a Theorem. 

Theorem 7.1.3. Let a(x,y,e) E SG,Tnin2  'In3  (Rn  X Rn  X Rn) for arbitrary ml , m2 , m3  E 

R, let f (x, e) + g(y, e) E 2 and define A := FIO (f (x, e) + g(y, e),a(x,y,e)) . 

Then: 

1. A : S (Rn) —> S (Rn) continuously, 

2. A is independent of the choice of mollifier, 

3. AT  = FIO (g(x, e) + f (y, e), a(y, x, e)) 

4. A : S' (Ilan) —> S' (Rn) continuously, 

Proof. We have Q C P and all the statements hold for arbitrary Type P operators. 

0 

Remark. The Type 1 FIO introduced by Coriasco in [3] is the subclass of the 

Type Q FIO where we always take g(y, ) = —y • e and we take the amplitude 

a to be independent of y. His Type 2 operator corresponds to the subclass with 

f = x • e. 

Let A : S (Rn) —> S (R"). Recall that for functions u, v E S (Rn), 

(U, V) := f u(x)v(x)dx 
Rn 
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The adjoint of A, denoted by A*, is defined as the unique operator A* : S (Wi) --

S (Rn) such that 

(Au, i7) = (u, A*v) Vu, v E S (W1 ) . 

In the above, the overbar denotes the complex conjugate. 

Theorem 7.1.4. Let a(x, y, 0 E Satn1'm2'n/3  (Rn xRn x118') for arbitrary ml, m2, m3 E 

R, let f (x, 0+g(y, 0 E Q and define A := FIO (f(x,e) + g(y, e), a(x, y, 0) . Then 

A* = FIO (—g(x,e)— f(y,e),a(y,x,e)). 

Proof. Straightforward recalling the definition of the adjoint operator and using 

the symmetry of the phase assumptions in the spatial variables x and y as well as 

the fact that 1 E Q implies that —I E 2. 	 ❑  

We conclude this section by presenting the reduced form of a Type Q operator. 

Theorem 7.1.5. Let a(x, y, e) E SGx"2,:r'n13  (Rn x Rn x RV) for arbitrary ml , m2 , m3  E 

R, let f(x,e)+ g(y, e) E 2 and define A := FIO (f(x,e) + g(y, e), a(x, y, 0) . Let 

X G E°(k) with k arbitrary. Then if we define 

ARed = FIO(f(X))+ g(y, ), a( x,  y, )X(Ve.f, Vc9))X(VOI 'CV)), 

we have A = ARed modulo K. 

Proof. Use Theorem 3.2.2. 	 0 
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7.2 Composition Results 

We now present the main result of this chapter. 

Theorem 7.2.1. Let a(x , y, 6) E SCx7;72'7n3 (Rn  X Rn x Rn) for arbitrary ml , m2, m3 G 

Rand let f(x,6)+ g(y,6) E Q. Similarly, let b(x,Y,e)  E  SGt2::V3(Rn x 	x R") 

for arbitrary t1 , t 2 , t3  e R and let r(x,6) + s(y, E 2. Define: 

A= FIO(f(x,6)+g(y,6),a(x,y,6)), 

B = F 10 (r (x , e) + s(y, 6), b(x , y, 6)). 

Then: 

1. If g(y, 6) = —r(y, 6) Vy, 6, we have Ao B = FIO(f (x,6)+ s(y, 6), a(x, y, 6)) 

modulo IC with c(x,y,6) E SGPxr+t3  for any p, q E R such that p + q = 

m1 + m2  + t1  t2. We also obtain an asymptotic expansion for c(x,y,e). 

2. If g(y,6)= —r(y,6) Vy,6 and f(x,e)= —s(x,e) Vx,6, we have A o B = 

Op(E(x,y,6)) modulo IC with '6(x, y,6) E SGPx',gy73+t3  for any p, q E R such 

that p + q = ml  + m2 + t1  + t2 . That is, the composition A o B is a 2y do. 

Again we obtain an asymptotic expansion for c(x, y, 6). 

In the proof of Theorem 7.2.1 will use results from Chapters 3,4 and 6 as well 

as some lemmas which we now present. The following result is proved in Coriasco 

[3]. We include the proof for completeness. Note that all the changes of variable 

in this chapter are of the type used by Coriasco in [3]. 
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Lemma 7.2.2. Let f (x, e) E SGxlic (Rn xRn,R) be such that (V x  f (x, e)) ti  (e) and 

det (Osz kf)in =1  (x, >- 1. Let Wk  := {(x, y) E R2n  : I y — xI < k(x) with k < 1} 

Suppose that we define a real-valued function h = (111(x, y, 0, • • • hn(x,Y,e)) on 

Wk X R" as follows: 

hi(x, y, := 	a f (x + t(y — x), e)dt 

Then we can choose a constant k <1 to be small enough to ensure that 

1. Each component hi(x,y,e) satisfies SG°1)',1  estimates on Wk  x Rn, 

2. det (ae, hi)ii=i  (x, y, e) 1 on Wk  x Rn  and 

3. (h(x, y,0) ^ (e) on Wk  x Rn. 

Proof. Condition 1. By definition h,(x, y, e) := fol  (91, f (x +t(y — x), )dt. Clearly 

we can differentiate under the integral sign so that 

1 

ax p,Y hi(x, y, = f ax 	[a„ f (x + t(y — x), e)] 

This is just 
1 

(1 — t)laltiolaic'+13±e3  (93'f(x + t(y — x), )dt. 

As usual,01  means "derivative in the first variable, counting from the left." Now, 

k < 1 means that for (x, v) e Wk we have (x) 	(y) ti (x t(y — x)) for t E [0, 1]. 

Since f (x, E SGx1 '1  we have 

1 
(1 _ olait plaia+o-Fei u2-Y f (x + t(y — x), e)dt. 	0) PI 	1-1-YI. 
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on Wk x W'. So Condition 1 is satisfied. 

Condition 2 Note that we can write 

alif (x, 	= 	alif (x, odti. 
0 

So, 

hi(x,y,e) — a f (x, e) = f [a f (x + t1(y — x), e) — 	(x, e)] dt1. 	(7.9) 

By the Mean Value Theorem, the right hand side of the above equation is 

fo

1  1 	n 
f E 	(x + tit2(y — x), e)ti (Yr — xr)dt2dti. 
0 r=1  

So, (7.9) becomes 

1 fl n 

	

hi(x Y, e) aizf(x,) = 	E air a f (x + tit2(y — x), 	(yr — x,-)dt2dti. 
0 0 r=1  

Differentiating this expression with respect toy and rearranging gives 

1 f 

r=1

l 

hi(x , y, e) = 	aide (x, — /0 0 	 f (x+tit2(y—x), )ti (Yr —xr)dtzdti. 

Consider 

airaitac,f(x + ti t2 (y — x), 	— xr)dt2dti 

	

Recall that f (x, E SC 	Also, for (x, y) E Wk we have (x + t1t2(Y x)) ti 

(x) ti  (y) with implicit constants independent of t1, t2  E [0, 1]. We also have 

(x + ti t2(y — x)) > (1 — k)(x) for (x, y) E Wk and t1, t2  E [0, 1]. Therefore 
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f i 
f (x + tit2(y — x), e)ti(yr — xr)dt2dt 	— k 

o 	

• 

So, we have shown that ae, h2  (x, y, = at, alt  f(x, e) + Mid  where each entry of the 

matrix Mid1k  It follows that we have ' 

det (aoi (x , y , 	= det (ae 	e)),;=1  Egi(x'Y ' 	(7.10) 

where the sum is finite and each function gi(x,y, 	is a product of elements of 

(kali  f (x, e))za=1  and elements of M with at least one of the terms in the product 

coming from M. Since each entry of aol,f(x, e) -< 1 for all i, j and 11/2,3 	1  kk 

for all i, j, we have 

.91(x, Y,) 	1 — k 

on Wk  x Rn, for all 1 in the sum. Since the sum is finite we then have 

9t (x, y, 1 	k 
	 on Wk  X Rn. 

—  
(7.11) 

Recall that det (301, f (x, e)),73=1  1 on Wk  x Ir. So, by (7.10) and (7.11) we can 

choose the constant k small enough so that det (3 3  h2  (x, y, e))n=1 1 on Wk  X 

Condition 3. Showing that (hi (x, y, e)) 	() is straightforward. For the 

lower bound note that by (7.9), we have 

hi(x, y, — 	= I falif(x + (y — x),e) — 	dti• 



CHAPTER 7. TYPE Q FOURIER INTEGRAL OPERATOR 
	

101 

So, 

(h(x, y, 0)2  = (Vif(x, 0)2  + 2 
i=1 

n 

a ,f(x, f 	f (x + ti(y — x), — 	e)dti+ 
0 
n2 

+ 	[ 	 f + (y — x), — 	 f(x, e)citi] 

(7.12) 

As (V i f(x, 0) 2 	(02  and alt px, 	(e) for all i, it is clear from (7.12) that 

the lower bound will be established if we can show that fol  al i  f (x + t (y — x), e) 

al z  f (x, e)dt i  -< r(k) (0 on Wk  X EV, for some real valued function r(k) with r(k) 

0 as k 0. By the Mean Value Theorem 

1 
01, f (x + ti(Y — x), — 	 = 

fl 1 n 

E ai kaa(x + tit2(y — x), )ti (yr  — xr)dt2dti. 	(7.13) 
/0  0  r=1 

Recall that f(x,e) E SGslic  Also, for (x, y) e W we have (x + t it2 (y — x)) — 

(x) ti  (y) with implicit constants independent of t1, t2  E [0, 1]. We also have 

(x + t it2 (y — x)) > (1 — k)(x) for (x, y) E Wk and t1, t2  E [0, 1]. Using these facts 

it follows from (7.13) that 

/1 
ai ,f(x + (y — X) , — al f (X e 

0 	
)dt1 	1 — k(). 

on Wk  x Ilan. 	 ❑  

Lemma. .Lre  7.2 3 T -4  orr1,tom 
 

and det ax A f (x, e) 1. Then we have 

un TO) \ 11‘. no/ be Such that (7,70f(x„;)) 	(X) 

c 	(x, 	— f 	Ix — YI- 
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Proof. Consider the map F(x, 	:= (V f (x , e), e). Since (c7f(x,e)) ru  (x) and 

det (a0e,  f) ,3=1  (x, e) 	1, it follows from the Global Inverse Function Theorem 

(Theorem 6.1.2) that F(x, e) is a diffeomorphism from Rn x IV to Rn x Rn . We can 

apply Proposition 6.2.3 to see that if we write F-1  = (CP-% , (F-1 )2 ) we have 

(F-'), satisfies SG1'°(1171  x Ilan, IV) estimates. We have (F-1), = (Vef)-1 	e) 

where the inverse is in the first variable with the second fixed. 

So, as in Coriasco [3], set v = 	(x, 0 and w = 77f (y, e). So, 

- yI = I (oaf) 1  (v,e) 	(oaf)
-1 

(w,01. 	 (7.14) 

By the mean value theorem and since ('S7f)-1  E SG1'-(Rn  x Rn , Rn ) we have 

Ix—y1 	lv — wl 

Since Iv - wI = Ion [f (x, 	 f(Y,e)] I we're done. 	 0 

The following result is proved in [3]: 

Lemma 7.2.4. Let (1)(x, y, e) E 2, with (I)= f (x, e) f(Y,O• Then, for any 

a(x, y, e) E SGT, T 2'"n3  with ml , m2 , 7n3 arbitrary , there exists 5,(x, y, e) S 	-"1"n3  

such that 

F I 0( f (x, e) - f (y, e), a(x, y, e)) = Op(o,(x, y, e)) modulo )C. 

Proof. By Lemma 7.2.3 and Theorem 3.2.2 we see that if x E 7-7(b)  with 

we have 

Fio(f(x,)— 	a(x, y, )) = F-10(f(x,)- 	a(x, y, )X(x, Y)X(Y,x)). 



CHAPTER 7. TYPE Q FOURIER INTEGRAL OPERATOR 	 103 

modulo K. Let A 	F/0(f (x, e) f(Y,e), a(x, y,e)X(x, Y)X(Y, x). By definition, 

Au(x) = h if exP{i(f (x, e) f(Y,e))}a(x, y, )X(x, Y)X(Y, x)7(<)u(y)dyci 

The support of the amplitude is contained in Wk  x Rn where Wk  := {(x, y) E 

R2n 	— < 2k(x)}. The integral is absolutely convergent so we can write the 

repeated integral as one integral over the x section of Wk  x R" without changing 

the value of Au(x). So, 

Au(x) = lim f 	exP{i(f (x, e) — f(Y,e))}a(x, y, e)X(x, Y)X(Y, x)'Y(€)1 (y)drn, 
6-40 

k X Rn ) x  

where m is the two-fold product of Lebesgue measure on Rn. 

Let h, := fo ai,f(y + t(x - y), e)dt. By Lemma 7.2.2 we can choose k to be small 

enough so that 

1. Each component hi(x, y, e) satisfies Sex'°y' le  estimates on Wk  x Ilan, 

2. det (a hi)ini=1  (x, y, e) 1 on Wk  x Rn and 

3. (h(x, y, 	— (e) on Wk  X Rn. 

Define F(x, y, e) := (x, y, h(x, y, e)). For k small enough, F is a C" diffeo-

morphism from Wk  x W' to Wk  x Rn. by the above facts and the Global Inverse 

Function Theorem (Theorem 6.1.2). We have F-1  (x , y, e) = (x, y, h-1(x, y, 

where V' (x, y, e) denotes the inverse of the x, y section of h. 
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Define new variables (-±, 	:= F(x, y, e). By Proposition 6.2.3 h-1( -X, Y. , 4.) sat- 

Gx
o,

,
o
M 
,i isfies S 	- estimates on Wk  x111n. We also have that the Jacobian det an h-1(x-, y, e) 

satisfies ESGo,o,  estimates on Wk  x JRTh by the same Proposition. 

Making the change of variables we have 

Au(x) = limo 	ex13{0 -Y') • Oao(i, €, 

xIdet 00,-1(X, 	)1u( -Y)dm. 

(7.15) 

By Proposition 6.2.5 we can extend ao(x, y, 11,-'(±- ,,171))1det 	 I by zero 

outside Wk  x 11871  to give a function in SG''' 712 '"13 . 

We also extend 7(ch-1(x, Y,77)) by zero outside Wk  x Rn. 

Re-writing the integral 7.15 as repeated integrals over RV we have 

Au(x) = lirr4ff exP{O -j) • Oao(±, 

x I det 	(x, y, 4)1u(y)cw. 	(7.16) 

We can replace '-y(ch-1(X, y , )) by -y(€) by integration by parts. This completes 

the proof. 	 ❑  

f(Wk xllIn), 
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Proof of Composition Theorem 7.2.1 

Proof By definition 

A = FIO(f(x,e) g(y,e),a(x,y,e)), 

B = FIO(—g(x, e) + s(y,e),b(x,y,e)). 	 (7.17) 

Let x(x, y) E 	(c), with c E (0, 1). 

ARed  = F 	(x, + 	a(x, y, )X(V 	0))X(V eg 	V)), 

BRed  = F I0(—g(x , e) + s(y,e), b(x, y, e)X(Ve.q, Ves))x(Vcs, Dig)). (7.18) 

As for the Type P operator we only need to consider composition of the reduced 

forms ARed  and  BRed  of A and B since we have A o B = ARed  0 BRed  modulo 1C. 

For convenience, define 

ar(x, y, e) : = a(x, y, e)X(VV(x, e), —V g(y, e)))X(Veg(y, e), —Vef (x, e)) 

br (x , y, e) : = b(x, y, e)X(Veg(x, e), Vcs(Y, e)))X(Ves(y, e), Vo(x, )) 	(7.19) 

By the now standard arguments, we have the following equality, modulo Ku for 

KEK: 

(AR, 0 BRed) u(x) = lira lira ifff exp,i(f(x, e) + g(y, e) — g(y, 77) + s(z, n), )} x 

x ar (x, y, e)br(y, z,n)7(.877)-y(e)u(z)dzdydyde. 

(7.20) 
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Let x2(e,77) E E°(k), with c2 E (0, 1). By constructing a partition of unity with 

X2 and using Theorem 4.0.2 and Lemma 7.2.3 we have 

o BReou(x) 	fiff exp{i(f(x, e) + g(y, e) — g(y, y) s(z, ii), )} x 
5-0 E-0

xar (x, y, e)br (y, z, ri)x2(e, ri)-y(8n)-y(ce)u(z)dzdridyde, 

(7.21) 

modulo an integral operator with Schwartz kernel applied to u. Again, by the 

same argument as used in the proof of Theorem 5.0.1 we can use the Lebesgue 

Dominated Convergence Theorem to remove the E limit to give, 

(ARed  0 BRed)u(x) = lim 	
exp{i (f (x, e) + g(y, e) — g(y, 77) s(z, n), )1 x 

xar (x, y, e)br(y, z 71)X2(, 17)7 (STI)u(z)dzclOyde 

(7.22) 

We will now make an SG structure preserving change of variable in order to 

replace g(y, e) — g(y, y) with f( -fi, 77) — f (y, e), for some new variable -Y. Define 

Wc, := {(e, y) E Rn  x Rn : 	— 771 < 2c2(77)}. The support of the integrand in 

(7.22) is contained in Vet  = {(x, y, z, e, n) : x, y, z E Rn,(,77) e 147,2 1. We remark 

that 17,2  is open in lel. 

(A Red 
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Let G(x, y, z, e, 77) := (x, fo V2g(y, y  + t(e — 77)), z, e, i) and define 

Gi (x, y, 	:= x, (7.23) 

G2(x, y, z, 	'o) := f V2g(y, 	+ t(e — 77))dt, (7.24) 

G3(x, y, z, e, 7/) := z, (7.25) 

G4(x, y, z , 	, i) 	e, (7.26) 

G5 (x, 	n) := y. (7.27) 

Using this notation, G = (G1, G2 , G3, G4, G5 ) . We can apply Lemma 7.2.2 to see 

that for c2  small enough we have: 

Each component (G2),(x, y, z, n) satisfies SGT°',°y'l estimates on Rn x Vc2  (7.28) 

, det (ay,  (G2 )0 27,3=1  (x, y, z, 17) 	1 on R'2  X Vc2  (7.29) 

(G2 (x, y, z, e, 71)) ^ (y) on WZ x Vc2 . (7.30) 

It follows from the above facts and the Global Inverse Function Theorem 6.1.2 that 

G is a global diffeomorphism from Vc2  to K2 . Further, G satisfies the conditions 

of Proposition 6.2.3 (taking V and W to be Vc2  therein) as we now show. Writing 
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G = (G1 , G2, G3, G4, G5) , we therefore have the following holding on Vc2 . 

(G1) ti (x), 	 (7.31) 

(G2) (Y), 	 (7.32) 

(G3) — (z), 	 (7.33) 

(C4) 	 (7.34) 

(G5) '"" (71), 	 (7.35) 

We also have the following statements holding on Ve2  . 

G1  satisfies SGx1' ,oy,,oz,,cle,,ort  

	

estimates, 	 (7.36) 

	

G2 satisfies SGx,y,z,o,i,o,o,o  ,n  estimates, 	 (7.37) 

o, 

	

G3 satisfies SGx,y,,,  °0J  estimates, 	 (7.38) 

G4 satisfies SG°  

	

estimates, 	 (7.39) 

	

G5 satisfies SG0,0,0,0,1  x,y,z,c,n  estimates. 	 (7.40) 

The Jacobian of G is det (ay,hi(y, ii)):3=1 . So the Jacobian of G 1 on Ve2  by 

(7.29). So all the conditions of Proposition 6.2.3 are satisfied. Therefore, if we 

define 	 (G1, G2, G31  G4, G5) for (x, y, z, 7])  G Vc, and write G-1  = 

((G-91  , (G-1 ) 2 	, (G-1 )4  (G-1 )5 ) , where (G-92  = 	 /I) for 

E G(V,2 ) = Ve2  we have 
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((G--'),) 	(±), 	 (7.41) 

	

((G-1)2 ) — (a), 	 (7.42) 

((G-1)3 ) rsi 	 (7.43) 

((C-1)4) 	 (7.44) 

	

((C-1)5) (1/) 	 (7.45) 

	

(G-1)1  satisfies SG1'°'°'°'°  estimates, 	 (7.46) 

	

(G-1) 2  satisfies SG°'1'°'°:°  estimates, 	 (7.47) 

	

(G-1)3  satisfies SGQ°'1'°2°  estimates, 	 (7.48) 

	

(G-1) 4  satisfies SG°'°'°'12°  estimates, 	 (7.49) 4,2,C,f/ 

	

(G-1) 5  satisfies SG°'°'°'°'1  estimates. 	 (7.50) 

	

holding on G(17,2 ) = 17,2 . Now, since (x) 	(y) 	(z) and 	() — (7/), on Vc2  it 

follows that 

((G-')1) ((C-12) ((G-1)3 ) 

((C-14 ) ((C -1 ) 5 ) 
	

(7.51) 

on G(17,2 ). Therefore, by (7.41), (7.42), (7.43) ,(7.44) ,(7.45) we have (") ti  (9) ,-- 

(;i) and (e) 	(i)) on G(17,2 ) = Vc 2  . After we make the change the amplitude will 

go over to a function r say, with support inside G(17,2 ) = Vc2  . So, we will have 

(`) ti  (Y) 	CO and () — (11) on Supp(r). 
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Define new variables (X, Y, Z, 	:= G(x, y, z, 4, in. We write the absloutely 

convergent integral in (7.22) as one 4n dimensional integral over the x section of 

Ve2  . Then we change variables (x, y, z, 4, in -> (X, 'y, Z, in to obtain 

	

(AR„'  0 BRed)  u(i) = rim J 	exPfi (f (±‘, 	. - 71) + s(i ,17),)1x ( vc2 ) x  

xar(`X,h-1(y,t,11),)1),-(h-1( - , ,17),i',11)X2(4' ,11)7( 611)u()Idet 50-1(y, ,11)1d1. 

(7.52) 

where / is the four-fold product of Lebesgue measure on IV. (By 1/-1(Y, 4, in we 

mean the inverse taken in the first variable with the other variables fixed. ) 

By Proposition 6.2.5 the function 

	

)1),(h,-1(),11), 	77)X2(,11)Idet (90h' ( , " , 71)1 extends by zero 

outside G(17,2 ) = Vc, to a function in SG"1,m2+t1,t2,m3,t3 
x>9,2Z11 

Now, define M(`±,b,,4',77)= 	fol  V2f(b,1"7 t(' 11))dt, z, , 11 and set 

m := - r 1 V2f (y,11-Ft(-1)))dt By similar arguments to those used for the previous 

change of variable, we see that M is a global diffeomorphism from Ve2  to Ve2  for 

small enough c2. We define (±', 	Fi) := 	 f7). Since M satisfies 

the conditions of Proposition 6.2.3 (taking V and W to be Vc2  therein) it follows 

that M-1  does also. Making the change of variable ("X, Y, z, , //) -4 

(7.52) becomes 
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(ARed o BR,d ) u(i) = lira f 	exPli (f (Y 17) + f (x, e) — f (y, + 	ij),)} X 
(5 —,0 (17,2 )x  

X ar 	 f/), e, 	e)br(h-1(m(9. , 	F1), z, 771)X2(, 17)7(8 )u(z)x 

xIdet 80-1(77(y, e,7/), e,7?)11det aim(y, e, f7) 

(7.53) 

Recall that 1 is the four-fold product of Lebesgue measure on Rn. 

By Proposition 6.2.5 the function 

h-1(m(y, e7-*/), 17), e)br (h-l (rnW, 	171), z, 11)X2( fth ( 6771)11M x 

x 	det 30-1(m( fi, 	er))11 det 	f/)1 (7.54) 

extends by zero outside Vet  to a function in SG7-742-Ftl,t2,M3,t3 

Re-writing the integral in (7.53) as repeated integrals over 11171.  and dropping 

the-  s on the variables, we have 

( ARed 0 BRed) u( x) = b
r0Jill exp{i (f (Y r) + f (x, e) — f (Y, e) + 8(z, 77), )1 x 

x a, (x, 	(Y, er/), e, 7/), e)br(11-1(7n(Y, e,1/), 	7/), z, 	77)7(.577)u(z) x 

xIdet a111-1(m(Y, 	77), e, 77)I aim(Y, e, 77)1d/.. 

(7.55) 

For convenience define 
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a(x, y, z, , n) := ar (x, h-1  (rn(Y , 17), , 71), e)br(h-1(m(Y > 77)), n), z, Ox2(e, 7/)7(677)x 

xIdet ai h,-1(7n(Y, en), e, WI lagn(Y, e, n)I. 

{a(x, y, z,, 77) 	on Vc2  
EtE(i,e) := 

0, 	otherwise 

(7.56) 

We remark that on the support of EtE (x, y, z, , in we have (x) - (y) - (z) and 

(e) ^' (17). 

Let X3  E 4  (c3 ) for c3  E (0, 1). By making a partition of unity with X3(x, y) 

we can use Lemma 4.0.3 to reduce to the following ( modulo an operator with 

Schwartz kernel applied to u ) 

(AR,d  0 BR ,d ) u(x) = 18in4 jiff exki (f (y, 77) + f (x, 0 — f (y, 0 + s(z , 77), )1 x 

xaE(x, y, z, e, 11)X3(x, Y)7(6n)u(z)dzd1dycle x 

(7.57) 

We will make yet another change of variables. Define 

Wc3  = {(X, y, z, -,77) : x, y, z, 7/ E Rn : Ix - yl < 2c3} and define 

Q(x,y,z, - ,71) := (x,y,z, fo1  V 1f  (y+t(x -y), a 77) and set q(x, y, 0 := V IC cif (y+ 

t(x - y), a Arguing as before, we can choose c3  small enough so that the change of 



{h(x, fi, ,i- , , f7) 	on W„ 
hE ( 	4, := 

0, 	otherwise 
(7.59) 
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variables is structure preserving. Defining 	f̂i, z, e, ij) := Q(x, y, z, rj), making 

the change of variables (x, y, z, e, 77) —> 	y, z, , ij) and arguing as before we have 

(ARed 0 BRed ) u(x) = 1i9 fiff exp{i (f (y, f7) + 	Y) • e + s(z, ij), )1 x 

x hE 	i)u(z)-Y(.(5i7)dEdijd -Yde. 

(7.58) 

where hE  (defined below) belongs to SGm 
 1,m2+ti,t2,m3,t3 and by  q (x y  , we  

mean the inverse in the third variable with the other variables fixed. As ever, 

equality is modulo Ku with K E /C. 

:= a E(x, 	, Y, e), 77)X3(x, Y- )1 det  a3q-1(±, 

We also have 

- (0 - (E) on Supp(hE) 

(e) 	(77) on  SupP(hE) 

(7.60) 
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Multiplying by e i  f (±,11) 	( x't? )  = 1 and rearranging we have 

	

(AR,d  0 BRed) 	= li if exp{i (f (1) 71) + s(z, 11),  )} x 

X [If expli (f 0, — f 	+(x— fi) • e,)1x 

x h E(i, y, z, e, fi)dfide] x 

	

x-y(8i7)u(z)didij. 	(7.61) 

Define 

	

c( 	:= [ if exp{i (f (fi, — f 	+ — fi) • e,)1x 

	

x hE(x, y, z, e, fi)4d1 	(7.62) 

The proof of part 1 will be complete if we can show that c( -±, z, fi) belongs to the 

appropriate SG class. We will prove this by using Proposition 4.0.4. 

Observe that f (y, — f , i)) = f (y, + 	-7)) — 	— f , 	(Recall 

that g is a phase component.) 

If we define (DO, 	:= 	+ g( - ,177) we have (C Q C P and f (fi, — 

f 	= c130, z, 	— 4)(1, 	. Using this notation, c( -±,, 'II) becomes 

	

, 	:= [ if expli 	— 	+ — j) • )1 x 

x h E( 	ij)dOe] 	(7.63) 

We also have the following holding on Supp(hE) 

1. (-±) ^ (j) 



CHAPTER 7. TYPE Q FOURIER INTEGRAL OPERATOR 	 115 

2. (0 — (i)) and 

3. — < c3(y) where c3  < 1. 

So, we can apply Proposition 4.0.4 to see that for c3  sufficiently small, c(±, 

belongs to Sq173+6  for any p, q E IR such that p + q = m1  + m2  + t1  t2. By 

Proposition 4.0.4 we also obtain an asymptotic expansion for c( - , z, 7)). 

The second part of the proof follows from the first part and Lemma 7.2.4. 

Remarks All the changes of variables made in this proof are of the type used 

by Coriasco in [3]. In view of Theorem 7.2.1 we can think of Type Q operators as 

compositions of arbitrary Coriasco Type 1 and Type 2 operators (see Introduction). 

We also note that in view of Lemma 7.2.4, we could use a similar argument to show 

that the composition of a Type 2 operator with a Odo is again a Type Q operator 

with the same phase and a modified amplitude. 



Chapter 8 

Closedness under Composition 

8.1 Generalised Type P FIO. 

We will now modify the definition of the Type P operator to allow the frequency 

variable e to have dimension greater than that of the spatial variables x and y. 

116 
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Definition 8.1.1. Let a(x,y,e) E SGx7;, v 'n14 (Rn  x Rn  x Rn4 ) where 	n. We 

denote by P(a) the set of all functions (13(x, y, e) E C"(Rn  x IV x 	IR) having 

the following properties on the support of the amplitude a(x,y,e). 

For j = 1, 	,n, the function 5x (1.(x,y,e) satisfies 

	

Sex°y', - (Rn x Ilan x R') estimates, 	(8.1) 

For j = 1, ... , n, the function av,(1)(x,y,e) satisfies 

	

SG'°x°y', (1Ekn x Rn x Rnc) estimates, 	(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

For all multi-indices -y we have ,52"(1).(x,y,e) 	
( y ))(01-17I .  ((x) + 	 (8.7) 

Definition 8.1.2. Given a(x,y,e) E SGrm;:nlY 'm  (Rn  x It x It 	and 1 E 'P(a), 

we define the generalised Type P operator A in the following way: 

	

Au(x) =lin"o J  f exp{i(1)(x, y, ella(x, y, e)-y(cOu(y)dyck. 	(8.8) 
Rn  la 

As ever, y(e) is a mollifier. 

Remark. For any a(x , y, e) E S G rxn; 	(Ilan  x Ilan  x Rn), we have P C P(a). 

> 0 : — 	C(1,(Y) 

(V 	(x , y , 

(Vv(Nx5Y, 

IVel)(x, Y101 

(c), 

(), 

(x) 	(Y), 

> 0 : — yl > ap(x) iVeD(x, y, e)1 (x) + (y), 
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Notation. Given a(x, y, E SGx77:;:rriv 'm  (Rn  x Rn  x Rne ) and cl) E P(a), we will 

write F 10 (4)(x , y, , a(x, y, 0) to mean the operator defined in (8.8). 

We now present some basic properties of the generalised Type P operator. 

Theorem 8.1.3. Let a(x, y,1;) E SGx7;'nlY'rne (R" x Rn x 	), for any mx , my , rn E 

R and let 4.(x, y, E P(a). Then, if we define A 	FION)(x,y,e), a(x, y, 0), we 

have: 

1. A : S(Rn) —> S(Rn) continuously, 

2. A is independent of the choice of mollifier, 

3. AT  = FION ,(y,x,e),a(y,x,e)), 

4. A : S'(Rn) 	S' (Rn) continuously. 

Proof. The proof of parts 1 and 2 are the same as the corresponding result for 

the Type P operator. Part 3 follows from the fact that the phase assumptions are 

symmetrical in x and y. Part 4 follows from parts 1 and 3 in the standard way. ❑  

The following Lemma will be useful when we study the composition of two 

generalised Type P operators. 
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Lemma 8.1.4. Let a(x, y, E SG,Tri;TY'In (Rn  x Rn x 	), for any mx , my , m E 

Ili and let (1.(x, y, e) E P(a). Define A := FI0(4)(x, y, e), a(x, y, 0), and A,u(x) 

f 	fiEt„ exp{i(13(x, y, e)}a(x, y, 0-y(cOu(y)dyk Then we have 

I. A, : S(Rn) 	S(Rn) continuously, 

2. A,u(x) 	Au(x) in S(Rn) as E —* 0. 

Proof For part 1, use the fact that that AE  = FI0((1.(x,y,e),a(x,y,e)7(€0) 

and apply part 1 of Theorem 8.1.3. For part 2, just use the operator Ly,4)(x,y,o 

(see Definition 2.5.2) to integrate by parts and apply the Lebesgue Dominated 

Convergence Theorem. 	 ❑  

Proposition 8.1.5. Let a(x,y,e) E SG xm;:ern y'rn  (Rn x Rn x 	, for any mx, my, mt 	E 

R and let 01.(x,y,e) E P(a). Also, let x E EE°(c) where c > 2ap. Then, if we define 

A := F 0(4)(x, 	a(x, y, 	and ARed 	FIO(1(x, y, e), a(x,y,)X(x,Y)X('Y x)), 

we have 

A = ARed  modulo 1C. 

Proof This result follows from Theorem 3.2.2. 	 ❑  

Remark. ARed  will be referred to as the "reduced form " of A modulo 1C. 

Proposition 8.1.6. Let A, A1 , B, B1  be generalised Type P operators. Suppose 
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that 

A = Al  modulo IC and 

B = B1  modulo k. 	 (8.9) 

Then we have 

A o B = Al a B1  modulo 1C. 

Proof. Just follow the proof of the corresponding result for Type P operators. ❑  

8.2 Technical Results 

We now present several technical results which will be of use later in this chapter, 

starting with a Lemma about the structure of derivatives of a composition of 

smooth functions. 

Lemma 8.2.1. Let a(x, y) E C" (Rnx x RnY  (C) and b(x, y) e Cc°  (Rnx x RnY Rnv 

and define f(x,y) := a (x,b(x,y)). Then, for any multi-index a with 	> 1, 

f = 	(x, b(x , y)) + 

E (ar af a) (x, b(x , y))11ar'3 	(x, y) 
i 	 j=1 
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where the sum has finitely many terms, cti, /31  jO ,-yiO are multi - indices such that 

1'7'31= 1  
101 

ai 	= 
j=1 

j=1 

Vi, j, 

(8.10) 

Remarks. The function b takes values in IVY and -yio is an ny  dimensional multi- 

•— 	k= 1 	

, 
index. In standard multi-index notation, b72'' 	'TY k , where bk  is the kth 

component of b and rykz' is the kth component of •-yio. 

Proof. By induction. Case 	= 1. By the standard rules for differentiation, 

nY  

a2i J = (a;.z a) (x, b(x,  y)) + E (aka) 	b( x, y)) a2  ( bek) (x, y), 
k=1 

where ek  is the multi - index with 1 in the kth place and zeros elsewhere. This 

expression has the required form. 

Assume the statement is true for la I = k. For any j E {1, 	, nx}, by the 

inductive assumption, we have 

ax.,V = ax,[((na) (x, b(x,Y))i+ 

[ioz1 
ax, 	E ci  (e g a x, b(x , y)) H  az,m (b-, 	(x, y) , --) 

i 	 m=1 
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with ai  + 10'1 
m=1 i,m = a and =11 yi,7 = /3 for all i. Differentiating, we have, 

fly 

ax 	C = (aia+e, 	(x, b(x, y)) + 	(0Mka) (x, b(x, y)) 	(Vic) + 
k=1 

E cox, { (a ea) (x, b(x, y))} H  arm 	(x, y)± 

1021 E ei (a 4 a) (x, b(x, Y)) ax H 
	
(byi'm ) (x, Y) • 

m=1 
(8.11) 

The first term, (Ore' a) (x, b(x, y)) , has the correct structure. We will check 

each sum separately. 

Consider the first sum, 

fly 

E (al'V a) (x, b(x, y)) 	(bek) 
k=1 

Each term in the above sum has the correct structure; the number of terms in 

the product equals the absolute value of the order of differentiation in the second 

variable of a for all k and for each term, adding the orders of x derivatives gives 

a + e3  as required. Also for all k, the order of derivatives in the second variable of 

a matches the sum of the exponents of b. Let's consider 

lal 
E ax, {(ai Ka) (x, b(x, y)) } H 502- (b-r 

m=i 

By expanding ax, { (a?' 4% a) (x, b(x, y))}, (8.12) becomes 

x, y). 	(8.12) 

10'1 E ei 	(al 	a) + E (we-Fer a) ax, (ber  H axot— (b-r—) (x, y) 
r=1 	 nx=1 
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By inspection each term in this sum has the correct form. Now let's look at 

Ir31 
Eci (arga) (x, b(x, y)) axi  H axoz- 	(x, y) 

m=1 

By the product rule, this is just 

1132 1 
E , (w,2 0f (x, b(x, y)) 	a0Z5+e3 (b-Y-) H axoz ,m 

s=1 	 m=1 mos 

Again, by inspection, each term in this sum has the required properties. 	0 
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Lemma 8.2.2. Assume that 

1. a(x, y, z, e, 77) E C°°  (W' x Rn x Rn x Rnc x Rnn) satisfies 

SGT:ni1,7.3,77/4,m,(Rn x Rn x Rn x W  x R1 ) estimates on some set 

W C Rn x Rn x Rn x 	x 

2. (x) ti  (y) 	(z) and (e) 	(n) on W. 

Let 

1. r(x, z, e, 71) E ESG1°'Z711'°(Rn  x Rn  x Rne x Ilgnn R) 

2. s(x, z,e,7)) E C°°  (Rn  x Rn x Rne x Rnn, Rn) with s(x, z , eji) satisfying 

x Rn x 	x Win) estimates on W, 

3. F(x, y, z, e, ?I ) 	(x, Y —r(sx(,s;,z,'",;)7), z, 07). 

Suppose that we change variables to (X, 	fj) 	F(x, y, z, e, 77). Then the func- 

tion f 	 := 	"Yr(X, z, e,i))+s(i, z, e,7)),:,e,i)), satisfies the following 

estimates on F (W) : 

(7;  a,?, a 	 (±) rrz, +rn2-1a1 	( 07n4-101-1,51(ii)ms —1E1. 	(8.13) 

Remarks It follows from the global inverse function theorem that F is a C°° 

diffeomorphism from 

RnxRnxRnxRncx1RnntoRnx1RnxWixRricx1Rnn. Note that r(x,z,e,71) is 

real valued and s(x, z, 71) takes values in IV. 
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Proof. As a satisfies SGZy':Ze2:77-13 '''' on W, it follows that on F (W) we have 

	

(aia':aMaa) 	i,e,771) + 	e,11), 

	

()ni-lal 	p, 	 r2-101(z)m3-1-r1 (e)m4-161(7r5-1c1. 	(8.14) 

As (x) 	(y) 	(z) and () — (ri) on W, it follows that 

("±') ti  ("fir(i, z , , fi) + 	 M and () ti  (i)) on F (W) . So, we have the 

following estimates on F(W) : 

	

(di431aNa) (±, 	+ 

()mi+rn2-101-101Mm3-1-Y1 ()m4-1.51005-1€1. 	(8.15) 

The function r(x, z,e,i'/) E ESG1,0,- l '°  and sCi, '",e, ij) satisfies SG1'°'°'°  1 
	esti- 

mates on F (W) . So, since (^±.) — Wr(i, -,47, -.7)) + s("±',,i',e,i))) on F (W) , it follows 

that we have 

	

(4) on F (W) . 	 (8.16) 

We will prove that f 	, '15, z , , Fi) satisfies (8.13) is three steps. We start with 

the case where all orders of derivatives are zero. 

Case Ictl =101=171=161=1E1= O. Just put lcd = 101= 1-Y1 = 161 = 1E1 = o in 

(8.15). 

Case 1/31= 0. We apply Lemma 8.2.1 to get, 
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(9"Y azl'a Nf = (ai.193ag0,;a) 	 771) + 8(±, z, , 11), z, 4,i71)) + 

E (az al % 	 + s( 	 i-1)) x 

IWzI 

X H 6 
m a71€2'm 	r() 	 SAjm 	 7))) (8.17) 

where , IXi,m = 1 Vi, m and for all i in the finite sum we have 

IWiI 

ci + E 
rn=1 

IWZI 

E 	= 7, 
m=1 

IwzI 
6 + E 6ti'm= 8, 

 

m=1 

IWZ I 
Ei,m = E. 

m=1 

(8.18) 

To obtain (8.17) and (8.18), just treat 	i)) as one 2n+ne+n,71 dimensional 

variable and apply Lemma 8.2.1. Recall also that r( -±, z , , fi) takes values in R 

and s(i, z, , fi) takes values in Rn. We already have estimates of 

ai 43134fAa 1 x yrlx z, ij) + 	 , see (8.15). 

If we can show that 

Wz 

 H arm atm 6i 'm 	(e'm r 	fj) + ~)) --< 
m=1 

I -E17,`,':Ji lco'm I (z)- EZ.2:-1_111,tfin I ()- E l:jilsiml(71. )- 	leim I 	(8.19) 
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we'll be done by (8.18) and the estimates (8.15) . 

Recall that on F (W) we have 

(8.20) 

By (8.20) and the fact that r(", 	E ESG1'°':l '°  and s(x z, _ , 	,77) satisfies 

estimates on F (W), it follows that for any j we have 

2.071 ( 	( 	
F1) + 	f/)) 	(x11- 

	(i)-17''"11 ()-16i'm I (fi ) -I e'm I.  

on F (W) . Therefore, as 	= 1 for all i, m, we have 

z 
m 
(02'in  r (x , z, ,77) 	s Azm  (x, z, ,77)) 

(x )I 	laz'ml (z)- 	17i'ml (0- E7,.11 m  (77)- 	le'm I 	(8.21) 

on the set F (W) . 

Case PI > 0. All functions are smooth so we can take the derivatives in any 

order. Therefore, 

a;a:al a:, a f; f = 6;03 3,07; [(4a) (, ..?"'(,,', , 77) + s(,,,,',/), , ".,, fi)) r1131 ] 

(8.22) 

As (4a) (x, y, z,, 77) E SG:1:zin,2,-,-11,31,m3,m4,m5, and the SG orders were arbitrary 

in the 0 = 0 case, we can use the earlier parts of the proof to say that we have the 
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following  estimates on the set F (W) : 

	

aMal.N [ (4a) (i, fir(±- , z, , f/) + 	fl), z, e,77))] 

(±-)rni-km2-- la1-101()m3-171(0m4-161(17)m5—k1. 	(8.23) 

As 	i)) satisfies SG14°'-14° estimates on F (W) , the result follows from 

(8.22), (8.23) and the product rule. 

Lemma 8.2.3. Let a(x, ^, z, 17) E C°°  (Rn  x Rn x W1  x 	x Rnn, C) satisfy 

the following estimates on some set V C Rn x Rn x Rn  x RN x Rnn : 

, z, e, 	x yno-rn2-1a1 ( z )m3—H (07n4-101-1,51 ('1)m5-1€1 

Assume also that on V we have the following relationships between the variables: 

(e) ti  (n) and rfil 	(c). If we define an n-Fn+n,77  dimensional frequency variable 

0 = ("fi, e, n), then the function 

	

a(x, z, 0) := a(x, 	z, e, n), 

satisfies SGx7z1,+6,'''''+"15(Rn x  Rn  x  Rn-Fri+nn) estimates on V 

Proof. Consider 

a2ap-ora(x, z, e). 

Define -yD, to be the first n entries of y and define 	and -yri  similarly so that 

-y = 	, y,7 ). Using  this notation, we have 

a2ap-ja,(x, z, =a2aWq(373',  [a(x,,z,e,n)] 
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So, by assumption, we have 

	

ama-eya wi11+.2-1a1(,)m3-101(e) n4-r7yi-kyd 	 (8.24) 

On V we assumed that (n) 	and WI (O. It follows that (9) — (71) — 

on V. So, by (8.24), we have the following estimates on V : 

a,x,ap-,y, a 	(x).,-Fm2 	(zyn3-101 (0)7.4+.5-1-NI-1-yd-ry„i.  

Noting that 171= NI+ 17k1+177/1, the proof is complete. 

Remark. If V = Supp(a), we have Ec E SC711+07n2 'rn3 'm4±m5. 

Proposition 8.2.4. Assume that 

1. a(x, y, z, 77) E C" (Rn  X Rn x Rn  x RN X IfInn) 

satisfies SG 7,g1:7,2:,73'''' (Rn x Rn  x Rn x R' x Rn')) estimates on some set 

W c Rn x Rn X Rn  X RN X Rnn 

2. (x) ti  (y) 	(z) and () — (q) on W. 

Let 

1. r(x, z,e,77) E ESGx1' ,°,',Z,'°(R" x IIBn x Rfle x Rnn,R) 

2. s(x, z, 77) E C"(Rn x Rn x RN X Rnri Rn ) with s(x, z,e,n) satisfying 

x,z477 estimates on W 

3. F(x, y, z,e,q) 	(x, y—r(x,zs(x',z'  ,n )71 	, )  Z 	77) • 
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Suppose that we change variables (x, y, z,e,17) 	(x, y, z,e,n) where ("X, 9, 	:= 

F(x, y, z, e, 77). Then if we define an n + ne  + n?  dimensional frequency variable 

0 = 	7)), the function c 	0) := a("X,9r(X, z, e•-•  ,isj) + s(X, 	, 771), ."Z" , , ii), sat- 

isfies SCrni+m2,7n3,1n4+m5 estimates on F (IV) . 

Proof. Just apply Lemmas 8.2.2 and 8.2.3. 

Remark. If the set W in Proposition 8.2.4 is the support of a then the function 

c 	, 0) e SG xm 	 (Rn x R x IlInc+nn+n) . Also, since (x) ^ (z) on 

F(W) it follows that c(x, z, 0) satisfies SGPxl' ino  4+' estimates where p and q are 

any real numbers such that p + q = mi + m2 + m3. 
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8.3 	The Generalised Type P class is closed un- 

der composition. 

Theorem 8.3.1. Let a(x,y,) E SGm1'in2 '7n3 (Rn  x Rn x lEtrq) with 	> n and 

let b(x,y,0 E SG"242 (Rn  x Rn x Rnn ) with nr1  > n. Let (I)(x,y,0 E P(a), 

111(x, y, E P(b) and define A := FI0(41, a) and B := FIO(T,b). 

Then the composition C := A o B is a generalised Type P FIO , modulo IC. 

Precisely, 

C = FIO((, c) modulo 1C, 

where c E SGml+t1+742-Fn't2'm3±t3—n(Rn x WI  x  Rn+120-nn ) and E P(c). 

/ 
Remark We will find that on Supp(c) we have (x) (z) and so c E SC 'r' n't±t, —Tx 

xz6 

where 1 and r are any real numbers such that 	r = mx  + my  + ty  + tz  + n. 

Proof. The proof is in two parts. In Part 1, we show that, modulo IC, the com-

position has the basic structure of a FIO - we determine the amplitude c and the 

proposed phase (. In Part 2 we show that (E P(c). 

Part 1 We introduce the following notation for the "reduced" forms of the op-

erators modulo k: 

ARed 	Fi0(4`D(X )  y, 	a(x, y, e)Xi(x Y)Xi(Y x)), 

BRed := FION1(X,Y, 	b(x, y, e)X2(x1Y)X2(Y1 x)). 
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where xi  E E°(k1) with k1  > 2C and X2  E FL°(k2) with k2  > 2CT. 

We have A = ARed modulo k and B = BRed modulo 1C. 

As proved earlier 

A 0 B = ARed 0  BRed modulo 1C. 

For the sake of brevity, set ao (x, y, 	:= a(x, y, e)Xi(x, Y)Xi(Y, x) and bo(x,  y, e) = 

b(T, y>e)X2(x, y)X2(y, x). Applying standard arguments we can show that modulo 

1C, we have 

(ARed 0  BRed) u(x) = limf 	 f exp(i (4)(x, y, e) W(y, z, n)))ao(x, y, e) x 
IR71,7 	

Rn  Rn  

xbo(y, z, 7/)X(VA(x, y, 	— VyT(Y, z, 77)) x 

xx(Vy W(y, z,7/), —Vy(I)(x, y, e))-y(6.17)u(z)dzdydedq. 

(8.25) 

where x E 	(k) for any 0 < k < 1. 

Define 

h(x, y, z, ii) := ao(x, y, .)bo(Y, z, 7/)X(Vy(1) (x, y, 	— Vyklf(y, z, 71)) x 

xx(77011(y, z,77),—V(1)(x, y, e)) 	(8.26) 

and recall that by definition ao(x, y, 	:= a(x, y, e)Xi (x, Y)xi (y, x) and 

bo(x, y, e) = b(x, y,  e)X2(x, Y)X2(Y, x). So, on Supp(h), we have (x) ti (y) 	(z) 

and (e) N (77). We can therefore define the new variable -Y as follows: 

Yr(x, 	, 7)) = y, 
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1,0,1, where r is an arbitrary function in ESG 	0  (Rn  x Rn  x RnC x 1(174, , R) and apply x,z,cn  

Proposition 8.2.4. 

Making this change of variable, (ARed  0  BRed)  u(x) becomes 

(ARed 0  B Red) u(x) = Ern 	 e(i(cD(x,r(x,z,C07),O+W(9r(x,z,,n),z,7/))) x  
(5-421 R fl 7 IRT,C J 	 IRn 

z, e, orn(x, z, e, n)17(bn)u(z)ddz-0077. 

(8.27) 

where it(x, "fi, z, e, 	:= h(x,r(x, z, 77), z,e,77) and the term Irn(x, z, e, 77)1 is the 

Jacobian of the change of variables. 

Define the new n + ne  + nn  dimensional frequency variable B = 	n). By 

Proposition 8.2.4 

'— h(x, z,e,n) belongs to SG 	 (Rn  X TRn  X IfIn-Fri+nvi  ). x,z,0  (8.28) 

On the support of h(x, 	Ti) we have (e) 	(n), 

(x) ti  (z) N (yr(x, 	, 77)) and y -< (e), (71). Since by definition, 9 := 	e, j), we 

obviously have (0) > (c), (n). Given that -y" 	(c), (n) we also have (0) 	(0, (77). 

So, on the support of c(x, z, 0), we have (0) 	(7)) ti  (e). 

	

Now, Irn(x, z, e, n)i E SGrxi:z°:Z,,in'13 (Rn  X Rn  x l[kn x 111'40 and as (0) 	(e) 

on Supp(h) it follows that Irn(x, z, e , 7))1 satisfies SCg:67' estimates on Supp(h). 

So, if we define c(x, z, 0) := it(x, y, z, e, n)Irn(x, z, e, 'WI we have 

c(x, z, 0) E SC:11z- m2-Fti-En,t2,m3-1-t3-n(an X Rn  X Rn+rq-En7i). 
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Define 

((x, z, 9) : = (1)(x, ".r(x, 	e) + tiqr(x, 	n), 

;Y(60 ) = 7(b71) 

Employing this notation and re-writing three integrals as one integral in 0, we have 

(ARed 0 BR,d)u(x) = lim
f 	1 

 exp(i((x, z, 0))c(x, z, 0) --y(80)dzdO. (8.29) 
5—>0 	 17, 

Once we have checked that ((x, z, 9) satisfies the phase assumptions, we can 

replace 5%(6O) with a mollifier in 0. 

On the support of c(x, z, 0), there are certain relationships between the variables 

x, z, y , e, ri which we now recall: (x) ti (z), (e) 	(11),1 -M 	(c) .  

Remark As (x) ti  (z) on the support of c, we have c(x, z, 0) E SGm,qz,o'
rn3-Ft3-n for x 

any p, q E R with p + q = + m 2  + + t 2  + n.) 

This completes Part 1. It only remains to show that ( E "P(c). 

Part 2 Up to now we have only assumed that the constant k in the cut-off 

x is less than 1. We will choose this constant to be sufficiently small in order 

that ((x, z, 0) E P(c). Recall that ((x, z, 9) E 'P(c) if ((x, z, 0) has the following 

properties on the support of c(x, z, n) : 
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For all j = 1, ... , n, 	3x ((x, z, 0) satisfies SGx°':3;,10  estimates, 

For all j = 1, ... , n, 	azi c(x, z, 0) satisfies SG°x:°',10  estimates, 

(V,c(x, z, 0)) >- (9), 

(V z((x, z, 0)) ›- (0), 

]C(- > 0 : lx — z1 ? Cc (z) 	V o  1 I 	c(x, z, 0)1 >-- (x) + (z), 

3Cg- > 0 : lx — z1 > Cc(x) 	1Ve((x,  z, 0)1 	(x) + (z), 

V7, C(x, z, 0) -- 	((x) + (z))(0)1-171. 
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(8.30) 

(8.31) 

(8.32) 

(8.33) 

(8.34) 

(8.35) 

(8.36) 

Conditions 8.30 and 8.31 This is straightforward to show once we note that 

on the support of h(x, y, z, e, ii), we have: 

1. 1(x, y, e) satisfies SGx1:°y',1-  estimates. 

2. klf(y, z,71) satisfies SG°u:1:1  estimates. 

As (x) ti  (y) 	(z) and (e) — (77) on Supp(h), we can apply Proposition 8.2.4 and 

conclude that: 

1. (13(x, fir(x, 	e) satisfies SGx1',°;,01  estimates on Supp(h) which contains 

Supp(c). 

2. 111( -Yr(x, z, e, n ), z, n ) satisfies SG°x',', estimates on Supp(h) which contains 

Supp(c). 



CHAPTER 8. CLOSEDNESS UNDER COMPOSITION 	 136 

Conditions 8.30 and 8.31 follow immediately once we note that (x) ti  (z) on 

Supp(c). 

Conditions 8.32 and 8.33 Differentiating ( with respect to xi  we can write, 

ax j( = 	z, 0) 	(x, z, 0) where 

fi,j :=(ai43.) (x, 	(x, z, 	e) and 

f2,j 	E [(az (1)) (x, 	z, 77), 	+ (1911T) (yr(x, z, e, 77), z, 77)] x 
1=1 

x ( -y)i  ax ,r(x, z, e, 77) 

Let fi = (h,i, • • • , fi,n) and similarly let f2  = (f2,1, • • • , f2,n) . As (I)(x, y, e) E P (a), 

we have 

(fl) (0. 

on Supp(a(x, yr(x, z, e, 	e)) (which contains Supp(c).) 

Now, we show that on Supp(c) we have 

If21 	k(e) 

(8.37) 

(8.38) 

where k is the constant in the cut-off function x in the definition of c(x, z, 9). If we 

can prove (8.38), ( will have the correct lower bound because for any f i , f2  E 

we have 

(fi + f2) > (fi) — If21. 
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So, by (8.37), if we choose the constant k to be small enough, we'll have (V x() 

(0 on the support of c(x, z, 9). (Since (0 — (8) on Supp(c), we'll have the desired 

lower bound.) 

By definition 

n 

f2,=E[(32,(D)(x, -jr(1, z, , 71), e) + (aliT) (yr(x, z, 77), z, 77)] x 
1=1 

x ("fi)i  ax,r(x, z, e, 71) 	(8.39) 

We showed earlier that (M I  ax,r(x, 	-< 1 on the support of c, for all / in the 

sum. Also, this constant is independent of k. (It does depend on k1  though.) So, 

1f21 	2Cx , kt'(x , z, e, 77), e) + V 1111  (9r(x, z, e, 7?), z, 77)1 

on the support of c. Now, c is a product of functions, one of which is the cut-off 

X CV 141(9r(x, z,  , 77), z, 71), —V 2(D(x , "jr(x, z, e, n),e)). So,on the support of c(x, z, 0) 

1 .724)(x,r(x, z, e, 71), e) + VikNr(x, z, 77), z, 77)1 	ko72 4)(x, 9r(x, z, , 71))• 

As F E P(a) we have (V21,(x, -jr(x, z, e, 	— (0 on Supp(a(x, r(x, z, e, 77), e)) 

which contains Supp(c). Therefore 

on Supp(c), which is (8.38) . 
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Conditions 8.34 and 8.35 We consider 	first. Differentiating ( with respect 

to gives 

ac2 ( = (33  4.) (x, fir(x, z, 	77), e)-i- 

	

E [(,92,<D)(x,r(x, z,e,77), 	+ 	(yr(x, 	z, 71)] x 

x (y)/ 	r(x, 	 (8.40) 

Define 

f2,3  := 	[(a2/ (1) )(x,r(x, 	77), 	+ (ai/W) (Mx, z, , n), z, n)] x 
1=1 

ae,r(x, z,e,y) 	 (8.41) 

and define f2  := (f24, • • • , f2,nj . In this notation, 'S7'( = (V34.)(x, 	z, e,77), e)+ 

f2. By the triangle inequality we have 

Fe(1?1(73(1))(x, 	 if21- 

Now, we will show that f2  k(x) where k is the constant in the cut-off x. As 

we argued earlier, on Supp(c) we have 

[(a21) (x, -fir(x, z, e, n), 	+ (81/ T) (yr(x, z, e, 77), z, 77)] 	k(0. 

Also, on Supp(c) we have 

Mikr(x, 	(x)()-1, 
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with the implicit constant independent of k. It follows from the definition of f2  

that we have f2  k(x). 

So, on Supp(c) we have 

lV (1 	34))(x, 	z, , 71), e)1 — cok(x) 
	

(8.42) 

for some constant co  > 0. By similar arguments we have 

141 	I(V3111)(yr(x,z, 	7/)1— "aok(z) 
	

(8.43) 

on Supp(c), for some -6 > 0. Now, define Cc  := max- Pap (2C,i, +1), 2C4,(2C4, +1)1. 

We remark that we have the following inequalities holding on Supp(c). 

(x) < (2C,D  + 1)(r(x, z, e, 77)), 

(r(x, z, e, 77)) < (2C4. + 1)(x), 

(z) < (2CT  + 1) (Wr(x, z, e,n)), 

(yr(x, z, e, 71)) < (2CT  + 1)(z). 	 (8.44) 

We will show that Ix — zI > C( (x) implies that V0( >- (x) + (z). It can be shown 

in the same way that Condition (8.34) is satisfied. Define 

V := {(x, y , z,e,71) E Supp(c) : Ix — zI > C( (x)}. By the triangle inequality, 

— z I > Cc (x). implies that 

e, '01+ Wr(x,z, e, rl — zI > C((x). 



CHAPTER 8. CLOSEDNESS UNDER COMPOSITION 
	

140 

So, Ix — zl > Cc (x) implies that either 

— fir(x, z , x ,71)1 > 	(x) 
	

(8.45) 

Or 

ifir(x,z,,17) 	(x). 	 (8.46) 

Define V1  := {(x, "j, z, e, n) E Supp(c) : I x — fir(x, z,, 77)1 > 2 (x)} and 

V2  :-= {(X, y,  Z, 71) E Supp(c) : 	z, 77) — zI > 

By the above work, we have V C Vl  U V2. 

We claim that for small enough k we have 

V 	(x) + (z) on V1. 	 (8.47) 

(x) + (z) on V2. 	 (8.48) 

As 0 := 	,?7), we have Ve( ›- 1Ve(1+1V71(1. So, if we prove (8.47) and (8.48) 

we'll have proved that 1V9( (x) + (z)1 on V because V C Vi  U V2. 

We will prove that V,7( (x) + (z) on V2. Proving (8.47) is easier. 

From the definition of V2  and the estimates (8.44), it follows that 

I(V341)( fir(x, z, e,q), z, 77)1 	(z) on I/2. So, by (8.43) we have VTIC 	(z) on V2  for 

sufficiently small k. Since (x) ti  (z) on V2  we have 

(x) + (z) on V2 , 	 (8.49) 

for sufficiently small k. 

Similar arguments can be used to show that Ix — zl > CC  (z)V 0( >- (x) + (z). 
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Condition 8.36 As before, note that on the support of h(x, y, z, e, 77), we have: 

1. (13(x, y, e) satisfies SGx1',°y'1 estimates. 

2. 4J(y, z, ?7) satisfies SGcl:l:ril  estimates. 

As (x) ,-- (y) — (z) and (e) — (77) on Supp(h) (see (8.26)), we can apply Proposition 

8.2.4 and conclude that: 

1. (I)(x,r(x, z,e,17),e) satisfies SGx1'N estimates on Supp(h) which contains 

Supp(c). 

2. 111("fir(x, z, e,77), z, n) satisfies SGx°',z' ,10  estimates on Supp(h) which contains 

Supp(c). As ((x, z, 0) := (1)(x, "fir(x, z, e, n), 0 + klf( -Yr(x, z, e, 77), z, 77) we're 

done. 

El 
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8.4 Generalised Type Q operator class. 

As for the Type P operator, we modify the definition of the Type Q to allow the 

frequency variable to have a dimension greater than or equal to the dimension of 

the spatial variables. 

Definition 8.4.1. Let a(x, y, E SGx771,v1 T2 '7n3  (Ilan x Rn x Rn0 for m1i  m2, m3  E R. 

Let (1)(x,y,e) = f(x,e) + g(y,e- ) where f(x,e) E Cc° (R'n x Rne R) and g(y,e) E 

C°() (Rn x En , R) . We say that (1)(x, y, e) = f(x,e) + g(y, 	E Q(a) if f and g 

have the following properties: 

1. f(x,e) satisfies SGx11(Rn x Rill R) estimates on Supp(a), 

2. g(y,e) satisfies SG y'x Rne,R) estimates on Supp(a), 

3. ('V'f(x,e)) ^ (e) on Supp(a), 

4. (Vo(y, 	- KO on Supp(a), 

We can choose n " prime " variables and write e = (e', c") (after re - labelling 

where e' E Rn and e" E In-n such that 

5. (V eg(y,e)) ^ (y) on Rn x 

6. det (ayia iig(y, 0)0=1  1, on Rn x RN, 

   

7. axi ao g -< 1, for all i, j, on Rn x Rnc , 
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8. Tyg(Y, 01 —> oo  as lel 	00 for all fixed y E Rn, e" E 

There exists some open set Vt  C RN-n with Supp(a) C Wn x Rnx Rn x 

such that we have: 

9. For all i, j E 

aei  f (x, 	1, 

on {(x,e) : x IRE , E RE, e" c 14} , 

10.  
n 

det (axi  ae; f ( x,  e)) x. 7. 

on {(x,e) : x E Rn ,e' E Rn, e" c VD}, 

11. (S7c , f(x,e',e")) 	(x) on {(x, e) : x E IEEE, e' E Rn, e" E V4,}, 

12. I'V x f(x,01—> oo as 10 —> oo for all fixed x E Rn, ell E Vt„ 

Given a(x, y, E SG7xn,;:r'771  (EV X Rn x RnE) with = n, then we define Q(a) 

Q. 

Remark The above phase assumptions are not symmetrical in x and y. They 

could be made to be symmetrical but there is nothing to be gained by doing so. 

Remark Let = (e, 	. Given a function a(x,y,e), we may also denote this 

function by a(x,y,e',e"). 
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Definition 8.4.2. For any a(x, y,1;) E SGxm:;:rninme  (Rn  x Rn xRnc ), with mx , my , Trq E 

R, 	> n, and (1(x, y, E Q(a) we define the generalised Type Q operator AcD,a 

acting on S(Rn) as follows: For u E S(Rn), 

Au(x) := lciLno  fec  flirtn expli,1)(x , y , 	a(x, y, e)'7(60u(y)dycl, 

where -y(€e) is a mollifier. 

Remark We have Q(a) C P(a), so we obtain some basic facts about the gener-

alised Type Q operator straightaway. Some of these are collected in the following 

Theorem. 

Theorem 8.4.3. Let a(x, y, ) E SGx7LTY'in  (Rn x Rn x Rn ), for any mx ,my,mc E 

R and let 1i(x,y,e) E Q(a). Then, if we define A := FIO('1(x, y, e), a(x, y, 0), we 

have: 

I. A : S(Rn) —> S(Rn) continuously, 

2. A is independent of the choice of mollifier, 

3. AT  = lim,_0 	f11,, ei NY ,x'0  a(y,  , x, 0-y(c)u(y)dyck, 

4. A : Si(Rn) —> S'(Rn) continuously. 
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We now present the reduced form of a generalised Type Q operator modulo K. 

Proposition 8.4.4. Let a(x, y, e) E sGx7;:erny'rn' (Rn x Rn x RN), for any mx, my, 	E 

R and let (1,(x, y, 	= f(x,e)+ g(y,e) E 2(a). Also, let x E E°(c) where c > 0. 

Then, if we define A := FIO(1.(x, y, e), a(x, y, en and 

ARed 	FI0(43(x, y, e), a(x, y, e)x(V'f,   —V ci g)x(V;g,   —V6,  f), we have 

A = ARed  modulo IC. 

Proof. This result follows from Theorem 3.2.2. 	 ❑  

Remark. We will sometimes refer to a "generalised Type Q operator" as a "Type 

Qgen operator" and similarly for the generalised Type P operator. 

8.4.1 Some Remarks about the Generalisation of the Type 

Q operator. 

As we have seen with the Type Pgen  operator, it is not too hard to construct a 

simple SG operator class which is closed under composition. Defining an operator 

class which is closed under composition with the additional property that we can 

make "natural" changes of variable involving the phase is more difficult. 

We will now discuss these "natural " changes of variable for the Type Q oper-

ator. 
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Let A = F/0(f(x, e) + g(y, e), a(x, y, e)) where f (x, e) + g(y, e) E Q and 

a(x, y, e) E SGx7yT''' (Rn X Rn  X Rue) for any ml , m2, m3  E R. 

We assumed that det (arik f (x, 	2n,j=1 1 and det (ayAg(Y, 

    

As we have seen, these "non - degeneracy "assumptions, along with other "proper-

ness" assumptions, allow us to make the following changes of variable 

(x, y, e) 	("±', -y, 	globally on Rn x Rn  x Rn, without destroying the SG structure 

of the amplitude: 

e) := (x, Veg(y, e), e), 

(x, y, Vyg(Y,e)) • 

e) := (x, Vhf (Y ,),) , 

(±-", 	:= (x, y, Vyf (Y, 

(8.50) 

So, it seemed to me that for a Type 2g,,,, operator we should be able to make 

similar changes of variable whilst preserving the SG structure of the amplitude. 

For a Type Qgen  operator, the following changes of variables (x, y, e) 	(-±, y, )  

do not destroy the SG structure of the amplitude: 
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, y,  , ") := (x, 	g(y,  , e), , c")  , 

e,e"):= (x, Y,Vyg(Y,e),e") • 

e,e"):= 

(x,Y,Vyf(Y,e),e") • 

(8.51) 

Note that the transformations involving g are globally defined but those in- 

volving f are defined on {(x, y, e', f") : x, y, e' e Rn and 	E VD} for some open 

V4, C Rnc —n. We now briefly discuss why this is the case. 

The generalised Type Q operator arises naturally when we compose two type 

Q operators. We shall see later that after the composition of two type Q operators, 

we can easily retain non-degeneracy of the second phase component (corresponding 

to g) everywhere. It doesn't seem possible to retain non-degeneracy of the first 

component ( corresponding to f) everywhere, although we can retain this property 

on an open set containing the support of the amplitude. 

We could have generalised the Type Q operator class by making the same 

assumptions for g as for we did for f. Doing so would have given an operator class 

with the desirable property that the transpose of any operator is an operator of 

the same type. However, when we compose two type Q operators we can easily 

retain non-degeneracy of the second phase component globally. So, making the 
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same assumptions about g as we do about f would mean "throwing away" some 

non-degeneracy of the phase. 
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8.5 	The generalised Type Q operator class is closed 

under composition. 

Theorem 8.5.1. Let a(x, y, E SGTT2 'm3 (Rn  x Rn  x Rne) with nc  > n and 

let b(x,y,e) E SGtx1:: t3 (1Rn x lEln x Rnn) with nn  > n. Let (1)(x,y,e) := f(x,e) + 

g(y, E 2(a), W(x,y,0 := u(x,) + v(y,) E Q(b) and define A := FI0(4), a) 

and B := FIO(T,b). 

Then the composition C := A o B is a generalised Type Q FIO , modulo 1C. 

Precisely, 

C = F I 0(((x, z, 9), c(x, z, 0)) modulo 1C, 

where c E SG'+ti-Ern2+n,t2,17 /3i-t3-n( n x 1Rn x Rn+nc+nn) with p, q any real x,z,e 

numbers such that p + q = m1  + t1  + m2 + n + t2  and ( E Q(c). 

Proof We will prove the Theorem for > n and nn  > n. The proofs of the other 

cases are essentially the same. 

The proof is split into two parts. In part 1, we reduce the composition modulo 

1C, perform some changes of variable, define the 0' and the 0" variables and finally 

we determine c(x, z, 0) and ((x, z, 0). In part 2, we show that E Q(c). 

Part 1. 

Given any a(x, y, e) E SG xm :cni2'3 (Etri x Rn  x Rne ) with nc  > n, we have 

Q(a) C P(a). So we can follow the argument in the proof that the generalised 



CHAPTER 8. CLOSEDNESS UNDER COMPOSITION 	 150 

Type P operator class is closed under composition. Doing so, we have that (modulo 

operators with Schwartz kernel applied to u ), 

f (A 	B) u(x) = lim 	 ei{cD(x,y,)+W(Y,z,n)}h(x,  y, z, ,11)7(•571)2/(Z)C1Zdydd7i, f 
6-'13  Rnr) 

where 

h(x, y, z, 77) := a(x, y, e)b(y, z, n)xi (vc, f(x,e),—veg(me))x 

Xi (v eg(Y, e), —ve f (x,  e)) X3 (vn,u(Y, ii), —vwv(z, ii)) x 

x x3  (v,,,v(z, n ), —V7yu(y, 7]))  x5(Vyg(y, 	—Vyu(y, ii)) x 

xx5(vyu(m), —vyg(Y, e)), 

with xi E E°(c,), where the positive constants Ci are to be fixed later. At the 

moment there is no restriction placed on the c„ 

We note that h E SG' nt, 2+ti,t2,m3,t3 and that on the support of h, we have 
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(x) ti  (y) N (z) and (") ti  (7/). We also have 

f(x, 0 satisfies SGx1',1  estimates on Supp(h), 

g(Y, e) satisfies SG ,,1  estimates on Supp(h), 

u(y, 71) satisfies SG" y,77  estimates on Supp(h), 

v(z, n) satisfies SG" estimates on Supp(h), 

(fi x f (x, e)) ti  (e) on Supp(h), 

(Vo(y, 	' 	(0 on Supp(h), 

(Vy u(y, 77)) — (77) on Supp(h), 

(Vzv(z, 	— (77) on Supp(h). 
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(8.52) 

(8.53) 

(8.54) 

(8.55) 

(8.56) 

(8.57) 

(8.58) 

(8.59) 

Remark It is perhaps helpful at times to think of e.g. f (x, e) as being a function 

of all the variables (i.e. (x, y, z, , 77)) rather than of x and only. 

We will explain how (8.52) is obtained. All the other statements follow in the 

same way. We assumed that f(x,e) satisfies SGlx:1  estimates on Supp(a). So, if 

we let W := {(x, y, 	77) E Rn x Rn x Rn x 	x R" : (X, y, e) E Supp(a)}, we 

have f (x, e) satisfies SGx1'41  estimates on W. Once we note that Supp(h) C W, we 

have (8.52). 

We now make a change in the y variable. We will perform it in two steps. We 

first make an SG structure preserving change y s, where s is a dummy variable. 

We will then make a "re-scale and shift" change s 	(of the type treated in 
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Proposition 8.2.4). We remark that the goal of these changes of variable is to 

have rfil 	ci(e) on the support of the amplitude (Recall that c1  is the constant 

in the definition of the cut-off xi). This will be important later when we are 

trying to show that the proposed phase has the desired non-degeneracy in the first 

component. 

Define s := Veg(y, e). Under this change the amplitude h goes over to h. 

The change of variables is globally defined as we now explain. For (x, y, z, e, 77) E 

illnxilrxRnxRnc xRnri, define 

  

G: 

 

  

Define 	s, z, , ij) := G(x, y, z, e, 77). By assumption, 1Veg(y, e)I tends to infinity 

as 	—> oo for any fixed e E Rne. It follows straightforwardly, that G is a proper 
n 

map from R'f-ne±nn to R3n+ne+m). By assumption, det (ayiao(y, e)) 	>- 1. 

So G is a proper, smooth function with non-zero Jacobian everywhere. Therefore, 

G is a C°° diffeomorphism from R3n-Pnc+nri to  IR3n+Th  +7" 
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Making this change of variables, (A o B) u(x) (modulo Ku for K E IC) becomes 

icf(x, )+g((vc s) l(s,0,)-Fu((vcg) l (s,o,n)-Fv(z,n)] lim 	 e 	 x 
6-'0  Inn Le f n In 

xh (x, (V e  g)-1  (s, e), z, e, ii) I det as  (Veg) 1  (s, - )17(6 1)x 

	

u(z)dzdsded77, 	(8.60) 

where (Grvg)-1  (s, e) denotes the inverse of the e section of (Vey) and 

I det as  (V 'g)-1(s, e)I is the Jacobian of the change. Note also that ((7)-1  (s, e)) — 

(s) on Rn x RN. This follows from the fact that (Veg(y, e)) , (y) on Ril x 118n 

by assumption. Also, by Proposition 6.2.3 , the function (VVeg)-1  (s, e) satisfies 

SG,1:°  estimates on Supp(h (x, (V 'g)-1  (s, e), z, e, 17)). 

For convenience, we have dropped the tildes over the x, z, e, n variables. 

Define 

it (x, s, z, ,17) := h (x, (V v g)-1  (s, e), z, e, 77) 1 det as  (Veg) 1  (s, 01-

By Proposition 6.2.4 we have 

h (x, s, z, e, 77) E SG71:iril it ,t2,,,,,,t3 . (8.61) 
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By Proposition (6.2.4) we also have: 

	

f (x, e) satisfies SGxi'l estimates on Supp(h), 	(8.62) 

	

g((Ve g)-1  (s,e),e) satisfies SG'.4 estimates on Supp(h), 	(8.63) 

	

14(Ve,g)-1  (s, 0,77) satisfies SG.,'1:,11  estimates on Supp(h), 	(8.64) 

	

v (z, 71) satisfies SGlz :„.11  estimates on Supp(h). 	(8.65) 

It follows from (??) to (8.59), and the properties of G that: 

	

(V1f(x,0) — (0 on Supp(h), 	 (8.66) 

(V19 ((Veg) 1  (s, e), ) ^ (e) on Supp(h) 	(8.67) 

(yin (Negr i  (s, e), ri)) ^ (ri) on Supp(h) 	(8.68) 

	

(Viv(z, q)) — (7) on Snpp(h) 	 (8.69) 

We now make the "re-scale and shift " change in the s variable. Let r(x, ) be 

an arbitrary function in ESG jx.V (Rn x RN) and define 

r(x, ) := s+Ve f (x, e). 

Each component of Ve f(x, e) satisfies SG14 estimates on Supp(h), and (x) ti 

(s) 	(z) and (e) 	(7)) on Supp(h). So, we are in a position to use 

Proposition 8.2.4. 

Define H(x, s, z,e,77) := (x, 8+.74x' j; ( )x'°  , z, n) and we remark that H is a C' 

diffeomorphism from R3n+N+nn to R3Th+nO-nn 
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Making this change of variables, we have the following equality (modulo Ku 

where K E K:),  

A o Bu(x) = 

lim LThn  Ln , In 	exp [i(f (x, + g ((V '9)
-1 [fir (x, - Ve f (x, e), , 

+u ((0  g) 1  rgr(x, e) - V f (x,  e), el, 	+ v (z,71))]x 

xh (x, "fir(x,e) - V e , f (x , e), z, e, 7.1) -y(67-1) x 

1r(T,) Itt(Z)C1Zdfiadn. 

(8.70) 

In an effort to make things easier to read, the variables in (Deg)-1  havebeen 

delimited with square brackets. 

Now define the n 	+ n,7  dimensional frequency variable 0 := 	, 77) . We 

choose 0' := 77' and 0" := 	e, 77"). Also define 

c(x, z, 0) :=11(x, - r(x,e) - 	f (x, e), z, e, 77))1r(X107111 

w ( x , 0) := f(x, e) + g(( e' 9) -1  rjr(x, e) - e' f 	e), e), 

+ u((V e 9) 1  Wr(x , ) - v f (x, e), e), 71) 

((x, z, 0) :=w(x, 0) + v(z,n) 

We'll now show that c(x, z, 0) E SGPx 9;3-"3-n(R71  x W' x Wic+nn+n) where p, q 

are real numbers with p + q = m1  + m2  + t1  + t 2  + n. By Proposition 8.2.4, we have 

(x, "jr (x, 	- 	 f (x, e), z, e, 77) E SG xm zirz—f-ti42,rn3d-t3. 	(8.71) 
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We have the following relationships between the variables on 

Supp(h (x, jr(x, 0 — V e , f (x, e), z, e, 71)) 

(x) — WT.  (x , 0 — v e f (x, 0) — (z), 

Ifil --< ci (0 , 

1V in(( C 7 vg) 1  [yr(x,  e) — V e , f (x, e), a n ), — 

V1g((Vcig)-1  rjr(x,e) — V e f (x, 0 , a 01 --< c5 (0 , 

(8.72) 

(8.73) 

(8.74) 

(8.75) 

( 0 ) — () — (n). 	(8.76) 

Statements (8.72) and (8.73) are obvious since we had (x) — (s) --, (z) and 

(e) ,--, (ri) on Supp(h(x, s, z, e, ii)). Statement (8.75) follows immediately from (??). 

For (8.74) recall that we had 10c, f (x, e), —.91 5 c1(s) on Supp(h(x, s, z, e, 77)). So 

on Supp(ii (x, "kr(x, e) — V v f (x, e), z, e,77)) we have 

kr(x, e) < c i (jr(x,e) — V c ,  f (x, e)). 

Since (x) — Or (x, e) — V e f (x, e)) on Supp(h (x, " .r(x,e) — V e  f (x, e), z, e, 77)) 

"fir(x, e) 	c1(x), 

on Supp(h (x, "fi r (x , e) — psi f (x, e), z, e, ii)). Since r(z, ) E ESG1x 1, it follows 

that 
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on Supp(h (x, 	e) — V f (x, e), z, a)), which is (8.74). Statement (8.76) fol- 

lows from (8.74) and (8.73). 

Since r(x, e) e E SG xlV (W1  x 1117-q) and () — (0) on 

Supp(h, (x, r(x, e) — V ei f (x, e), z, e, ri)) it follows that 

1r(x, e)nl satisfies SG xn;n  estimates on Supp(h (x, fir (x, e) — V f (x, e), z, e, 77)). 

(8.77) 

By definition, 

c(x, z, 8) :=h (x, 	e) — 	f(x, 	z, 77)) Ir(11 e)n  

so by (8.71) and (8.77),we have c(x, z, 0) E SGrni+,712-kti-En,t2,m3+0-n. 
.zo 	by the ba- 

sic facts about SG functions. Since (x) ti  (z) on Supp(c) we have c(x, z, 0) e 

SGP;r9 3-F43-n(Rn x Rn x IfIne+nn+n) where p, q are any real numbers with p + q = 

mi  + m2 + ti + t 2  + n. 

Returning to (8.70), by writing the y , x, 17 integrals as one ric-l-n,7+n dimensional 

0 integral and using our definitions of c and ( we have 

(A o B) u(x) = Inn j eic(x,zo)c(x,  z, 0)-y(h)u(z)dzd0 
6—+O ieR.n+ntl +n 

The mollifier 7(6n ) can easily be replaced by a mollifer in 0 once we have checked 

that ( E Q(c). In the above, equality is modulo Ku for K E /C. This completes 

part 1. 

Part 2 
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We start by presenting a few facts. 

It follows from Proposition 8.2.4 and (8.62) ... (8.65) that on Supp(c) we have: 

	

f (x, e) satisfies SGxlio  estimates, 	(8.78) 

	

g((Veg)-1  rjr(x, e) - V f (x, e), a 0 satisfies SG xile  estimates, 	(8.79) 

	

u((V e g)-1  rfir(x, e) - V e  f (x, e), an) satisfies SG xile  estimates, 	(8.80) 

	

v (z,77) satisfies SG1z : 10  estimates, 	(8.81) 

From (8.66) to (8.68) , we also have the following estimates on Supp(c) : 

	

(V if (x, 0) - (e) 
	

(8.82) 

(V19 ((V e9) 	 r (x , 	- 	f (x, e), , 	(e) 
	

(8.83) 

(Vin (Negr i 	(x, - V f (x, e), n)) ^ (ii) 
	

(8.84) 

	

gr i  rfir (x, - V e f (i, 0, ei) 	Or(x, - Ve.f (x, 
	(8.85) 

	

We remark that (Ve,g)/-1  [ -fir (x, - (V c , 	(x, 	0 satisfies SGxl°0  estimates 

on Supp(c). To see this note that (Vvg)71  (s, e) satisfies SG8:(e)  estimates on 

Supp(h(x, s, z, , 77)) and apply Proposition 8.2.4 

We will postpone the definition of V(  until later and we'll start checking that 

E 2(c). 

Condition 1: w(x, 0) satisfies SGx1- 0  estimates on Supp(c). This is true by 

(8.78),(8.79),(8.80) and the basic facts about SG functions. 
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Condition 2: v(z,0) satisfies SGxl i  estimates on Supp(c). This has been 

proved already. See (8.81) 

Condition 3: (V xw(x, 0)) - (0) on Supp(c). For convenience, define 

Tg(x, 	:= g((\7 g) 1  (9r(x, - V f (x, e), 

n) := u((veg)-1  Wr(x, e) - V if  (x, e), e), 77) 

Using this notation, we have 

w(x, 0) = f (x, + 	+ 	e, 77). 

By assumption, V x f(x,e) 	(e) when 	so the inequality holds on Supp(c). 

As (0) ti  (e) on Supp(c), we'll be done if we can show that 

	

vx rg(x, -fi,e)+ u(x, y, e, 77)] 
	

(8.86) 

on Supp(c) for some c2 . Recall that ci  is the constant in the cut-off Xi. 

Differentiating rj(x, 	+ 	77)1 we have 

ax, [9(x, y , 	+ u(x, p, , 11)1 = 

[ (ait g) (( .7 v g)-1  rfir(x,e) - V if  (x, e),e),e) + 
1=1 

+ (ai,u) ((V c ,g)-' (fir(x, 	- V f (x, e), 	71) x 

	

xax, 	Wr(x, - e (x, (8.87) 
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The function c(x, z, 0) is a product of functions, one of which is 

X5 (Viu ((Veg)-1 	— 	n) , V1g ((Veg)-1 	— 	 f 

So 

1\71g ((ci'vg)-1  (r(x, — V #f  (x, 	a + 

V1u ((V c i 	Wr(x , e) — 	 f 	e) 71) 

c5  (V ig ((V g) 1  [fir (x , e) — V f (x, e), e], 

on Supp(c). Also 

(V1g ((V 'g)-1 ryr(x, — V f (x, e), el, 	— (e) 

globally. So, by (8.88) we have 

I V1g ((c7e,g)-1  Wr(x,e) — V f (x, e), e), 

V1u (( 	9) 1  Wr(z, e) v f (x , 	e),n) 	C5(0, 

(8.88) 

(8.89) 

on Supp(c). Also, we showed earlier (Ve,g)1' (fir (x , e) — (V f f), (x, e)) satisfies 

SGxi estimates on Supp(c). So, on Supp(c), we have 

axe (Vvg)T1  Cjr(x, e) (Vref )r  (x70) -< 1, 
	 (8.90) 

for / = 1, 	, n. Therefore, by (8.87), (8.89) and (8.90) we have V x [r0+ii] -< c5(0, 

which is (8.86). 
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Condition 4: (Vzv(z, 0)) — (0) on Supp(c). 

We have already established that (V,v(z,77)) 	(17) on Supp(c). Noting that 

(n) ti  (0) on Supp(c) shows that Condition 4 is satisfied. 

The phase component v is unaltered by the changes of variable. So the following 

conditions involving v are trivially satisfied. 

Condition 5: (V g'v) 	(z). 

Condition 6: n  det (azi ari ,  v(z 0)) . 
3 	3=1 

  

Condition 7: az  361, v 1 for all i,j 

Condition 8: 1Vzv(z, 0)1 	Do as PI 

We will now discuss our choice of K. Given any 6 > 0, define 

VC,E := 	 ) such that 	E Rn, E VD, 	E Vp and IyJ < €(e)}. 

We have WI 	c1(e) on Supp(c) (as well as Supp(c(x, z,71, 	, 	n" )) C Rn  x 

x W x Ilan x Rn x 	x Vn .) So, for any E > 0, we can choose c1  small enough 

so that 

Supp(c(x, z, 0', 0")) C IIBn x I18n x Rn X V. 	 (8.91) 

We will prove that for E small enough we have conditions 9 to 12 holding with 

V(  = VIE  
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Condition 9 axi aejw(x, 0', 0") 	1 for all i, j = 1, 	, n. 

We will show that this condition is satisfied on {(x, 0) : x, 0' E R"0" E Vc, €} for 

any E. We have 

(x, 0) = E (air  a2,,u) ((7 vg)-1  rfir(x,) — 	 f (x, e), 	ri) x 
r=1 

x ax [ 	c' g)771 	(x 	— Ve f (x, e), el, 77)] • 	( 8.92 ) 

By assumption, 

aira2,u (y, 71) -‹ 1 on {(Y,n) E Rn  x Rnn : 71"  E Vq,}. 	(8.93) 

Also: 

1. For any i, r E {1, ..., n} we have a, (v,,g )T i 1 on Rn x R' by assumptions 

5, 6, 7 and 8, 

2. By assumption we have ax .ae,  f(x, e) 	1 on {x E 	E Ilgn , e" E TVA} for 

any i, j E 

3. Straight from the definitions of VS,, and r(x, ) we have ax jr(x, e) 	E for 

G  

It follows from 1, 2 and 3 above that for any fixed E, we have 

axi (Vv0;1  [r(x, 	v f (x, e), a 77) -‹ 1, 	(8.94) 

on {x,e',71 E Rn, 	E 14, 	E 174)}. 

We're done by (8.92), (8.93) and (8.94). 
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Condition 10 det (a, ae ,w(x, 0)) 	1 on IIIn x Rn x V(,, for sufficiently small 

E. 

We have 

--= (a2;u) ((V 0 1  [0-(x , e) - V f (x, 	el, 77) . 	(8.95) 

Differentiating with respect to xi  gives 

E (a1pa2, 11) ((0,,g)-1 rfir(x, e) - V f (x,  e), el, 77) x 
p=1 

x 3 {9)1,1  [0'(x, e) - 	.1c  (x, a a 

Now,Idet (y,a)) . 1>-- 1 on {(y, 77) : 	E VV }. So we have 
p,3=1. 

idet (a1p a2,,u) ((V '9)-1 rfir(x, e) - V f (x, e), 	70 	1 	(8.97) 

for (x, 0', 0") E Rn  x 1[8n X V(, € , for any E > 0. Indeed the implicit constant does 

not depend on E. We have only used the fact that on VV,, we have if E V. 

Let W be the matrix with (i, j) entry 

{(i7 g)-371  [0-(x , e) - V f (x , e), el} . 	 (8.98) 

So, by (8.96) and (8.97), if we can show that det W 1 on {(x, 0) : 0" E V(, €} for 

some E we'll be done. Suppose that W = M + N where the matrices M and N 

have the following properties: 

1. det M >- 1 on {(x, 0) : x, 0' E 	0" E 17(, €} for any E, (with implicit constant 

independent of E) 

(8.96) 
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2. Mio  -< 1 on {(x, 0) : x, 0' E Rn, 0" E Ve,,} for any e, (with implicit constant 

independent of €) 

3. Nio  --< € on {(x, 0) : x, 0' E 	0" E KA for any E. 

Then we can write 

det W = det M 

where the sum is finite and each h3  is a product elements of M and N, where at 

least one of the elements comes from N. Clearly, we will then be able to choose 

= €0  small enough so that det W 1 on {(x, 0) : x, 0' E Rn, 0" E 

We will now show that W can indeed be written as a sum of matrices M and 

N which have the properties 1, 2 and 3 above. Expanding (8.98), we obtain 

n 

wi,i  = E ai k  e 07 1  Or(x, e) — 	f (x, e), e)) [axi(ykr(x, )) + axi% f (x, 
k=-1 

Define 

M := E alk (veg)i i W(x, — V f (x, 	axiaqf (x, 
k=1 
n 

N := E alk 	eg);1  Wr(x, e) 	f (x, e), ei ax ti (Wr(x, e)) 
	

(8.99) 
k=1 

M has properties 1 and 2. We have det (a1, (Veg);-ir (s, e) >- 1 on 
ko=i 

Rn  x R. We have det (axd9vk  f (x, Oni k=1  >-- 1 on 

{(x, e) : x, 	Rn  and e" E VD} So, we have det M >- 1 on {(x, e) : x, e' E 

Rn and e" E K,€} for all € which is property 1. (and the implicit constant does 



CHAPTER 8. CLOSEDNESS UNDER COMPOSITION 	 165 

not depend on c) 

We also have Mi ,3 	1 on because al, (Veg)-3-1  (y, 	1 on Rn x RT1  and 

ax,ae;c f (x, e) 	1 on {(x, 	: x , e' E Rn and 	E 14} by assumption. Again 

the implicit constant does not depend on E. 

N has property 3. For Ni,3  note that a1 , (v,,g )3  1 1, and axkr(x,) -< c on 

{(x, 9) : x, 0' E Rn and 0" E Vc,€}. So, it is clear that Ni,3 	E on {(x, 9) : 9" E V‘,6}. 

Condition 11 '70, w >- (x) on R x 	x 17(,,. We have 

Ve,w(x, 0) 	(V Tu) (( C' 9) 1  Cfir(x,e) — 	f (x, e), e), 77) • 

On the set {(y,y) : y,711  E Rn  and II" E VT we have (V2,u(Y, 71)) 	(y). So, on 

{(x, 0', 0") E Rn  x Rn  x 17(,,} we have 

(V2,u) ((Ve,g)-1  ryr(x, — V f (x, e), , 77) 	((Vvg) 1-  Wr(x, — V f (x, 	e)) 

We have ((Veg)-1  (s, 	— (s) on Rn  x Rnc. So it follows that 

(Vo,w(x, 6 )) 	Cfir(x,e) 	 'f (x, e)), 

on the set {(x, 0) E 	x Rnc +nn +n  : 0" E Vc, E l. By the triangle inequality, 

Or(x, 6 — 	f (x, e)) > (Ve'f (x, 

By assumption, 	E V, implies that (Ve, f (x, e)) (x) and on 

{(x, 0) E Rn  x R71+7171+n  : 0" E VV,,} we have 

Wr(x, 	-< E(x). 
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So, for small enough E, we'll have V0'w 	(x) on {(x, 0', 011 ) E Rn  x Rn  X 17‘,€}. 

Condition 12. For fixed x E R and 0" E VS,, we have 1V r w(x, 0)1 -4 oo and 

1°1 	cc • 

We are interested in the behaviour of Vxw as 177'1 	oo for fixed values of 

the other variables. Recall that 0' = 	So we only need to consider the limiting 

behaviour of the x gradient of the parts of w which depend on n'. That is, the 

behaviour of 

V, [u ((V e  g) i  [fir (x , 	— V f (x,  e), el,  

We have 

u ((V e  g)-1  Wr(x, — V i f (x, 	e], 77) = 

E (aisu) ((veig)--1 Nr(x,e) — V e  f(x, e), e], 77 ) x 
s=1 

xax 	[(Vvg) 1  [fir (x, e) — V f (x, e), e]] . 	(8.100) 

As argued earlier (see condition 10), we can choose E small enough so that for any 

fixed x E Rn , 6" E 17(,, the matrix 

{ax, [(Veg)., 1  rfir(x, e) — 	f (x, e), e]] )s,3=1 

has bounded inverse. Then, by (8.100), we can conclude that for fixed x E Rn, 0" E 
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V( ,, we have 

V x [n ((\7  C' 0 -1  [' -'7' (x, e) — v e ,  f (x, ), b 'on >- 

1 (v itt) ((v e,  g)-' [ -fir (x , e) — V ci f (x, e), a 77) 1. 
	(8.101) 

For 0" E Vc,,, and x E EV, we have 

1(yin) ((Vcg)-1  ryr(x , 0 — V c i f (x, "), ], 7? ) 1 -- co 

as 1 n'l ---, a) because u is a phase component and 0" E Vg-,, implies that 1]" E 14. 0 



Chapter 9 

Type 7Z Fourier Integral Operator 

9.1 Introduction 

In the definition of the Type Q operator class we assumed that the mixed spatial 

derivatives of the phase were zero everywhere - i.e. that ax,k(1)(x, y,) - 0 

for all i, j = 1, . , n. The reason for this assumption was purely technical. I 

wanted the Type Q operator class to have the property that the composition of a 

type Q operator and its adjoint was pseudodifferential and I could not make the 

necessary (structure preserving) change of variables without this mixed derivative 

assumption. The Type 7 class was born out of the desire to define an SG FIO 

operator class with the property that A o A* and A* o A are pseudodifferential 

without assuming that ax,,ay,(1)(x, y, e) 	0 for all i, j = 1, . . . , n. 

168 
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9.2 Operator Definition. 

Notation For (13(x, y, e) E Cc°  (Rn  x Rn  x RI", R) we will write 31324)(x, y, 

to mean the n x n matrix with i, j entry 31,32,(1)(x, y, 	with 3133(1)(x, y, 	etc. 

similarly defined. 

The definition of the Type R, phase is on the next page. 
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Definition 9.2.1. Let (I)(x, y, e) E C"(Rn  X Rn  x Rn,R). We say that (I)(x, y, 

7Z if it has the following properties: 

For j = 1, . . , n, we have ax3 .1,  E SGx(:)cly'1(Rn  x Rn x Rn), 	 (9.1) 

For j = 1, . . . , n, we have ayi ct. E SG%',1e(Rn  x Rn x Rn), 	 (9.2) 

(V I') 	 (9.3) 

(9.4) 

For all multi-indices we have 	-< ((x) + (y)) (01-171 , (9.5) 

For i,j = 1, . . . , n, we have ((x) + (y))axi ay j (I) E SCx°'!Iy',1e(Rn  x IV x Wi), (9.6) 

det 	 >- 1, 	 (9.7) 

det (ayik(D)inj=i  >- 1, 	 (9.8) 

There exists some function g(x, e) E SG,TRn  x Ilan, Rn) with (g) >- (x) and 

det (axigi)inj=i 	1, such that IV (x, y, 	— 1Y — g(x, 
	 (9.9) 

ala2(1.(s, y, 	03,92.1)(x, Y, 
det 

aiaA(x,y,) 	a3a3(1)(x, Y, 

1, 

det [ — 3132,1(x, g(x, e), e) (303(1')-1  (x, g(x, 

+ 33324)(x, g(x, 0,)] ›- 1, 

), )5333(x, g(x,e),e)+ 

det [ — a2a1(1)(x,g(x,e),e)(323343.)-1  (x, g(x,  e)3383(1)(x, g(x, e), e)+ 

(9.10) 

(9.11) 

+ 331914)(x, g(x,e),e)] 	1 
	

(9.12) 
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Remarks Define 

M 

	
(31324)(x, Y,0 033211)(x, y, ) 

a1a3(1)(x, Y, 	a3334)(x, Y, 

Assumptions (9.1),(9.2),(9.5) and (9.6) mean that det(M) belongs to 

5,Gox,,ou,( rri  1K x Ilan  x WI). So assumption (9.10) is an ellipticity assumption on det M. 

We shall call the set {x, y, E Rn x illn  x IV : 	y, 	= 0} the "zero 

set" of VeD(x, y, O. Assumption (9.9) means the zero set has a specific global 

parameterisation. 

Our phase assumptions mean that we have two "main" global charts on the 

zero set of Vr-(12.(x, y, O. Using our parameterisation y = g(x, 0 of the zero set, 

the coordinates are (x, V1,13.(x,g(x, 0,0) and (g(x,e), —V 2 4)(x, g(x,e),e). The 

assumptions (9.11) and (9.12) (along with some others) mean that the coordinate 

change is a global SG diffeomorphism. So, the zero set of Vel)(x, y, is an SG 

manifold. 

We define the Type R, operator in the standard way. 

Definition 9.2.2. Let 4,  (x , y, 	E R, a(x, y, 	E SG Zy':ern2'' with mi, rn2, Tn3 

arbitrary real numbers and let y(e) be a mollifier. Define the Type 'R. operator 

./14,,a  acting on u E S(Rn) as follows: 

At,au(x) = urn 	I ei4)(x 'Y' )a(x, y, )7(€)u(y)dyde. 
6-4)  Etn  Rn 

(9.13) 
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Given that Type 7Z operators are also Type P operators we obtain the following 

result straightaway. 

Proposition 9.2.3. Let (D(x, y, ) E R. let a(x , y, e) E SC x" );:en''' for any ml , m2 , m3  E 

R and let A = FIO ((1,(x,y,e), a(x, y, e)). Then 

1. A : S (Rn) -- S (Rn) continuously, 

2. A is independent of the choice of mollifier, 

3. AT  = FI0(41.(y,x,e),a(y,x,e)), 

4. A extends to a continuous operator from S' (W') to 5' (Rn) . 

5. For x E E°(c) with c < 1, we have 

A = F ION ),a(x, y, e)xi(y,  , g(x, e))xi(g(x, a y)) modulo 1C. 

Proof If (D(x,y,e) E 7Z, then (D (x,y,e) E P. So the first 4 statements follow from 

the corresponding results for Type P operators. Statement 5 follows from Theorem 

3.2.2. 	 0 

Before proving that the composition of a Type R. with its adjoint is pseudod-

ifferential we present some sufficient conditions for a real-valued smooth function 

4. to have the zero-set parameterisation structure described in (9.9). 



CHAPTER 9. TYPE 7?, FOURIER INTEGRAL OPERATOR 	 173 

Theorem 9.2.4. Suppose that a real valued function (1(x, y, e) has the following 

properties: 

(I)(x , y , e) E C"(Rn X Rn  X Rn, R), 

det 	>-- 1, 

det a ao. 1, 
ax, E 

ay ;(I)  E SG  0 , 

a 4:11 	((x) 	y)) (01-171 ,  

For all fixed x, E Rn Vel)(x, y, 	oo as 	---> oo, 

For all fixed y, ER' Ve:1)(x, y, 	oo as jx1 	Do, 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

(9.18) 

(9.19) 

(9.20) 

(9.21) 

Then we have V 	y , e) 	— g(x,e)1, where the vector valued function g(x,e) 

has the following properties: 

g(x, E SCsil(Pn x 	Rn), 	 (9.22) 

	

(g(x, e)) ›- (x), 	 (9.23) 

det (ax ,93 )in3=1 	1. 	 (9.24) 

Remark In [3], Coriasco calls functions g(x,e) satisfying (9.22) , (9.23) and 

(9.24) "SG diffeomorphisms in x with parameter e. " 

Proof. Existence of g(x,e). Define F := (x, Vc(1,(x, y, e), e), and define w := 
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(x, y, e). We claim that the function F E Di f feo(R3n, R371). By assumption (9.20), 

we have 1F(w)1 	oo as lud 	oo. Also, the Jacobian of F is det (ay,(90))i j=i  

which is globally bounded below by some real constant. So by the Global Inverse 

Function Theorem , F E Dif feo(R3n, R'). As F is a bijection, for all x, E RTh, 

there is a unique y E WZ such that Ve(1)(x, y, e) = 0. Let g(x,) denote this y. 

So VO(x, y, e) = 0 < 	> y = g(x,e). It follows from the local Implicit Function 

Theorem that g(x, 0 is smooth on Rn  x Rm. 

Similarly define G := (17(1)(x,y,e),y, e). Arguing as for F, we have G E 

Dif feo(R3n,R3n). So there exists a function h(y, e) such that Vel(x,y,e) = 

0 < 	> x 	h(y,e). 

It follows that y = g(h(y, a 0 for y, E Rn. So, for all fixed e E Rn , g(x,e) is 

globally invertible in x. 

Determinant Condition. 

Now, we have V31(x, g(x,e),e) = 0 for all x, E W. Differentiating the ith 

component with respect to x j  and rearranging gives 

n 
ai ja3i(x,g(x,e),)=—Ea2ra3.43.(x, g(x, e), W x, gr 	(9.25) 

r=1 

Now, consider the matrix M with i, r entry a03, 4(x, g(x,e),). By assumption 

—a2,80)(x,y,e) E 	for all i, r 	1, 	, n. It follows that det M -< 1 for all 

x, 	E W. It follows from assumption (9.16) that det M(x, e) >- 1. So det M-1  = 

detMir"j 1. Let N be the matrix with i, j entry (31,a3z (1)(x, g(x, e), 	. It follows 
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from assumption (9.15) that det N 1 for x, e E Wz. (We actually have det N — 1 

). It follows from (9.25) that the matrix with i,r entry ax g,(x, e) = M'N. So, 

(ax g(x, 0)73=1  a product of two matrices with determinants which are globally 

bounded below. So, det (ax g(x, e))70=1  >- 1. 

Condition: Vel)(x, y, e) ti  y — g(x, e) 

Consider VeI)(x, y, e)—Vel(x, g(x,e),e). It follows easily from the Mean Value 

Theorem and assumption (9.18) that VE0(x, y, e) y — g(x, e). Now, for all fixed 

x, 

	

	E Rn , Vet.(x, y, e) is globally invertible as a function of y. So, setting y = 

(x, v, 0 and recalling that g (x , e) = (V d -  (x, 0, e) , we have 

y — 9(x, e) = (V e(13) -4  (x,v,e) — (V )-1 (x, 0, 	(9.26) 

It follows from assumptions (9.16) and (9.18) , that V, (Vet.)-1  (x,v,e) -< 1. 

(Just differentiate the identity V(1:.(x, (V(I))-1  (x,v,e),e) = v for all x, v, e Rn. 

) Using this fact and the the Mean Value Theorem, it follows from (9.26) that we 

have 

y — g(x, 	-<v. 

Since v = Vc(I)(x, y, a we have 

y — 9(x, e) -< V c0(x,y, e). 

SG properties of g(x, T) 

To start with, note that by assumption 9.19 we have 

Vel)(x, 0, e) 	(x). 

(9.27) 

(9.28) 
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Since VeCx, y, e) — y — g(x, e), we have Ve43(x, 0, e) — g(x, e). So it follows from 

(9.28) that 

(g(x, e)) -.< (x). 

By considering Veb(0, x, e) and arguing similarly we can show that g-1  (x, e) -< (x) 

which implies that 

(g(x, e)) 	(x). 

It follows from differentiation of the identity Ve(1(x, g(x, e), e) = 0 and the as-

sumptions (9.14), ... , (9.19) that g(x, e) e SCxl . We also use the fact that 

(9(x, e)) — (x). 	 ❑  
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9.3 Composition Theorems 

9.3.1 Composition with a Pseudodifferential Operator 

Since R. C P, we obtain the following result by Theorem 5.0.2. 

Theorem 9.3.1. Let (13(x,y,e) E R, a(x,y,) E SGx7y- T 2'' and p(x,y,e) E 

SGx4V3  . Define A := FIO(4)(x,y,0,a(x,y,e)) and P := Op(p(x,y,0). Then 

the compositions Po A and A o P are Type R FIOs with amplitudes in the expected 

SG classes. We also obtain the expected asymptotic expansions for the amplitudes. 

9.3.2 Composition with the Adjoint Operator 

Before proving that the composition of a Type R operator with its adjoint is a 

/'do, we collect a few Lemmas which we'll need. 

Lemma 9.3.2. Let VV  := {(x, z) E Rn  x R : — < c(x)} for c > 0 and let 

E R. Then, for sufficiently small c we have 

1. fo  V2(1)(y, x t(z — x), n)dt satisfies Soo,o,o,i  estimates on 

{(x, z, y, ?I) E uR4n : (x, z) E 

2. (41  V2Cy, x + t(z — x), n)cit) 	(n),  on {(x, z, y, n) E uR4n : (x, z) E Vc},  

3. ay3  fol  VA(y, x + t(z — x), n)dt 	(47)(y) ,  on {(x, z, 17) E uR4n : (x, z) E 

Ve}, 
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4. axi ayi  fo V2(1)(y,x + t(z — x), n)dt 	((x)+(y))(x)' on {(x, z, y, Ti) E uR4n : 

(x, z) E V,}, 

5. The implicit constants in 1,2, 3 and 4 above are independent of c. 

Proof We claim that if c < -12-, we have (x + t(z — x)) ti  (x)  ti  (z) for (x, z) E 

and t E [0, 1] with the implicit constants are independent of c. Once we prove the 

claim the statements 1 and 2 can be proved by following the proof of 7.2.2. State-

ment 3 follows easily from the claim and phase assumption 9.6. Statement 4 follows 

from the claim and assumptions (9.2) and (9.7), as we now explain. By assumption 

(9.7), we have ((x) + (y)) axA 4)(x, y,) E SGx°',°y'1- , for all i, j. Statement 4 follows 

from differentiating ((x) + (y)) ax,k4)(x, y, and using assumption (9.2). 

We now prove the claim. Since Ix — < c(x) on V, and jz — xj > (z) — (x) 

everywhere, we have (z) < (c + 1)(x). By similar arguments, we have (1 — c)(x) < 

(z) on V. Consider (x + t(z — x)). It's obvious that (x + t(z — x)) < (c + 1)(x) 

for (x, z) E V and t E [0, 1] (by the triangle inequality). Now, (x + t(z — x)) > 

(x) — —x everywhere, so (x + t(z — x)) ?_ (1— c)(x) for (x, z) E V and t E [0,1]. 

This is enough to prove the claim. 

Lemma 9.3.3. Let c = 	c2 ) where c1 , c2  > 0, define I47, := {(x , y , z , 77) E 

lR 	: —z1 < 2c1(x) and lei < 2c2} and let a) E R. Then, for ci  and c2  sufficiently 

small we have 
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1. 7)± e(fol  V24)  (y , x + t(z — x), i1)dt) satisfies 

UM x IIBn  x 	x Rn x Rn, Rn) estimates on Wc , "x,y,z,e,77  

2. + e(f01  V 2CY x + t(z — x), 71)dt)) ^ (71) on Wc , 

3. ( 71 + sW'ol  V24)(Y,x + t(z — 4 71)0) — (n) for s E [0, 1] and (x, y, z, e 71) c 

wc , 

4. If h(x,y, z,w,n) E SGT:L:7z1Vrin  3 'n14'rrI5  (Illn  X Rn  X Rn  X Rn X Rn ), then 

h(x , y, z, + 	v243(y, x + t(z — 	n)dt), 77) 
0 

satisfies SGx71:72:777n3,0>rn 4+rn5 (Rn x Rn x Rn x in  x Rn) on 147,, 

5. The implicit constants in 1,2 ,3 and above are independent of c i ,c 2 . 

Proof. Define r(x, y, z, 7)) := fo V2I(y, x+t(z—x), 77)dt. By Lemma 9.3.2 r(x, y, z,ri) 

satisfies S0°= estimates on W, and (r (x , y, z, 7))) — (7)) with implicit constants 

independent of c when c1  is small enough. The statements 1,2,3,4 and 5 follow 

easily by the now standard arguments. 	 0 

Lemma 9.3.4. Let (I) E R and let c = (c i , c2 ) where c1 , c2  > 0. Define the map 
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F : Rn x RI' x Rn X Rn  X Rn —> Rn  X Rn X Rn  X Rn  X Rn  as follows: 

l\ 	/ 	 \ 	1 \ 
x 

 
x 	 F1  

y 	fol.  VA(y, x, 17 + ,< (ft)].  V2(NY, x + t(z — x), 71)dt)))6 + x 	F2 

F: z i— 	 z 	 := A--,  ... 3  

F4 

\''1 	\ 	 fol  V24)(y,x+t(z — x), 77)dt 	 i 	\F5 j 

and define "147, := {(x, y, z, ,77) E R5n  : Ix — z1 < 2c1(x) and lel < 2c2}. For 

sufficiently small c1  and c2  the map F is a smooth diffeomorphism from 147, to 

itself. 

Proof. The fact that F(1/17,) C W, is obvious from the definition of W, and the 

fact that F leaves x, z and e unchanged. Define V := {(x, z, e) E Ran  : IX — Z1 < 

2c1(x) and lel < 2c2}. We will prove two facts. 

1. We can choose c1, c2  to be sufficiently small to ensure that for any (x, z, 0 E 

17,, the (x, z, ) section of F is a proper map from Rn x W1  to Rn x Rn, 

2. We can choose cl , c2  to be sufficiently small to ensure that the Jacobian of 

F >- 1 on We. 

If 1 and 2 hold, we're done. To see this, note that because of the form of F, the 

Jacobian of F is equal to the Jacobian of the x, z, e section of F. So, statements 1 

and 2 mean that the x, z, section of F is a bijection from Rn x Rn  to Rn x RTh 
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( by the Global Inverse Function Theorem. ) This implies that F is a bijection 

from We  to W. Smoothness of the inverse of F follows from statement 2, the Local 

Inverse Function Theorem and the fact that F is smooth. 

Statement 1. By Lemma 9.3.2 for sufficiently small c1  we have (F5) ti  (7)) on 

W. So, we only need to check that c can be taken small enough so that for fixed 

any x, z, e E V, and 71 bounded we have 1F21 	co as iy1 	oo. Consider 

F2= 
 f

1 

VA(Y, x, + t(F5(x, y, z, 77)))dt 
0 

Adding and subtracting fo' \73Cy, x, 7))dt we have 

1 

V3(10(y,x,77+ te(F5 (x,y,z,77)))dt = 	 n) + 	n) 

where H 	fol  [V 3(1)(y,  x,  y  + t(F5(x, y, z, n))) — V343(y, x, 77)] dt and 

G := f0 V 3(1)(y , x, n)dt. It follows from the Mean Value Theorem, Lemma 9.3.3 

part 3, Lemma 9.3.2 and the phase assumptions that we have 

H -< c2 ((y) + (x)). 	 (9.29) 

on W for c1  and c2  small enough. We are interested in the behavior of F2 as 

IYI 	Do, for x, z, fixed in V, and 77 bounded. So we can assume that IyI > k(x) 

for some k > 1. Doing so, we have 

H -< c2(y), 	 (9.30) 

on We  n{(x, y, 	E illn x 11 x llgn x Rn x 	: IYI > k(x)}. By assumption, 

G 	y— g(x, 77) where g(x, 77) E SCl ?./ (Rn  X Rn) and (g(x,")) ti  (x). By the triangle 
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inequality, IQ 	- (y) + 	(g(x, 0). If we choose k so that 2(y)— (g(x, )) > 0 

we have 

G (y), 	 (9.31) 

on Wc11{(,z,e, 77) E 	x Rn x Rn X Rn  X Rn  : 	> k(x)}. Since F2 

11(X, y, 	+ G(x, y, z, e, 71) we're done by (9.30) and (9.31). 

Statement 2 We now show that, for sufficiently small ci  and c2, the Jacobian 

of F >- 1 on We. We will denote the Jacobian matrix of F by N and we will 

show that det N = det(R + S) where det R >- 1 on We, Ri 	1 on We, and 

j 	c2) where the real valued functions fi,3  tend to zero as cl , c2  —> 0. 

This is enough, as we've argued previously. Define 

m(Y, x, 77) 
:= aia343.(y, x, 71) a3a3I(y, x, 77) 	

(9.32) 

aia2(1.(y, x177) 33(924.(y, x,77)• 

where a193(1)(y, x, 77) is the n x n matrix with i, j entry a, a3A,(y, x,77) and the 

other blocks are defined similarly. By assumption det M 1. We obviously have 

N = M + (N — M). 

Consider N — M. By the Mean Value Theorem, we have 

A 13  N — M = (1 



CHAPTER 9. TYPE 72 FOURIER INTEGRAL OPERATOR 	 183 

where 

l 
Ai = E 	a„a3, (y, x, n + tti (F5))(tG(F5))dtcle+ 

o r=1 f o  

_FE
11  

a3,30)(y, x, + t(F5 ))tGay, (F5)dt 
r=1 0 

E /1  /1  a3, a3, 33, 	x, + e(F5 ))[t(F5 ) ]Cltde 
r=1 0 0 

n 

±E83,.a3zCy, x, n + te(F5 ))gran, (F5)1dt f
r=1 

a2, a2r 	x + t(z — x), n)(z, — xr)dt 

ni,j  = f 33, 	+ t(z — x),17 )(zi. — xr )dt 	(9.33) 
0 

It follows from the above, Lemma 9.3.2 (in particular parts 3 and 4) , Lemma 

9.3.3 and the phase assumptions that 

Ai 	c2 

Bi,j C2 (0) + (x))  --, 	0) 

C1 	(y)  

1  (y) + ( x ) 

C1. (9.34) 

Consider M + (N — M). If we multiply the first n rows of M + (N — M) by (y)(711 (x)  

and then multiply the first n columns by ( M(+71 (x))  we obtain a new matrix R + S. 

(R and S are the matrices obtained by performing the forementioned operations 
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on M and N — M respectively. ) Because of cancellation, the determinant of 

det[M + (N — M)] = det[R + S]. Obviously det[M + (N — M)] = det[N]. So we 

have 

det [N] = det [R + S]. 

Recall that N denotes the Jacobian matrix of F. Also, because of cancellation, 

det[R] = det[M] 1. It follows from the phase assumptions that Ri ,3  -< 1. By our 

estimates 9.34 we have S -< f (C1 , c2) for i, j = 1, 	,n where the real valued 

functions f tend to zero as c1i  c2  —> 0. It follows that for sufficiently small c1  and 

c2  we have det N 1 on Wc. 

Lemma 9.3.5. Let b(x, y, z, e, 77) E SG x7y1 :z7,7"13'°'' (Rn x Rn x Rn x Rn X Rn) be 

such that 0 < e < 1 on Supp(b). Then if we define an new variable w := 77+ e(77) 

then the function 

w 	 f (x, y, z, 	77) 	b(x, y 7  z 	71  n) 0)   

belongs to SG,myl' zincrn  3'CLm5 (]ln X Rn  X Rn  X R x Rn). 

Proof First note that on Supp(f) we have lw — 	< 6('i7 ). Since E < 1 this 

implies that (w) 	(77) on Supp(f). We only need to consider derivatives with 

respect to w and As b(x, y, z, 77) e SG x71:7173'°'' (IP x Rn  x Rn  x Rn  x Rn ) 

the other estimates are obvious, once we obtain the required estimates for w and 

77 derivatives. Now, 8,6,f = (77)-161  (agb)(x , y, z, 	n) and (agb)(x, y, z, 	E 
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SG7xI71',73'°'' Given that (71) ti  (w) on Supp(f), and (n)-151  E SG,7181  we'll be 

done if we can show that 

[(ail b) (x, y, z, w(77) 71 , 7/)] 	(x)ml  (Y)m2  (z)m3  (77)145-1c1  

This follows from Lemma 8.2.1 on the structure of derivatives of compositions of 

smooth functions and the fact that an°  (`‘)0?) 	(rl) -161  on Supp(f). 

Theorem 9.3.6. Let (I)(x, y, E R and let a(x, y, e) E SGZyl:ren2 'n13 (Rn  X Rn x 

Define 

A := FI0(4:13.(x,y, e), a(x, y, 0) and let A* denote the adjoint of A. Then the com-

positions A o A* and A* o A are pseudodifferential operators and we obtain asymp-

totic expansions for their respective symbols. 

Proof. We will prove the theorem for A* o A. Once we prove the theorem for 

A* o A the result for A o A* follows. (We can just define B := A* and consider 

B* o B = A* o A.) In this proof f means filv, . As ever, when considering this 

composition modulo 1C, we only need to study the composition of the reduced 

forms of the operators. By composing the reduced forms, and following the now 
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standard arguments we have 

(A* 0 A) u(x) = lim lim fiff exp{i(Cy, z, — 	x, 0)1 x Ego s—~ o

Xi(x, 9(y, e)))0(9(Y, e), x)X2(z, 9(y, n))x2(g(y, 7/), z) x 

186 

a(y, z, n)a(y, x, e)-y(677)-y(bOu(z)dzdydOn. 

where xi E E°(ci) and we can choose c1, c2 freely in (0, 	In fact we will take 

c2 = c1. Now, we introduce a cut-off X3 (V11(9, g(y, e), e), V1(1)(y, g(y, 77), 71)) with 

Xi E E (ci ). It's easy to check that for any c3, we can choose c1 to be small enough 

so that on the support of 

xi(x, g(y, Oxi(g(y, e), x)x2(z, g(y, 77))x2(9(Y, 	z) x 

x (1 — x3) (V11(y, g(Y, 	 g(y, 11), n)) 

we have Vy4:1)(y, z, ri)—VA(y, x, 	(71) + (e) . So, by the now standard arguments, 

we have 

(A* o A) u(x) = lim0.1.519 fiff expli (4)(y, z, n) — (I)(y, x, e))1 x 

Xi(x, 9(Y, ))X1(.9(Y, e), x)X2(z, 9(Y, 77))X2(.9(Y, n), z) x 

X3 (V14)(Y, 9(9, 	ViCy, g(y, 77), n)) a(y, z, 7)a(y, x, )•-y(677)-y(S)u(z)dzdydedri. 

modulo Ku for K E /C. 
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For convenience define 

:= a(y,z,n)rt(Y,x,e)Xi(x,g(Y,e))X1(9(Y,e),x)x 

X2(z,9(Y, 77))X2(9(Y, 17),z)X3 (7714)(Y, 9(Y, e), e), Vi(NY,g(Y, 77), 77)) • 	(9.35) 

Note that we choose c1  small after choosing c3. This is not a restriction as we 

can still take each constant c, to be as small as we want. 

On Supp(h) we have (x) (y) (z) and () N (77) with the implicit constants 

independent of the ci. Further, we have 77—-<  c3(77) on Supp(h). To see this, define 

Vi(D(Y, e) := V1(1)(y,y(y, e), e). It follows from the phase assumptions that the y 

1  section of V 1(1)(y, 	is invertible with (v-1.12,) (y, 	E SGN. This fact implies 

that —77 -< V i(I)(y, g(y, 	— Vi4)(Y, g(y, 7/), n). Since (Vi(1)(Y, g(Y, 17), 77)) ^ (n) 

by assumption, it's clear that 7/ — -< c3(17) on Supp(h). 

We have shown that 77— -< c3(77) on the support of 

X3 (V 11(y, g(y, e), e), V iCy,g(y, n ), 77)) . Since h is a product of functions, some 

of which are x2(z,g(y,77)) and x i (x,g(y,)), it follows that for any c4  > 0 we 

can have c3  small enough so that Supp(h) is contained in {(x, y, z, ,77) E RS's : 

Ix — 	< 2c4(z)}. 

To summarize, after reduction, modulo operators with Schwartz kernel applied 
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to u we have 

(A* 	A) u(x) = aio ffff exp{i(.1(y, z, 77) — (I) (y , x,  e))1 x 

h(x, y, z, , 70,()-y(6n)u(z)dzdydectr7. 

where 

72mi,m2 ,m3 ,m3 1. h(x, y, z, e, 77) E SGx,y ,z,c,n  

2. (x) ti  (y) 	(z) and (e) 	(77) on Supp(h) with the implicit constants 

independent of the ci , 

3. for any c4 , c5  > 0 we can choose c1  and c3  sufficiently small so that Supp(h) 

is contained in the set {(x, y, z, e, 77) E Vri : 	— 	< 2c4 (z)and 	—171 < 

2c5  (77) }. 

Define the new variable e implicitly by the equation 

V2(I)(y, x + t(z — x), 77)dt) = e — 77. 

This change of variables is globally defined. Making this change, h(x, y, z, e, 77) goes 

over to the function m(x, y, 	7/) 	y, z,17+Wol  V24)(y, x + t(z — x), n)dt), 77) 

with the support of 772 contained in 

We  := {(x, y, z, e, 77) E R5n 	— zl < 2c4 (z)and 	c5}. By Lemma 9.3.3 part 4, 

for c4  and c5  sufficiently small, the function m satisfies SGm2'2m1,m2,o,2m3 estimates 

on 147, which contains its support. 
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(The choice of zero as the SG order of is arbitrary. Since 11 is bounded on 

Supp(m) we could have chosen any real number. ) 

Defining 

1 
P(x,y,z,e,n) := (1'(y, z, n) — (I)(y, x, n +4--(1 v2(1)(y, x + t(z — x), n)dt)), 

0 

and writing out the integrals we have 

(A* o A) u(x) = 1,5in(1)  filf exp{iP(x, y, z, , 77)} x 

1  m(x , y, z, 4'.-  , n) (f V24)(y, x + t(z — x), 77)dt)11  7 (Sri)u(z)dzdyddr 1 . 
o 

For convenience, we'll drop the tilde on the variable. By adding and subtracting 

(13.(y, x, 77) we can re-write P in the following way: 

P(x, y, z, , n) = P(y, z, n) — (I)(y, x, 77) + (1 (y, x, 71)- 
1 

—(D(y, x, n + (,/ v2CY,  x + t(z — x), n)dt))- 
0 

By the mean value theorem we have 

P = E i [fa2,1.(y,x+t(z — x),77)(zr — xr )dt— 
r=1 0 

1 1 	
C 	7/ 	

1 
a3,y,1,+sel v2cy,x+t(z—x),77)410)x 

0 

xG(f
1  

V2Cy, X + t(z — x),n)dt)cls]. 
o 

(9.36) 



CHAPTER 9. TYPE 1Z, FOURIER INTEGRAL OPERATOR 	 190 

Define the map F : Rn x Rn x Rn x R x Rn Rn x Rn x Rn x Rn x Rn as follows: 

/ 	 / 

y 	fol  V3(I)(y, x, 	.<(fol  V 24)(y , x t(z — x),17)dt))ds x 	F2  

F : 	z 	 z 	 F3  

F4  

\11/ 	 fOl  V2CY) X + t(Z X), '17)dt \F51 

We will define new variables as follows 

/ 	
/Fi (x, y, z, 	71) 

y 
	F2(x,Y, z, e, 71) 

F3(x,y, z, e, 71) 

F4(x,Y, z, e, 77) 

\F5(x, z, e, 77)/ 

Note that F2  = fo V3CY,  x,  71 te(F5))) + X. Define 

z (9.37) 

We  := {(x, y, z, e,  E  R5n 	— < 2c4(x) and 0 < 2c5}. 

By Lemma 9.3.4 F is a smooth diffeomorphism from We  to itself. (For sufficiently 

small c4 , c5.) 
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As we explain below, we also have 

Fl  (x, y, z, 77) satisfies S xl  y° 	(Wn  x In  x 	x R" x R", Rn) 

estimates on Supp(m), 

zri  . n F2  (x, y, z, 7?) satisfies SGx°:y 	(R  x  Tm x RI' x Rn x Rn, 

estimates on Supp(m), 

F3(x, y, z, ri) satisfies SG°4'11'° (R" x Rn X Rn  X Rn  X Rn,Rn) 

estimates on Supp(m), 
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°,0,0,1,0 F4(x, y, z, n) satisfies SG xyz  (A x Rn  x Rn x Rn x Rn,Rn) 

estimates on Supp(m), 

F5(x, y, z , 11) satisfies SG x° 	x  Rn x  Rn x  Rn x  Rn, Rn) 

estimates on Supp(m). 

(9.38) 

The above statement about F5  follows from Lemma 9.3.2. The above statement 

about F2  follows from Lemma 9.3.3 part 3, the phase assumptions and the fact 

that (x) ti  (y) on Supp(m). The rest are obvious. It follows from (9.38) that 

The Jacobian of F satisfies SG°'°'°'°'°  estimates on Supp(m) 
	

(9.39) 

To obtain (9.39), just multiply rows and columns of the Jacobian matrix by SG 

,, functions to reduce it to a matrix of SG°,
o,o

z
o,o  functions as we did in Chapter 6. sy,47-1 

Everything we multiply by cancels. 
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In the proof of Lemma 9.3.4 we showed that for sufficiently small c4, c5  

the Jacobian of F >- 1 on We. 

By standard arguments, if c1  = c2  and c3  are small enough we have 

(F1) — (x) on Supp(m) 

(F2) ̂  (y) on Supp(m) 

(F3) (z) on Supp(m) 

(F4) — (e) on Supp(m) 

(F5) (77) on Supp(m) 
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(9.40) 

(9.41) 

We can use (9.38), (9.39), (9.40) and (9.41) to complete the proof by our SG 

change of variables results. Define new variables as follows: 

//\ ,\ 
Fi(x, y, 	71) 

F2(X, y, z, 	77) 

:= F3(X, y, z, 	71) (9.42) 

F4(X, Y, 	17) 

\TV
F5(x

' 

By (9.38), (9.39), (9.40) and (9.41) the conditions of Proposition 6.2.5 are 

satisifed taking V = W, therein. Making the change of variables, we obtain 
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(A* o A) u(±) = 	
ffff 

exp{i( — • fi + ("j' — • e(i))} x 

fi, z,  e,in-y(S(F)V 	 fi, z, , in)(ij)nu(2)d2dfidedi). 

where b e SG"'2' 2m1,m2,0,2m3 by Proposition 6.2.5. (The function b is the trans-

formed version of the function m times the absolute value of the Jacobian of F-1.) 

We also have (") ti  (y) N (.E) and < 2c5  on Supp(b). 

The function 7(6(F)51(i, fi, z , e, i7)) can be replaced by the mollifier -y(811) by 

integration by parts. 

It is clear from (9.43) that the proof will be complete if we can show that 

h(i, 	:= ff expliCfi — 	. 77)1b( 	(i))nd 	(9.43) 

belongs to the appropriate SG class. By changing variables 4 —> w where 

w := 0-1) + i  we obtain 

h(, 	:= if expli(fi — i) • (w — fj)lb(x, fi, 2, w  0)11  , fi)dfidu). 	(9.44) 

Define 

f(, 	11) :=
VI)' 

71). 

Since < 2c5  on Supp(b(1, y, 2,e-  , in), it follows from Lemma 9.3.5 that b(i., y, 

belongs to SGm2'2m1'm 2,0,2rn3 , provided c5  < 
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We have (x) — (y) — (i) and (w) (ii) on Supp(f). So we can apply Proposi-

tion 4.0.4 to see that h( -X,,i",f7) E SC/24-',277-m3(Rn  x Rn  x Rn) where p and q are any 

real numbers with p + q = 2(mi + m2 ). 

9.4 Further Work 

In addition to the study of the applications to Hyperbolic PDEs described in the 

introduction, it is of interest to know when two type R. phases Its and IF are equiv- 

alent. We say that two phases 	are equivalent if for any a E SGxmy1T2 '7"(Ilan  x 

IIBn x IR') with ml , m2, m3 arbitrary there exists an amplitude b e SG 	(Rn x 

Ilan x Rn) with ml , m2, m3  such that 

FIO(.1., a) = FIO(W, b) modulo 1C. 

In this section we prove some sufficient conditions under which a type R. phase 

is equivalent to the pseudodifferential phase (T — y) • e. We show that if 4. E R. is 

such that g(x,e) = x and V14) = —V2.1) on y = x then 4) is equivalent to (x —y)•e. 

In order to prove this result we need the following Lemma. 

Lemma 9.4.1. Let (1.(x, y, E C" (Rn  x Rn X Rn , R) be such that V e:13.(x,x,e) = 0 

for all x, E Rn  and V 101)(x,x,e) = —V 2(1(x,x,e) for all x, G Rn. Then 

expli(I)(x, x, ell E SG°4(Rn x illn). 	 (9.45) 
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Proof. All derivatives of exp{i(1)(x, x, e)} of non-zero order are identically zero. 0 

Theorem 9.4.2. Let (D E R, be such that 0£13.(x, x, 	0 and V 14)(x, x, 	= 

—V2 (1)(x,x,e) for all x, e  E Rn. Then, for any a E SGxn1;:em2'(Rn x W' xRn) with 

ml,m2,m3 arbitrary, there exists b E SG7y1T2''011n x 	x WI ) such that 

F I 0 (4)(x , y, e), a(x, y, e)) = Op(b(x, y, 

modulo IC 

Proof Let x(y, x) E EE'(c) where c E (0, 1). We have 

FIO(I)(x, y, e), a(x, Me)) = FIO(Cx, y, e), a(x, y, e)X(Y, x)) 

modulo K. Writing out the integrals, we have 

Au(x) = li 
ff 

expli(1)(x, y, e)}a(x, y, 0X(Y, x)'7(6 )u(y)dyde. 

We now multiply the integrand by exp{ 	x, ell exp{i,(1)(x, x, e)} to get 

An(x) = a ff exp{i [(1)(x, y, — 4,(x, x, 0ild(x, y, e)-y(6e)u(y)dycle• 

where we have defined a := exp{i(10(x, x,)}a(x, Y, 0X(Y, x). By Lemma 9.4.1 

expliCx, x, 	c scxo,2 	x R') and so by the basic facts about SG functions 

5,(x, y,)E SGT, T2'm3. 

Define h(x, y, 	:= — f0 V 24)(x, x + t(y — x), e) and set 77 := h(x, y, e). We can 

apply the standard change of variables arguments to see that for sufficiently small 
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c we have 

Au(x) = Isin(1). ff exp{i(x—y).77}-et(x, y, h-1(x, y, 7?))1 det 3nh-1(x, y, 71)17(6n)u(y)dydn. 

where 

1. V' means the inverse of the x, y section of h, which is well defined on 

We  := {(x, Y, 17) E Rn  1Y — x1 < 2c(x)}, 

2. aii h-1(x, y, 17) is shorthand for the n x n matrix with i, j entry ari,(h-1)  (x, y, 

3. Et(x, y, h-1(x, y, 7)))1 det 	Y, 17)1 := 0 outside Wc, 

4. "ii(x, y, h-1(x,y, 	det (90-1(x, y,n)1 e SGT y, 2im3' 

So A is equivalent to a pseudodifferential operator. 	 0 

Finally, it should be fairly easy to extend the definition of the Type R operator 

(to allow the dimension of the frequency variable e to be > n) and obtain closedness 

of this generalised class under composition. 
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