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Abstract

This thesis is concerned with SG Fourier Integral Operators (FIOs). In particular
we define two principal classes of Fourier Integral Operator which we call Type
P and Type Q operators. Our main results are that generalised versions of these

operator classes are closed under composition.
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Notation

Spaces of differentiable functions:
Let U c R™. C" (U, C) denotes the space of functions f : U — C with the property
that all partial derivatives of order < r exist and are continuous. We will often
abbreviate C” (U, C) to C" (U) . We define C" (U, R) in the obvious way. C" (U, C")
is the space of functions f = (fy,..., fo) with f; € C"(U,C) fori =1,...,n.
Co(U) :=Nee, C"(U). If f € C*®°(U) we will say that f is “smooth.” Define
Ce°(U) as the space of smooth functions f : U — C such that the support of f is
compact.
Derivative notation: A multi-index o = (ay,...,®,) is an n tuple of non-

negative integers. For a multi-index a and z € R", we define

o2 = g1 gon

z = 3T Bag
_

axz ral'i),



Let X C R® and Y C R™ be such that X x Y is open. Suppose that f(z,y) €
C"(X xY). Let a and 3 be n and m dimensional multi-indices respectively. Let
w be the n +m dimensional multi-index obtain by taking the cartesian product of
a and 8. That is, w = (a1,...,0n,01,-.-,0m) For (z,y) € X x Y we will write
8385 f(z,y) to mean 8“ f. For such functions f, z will be called the “first variable”
and y the “second variable.” We will also write 8{"85 f to mean 8;"85 f(z,y).
V., and A, denote the gradient and Laplacian operators respectively. ( in the
x variable.) For example, given a function f(z,y) € C (R® x R*,R), we have
Vof = (Oufoe o 0an f).

Miscellaneous: For z € R”, define (z) := /1 + [z]2. S (R") denotes the space
of smooth functions f : R® — C such that for any non-negative integer NV and
multi-index a we have supeg. ()M 9°f < 00. S’ (R") is the dual space of S (R").
For s = (s, 82) with s1,s2 € R define II; as the pseudo with symbol (z)®2(¢)*.
The weighted Sobolev space H?® is the following set:

{ue & : e l? R}
Let f,g: R* — C. We write f < g if there exists a constant C such that

|f(z)] < Clg(z)| for all z € R*. We write f~gif f <gandg< f.



Chapter 1

Introduction

This thesis is devoted to the study of Fourier Integral Operators with amplitudes
in the SG symbol class. In particular, our goal was to define a class of SG Fourier
Integral Operators which is closed under composition.

We begin this introductory chapter with an informal introduction in which we
present some basic notation and terminology. We’'ll then discuss some existing
work in the field of SG Fourier Integral Operators as well as the possible applica-
tions of a class of SG Fourier Integral Operators which is closed under composition.
The introduction finishes with an outline of the content of the later chapters.

Given u € S(R™) define the Fourier Transform % of u by the following integral:

a(€) = / e u(z)de.

The Fourier transformation F : u — @ sends S(R™) to S(R") and it’s invertible
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with

u(z) = (277)""/ e S (€)de.

Now, by integration by parts, for v € S(R") we have 5;;171 = (#€)*4. This property
is useful when trying to solve certain partial differential equations with constant
coefficients; loosely speaking we apply the Fourier Transform, “convert” derivatives
into multiplications by i€, “divide” and invert. As Shubin and Egorov remark in [9],
Pseudodifferential Operator Theory developed when people tried to apply Fourier
Transform methods to non-constant coefficient PDEs.

We now show how to represent a differential operator in integral form using
the Fourier Transform. This is the standard way to introduce Pseudodifferential

Operators (¢dos), see [25]. Define D2 = (—4)l%132 and consider the operator

A= Z ao(z) DY,

la|<m

where aq(z) € C*® (R",C). For u € S(R™) we have u = F~! o Fu. Writing the

inverse Fourier transform as an integral we have

u(z) = (2m)" /n e ta(€)dE. (1.1)

Applying the differential operator A to both sides of (1.1) we have

Au(z) = (27)" / ¢z, E)a(€)dE. (1.2)

where a(z,£) = 37|, <, 2a(2)€”. So, when we restrict the general differential op-

erator A to S(R™), we can represent A as an integral. The function a(z,§) is
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called the “symbol” of the operator A. Writing the Fourier transfrom in (1.2) as

an integral gives the basic form of a do:

Au(z) = (2m)" / n / ol E)u(y)dyde, (1.3)

with the usual distributional interpretation. By allowing the symbol to depend on
y, we obtain the general form of a Pseudodifferential Operator. These operators
have been defined and studied for symbols chosen from various spaces, perhaps the
most well known of which is the class S™(R"™ x R” x R"), introduced by Hérmander
[18]. The space S™(R" x R™ x R"), defined for m € R, is the class of functions
a(z,y,&) € CP(R™ x R" x R") such that for all multi-indices «, 3, there exists
Ca,g > 0 with ]8;"8;8?a(m,y, )| < Cap €)™ 1 for all z,y, € € R™.
Pseudodifferential Operators are useful in the study of elliptic equations, see
[2], [22], [26]. For hyperbolic problems we use a generalisation of (1.3); loosely
speaking, we replace (z — y) - £ with a function ¢(z,y,£) (with carefully chosen
properties) to obtain a “Fourier Integral Operator” (FIO). Informally, a general

Fourier Integral Operator A acting on u € S is an integral operator of the form

Au(zx) = /n /1;7» exp{id(z,y, &) }a(z,y, §)u(y)dyd,

where ¢(x,y,&) is called the “phase” and a(z,y, £) is called the “amplitude” of the
operator, again with the usual distributional interpretation of the integral.
The symbol space S™ and its variants are most useful in the analysis of dif-

ferential operators where the spatial variable z is restricted to some compact
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subset of R™. In order to study problems which are global in the spatial vari-
able the “SG ” symbol space was introduced, which we now define. For real
numbers my, my and mg, we say that a(z,y,§) € SG "™ (R™ x R™ x R") if
a € C*(R*xR™xR", C) and for all multi-indices a, 3, 7 there exists some constant
Ca,g,4 Such that |8§‘(9;c9?a| < Capq(z)™lel (yyme=hl(eyma=IBl for all z,y, £ € R™
We will now introduce the SG Fourier Integral Operators defined by Coriasco

in [3]. A real valued function ¢ € SG;E, belongs to the class P, if there exist

constants C, ¢, e > 0 such that Vz, & € R™ we have

clz) < (Ved(z,€)) < Cla),
clf) < (Va¢(z,€)) < C(6),

| det (85,0, ¢(x, 5))21.:1 | > e, (1.4)

where (z) 1= /1 + |z|? for z € R™. For a(z,§) € SG¢™ with my, my arbitrary
and ¢ € P, Coriasco defines his Type 1 Fourier Integral Operator A, , acting on

u € S as follows:

Apau(o) = o [ expliola (e, aE)de

(2)

For b(z,£) € SG¢™ and ¢ € P, he also defines a Type 2 operator By, as

n

Bopu(€) = / exp{—id(z, )}z, Eu(z)dz.

In [3] Coriasco establishes the following composition structure for Type 1 oper-

ators. If Ay, is any Type 1 operator and P is an arbitrary SG ¢do, then ( modulo
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operators with kernel in S(R™ x R") - defined in Chapter 2) we have:

e Ay,0P and Po Ay, are Type 1 operators with the same phase ¢ and some

amplitudes,
® Ag,a o Ad’,a and 144,7(1 o] Ag,a are ’édeS,

where A}, is the adjoint operator of Ag,. (see Chapter 2.)A similar composition
structure is also established for Type 2 operators.
In [4], Coriasco applies his calculus to the study of Hyperbolic PDEs. See also

[7]. He examines systems of the form
Syu(t, ) —iK (t)ult,z) = f(t, z), for t € J = (To,Th), with Ty <0< Th
u(0, z) = uo(x) (1.5)
e K is a v x v matrix of ¢dos with symbols k;; = k; ;(t;z,&) € C°°(J, SGi’é)

e uy(z) is a v dimensional vector valued function in the weighted Sobolev space

H* (see Notation section for the definition),
o f=f(t,x) € C®(J H?)
e The matrix of symbols of k has the form & = k; + ko where

-k = dz'ag(s\l,...,s\u) where \; = diag()\j, ..., A;) is a l; x I; diagonal

matrix with v > I; > 1. The number [; is the multiplicity of A\; and

7

j=1 lj=v,
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— X € C®(J,8Gyy),

— ka;; € C°(J, SG),

Coriasco also assumes that the A; are real valued and satisfy the following sepa-

ration condition: For j =1,...,u — 1 there exists ¢;4;; > 0 such that

|>‘j+1(t;m’€) - Aj(t; Z, 5)' 2 Cj+1,j<m><€>a (1'6)

for t € J and z,£ € R™ In [4] it is shown that systems of the form (1.5), have a
unique solution v € C(J', H®) on a subinterval J' C J and that for homogeneous
systems, the solution operator is a matrix of Type 1 Fourier Integral Operators.
(modulo operators with kernel in S(R® x R").) Coriasco also studies scalar Cauchy

problems

Lu(t,z) = f(t,z), teJ,

Diu(0,2) =uf, k=1,...,v-1 (1.7)

where L = DY+ Pi(t)D{™' +...+ P,(t) and the symbols p; of the ¥dos P; are such
that p; = p;(t;z,§) € C>(J, SG’;JE) The operator L is assumed to be “hyperbolic
with constant multiplicities,” meaning that the roots of the characteristic equation
are real and satisfy the condition (1.6). For homogeneous problems of the form
(1.7) which satisfy a certain factorisation condition (called the Levi condition),
Coriasco shows that solution operator is a sum of Type 1 FIOs. (modulo operators

with kernel in S(R™ x R™).) These higher order scalar equations satisfying the Levi
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condition written as can be reduced to equivalent systems of the form (1.5), see
[4].

The main aim of this thesis is to define an SG FIO class which is closed under
composition and which generalises the Coriasco class. This is interesting for its
own sake, but there are also possible applications of such a closed SG FIO class
to hyperbolic PDEs of the form (1.7). If we follow methods of Treves [26], it
should be possible to obtain the solution operator to the homogeneous problem
(1.7) as a sum of compositions of Coriasco Type 1 FIOs, without the need for
the Levi condition. By our results, the solution operator would then be a sum of
generalised FIOs. This is a desirable situation as the following example shows.

Define I™(R" x R™ x R™) as the class of Fourier Integral Operators with ampli-
tude a(z,y,£) in S™(R™ x R™ x R"), with compact support in z and y and phase
z-E—¢(y, £) where ¢(y,€) € C (R" x (R™\0)) with ¢(y, A§) = Ad(z,€) (for A >0
and £ # 0) and det (ayiagj ¢)Zj:l # 0. Given an operator T, € I™, we can extend
its definition to S’ in the standard way, as discussed in chapter 3. The operator
class I™ is well understood and there exist results about the action of operators
T, € I"™ on singularities of u. In particular, in [24], in is proved that if T, € [ 0
then

To: LY, ) = LA (1.8)

continuously, where y(p) = (n—1)|7 —3| and 1 < p < co. Suppose that 15, T € I°
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then by (1.8)

T,0Ty: fo-{—?'y(p) — LP.
Each application of an operator in I° leads to a loss of v(p) derivatives. However,
by results in [8] the composition T, o T}, is a generalised FIO which can be reduced
to a FIO in I° by the Hérmander equivalence of phase function theorem. [8] So,
we only lose derivatives y(p) once when we apply operators in I°.

If similar results to (1.8) about losses of derivatives are proved my generalised
FIOs are applied are proved, then there would be applications of my work to
the study of regularity of solutions to equations of the form (1.7) which do not
satisfy the Levi factorisation condition. I had hoped to investigate these possible

applications but due to time restrictions I was not able to do so.

We also seek to define FIO classes with the properties that
e the composition of a FIO with a ¢do gives a FIO with the same phase
e the composition of a FIO with its adjoint is a 3do,

by placing as few restrictions on the phase as possible. In this thesis, I say an
operator class has a “calculus ” structure if it has the two properties above.

Now we outline what is to come in the subsequent chapters. In the next chapter
we give the basic definitions and set up the machinery which we will use in later

chapters.
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In chapter 3, the Type P Fourier Integral Operator is defined. This is the
most general operator class I could define with the property that composition of
a FIO with a tdo gives a FIO with the same phase. For the Type P operator we
choose phases from the class P defined as the collection of functions ®(z,y,£) €

C*(R%, R) satisfying the following criteria:

Vi, 0,0z, 9,€) € SGiye (1.9)

Vi, 8,8z, v,6) € SGyye (1.10)
(Vo®(z,9,8)) = (&) (1.11)
(Vy@(z,9,8) = (&), (1.12)

Jes > 0:jz—yl 2 caly) = [VeR(z,9,6)] > (2) + (y), (1.13)
Jee > 0: |z —y| 2 ca(z) = |VeP(z,,8)] = () + (v), (1.14)
¥y, 9®(z,y.6) < ((z)+ @), (1.15)

where for f,g : R® — C, the notation f(z,v,£) < g(z,y,£) means that there
exists ¢ > 0 such that |f(z,v,€)| < clg(z,y,§)| for all z,y,€ € R™ For a(z,y,§) €
SGu ™ (R™ x R™ x R") with my, ms and mg arbitrary real numbers we define

z,Y,8

the Type P FIO A3, acting on u € S(R™) as follows:
e—0

Apou(z) = lim / n / exp{i®(z,y, )}alz, 1,€) ¥ (Eulu)dyde,

where (ef) is a mollifier (as defined in Chapter 2). The basic properties of these

operators are presented in Chapter 3.
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We present several technical results in Chapter 4. These are mostly very small
generalisations of proofs of corresponding results in Coriasco. [3]. We follow the
arguments there exactly. I have tried to avoid repetition where possible and results
in Chapter 4 are often used in later chapters.

We show in Chapter 5 that composition of Type P FIOs with pseudodifferential
operators gives a Type P operator with the same phase and modified amplitude,
modulo operators with kernel in S(R"” x R").

In Chapter 6 we present some results about SG structure preserving changes
of variables. These are used in Chapters 7, 8 and 9.

Chapter 7 sees us define the Type Q FIO, which for a long time was the most
general operator I could define with a calculus structure. This operator is defined

as for the Type P FIO but with phases ®(z,y,£) = f(z,£) + g9(y, §) where f and
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g have the following properties:

f(z,€)

9(y,€)

(Vo f(z,8))
(Vz9(z,8))
(Vef(z,8))
(Veg(z, €))

|det, 0,0, £(z, €)|

|det 89:’ 8£jg(y1 6) ‘

SGyi(R" x R™,R),

SG,¢(R* x R™,R),

18

(1.16)
(1.17)
(1.18)
(1.19)
(1.20)
(1.21)
(1.22)

(1.23)

where for f,g : R — C the notation f(z,y,§) ~ g(z,y,£) means f(z,y,§) <

g(z,y,€) and g(z,y,&) < f(z,y,&). The Type Q operator class is a sub-class of the

Type P FIO class. We shall sometimes call the function f the first component of

the phase and call g the second component. Note that a Coriasco Type 1 operator

is the sub-class of Type Q@ FIOs where the second component is —y - £ and the

amplitude is independent of y. In addition to establishing the calculus structure,

we show that if we compose two Type Q@ FIOs A and B with the second component

of the phase of A equal to minus one times the first component of B’s phase, then

the composition is a Type Q FIO.

Chapter 8 is the main part of the thesis in which we generalise the definitions of
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the Type P and Type Q operators and show that each of these generalised operator
classes are closed under composition. For both classes, we modify the conditions
on the phase to allow the frequency variable £ to have dimension greater that of
the spatial variables  and y. As shown in [8], when we compose two operators in
I™ we obtain a generalised operator with dimension of the frequency variable equal
to 3n. In this case, the dimension of the frequency variable can be reduced back to
n by the Hormander equivalence of phase function theorem. There is no version
of this in the global setting, so we developed our closed composition structure for
operators with different frequency variable dimensions. For the Type P operator,
the generalisation was obvious. The situation for the Type Q operator was more
delicate as the Type Q phase has additional structure; we can make certain changes
of variables involving the phase which preserve the SG structure of the amplitude.
The main difficulty was generalising the conditions on the phase whilst retaining
the capacity to make the natural SG structure preserving changes of variables.
This is discussed in more detail in Chapter 8.

In Chapter 9, we define the Type R FIO. This is an operator class with a
calculus structure without the somewhat unnatural assumption that the mixed
spatial derivatives of the phase are identically zero, i.e. we do not assume that
0,0y, ®(z,9,€) = 0 for all 4,7 as we did for the Type Q operator. It should be

possible to generalise the Type R class and obtain closedness under composition.
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Due to time restrictions, I was not able to do this.

20



Chapter 2

SG Function Space

In this chapter we give a brief introduction to the SG function space and present

some definitions and notation which we will use later.

2.1 SG Function Space Definition

For z € R*, define (z) := /1 + |z|2. The function (-) behaves like | - | for large
arguments but it’s smooth everywhere. We collect a few simple properties of (-)

in a Proposition.

21
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Proposition 2.1.1. For all x,y € R", the following inequalities hold:

1. {x+y) < (z) + (),

2. (z+y) 2 () — (9),

8. (x+y) 2|zl = (y),

4 Az +y) > |z| - |y

Proof. Statement 1 follows from the triangle inequality. The first statement implies
the second and the second implies the third since (z) > |z| for all z € R®. For
statement 4, we use the fact that {(x +y) > |z +y| and |z + y| > |z| — |y| for all

z,y € R™ 1

Notation. Let f,¢g: R® — C. We write f < g if there exists a constant C such

that |f(z)| < Clg(z)]| for all z € R”. We write f~ gif f <gand g < f.

Definition 2.1.2. For m;,m¢ € R, let ‘S’G;",g’mE (R x R™) denote the space
of all functions f € C™ (R™ x R™%,C) satisfying the following estimates for all
multi-indices o, 3:

070 f(x,€) < ()™=l gymelPl, (2.1)
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Remarks. Definition 2.1.2 just means that for every pair of multi-indices (a, §)

there exists a constant c,g > 0 such that

amaaéﬁf(m,g)‘ < Ca,ﬁ<m>mx—|al<§>m5—lﬁl’ Vz € R™ € € R™.

It is clear that C5° (R") C SG™ (R™) for any m € R. So, all SG classes are non-
empty and we observe that whether or not a C* function is in an SG class depends
on its behaviour at infinity.

SG:E’mf (R™= x R™) is called the SG class of order (mg, mg).

SG:g’mE (R7= x R™,C") denotes the space of functions f : R™ x R™% — C"
with each component f;(z,&) € SG’ZE’ME (R x R™),1<¢<n.

Let f: R™ x R"% — C. Suppose that for some m,, m¢ € R the derivatives
@agf(m, £) exist for all a,0 and satisfy (2.1) for all (z,y) in some set W C

R™ x R™. Then we say “ f satisfies SG’:E "™ estimates on W.”

Examples of SG functions supported on R™. For z € R, define f(z):==z
and g(z) := (z). Then f € SG. (R",R") and g(z) € SG. (R",R).
We now collect some basic consequences of the SG class definition. These facts

will be used frequently.
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Proposition 2.1.3. Suppose f € SG,¢™ (R x R™) and g € SG77¢ (R™ x R™).

Then:
1. For any \ € C, we have Af € SGZ}E’m‘f (R x R™),
2. fg € SGLg T (R x R™),

3. f+ g € SGImesmxmese) (s o Rne) |

4. If s, < my, and s¢ < mg then SGifés£ (R" x R™) C SGZE’m‘f (R x R™).

Proof. These statements follow from the triangle inequality and the product rule.

U

Remark. Proposition 2.1.3 changes in the obvious way when the functions f
and ¢ depend on more or fewer variables. The results of Proposition 2.1.3 will
often be referred to as “ basic facts about SG functions.”

By parts one and three of Proposition 2.1.3, SG classes are vector spaces over

C. For f € SGZZ’T"5 (R x R™), define

fllag = sup (z)ll=m=(g)lfl=m
z€R™z £cR™

020¢ f(z,€)|.

The collection {|| - ||ag : @, 8 multi-indices} is a family of semi-norms on

SGZg’mE (R"= x R™). The space SGZE’m‘E (R™= x R™) is given the topology gen-

Mz, Mg

erated by these semi-norms. Indeed, SG, " (R"* x R"¢) is a Frechet space. See

[2].
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2.2 Ellipticity

Let f(x,&) € S G;fé’rf (R™= x R™,C). We now present standard sufficient condi-

tions under which % € :’9’61;21’_ré (R™= x R, C).

Proposition 2.2.1. Let f(z,€) € SG:{;Q (R x R™,C) and suppose that f(z,&) =
(z)™=(€)"¢. Then
1

— e 8GTT (R™ x R™ C).
f(z,€) we )

A function satisfying the conditions of Proposition (2.2.1) will be called “glob-
ally md-elliptic of order (ry,r¢)” or simply “elliptic’ and we’ll write f(z,£) €

ESG® (R™ x R™).

Remark. If f(x,€) € SG;}’TE (R*= x R™,C) and f(z,€£) > (x)™=(&)"¢ for (z,€) €
W c R"™ x R™. Then % satisfies SG;?’J£ estimates for (z,£) € W C R™ x R™

and we say “ f is md-elliptic on W” or just “f is elliptic on W.”

Example. The function f(z) = (z) belongs to ESGL (R, R).
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2.3 Integral Operators with Schwartz Kernel

Definition 2.3.1. Let K denote the space of integral operators with kernel in

S (R?") i.e. the set of integral operators K acting on S (R™) such that

Kf(z)= . k(z,9)f(y)dy, (2:2)
with k(z,y) € S(R™).

Proposition 2.3.2. Let K € K. Then,

1. K:S§(R") — S (R™) continuously.

2. K:S8'(R") — S(R).

For the proof of Proposition 2.3.2, see [9].

Remarks. Operators of the form (2.2) are called “globally smoothing” or simply

“smoothing” because of Proposition 2.3.2 part 2.
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2.4 Mollifiers.

Definition 2.4.1. A mollifier is a real valued function y(e§) depending on a pa-
rameter € > 0 such that v € C§° (R",R) with v = 1 in some neighborhood of the

origin. We will always restrict € to the open interval (0, 1).
Proposition 2.4.2. Let y(e€) be a mollifier. Then:

1. Forall§ e R*, ~(e€) — 1 ase—0,

2. For |a| 2 1, as e — 0 we have O [y(e§)] — 0 for all § € R™,

3. O [v(e€)] < (€)~1el with the implicit constant independent of e.

Proof. The first two statements are obvious. For the third statement note that as

~ is compactly supported, for any « there exists a constant c, such that
(€)1 (957) (€€) < ca, (2.3)

for all £ € R™. As e € (0,1), we have (£)l°lelel < (e€)l°l for any non-negative integer

|a|. So, by (2.3), we have
(&)1l (87) (€) < ca (2.4)

for all € € (0,1) and & € R™. Since €l®! (927) (e€) = 9¢ [v(e€)], we're done. O
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2.5 Some Operators

In later arguments we will establish estimates of oscillatory integrals by applying
differential operators which send the exponential term to itself and then integrating

by parts. We introduce our two main differential operators in this section.

Definition 2.5.1. For functions u,v € S, define (u,v) f]R" z)dz. Let

A:S(R*) — S(R"). The transpose AT of A is the operator such that
(Au,v) = (u, ATv) Yu,v € S (R").

Definition 2.5.2. For w € C* (R*, R), define

1-A,

L = ;
() (Vw2 —i Ay w

By construction, Ly () (ei{“’(y)}) = v} We also note that

1

LT 1-A :
pts) = ( v) (Vyw)2 —i Ay w

Definition 2.5.3. Let w € C° (R",R) be such that [V,w| # 0 for ally € R™

Define

b=

By construction, Ue™ = e™. Also, for any natural number v, we have

T T o
(Uyw )) lv ‘41" Z Para

|e|<7

In the above, Py, is a linear combination terms of the form (V,w)'0%w... 00w

with, |y| = 2r, [6;] > 1 and [af + >25_, [d;] = 2r.
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The operators introduced in Definitions 2.5.2 and 2.5.3 are taken from Coriasco,

3].

2.6 SG Cut-Off Functions

In later proofs we’ll establish estimates of integrals using different arguments in
different parts of the domain of integration. We will use SG cut-off functions to
divide up the region of integration. The class of cut-off functions defined below is

taken from Coriasco [3].

Definition 2.6.1. For k > 0, let Z2(k) denote the set of all functions x(z,y) €

SGYS (R™ x R™,R) such that:
k
e -yl <5 = x(zy) =1,

lz —yl > ky) = x(z,9)=0.

The notation Z2(k) is as in Coriasco [3]. As an example, let & > 0 and

f € 0 (R,R) with

1if |l <3,
flaz) =
0 if |z| >k

Then, f ( '””(;;;'2) € =5(k).

We also use the following facts, stated in [3].
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Proposition 2.6.2. Let x € E2(k).
1. If k<1, then (z) ~ (y) on Supp(x(z,y)),

2. For any k > 0, on Supp(1 — x(z,y)) we have |z — y| = (z) + (y).

2.7 Asymptotic Expansions

In proving composition results, we will need some results which tell us when a sum

of SG functions plus a remainder is of SG type.

Definition 2.7.1. An infinite sum Z;’il a;(z,y,£) is an asymptotic expansion if

it satisfies the following three conditions.
1. Vj € Nya; € SG57™ 77 (R x R™ x R™).
2. V5 €Nymy 1 <mgy, My < my; and meg i < me ;.
3. limy_oo(my j, My j, me ;) = (—00, —00, —00).

Further, we write a ~ Y 22, a; if YN € N we have,

N
m ,m. ,m
a— a. € SG Tz, N+1:My N4+1,7¢ N+1 (an % Rny % Rng) .
J 9§
J=1

The definition changes in the obvious way when the a; depend on more or fewer

variables.
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Remark. Asymptotic expansions do not necessarily converge for all points z,§ €
R™. For example, consider f,(z,€) = n(z)~"(£)™". Clearly > 7, f, is an asymp-
totic expansion but Y oo, fn(0,0) does not converge.

We shall need the following results about asymptotic expansions.

Proposition 2.7.2. Let Z;‘;l aj(z,y, &) be any asymptotic expansion. Then:

o0

1. There ezists a € SG:?;:;’m”’l’m“ (R™= x R™ x R™) such that a ~ 3.~ a;.

Proposition 2.7.2 above is proved with fewer variables in Cordes [2].

The following Proposition 2.7.3, stated in [3], will be useful.

Proposition 2.7.3. Let >_.° p; be an asymptotic ezpansion and suppose that

p € C®(R®") satisfies the following two conditions:

1. For all o, B, there exist ki(a), ka(3), k3(y) € R such that

83353217(33, v, &) < <:E)k1(0‘) <y>k2(ﬁ) <§>k3(7).

2. There exists a sequence {I.} of real numbers with I, — —oco such that

ple,y,€) = 251 p; =< (@) () ()"

Then, we have p ~ D22, p;.
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Chapter 3

Type P SG Fourier Integral

Operator

3.1 Definition

33

Definition 3.1.1. (Phase Assumptions) Denote by P the collection of func-

tions ®(z,y, ) € C®(R3,R) satisfying the following criteria:

Vi=1,...,n 0y;®(z,¥,¢§)
Vi=1,...,n, 8,,®(z,y,§)
(Vo2(z,9,6))

(Vy@(z,9,¢€))

Jep >0 |z — y| > caly)
deg > 0: |z — y| > colx)

vy, 0;®(z,y,¢)

€

€

-

-

=

=

~<

SGYOL(R™ x R™ x R"),

z,y,§

SGYUE (R x R™ x R™),
<§>7

IVe@(z,y, )| >~ (2) + (v),
[Ve®(z,y,€)| = () + {y),

((z) + (y))(e) M.
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Remark The variables z and y will sometimes be referred to as the “spatial

”

variables” and & may be called the “frequency variable.” Later we will allow the

frequency variable to have dimension n¢ > n.

Definition 3.1.2. Let ®(z,y,&) € P, a(z,y,£) € SG*™ with my, ma, ms
arbitrary and let v(e€) be a mollifier. Define the Type P operator As o, acting on

u € S(R") as follows:

Asqu(w) =iy [ [ #e99a(a,, 1 (culy)dnde (38)
Notation The operator As, will also be denoted by FIO (®(z,y,&),a(z,y,£)).

Remarks It will be shown later that the operator Ag, is independent of the
choice of mollifier y(e€). Also, the operators defined by Coriasco in [3] are of type

P.

3.2 Continuity on S(R").

We start with a result about the form of the transpose of the operator L, ¢ ( see

Definition 2.5.2 ) when ® € P. Again we employ the notation of Coriasco [3].
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Lemma 3.2.1. Let ®(z,y,£) € P and let

. . 1-4,
vEERD TG Y — i A, B

Then forr € N,

( y@xy& Zfaxy,

|§|<2r

where f5(z,y,€) € SGYOT

RTES
Proof. Given that ¢ is real valued, it follows from assumption (3.4) that Ly, ¢(z,y.¢)
is well-defined for all z,y, £ € R". By integration by parts, we have

1
T _
Ly@(wyyvﬁ) =(1- Ay) <qu)>2 — Ay D

Define g(z,y,€) := (V,®)2 —i A, . As & € P, it follows from the basic facts

about SG functions that g(z,y,€) € SG2%2. As @ is real valued and (V,®) = (£)

z,9,§"

we have g = (€)%. So, g € ESGY%2 zy¢ and therefore

1eggroze
g

z,y,€
The result follows by induction. O

The following result will shorten many subsequent proofs.
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Theorem 3.2.2. Leta(x,y,§) € SG’?; ;ny TR x R™ x R™) for any my, my, mg €
R and let y(e€) be a mollifier. Suppose also that

®(z,y,£) € O (R™ x R® x R",R) has the following properties on Supp(a):

Ve - (z) + (y), (3.9)

V multi-indices o, 8,7y, 95850{® < ((z) + (v)) (&)t (3.10)
Then the integral operator

Bua) =lim [ [ exp{i(e,v,0)}ale, v, (e6)ulu)duds,

e—0

acting on functions u € S (R"), has kernel in S (R?™).

Proof. By definition,

Buw) =l [ [ exp{it(z. 1. €))ale,. n(eeuls)dude.

e—0

For fixed €, the integral [ [exp{i®(z,y,&)}a(z,y,&)v(e§)u(y)dydE is absolutely
convergent for any x € R™. Therefore the order of integration can be changed, so

that

Buw) =t [ [ exp{i®(z.5.€)}ale.. n(ee)ulu)ddy.

e—0

We assumed that |Ve®(z,y,§)| > (z)+ (y) on Supp(a). Therefore the operator
Ueo(za.e) = W Sre, 0e, Pz, v, £)0g, is well-defined on the support of the

integrand.
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By construction Ug oz 466! = €®. Applying this operator s times to the
£.2(z,y£)

exponential term and integrating by parts s times gives

e—0

—tiny [ [ expli(a,, )} (0Fa) [alr. 1. (O] ulo)del.

Recall that

(UEY:(I’) |v ¢|4S Z POS T, Y, 5)89

|8|<s

In the above, Py is a finite sum of terms of the form (VE(D)'Y@?(I). . Bgsq) , with,
[yl = 25, |05 > 1 for all j = 1,...,s and |0] + > 7_, |d;] = 2s for each term in the
sum.

We have assumed that, for all multi-indices «, 3 and 8 we have 8;"85 83 O(z,y,&) <

((z) + (y)) (€)1l on Supp(a). Therefore,
828 (Ved)" < ((z) + ()M, (3.11)

on Supp(a).

Recalling the definition of Py 4(z,y, ) and using (3.10) and (3.11) we obtain,

800 Py o(w,y,€) < ((z) + ()™ (€)== (3.12)
Since by assumption |V¢®(z,y,£)| > (z) + (y) on the support of a, it follows that

1

Voo g O ({=) + ()™,
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on Supp(a). It follows from assumption (3.10) that for any multi-indices a, 3 we

have
0 o < (@) + ()7, 3.13)
Ve®(z,y,E)[*
on Supp(a). As y(ef) is a mollifier and a € SGZ;:?”’"LE, we have,
82009 [a(x,y, E)y(e€)] < (z)™=(y)™v (&)™, (3.14)

where the constant implicit in (3.14) is independent of €. To obtain (3.14) we used
part 3 of Proposition 2.4.2. Recalling the form (U3)* and using (3.12) , (3.13)

and (3.14) we see that
830; (ULs)" lalz, y, €)7(e€)] < ()™ {y)™ 3 (g)m ™ (3.15)

with implicit constant independent of e. For large enough s, we can apply the

Lebesgue Dominated Convergence Theorem to see that

Bu(@) = | [ ew(i®(.5.6) (U7s)" ale,v. ) uly)dedy

To obtain the above we used the fact that lim._g (qu,)s [a(z,y, E)ve(z,y,&)] =

(qu,)s [a(z,y,&)]. So, the kernel k(z,y) of B is

bl = [ expli(a,v. ) (VFa)" ot ) dE

By similar work to that which produced (3.15 ), we have

0205 (ULs)” lalw, v, €)] < (z)™= 5 (y)™ 3 {g)™". (3.16)
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To show that k(z,y) € S (R*) it suffices to show that for any non-negative in-
teger N and multi-indices o, 3 we have (z)"(y)¥820Pk(x,y) < 1. This follows
easily from the definition of k(z,y), assumption (3.10) and the estimates (3.16),

by choosing s to be sufficiently large. O

Theorem 3.2.3. Let ®(z,y,&) € P and let a € SGT)"™ (R* x R* x R") with

my, ma, ma arbitrary real numbers. Then FIO(®(z, y, &), a(z,y,§)) is a continuous

mapping from S(R™) to S(R™).

Proof. Consider

_ / n / e a(z, y, €)y(e€)u(y)dyde.

By definition, Au(z) = lim_, Acu(z). Let x(z,y) € Z2(k), where k > 2cs. This

means that that on Supp(1 — x(z,y)), we have V@ > (z) + (y). Define

Aciu(z) = /n/neiq’(””’y’g)x(m,y)x(y,m)a(m,y,ﬁ)'y(eﬁ)u(y)dydﬁ,

Acpu(z) = /
A su(z) = /
A qu(z) = /R n

— x(z, 1)) x(y, z)a(z, y, §)v(e§)u(y)dydE,

ES]
3

=

wyﬁ
Pevd) (1 — x(z,9)) 1 — x(y, ©)) alz, y, )y(e€)u(y)dyds,

@0 (1 — x(y,z)) x(z, y)alz, y, £)7(e€)u(y)dyde.
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By construction, Axu(z) = Aq1u(z) + Acpu(z) + Acsu(z) + A qu(z). Define
Aju(z) = 15% A qu(z),
Asu(z) = lg% A qu(z),
Asu(z) = li_r)%AE,gu(a:),
Agu(z) = 11_{% A, qu(z). (3.17)
By Theorem 3.2.2, the operators A,, A3 and A4 belong to K and therefore they

send S to S continuously. So if we can show that for any (N, «) the semi-norm

||A1u||n o is bounded by a linear combination of semi-norms of w, the proof will

be complete. To prove this we will use the operator Ly o(z4.¢) 1= W;%A_ﬁ' (We

will abbreviate Ly g(z,46) to Ly.) Consider Ac;. By construction,
L,: e e®

So, for r € N,

A= [ [ L= (a p)xty. Dale. v, O ulu)duds

Integrating by parts in y r times gives

Aa= [ [ 00Dy (o )x(w slale, . Guw) (eghdyds  (318)

By Lemma 3.2.1, we have,

(L) la(z,y, &)x(z,y)x(y, £)u(y)] =

> Fslz,y,€)8) Ix(z, y)x(y, 2)alz, y, E)y(e€)u(y)],

|o|<2r
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where fs(z,y,£) € SGggEQT It follows from the product rule and the basic facts

about SG functions, that

(LD (x(z, w)x(y, z)a(z,y, € =Y bs(z,y,€)duly) (3.19)

16| <2r

where bs(z,y,€) € SGIVT™ 7 and we have (z) ~ (y) on Supp(bs) for all é.

zy,€

Since u € S(R") and (z) ~ (y) on Supp(bs) it follows that for r > &J;Z‘i—l we

have,

(LY [x(@, v)x (v, ©)alz, v, u@)] < D> @)~ " E " ullimy tmalnt1.6:

|6 <2r

(3.20)

where || - ||v s is the N, d semi-norm on &. Therefore we can apply the Lebesgue

dominated convergence theorem and conclude that

Awtr) = [ [ EPIOLTY (clopxlo: 2)ale, v, €ulo)dude.

Inserting the expression (3.19) for (L1)" [x(z, »)x(y, z)a(z,y,§)u(y)] , we have

Avulz / / @V (1, y, €)30u(y)dyde. (3.21)

|5|<2

For a non - negative integer N, consider

)N o2 / / @V ps(z, y, £)00u(y)dyde. (3.22)

By similar arguments to those which produced (3.20), taking derivatives of any
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order inside the integral can be justified. So,

e [ [ 0,1, 0uty) s =
/ / (@) op [V (2, y, €)] Byuly)dyde. (3.23)

Since ® € P, bs(z,y,&) € SG’Z;:?””S_QT and (z) ~ (y) on Supp(bs), we have

<x>Nag [eifb(w,yyé)bd(x,y,g)} < <y>m1+m2+N<§>m3+|a|—2r. (3_24)

For any mi,ms € R and any non-negative integer N we have (y)™Fmz+¥ <

(y)lmatmal+N Qo by (3.24) we have
<£L'>Na: [eifb(m,y,ﬁ)bd(x, Y, g)] < <y>|m1+m2|+N<§>m3+|a|—2r. (325)

ma+|aj+n+1
2

Using this fact, it follows from (3.23) that for r > we have

e [ [ bz, e0fuy)aye <
||u|||m1+m2|+N+n+l,6/ / ()~ E "D dyde < [y Nant1 s (3.26)

So, by (3.21) and (3.26) we have

<$>N‘95A1U(37) = Z ||u|||m1+m2|+N+n+1,6-
|6|<2r

Therefore A; sends S(R™) to S(R™) continuously.

O

In the proof of this Theorem and of Theorem (3.2.2) we saw that the functions

Aju(z), Asu(z), Asu(z) and Aqu(z) were independent of the choice of mollifier
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~. Since Au(z) = Aju(z) + Asu(z) + Asu(z) + Aqu(z) it is clear that Au(z) is

independent of v and the following proposition is also proved.

Proposition 3.2.4. For a(z,y,§) € SG ™ with my, mg, my arbitrary real

numbers, and ® € P, the function Ag 4u(z) is independent of the choice of molli-

fier.

Recall that for functions u, v € S(R"™),

{(u,v) := /n u(z)v(z)dz

Clearly this integral converges for any pair of functions in S(R"). Suppose
B : S(R*) — S(R"). Then (Bu,v) is well defined. The transpose of B, denoted
by BT, is the operator sending S(R") to S(R®) such that {Bu,v) = (u, BTv) for

all u,v € S(R").

Theorem 3.2.5. Let a(z,y,£) € SGT)™™ with my, mg, my arbitrary meal num-

bers, let ® € P and define A = FIO(®(z,y,€),a(z,y,§)). Then we have;
1. ATu(z) = limeg fou Jon expi®(y, z, €)aly, z, £)v(e€)uly)dydE,
2. AT is continuous from S(R") to S(R"),
3. A:S'(R") — S'(R™) continuously.

Proof. The first two statements are straightforward given that the phase assump- /

tions are symmetrical in z and y. See Definition 3.1.1.
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Given that statement 2 of the Theorem is true we can extend the definition of
A to §'(R™) in the usual way. That is, for u € S’(R"), we define the operator Au
acting on v € S(R™) by
Au(v) := u(ATv).
To show that Au € S'(R") we need to show that Au is a continuous linear func-
tional on S(R™). As AT is linear, it is obvious that Au is a linear functional. We

have to show that it is continuous. Suppose {v;} is a sequence such that v, — v

in S(R™). Since A’ is continuous from S(R™) to S(R") and u € §'(R"), we have
Au(vy) = u(ATv) — w(ATv) = Au(v),

in C. So, Au € §'(R"). Having established that A sends S'(R") to S'(R"), we now
need to check that A is continuous from S'(R™) to S'(R").

Let {ux} be a sequence in S'(R™) such that ux — u in S'(R™). This means
that for all v € S(R"), we have uy(v) — u(v) in C. Clearly then, for any UA €S,
we have,

Aug, (v) = up(ATv) — u(ATv) = Au(v),
in C. So, uxy — u in &’'(R™) implies that Auy — Au in §'(R"). So the map A is
continuous from §’'(R") to §'(R™) |

O

A FIO with phase ® € P and amplitude a(z,y,£) € SG7, "™ will be called

a “Type P FIO.”
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3.3 Reduced form of the Type P FIO modulo K.

m1,m2z,m3

Proposition 3.3.1. Let ®(z,y,§) € P, a(z,y,§) € SG,, ¢ for my,maq, m3

arbitrary real numbers and let x(z,y) € Z2(k), where k > 2cg. Then, modulo K

FIO(®(z,y,8),a(z,y,8)) = FI0 (®(z,y,§), a(z, ¥, §)x(z,y)x (¥, 2)) -
Proof. This was proved in the process of proving Theorem 3.2.3. 4

Let A= FIO(®(z,y,£), alz,y,§)) with a(z,y,§) € SGL,7*™ and ®(z,y,§) €
P. For any x(z,y) € Z4(k), with k > 2cg, we will call

FIO (®(z,9,€), a(z,y,&)x(z, y)x(y, z)) the “reduced form” of A modulo K.



Chapter 4

Some Technical Lemmas.

In this chapter we present a series of technical results which will shorten the proofs
of later composition theorems.

The first result tells us that when considering compositions of Type P operators
modulo K, we only need to look at the composition of their reduced forms modulo

K.

Proposition 4.0.1. Let A, Ay, B, By be Type P operators. Suppose that

A = A; modulo K and

B = B; modulo K. (4.1)

Then we have

Ao B = A;0 B; modulo K.

Proof. The proof is straightforward by integration by parts. O

46
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The next result will be used frequently.

Theorem 4.0.2. For any my, mg, mg, my, ms € R, let

(l((ll,y, Zagan) € SGml T2 TS (Rn x R™ x R™ x R™ x Rn") be such that (IE) ~

z,¥,2,£.m

(y) ~ (2) on the support of a. Let y(e£),v(dn) be mollifiers. Suppose also that

® € C° (R™ x R* x R™ x R% x R™ R) has the following properties on Supp(a):

Vy®@ > (£) + (n), (4.2)

YV multi-indices o, 3,7y, 020097® < ((€) + (n)) (yy-1Al (4.3)

Then the integral operator

Bu(z) = hmhm/ / / / exp{i®(z,y, 2, &, m)}a(z,y, 2, &, 1) X
e—006—0 [fpne n JR"n n

xy(e€)y(n)u(z)dzdndyds,  (4.4)
acting on functions u € S, has kernel in S (R?").

Proof. For fixed ¢ and 4, the integral in (4.4) is absolutely convergent. So we can

change the orders of integration around. Doing so, we have,

Bu(z) = hmhm/ / / / exp{i®(z,y, z,&,n) }alz, y, 2, &, M) x
e—0 §—0 ne SR n n

xy(e§)y(0n)u(z)dydzdnds.  (4.5)

We assumed that V,® > (£) 4+ (n) on Supp(a). So, the operator
Uyo = I-Vi—é’? Son1 0y ®(z,y, 2,§,1)0y, is well-defined on the support of the in-
tegrand. We will abbreviate Uy to U,. Applying U, to the exponential term s

times and integrating by parts s times gives
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Bu —lﬁﬁﬁfngénn/n/nexp{l@f v, 5,6} (U7) lalz, v, 2, & n) x

xy(€€)y(dn)u(z)dydzdndé.

(4.6)
Recall that

(UZ5)° = ‘V 3T Y Polz,y, 2,610,

6]<s

In the above, Py is a finite sum of terms of the form (qu))'ya?‘jlfl). ) .83*’(1) , with,
|yl =2s, |6/ > 1forall j=1,...,s and |§] + 3 7_, |d;| = 2s for each term in the
sum.

4s

By assumption (4.2), we have, W;%W < ({&) + (n))" ™ on Supp(a). It follows
from assumption (4.3) that differentiating with respect to z and z does not destroy
the improvement of these estimates with s. Precisely, for any multi-indices ¢, 3,

we have

o !

20 g < (@ )™ (47)

on Supp(a).

Using the definition of Py, and assumption (4.3) we see that for any multi-

indices o, 3, we have
320 Pyo < ((€) + (m)™ ()9, (4.8)

on Supp(a).
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As a(z,y,2,€,m) € SGZE:ZE,}T&WMS’ we obviously have

0202 8a(, y, 2,€,1m) < {2)™ (y)™ 71 (z)™ (€)™ (m) ™. (4.9)

Using the estimates (4.7) , (4.8) and (4.9) it follows from the form of U7 that

8302 (Uye)*[a(z,y, 2, & m)]) < ((6) + ()7 {z)™ ()™~ (=)™ (&)™ (m) ™.
(4.10)

—8

By the Cauchy- Schwartz inequality, we have ((£) + (7))~ < (€)"2(n)~% for any

s € N. Using this fact and since (z) ~ (y) ~ (z) on Supp(a), we have

S

@)V ()N 008 (UTy) [a(z,y, 2,Em)]) < (y)mitmetmedaN=s(gyma=s (yma=3,
(4.11)

for any N € N.
The result follows from the estimates (4.11), assumption (4.3) and the Lebesgue

Dominated Convergence Theorem.

The following Theorem is proved by similar arguments.

Theorem 4.0.3. For any my, ms, m3, mg, ms € R, let

a(z,y, 2,&,m) € SGLaT ey ™™ (R x R® x R™ x R" x R™) be such that (z) ~

(y) ~ (2) and (§) ~ (n)on the support of a. Let y(e€),v(dn) be mollifiers. Suppose

also that
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® € C°(R™ x R" x R" x R" x R™,R) has the following properties on Supp(a):

Vel - (z), (4.12)

Y multi-indices o, 3,7, 8;"858;@ < (z) () (4.13)

Then the integral operator

Bu(z) = hmhm/ / f f exp{i®(z,vy, z,€,1) Ya(z, y, 2, &, 1) %
e—06—0 ng n JR™n n

xy(e§)y(0n)u(z)dzdndyds,  (4.14)
acting on functions u € S, has kernel in S (R??).

The next Proposition is the main result of this chapter. For its proof and
for the proofs of the necessary Lemmas, we follow the corresponding results in

Coriasco [3] exactly.

Proposition 4.0.4. Let ® € P and

a(z,y, z,€,m) € SG,TEr ™™ (R x R™ x R™ x R" x R") be such that on Supp(a)

we have (z) ~ (y) ~ (2), () ~ (€) and |z —y| < k(y). Also let y(e€) be a mollifier.

Define

h(z,z,n) = lim / gH{@wam=2zmtE@=E g (g y 2 € n)y(e€)dydé.
Rn n

e—0

Then, for small enough k, the function h(z, z,n) € SGILTmmamatms (R? »x R™ x R™)

z,2,n

and

h(z,z,n) ~ Zl [Dy [ ih(2,y,2,m) (05a) (z,y, 2, V. @(z, z, n),n)]]yzz,
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where ¥(z,y,2,1) := ®(y,2,1m) — ®(z,2,7) + (z —y) - VoP(z, 2, 7).
Remark. The notation 9; denotes differentiation in the ith variable.

Remark. Sincea(z,y,2 €,1) € SGLoT2 =™ (R x R™ x R x R™ x R™) and

x?yEZ,Ein

{(x) ~ (y) ~ (z) on Supp(a), it follows that a € SGZ”Z’;’ZZ’W (R™ x R* x R™ x R™ x R")

where p, ¢, 7 are real numbers such that p+g+r = m,+my-+m,. So, if we can prove
the Theorem we will actually also have h(z,z,n) € S GYmet ™ (R x R™ x R™)
where s and t are any real numbers such that s +¢ = m, +m, +m,.

The proof of Proposition 4.0.4 will require several Lemmas which we now

present.

Lemma 4.0.5. Let D € P and

a(z,y, 2,&,n) € SGLTwmETOT (R x R™ x R™ x R™ x R™) with (z) ~ (y) ~ (2)

z,Y,2,6:7

and (n) ~ (&) on Supp(a). Define

1 .
[Dg (=¥ (93a) (2,9, 2, Va® (2, 2,m),m)}]

colT, 2,m) = o

y=x '

where ¥(x,y,z,1) = @y, 2,n) — ®(z, 2,n) + (x —y) - Vo D(z, 2,n). Then, we have,

el fee) la]
My +My— 5= Mz — 5 Mgty — 5
Co € SGagy ™ &M & I

That is, 3, ca is an asymptotic expansion.

ey MO+ mean

Proof. All variables are n dimensional, so we will write SG, ", ¢,

SG?;‘;”;;;”Z’mg’m" (R™ x R* x R* x R™ x R") and similarly when we have fewer
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variables. Also, as always, [ means [, .

Mg My, Mz, Mg, 1M .
TPy T So, we obviously have

We assumed that a(z,y,2,€,n) € SG, . ¢

Mg, My, Mz e —| 0, My

(85a)(z,y,2,6,m) € SG,, . n

G®% for j =1,...,

Now, since (V,®(z,2,£)) ~ (£) and 0;,®(z, 2,€) € SG. ¢

have

Mg, My, Mz, Mg —lal,my

(afl!a) (.’L', y’ Z, qu)(x, Z, 5)7 n) € SG-’B,%Z,&’?

Putting £ = 7, it follows that

M My, Mz,Meg+My—|al

(aflla) (.’L', Y, z, qu)(l', z, 77): 77) € SGm,y,z,n

By similar arguments

mz+my—|ﬂl,mz,m5+mn—[a|

08(050)(z,y, 2, V= ®(z,z,1),n)| _, € SGzin

Since {x) ~ (z) on Supp(a), it follows from (4.15) that

B8
m,+my—|—2—|,mz —@,mﬁ—mn—lal

82(85a)(x,y, 2, Vo®(x, 2,1), )| _, € SGain

Now let’s consider §5¢™(=¥:=7) 'y=x‘ Recall that by definition
Tﬁ(l"y Y, &, 77) = (I)(ya Z, 77) - q)(.’L', Z, 77) + (.’L' - y) : qu)(l', Z, 77) Define

I3 (z,y,2,7n) = e—iw(z,y,z,n)ageiw(x,y,z,n) .

For |G| > 1 we have

3y

fﬂ(xa y7 Z? n)‘yzm = Z H C]'lszagjl’qu)(y7 27 n) |y-—-:r:7

J1 Je=1

52

n, we

(4.15)

(4.16)

(4.17)
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where the sum over j; is finite , ¢j, j, € C and n;, € N for all j;. Note that for any

Jj1 we have
njl
Z |7j1,j2| = 0] (4.18)

Jo=1

Observe that for all 3 such that |3] = 1,
a(z,y, zm)|,_, =0. (4.19)

Therefore in the expression (4.17) we have

Vil 22, Vi, Ja. (4.20)
It follows that
351
> Mival > 2my. (4.21)
j2=1

In order to satisfy (4.18), we conclude from (4.21) that

2n;, < 16)- (4.22)

for all j;. Now, as @ € P, and since |7;, j,| > 2, (we assumed 87®(z,y,§) € SG&Z”Z

for |3| > 1) we have
83”’”@(3;,2, n)‘y:w e SG;;[;Y?J'NQLOJ.

Therefore, by the basic facts about SG functions,

M1 ™y
87jlvj2¢ SGnJl_EJ;il |’7j1,j2|’07nj1
Y (y,2z,m) |y:m € olz,zn :
ja=1
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By (4.18), 35" 12| = 18, s0

njl
H agjlyqu)(% 2, n)ly:m c SGZJ; n|ﬁ| 0 TZJI

ja=1

We have n;, < l—g' for all 53, so

LEFY 4l
ST 2 aw, z,0)],_, € SG""%
J1 J2=1

Simplifying the SG order of the z variable gives

I =181 o 181
Y TIam=(, 2n),_, € SGats 2.
1 J2
Recalling that fﬁ| =3 H"Jl 9,12 d(y, 2, )| =z WE have

fﬁ(xayazvn)l eSGzzn, ’_2_.

By definition,

aﬁ i(zy,z,m) — fﬁ(x Y, 2, 77) i (x,y,2,m)

Noting that e™|,—, = 1, it is clear that

18] .18t

B _iv(z,y.z, 2 0,5
opevleman| € SGry 7 . (4.23)

The result follows from (4.16) and (4.23) by the product rule. We also use the

fact that (z) ~ () on the support of 87(0§a)(z,y, z, Vo ®(z, 2,7), 77)|

.
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Proof of Proposition 4.0.4 By definition

B2, ) 1= lim [ [ o0t o, y, 2 €, n)(ee)dyct
We have, (£) ~ (n) and (z) ~ (y) ~ (z) on Supp(a). So for fixed z, 2,1 we

have

22 =2z €y (5 y 5 € y(e€) < (y) (€)™, (4.24)

for any r € N with the implicit constants independent of €. Therefore, by the

Lebesgue Dominated Convergence Theorem,

Wz, z,n) = / / e an -l zn e oy y 2 € n)dyds.

Expanding a(z,y, z,£,n) in a Taylor series about £ = V,®(z, z,7) gives

—V,P)
alwynen) = 3 E T or0) (a2, v.0,)

lal<M

by ME VY, e - L0),

a!
|a|=M

1
where 14(z,y, 2, — V,0,1) = / (1 —t)yM1(65a)(z,y, 2, V. & + t(€ — V. D), n)dt.
0

Inserting the Taylor series for a and defining the new variable 8 := £ — V,®,

we have

h(z,z,n) = Z // i[@(y,2.m) - @(z,2:m)+(2-y) (0+ V2 (2,2.0))] 9 (aa )z, y, 2, V.®,n)dydd

lal<M

1 z z,z r— M@a
+ Z // i[D(y,2,m) —®(z,2,1) +(x—Y) (§+ V2 (x,2,m))] — ro(2,y, 2, 6,n)dydd

la|=M
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Define

. 9(1
col®y2,m) 1= // el['I’(y,Z,Tl)—¢’(z,zm)+(m—y)~(6+V;q’(m,Z,ﬂ))]J(aga)(m’y’ 2, V@, 7)dydd,

. M 9 [o]
R, = // 2wz~ 2(@.2n)+(z—y)-(0+ V2 2(z,20))] (i‘) ro(z,y, 2, 0, 7)dydé.

Y o Calz, 2,m) is an asymptotic expansion. As before, define
v(z,y,z,m) = ®(y,2,07)—2(z, 2,9)+(z—y) V. O(z, 2,7). Letting F,_¢ denote the

~

Fourier transform sending f(z) to f(£), we have, (up to a multiplicative constant

)

1 _ a w(z,y,z [
o = Pt 0 Fal* 027 (0 0) .y, 2, VuB(5, 2,1), )]

Note that the (z, z,7) section of e¥@v:»m (0ga)(z,y, 2, Vo @(z, 2,1),7) belongs to

S(R™). Converting multiplications by ¢ into y derivatives in the standard way gives

1 of ip(z,y,z le%
CalT,2,m) = o [Dy (e wizy,z.m) (35 a) (z,y,2,V,®(z, Zyﬂ)aﬂ))]yzz-
By Lemma 4.0.5, ) co(z, 2,7) is an asymptotic expansion.
Define Ry, := Z|a|=M R,. By Proposition 2.7.3, we will have h ~ 3~ _ ¢4 if it

can be shown that

Rz = (@) {2)'™ ()™ (4.25)

where Iy — —oo as M — oo. (It is easy to show that the first condition of
Proposition 2.7.3 is satisfied.)
Then, by Proposition 2.7.2 part 1, there will exist a function r(z,z,7) €

SGmitmemsmatms with (x,z,m) ~ »  c(z,2,0). If A = r we’ll be done. If

zVZVn
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h # r then we’ll have h = 7 up to an additive element of S (R**) by Proposition
2.7.2 part 2. This will imply that A belongs to the same SG class as 7.

that h(z, z,n) belongs to the stated SG class.

We will prove the estimates (4.25) in two steps. We introduce the cut - off

(&), where x* € C¢°(R™) such that x*(z) = 1 when |z| < § and x*(z) = 0

when |z| > £.
Define
, 6\ M(6)~ .
In(z, z,m) := // et E=9)0y* (—) ) e“p(z'y’z'")ra(a:, y,2,0,n)dydd (4.26)
m/ o
) 0 M~ .
Ko(z,z,m) = // T V)0 (1 — x*) (—) (9) ev@vany (2 y 2 0, 1)dydd
(m/) o
(4.27)
By Lemmas which we prove later, for small enough ¢ > 0, we have
T < {a) e (g R gyt (4.28)
and given any ¢ > 0, we can choose k to be small enough so that
Ko = ()71l (z) 7ol ) e, (4.29)

Recall that ¢ is the constant in the definition of the cut-off function x* and we

assumed that |z — y| < k(y) on Supp(a).

Using the estimates (4.28) and (4.29) , we see that R, = I, + K, and that

R, < ($>_|a|(z>“|a|<n>—|a| + <x>m1+m2—%<z>m3—'?{—l<n>m4+m5+2n—%l.
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So

=3

Ra = <$>max{0,m1+m2 _%<Z>max{0’m3}—%(77>max{0,m4+m5+2n T,

. As Ry = Z|a|:M R, we have

Ry < <x>max{0,m1 +mp}—2L <Z>max{0,m3}—£4l- <77>max{0,m4+m5+2n}_.1}4_f .
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Lemma 4.0.6. Let a(z,y, z,£,n) € SGrrTzmamums (R » R™ x R® x R™ x R")

z,y,2,€,m

with (x) ~ (y) ~ (z) and (n) ~ (§) on Supp(a). Let ® € P and define
ro(z,y, 2,0,1m) fo (1-t)M-1(8%a)(z, y, 2, V. B(z, z,n)+t0, n)dt. Let x* € C5°(R")

be such that x*(z) = 1 when |z| < £ and x*(z) = 0 when |z| > § Define,

fa,ﬁ(a:, y, z, n) o /dgel(m_y)e (857‘(1("1:’ yu Z, 97 7’)) X* (’(%S) .

Then we can choose ¢ to be small enough so that for any L € N, we have

my+mg—181 ma—181 ma+ms+n— -
fap < (@)™ (2) 0 E (et metnlel(1 4 o — | (n) 7"

Proof. We start by estimating

1
Ta(.T, Y, 2, 93 71) = /0 (1 - t)M_l(aga) (:E’ Y, 2, V(E(I)(xa Z, 7]) + t(9)7 n)dt
We can take y, 6 derivatives inside, so
1
8385%(% Yy, 2,0,m) = / (1- )M l(aﬁaa-H )(z,y,2, V@ + t(6), n)thldt
0

We have

1
/ (1— M1 (0005 a)(x, y, 2, Vo B(z, 2,m) + t(6), m)t"dt
0

< sup ’(a"aaﬂ Wz, y, 2z, Vo O(z, 2,m) + (0 ’/ t(1—M-1dt.  (4.30)

have,

(Vo ®(z, z,n) + t60) ~ (n). (4.31)
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More precisely, (4.31) means that there exist constants cy, c; such that

(Vo ®(z,2,m) +t0) <ci(n) Vi€ [0,1],2,z € R" and 7,0 € Supp(x”)

ca(n) < (Vo ®(z, 2,m) +0) Yt € [0,1], 2,2 € R" and 1,8 € Supp(x*)

The integral fol(l — t)M-1t1 converges for all M € N and multi-indices 7, so

it follows from (4.30) that

9308ra(z,y,2,0,m) < sup (8587 7a)(2.y. 2, Vo2 +1(6),7)| . (4.32)
te[0,1]

Asa € SG 7™ ™ and (z) ~ (y) ~ (2) on Supp(a), it follows from (4.31)

and (4.32) that,

181 18

300 ra(x, Y, 2,0,m) < ()™ ()™ E (yymatmelal=hl, (4.33)

on Supp(x*). We now use the estimates (4.33) to obtain a bound on the y,8

derivatives of f, . Recall that by definition

: 0
fop(x:y,2,m) = / e’V (x, Y, 2,0, m)x* (W> .

Set © = £ — y. Using this notation, we have

fa’ﬁ(m, T — u, Z, n) = fﬂ——l?u [agT'a(fE, T — ua Za 9777)X (E)] .

We remark that for fixed 7, the function x* (%) has compact support in 8. By

integration by parts, we have,

Uwfaﬁ(.’ll, T —1uz, 77) = fe_—lm [Dcé) (857'a(.’15,115 - Uz, 97 n)X*(%)>] .
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Let Ec, = {0 € R" : [0] < §{n)}. We have, Supp(x*) C Es,. Letting po(E ;)

denote the measure of E¢ ,, we have

o)
U fap(e @ —u,2,m) < o(Bs ) sup | D (afra(z,y,z,e,mx*(——))]. (4.34)
. GEEﬁm <77)

As x* is compactly supported, it is clear that

)
x> (W) =< (n)"“’l for all multi-indices w.

Using this fact and (4.33), we have

s (#rale.a — .20 (1) ) < {afmeeme oy . gyttt
(4.35)
We also have
ol Bs ) < ()" (4.36)
To obtain (4.36), note that
po(Esy) =/ de.
1< 5 (m
Define s := WG)' Then pg(Eg ) = (m)" fssg ds < (n)™.
By (4.34) (4.35) and (4.36), we conclude that
u” fop(z, ¢ —u,2,m) < (:1:)"‘”””2—]%(z)ms'%L (p)ymatmstn-ial=lel (4.37)

Multiplying both sides of (4.37) by (n)/! we see that

(I fo p(@, T — u, 2,m) < (@)™ (zyme= i (pymatmstnlal (4 38)



CHAPTER 4. SOME TECHNICAL LEMMAS. 62

It will now be shown that (4.38) implies that for any r € N,

(<n>|u|)r fa,ﬁ(CU, T —u, 2, 7’) (:U, T —u,z 7’) < <$>m1+m2—% <Z>ma—%<n)m4+m5+n—|a|_

(4.39)
To this end, note that (4.38) holds for any multi-index w. Since (4.38) holds for all
w, (4.39) will be proved if we can show that (Ju|{n})" can be bounded by a finite sum
>, uf ()" with |8¢| = r for all 4.(The 5* are multi-indices ) If [u|(n) < 1, (4.39)
follows by taking w = 0 in (4.38). If |u|(n) > 1, then we have (lu|(n))" < (|ul|(n))*

and expanding we have the desired bound. So we have shown that for any 7 € N,

() fng (2,7 = 0, 2,1) < ()2 (gyma i gymetmain=il,

It follows easily that for any non-negative integer L,

(14 ful(m)) fop (@, @ =, 2,m) < ()™ Hma 5 ()3 ymatmaniel - (4.40)

Hence

(@@ —u, 2,m) < (zymtme= 5 (gyma= g ymatmetn-lel (1 4 jy) (n))~E.

Recalling that u = x — y completes the proof. O
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Lemma 4.0.7. Let ® € P and let
U(z,y,2,m) =Py, 2,n) — ®(z,2,n) + (x —y) - Vo @(z, 2,m). If |z —y| < k{y) with
k < 1, then we have

lo] lel

e Ewan < (1 4+ |y — gl () () F (z) 7% .

Proof. We start by determining estimates of y derivatives of ¥(x, y, z,n). Let W :=
{(z,y) € R* x R" : |z — y| < k(y)}. We note first that |z — y| < k(z) with k <
implies that (z) ~ (y). Also, as ® € P, for |a| > 1 we have Bgl,a'(I)(y, z,m) €
Gy .

First we show that for any j = 1,...,n, we have

8,0y, 7,6 m) < (L+ Iy — 2)) 2 for (z,y) € W,

{z)

By the definition of %, we have

aij = ayjq)(ya Z, 7]) - 8%.(1)(1:, Z, 7])‘

By the Mean Value Theorem, we have

nooal
0y, Dy, 2,m) — 0, ®(x, 2,7) = Z/ dtdy, 01, @(z + t(y — ), 2, ) (yr — Tk)-
k=170
Taking moduli, we have

Oy, ®(y, 2,m) — 0:,2(z, z,m) < |y — x| S‘[épl]@?)@? +i(y — =)
telo,

For (z,y) € W, we have sup;¢jo yy(n)(z +t(y — 2))™" < (n)(z)~". (We used the fact

that k£ < 1 which means that on W we have |z — y| < ¢(z) for some ¢ < 1.)
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Therefore

(m) (n)

for (z,y) € W. To obtain the second inequality we used the fact that

ly —a| < 1+ |y— 2| for all z,y € R”. Recalling that d,% = J,,P(y,2, 1) —

J

0r;®(z, 2,m) we have established that
Oy by, 2,m) < (1+ |y — a|(n)) ()" (4.41)
for (z,y) € W. As ® € P, it follows that for |a| > 2 we have,
(g, 2, m) < {m) ()1l (4.42)
Since {z) ~ (y) on W we have
a(z,y, 2,m) < (=)', (4.43)

for (z,y) € W.
Case |a| = 0. Obvious since ¢ < 1.
Case |a| = 1. Follows immediately by (4.41).
Case |a| = 2. Let a = e;+e¢; for ¢, j arbitrary. Recall that e; is the multi-index

with 1 in the ith place and zeroes elsewhere. Then
a;ceiw(m,yzm) — [(vy¢)a + a;i wa;j w] (@ y.zm)

The result for |a| = 2 follows from (4.41) and (4.43).
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Case |a| > 3 Now, by induction, we have

Ty
. X ﬁ g
83611/)(x,y,z,n) — E : [ (Vy’(b(x, Y, 2, 77))911 H 8y11 92<I>(y, Z, 77)+
I Ja=1

+(Vyp(z,y,2,m)" +
mjl )
+ H 8;j1'j2(1)(y7 Z, 77)] ellﬁ(x,y,Z,n)’ (444)

ja=1

where the sum over 7; is finite and we have the following statements holding:

18152l 22 Vi1, 2

|'7j1,j2| > 2 leaj2

Tle
65,1 + Z Bjrge =0 Vi
Ja=1
m]'l
Z |'7j11j2| = ||V
Ja=1
my,, Ny S % (445)

The Lemma follows from the above statement about the structure of derivatives

of e¥(@¥:21 ysing the estimates (4.41) and (4.43).
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Lemma 4.0.8. Let ®(z,y,£) € P and define

Y(z,y,2,n) = By, z,m) — (z,2,9) + (. —y) - Vo P(z, 2,7).

Let a(z,y, 2,&,n) € SGL e ™™ (R? x R* x R* x R™ x R™) with (z) ~ (y) ~

(z), () ~ (&) and |z —y| < k(y) for k < % on Supp(a). Define ro(z,y,2,0,7n) =
fol(l—t)M_l(Bfa)(as,y, 2, Vo ®+t(0),n)dt. Let x* € C(R™) be such that x*(z) =1

when |z| < ¢ and x*(x) = 0 when |z| > § Define,

, 0\ Mo~ .
Io(z,2,m) = // A% (W) o e'w(z’y’z’")ra(:c,y,z, 6,n)dydd.

Then, if we choose the constant ¢ in the definition of x* to be small enough, we

have

lo] _lof f=1]

Io(m, 2,m) < (z)™Hm70 ()= T ()t mstinsy
Proof. By definition

. 0\ M(0)> i
Ia _ /ezx-BX-x (m> %;)fy—ﬂ [etw(x,y,z,n)ra(x’ Y, 2, 9, 77)] dé

The (z, 2,7, §) section of e¥@¥=Mr (x,y, 2, 0,7) is in S(R™). Converting 6 mutli-

plications into y derivatives, we have, up to multiplicative constants,

L= [ (U%) Fya (00 [VE8 M (2, 2,0,7)]) d6.

Inserting the definition of the Fourier transform gives

I,= //Bl(x_y)'ex* (m> 0y [elw(x’y’z’")ra(as, y, z,0,m)] dydf. (4.46)
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Define

Using this notation, (4.46) becomes

L= Y [ fasloy,znjogseme,

BLa

up to multiplicative constants. By Lemma 4.0.6, we have

Fag (@9, 2,m) < (@)™Hm 3 (2ymem g ymatmatnclal(] 4|z g ()7, (4.47)

for sufficiently small c¢. Now, recall that

Ia(ma Z, 77) = Z / fa,ﬁ(l‘, Yy, z, n)@;_ﬁew(x’y’z’")dy

BLa

On Supp(fas), we have [z — y| < k(z) with £ < 3. So, by Lemma 4.0.7 we

have

a—03 w(x,y,z a— la=pl -
geBeitensn < (14 |y — o|(n)) By~ (z)y"7 (4.48)

with (4.48) holding on Supp(f. ). By (4.47) and (4.48) ( and since (z) ~ (z) on
Supp(fas) ) we have

foso(@,y, 2,m)5 0B < (gymmaE ()R gy memen S

(L4 Jy = 2[(n))* =P (L + o = yl(m) ™"

(4.49)
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Therefore, taking the maximum in each exponent when 3 ranges over its pos-
sible values (i.e. 8 < «)) we have

Iy < {a) "R (e e

/ (L+ Jy — 2)(m))'!(L + |z — ] (n)) Py (4.50)

Let L = |a| + Ly, where Ly, € N. Then, (4.50) becomes

[ la| lo|

]a ~ <$>m1+mz—T (z>m3—7 <n)m4+m5+n——2—

/ (1+ |z — ylin) "y, (451)

Once we show that for sufficiently large Lo

/ (14 fz — yl(m))2dy < ()™, (4.52)

we’'ll be done by (4.51). To see this, define the new variable v := z — y and choose

Lo even. Setting Lo = 25, observe that

(1 + () 2 (ful (Zu ) .

Define v := (n)u. Changing variables again we see that

Jasle—vimy By < o [ ime

n |’U| 2s

. 1
For s > %—1, the integral fmn de converges, so

/ L+ |z — yl(m)) " 2dy < ()™
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Lemma 4.0.9. Let ®(z,y, &) € P and define ¥(z,y, z,n) := Oy, z,n)—P(z, z,n)+
(z—y) & Let a(z,y,2,6,m) € SGo, 2" (R™ x R™ x R x R™ x R") with
(z) ~ (y) ~ (2), (n) ~ (&) and |z —y| < k{y) for k <1 on Supp(a). Define 8 :=
£ — V. 0(z,z,m) and ro(z,y,2,0,n) := fol(l — t)M“l(Bga)(z, Y, 2, Vo ®(z,2,n) +
t0,m)dt. Let x* € C°(R™) be such that x*(z) = 1 when |z| < § and x*(z) = 0

when |z| > £ Define,

Ko(m, 2,1m) = / / glle-u)? (1 -x* (%)) %61”(“”’9'“’)%(2,1/,2,9,n)dyd9

Then, given any ¢ > 0, we can choose k to be small enough so that we have the

following estimates for large |a/|;
Ky < (z)71ol(z) 7ol () el

Proof. We assumed that |z —y| < k(y) for k < 1 and (z) ~ (y) ~ (2) on Supp(a).
It follows from the definition of r, that these statements also hold of the support
of r,. We remark that the implicit constants do not depend on a.

We now show that, given any ¢ (the constant in the definition of x*), we can
choose k small enough so that on the support of 7, (1 — x*), we have V, [¥(z, y, 2, 7)+

(x —y) - 0] = (8) + (n). Clearly
vy[¢(z) Y, z, 77) -+ (Z’ - y) : 9] = Vy¢($:ya Z, 77) - 0.
By definition, ¥(z,y, z,1) := ®(y, z,7) — ®(z,z,n) + (z — y) - V. @(z, 2, 1). So,

V(z,y,z,m) = Vy,@(y, 2,n) — V@ (z, 2, 7).
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We assumed that 9¢®(y, z,n) € SGYy, for |af = 1. Since |z — y| < k(y) on

the support of r,, it follows from the mean value theorem that there exists some

constant C such that

qu)(ya z, 77) - vmq)(xa z, "7) S kC<"7>,

on the support of r,. Therefore, on the support of the integrand of r, we have

|Vy[¥(z,y, 2,m) + (z —y) - 0] > 0] — kC(n). (4.53)
Obviously
6] — kC{n) = l%‘ + ('—g—l - k0<n>) : (4.54)

On the support of (1 — x*), we have |6 > $(n). So given any c, we can choose k

small enough so that
0
(% - kC(n)) = (n), (4.55)

on the support of ro(1 — x*). Also, 8] > £(n) implies that |§] > €(0), for some
€ > 0. So, it follows from (4.55) and (4.54) that given any ¢, we can choose k to be
sufficiently small so that |V [¥(z,y, z,7) + (z — y) - 8]| > (6) + (n) on the support
of the integrand of 7,(1 — x*).

Therefore, the operator Uy, is well defined (with w := ¥(z,y, z,7)+(z—y)-0.)

We will abbreviate U, ,, to U,. Applying U, s times and integrating by parts gives,
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K, = // ei{w(ﬂr,y,z,nﬁ)}(l —x) (_(%) >

X (UyT) “{rolz,y, 2,0,n)} dydf (4.56)

Recall the form of (U] )°;

1
T\r __ e
(Uy) - |Vyw|45 ZPC,say'

¢<r

In the above, up to multiplicative constants, F, is a sum of terms of the form

(Vyw)dw... 0w , with, |y] = 2s, [6;] > L and (| +>75_, [6;] =25. As P € P

we have

Bw < ({0) + (m)) (w)* 1, (4.57)

on the support of r,. Recalling the definition of P ,, we can use (4.57) to see that
Per < ((0) + (m))™ (y)* 231,
on the support of 7,. Since Y] |6;] = 25 — |¢|, we have
Pro < ({0) + ()™ (y)I=, (4.58)
on the support of r,. We showed earlier that
[Vyw| > (6) + (m), (4.59)
on the support of r,. Now we need to estimate

C
3yra(m, Y, =, 97 77)
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Recall that by definition
1
re(T,y, 2,0,m) = / (1- t)M‘l(ag‘a)(x, v, z, Vo @ + (), n)dt.
0
Differentiating under the integral sign we have
1
&ralz,y,2,0,n) = / 1 —)M-Y(8565a)(x, y, 2, V. + t(8), n)tMdt
0

Recall that a(z,y, z,€,m) € SG 7, 2""™. We are interested in the behaviour

for large ||, so we may assume that my — |a| < 0. For |a| > my, we have
0ra(,y,2,0,m) < ()™ (y)™> 71 (z)™ (m) ™. (4.60)
Using (4.58),(4.59) and (4.60), we have

(U?;[)S Ta(x7 Y, z, Ha 77) =

(@)™ (y)™ 72 (2)™ ()™ ((m) + (6)) " (4.61)

The proof is complete when we recall that (z) ~ (y) ~ (z) on Supp(r,) and

({n) +(0))™" < (n)~2(9)~% (by choosing s to be sufficiently large). O



Chapter 5

Composition of Type P operator

with Pseudo.

This will be a short chapter as most of the results we need were proved in chapter

4. Again, we follow the proof of the corresponding result in [3].

Theorem 5.0.1. Leta(x,y,£) € SGZ’E;:E"Q’M (R™ x R™ x R") for any my, mg, mz €

R and ®(z,y,€) € P. Define A = FIO(®(x,y.§),a(z,y,£)) . Let p(z,y,§) €
LS'CT'?’;:"&J3 (R™ x R™ x R") for any t1,ts,t3 € R and let P := Op(p(z,y,£)). Then,

modulo IC,

P o] A = FIO ((I)(IL', Z,’I’]),C(l’, Zﬂ?))

where c(z, z,n) € SGpitmathlzmstts We qlso obtain an asymptotic expansion for

c(z, z,m).

73



CHAPTER 5. COMPOSITION OF TYPE P OPERATOR WITH PSEUDO.74

Proof. In this proof, all integrals are over R™. Let x(z,y) € Z2(k), with k > 2¢g

and let X1 € EA(kl) with ]Cl € (0, 1) Define ARed and PRed as follows:

Apeq = FIO (®(z,9, ), a(z, v, x(z, y)x(y, 7)),

Pred := Op(p(z, 9, )x1(z, v)xa(y, 7)) (5.1)

We have A = Ap.y and P = Pg.y modulo K. So, by Proposition 4.0.1 we have
Ao P = Ag.q 0 Preq modulo K.

Define
Arcasuly) = [ [ expli®,z.m)alo. 2 0x(z9)x(w. Pr(Enulz)dzdn. (52
By definition
Apequ(y) = (%I_I’% Apgeasuly). (5.3)

Now, Apeqsu tends to Agequ in S (R™). So, as Pgreq sends S (R") to S (R™) con-

tinuously, we have

6—0e¢—0

(Prea© Aea)u(e) = il [[ [ [ expli (@02, + (@ =) Ohp(a,0. Daly, 2m)x

x(z, 9)x (v, 2)x1(z, ¥)x1(y, £)y(on)v(e§)u(2)dzdndydE.

(5.4)

For convenience define a(z, v, z,£, 1) := p(z, v, §)aly, z,m)x(z,¥)x (¥, 2)x1(z, ¥)xa(y, ).
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So, using this notation, we have

(Prea© Area)u(e) = ity [ [ [ [ expfi (@2 + (@ =) )}

d—0e—0

xa(z,y, 2, &, n)y(6n)v(e€)u(z)dzdndyds.  (5.5)

Let xy € Z2(k2) where k; € (0,1). By making a partition of unity using

x2 (Vy®(y, z,7),€), we can use Theorem 4.0.2 to see that

(Pred © Aped) u(z) = limlim / / / / exp{i (B(y, z,m) + (z —y) - )} x

d—0e—0

xa(z,y, z, & Mx2(Vy @y, 2,7), )v(0n)y(e€u(z)dzdndyds,  (5.6)

modulo Ku where K € K. Define b(z,y, 2,£,7) = a(z,y, 2,&,m)x2(Vy®(y, 2,7), )
and let gs(z,v,2,&,m) denote the integrand in (5.6). Now, on Supp(b), we have
(z) ~ (y) ~ {z) and (§) ~ (n). Also, for fixed § we have () < 1 on Supp(gs.).

Using these facts and as u € S, it follows that for fixed J we have

9s(2, Y, 2,6, m) < (2) () (2) ") T M, (5.7)

for any r € N, with the implicit constant independent of €. So, we can apply the

Lebesgue Dominated Convergence Theorem to obtain

(Pred © Aped) u —hm////exp{z (y,2,m) +(z—y) - §}x

xb(z,y, z,&,m)v(6n)u(z)dzdndydE. (5.8)
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By the estimates (5.7) we can re-order the integrals in (5.8) to get

(Pred © Ageq) u(z) = hm////exp{z (y,2,m) + (z —y) - §)}x

xb(z,y, 2,&,n)7(6n)u(z)dydédzdn. (5.9)

Multiplying by exp{i®(z, z,71)} exp{—i®(z, z,n)} which is just 1 we have

(Pred © AReq) u(z) = hm // exp{i®(x, z,1)} x
[/ [ expli (@2, = Bz 2.0) + (2 = 1) - Dbl v. 2. m)yde]

xy(6n)u(z)dzdn.  (5.10)
Define

o, 2,7) = / / expli (8(y, z,m) — B(z,2.7) + (£ — y) - €)}b(z,y, 7 €, n)dyde.

The proof will be complete it we can show that ¢(z, z,7) € SGpitmathtzmatts The

function b in the definition of ¢(z, z, n) satisfies the conditions of Proposition 4.0.4.

Therefore, for small enough k;, (the constant in cut-off x;) we have c(z, 2,7) €

SG;H;-IT-’mzﬁx it2,mat+t3 gnd

1
e(z, 2,7) ~ Z — [Da [ i(z,y,2,m) (85b) (m,y,z,Vx(I)(m,z,n),n)]]y:m,

where ¥(z,y,2,1) = ®(y,z,n) — ®(z,2,n) + (x — y) - Vo®(z, 2,7). Recall that

b:=p(z,y,E)aly, 2 M)x(z v)x(¥ 2)x1(z,¥)x1(y, £)x2(Vy2(y, 2,7), §) O
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Remark By the remarks following Proposition 4.0.4, we actually have ¢(z, z,7) €
SG’;:‘;:’,’]"”“ where p and ¢ are any real numbers such that p+q = mqy+my 4+t +1;1.

Let A be a Type P FIO and let P be a pseudodifferential Operator. As we
shall see, the fact that the composition A o P is a FIO follows from the previous

Theorem.

Theorem 5.0.2. Leta(z,y,€) € SGT) ™ (R™ x R™ x R*) for anymy,mg, m3 €

R and ®(z,y,€) € P. Define A .= FIO (®(z,y,§),a(x,y,&)) .Let p(z,y,§) €

SGH5 (R? x R x R™) for any ti,ta,t3 € R and let P := Op(p(x,y,£)). Then,

z,9,€

modulo K, the composition
Ao P=FIO(®(z,z2,n),c(z,2z,n))
where c(z, z,m) € SGPaimMThmstts We also obtain an asymptotic expansion for
c(z, z,m).
Proof. Consider (Ao P)" . This is PT o A”. Now,
ATu(e) = tmy | [ expit (v, €)}ao(z, . 106 uly)avee,

where U(x,y,£) := ®(y, z,€) and ag(z,y, &) = a(y, z,&). This is a FIO because of

the symmetry of the phase assumptions in z and y. Also,

Pu(z) = lim [ [ explily — z) - E}p(y, 2, €y (5€)uly)dyde,

Define € = —¢ and changing variables we have

) =l / / expli(z — y) - E}ply, 7, —E)y (—0€)u(y)dydé.
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Since 7(—65) is also a mollifier, PT is a ¢do with symbol p(y,z, —€£). Define
po(z,v,€) = p(y,z,—&). We can now apply the previous Theorem 5.0.1 to see
that

PT o AT = FIO(W(z, z,1), c(x, 2,1))

where c(z,z,7) € SGpztmttahimstls ynd

1 )
e(z,2,m) ~ 3 — [D [0 (820) (2,1, 2, VU (z, 2,7),m)] ] (5.11)

al y=z’

o

where ¥(z,y,z,m) = ¥(y,2,n) — Y(z,2,n) + (z — y) - Vo ¥(z,2,n). with b =

po(z, v, §)ao(y, 2, m)x (2 ¥)x(¥, 2)x1(z, ¥)x1(y, ) x2(Vy ¥ (y, 2,7), £). Taking trans-

poses again, we have
(PT o AT)T = FIO(®(z, 2, 1), co(z, 2,7m))

where cy(2, 2,1) = c(z, z, 7). (Recall that ¥(z,y, £) := ®(y, z,&) ) Since (P o AT)T =
AoP wehave AoP = FIO(®(x, z,7), co(z, 2,m)) with co(z, 2,m) € SG;{;%”"LIHZ’”?’HC“.

We also have

1 :
CD(:Ea = 77) ~ Z 0 [Dg [elw(zyy,z‘,n) (az?b) (Z, Yy, T, VQ(I)(:Ea =2 T’)’ T’)]] ’

O!! y=z
where 9(2,y, z,7) 1= ®(z,y,7)—P(z, 2,7)+(2—y)- V2 @(2, 2,1). with b(2,y,z,{, 1) :=
p(ya Z, —€)G($, Y, T’)X(:Ea y)X(:U: $)X1(Za y)Xl(y, Z)Xg(qu)(.’ﬂ, Y, T’), ‘5) We Obta‘iHEd the

above asymptotic expansion from (5.11) by inserting our definitions of ¥, py and

ao and interchanging 2z and z.
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Remark In the above Theorem, we actually have c(z, z,1) € SGRL7e** where

p and g are any real numbers such that p + ¢ = my + my + 15 + 1.



Chapter 6

SG Diffeomorphisms

In this chapter we shall discuss changes of variable which preserve the SG structure.

6.1 Global Inverse Function Theorem

Let V C R" be open and let f € C* (V,R™). The Jacobian matrix of f at zg € V

is the n x n matrix with 7, 7 entry %
7

o Lhe “Jacobian” of f at xq € V is the

r=

determinant of the Jacobian matrix of f at z.

Theorem 6.1.1. (Inverse Function Theorem) Let f € C'(E,R") for some
open set E C R™. Suppose that the Jacobian of f is non-zero at some point g € E.

Then there exist open sets U,V C R™ with xg € U such that:

e f is a bijection from U to V,

80
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e The inverse map f~':V — U belongs to C*(V,R™)
We now state a global version of the Inverse Function Theorem.

Theorem 6.1.2. (Global Inverse Function Theorem) Let f € C'(R",R").
The function f is a diffeomorphism if and only if the Jacobian of f is non-zero

for all z € R™ and |f(z)| — o0 as |z| — oo.

Theorem 6.1.2 is proved in [12]. For more details about global diffeomorphisms
see [1] and [21]. There are also results, due to Hadamard, about global diffeomor-
phisms between more general manifolds. These are discussed in [21].

We state the local Implicit Function Theroem for completeness.

Theorem 6.1.3. (Implicit Function Theorem)

Let f(z,y) € C' (U,R™) where U is an open neighborhood in R™ x R™. Suppose that
for some point (xo,y0) € U we have f(zo,y0) = 0 and (8yjf,-)zj=1 has non-zero
determinant at (zo,%). Then there ezists a unique function g : V. — R" defined

in an open neighborhood V. C R™ of xy, such that g(zg) = yo and f(z,g(z)) =0

for all z € V. Furthermore, g € C* (V,R").

6.2 SG Changes of Variable.

In this section we prove some results about SG structure preserving changes of

variable. All of the results presented here generalise to cases involving more vari-
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ables.

We start with a standard result. See [3].

Lemma 6.2.1. Let a € SG_;"™ (R™ x R™) and let the function h = (hy, hs) be
such that by € SGy (R™ x R, R™) with (hy) ~ (z) and hy € SG¢ (R™= x R, R™)

with (he) ~ (€). Then the composition ao h € SG:?g’mf (R™= x R™).
Proof. By induction. O

Lemma 6.2.2. Let V C R™ x R"™ be open and let F(z,§) = (Fi(z, &), F>(x,£))
belong to C* (V,R™ x R"%) with F; € C* (V,R™) and

Fy € C™ (V,R™). Assume that the following statements hold on W C V :
1. Fori=1,...n,, (F1),, the ith component of Fy, satisfies S’Gi’g estimates,
2. Fori=1,...n¢g(Fy),, the ith component of Fy, satisfies S’Gg’é estimates.

Let JM (F) denote the Jacobian matriz of F and let Adj (JM (F)) denote its

adjugate matriz. Then,

rie - [ B | [Aee Bee )
C(z,&) D(z,§), C’(x,f) D(x,f),

where

1. A(z,€) and A(z, &) are ng X n, matrices of functions in C* (V,R) satisfying

S Gg’_g estimates on W,
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2. B(z,€) and B(z,£) are n, x ng matrices of functions in C® (V,R) satisfying

SG;EI estimates on W,

3. C(z,€) and C(z,€) are ng X n, matrices of functions in C® (V,R) satisfying

SG;E’I estimates on W,

4. D(z,€) and D(z,€) are ng x ng matrices of functions in C* (V,R) satisfying

SGS’E estimates on W.

Proof. By definition, for the Jacobian matrix, A;; = 0,, (F1);, Bi; = 0, (F1);,

Cij = O, (F2);, and Dy; = &, (F3);. So, by assumptions 1 and 2, the Jaco-

i

bian matrix has the stated form. Now consider Adj (JM (F)). (We will shorten

Adj (JM (F)) to Adj.) By definition, the i, j entry of Adj is
Adj; ; = (—1)" det M*7, (6.1)

where M%7 is the matrix obtained by deleting row j and column : from JM (F).
We will show that each entry of B satisfies S Gi”gl estimates on W. That A, C and
D have the stated properties follows in exactly the same way. By (6.1), the r,s
entry of B is

B, = (1)t det M5,
It then follows from the structure of the Jacobian matrix JM (F') that

F
]\41‘,7175 +8 —

G H,
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where

1. E(x,€) is an n, X (n, — 1) matrix of functions in C*° (V, R) satisfying SGg’g

estimates on W,

2. F(z,&) is an n, Xnge matrix of functions C* (V, R) satisfying SG;EI estimates

on W,

3. G(z,£) is an (ne — 1) x (n, — 1) matrix of functions C* (V,R) satisfying

SG, é’l estimates on W,

4. H(z,£) is an (ne — 1) x ne matrix of functions C* (V,R) satisfying SG&%

estimates on W.

We are required to show that det M""=*5 satisfies S G}E”El estimates on W. To
do this, we will multiply rows and columns by SG functions to reduce M"™™=** to
a matrix of functions satisfying SGg’g estimates on W. To do so, we carry out the

following steps:
1. Multiply the first n, rows by 2:}:—)’
2. Multiply the last n, — 1 rows by é,
3. Multiply the first n, — 1 columns by (z),

4. Multiply the last ne columns by ().
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After cancellation, we have ((—% det M""=7$ is equal to the determinant of a matrix

of functions satistying SGg’,g estimates on W. So,

@ det M7 "=t3 gatisfies SGg’,g estimates on W.

()

Since % € ESG;é’l (R™ x R™), it follows that

det M7™=T¢ gatisfies S Gigl estimates on W.

As B, s = (—1)Tstm= det M"™™=*5 we're done. .

Proposition 6.2.3. Let F(z,£) = (Fi(z,§), Fa(z,€)) be a C* diffeomorphism
from 'V C R™ x R™ onto its range with F; € C* (V,R") and
Fy, € C* (V,R™). The variables in 'V are denoted by z,§ and those in F(V) are

denoted by 7,E. We also write

F(z,8)

I
N
My

|
—
g
-
——
IS
Iy
N’
—~
K
—
g
(3]
——
=
8
N’
—

We assume that
1. (F)) ~ (z) and F satisfies SG;:g (R™= x R R"™*) estimates on W C V,
2. (Fy) ~ (&) and F» satisfies SGgé (R™= x R™ R"™) estimates on W C V,
3. the Jacobian of F satisfies ESGg’,g estimates on W C V.

Then, we have
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1. (F7Y),) ~ (&) and (F7'), satisfies SG;’E (R"*= x R™ R") estimates on
F (W),

2. (F7Y,) ~ (&) and (F™'), satisfies SGgé (R"= x R"¢,R™) estimates on
F(W),
3. The Jacobian of F~' = 1 and satisfies SGOi’g (R*= x R"¢, R) estimates on
Proof. As F is a diffeomorphism from V onto F' (V') , we have the following equality
for all Z,€ € F(V):

#| | B(FED @ (F @)

- (6.2)
¢ \B(F @9, (F 1, @9).
As Fi(z,€) ~ {(z) and Fy(z,&) ~ (£) on W, it follows from (6.2) that
((F_1)1> ~ {(Z) on F (W)
(F1),) ~ (€ on F(W). (63

All functions are smooth so we can differentiate (6.2). Define @ := (&, &). Differ-
entiating (6.2) with respect to w; gives
ei = JM(F)(,€) loe(r1), 3.8 6=(F),2.6 O (F) (6:4)

where JM(F) is the Jacobian matrix of F' and e; is the n; +n, dimensional vector

with ith entry equal to 1 and zero otherwise. So,

Oa, (F71) = (IM(F)) ™ amirn) 5.8 6=(r-1(2.8) & (6.5)
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By assumption 3, de—“m satisfies SGg”g estimates on W. So, using Lemma

6.2.2, we have that for (z,£) € W

A(z,§) Bz, ¢)

Clz,€) D(z,¢),

(JM(F))™ (z,€) =

where

1. A(z,£) is an n, X n, matrix of functions in C* (V, R) satisfying 302;2 esti-

mates on W,

2. B(z,€) is an n, Xng matrix of functions C* (V, R) satisfying SG:_,’EI estimates

on W,

3. C(z,£) is an ng X n, matrix of functions C* (V, R) satisfying S G;ﬁé’l estimates

on W,

4. D(z,€) is an ng X ng matrix of functions C* (V, R) satisfying SGg’g estimates

on W.

By (6.4) and the structure of the inverse, we have
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where A, ;, B; ;,C; ;, D; ; satisfy SG%Y SsGh7t SGI ! and SG®Y estimates respec-
J J ¥ V] z,£ z,£ z,§ z,§
tively on W

Recall that

)) ~ (%) on F (W),

——
My
)
—
N’
—_
Py
8
Y

)) ~ (§) on F'(W). (6.7)

——
ry
|
—
—
[ ]
Pamny
81
Iy

It follows from (6.6) and (6.7) by induction that (F~!), and (F~'), satisfy
SG;”% (R"= x R™,R") and SGg’;— (R"= x R™, R") estimates respectively on F' (W) .
Part 3 follows from parts 1 and 2 using similar arguments to those used in
the proof of Lemma 6.2.2. (We multiply rows and columns by (z), (§), (z)~'(§) ™!
to reduce to a matrix of functions satisfying SG%9 estimates and everything we

multiply by cancels.) We also use the fact that the jacobian of F' ~ 1 on W.
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Proposition 6.2.4. Let V be an open subset of R™ xR" and let a(z, &) € C (V).
Suppose that a(z,€) satisfies SG g estimates on W C V. C R™ x R". Let
G(z,€) = (Gi(z,§),Ga(z, ) be a C% diffeomorphism from V to G(V), with

Gi(z, &) € C=(V,R™) and G4(z, &) € C= (V,R%). Assume that
1. Gyi(z, &) satisfies SG;’E (R"I x R™,R™) estimates on W,
2. (Gi(z,8)) ~ (x) on W,
3. Gy(z, &) satisfies SGg’éR"I x R, R estimates on W,
4. (Galz, €)) ~ (&) on W,

5. The Jacobian of G satisfies ESG%E estimates on W.

Then the function a((G™), (&, &), (G™Y), (Z,€),) belongs to C* (G(V)) and satis-

fies SG;"E’ME estimates on G (W) .

Proof. The fact that a((G™Y), (Z,€), (G™1), (z,£),) belongs to C® (G(V')) is obvi-

ous. By Proposition 6.2.3, the assumptions 1,2,3,4 and 5 imply that

-y
——
—~
4
—
:._/
——
=2

!

)) ~ (&) on G(W),
2. (G, (%,€)) ~ (€) on G (W),

3. (G™1), satisfies SG;’g estimates on G (W),

4. (G™1), satisfies SGg’é- estimates on G (W).
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Therefore a((G™Y), (Z,€), (G™1), (7, £)) satisfies SG™=™¢ estimates on G (W) . (by

an obvious variant of Lemma 6.2.1.) a

The next result is important when considering changes of variables in integrals.

Proposition 6.2.5. Leta(z,£) € SG™ ™ (R™ x R™) and suppose that Supp(a) C
V, where V is an open subset of R™ x R™. Let G = (G1(z, &), Ga(x,§)) be a C
diffeomorphism from V' onto its range G (V). (with G,(z,§) € C*(V,R™) and

Go(z, &) € C=(V,R™) ) Assume that

1. Gy(z,&) satisfies SG}C’E estimates on Supp(a),

2. (Gi(,§)) ~ (z) on Supp(a),

3. Ga(z, &) satisfies SGL estimates on Supp(a),
&3

4. (Ga(z,€)) ~ (£) on Supp(a),
5. The Jacobian of G satisfies ESGz’g estimates on Supp(a).
Then the function
a ((G—l)1 (3,€), (G, (&, é)) | det 8z 5, G,
(where det Oz 5 G™' is the Jacobian of G™1) satisfies SGZE’m estimates on G (V).
Further, the extended function

o (67, (2,8),(67),@9), 2cqV)

0, otherwise
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belongs to SG?E’mE (R™= x R") .

Proof. The fact that a ((G_l)1 (z,€), ) is smooth on G (V) is obvious.
The SG estimates of a (( D, (&,6),(G™), (& é)) on G (Supp(a)) follow from
Proposition 6.2.4. The Jacobian of G™! is smooth on G(V') and satisfies ES’Gg’g~

estimates on G (Supp(a)) by Proposition 6.2.3. So,
a ((G-l)1 (8), (67, (&, g)) | det 8 5G],

satisfies SGZE’mE estimates on G (Supp(a)).

The only real issue is the extension. If G(V) = R™ x R, then there is
nothing to check - the extended function is just the function. So we assume that
G(V) # R x R,

We claim that G(Supp(a)) is closed in R™=*". If we can show this then it’s
clear that the extension ag is smooth on R™ 7,

We assume that G(Supp(a)) is not closed in R®=*"¢. This means that there
exists a point (zg, &) € R™=T\G(Supp(a)) and a sequence {(z;,§;)} of points
belonging to G(Supp(a)) which tends to (xg,&) in R™%*"¢. We will use the prop-
erties of G to show that this sequence has a subsequence tending to a different
limit.

Since {(z;,;)} is a convergent sequence of points in G(Supp(a)) then the
sequence {(z;,&;)} is contained in a bounded subset of G(Supp(a)). It follows from

assumptions 1,2,3 and 4 that (G7'(,€)) ~ (&) and (G5 (%,£)) ~ (€). It follows
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that the pre-image of {(z;,&;)} is contained in a bounded subset of Supp(a). So
the sequence {G~!(z;,&;)} is contained in a compact set and therefore it has a
convergent subsequence {G ! (zn,,&n,)}, tending to a limit (z,€) € Supp(a), by
the Bolzano - Weierstrass Theorem. Given that ¢ is continuous, the image of
this convergent subsequence under the map G, i.e. {(Zn;,&n,)} tends to G(z,§) €
G(Supp(a)). Since the limit of {(z;,{;)} belongs to R*=*\G(Supp(a)) we have
shown that {(z;,&;)} has a subsequence tending to a different limit.

We have shown that the function ag is smooth everywhere and satisfies SG™="™¢

estimates on its support. So, ag € SG™>™ (R™ x R™).



Chapter 7

Type O Fourier Integral Operator

We now introduce a new class of SG FIO. The basic structure of the operator is

the same as for the Type P Operator but we place more restrictions on the phase

®(z,y,§).

93
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7.1 Definition

Definition 7.1.1. We denote by Q, the set of real-valued smooth functions ®(z,y, &) =

f(z, &) + g(y, &) where f and g have the following properties;

f(z,6) € SGy(R"x R"R), (7.1)

9(v.6) € SG,¢(R" x R",R), (7.2)

(Vof(z,€)) ~ (&), (7.3)
(Vyg(v,€)) ~ (€), (7.4)
(Vef(z,€)) ~ (z), (7.5)
(Veg(y,€)) ~ (v), (7.6)

det (90,86, £);,_, (2,6 = 1, (7.7)
ldet ) 1(y,§)‘ - 1 (7.8)

Remark We will call a real valued function f satisfying (7.1) , (7.3) , (7.5) and

(7.7) a “phase component.”

Definition 7.1.2. Leta(x,y,£) € SGL, 7™ (R"xR"xR") for arbitrary mq, ma, ms €

R and let f(x,€) + g(y, &) € Q. The Type Q FIO A is defined for u € S (R™) by

the following integral;

e—0

) = lim f / 900 4(g. y, €)y(e6 July)dyde,

where v(e€) is a mollifier.



CHAPTER 7. TYPE Q FOURIER INTEGRAL OPERATOR 95

We collect some properties of Type Q operators in a Theorem.

Theorem 7.1.3. Leta(z,y,§) € SG )™ (R*XRxR") for arbitrary my, me, m3 €

R, let f(z,€) + g(y.€) € Q and define A := FIO (f(z,£) +g(y,£), a(z,y,£)) -

Then:
1. A: S(R") = S (R"™) continuously,
2. A is independent of the choice of mollifier,
3. AT = FIO (g(z, &) + f(y,€), a(y, z,€)),
4. A: 8 (R*) — &' (R™) continuously,

Proof. We have @ C P and all the statements hold for arbitrary Type P operators.

(]

Remark. The Type 1 FIO introduced by Coriasco in [3] is the subclass of the
Type Q FIO where we always take g(y,€) = —y - £ and we take the amplitude
a to be independent of y. His Type 2 operator corresponds to the subclass with

f=z-&
Let A: S (R") — S (R"). Recall that for functions u,v € S (R"),
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The adjoint of A, denoted by A*, is defined as the unique operator A*: § (R") —
S (R™) such that

(Au,©) = (u, A*v) Yu,v € S(R").
In the above, the overbar denotes the complex conjugate.

Theorem 7.1.4. Leta(z,y,&) € SG™™2™3(R*xR"xXR™) for arbitrary mi, ma, m3 €

R, let f(z,€)+9(v,€) € Q and define A := FIO (f(z,€) + 9(y,€), a(z,y,)) . Then
A" = FIO (~g(2.€) - f(3.). aly.2,9)) .

Proof. Straightforward recalling the definition of the adjoint operator and using
the symmetry of the phase assumptions in the spatial variables z and y as well as

the fact that ® € Q implies that —® € Q. O
We conclude this section by presenting the reduced form of a Type Q operator.

Theorem 7.1.5. Leta(z,y,&) € SGZ?;:?Q’W (R*xR"xR") for arbitrary mq, mg, mz €

R, let f(2,€) + 9(y,€) € Q and define A:= FIO (f(x,£) + 9(y,£), a(z,,€)) . Let

X € Z2(k) with k arbitrary. Then if we define

ARed = FIO(f(iL’, 5) + g(ya 5)7 a(:z:, y?S)X(véfa vég))X(véga véf))?
we have A = Ag.q modulo K.

Proof. Use Theorem 3.2.2. O
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7.2 Composition Results

We now present the main result of this chapter.

Theorem 7.2.1. Leta(z,y,§) € SG, 7™ (R*XR" xR") for arbitrary my, ma, ms €

Rand let f(z,€) + g(y,€) € Q. Similarly, let b(x,y,£) € SGL 2% (R™ x R" x R")

for arbitrary t1,ty,t3 € R and let r(z,€) + s(y,£) € Q. Define:

A= FIO(f(z,€) + g(y,6), a(z,y,£)),

B = FIO(r(x,€) + s(y, ), b(z, v, £)).
Then:

1. If g(y,€) = —r(y,€) Yy, &, we have AoB = FIO(f(x,6)+5(y,£), a(x,9,§))

modulo K with ¢(x,y,§) € SGQZ:?”“ for any p,q € R such that p+ q =

my + mg 4+t + to. We also obtain an asymptotic expansion for c(z,y,§).

2. Ifg(y,&) = —r(y,€) Vy,€ and f(z,§) = —s(z,§) Vz,§, we have Ao B =

Op(é(x,v,£)) modulo K with &x,y,€) € SGZ@’?SM for any p,q € R such
that p+q = my + mg + ty + t3. That is, the composition Ao B is a ydo.

Again we obtain an asymptotic expansion for &(x,y, §).

In the proof of Theorem 7.2.1 will use results from Chapters 3,4 and 6 as well
as some lemmas which we now present. The following result is proved in Coriasco
[3]. We include the proof for completeness. Note that all the changes of variable

in this chapter are of the type used by Coriasco in [3].
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Lemma 7.2.2. Let f(x,§) € SG;E(R"XR",R) be such that (V, f(x,£)) ~ (€) and
det ((9xi(95jf)zj:1 (z,8) » 1. Let Wy, := {(z,y) € R*" : |y — z| < k(z) with k < 1}
Suppose that we define a real-valued function h = (hi(z,y,€),...,hn(z,9,£)) 0

Wi x R" as follows:
(z,y, & / o, flx+t(y —x),&)dt

Then we can choose a constant k < 1 to be small enough to ensure that

,0,1

1. Each component h;(z,y, &) satisfies SGO ry¢ €stimates on Wi x R",

2. det (agj hi)Zj:l (z,y,€) > 1 on Wi x R" and
3. (hlz,y,£)) ~ (§) on Wi x R".

Proof. Condition 1. By definition h;(z,y,§) : fo o, f(x+t(y—x), £)dt. Clearly

we can differentiate under the integral sign so that
1
020500 (. €) = | 050707 [01,f(a+ tly — ), ).

This is just

1
/ (1-— t)""'t'maf‘w%j(?;f(x +t(y — ), &)dt.

0

As usual,d) means “derivative in the first variable, counting from the left.” Now,
k < 1 means that for (z,y) € W, we have () ~ (y) ~ (x +t(y — z)) for ¢ € [0, 1].

Since f(z,§) € SG;‘E we have

[ DA oty — 20,0 < ()7 )
0
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on W, x R™. So Condition 1 is satisfied.

Condition 2 Note that we can write

1
alzf(mag) = ./0 alif(mﬂg)dtl-

So,

hi(:c,y, f) - allf(m,f) = ./0 [alzf(m + tl(y - :E)vg) - alif(xv 5)] dtl' (79)

By the Mean Value Theorem, the right hand side of the above equation is

1 p1n
/ / Z A1, 01, f (x + tita(y — =), Ot (yr — zr)dtadty.
0 0 =

So, (7.9) becomes

hi(z,y,&) — 1, f(z,8) = / / Zal O f(z + tita(y — x), )1 (yr — z,)dtodty.

Differentiating this expression with respect to &; and rearranging gives

85 (LL‘ Yy, 5) 85181 T 5 / / Zalral 851 (LL‘—FtlfQ(y LL‘) g)tl(yr—l‘r)dtgdtl.
Consider
&, 0,0, f(x + tita(y — 7), §)t1(y, — zr)dtadty

Recall that f(z,&) € SG;;Z Also, for (z,y) € W), we have {z + t1ta(y — z)) ~
(z) ~ (y) with implicit constants independent of #;,t, € [0,1]. We also have

(x + tito(y — 3)) > (1 — k)() for (z,y) € Wy and ty,t, € [0, 1]. Therefore
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1 1 : k
/ / 01.01,0¢,f (x + tata(y — @), iy — z,)dbadty < 77—
0 0 -

So, we have shown that 0 hi(z,y, §) = 01, f(=, &)+ M, ; where each entry of the

matrix M;; < 5. It follows that we have

det (O, hi(z, y,f))zjzl = det (O, 04, f(z, f))zjzl + Zgl(x,y, £) (7.10)
!

where the sum is finite and each function g;(z,y, £) is a product of elements of
(0,01, f (z, f))zjzl and elements of M with at least one of the terms in the product
coming from M. Since each entry of &0, f(z,£) < 1 for all 4,5 and M;; < 1—f—k
for all ¢, 7, we have

(2,9, 6) < T

on W;, x R™, for all [ in the sum. Since the sum is finite we then have

k
Zgl(:v,y, f) < Tk, on Wk x R". (711)
l

Recall that det (8,1, f(x, £)) _, = Lon W xR™ So, by (7.10) and (7.11) we can

1]
choose the constant k small enough so that det (851, hi(z,y, 5))?;':1 = 1 on Wy xR™.

Condition 3. Showing that (h;(z,y,£)) < (£) is straightforward. For the

lower bound note that by (7.9), we have

hi(z,y,€) — 311-f(55,f) = /0 [alif(x +ti(y — z),€) — alif(x7 f)] dt;.



CHAPTER 7. TYPE Q FOURIER INTEGRAL OPERATOR 101
So,

<h($v'y’ §)>2 = <V1f($’ §)>2 + 2Zalif($7 E)»/O alzf(m + tl(y - :L'),E) - alif(m’f)dt1+

2

n 1
B [ [ st + v =26 =61 )
i=1 /0
(7.12)
As (Vif(z,€))% = (€)% and &y, f(z,£) < (&) for all 4, it is clear from (7.12) that
the lower bound will be established if we can show that fol o flz+t(y—x),8)—
o, f(z,€)dt; < r(k)(€) on W, x R, for some real valued function (k) with r(k) —

0 as k — 0. By the Mean Value Theorem
1
[ outte iy =).9) = 1S, =
0

/01 /01 Zn: O, 01, f(x 4 tita(y — ), €)1 (yr — 2, )dtpdt;. (7.13)
r=1

Recall that f(z,€) € SG;’,E- Also, for (z,y) € W we have (z + t1t2(y — z)) ~

(z) ~ (y) with implicit constants independent of ¢,t, € [0,1]. We also have

(z+ tit2(y — )y > (1 — k){z) for (z,y) € W; and ty,1; € [0,1]. Using these facts

it follows from (7.13) that

k

1
| e i -2).9 - s an < o)

on W, x R™. O

+ £ ~ arL
u.’E

Lemma 7.2.3. Let f{z,8) € S R* x R™ R} be such th

1y N ~
g\ll\\ PANN RN ] FI\Y L owuiry
Y

and det 05,0, f(x,€) = 1. Then we have

Velf(z,8) — f(y,8)] > |z —yl.
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Proof. Consider the map F(z,&) := (Vef(z,£),£). Since (V¢f(z,€)) ~ (z) and
det (8xi85j f) :ljzl (z,€) > 1, it follows from the Global Inverse Function Theorem
(Theorem 6.1.2) that F(z, ) is a diffeomorphism from R™ x R" to R" x R". We can

apply Proposition 6.2.3 to see that if we write F'~! = ((F!),,(F~'),) we have

(F~1), satisfies SG;@(R" x R, R") estimates. We have (F1); = (Vef)™' (7,8
where the inverse is in the first variable with the second fixed.

So, as in Coriasco [3], set v = V¢ f(z,€) and w = V¢f(y,§). So,
|z =yl = [(Vef) ™ (,6) = (Vef) ™ (w,€)]. (7.14)
By the mean value theorem and since (V¢ f) ™' € SG’;E(R" x R",R") we have
|z =yl < v —wl
Since |v — w| = |V [f(z,€) — f(y,£)]| we're done. O
The following result is proved in [3]:
Lemma 7.2.4. Let ®(z,y,€) € Q, with ® = f(z,€) — f(y,§). Then, for any

a(z,y,§) € SGL ™™ withmy, ma, mg arbitrary , there exists a(z,y,£) € SGmMm2ms

such that

FIO(f(z,€) — f(,€), a(z,y,€)) = Op(a(z,y,£)) modulo K.

we have

FIO(f(ZE,&) - f(yv 5),a(x,y,§)) = FIO(f(iE,&) - f(yvg)’a’(xa Y, g)X("Ev y)X(y,fE))
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modulo K. Let A := FIO(f(z,&) — f(v,8),a(z,y,&)x(z,v)x(y, ). By definition,

Au(z) = li_rg//exp{i(f(waﬁ) = fv. )}a(e, v, O)x(@, y)x(y, )y (e§)uly)dyde

The support of the amplitude is contained in Wy, x R® where Wy := {(z,y) €
R?* : |y — x| < 2k(z)}. The integral is absolutely convergent so we can write the
repeated integral as one integral over the z section of W) x R™ without changing

the value of Au(z). So,

Au(r) = lim exp{i(f(z,&)—f(y,€))}a(z. y, ) x (=, ¥)x(y, z)v(§)uly)dm,

0 (WiexRm),
where m is the two-fold product of Lebesgue measure on R™.
Let h; := f01 o, f(y + t(x — y), £)dt. By Lemma 7.2.2 we can choose k to be small

enough so that
1. Each component h;(z,y, §) satisfies § Gggé estimates on Wy x R",
2. det (9g,hi);,_, (#,4,€) = 1 on Wy x R™ and
3. (h(z,y,&)) ~ (&) on Wi, x R™.

Define F(z,y,§) = (z,y,h(z,y,£)). For k small enough, F' is a C* diffeo-
morphism from W x R™ to W x R™. by the above facts and the Global Inverse
Function Theorem (Theorem 6.1.2). We have F~Y(z,y,&) = (z,y,h ! (z,9,£))

where h™1(z,y,£) denotes the inverse of the z,y section of A.
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Define new variables (Z,7,€) := F(z,y, ). By Proposition 6.2.3 h~(Z, §, £) sat-
isfies S Gg’g’é estimates on W;, xR™. We also have that the Jacobian det 8,h~*(Z, , £)
satisfies ESG%%Z‘ estimates on Wj x R™ by the same Proposition.

Making the change of variables we have

Au(z) = lim expli(E — §) - E}ao(, 5,5 (7, §.8)1(eh ™ (8.7, ) x
o (Wi xR");

By Proposition 6.2.5 we can extend ao(x, y, h"(Z, 7, 7))| det aéh“l(i“, i, €)| by zero

my,MmM2,m3

outside W, x R™ to give a function in SG7

We also extend ~y(eh~!(x,y,7n)) by zero outside W, x R™.

Re-writing the integral 7.15 as repeated integrals over R™ we have
Au(z) =ting [ [ exp(ile —9) - Eao(2. 5.0 (B, 9. (e (7,5.8) %
x| det Ogh™!(Z, 7, ) lu(7)djdé.  (7.16)

We can replace v(eh™Y(Z,4,€)) by ¥(e€) by integration by parts. This completes

the proof. O



CHAPTER 7. TYPE Q FOURIER INTEGRAL OPERATOR 105
Proof of Composition Theorem 7.2.1

Proof. By definition

A= FIO(f(.’Z?,f) -+ g(y,f),a(x,y,f)),

B = FIO(—g(z,£) + s(y,£), b(z,y,£))- (7.17)

Let x(z,y) € Z2(c), with ¢ € (0,1).

ARed = FIO(f(Q?, 5) + g(ya g)a (1(.’13, Y, g)X(vﬁfa _vﬁg))X(vﬁga —ng)),
BRed = FIO(—g(QI, 5) + S(ya g)a b(.’l?, Y, g)X(vﬁga vﬁs))X(VESv Vﬁg)) (718)
As for the Type P operator we only need to consider composition of the reduced

forms Apgeq and Brey of A and B since we have Ao B = Ageq 0 Breg modulo K.

For convenience, define

ar(m, Y, 5) = a(x, Y, g)X(vEf(xv 5)7 _vﬁg(ya 5)))X(Vﬁg(y’€)’ —ng(l‘, 5))

br(ﬂf, Y, 5) = b(ﬂ?, Y, E)X(Vgg(x, 5)7 VgS(y, 5)))X(V§S(yv 5)’ Vgg(ﬂ?, 5)) (719)

By the now standard arguments, we have the following equality, modulo Kwu for

Kek:

(Aneao Brus) @) = limlim [ [ [ expi (/2.9) + 9(6.€) = awm) + sz )}

6—0e—0

xar(x, Y, )b (¥, z,m)7(6n)v(e€)u(2)dzdndyds.

(7.20)
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Let x2(&,n) € Z2(k), with ¢, € (0,1). By constructing a partition of unity with

x2 and using Theorem 4.0.2 and Lemma 7.2.3 we have

(A Ba) = gt [ i1 -008) - s 2,

6—»0 e—0

xar(z, Y, §)br (y, 2,m)x2(€, n)7(6n)y(€f Ju(z)dzdndydé,

(7.21)

modulo an integral operator with Schwartz kernel applied to u. Again, by the
same argument as used in the proof of Theorem 5.0.1 we can use the Lebesgue

Dominated Convergence Theorem to remove the e limit to give,

(Areao Brea)u(w) =t [ [[ [ exvli(7(2.)+ 90,€) = atom) + st )}

xar (2,9, £)br(y, 2,m)x2(§,m)7(dn)u(2)dzdndyde.
(7.22)
We will now make an SG structure preserving change of variable in order to
replace g(v,&) — g(y,n) with f(§,n) — f(g,§£), for some new variable §. Define
W, := {(&,m7) € R®" x R" : |€ — 1| < 2c2(n)}. The support of the integrand in
(7.22) is contained in V., = {(z,v,2,£,m) : z, 4,2 € R*, (£, 1) € W, }. We remark

that V,, is open in R*".
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Let G(z,y,2,6,1) = (z, f; Vag(y,n +t(§ —n)), 2 & n) and define

Gl(m, y,2,€,m) =z, (7.23)
ol 2.6 = [ Vaglusn-+ (e = )k (729
Gg(.’IJ, y,2,€,n) = z, (7.25)
Galary, 2 Em) = £, (7.26)
Gs(z,y,2,£,m) :==1n. (7.27)

Using this notation, G = (G1, Gy, G3, G4, Gs) . We can apply Lemma 7.2.2 to see

that for ¢y small enough we have:

Each component (Gs);(z, ¥, z, £, n) satisfies SG&Z”E estimates on R™ x V., (7.28)
,det (8y,(Ga)i);,_, (2,9, 2,€,m) = Lon R* x V,, (7.29)

(Ga(z,y,2,€m)) ~ (y) on R™ x V,. (7.30)

It follows from the above facts and the Global Inverse Function Theorem 6.1.2 that

G is a global diffeomorphism from V., to V,,. Further, G satisfies the conditions

of Proposition 6.2.3 (taking V' and W to be V,, therein) as we now show. Writing
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G = (G, Gq, Gs, G4, Gs) , we therefore have the following holding on V., .

(Gr) ~ (z), (7.31)
(Ga) ~ (), (7.32)
(Gs) ~ (2), (7.33)
(Ga) ~ (&), (7.34)
(Gs) ~ (m), (7.35)

We also have the following statements holding on V,.

G, satisfies S Gigg%g estimates, (7.36)
G, satisfies S Gg;g%?’ estimates, (7.37)
G satisfies S Gggi%g estimates, (7.38)
G4 satisfies S Ggggég estimates, (7.39)
G satisfies SGg:gﬂfé:; estimates. (7.40)

The Jacobian of G is det (ayjhi(y, £, n))zjzl . So the Jacobian of G = 1 on V,, by
(7.29). So all the conditions of Proposition 6.2.3 are satisfied. Therefore, if we
define (:i:,@, 3¢, ﬁ) = (G1, Gy, Gs, G4, Gs) for (z,v,2,&,1m) € V,, and write G =
((G™);,(G™1),, (G Y, (G4, (G™Y);), where (G71), = (G™1), (&, 4, 2,€, 7) for

(:cyz 3 fy) € G(V,,) = V,, we have
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((GTH),) ~ (&), (7.41)
(G7),) ~ (0), (742)
(G™1),) ~ (2), (7.43)
(G, ~ (&), (7.44)
((G71)5) ~ () (7.45)
(G™1), satisfies SG;ZZ?% estimates, (7.46)
(G_1)2 satisfies SGS;ZZ% estimates, (7.47)
(G’_l)3 satisfies Sngizz estimates, (7.48)
(G™1), satisfies Sngzzg estimates, (7.49)
(G™1), satisfies SGZSSZ; estimates. (7.50)

holding on G(V,,) = V,,. Now, since (z) ~ (y) ~ (z) and (§) ~ (n), on V,, it

follows that

(G ~{GT),) ~ (G,
(G1) )~ ((GTY)y) (7.51)
on G(V,,). Therefore, by (7.41), (7.42), (7.43) ,(7.44) ,(7.45) we have (&) ~ (g) ~

(3) and (€) ~ (7)) on G(V,,) = V.,. After we make the change the amplitude will

go over to a function 7 say, with support inside G(V,,) = V,,. So, we will have

P

(@) ~ () ~ (%) and (€) ~ (7) on Supp(r).
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Define new variables (&,, 3, €, 79) = G(z, v, 2,&, 7). We write the absloutely
convergent integral in (7.22) as one 4n dimensional integral over the z section of

V., Then we change variables (z,v, 2,£,7) — (2,9, é,é 7) to obtain

xar (&, (G, €, 1), E)b (h (9, €, 1), 2, 1) x2(E, M)Y(E7)u(£)] det Bgh = (9, €, ) |d.

(7.52)

where [ is the four-fold product of Lebesgue measure on R™. (By h=1(4, £, n) we
mean the inverse taken in the first variable with the other variables fixed. )

By Proposition 6.2.5 the function

~

ar(&, K19, €,9), )b (h1(G, €, 7), 2, 1) x2(E, 7)| det B3h1(§, €, 7)| extends by zero

outside G(V,,) = V,, to a function in SGml mattLtamats

62,67
Now, define M(%,, 5, £, ) — Jo Vaf (@7 + t(€ — ))dt, 2,€, 4 and set
m:= — fol Vo f (9, +t(€—7))dt By similar arguments to those used for the previous

change of variable, we see that M is a global diffeomorphism from V., to V, for
small enough c,. We define (5:,1",2,5, ﬁ) = MY%,9,2 f 7). Since M satisfies
the conditions of Proposition 6.2.3 (taking V and W to be V, therein) it follows
that M ! does also. Making the change of variable (ﬁc,@, 2, é, ﬁ) — (a":,ﬂ, z, 5, ﬁ)

(7.52) becomes
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Recall that [ is the four-fold product of Lebesgue measure on R™.

By Proposition 6.2.5 the function

ap(Z, b~ (m(d, €0), €, 7), )b, (™1 (m(F, €M), €,7), Z, M)x2(€, 7) v (67 )u(2) %

x| det 8;h =Y (m(¥, £7), €, 7)|| det Bym(§, €, 7)| (7.54)

Gm1,mz+t1,t2,m3,t3

extends by zero outside V¢, to a function in SG 02 E7

Re-writing the integral in (7.53) as repeated integrals over R™ and dropping

the s on the variables, we have

(Areao Bras) o) = i [ [[ [ exoti (0. + 2,0 = £0.8) + stem). )}
xa,(z, b~ (m(y, &n), & n), )b (W (m(y, €,m), €, 1), 2, 1) x2(E, n)¥(6n)u(z) X

x| det 1h ! (m(y, &, 1), &, n)||Bim(y, &, n)|dL..

(7.55)

For convenience define



CHAPTER 7. TYPE Q FOURIER INTEGRAL OPERATOR 112

i(z,y, 2 € n) = ar(z, h 7 (m(y, €n), &), O)br (R~ (m(y, €n), €,1), 2, n)x2(€, 7)1 (dn) X
x| det ih ™ (m(y, €n), & )l |Orm(y, & ).
. Jawuzen  ov,
o 0, otherwise
(7.56)

We remark that on the support of ag(z,y, z,£,1) we have (z) ~ (y) ~ (z) and

(&) ~ ().
Let x3 € Z2(c3) for c3 € (0,1). By making a partition of unity with y3(z,v)
we can use Lemma 4.0.3 to reduce to the following ( modulo an operator with

Schwartz kernel applied to u )

(ARed © BRed) u _llm////exp{z (v.m) + f(z,8) — f(y,€) + s(2,7), )}

xag(z,y, z,&n)xs(z, y)y(6n)u(z)dzdndydé x

(7.57)
We will make yet another change of variables. Define
WCs = {(:E: Y, z, 57 77) LY, Zaga n e R": |fE - yl < 203} and define

Qz, 9,2 6,1) = (v,y. 2, [, Vif(ly+t(z—y),€),n) and set q(z,y,£) := [, Vif(y+

t(z—y),&). Arguing as before, we can choose ¢z small enough so that the change of
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variables is structure preserving. Defining (Z, 7, 2,6,7) = Q(z,y, z,€,7), making

the change of variables (z,y, z,£,7) — (&,7, %,&,7) and arguing as before we have

xhg(E, 1, % €, fu(Z)y(57)dzdidgdé.
(7.58)

where hp (defined below) belongs to SGTE’?;:“ 2m3ls and by ¢~ 1%, §,€) w
mean the inverse in the third variable with the other variables fixed. As ever,

equality is modulo Ku with K € K.

W&, G, 5,6, 7) == ap(Z, 9, % ¢ (&, §,€), 1) xs(Z, §)| det Dsg ™ (%, §,€)|

), 1)
- h(Z, 9,2 § on W,
hi(3, 4,5, 7 (7.59)
otherwise
We also have
() ~ (§) ~ (%) on Supp(hg)

(€) ~ (7) on Supp(hE)

(7.60)



CHAPTER 7. TYPE Q FOURIER INTEGRAL OPERATOR 114

Multiplying by /(&%) ¢=if(&7) = 1 and rearranging we have

(Aneao Bres) @) = i [ [ expli (1(6.7) + s(2.7). )}

—0

oy (67)u(Z)dzdA. (7.61)

Define

x hg (7,9, %, € 7)dgdé] (7.62)

The proof of part 1 will be complete if we can show that ¢(Z, Z,7) belongs to the
appropriate SG class. We will prove this by using Proposition 4.0.4.

Observe that f(7,%) — f(Z,7) = f(@.7) + 9(27) — 9(%,7) — f(Z,7). (Recall
that g is a phase component.)

If we define ®(g, 2,7) :

f(@,7%) + 9(%,7) we have ® € Q C P and f(7,7) —

f(z,7) =®(y, 2 1) — ®(Z, Z,7). Using this notation, c(Z, Z,7) becomes

We also have the following holding on Supp(hg) :

1. (%) ~ () ~ (2)
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2. (€) ~ (7) and
3. 1Z — y| < c3{(f) where ¢ < 1.

So, we can apply Proposition 4.0.4 to see that for c3 sufficiently small, ¢(Z, 2, 7)
belongs to SG%%’,T;BHB for any p,q € R such that p+ g = my + mg + t; + t2. By

Proposition 4.0.4 we also obtain an asymptotic expansion for ¢(Z, Z, 7).

The second part of the proof follows from the first part and Lemma 7.2.4.

Remarks All the changes of variables made in this proof are of the type used
by Coriasco in [3]. In view of Theorem 7.2.1 we can think of Type Q operators as
compositions of arbitrary Coriasco Type 1 and Type 2 operators (see Introduction).
We also note that in view of Lemma 7.2.4, we could use a similar argument to show
that the composition of a Type Q operator with a ©do is again a Type Q operator

with the same phase and a modified amplitude.



Chapter 8

Closedness under Composition

8.1 Generalised Type P FIO.

We will now modify the definition of the Type P operator to allow the frequency

variable £ to have dimension greater than that of the spatial variables z and y.

116
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Definition 8.1.1. Let a(z,y,§) € SGZT;:?”’mf (R™ x R™® x R™) where ng > n. We

denote by P(a) the set of all functions ®(z,y,§) € C°(R™ x R x R™%,R) having

the following properties on the support of the amplitude a(z,y,§).

Forj=1,...,n, the function Oy, ®(x,y,§) satisfies
SG&Z”}E(R" x R"® x R™) estimates, (8.1)

For j=1,...,n, the function 0,,®(z,y,§) satisfies
SGQ”Z’,E(]R” x R™ x R™) estimates, (8.2)
(V2®(z,9,€)) = (£), (8.3)
(Vy@(2,9,8)) = {£), (8.4)
305> 0z — 9| > Caly) = IVe®(z, 0,6 = (&) + (), (8:5)
3Cs > 0: |z —y| > Calz) = |Ve®(z,y, )| = (&) + (v),  (8.6)

For all multi-indices v we have , 07 ®(=z,y,§) < ({z) + (Y€)=, (8.7)

Definition 8.1.2. Given a(z,y,§) € SGZT;:?”’W(R" x R™ x R"™%) and ® € P(a),

we define the generalised Type P operator A in the following way:

e—0

tu) =ty [ [ explit(e.y. O)ale v Or(cuiuavie.  (55)

As ever, y(e€) is a mollifier.

Remark. For any a(z,y,§) € SGZ;:E"“"”E (R® x R™ x R"), we have P C P(a).
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Notation. Given a(z,y,&) € SG "™ (R" x R" x R™) and ® € P(a), we will

write F10(®(z,y,£),a(z,y,£)) to mean the operator defined in (8.8).

We now present, some basic properties of the generalised Type P operator.

Mg, My, Mg

vy € (R™xR™xR"™), for any my, my, me €

Theorem 8.1.3. Leta(z,y,§) € SG

R and let ®(z,y,£€) € Pla). Then, if we define A := FIO(®(z,y,&),a(z,y,£)), we

have:
1. A: S(R") — S(R") continuously,
2. A is independent of the choice of mollifier,
3. AT = FIO(2(y, z,€), a(y, 7, £)),
4. A: 8 (R*) — S'(R™) continuously.

Proof. The proof of parts 1 and 2 are the same as the corresponding result for
the Type P operator. Part 3 follows from the fact that the phase assumptions are

symmetrical in z and y. Part 4 follows from parts 1 and 3 in the standard way. [J

The following Lemma will be useful when we study the composition of two

generalised Type P operators.
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My, My Mg

Lemma 8.1.4. Let a(z,y,§) € SG_ ¢

(R* x R™ x R™%), for any my, m,, m¢ €
R and let ®(x,y, €) € P(a). Define A := FIO(®(z,y,€),a(z,y,§)), and Au(z) =

Jars Jan exp{i®@(z,y, &) Ya(z, v, €)v(e€)uly)dyds. Then we have
1. A.: S(R") — S(R™) continuously,
2. Aau(z) — Au(z) in S(R™) ase — 0.

Proof. For part 1, use the fact that that A, = FIO(®(z,y,§),a(z,y,&)v(e))
and apply part 1 of Theorem 8.1.3. For part 2, just use the operator Ly o(zy.¢)
(see Definition 2.5.2) to integrate by parts and apply the Lebesgue Dominated

Convergence Theorem. O

Proposition 8.1.5. Let a(z,y,§) € SG:;”?y’mE (R*xR"xR™), for any m,, my, me €

R and let ®(z,y, &) € P(a). Also, let x € E2(c) where ¢ > 2Cp. Then, if we define

A:= FIO(®(z,y,&), a(z,y,£)) and Ageq := FIO(®(z,y,£), a(z, y, &) x(z, ¥)x(¥, 7)),
we have

A= Ap.q modulo K.

Proof. This result follows from Theorem 3.2.2. O

Remark. Apg., will be referred to as the “reduced form ” of A modulo K.

Proposition 8.1.6. Let A, Ay, B, By be generalised Type P operators. Suppose
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that

A = A modulo K and

B = By modulo K. (8.9)

Then we have

Ao B = Ao By modulo K.

Proof. Just follow the proof of the corresponding result for Type P operators. LI

8.2 Technical Results

We now present several technical results which will be of use later in this chapter,
starting with a Lemma about the structure of derivatives of a composition of

smooth functions.

Lemma 8.2.1. Leta(z,y) € C® (R™ x R™,C) andb(z,y) € C= (R" x R™,R™)

and define f(xz,y) = a(z,b(z,y)). Then, for any multi-index o with |o| > 1,

8; f = (97a) (z,b(z,y)) +
15

> (orora) @ bw ) [T 227 (5 9)

T
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where the sum has finitely many terms, of, 3¢, 059, v are multi - indices such that

V=1 Vi,j
A |8 N
a4+ 0 =a Vi
j=1
|8 N '
v = g (8.10)
j=l

Remarks. The function b takes values in R™ and +"7 is an n,, dimensional multi-
y i3 ,
index. In standard multi-index notation, &7 := [[.%, bZ’“ , Where b is the kth

component of b and ’yfc’j is the kth component of 7%,

Proof. By induction. Case |a| = 1. By the standard rules for differentiation,
Ny
Be,f = (85'a) (2, b(z,y)) + D _ (5*a) (z, b(z, 9)) B (v*) (z, ),
k=1
where e is the multi - index with 1 in the kth place and zeros elsewhere. This
expression has the required form.
Assume the statement is true for |o| = k. For any 7 € {1,...,n,}, by the

inductive assumption, we have

0,07 f = 0,[(07a) (z, b(x, y))]+
15°)

0y | Yo (05°08'a) (b, ) [T 22 () (@w) |

1 m=1
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with of + Zlﬁll §v™ = o and Z'f |1'y” = & for all i. Differentiating, we have,

0,0 = (87%7a) (,b(e,9)) + Y (955¥a) (v, b(a, 1)) B (b%) +

k=1
Zciazj {(8{’1551 ) z,b(z,y)) } ﬁ 89m ( i’m) Y+
lﬁ’

Zc,- (a?iﬁfia) (z, bz, y)) H 89“” ( m) (z,y)] . (8.11)

The first term, (8? e a) (z, b(z,y)) , has the correct structure. We will check

each sum separately.

Consider the first sum,
Ty
> (B785+a) (z, bz, y)) O (b))
k=1
Each term in the above sum has the correct structure; the number of terms in
the product equals the absolute value of the order of differentiation in the second
variable of a for all & and for each term, adding the orders of = derivatives gives

« + e, as required. Also for all %, the order of derivatives in the second variable of

a matches the sum of the exponents of b. Let’s consider

5]

> a, {(ov°6f0) @b@w)} [T (v"7) @) (8.12)

m=1
By expanding 9, {(8{“85%) (z,b(z, y))}, (8.12) becomes

||

(5?i52i+e’a) ds, (ber)] [12" (b”""") (z,9)

m=1

n

Zc,- [(8?i+678§i(z) +

r=1



CHAPTER 8. CLOSEDNESS UNDER COMPOSITION 123

By inspection each term in this sum has the correct form. Now let’s look at

|5}

Y e (a;fag"a) (z, b(z,9)) Bs, Haf’”" ( ”") z,9)

i
By the product rule, this is just

|8} 15|

Zci (Bf‘iagia) (z,b(z, y))z(?zi'“rej ((ﬂi’s) H P ( i'm) T,y)

i s=1
m;és

Again, by inspection, each term in this sum has the required properties. O
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Lemma 8.2.2. Assume that

1. a(z,y, 2, € n) € C (R* x R" x R® x R™ x R™) satisfies
SGTLmemamEms (R R x R™ x R™ x R™) estimates on some set

T,Y,2,£:7

W CR®* x R* x R* x R™ x R™,.

2. (z) ~ (y) ~ (2) and (§) ~ (n) on W.
Let

1. r(z, 2, &) € ESGLYTY(RY x R? x R™ x R™ R)

z,2,6,7m

2. s(x,z,&,m) € C®R" x R* x R% x R™,R") with s(z,z,&,n) satisfying

SGLY0 (R x R x R™ x R™) estimates on W,

z,2,6,m

3. F($3yaza€’n) = (m’y;—(sa:(,xj,%’z’g’ n)

estimates on FF (W) :

Oe05 D005 f (2,4, 2,&,7) < (B)mitmarlel zyme bl (gymaili=ll (gyms=iel - (8.13)

Remarks It follows from the global inverse function theorem that F'is a C*®
diffeomorphism from
R" x R™® x R® x R* x R™ to R™ x R x R"® x R™ x R™. Note that r(z, z,£, ) is

real valued and s(z, z, £, ) takes values in R".
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Proof. As a satisfies SG7 72*™ ™ on W, it follows that on F' (W) we have

(or0f o505 (7. 57(3,2.,7) + 5(5, 2,6, 1), 2.6,7) <
(@)™ gr (3, 2,8, 7) + 5(&, 2, & 7)) P z)me il gyl gy meld. - (8.14)

As (z) ~ (y) ~ (2) and (§) ~ (n) on W, it follows that

(Z) ~ (gr(z, 2,€,7) +5(§:,2,§~, n)) ~ (Z) and (§) ~ (7) on F (W). So, we have the

following estimates on F'(W) :

(0050305050 (3,575, 6,7) + 5(5, 5,€,7), 5,€,7) <

(j>m1+m2—|a|—|5| (§>m3—|7| (é>m4—|5| (T]>m5—l€| ) (8. 15)

The function r(z, 2, £,7) € ES’G;’Z’E;’O and s(Z, 3,€,7) satisfies SG;’Z’%’E esti-
mates on F (W). So, since () ~ (§r(%, 2,€,7) + s(&, 2, £,7)) on F (W), it follows

that we have

9] < (€) on F(W). (8.16)

We will prove that f (5:,1:/, €, ﬁ) satisfies (8.13) is three steps. We start with

the case where all orders of derivatives are zero.

Case |a| = |8] = |y| = |6] = |e] = 0. Just put |af = |5 = |7| = 6] = || = 0 in

(8.15).

Case |3| = 0. We apply Lemma 8.2.1 to get,
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0010005 f = (54 05050) (5,575, €,7) + (5,5, £,7), .67 ) +

S (o050 of o5'a) (3 r(3,2,67) + (3, 5,E,7), 2

4

g

St

p
X

||

Lo aar e (s &+ @aE0) 610

m=1

where , |\*™| =1 Vi, m and for all ¢ in the finite sum we have

€+ Z ™ =e. (8.18)

To obtain (8.17) and (8.18), just treat (Z, 2, &, 77) as one 2n4-ng+n, dimensional

variable and apply Lemma 8.2.1. Recall also that r(Z, 2, ¢, 7) takes values in R
and s(Z, 3,£,7) takes values in R”. We already have estimates of
85 0305050 (:c ir(&,2,€,7) + s(%,5,6,7), 5., ﬁ)) , see (8.15).

If we can show that

||

[T marmormag™ (5 (@ 5.6 ) + 5" (3,2.,7)) <

m=1

(7)1 S Ja ot 5\ oLl gy sl 1897 7y = Sl e (8.19)
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we’ll be done by (8.18) and the estimates (8.15) .

Recall that on F' (W) we have

9] < (€) (8.20)

By (8.20) and the fact that r(Z, 2,£,7) € ESG{?EI.O and s(Z, 2,&,7) satisfies

SG{?ZQ estimates on F' (W), it follows that for any j we have

o591 " 3™ ({8, 5.6 7) + 55(5,5,6.0) ) < (@)1 (2) P T T

on F' (W) . Therefore, as [A\“™| = 1 for all ¢,m, we have

|w?]

[Jozmarmormor™ (9" r(w, 2. 6.m) + 8" (@, 2,6 m)) <
m=1

() =Sl ot - S e ey = Sl g - S e, (8.21)
on the set F'(W).

Case |3| > 0. All functions are smooth so we can take the derivatives in any

order. Therefore,

0508010105 f = 0010205 [ (00) (3.9 (3, 2,6,7) + (3, 2,€,7), 5,€,7)) 7]

(8.22)

As (Bga) (z,y,2,€&,n) € SGT; Z?nlm memams and the SG orders were arbitrary

in the B = 0 case, we can use the earlier parts of the proof to say that we have the
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following estimates on the set F' (W) :
02010005 [ (96a) (2,50 (3, 2.6, ) + 5(3, 2.6,7), 5,6,)) | <
(z)matme=lal =18l (zyma=il (gyma—lol (myms=lel (8.23)

As rl8I(E, 3, €, 7) satisfies SGIAOIBY estimates on F (W), the result follows from

56,7
(8.22), (8.23) and the product rule.

g

Lemma 8.2.3. Let a(z,7,2,§,n) € C®(R* xR* x R* x R™ x R™,C) satisfy

the following estimates on some set V C R™” x R* x R® x R™ x R" :
0005 8108 05a(x, §, 2, €, m) < (a)™Hmamlel (zymail (gymalB=iol ) mo=iel,

Assume also that on V we have the following relationships between the variables:
(&) ~ (n) and |g| < (§). If we define an n+ng +n, dimensional frequency variable

0 = (§,&,1m), then the function
&(.’L‘, Z, 0) = G,(.’L', 'ga 2y fa 77),
satisfies SGy g™ ™I (R x R™ x R ¥™) estimates on V.

Proof. Consider

0°0P ) a(x, 2, 0).
Define ;5 to be the first n entries of v and define v¢ and -, similarly so that

¥ = (Vg,Ye,Vy)- Using this notation, we have

000Pd]d(z, 2,0) = 8;‘858;‘782‘8;;’7 [a(x,,2,&n)].
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So, by assumption, we have
02008y < (w)mirmeTlel (z)ymemIBl(gymahal el (yma =Tl (8.24)

On V we assumed that () ~ (£) and [§] < (€). It follows that (f) ~ (n) ~ (£)

on V. So, by (8.24), we have the following estimates on V" :
3;’353;;& < <x>m1+m2—|a|<z>m3—|5I<g>m4+m5—|'vgl—|7¢|—|’vn|.
Noting that || = || + |7e] + |7y, the proof is complete. O

Gml +mz,m3,mqg+ms

Remark. If V = Supp(a), we have a € SG .
Proposition 8.2.4. Assume that

1. a(z,y,2,&n) € C(R® x R* x R® x R™ x R™)
satisfies SGI L TMEMAME (R % R x R™ x R™ x R™) estimates on some set

z’y’zﬁg’n

W CR*xR* x R* x R% x R™.

2. (x) ~ (y) ~ (2) and (§) ~ (n) on W.
Let

1. r(z, 2,&n) € ESGEYTLOR? x R® x R™ x R™, R)

z,z,6,m

2. s(z,2,6&,n) € CP(R* x R* x R% x R™ R*) with s(z,z,§n) satisfying

10,00,
SG, ¢y estimates on W.

“— —s(z7z767 )
3. F(.’L‘, Y, zaé-’n) T (.’L', yTz,zf#aza 51 77)
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Suppose that we change variables (z,y, z,€,n) — (2,7, 2,€,n) where (:’i, 7, 3, €, 77) =
F(z,y,2,&n). Then if we define an n + ng + n, dimensional frequency variable
0 = (§,€,7), the function ¢ (Z,3,0) = a(%, §r(, 2, &, 1) + s(%,2,€,7), 2,€,7), sat-

isfies SGTLEMMIMIMS egtimates on F (W).

Proof. Just apply Lemmas 8.2.2 and 8.2.3.

Remark. If the set W in Proposition 8.2.4 is the support of a then the function

c(Z,2,0) € SGpigmma I (R x R™ x R**™*™) . Also, since (z) ~ (z) on

F(W) it follows that ¢(z, z,0) satisfies SGPY7™™® estimates where p and ¢ are

x,z,0

any real numbers such that p + g = m; +mq + ms.
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8.3 The Generalised Type P class is closed un-

der composition.

Theorem 8.3.1. Let a(z,y,§) € SG™™M3(R" x R" x R™) with ng > n and
let b(z,y,&) € SG2R(R™ x R" x R™) with n, > n. Let ®(z,y,£) € Pla),
U(z,y,£) € P(b) and define A := FIO(®,a) and B := FIO(¥,b).

Then the composition C := A o B is a generalised Type P FIO , modulo K.
Precisely,

C = FI0O((,c) modulo K,

where ¢ € SGm1+t1+mz+n,t2,m3+t3—n(]Rn % R" % Rn+n5+nn) and C € P(C)

Lrme+tn—n

Remark We will find that on Supp(c) we have (z) ~ (z) andsoc € SG,

where | and r are any real numbers such that [ +r =m, +my + ¢, + . +n.

Proof. The proof is in two parts. In Part 1, we show that, modulo /C, the com-
position has the basic structure of a FIO - we determine the amplitude ¢ and the

proposed phase (. In Part 2 we show that ¢ € P(c).

Part 1 We introduce the following notation for the “reduced” forms of the op-

erators modulo K:

ARed = F[O((I)(l', Y, 5)7 U,(.’E, Y, §)X1($a y)Xl (ya SC)),

BRed = FIO(\I’(:E’ v, 5)7 b(.’E, Y, €)X2($a y)XZ(ya :E))
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where X1 € EA(kl) with k; > 20@ and X2 € EA(kQ) with ks > 20\[;
We have A = Ap.q modulo K and B = Bg.q modulo K.

As proved earlier

Ao B = Apgeq © Breq modulo K.

For the sake of brevity, set ao(z, v, €) == a(x, v, £)x1(z, ¥)x1(y, z) and bo(z,y,&) =

b(z,y,€)xa(x, y)x2(y, z). Applying standard arguments we can show that modulo

K, we have

(Apged © Breq) u(x) = llm/Rn /ng /n /n exp(i (®(z,y,€) + ¥(y, z,n)))ao(z, ¥, §) X

§—0
xbo(ys 2, Mx (Vy® (2, 9,€), V4 ¥(y, 2,m))x
xx(Vy¥(y, z,m), —Vy@(z, y,£))v(dn)u(z)d2dyddn.
(8.25)
where x € Z2(k) for any 0 < k < 1.

Define

h(l‘, Y, z, éa 7]) = ao(.'E, v, f)bO(yv Z, T])X(qu)(.??, Y, 6)7 *Vy‘l’(y, Z, 'fl)) X

xx(Vy‘I’(y, 2, ﬂ)y—qu’(% Y, é)) (826)

and recall that by definition aqo(z, v, &) := a(z,y,£)x1(x, v)x1(v, *) and
bO(x’ya é) = b(xa%&))@(x, y)X2(y’ l‘) SO, on SuPp(h)’ we have <£L'> ~ <y> ~ <Z>

and (€) ~ (n). We can therefore define the new variable % as follows:

gr(z,z,&,n) = v,
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where r is an arbitrary function in ESG i 2 e ,17 O(R” x R* x R™ x R, R) and apply
Proposition 8.2.4.

Making this change of variable, (Ageq © Breq) u(x) becomes

(ARed © Bred) u(z) = hm/ / / / z,gr(x,2,6m),8)+ ¥ (Fr (2.2.6m),2m))
6—0 R™n ne n n

Mz, 3, 2, € Nl (@, 2, €, Mly(En)u(z)dd=gdedn.
(8.27)
where h(z,7, z,€,7) := h(z,ir(z, 2,€,1), 2, &, n) and the term |r"(z, z, £, n)| is the
Jacobian of the change of variables.
Define the new n + ng + n,, dimensional frequency variable § = (,€£,7). By

Proposition 8.2.4

h(z, 7, 2, €,m) belongs to SGIiimTinizmstis(gn o R o RUmet™), (8.28)

z,2,0

On the support of 2(z, §, z, €, 1) we have (€) ~ (1),

(z) ~ (2) ~ (§r(z,2,€,1)) and § < (€), (). Since by definition, § := (§,¢,7), we
obviously have (8) > (), (n). Given that § < (), (n) we also have () < (€), (n).
So, on the support of ¢(z, z,6), we have (6) ~ (n) ~ (£).

Now, |[r*(z, 2, £,1)| € SGEY ™ (R™ x R* x R™ x R™) and as (8) ~ (n) ~ (€)

z,z,Em

on Supp(h) it follows that |r™(z, z, €, n)| satisfies SG™*" estimates on Supp(h).

z,2,0

So, if we define ¢(z, z,0) := h(z, §, 2, &, 9)|r"(z, 2, £, )| we have

c(m, 2, 0) c SG;H;-gmz-Hﬁn Jt2,ma+tz— n(Rn x R™ x Rn+n§+nn)
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Define

C(x7 z’ 9) = q)(x7 gr(x7 z7 5? T’)? 5) + W(gr(x, z’ 57 T’)7 z? T’),

7(66) = = ~(0m).

Employing this notation and re-writing three integrals as one integral in 8, we have

(ARed © Breq) u(z) = lim ‘/Rnnﬂﬁn /n exp(i¢(2, z,0))c(x, z,60)7(60)dzdb. (8.29)

0—0

Once we have checked that ((z, z,0) satisfies the phase assumptions, we can
replace 4(66) with a mollifier in 6.
On the support of ¢(z, z, 8), there are certain relationships between the variables

z, 2, Y, €, n which we now recall: {z) ~ (z), (§) ~ (n), |g| < (£).

Remark As (z) ~ (z) on the support of ¢, we have ¢(z, 2,8) € SGLLF** ™" for

any p,q € R withp+g=my+ma+t1 +ta+n.)

This completes Part 1. It only remains to show that { € P(c).

Part 2 Up to now we have only assumed that the constant £ in the cut-off
X is less than 1. We will choose this constant to be sufficiently small in order
that ((z, z,8) € P(c). Recall that ((z, z,0) € P(c) if {(z, z,8) has the following

properties on the support of ¢(z, z, 1) :
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Forallj =1,...,n, 05,((z,z2,0) satisfies SGz”g”é estimates, (8.30)
Forallj=1,...,n, 08,((x,z,0) satisfies SG_; estimates, (8.31)
(Val(z, 2,0)) > (0), (8.32)

(V.((z, 2,0)) = (), (8.33)

3C: > 0: |z — 2| > Cc(z) = |Vel(x, 2, 0)| = (z) + (2), (8.34)

3C > 0: |z — 2| > Cc(z) = |Vol(z, 2,0)| = (x) + (2), (8.35)

Yy, 83¢(x, z,8) = ({x) + (2))(6) 1. (8.36)

Conditions 8.30 and 8.31 This is straightforward to show once we note that

on the support of h(z,y, z, &, 1), we have:

1. ®(z,y,&) satisfies SG}C”ZZE estimates.

: (011 ot
2. U(y, z,n) satisfies SGy;,,, estimates.

As (z) ~ (y) ~ (z) and (€) ~ (n) on Supp(h), we can apply Proposition 8.2.4 and
conclude that:

1. &(x,yr(x,z,€,m),€) satisfies SGLYL estimates on Supp h) which contains
n ,z,0

Supp(c).

2. U(gr(z, z,&,1n),z,n) satisfies SGg’,;l@ estimates on Supp(h) which contains

Supp(c).
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Conditions 8.30 and 8.31 follow immediately once we note that () ~ (z) on

Supp(c).

Conditions 8.32 and 8.33 Differentiating ¢ with respect to z; we can write,

0,C = f1;(z,2,0) + fa;(z,z,0) where

frz = (0,®) (z,97(z, 2.6,1),€) and

fog = _[(02,®) (z,9r(z, 2,&m), &) + (0,9 (Fr(z, 2,€,m), 2,m)] X
=1
X (§), O, (z, 2,€,7m)

Let f1 = (fl,la ey fl,n) and similarly let fg = (f?,la ceey fg,n) . AS (I)(CL', Y, f) € ’P(a),

we have

(fi) > (). (8.37)

on Supp(a(z, gr(z,z,£,n),€)) (which contains Supp(c).)

Now, we show that on Supp(c) we have

| fa| < K(€) (8.38)

where k is the constant in the cut-off function y in the definition of ¢(z, z, 6). If we
can prove (8.38), ¢ will have the correct lower bound because for any fi, f € R"

we have

(fr+ f2) = (f1) — | fal-
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So, by (8.37), if we choose the constant k to be small enough, we’ll have (V,({) »
{€) on the support of ¢(z, z,6). (Since (§) ~ (6) on Supp(c), we'll have the desired
lower bound.)

By definition

n

f2,j = Z [(821(I)) (x,ﬂr(x, z, f, T’)v f) + (811\1}) (@r(x, Z,f, 77)7 Z, T’)] x
=1

X (), Or,7(z,2,€,7) (8.39)

We showed earlier that (§),0x,7(x,2,&,m) < 1 on the support of ¢, for all [ in the

sum. Also, this constant is independent of k. (It does depend on k; though.) So,

|f2| < |V2¢)($,§/7‘(.’E,Z,f, T]),f) +VI\I}(@T($ﬂZa£7n)’zan)|

on the support of ¢. Now, ¢ is a product of functions, one of which is the cut-off

x (ViU (gr(z, z,€,m), 2,m), —V2®(z, §r(z, 2,£,7),£)) . So,on the support of ¢(z, z, 6)
IVo®(z, §r(z, 2,€,m), &) + ViV (9r(z, 2,€, 1), z,0)| < k{V2®(z, §r(z, 2, £, 7).

As ® € P(a) we have (Vo®(z, §r(z, 2,€,m)) ~ (§) on Supp(a(z, §r(z, z,£,7),£))

which contains Supp(c). Therefore

f2 < k<£>1

on Supp(c), which is (8.38) .
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Conditions 8.34 and 8.35 We consider V( first. Differentiating ¢ with respect

to &;, gives

8§jc = (831(1)) (CE, z}r(z, 2, 67 77)? €)+

n

Z [(821(1)) (CE, ﬂT(CB, Z, ga 77)7 6) -+ (811\11) (’[]T(CE, Zy 61 77)3 Zs 77)] x

=1

X (¥), 0,7 (2, 2,€,m). (8.40)

Define

n

fag =D _1(04®) (z,ir(z, 2,6,1),€) + (8, %) (ir(z, 2,€,71), 2,7)] X
=1

(), O, r(x, 2,€,m) (8.41)

and define f5 := (fa1, ..., fan,) - In this notation, V¢ = (V3®)(z, §r(z, 2,€, 1), €)+

f2. By the triangle inequality we have

Vel 2 [(Va®) (2, gr(z, 2,& 1), &) — | fa-

Now, we will show that fo < k(z) where k is the constant in the cut-off x. As

we argued earlier, on Supp(c) we have

[(62,®) (z,9r(z, 2,€,m), §) + (91, ) (F7(=, 2, € ), 2,m)] < k().

Also, on Supp(c) we have

(9), 0,7 (2, 2,6, m) < {&)(€) ™,
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with the implicit constant independent of k. It follows from the definition of fo

that we have fa < k(x).

So, on Supp(c) we have
IVeC| > [(Va®)(z, gr(z, 2,& ), §)| — cok(x) (8.42)
for some constant ¢y > 0. By similar arguments we have
IVaCl 2 [(V3W)(Fr(z, 2,€,m), 2,1m)| — Eok({z) (8.43)

on Supp(c), for some & > 0. Now, define C; := max{2Cs(2Cy +1),2Cy(2Cs +1)}.

We remark that we have the following inequalities holding on Supp(c).

(x) < (2Cs + 1)(gr (2, 2,€,m));
(gr(z, z,&n)) < (2Cs + 1){z),
(z) < (20w + 1){gr (2, 2,£,m)),

(gr(z, z,&,m)) < (2Cy +1)(2). (8.44)

We will show that |z — z| > C¢(z) implies that Vo > (x) + (2). It can be shown
in the same way that Condition (8.34) is satisfied. Define
V = {(x,7,2,&n) € Supp(c) : |z — z| > C¢(x)}. By the triangle inequality,

|z — z| > C¢(z). implies that

I.T - gT(.’IT,Z,f,'f])l + |:§IT(.’1§,Z,£,7’] - Zl 2 OC(‘,E)
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So, |z — z| > C¢(z) implies that either

o~ Grle, 2 Em)| 2 S (8.45)

Define Vi := {(z,, 2 & n) € Supp(c) : |z — Jr(z,2,€ )| = S(z)} and

Vo = {(2,7,2,&mn) € Supp(c) : ir(x, z,€,m) — 2| = F(x)}.
By the above work, we have V C V; [ Va.

We claim that for small enough k we have

Ve( = (x) + (z) on V). (8.47)

V¢ > (z) + (z) on Va. (8.48)

As 0 := (¢,£,m), we have Vo( > |Ve(|+ |V, (|- So, if we prove (8.47) and (8.48)
we’'ll have proved that |Vy( > (x) + (2)| on V because V C V| V5.

We will prove that V,¢ > (z) + (z) on V,. Proving (8.47) is easier.

From the definition of V, and the estimates (8.44), it follows that
|(V39)(gr(z, 2,€ 1), z,m)| > (z) on Va. So, by (8.43) we have V,( > (z) on V, for

sufficiently small k. Since (z) ~ (z) on V5 we have
Vi€ > (z) + (z) on Vy, (8.49)

for sufficiently small k.

Similar arguments can be used to show that |z —z| > C¢{z) = Ve( > (z)+(z).
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Condition 8.36 As before, note that on the support of h(z,y, 2z, £, ), we have:

1. ®(z,y, &) satisfies SG.,

7071 3
2t estimates.

2. U(y,z,n) satisfies SGyL) estimates.

As (z) ~ {y) ~ (z) and {€) ~ (n) on Supp(h) (see (8.26)), we can apply Proposition

8.2.4 and conclude that:

1. &(z,gr(z, 2,€,n),&) satisfies SGI’O”é estimates on Supp(h) which contains

Supp(c).

2. U(gr(z,zE&,n),z,1n) satisfies SGg’;’,lo estimates on Supp(h) which contains

Supp(c). As ((z,2,0) = ®(z,gr(z,2,&,0),8) + ¥(Gr(z, 2,€,1n),2,1) we're

done.
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8.4 (Generalised Type Q operator class.

As for the Type P operator, we modify the definition of the Type Q to allow the
frequency variable to have a dimension greater than or equal to the dimension of

the spatial variables.

Definition 8.4.1. Let a(z,y,£) € SG ¢ ™ (R* x R" x R™) for my,me, m3 € R,
Let ®(z,y,§) = f(z,€) + gy, §) where f(z,£) € C= (R" x R",R) and g(y,§) €
C*® (R* x R™,R). We say that ®(z,y,§) = f(z,€) +9(y,€) € Qa) if f and g

have the following properties:
1. f(z,€) satisfies SG;"E(]R" x R™ R) estimates on Supp(a),

2. g(y, &) satisfies SGH

se(R" x R R) estimates on Supp(a),

8. (Vof(z,8)) ~ (§) on Supp(a),
4- (Vyg(y,8)) ~ (€) on Supp(a),

We can choose n “ prime ” variables and write € = (£',€") (after re - labelling )

where £ € R™ and " € R™™" such that

5. (Vegly,8)) ~ (y) on R" x R™,

n

det (ayﬁg;g(y,f)). |

3,5=1

6. =1, on R™ x R™,

7. 0r,0¢ig < 1, for all2,j, on R" x R",
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8. |Vyg(y,&)| — o0 as |¢'| = oo for all fized y € R™, £ € R,

There exists some open set Vo C R™™™ with Supp(a) C R x R* x R* x V

such that we have:

9. For alli,j €{l1,...,n},

aﬁrtaﬁgf(m’ 5) =< la

on {(z,§) : z e R*, ' € R", & € V},

10.

det (8$18§;f(a:, 5)) -1,

n
i,j=1

on {(z,§) :x €R",§ €R™,{" € Va},
11. (Ve f(z,&,€")) > (z) on {(z,§) : s € R*, & € R*, " € Va},
12. |V, f(z,8)| — o0 as || — oo for all fired x € R™, " € Vg,

Given a(z,y,§) € SGZ;,’?”’W(R” x R" x R") with ng = n, then we define Q(a) :=

Q.

Remark The above phase assumptions are not symmetrical in x and y. They

could be made to be symmetrical but there is nothing to be gained by doing so.

Remark Let £ = (£,£"”). Given a function a(z,y, £), we may also denote this

function by a(a:, y, &, 5")~
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My, My, Mg

Definition 8.4.2. For anya(z,y,§) € SG, ;'

(R*xR"xR™), with my, m,,, m¢ €
R, ne > n, and ®(z,y, &) € Q(a) we define the generalised Type Q operator Ag,

acting on S(R™) as follows: For u € S(R™),

Au(z) = hm/nE /n exp{i®(z,y, &) Ya(z, v, E)v(e&)u(y)dydE,

e—0

where (e€) is a mollifier.

Remark We have Q(a) C P(a), so we obtain some basic facts about the gener-
alised Type Q operator straightaway. Some of these are collected in the following

Theorem.

Theorem 8.4.3. Let a(z,y,§) € SG?;’?" (R XR?xR™), for any mg, my, me €

R and let ®(z,y,&) € Q(a). Then, if we define A .= FIO(®(z,y,£&),a(z,y,§)), we

have:
1. A: S(R™) — S(R") continuously,
2. A is independent of the choice of mollifier,
8. AT = Tim, o fyre fon €20 9a(y, 7, €)y(c€)u(y)dyde,

4. A: S (R") - S'(R™) continuously.
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We now present the reduced form of a generalised Type @ operator modulo K.

Proposition 8.4.4. Let a(z,y,§) € SG:;:?”’mE (R*xR"xR™), for any my, my, mg €
R and let ®(z,y,£) = f(z,) + g(y,€) € Ola). Also, let x € Z2(c) where ¢ > 0.

Then, if we define A := FIO(®(z,y, &), a(x,y,£)) and

Aped = FIO(®(2,4,€), a(z,y, E)x(Ve f, =Veg)x(Veg, =V f), we have
A = Apeq modulo K.

Proof. This result follows from Theorem 3.2.2. O

Remark. We will sometimes refer to a “generalised Type Q operator” as a “Type

Qgen operator” and similarly for the generalised Type P operator.

8.4.1 Some Remarks about the Generalisation of the Type
Q operator.

As we have seen with the Type P, operator, it is not too hard to construct a
simple SG operator class which is closed under composition. Defining an operator
class which is closed under composition with the additional property that we can
make “natural” changes of variable involving the phase is more difficult.

We will now discuss these “natural ” changes of variable for the Type Q oper-

ator.
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Let A = FIO(f(z,€) + g(y,),a(z,y,§)) where f(z,&) + g(y,€) € Q and

a(z,y,£) € SG 7™ (R* x R" x R™) for any my,mg, m3 € R.

n

We assumed that ‘det (aziagjf(:n,g))zjﬂ‘ > 1 and ‘det (84:0¢,9(y, €)) ‘ > 1.

ij=1
As we have seen, these “non - degeneracy ” assumptions, along with other “proper-
ness” assumptions, allow us to make the following changes of variable

(z,y,€) — (:i, 7, E) globally on R™ X R" x R™, without destroying the SG structure

of the amplitude:

(8.50)

So, it seemed to me that for a Type Qg operator we should be able to make
similar changes of variable whilst preserving the SG structure of the amplitude.
For a Type Qgen operator, the following changes of variables (z,y,§) — (:i, 7, g”)

do not destroy the SG structure of the amplitude:
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(2.0.8.8") = (=, Veolw,€).€.€").
(2.9.6.8) = (2,3, Vuo(0,6),€").
(2.0.8.8") = (2. Ve f(0.6).€.€").
(:i', 7,€, ~”) = (2,5, Vy [ (,€),€").

(8.51)

Note that the transformations involving g are globally defined but those in-
volving f are defined on {(z,y,£.,£") : z,y,&’ € R" and £” € Vs} for some open
Ve C R™~™, We now briefly discuss why this is the case.

The generalised Type Q operator arises naturally when we compose two type
Q operators. We shall see later that after the composition of two type Q operators,
we can easily retain non-degeneracy of the second phase component (corresponding
to g) everywhere. It doesn’t seem possible to retain non-degeneracy of the first
component ( corresponding to f) everywhere, although we can retain this property
on an open set containing the support of the amplitude.

We could have generalised the Type @ operator class by making the same
assumptions for g as for we did for f. Doing so would have given an operator class
with the desirable property that the transpose of any operator is an operator of
the same type. However, when we compose two type Q operators we can easily

retain non-degeneracy of the second phase component globally. So, making the
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same assumptions about g as we do about f would mean “throwing away” some

non-degeneracy of the phase.
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8.5 The generalised Type Q operator class is closed

under composition.

Theorem 8.5.1. Let a(z,y,£) € SGT"* ™ (R™ x R* x R™) with ng > n and

let b(z,y,€) € SGLI2"(R™ x R™ x R™) with n, > n. Let ®(z,y,£) := f(z.€) +
9(y,€) € Qa), ¥(z,y,&) := u(z,€) +v(y, &) € Q(b) and define A := FIO(®,a)
and B := FIO(T, b).

Then the composition C := A o B is a generalised Type Q FIO , modulo K.

Precisely,

C = FIO(({(z, z,0), c(x, z,8)) modulo K,

where ¢ € SGIMHatTmeTmlzmetaT Ra o RA x RPN with p, q any real

numbers such that p+q=my +t1 +my +n +teand € Qc).

Proof. We will prove the Theorem for ne > n and n, > n. The proofs of the other
cases are essentially the same.

The proof is split into two parts. In part 1, we reduce the composition modulo
K, perform some changes of variable, define the # and the 8" variables and finally
we determine c(z, z,0) and ((z, z,0). In part 2, we show that ( € Q(c).

Part 1.

Given any a(z,y,§) € SG "™ (R* x R* x R%) with n; > n, we have

Q(a) C P(a). So we can follow the argument in the proof that the generalised
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Type P operator class is closed under composition. Doing so, we have that (modulo

operators with Schwartz kernel applied to u ),

d—0

(Ao B)u(z) = hm/ / / / M@V OTYW2Mtp (g y 2 € n)y(dn)u(z)dzdydédn,
g JR™ JRe SRR
where

h(z,y, 2,&n) = a(z,y,€)b(y, z,m)x1 (Ve f(2,€), —Veg(y, §) x
X1 (VE’g(ya 5)1 _VE'f(:Bu é)) X3 (Vn’u(ya 77)1 _VTI’U(Z? 77)) X
xx3 (Vyv(z,m), —Viu(y, 1) xs(Vyg(y, &), —Vyu(y, n)) x

xxs5(Vyu(y,m), —Vy9(y,£)),

with x; € Z2(c;), where the positive constants ¢; are to be fixed later. At the

moment there is no restriction placed on the c;.

We note that h € SG;) Z‘g:tl t2:m3:88 and that on the support of h, we have
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(z) ~ (y) ~ (2) and (€) ~ (n). We also have

f(z, &) satisfies SGi’é estimates on Supp(h), (8.52)
g(y, &) satisfies SG;’,E estimates on Supp(h), (8.53)
u(y,n) satisfies SG, estimates on Supp(h), (8.54)
v(z, 1) satisfies SG} estimates on Supp(h), (8.55)
(Vaf(2,€)) ~ (€) on Supp(h), (8.56)
(Vyg(y, €)) ~ (€) on Supp(h), (8.57)
(Vyu(y,n)) ~ (n) on Supp(h), (8.58)
(Vzv(z,1)) ~ (n) on Supp(h). (8.59)

Remark It is perhaps helpful at times to think of e.g. f(z,£) as being a function
of all the variables (i.e. (z,¥, 2,&, 1)) rather than of  and & only.

We will explain how (8.52) is obtained. All the other statements follow in the
same way. We assumed that f(z,&) satisfies SG;’E estimates on Supp(a). So, if
we let W= {(z,9,2,,17) € R* x R x R™ x R™ x R™ : (z,y,&) € Supp(a)}, we
have f(z,€) satisfies SGi:é estimates on W. Once we note that Supp(h) C W, we
have (8.52).

We now make a change in the y variable. We will perform it in two steps. We
first make an SG structure preserving change y — s, where s is a dummy variable.

We will then make a “re-scale and shift” change s — §. (of the type treated in
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Proposition 8.2.4). We remark that the goal of these changes of variable is to
have |§| < ¢;1(€) on the support of the amplitude (Recall that ¢; is the constant
in the definition of the cut-off x;). This will be important later when we are
trying to show that the proposed phase has the desired non-degeneracy in the first
component.

Define s := Vgg(y,§). Under this change the amplitude - goes over to h.
The change of variables is globally defined as we now explain. For (z,y, z,€,7n) €

R™ x R® x R™® x R™ x R™, define

y Veg(y,€)
G: ||+~ e
3 3

1)\
Define (i, $,%, €, ﬁ) = G(z,y, z,£,n). By assumption, |V g(y, £)| tends to infinity
as |y| — oo for any fixed € € R™. It follows straightforwardly, that G is a proper
map from R37+7¢+mn o R3¢+ By assumption, | det (8%85; g(y,{)):j: | > 1.

So G is a proper, smooth function with non-zero Jacobian everywhere. Therefore,

G is a C* diffeomorphism from R3" "¢+ to R3n+ne+nn,
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Making this change of variables, (A4 o B) u(x) (modulo Ku for K € K) becomes

lim / / / / ei([f(z,ﬁ)-H]((Vfg)—l(S,ﬁ),f)+u((Vgg)_l(s,&),n)+v(z,n)]X
6—0 R’ JR™E n n

xh (z,(Veg) ™' (s,€),2,€,n) | det O, (Verg) ™ (s, €)lv(dn) x

u(z)dzdsdédn,  (8.60)

where (Veg)™" (s, €) denotes the inverse of the ¢ section of (Ve g) and
|det 8, (Verg) ™" (s, €)| is the Jacobian of the change. Note also that ((Veg) ™ (s,£)) ~
(s) on R™ x R™. This follows from the fact that (Vg g(y,&)) ~ (y) on R™ x R™
by assumption. Also, by Proposition 6.2.3 , the function (Vg:g)‘l (s,&) satisfies
SG;:? estimates on Supp(h (z, (Veg)™ (5,6), 2,€, n)).

For convenience, we have dropped the tildes over the z, z, £,  variables.

Define

ﬁ (CL', 8, 2, 6, 7’) =h (CL', (vﬁ'g)_l (576)7 2767 7’) |det 85 (vf’g)—l ($,§)|

By Proposition 6.2.4 we have

h(z,s,2,€n) € SGouTzttamats, (8.61)

z,8,2,6,7
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By Proposition (6.2.4) we also have:

f(z, &) satisfies SG;”E estimates on Supp(h), (8.62)

g(Veg)™" (s5,€),€) satisfies SG;’E estimates on Supp(h), (8.63)
u((Veg)~ (s,€),n) satisfies SG;?; estimates on Supp(h), (8.64)
v (z,n) satisfies SG;:TII estimates on Supp(h). (8.65)

It follows from (?7) to (8.59), and the properties of G that:

(V1£(2,€)) ~ (€) on Supp(h), (8.66)
(Vg ((Veg) ™ (5,€),€)) ~ (€) on Supp(h) (8.67)
(Viu((Veg)™" (s,€),m)) ~ (n) on Supp(h) (8.68)

(V1v(z,1)) ~ (n) on Supp(h) (8.69)

We now make the “re-scale and shift ” change in the s variable. Let r(z,&) be

an arbitrary function in ESGi:gl (R™ x R"¢) and define

QT(.’E, 6) =S5+ Vglf(fﬂ,tf)-

Each component of Vg f(z,€) satisfies SGLY estimates on Supp(h), and (z) ~
£ z,€

(s) ~ (z) and (£) ~ (n) on Supp(h). So, we are in a position to use
Proposition 8.2.4.
Define H(z, s, 2,£,n) = (z, ii(%g—’ﬁ),z, €,n) and we remark that H is a C*

diffeomorphism from R37+7e+mn to R3nFTnetnn,



CHAPTER 8. CLOSEDNESS UNDER COMPOSITION 155

Making this change of variables, we have the following equality (modulo Ku

where K € K),
Ao Bu(z) =

lim /Rng /n /n exp [i(f(z,€) + g (Veg) ™ [ir(z, €) — Ve f(2,€),€],€)

) .
+u (Veg) ™ [ir(z, €) — Ve f(2,€),€),m) + v (2,m) )] x
xh (z, §r(z,€) — Ve f(z,€), 2, € n) 7(67) X
Ir(, §)"|u(z)d=dgdedn.

(8.70)

In an effort to make things easier to read, the variables in (Vg g)~" have been

delimited with square brackets.

Now define the n + n¢ + n, dimensional frequency variable 8 := (§,£,n). We
choose &' := 1/ and 6" := (3,&,n"). Also define
C(CE, z, 9) ZIiL ((E, gT(CB, 5) - Vf’f(m, 5)1 z, ga 77))|7°(5Ea £)n|’
w(z,8) :=f(z,6) + g((Veg) ™ (Gr(z,€) — Ve f(x,€),8),€)+
+ U’((Vf'g)_l (gT(SE, 5) - Vf'f(m’ 5)’5)’ 77)
((z,2,0) =w(z,0) +v(z,n)
We'll now show that ¢(z, z,0) € SGZ:Z:?3+t3—."(R” x R™ x R™%*+™*™) where p, g

are real numbers with p+q = m; 4+ mg+t, +t3 +n. By Proposition 8.2.4, we have

h(z,gr(z, &) — Ve f(2,8),2,6,n) € SG:;;m2+t"t2’m3+t3. (8.71)
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We have the following relationships between the variables on

Supp(h (z,Gr(z,€) — Ve f(2,£),2,€,1)) :

(@) ~ (gr(z, &) = Ve f(x,€)) ~ (2), (8.72)
(&) ~ (m, (8.73)
|37| =< <§>’ (874)

IViu((Verg) ™ [gr(2,€) — Ve f(z,€),€,n), -
V19((Veg) " [ir(z, €) — Ve f(x,€), £],6)| < es(€), (8.75)

(6) ~ (&) ~ (m)- (8.76)

Statements (8.72) and (8.73) are obvious since we had {(z) ~ (s) ~ (z) and
(&) ~ (n) on Supp(h(z, s, z,&,7)). Statement (8.75) follows immediately from (?7).
For (8.74) recall that we had |V f(z,€), —s| < e1(s) on Supp(h(z, s, z,£,7)). So

on Supp(h (z,jr(z, &) — Ve f(z,£), 2,€,7)) we have
ir(,€) < e1(gr(z,€) — Ve f(z,€)).
Since (z) ~ (§r(z,€) — Ve f(2,£)) on Supp(h (z, 57 (z,€) = Ve f(2,£), 2,€,m))
jr(z,€) < c(a),

on Supp(h (z,3r(z,€) — Ve fz,€), 2,€,n)). Since r(z,£) € ESG;EI, it follows
that

|51 < e1{8),
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on Supp(h (z,§r(z,&) — Ve f(z,€), 2,€,1)), which is (8.74). Statement (8.76) fol-
lows from (8.74) and (8.73).
Since r(z,&) € ESG’i’,El (R™ x R™) and (&) ~ () on

Supp(iz (z,gr(z,&) — Ve f(z,6),2,€,n)) it follows that

|r(x,€)"| satisfies SG, " estimates on Supp(h (z,r(z, &) — Ve f(z,8),2,& 7).
(8.77)

By definition,

C(CIJ,Z,Q) = i}’ (117, ﬂT(ﬁ,f) - Vélf(x,f),z,&n))]r(m,f)"|,

so by (8.71) and (8.77),we have ¢(z, z,0) € SG’;’?;;m”t‘J“"’tz’mSH?"", by the ba-
sic facts about SG functions. Since (r) ~ (z) on Supp(c) we have c¢(z,z,0) €
SG’;”Z”Z‘””_" (R™ x R"™ x R"+™*") where p, ¢ are any real numbers with p + g =
m;+me+t+1t+n.

Returning to (8.70), by writing the g, &, 7 integrals as one ng+n,+n dimensional

f integral and using our definitions of ¢ and ¢ we have

(Ao B)u(z) = %13(1) _/Rn5+nn+n /n e€@20¢(x, 2, 0)y(6n)u(z)dzd8.
The mollifier (dn) can easily be replaced by a mollifer in § once we have checked
that ¢ € Q(c). In the above, equality is modulo Ku for K € K. This completes
part 1.

Part 2
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We start by presenting a few facts.

It follows from Proposition 8.2.4 and (8.62) ... (8.65) that on Supp(c) we have:

f(z, &) satisfies SG;}, estimates, (8.78)
9((Veg) ™ [ir(=, €) — Ve f(,£), €], €) satisfies SGy estimates, (8.79)
u((Veg)  [gr(z, €) — Ve f(x,£), €], m) satisfies SG, estimates, (8.80)
v{z,n) satisfies SGizé estimates, (8.81)

From (8.66) to (8.68) , we also have the following estimates on Supp(c) :

(Vif(z,6) ~ (€) (8.82)
(Vig (Veg) " [ir(z,€) — Ve f(z,£),£],€)) ~ (€) (8.83)
<V1u ((vé’g)_l [gr(m, 6) - Vg/f(il?, 6)"5]’ 77)) ~ (77) (884)

~ ((Veg) ™ [7r(z, €) — Ve f(2,6),€]) ~ (r(z,€) — Ve f(3,€)) (8.85)

We remark that (Vg:g)l_l [gr(z,€) — (Ve f), (,£),£]) satisfies SG;:(; estimates
on Supp(c). To see this note that (ngg)l_1 (s,&) satisfies SG;’? estimates on
Supp(h(z, s, z,€, 1)) and apply Proposition 8.2.4

We will postpone the definition of V; until later and we’ll start checking that

¢ € Q).

Condition 1: w(z,f) satisfies SG}C’}, estimates on Supp(c). This is true by

(8.78),(8.79),(8.80) and the basic facts about SG functions.
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Condition 2: v(z,0) satisfies SGi”é estimates on Supp(c). This has been

proved already. See (8.81)

Condition 3: (V,w(z,8)) ~ (#) on Supp(c). For convenience, define

g(q"v 3},5) = g((vﬁ'g)_l (@T(Iﬂ,f) - VE’f(:L" f),ﬁ),f)

Wz, &) = u((Ve) ™ (ir(,€) - Ve f(2,€),6),m)
Using this notation, we have
w(z,b) = f(z,€) + §(=,§,8) + @z, §,€,7).
By assumption, V. f(z,€) > (£) when £” so the inequality holds on Supp(c).

As (f) ~ (€) on Supp(c), we'll be done if we can show that

Ve [9(z, §,€) + Uz, §, & )] < ci(€) (8.86)

on Supp(c) for some c¢;. Recall that ¢; is the constant in the cut-off x;.

Differentiating [§(x, 7, &) + @(x, ¥, €, n)] we have

8xj [§($a gv 6) + ’l]([L', ga 67 77)] =

Z [(8119) ((Vﬁ’g)_l (?j’l’(l’,f) - VE'f(xv §)a£)a£) +

=1

+(0u) (Veg)™ (Gr(,€) — Ve f(2,6),6),m) |

X, (Verg); " (Gr(z,€) — (Ve f), (z,€)). (8.87)
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The function ¢(z, 2, #) is a product of functions, one of which is

xs (V1u ((Veg) ' [ir — Ve £.€n) . Vig (Veg) ' [ir — Ve £,€),€)) -
So
V19 (Veg) ™ (§r(z, €) — Ve f(z,€),),6) +

Viu((Veg) ™ (@r(z,€) — Ve f(,6),6),m) |

< ¢s(V1g (Veg) " [gr(z, &) — Ve f(z,€),€,€)), (8.88)

on Supp(c). Also

(Vig (Veg) ' [ir(z, &) — Ve f(z,€),€],€)) ~ (£)

globally. So, by (8.88) we have

V19 (Verg) ™ (ir(z, €) — Ve f(z,8),€),€) +

Viu ((Veg) ™ (r(z, &) — Ve f(2,€),€),n) | < c5(8), (8.89)

on Supp(c). Also, we showed carlier (Ve g); " (ir(z,€) — (Ve f), (z,€)) satisfies

SG;::(; estimates on Supp(c). So, on Supp(c), we have

Oy (Veg); ' (r(z, &) — (Ve f), (z,8) < 1, (8.90)

for I = 1,...,n. Therefore, by (8.87), (8.89) and (8.90) we have V,[§ + @] < cs5(&),

which is (8.86).
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Condition 4: (V,v(z,6)) ~ (#) on Supp(c).

We have already established that (V,v(z,n)) ~ (n) on Supp(c). Noting that
() ~ {6) on Supp(c) shows that Condition 4 is satisfied.

The phase component v is unaltered by the changes of variable. So the following

conditions involving v are trivially satisfied.

Condition 5: (Vgv) ~ (z).

Condition 6: |det (2.,0,,(z, )

J=1

Condition 7: 6%69;1) ~< 1 for all 4,5

Condition 8: |V,v(z,0)| — oo as |#/| — oc.

We will now discuss our choice of V;. Given any ¢ > 0, define
Vee:={(9,€,€",n") such that ,£ € R™, " € Vo, " € Vg and |§] < €(€)}.

We have |g| < ¢1{§) on Supp(c) (as well as Supp(e(z,z,7',9,€,€",17")) C R™ x

R" x R* x R™ x R" x Vg x V;,.) So, for any ¢ > 0, we can choose ¢; small enough

so that
Supp(c(z,z,6,0")) CR® x R* x R" x V. (8.91)

We will prove that for e small enough we have conditions 9 to 12 holding with

Vo= Ve
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Condition 9 0;,0p, w(z,¢',0") < 1foralli,j=1,...,n.
We will show that this condition is satisfied on {(z,6) : z,6' € R*¢" € V,} for

any €. We have

n

aﬁtia"?;-w(x’ 9) = Z (alra%u) ((Vﬁ’g)_l [gT(CE, 5) - Vglf(CE, 5)’6]’ 77) X

=1
X0, [ (Veg); " [ir(z,€) — Ve f(z,6),€,m)].  (8.92)
By assumption,
O1,0xu (y,m) < 1on {(y,n) e R* xR™ : n"" € Vg }. (8.93)
Also:

1. For anyi,7 € {1,...,n} we have J (Veg);l < 1 on R* x R™ by assumptions

5,6,7 and 8,

2. By assumption we have 8Ii8£;f(:n,£) <1lon{z e R"¢eRE" € Vp} for

any i,7 € {1,...,n},

3. Straight from the definitions of V¢ . and r(x, &) we have &,jr(z,£) < € for

0" € Ve
1t follows from 1,2 and 3 above that for any fixed €, we have
a:ci (ngg)r_l [gT(CE,f) - v&’f(mag)vg]a T]) <1, (894)

on {17,5’,77, S R"ﬂ?” S V\I”gn € VfIJ}

We’re done by (8.92), (8.93) and (8.94).
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n

Condition 10 det (8,;1. Bg;w(x, 9)) o > 1 on R" xR" x V  for sufficiently small
i,j=

€.

We have
87;;1” = (82311') ((Vé’g)_l [’g?‘(ﬂ?,f) - Vf’f(xaé)"g]’ 77) : (895)

Differentiating with respect to x; gives

> (6,85) ((Ves) ™ [9r(2,€) = Ve S (2,€), €] )

p=1

x0,{ (Veg), " [ir(z.€) — Ve f(z,8),€]}. (8.96)

Now, | det ((81p82;u) (v, n))nj_l | = 1on {(y,n):n" € Vy}. So we have

ldet (8lp829u) ((Vg:g)_l [ﬂ?‘(il?,f) — Vg’f($,€)1€]a 77) l =1 (897)

for (z,6,6") € R® x R® x V¢, for any € > 0. Indeed the implicit constant does
not depend on €. We have only used the fact that on V¢ we have n” € Vg.

Let W be the matrix with (i, j) entry
0, {(Ve9);" [7r(2,€) — Ve /(2,6).1} (8.98)

So, by (8.96) and (8.97), if we can show that det W > 1 on {(z,6) : " € V¢ .} for
some € we’ll be done. Suppose that W = M + N where the matrices M and N

have the following properties:

1. det M > 1on {(z,0) : 2,0 € R", 0" € V .} for any ¢, (with implicit constant

independent of €)
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2. M;; <1lon {(z,0) :z,§ € R*, 0" € V .} for any ¢, (with implicit constant

independent of )
3. N;j<eon {(z,0) : 2,0/ € R",0" € V .} for any .

Then we can write

detW =det M + ) _ b
J

where the sum is finite and each h; is a product elements of M and N, where at
least one of the elements comes from N. Clearly, we will then be able to choose
€ = ¢p small enough so that det W > 1 on {(z,8) : 2,6’ e R, 0" € V., }.

We will now show that W can indeed be written as a sum of matrices M and

N which have the properties 1,2 and 3 above. Expanding (8.98), we obtain

Wivj = Zalk (Vﬁ'g)j—l (gjr(x, f) - V&’f(xvf)’ é)) [8171 (gkr(x’ é)) + 8$18£§cf(x’ f)} :
k=1

Define

N = Z 81’° (Vg,g)j—l ["le(ZL“, f) - V&’f(xv f)’ é] 8xi (ﬂkr(x, é)) (899)

k=1

M has properties 1 and 2. We have det (c%k (Vg,g)j‘l):‘ l(s,g) - 1 on
§=

R™ x R™. We have det (axic‘)g;cf(a:, é))?kzl > 1 on

{(z,6) : 2,6 € R*and £" € Vs} So, we have det M > 1 on {(z,§) : z,£ €

R™ and ¢” € V, .} for all € which is property 1. (and the implicit constant does
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not depend on ¢)
We also have M;; < 1 on because 0, (V,gfg)j—1 (y,€) < 1 on R® x R™ and
Or; 0 f(7,€) < 1Lon {(z,§) : 2, € R* and " € Va} by assumption. Again

the implicit constant does not depend on e.

N has property 3. For N;; note that 0y, (Veg ) < 1, and 0,07 (z,£) < e on

{(z,0) - z,# € R" and 0" € V,}. So, it is clear that N; ; < eon {(z,0) : 0" € V. }.

Condition 11 Vyw > (z) on R* x R* x V.. We have

V@/’UJ(.’IJ, 6) = (Vz'u) ((Vﬁ’g)_l (g’l"(l‘,f) - Vg/f(ﬂf,f),f), 7]) .

On the set {(y,n) : y, € R® and " € V4 we have (Vau(y,n)) > (¥). So, on

{(z,8,6") € R* x R" x V,.} we have
(Vo) (Verg) ™" (r(,€) = Ve f(2,6),€),1) = (Veg) ™ (§r(z.€) = Ve f(2,€),6))
We have ((Veg) ™ (s,€)) ~ (s) on R* x R™. So it follows that
(Vow(z,0)) > (ir(z,€) — Ve f(z.£)),
on the set {(z,0) € R* x Rt . ¢ € V; }. By the triangle inequality,
(Gr(z,§) — Ve f(z,8)) 2 (Ve f(z.€)) - lr(z, &)

By assumption, £” € Vg implies that (V¢ f(z,€)) > (z) and on

{(z,8) € R® x R%*mtn . 0" € V. .} we have

|97 (2, )| < e(z).
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So, for small enough ¢, we’ll have Vgw > (z) on {(z,6',68") € R* x R® x V .}.

Condition 12. For fixed z € R" and 6" € V, we have |V,w(z, 8)] — oo and
6’| — oc.

We are interested in the behaviour of V,w as |rf| — oo for fixed values of
the other variables. Recall that ¢ = . So we only need to consider the limiting
behaviour of the = gradient of the parts of w which depend on #'. That is, the

behaviour of

Va [u((Veg) ™ [ir(z,€) — Ve f(z,€).€,m)] .

‘We have

axju ((Vﬁ’g)—l [g}r(:v, f) - VE’f(xv 5)36]7 77) =

> (31,u) (Veg) ' [ir(z.£) — Ve f(z,€),€,n) %

X0z, [(Veg); lir(2, €) = Ve f(=,€),€]] . (8.100)

As argued earlier (see condition 10), we can choose ¢ small enough so that for any

fixed z € R", 0" € V. the matrix
(81'1‘ [(V{/g);l [QT(CE, g) - VE'f(CE, 6)7 g]] ):,j=l

has bounded inverse. Then, by (8.100), we can conclude that for fixed z € R", 6" €
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V¢, we have

Ve [u((Veg) " [ir(2,6) — Ve F(z,€),€,m)] >~

|(V1w) (Veg) ™" [ir(z,€) — Ve F(z,£),8,m) |- (8.101)
For 8" € V., and z € R", we have

I (vlu) ((Vﬁ’g)_l [gr(:c,f) - ngf(l‘, f)’é]’n) I — 00

as |'| — oo because u is a phase component and 8" € V; . implies that " € Vg. O



Chapter 9

Type R Fourier Integral Operator

9.1 Introduction

In the definition of the Type Q operator class we assumed that the mixed spatial
derivatives of the phase were zero everywhere - i.e. that 9;,0,,®(z,y,§) = 0
for all 4,j = 1,...,n. The reason for this assumption was purely technical. I
wanted the Type Q operator class to have the property that the composition of a
type Q operator and its adjoint was pseudodifferential and I could not make the
necessary (structure preserving) change of variables without this mixed derivative
assumption. The Type R class was born out of the desire to define an SG FIO
operator class with the property that A o A* and A* o A are pseudodifferential

without assuming that 9,0, ®(z,y,§) =0for all 4,5 =1,...,n.

168
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9.2 Operator Definition.

Notation For ®(z,y,£) € C®(R" x R* x R",R) we will write 0,0:®(z,y, )
to mean the n x n matrix with 4,7 entry 01,0, ®(z,y, &) with 8,05®(z,y,§) ete.

similarly defined.

The definition of the Type R phase is on the next page.
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Definition 9.2.1. Let ®(z,y,£) € C®(R" xR™ x R, R). We say that ®(z,y,&) €

R if it has the following properties:

Forj=1,..., n, we have 0,;® € SGO’O’l(R” x R” x R"),

z,,§
Forj=1,..., n, we have 9,,® € SGg”Z’é(R” x R™ x R™),
(V22) = (€),

For all multi-indices v we have 9] @ < ((z) + (y)) (&)1~

(9.1)
9.2)
9.3)
(9.4)

(9.5)

Forij=1,...,n, we have ((z) + (y)) 05,8, ® € SGYo(R" x R™ x R"), (9.6)

,y,§

det (8% 853. (I))n =1

3,7=1 !

det (8,0, ). _, > 1

3,5=1 ?

9.7)

(9.8)

There exists some function g(x,§) € SGYHUR™ x R™, R") with {g) > (z) and
Z,g

det (8x,9;)r._, > 1, such that |V ®(z,y,6)| ~ |y — g(z, &),

n
i,7=1

5152‘13(9?,?/,5) 030,®(z,y,§)
det -~ 17

5155@(2?7?/,5) 5353‘1’(3?,?/,5)

det [ - 5152(13(.’13, g(x,ﬁ),ﬁ) (5153(13)_1 (‘7:7 g<x7§)7 5)8353(1)(-7:7 g(a:,ﬁ), §)+

+ 03009 (z, g(z, £), 5)] -1,

det [ — 8281(13(.’1:, g(a:,ﬁ), §) (8283(13)_1 (.’Z,', g(a:, g), 5)8383(13(.’1,',g(.’13,§), §)+

+ 8381(13(.’1:, g(ﬂU, 5)’ 5)] -1

(9.11)

(9.12)
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Remarks Define

Mo 010:®(z,y,€) 0:0:9(,y,€)
010s9(z,y,€) 03059(z,9,§)
Assumptions (9.1),(9.2),(9.5) and (9.6) mean that det(M) belongs to
S Gggg(]R" x R™ x R™). So assumption (9.10) is an ellipticity assumption on det M.

We shall call the set {z,y,£ € R* x R* x R* : V®(z,y,£) = 0} the “zero
set” of Ve®(z,y,&). Assumption (9.9) means the zero set has a specific global
parameterisation.

Our phase assumptions mean that we have two “main” global charts on the
zero set of V¢®(z,y,€). Using our parameterisation y = g(z,£) of the zero set,
the coordinates are (x,VICD(x,g(x,f),f)) and (g(x,f),—ng)(x,g(x,f),f). The
assumptions (9.11) and (9.12) (along with some others) mean that the coordinate
change is a global SG diffeomorphism. So, the zero set of V¢®(z,y, £) is an SG

manifold.

We define the Type R operator in the standard way.

Definition 9.2.2. Let ®(z,y,§) € R, a(z,y,§) € SG 7™ with m1, ma, m3

arbitrary real numbers and let v(e€) be a mollifier. Define the Type R operator

Agq acting on u € S(R™) as follows:

Agqu() =Ly [ [ ¥e99a(e g O euy)dyde. (013

e—0
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Given that Type R operators are also Type P operators we obtain the following

result straightaway.

Proposition 9.2.3. Let ®(z,y,£) € R leta(z,y,€) € SG ;7™ for anymi, ma, ms €

R and let A= FIO (®(z,y,£),a(z,y,€)). Then
1. A: S(R") —» S(R") continuously,
2. A is independent of the choice of mollifier,
3. AT = FIO(®(y,%,¢),a(y, z,£)),
4. A extends to a continuous operator from &' (R™) to &' (R").

5. For x € Z%(c) with ¢ < 1, we have

A= FIO(®,a(z,y,€)x1(y: (=, §))x1(9(2, £), y)) modulo K.

Proof. 1f ®(z,y,£) € R, then ®(z,y,&) € P. So the first 4 statements follow from
the corresponding results for Type P operators. Statement 5 follows from Theorem

3.2.2. m

Before proving that the composition of a Type R with its adjoint is pseudod-
ifferential we present some sufficient conditions for a real-valued smooth function

® to have the zero-set parameterisation structure described in (9.9).
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Theorem 9.2.4. Suppose that a real valued function ®(z,y,&) has the following

properties:
®(z,y,€) € C®(R" x R x R", R), (9.14)
det 0,,0,,® >~ 1, (9.15)
det 0,0, P > 1, (9.16)
0:,® € SGyyes (9.17)
0,0 € SGy\, (9.18)
;P =< ((z) + (v)) (), (9-19)
For all fized £, € R* V®(z,y,§) — oo as |y| — oo, (9.20)
For all fizedy,§ € R* VP(z,y,£) — o0 as |z] — oo, (9.21)

Then we have Ve®(z,y,£) ~ |y — g(z, §)|, where the vector valued function g(z,§)

has the following properties:

9(z,€) € SG(R* x R*,R"), (9.22)
(9(z,€)) = (z), (9.23)
det (8z,9)7;-1 > 1. (9.24)

Remark In [3], Coriasco calls functions g(z,£) satisfying (9.22) , (9.23) and

(9.24) “SG diffeomorphisms in z with parameter &. ”

Proof. Existence of g(z,£). Define F' := (z,V®(z,v,§),§), and define w :=
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(z,y,&). We claim that the function F' € Dif feo(R®", R*"). By assumption (9.20),

n

we have |F(w)| — oo as |w| — oo. Also, the Jacobian of F' is det (8%851(1))1-,]-:1
which is globally bounded below by some real constant. So by the Global Inverse
Function Theorem , F' € Dif feo(R*", R3). As F is a bijection, for all z,{ € R",
there is a unique y € R™ such that V®(z,y, &) = 0. Let g(z,£) denote this y.
So Ve®(z,y,£) =0 <= y= g(z,§). It follows from the local Implicit Function
Theorem that g(x, &) is smooth on R™ x R™.

Similarly define G := (V®(z,v,§),y,§). Arguing as for F, we have G €
Diffeo(R* R®"). So there exists a function h(y,§) such that Ve ®(z,y,§) =
0 <= z =h(y,f).

It follows that y = g(h(y, &), ) for y, £ € R™. So, for all fixed & € R, g(z,£) is
globally invertible in z.

Determinant Condition.

Now, we have V3®(z, g(x,£),£) = 0 for all z,£ € R". Differentiating the ith

component with respect to z; and rearranging gives

81j83i(1)(ma g(xa g)a 5) = - Z 82r83i<1>($,g(x, 5)7 5)8%'91"(1" 5) (925)
r=1

Now, consider the matrix M with ¢,7 entry 8y 95, ®(z, g(z,£),£). By assumption

—02,0,®(z,7,€) € SGoy¢ for all i,r = 1,...,n. It follows that det M < 1 for all

z,& € R". Tt follows from assumption (9.16) that det M (z,£) > 1. So det M~ =

i ~ 1. Let N be the matrix with i, entry (8,05, ®(z, g(z,&),€)) . It follows
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from assumption (9.15) that det N > 1 for z, £ € R™. (We actually have det N ~ 1
). It follows from (9.25) that the matrix with ¢,r entry 9;,9,(z,&) = M™'N. So,
(029(x, €))7, a product of two matrices with determinants which are globally
bounded below. So, det (9:g(z,&));;-, = 1.

Condition: V®(z,y,&) ~y — g(z,§)

Consider Ve ®(x,y, ) —V®(z, 9(x,£), §). It follows easily from the Mean Value
Theorem and assumption (9.18) that Ve ®(z,y,€) < y — g(z, §). Now, for all fixed
z,& € R, V®(x,y,§) is globally invertible as a function of y. So, setting y =
(Ve®) ™! (2,v,€) and recalling that g(z,€) = (Ve)™! (x,0,€), we have

y—g(z,6) = (Ve®) ™' (z,2,6) = (Ve@) ™ (#,0,8). (9.26)
It follows from assumptions (9.16) and (9.18) , that V,(Ve®) ' (z,v,€) < L.
(Just differentiate the identity V. ®(z, (Ve®) ' (x,9,€),€) = v for all z,v,€ € R™.
) Using this fact and the the Mean Value Theorem, it follows from (9.26) that we
have
y—g(z,€) <v

Since v = V®(z,y, ), we have

y— g(x, 6) < VE(I)(x7 Y, 6) (927)

SG properties of g(z,§&)

To start with, note that by assumption 9.19 we have

Ved(,0,€) < (z). (9.28)
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Since V¢®(z,y,£) ~ y — g(z,£), we have V®(z,0,) ~ g(z, §). So it follows from
(9.28) that

(9(2,€)) < (x).
By considering V¢ ®(0, z, £) and arguing similarly we can show that g~'(z,£) < (z)
which implies that

(9(2,€)) > ().

It follows from differentiation of the identity V¢ ®(z, g(z,£),§) = 0 and the as-

sumptions (9.14), ..., (9.19) that g(z,§) € SGi’g. We also use the fact that

(g(z,€)) ~ (x). O
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9.3 Composition Theorems

9.3.1 Composition with a Pseudodifferential Operator

Since R C P, we obtain the following result by Theorem 5.0.2.

Theorem 9.3.1. Let ®(z,y,£) € R, a(z,y,§) € SG; 7 >™ and p(z,y,§) €

SGil’fg’ta. Define A = FIO(®(x,y,§),a(z,y,€)) and P = Op(p(z,y,£)). Then
the compositions Po A and Ao P are Type R FIQOs with amplitudes in the expected

SG classes. We also obtain the expected asymptotic expansions for the amplitudes.

9.3.2 Composition with the Adjoint Operator

Before proving that the composition of a Type R operator with its adjoint is a

ydo, we collect a few Lemmas which we’ll need.

Lemma 9.3.2. Let V, := {(z,2) € R* x R" : |z — z| < ()} for ¢ > 0 and let

® € R. Then, for sufficiently small ¢ we have

1. fol V@ (y, x + t(z — z),m)dt satisfies SGY%%, estimates on

{(z,2,y,m) € uRdn : (z, z) € V.},
2. (fol V@ (y, xz +t(z —x),n)dt) ~ (n), on {(z, z,y,n) € uR4n : (z,2) € V.},

8. Oy fol Va®(y,z + t(z — x),n)dt < (m;—i)(y;, on {(z,z,9,m) € uRdn : (z,z) €

Vel
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1
4. 03,0y, [y Va@(y, & + t(z — x),m)dt < W, on {(z,z,y,m) € uR4n :

(z,2) € V .},
5. The implicit constants in 1,2, 8 and 4 above are independent of c.

Proof. We claim that if ¢ < , we have (z +t(z — x)) ~ (z) ~ (2) for (z,2) € V;
and ¢ € [0, 1] with the implicit constants are independent of ¢. Once we prove the
claim the statements 1 and 2 can be proved by following the proof of 7.2.2. State-
ment 3 follows easily from the claim and phase assumption 9.6. Statement 4 follows
from the claim and assumptions (9.2) and (9.7), as we now explain. By assumption
(9.7), we have ((z) + (y)) 0,,0,,®(z,v,§) € SG&Z:E, for all 4, 7. Statement 4 follows
from differentiating ((z) + (y)) Or, 0y, ®(2,y,£) and using assumption (9.2).

We now prove the claim. Since |z — 2| < ¢(z) on V, and |z — z| > (2) — ()
everywhere, we have (2) < (c+ 1)(z). By similar arguments, we have (1 —¢)(z) <
(z) on V,. Consider (z + t(z — z)). It’s obvious that (z +¢(z — z)) < (c+ 1)(z)
for (x,2) € V, and t € [0,1] (by the triangle inequality). Now, (z 4+ t(z — z)) >
(x)—t|z — x| everywhere, so (z + t(z — z)) > (1—¢)(z) for (z,z) € V. and t € [0, 1].
This is enough to prove the claim.

O

Lemma 9.3.3. Let ¢ = (cy,co) where ci,co > 0, define W, := {(z,v,2,&n) €
R : |z—z| < 2¢1(z) and |€| < 2¢5} and let @ € R. Then, for c; and ¢y sufficiently

small we have



CHAPTER 9. TYPE R FOURIER INTEGRAL OPERATOR 179

1. n+ E(fol V@ (y,x + t(z — x),n)dt) satisfies

SGg’E”g’fé’,;(R” x R™ x R™ x R" x R*, R"™) estimates on W,

2. (n+€(f; Vod(y, z +t(z — z),p)dt)) ~ (n) on W,

3. (n+ s€(fyy Vo (y,z + t(z — x),7)dt)) ~ (n) for s € [0,1] and (z,y, z,£,1) €

W,

4. If h(z,y, z,w,n) € SGIMm2mamams (R7 x R™ x R™ x R™ x R™), then

,Y,2,w,1

1
h(,y, 20 + € / Val(y, + t(z — z),7)dt), )

satisfies SGTLT2M0MaAmS (P o R1 5 R7 x R x R™) on W,

z.4,2:6.m

5. The implicit constants in 1,2 ,3 and 4 above are independent of cq, c,.

Proof. Definer(z,y,z,n) = fol Vo ®(y, z+t(z—x),n)dt. By Lemma 9.3.2 7(z, y, 2,7)
satisfies SG0%) estimates on W, and (r(z,y, z,7)) ~ () with implicit constants

independent of ¢ when ¢; is small enough. The statements 1,2,3,4 and 5 follow

easily by the now standard arguments. O

Lemma 9.3.4. Let ® € R and let ¢ = (¢1, ¢2) where ¢1,¢o > 0. Define the map
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F:RRxR*"xR*x R®” x R" - R" x R* x R* x R"* x R" as follows:

A . \ (s

Yy fol V3®(y,z,n + s§(f01 Vao®(y,z + t(z — x),n)dt)))ds +z F,
F: z{ Z = F3
3 § Fy

\77) K fol V@ (y,z +t(z — x),n)dt ) \F5)
and define W, = {(z,9,2,£,n7) € R : |z — 2| < 2¢1{z) and || < 2c3}. For
sufficiently small ¢y and co the map F is a smooth diffeomorphism from W, to

itself.

Proof. The fact that F(W,) C W, is obvious from the definition of W, and the
fact that F leaves z,z and £ unchanged. Define V, := {(z,2,£) e R¥ : |z — 2| <

2¢)(z) and |£] < 2cy}. We will prove two facts.

1. We can choose ¢y, cs to be sufficiently small to ensure that for any (z, 2,&) €

Ve, the (z, z,€) section of F' is a proper map from R™ x R" to R” x R™,

2. We can choose ¢, ¢y to be sufficiently small to ensure that the Jacobian of

F>1onW..

If 1 and 2 hold, we’re done. To see this, note that because of the form of F, the
Jacobian of F' is equal to the Jacobian of the z, z, £ section of F. So, statements 1

and 2 mean that the z, 2, £ section of F' is a bijection from R™ x R" to R® x R”
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( by the Global Inverse Function Theorem. ) This implies that F is a bijection
from W, to W.. Smoothness of the inverse of F follows from statement 2, the Local
Inverse Function Theorem and the fact that F' is smooth.

Statement 1. By Lemma 9.3.2 for sufficiently small ¢; we have (F5) ~ (1) on
W,. So, we only need to check that ¢ can be taken small enough so that for fixed

any z, z,& € V, and 7 bounded we have |F3| — co as |y| — oco. Consider
1
F2 = / V3(I)(y, z,n + t§<F5(.’L‘, Y, 2, n)))dt
0
Adding and subtracting fol V3®(y, z,n)dt we have
1
/ Vi®(y,z,n + t&(Fs(z, y, 2,m)))dt = H(z,y, 2,§, 1) + G(z,9,2,€,7)
0

where H := fol [V;;@(y,a:,n + t&(F5(z,y,2,m)) — V3®(y, z, 77)] dt and
G := fol V3®(y, z,n)dt. It follows from the Mean Value Theorem, Lemma 9.3.3

part 3, Lemma 9.3.2 and the phase assumptions that we have
H < co((y) + (z)). (9.29)

on W, for ¢; and ¢, small enough. We are interested in the behavior of Fy as
ly| — oo, for z, 2, fixed in V. and 7 bounded. So we can assume that |y| > k(z)

for some k > 1. Doing so, we have
H < cx(y), (9.30)

on W.N{(z,y,2,§,m) € R* x R* x R* x R* x R" : |y| > k(z)}. By assumption,

G = y—g(z,n) where g(z,7) € SG)(R"xR") and (g(z,§)) ~ (z). By the triangle
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inequality, |G| > %(y) + %(y) —{g(z, £)). If we choose k so that %(y) —(g(z,€)) >0
we have

G > (y), (9.31)

on W.N{(z,y,2,£,n) € R*" xR* x R* x R* x R" : |y| > k(z)}. Since F, =
H(z,y,2&,n) + G(z,vy,z,&n) we're done by (9.30) and (9.31).

Statement 2 We now show that, for sufficiently small ¢; and cs, the Jacobian
of F = 1 on W,. We will denote the Jacobian matrix of F by N and we will
show that det N = det(R + S) where detR > 1 on W,, R;; < 1 on W, and
S;; < fij(c1,co) where the real valued functions f;; tend to zero as ci,co — 0.

This is enough, as we’ve argued previously. Define

0100 (y, z,m) 030:@(y, z,7m)
M(y,z,n) = (9.32)
010:2(y, z,m) 030:2(y, z,m).
where 0;10:®(y, z,7) is the n X n matrix with i, entry d,05,®(y, z,n) and the

other blocks are defined similarly. By assumption det M > 1. We obviously have
N=M+(N-M).

Consider N — M. By the Mean Value Theorem, we have

e

A
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where
_ nooa1l gl
Aij = Z/ / 01,03,05, ®(y, z,n + ttE(Fs)) (t&,( F5))dtdt' +
r=1+0 0
no ol
+ Z/ a3ra3iq)(ya z,n+ t§<F5>)t§ray; <F5>dt
r=1"0
_ noos1lpl
B,=% / / 8s,05,05, B(y, z,n + HE(Fs))[t6 (Fi)|didt'+
r=1 Y0 0
noopl
+Z/ 85,05, P(y, T, n + t&(F5))[t&Op, (F5)]dt
r=1 0

1
C’ig' = / 81j82]02T(I>(y, z+t(z—x),n)(z — x,)dt
0

1
D;; = / 03,00,05, ®(y, x + t(z — x),m)(2, — z,)dt (9.33)
0

It follows from the above, Lemma 9.3.2 (in particular parts 3 and 4) , Lemma

9.3.3 and the phase assumptions that

Di,j =< C1. (934)

Consider M + (N — M). If we multiply the first n rows of M + (N — M) by ﬁ

y)+{z))

and then multiply the first n columns by « )(n> we obtain a new matrix R+ S.

(R and S are the matrices obtained by performing the forementioned operations
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on M and N — M respectively. ) Because of cancellation, the determinant of
det[M + (N — M)] = det[R + S]. Obviously det[M + (N — M)] = det[N]. So we
have

det[N] = det[R + S].

Recall that N denotes the Jacobian matrix of F. Also, because of cancellation,
det[R] = det[M] > 1. It follows from the phase assumptions that R;; < 1. By our
estimates 9.34 we have S;; < fij(c1,¢2) for 4,5 = 1,...,n where the real valued
functions f; ; tend to zero as ¢;, ¢; — 0. It follows that for sufficiently small ¢; and

co we have det N = 1 on W,.

O

Lemma 9.3.5. Let b(z,y,2,&,1n) € SGZ;:ZE,’;”&O’W (R® x R" x R™ x R™ x R") be
such that |€| < € < 1 on Supp(b). Then if we define an new variable w := n+&(n)
then the function

f@,y, z,w,m) = b(z,y, 2, 7#,77)

belongs to SGM1mzma0ms (R x R™ x R™ x R™ x R").

m’yiz)w’n

Proof. First note that on Supp(f) we have |w — 7| < €(n). Since ¢ < 1 this
implies that (w) ~ (n) on Supp(f). We only need to consider derivatives with

respect to w and 7. As b(z,y, 2,€,7) € SG;’?;::E,’;M’O’W‘ (R* x R* x R® x R"* x R")

the other estimates are obvious, once we obtain the required estimates for w and

n derivatives. Now, 0°f = (n)~1%1(83b)(z, v, z,“’(—;;l,n) and (83b)(z,v,2,&,m) €
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SGmmams0ms  Given that () ~ (w) on Supp(f), and (n)"¥ € SG7' we’ll be

done if we can show that

8,‘, (c')gb) (ZIZ, Y, z, %’r__’)_n’ 7’):| < <x>m1 <y>m2 <z>m3 <n>m5—|e| ‘

This follows from Lemma 8.2.1 on the structure of derivatives of compositions of
smooth functions and the fact that 97 (%) < {n)7®" on Supp(f).

a

Theorem 9.3.6. Let &(z,y,£) € R and let a(z,y,§) € SG,7>™ (R xR" xR").
Define
A= FIO(®(x,y,€),a(z,y,£)) and let A* denote the adjoint of A. Then the com-

positions Ao A* and A* o A are pseudodifferential operators and we obtain asymp-

totic expansions for their respective symbols.

Proof. We will prove the theorem for A* o A. Once we prove the theorem for
A* o A the result for A o A* follows. (We can just define B := A* and consider
B*o B = A*o A.) In this proof [ means [.,. As ever, when considering this
composition modulo K, we only need to study the composition of the reduced

forms of the operators. By composing the reduced forms, and following the now



CHAPTER 9. TYPE R FOURIER INTEGRAL OPERATOR 186

standard arguments we have

(4° 0 Ayu(e) = linglimy [ [ [ expli(@(y. 2. - @(0. . €)

xi(z, 9w, E))xa (9w, &), 2)x2(2, g(y, m))x2(g(¥, M), 2) X

a(y, z,n)a(y, =, §)v(dn)7(0)u(z)dzdydédn.

where x; € Z2(c;) and we can choose c1,¢; freely in (0, %). In fact we will take
co = c1. Now, we introduce a cut-off x3 (V12(y, 9(y,£),€), V1®(y, g(y,n), 7)) with
Xi € Z2(c;). It’s easy to check that for any ¢z, we can choose ¢, to be small enough

so that on the support of

xi1(z, 9y, €))xa1(9(¥, §), 2)x2(2, 9(y, 1)) x2(g(¥, M), 2) X

X (1= x3) (V1®(y, 9(v,€), &), V1®(y, g(y, 1), 1))

we have V,®(y, z,7) -V, ®(y, z, &) = (n)+(§). So, by the now standard arguments,

we have

(A* 0 A)u( ~£%1211////6Xp{1 (,2,m) — (y, =, £))} ¥

x1(z, g(u, €))x1(9(y, €), ) x2(2, g(y: 1) x2(9(y, m), 2) ¥

x3 (Vi®(y, 9(v,€),€), Vi®(w, 9(y,m), m)) aly, 2, n)a(y, x, §)y(0n)v(6§)u(2)dzdydEdn.

modulo Ku for K € K.
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For convenience define

h(z,y, 2,€,m) = aly, z,m)a(y, z, ) x1(z, 9(y, €))x1(g(y, §), ) X

x2(2, 9(y, m))x2(9(y, 1), 2)x3 (V1®(v, 9, £),€), V1®(y, 9(y, ), m)) . (9.35)

Note that we choose ¢; small after choosing c3. This is not a restriction as we
can still take each constant ¢; to be as small as we want.

On Supp(h) we have (z) ~ (y) ~ (z) and (§) ~ (n) with the implicit constants
independent of the ¢;. Further, we have n—& < c3(n) on Supp(h). To see this, define
Vi®(y, &) = V1®(y, 9(y, €),€). It follows from the phase assumptions that the y
section of V1®(y, ) is invertible with (VI@)-I (y, &) € SGg:é. This fact implies
that € =1 < V1®(y, 9(y,€),§) — V1®(y, 9(y, ), n)- Since (V1®(y, gy, m), n)) ~ (n)
by assumption, it’s clear that 7 — & < c3(n) on Supp(h).

We have shown that n — & < ¢3(n) on the support of
x3 (V1®(y, 9(y,€), &), Vi®(y, g(y,n),n)) . Since h is a product of functions, some
of which are xa(z,9(y,n)) and xi1(z,g(y,€)), it follows that for any ¢4 > 0 we
can have c¢; small enough so that Supp(h) is contained in {(z,v,2,&,7) € R™ :
|z — 2| < 2¢4(2)}.

To summarize, after reduction, modulo operators with Schwartz kernel applied
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to u we have

(470 Ayute) = fim [[[[ exvli(@(y. 2.0) - 202, )%

h(z,y, 2,& 0)7ve(§)v(dn)u(z)dzdydEdn.
where

,2 b b 3
1. h(z,y, 2 € n) € SGI2Zmmamsms,

2. (z) ~ (y) ~ (2) and (§) ~ (n) on Supp(h) with the implicit constants

independent of the c;,

3. for any cy4, cs > 0 we can choose ¢, and c3 sufficiently small so that Supp(h)

is contained in the set {(z,y,2,&,7) € R : |z — z| < 2¢4{z)and |§ — | <

2¢s(m) }-

Define the new variable € implicitly by the equation
o1
[ vats -tz =mmd =€~

This change of variables is globally defined. Making this change, h(z,y, z,&, ) goes
over to the function m(z,y, z,€,7) := h(z,y, 2, n-l-g(fol Vo®(y, z + t(z — z),n)dt),n)
with the support of m contained in

W, = {(z,y,2,& 1) € R : |z — 2| < 2¢4(z)and || < c5}. By Lemma 9.3.3 part 4,

m3,2my,m2,0,2m3

estimates
z,Y,2,§,1M

for ¢4 and c5 sufficiently small, the function m satisfies SG

on W, which contains its support.



CHAPTER 9. TYPE R FOURIER INTEGRAL OPERATOR 189

(The choice of zero as the SG order of € is arbitrary. Since |¢| is bounded on
Supp(m) we could have chosen any real number. )

Defining
~ ol
P(z,y,2,&n) =2y, 2,n) - ®(y, 2,7 + 6(/ Va@(y, z + t(z — x),n)dt)),
0
and writing out the integrals we have
(40 A)ula) = lim [ [ [ expliple. 2 Emy<
1
m(z,y, z, &, n)(/ Vo®(y, z + t(z — x), n)dt)"y(6n)u(z)dzdydédn.
0

For convenience, we'll drop the tilde on the £ variable. By adding and subtracting

®(y,z,n) we can re-write P in the following way:

P(%% Z,§, 77) = (I)(ya Z, 7}) - (I)(?J’x’ T?) + @(y,w,ﬂ)—

1
—oan+e( [ Viblo+iz-amd). (939
0
By the mean value theorem we have
n 1
P= Z [/ 09, ®(y, z + t(z — z),n) (2 — ,)dt—
r=1 0

1 1
/ 3y By, 7,7 + € / Vad(y, + t{z — ), 7)dt)) X
0 0

xgr(/o Vo®(y, z + t(z — z), n)dt)ds].
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Define the map F : R" x R" x R* x R* x R™ — R" x R® x R” x R" x R" as follows:

An : V(s

y [ V3®(y, 2,0+ s€([fy Va@(y,z +t(z — 7),m)dt))ds + x ol
Folz]le P = | R
3 3 Fy

7/ \ [ Vo®(y, z + t(z — x),n)dt /] \5)

We will define new variables as follows

(j:\ (Fl(m,y,z, éa 77)\

g F2(may727£777)
z| = F3($1 Y,z éa 77) (937)
g F4($ayaza£a 77)

\ﬁ/ \F5($ayaza£an)/

Note that 5 = fol V3®(y, z,n+ t{(Fs))) + z. Define
We:={(z,y,2,&n) € R™ : | — 2| < 2e4(z) and [¢] < 2¢5}.

By Lemma 9.3.4 F is a smooth diffeomorphism from W, to itself. (For sufficiently

small ¢4, c5.)
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As we explain below, we also have

Fi(x,y, 2 € 1) satisfies SGL22%0 (R x R™ x R™ x R™ x R, R"™)

z.9,2,£m

estimates on Supp(m),

Fy(z,y, z, £, n) satisfies SGY10.00 (R™ x R™ x R" x R" x R", R")

xiy7z’£’n

estimates on Supp(m),

Fy(x,y, 2, &, n) satisfies SGo2L00 (R™ x R™ x R™ x R™ x R", R")

z,9,2.6,M

estimates on Supp(m),

Fy(z,y, 2, €, 1) satisfies SGY2OLO (R™ « R™ x R" x R"” x R, R")

x!y"z!E’n

estimates on Supp(m),

Fy(z,v, 2, €,m) satisfies SGO2%0L (R™ x R™ x R™ x R" x R™ R™)

z.y,2.£m

estimates on Supp(m).

that (x) ~ (y) on Supp(m). The rest are obvious. It follows from (9.38) that

The Jacobian of F satisfies SGQ:‘;:‘;‘;;% estimates on Supp(m)

0,0,0,0,0
Gm,y,z,E,n

Everything we multiply by cancels.

191

(9.38)

The above statement about Fj follows from Lemma 9.3.2. The above statement

about Fy follows from Lemma 9.3.3 part 3, the phase assumptions and the fact

(9.39)

To obtain (9.39), just multiply rows and columns of the Jacobian matrix by SG

functions as we did in Chapter 6.
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In the proof of Lemma 9.3.4 we showed that for sufficiently small cy, c5
the Jacobian of F' > 1 on W.. (9.40)
By standard arguments, if ¢; = c2 and c3 are small enough we have

(F1) ~ (z) on Supp(m)
(£2) ~ (y) on Supp(m)
(F3) ~ (z) on Supp(m)

(F4) ~ (£) on Supp(m)

(F5) ~ (n) on Supp(m) (9.41)

We can use (9.38), (9.39), (9.40) and (9.41) to complete the proof by our SG

change of variables results. Define new variables as follows:

(rf:\ (Fl(:v,y,z,é,n)\

37 FQ(mayazaézn)
zZ = F3(:U7 Y, 2757 77) ) (942)
5 F4(-T7yazv§777)

\ﬁ/ \F5(:U7y727§777)/
By (9.38), (9.39), (9.40) and (9.41) the conditions of Proposition 6.2.5 are

satisifed taking V = W, therein. Making the change of variables, we obtain
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where b € SG’T.nf,%";l.mz 0:2m3 by Proposition 6.2.5. (The function b is the trans-
formed version of the function m times the absolute value of the Jacobian of F='.)
We also have (Z) ~ (§) ~ (2) and € < 2c5 on Supp(b).

The function v(§(F);"(Z, 7, %,€,7)) can be replaced by the mollifier v(67) by

integration by parts.

It is clear from (9.43) that the proof will be complete if we can show that

Nz
3:

// exp{i(§ — &) - E(R)}B(E, 5 5, &, 7) (7)"dgé. (9.43)

belongs to the appropriate SG class. By changing variables £ — w where

w := &(7) + 7} we obtain

Since £ < 2¢5 on Supp(b(z, 4, Z, £, 7)), it follows from Lemma 9.3.5 that b(Z, 7, Z, %ﬁ, 7)

sz 2my ,m2,0,2m3
Z,8,2,w,7

belongs to S , provided c5 < %
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We have () ~ (§) ~ (Z) and (w) ~ (77) on Supp(f). So we can apply Proposi-

g,2m3
z

tion 4.0.4 to see that h(Z,%,7) € SGLT3

7
x,

(R™ x R™ x R™) where p and g are any

real numbers with p + ¢ = 2(my + ma).

9.4 Further Work

In addition to the study of the applications to Hyperbolic PDEs described in the
introduction, it is of interest to know when two type R phases ® and ¥ are equiv-
alent. We say that two phases @, ¥ are equivalent if for any a € SG., 7™ (R" x

LRING

R" x R™) with m,, m,, ma arbitrary there exists an amplitude b € SG7 7> (R" x

R™ x R™) with m;, ma,m3 such that
FIO(®,a) = FIO(¥,b) modulo K.

In this section we prove some sufficient conditions under which a type R phase
is equivalent to the pseudodifferential phase (z — y) - £. We show that if ® € R is
such that g(z,£) = z and V;® = —V,® on y = z then ® is equivalent to (z —y)-&.

In order to prove this result we need the following Lemma.

Lemma 9.4.1. Let &(z,y,£) € C®(R" xR"xR"™,R) be such that VP(z,z,£) =0

for all z,6 € R™ and V1®(z,z,£) = =V ®(z,z,£) for all z,£ € R". Then

exp{i®(z,3,£)} € SGLL(R™ x R™). (9.45)



CHAPTER 9. TYPE R FOURIER INTEGRAL OPERATOR 195
Proof. All derivatives of exp{i®(z, z,£)} of non-zero order are identically zero. [

Theorem 9.4.2. Let ® € R be such that V®(z,z,§) = 0 and V1 P(z,2,§) =

—Vo®(z,z,€) for allz,& € R™. Then, for any a € SG, L™ (R" x R® x R™) with

Y6

my, Mo, m3 arbitrary, there exists b € SGZ?;:?Q”""(R” x R™ x R™) such that

FIO(®(z,v,€),a(z,y,£)) = Op(b(z,y,§))
modulo K.

Proof. Let x(y,z) € Z2(c) where ¢ € (0,1). We have

FIO((I)(x,y, E),a(x,y,ﬁ)) = F]O(q)(x,y,ﬁ),a(x,y, E)X(yax))

modulo K. Writing out the integrals, we have

Au(z) = lim / / exp{i®(z.y, §)}a(z, y, &) x(y, 2)7(6€)u(y)dyde.
We now multiply the integrand by exp{—i®(z,z, &)} exp{i®(z,z,£)} to get

Aule) = iy [[ (i [@(2.0,6) = Bz, O)a(r. v, O 7(uly)duae.

where we have defined @ = exp{i®(z,z,§)}a(z,y,§)x(y,z). By Lemma 9.4.1

exp{i®(z,z,€)} € SGE’E (R™ x R") and so by the basic facts about SG functions

a(z,y,€) € SGL ™.

Define h(z,y,&) = —fol Vo®(z,z + t(y — ),€) and set n = h(z,y,§). We can

apply the standard change of variables arguments to see that for sufficiently small
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¢ we have
Au(z) = limy [ [ explito—y)n)ate, v, (wp,n) det 0,17 o, 1)y m)u(y)dycr.

where

1. h~! means the inverse of the z,y section of h, which is well defined on

We = {(z,y,n) € R": |y — z| < 2c(z)},
2. 8,h~ Yz, y,n) is shorthand for the n xn matrix with ¢, j entry 8,,j(h_1)j (z,9,8),

3. a(z,y, h~Yz,y,n))| det §,h " (z,y,n)| := 0 outside W,

mi,ma,m3

4. a(z,y, h~'(z,y,n))| det ,h "} (z,y,m)| € SG,., ¢
So A is equivalent to a pseudodifferential operator. O

Finally, it should be fairly easy to extend the definition of the Type R operator
(to allow the dimension of the frequency variable € to be > n) and obtain closedness

of this generalised class under composition.
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