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ABSTRACT 

This thesis deals with the challenging task of developing frameworks for pricing 
convertible bonds. The theoretical foundation of the work presented here is arbitrage 
pricing because it allows relative pricing. Based on the principle of relative pricing, 
parameters of the model employed can be calibrated to market prices. Following this 
principle, the configurations developed in this thesis aim in ensuring the correct 
employment of the market implied (calibrated) parameters like risk free rate curves, 
volatility term structures, spot FX and share prices, etc. The numerical technique 
employed is the trinomial tree. An approach is presented for establishing the step dates 
which must include the event dates (call, put, coupon dates, etc). The first 
implementation is a single-dimension configuration with the stochastic stock returns. 
This implementation is extended in order to allow capturing the effect of conditional 
calls and puts, and resets, features that introduce path dependency in the model. The 
proposed approach for dealing with these features is the calculation of the conditional 
probabilities on the tree. Evaluation of the implementation of the single-dimension is 
carried out in the form of spectrum analysis and scenario analysis. Scenario analysis 
involves Monte Carlo simulations of portfolios consisting of hedged convertible bond 
positions and calculation of the re-hedging error on the maturity date. The last part of 
the thesis work is devoted to the development of a two-dimensional configuration for 
dual currency convertible bonds with the second additional dimension involving the 
stochastic returns of the exchange rate. The derived configuration with non-zero 
correlation is not implemented because it imposes restrictions on the use of the market 
parameters (specifically the term structures) and the definition of the step dates; hence it 
is not coherent with the approach followed in the preceding work. The respective 
configuration which assumes zero correlation is implemented instead and results are 
presented in the form of spectrum analysis. 
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PART A 

CHAPTER 1 

INTRODUCTION 

A Convertible Bond is a hybrid financial instrument combining attributes of both 

fixed-income securities and equity. In its simplest form, the owner of such a security 

has a position in a bond, but he is also allowed to trade the bond for a position in 

equities. However, since the convertible bond market has become more sophisticated, 

instruments with a rich variety of embedded options and triggering conditions have 

been presented in this category of hybrid financial securities. 

The hybrid nature of the instruments in the convertible bonds market has been the 

most significant contributor to the continually expanding market. The convertible 

bonds dual nature offers to the investors an intermediate risk/return profile between 

fixed income (straight bonds) and equities. The considerable gap in the risk/return 

profiles between these two markets has been covered by the convertible bonds. 

Consequently, the convertible bond market has come to meet the needs of a vast class 

of investors who wanted more returns than those provided by the fixed income market, 

but without the high risks involved in the equity market. In addition, users of hybrid 

securities come from several groups since investors in convertible bonds are able to 

participate both in the fixed-income markets and the equity markets. 

Due to the tremendous complexity and diversity of hybrid instruments like convertible 

securities, adequate analysis tools are crucial. Quantitative tools are especially 

important in this market since most issues are not very liquid and it may be difficult to 

establish an accurate market price. The need of convertible bond analysis tools, as well 

as the polymorphic spectrum of computational requirements which constitute these 

tools challenging and complicate, is proved by the presence and popularity of 
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Chapter 1 	 Introduction 

specialised software packages for pricing and analysing convertible bonds. 

Convertible bond modelling is as much as a mathematical challenge as it is an 

implementation challenge. A lot of processes which each carries a lot of 

approximations and assumptions are involved. Correct transformation of these 

approximations and assumptions, as well as a good level of understanding of their 

effects is required in order to maintain consistency among the various processes 

involved and perform meaningful calculations. 

The work of this thesis is concentrated on implementing pricing frameworks for 

convertible securities. As an underlying principle, the approach to the development of 

the pricing frameworks is not to limit the description and calculations on just the 

actual convertible values estimation, but to deal with issues like the source of the input 

information and their method of extraction. These issues and methods are additional 

factors to account for in the model derivations and implementation methods. It will 

also provide uniformity and consistency of the developed frameworks in this thesis 

with existing market standard methodologies. 

Approaches that fell under the category of arbitrage pricing will be employed. Models 

of this category follow the main assumption that there are no arbitrage opportunities in 

the market. The main benefit from this assumption is that there is no requirement of 

establishing or adopting the risk preferences of the investor. This constitutes the 

models more flexible and broadly useful. Furthermore, they encourage the adaptation 

and absorption of market information. 

Trinomial trees methodology has been the employed numerical technique in this thesis 

for pricing the instrument. Monte Carlo, even though it is employed for the scenario 

simulations in this thesis, has not been used in this work for pricing the convertible 

bond because of its limitations in pricing instruments with American style 

optionalities, like the embedded equity option in the CB. The Finite Difference 

methods technique is also an alternative to the trinomial trees, and is a very popular 

and robust approach for pricing convertible bonds. However, the tree-based 

methodologies were preferred because the conditional tree probabilities introduced in 

this thesis is an extension of the trinomial tree. 
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Chapter 1 	 Introduction 

Furthermore, when contrast to binomial trees, trinomial trees provide some additional 

features that are fully exploited in this work. The trinomial trees allow the definition of 

the time step independently of the space step. It is necessary in both cases, in binomial 

and trinomial trees, to have a fixed space step in order to obtain a recombining tree. If 

the configuration is not a recombining tree, then the process can involve very few 

steps. Hence, the recombining feature is very important for the work presented here. A 

fixed space step results in a fixed time step for binomial trees, while in the case of 

trinomial trees, a varying time step is still allowed without distorting the recombining 

nature of the tree. This means that in the case of trinomial trees there is the provision 

of two very important features not encountered in binomial trees, the freedom of 

defining the step dates based on contractual conditions in the CB (coupon, call, put 

and reset schedules), and the allowance of employing term structures (for the rate, the 

stock volatility, the credit spread and the continuous dividend yield). 

In the one dimensional trinomial tree framework, the stock return is the underlying 

stochastic process. The framework is extended to include a second underlying 

stochastic process, the returns of the exchange rate. Calculation of the CB price and 

some of the sensitivities is carried out for both frameworks. The quality of the 

calculated values is evaluated through spectrum analysis and scenario simulations. 

The objective of this thesis it to provide unified convertible bond pricing frameworks 

that are consistent with market prices of other liquid securities. The applicability of 

these pricing frameworks is also a significant factor, and for this reason, the 

limitations of the introduced pricing frameworks are identified in the concluding 

chapter. 
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Chapter 1 	 Introduction 

1.1. Thesis Overview 

This thesis consists of four distinct parts. It was decided to segment the thesis into four 

parts because it was recognised that in this way there is significant improvement in the 

presentation of the various approaches, implementations and methodologies. However, 

the four parts are totally linked, and can not be considered separately or in isolation. In 

other words, there is dependency between the various parts and each part continues 

building based on material presented in its preceding chapters. 

Part A 

This is the introductory part of the thesis. Chapter 2 is devoted to the introduction of 

the instrument under consideration, the convertible bond, and is entirely based on 

material found in identified references. Terminology and contract information are 

presented in this chapter. The convertible market is discussed and the range of 

convertible securities is also outlined. The various convertible securities are 

distinguished based on contract conditions depicting the conversion rights of the 

investor and based on level and timing of cash flows (coupons and notional) during the 

life of the convertible bond. In the last part of chapter 2, identification of the risk 

factors to the issuer and investor is performed. 

Chapter 3 presents the fundamental concepts of arbitrage pricing and relative pricing. 

A major part of this chapter is devoted to the determination and extraction of the 

discount function based on information from liquid instruments from both, the 

Treasury market and the Swaps market as described in the relevant references. It is 

worth noting that the methodology that will be followed in parts B and C of this thesis 

will assume that the discount function has been derived based on information from the 

swaps market and that cubic splines interpolation was employed during the curve 

construction or wherever it was necessary to perform interpolation in the derived 

pricing frameworks in the rest of the chapters. This chapter closes with a short 

discussion on the extraction of other implied parameters from liquid instruments, like 

the implied volatilities of Equity derivatives. Then, in chapter 4, the inputs to a 
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convertible bond relative pricing frameworks are listed and related notation is 

introduced. 

Part B  

The first chapter in part B, chapter 5, is used for outlining the method for establishing 

the required step dates and, consequently, the values of various parameters at each 

step, like the forward rates and volatilities. Then, in chapter 6, the analysis of a 

trinomial tree implementation is performed, where the stochastic process underlies the 

behaviour of the stock, like in the case of American option pricing. The structure of 

the trinomial tree framework is presented and studied, and then extended to include 

additional features which will enable us to deal successfully with contractual features 

of the CB like, call, put and reset schedules. 

The first calculation of the convertible bond price and sensitivities is carried out in 

chapter 7. Based on the underlying stock process introduced in chapter 6, methods are 

presented for accounting for conditional calls and puts, and for resets. Then, the 

convertible bond price is calculated at each node on the tree. The sensitivities are 

calculated by accounting for the value of the convertible bond at the tree nodes at the 

first step, instead of recalculating the whole tree with shifted stock prices, except for 

the case of Vega, where a shifted volatility structure is used. 

The one dimensional trinomial tree framework used for pricing the CB, is evaluated in 

chapter 8. A spectrum analysis is carried out for the value of the CB price and the 

sensitivities against the stock price. Then, the performance evaluation is continued 

based on scenario analysis where two basic scenarios are considered. In both 

scenarios, a portfolio financed from a cash account consists of a position in CBs held 

to maturity and the hedge of short positions in stock and warrants. In one scenario, the 

bank account can not be affected during re-balancing, while in the other scenario it can 

be affected. 
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Chapter 1 

Part C  

Introduction 

   

In chapter 9, the two-dimensional approach is presented, consisting of two underlying 

stochastic processes, one for the stock and the other for the exchange rate. As it is 

discussed in this chapter, when including the correlation between the two processes, 

there is the limitation that the time step has to be defined based on the relationship of 

the space steps of the two underlying processes. Furthermore, accounting for the 

correlation does not allow the use of the term structures. These significant limitations 

constitute the correlated two-dimensional framework inappropriate for the work of this 

thesis; hence we concentrate on the uncorrelated two-dimensional framework. Chapter 

10 presents the Backward Induction process involved in the two-dimensional 

framework and then it continues with the analysis of the performance of the model 

introduced. 

Part D 

This last part of the thesis concludes based on the work presented in the preceding 

chapters. An overview of the results is carried out and recommendations are made for 

future work and extension of the work of this thesis. The thesis contribution in the area 

of pricing convertible bonds is summarised in this last chapter and the limitations of 

the proposed pricing frameworks are identified. 
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CHAPTER 2 

INTRODUCING THE INSTRUMENT 

J.J. Hill, the railroad magnate, is associated with the first convertible bond issue in 

1881. As mentioned in reference [9], Hill needed to rise a secure long term financing 

but, even though he was shut out from the traditional debt market, he was unwilling to 

sell stock until his planned expansion had reaped financial rewards. He solved his 

problem by issuing a convertible bond. Issuing convertibles is still today one very 

common way for companies whose stocks are volatile to access the debt market. 

By 1929, convertible debt issues made up nearly 40% of publicly issued debt. 

However, they were virtually absent from the market during the years of the World 

War II. Their presence strengthened later to become to what is a today, a continuously 

growing $350 billion worldwide market. There are controversial opinions on the 

factors affecting the popularity of convertible bonds. As argued in [9], there is some 

evidence that the popularity of convertibles appears to be linked to rising equity 

markets and high interest rates. However, past and even recent observations have 

driven other analysts to conclude that factors that could increase the popularity of 

convertibles are market uncertainty, slower growth and fears for recession (because 

some investors consider convertibles as suitable instruments for developing defensive 

strategies). 

In a very expected manner, due to the convertible bond market tremendous growth 

over the years, convertible bonds have come to be an asset class of their own. Trading 

and underwriting activities, as well as product innovation, increased and are 

continuously expanding. A number of varieties of convertible instruments have been 

structured and trademarked by various investment banks. The structure of each 

convertible bond serves a purpose and aims in satisfying specific customer 

requirements. The most sophisticated convertible securities market is the US market. 
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Nevertheless, convertible securities with un-common and complex features can be 

encountered in other markets. 

2.1. Terminology  

Before moving to the presentation of the most popular types of existent convertible 

securities, it is suitable to introduce some of the basic terminology used in the 

convertible market. 

The par value or the face value of a convertible bond is what the investor is paid on 

redemption at maturity. This is typically $1000 (or lm Yen in the Japanese market) for 

coupon bonds and $25 or $50 for Convertible Preferred shares. The par value is also 

used as the basis for calculating coupon and dividend payments and yields. The 

maturity date of a convertible bond is the stated date on which all outstanding bonds 

of an issue are redeemed and the contract between the issuer and the investor expires. 

The coupon rate is the stated percentage of the par value that is paid to the investors 

on the days the coupon is due. Typically coupons are paid semi-annually (Convertible 

Preferred Shares have a stated dividend instead of a coupon). 

The issue price is the price at which a convertible bond is sold by the issuer to the 

investors on the date of issue. This price is usually equal to the par value of the bond. 

For zero coupon bonds the issue price is a function of the time to maturity, accretion 

rate and the compounding frequency. 

An investor in a convertible bond can exchange the bond for a stated number of 

common shares of the issuing company. The predetermined number of common shares 

a bond converts into is called the Conversion Ratio. 

Issue Price Conversion Ratio = 	 (Eq.1.1.1) 
Stock Price (1+ Premium) 

When an investor converts a convertible bond into common stock, a certain number of 

shares are received in lieu of the par amount on the bond. The price per share of this 
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number of shares that the investor effectively pays is termed the Conversion Price or 

the Strike. 

Conversion Price (or Strike) = 	Par Value 	
(E Conversion Conversion Ratio 

The market value of the number of common shares obtained by the conversion of a 

convertible bond is called the Parity Value of the bond. This is also known as the 

Equity Parity of the bond. 

Parity Value = Market Price of Stock x Conversion Ratio 	(Eq.1.1.3) 

Because of certain advantages of the convertible bonds over common stock holdings, 

the convertible bonds trade at a premium over the value of an equivalent number of 

common stock, i.e. parity. This is called the Premium over Parity of a convertible 

bond. 

Premium over Parity = [Bond Pr ice  
11:100 

Parity 
(Eq.1.1.4) 

If the bond were not convertible into common stock, a convertible bond would trade 

similar to an equivalent corporate bond. As such, the equivalent value for the 

convertible bond, with no regards to the conversion feature, is known as the 

Investment Value. A convertible bond typically never trades below this value. Also 

known as the Bond Floor, it defines the downside protection for the investor. The 

difference between the price of a convertible bond and its investment value is termed 

as the Premium over Investment Value. 

Often convertible bonds have call features, which provide the issuer a way to force 

conversion at a stipulated price or redemption of the bonds. When the conversion 

value of a convertible bond is higher than the call price, the issuer can issue a call 

notice. But for the investors it could be advantageous to convert to stock. An investor 

can convert a bond into stock and sell the stock immediately in the market at the 

market price to receive the parity value rather than let the issuer redeem the bonds at 

the call price, which would be lower than the parity value. Thus conversion is 

enforced. 
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Call features, if present, reduce the value of a convertible bond to the investor. In order 

to make a callable convertible bond more attractive to the investors, convertible bonds 

come often with what are termed Call Protection Features. Convertible bonds with 

associated call schedules come with a condition that the bonds may not be called for a 

certain number of years. This period is called the Call Protection period. Longer call 

protection periods extend the life of the conversion feature and thus increases their 

value. 

When a convertible bond is conditioned to be non-callable for a certain number of 

years it is known as a Hard Call Protection or Absolute Call Protection. When a 

convertible bond is conditioned to be callable provided that the underlying stock trades 

in the market at a certain level for a predetermined number of days, it is known as a 

Provisional or Soft Call Protection. In addition, call schedules are set with a call 

notice period. Typically once the call notice is given, the investors have 30 days in 

which to convert before the issuer redeems the bonds at the call price. 

An investor who owns a convertible bond, which has a put feature, can redeem the 

bond with the issuer at the predetermined put price, which is usually at a premium to 

the par value of the bond. The investor is thus guaranteed to earn the yield to put. Thus 

a put feature also provides a downside protection to the bondholder. 

Another important feature encountered in some convertible bonds is the possibility of 

a refix of the conversion price. This is also referred to as the reset of the strike and 

must not be confused with the reset of the coupon. In this thesis, the terms refix and 

reset will be both used for denoting the refix of the strike, unless otherwise stated. 

Convertible refix bonds have been around for well over a decade, but arguably gained 

a lot of attention with the issuance of as many as ten jumbo Japanese bank bonds 

between 1995 and 1998. Faced with a worsening operating environment in the mid-

1990s and deteriorating capital ratios, Japanese banks were obliged to recapitalise 

themselves. For this reason they turned to the convertible bond market and they 

include the reset feature to their issues to sweeten the investors. As a result, 

convertible bonds with resettable conversion prices have become fairly common in the 
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domestic Japanese convertible market and have more recently found limited 

application in the Asian convertible universe. 

Rather than having a fixed conversion price, as is the case for conventional 

convertibles, these structures allow for an adjustment to that price, depending on the 

performance of the underlying stock. The refix, in some cases, is both downward and 

upward, but most commonly downward only. The effect of the downward reset to the 

conversion price is to boost the conversion ratio — the number of shares received per 

bond upon conversion, compensating for possible falls of the share price. The upward 

reset has the opposite effect. So, an upward reset benefits the issuer and a downward 

reset benefits the holder. There is always a floor to which a conversion price can reset 

(and a cap for the upward reset case). 

2.2. Convertible Instruments 

As already mentioned, a number of varieties of convertible instruments have been 

structured and trademarked by various investment banks. Depending upon various 

factors, a convertible bond behaves in different ways. 

If a convertible has a small premium over equity and a low coupon yield, it will be 

more sensitive to the fluctuations in the equity market and will resemble the 

underlying stock more closely. Such a convertible is considered to be an Equity 

Alternative. On the other hand, a convertible with a high coupon rate and a large 

premium over equity value will be more sensitive to the fluctuations in the interest 
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rates and moves in the fixed-income markets. Such a convertible is considered to be a 

Fixed-income Alternative. A convertible bond with a moderate coupon rate priced at a 

moderate premium over equity value will be sensitive to both the equity market moves 

and interest rate fluctuations. Such a convertible bond can be said to be a true hybrid 

instrument. 

Zero Coupon Convertible Bonds as the name suggests have no periodic coupon 

payments. However, the bonds are issued at a discount and they result to a payment 

equal to the par value at maturity. Unlike zero coupon bonds, Original Issue Discount 

Convertible Bonds pay a determined coupon. However, they are issued at a discount, 

like zero coupon bonds, and are redeemed at par at maturity. Regular Coupon Paying 

Convertible Bonds or Debentures have the simplest structure. They most resemble a 

Corporate Debt. They have a specified coupon rate and a coupon frequency. They 

have Call Protection periods and call notice periods associated with their call 

schedules. They may also have put features and sinking fund provisions. Step-up 

Convertible Bonds lie between OID Convertible Bonds and regular Coupon Paying 

Convertible Bonds. The difference is that after a certain pre-determined period of time 

in the life of the Convertible Bond, the coupon rate is adjusted to a higher rate. In the 

case of a Step-down Convertible Bond, the adjustment is a downward one. 

Perpetual Convertible Preferred Stock has no maturity date. It has a pre-determined 

dividend rate either stated as a percentage of par or as a dollar value. It behaves more 

or less like coupon paying convertible bond. Preferred Equity Redemption Cumulative 

Stock PERCS has mandatory conversion to common stock. PERCS are also known as 

capped convertibles because there is a cap on the upside potential. They are priced at 

the market closing price of common stock on the date of issue and they convert into 

one share of the common stock upon conversion subject to stock splits and stock 

dividends. Dividend Enhanced Convertible Stocks DECS are convertible preferred 

shares that can be converted into common stock at any time at a premium, at the 

option of the investor. They include mandatory conversion at maturity. DECS are also 

set to give a coupon at a quarterly frequency typically on the same date when common 

dividend is paid. The conversion of DECS is a function of the price of the common 

stock on maturity date. 
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Chapter 2 	 Introducing the Instrument 

There are several other convertible structures in the market brought out by various 

investment banks. They are all designed to meet advantage of tax and accounting 

needs and strategies of issuers. 

2.3. Example of a Vanilla Convertible Bond specifications 

To better comprehend the instrument, an example of a convertible bond is presented. 

In this example, a Japanese convertible bond will be issued at the beginning of the 

second month in the following year (February of 2005). Assume that the Face Value 

of the convertible bond is 1 million Yen; the maturity date is the 31st  of January 2015 

(31/01/2015) and the convertible bond is redeemed at 100% of its face value. This 10-

year convertible bond also gives a semi-annual coupon of 0.5% of its face value. The 

issued price of the convertible bond is set equal to 95% of its face value. 

There are no other embedded calls or puts than the optionality provided to the investor 

to convert the bond to equity of the issuer company. Any further features like resets, 

refixs, compulsory or conditional conversion, are not included in the instrument. The 

case of an instrument with these specifications will be referred to in this thesis as the 

"Vanilla" Convertible Bond case. 

The conversion ratio is determined based on equation (1.1.1). If the share price of the 

issuer company on the convertible bond issue day is equal to 4502 Yen and the 

company decides to include a premium for the optionality to convert equal to 5.5%, 

then the conversion ratio is found to be equal to 200 shares. 

Issue Price 	95% xlmYen Conversion Ratio = 	 = 	 = 200 	(Eq.1.1.5) 
Stock Price (1+ Premium) 4502 x (1 + 5.5%) 

Since the conversion ratio has been determined, the conversion price (or strike) can 

also be determined from equation (1.1.2) as follows. 

Par Value 	1mYen 
= 5000Yen 	(E 1.1.6) Conversion Price (or Strike)= 	  

Conversion Ratio 	200 
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All these determined parameters of the convertible bond will remain fixed up to the 

expiration of the convertible bond. The investor will receive a 0.5% semi-annual 

coupon while he holds the convertible bond, and at the same time he will have the 

right to convert each paper of this convertible bond issue with face value of 1 m Yen to 

200 shares of the issuer company. If he does convert at any point in time during the 

life of the convertible bond, it will be as if he is buying shares of the issuer company at 

the price of 5000 Yen, regardless of the actual price of the share of the issuer 

company. In such a case, he will no longer hold the convertible bond and he will have 

to forfeit the remaining coupon payments and the principal value. 

At any point of time during the life of the convertible bond, the parity value of the 

convertible bond is determined by equation (1.1.3) replicated here. 

Parity Value = Market Price of Stock x Conversion Ratio 	(Eq.1.1.7) 

The traded value of the convertible bond in the market will always be equal or greater 

than its parity since in any other case there would be arbitrage profit opportunities. In 

other words, in the case that the convertible bond is traded under its parity value, an 

investor may buy the convertible bond and convert it. Selling the shares in the market 

will provide him with a profit since their overall value will be greater than the amount 

he gave for buying the convertible bond. 

Based on the same principle of no arbitrage opportunities, the convertible bond price 

can not be below its Bond Floor, also known as the Investment Value of the 

convertible bond. The Bond Floor is simply the sum of the discounted coupons and the 

discounted principal received upon redemption. If the convertible bond is traded below 

this floor value, then an investor may consider that he can lock into a position which 

guarantees future cash flows (coupons and principle) cheaper than the market 

conditions do determine. Again, this would provide an arbitrage opportunity, in this 

case, for a Fixed Income investor. 
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2.4. Identification of the Market Risk Factors 

Based on the presentation of the features of the convertible bond market in the 

previous section, we are now in position to identify the risk factors associated with this 

instrument. In other words, we are in a position to identify the exposures of an investor 

(or an issuer) who has a position, long or short, in convertible bonds. These are listed 

as follows. 

Interest Rate Exposure  

Fluctuations of the interest rates in the market will have a direct effect on the value of 

the convertible bond due to the fixed-income nature of the instrument. The most direct 

effects would be on the Bond Floor value of the convertible bond since this is based on 

discounted cash flows. The convertible bond could also be viewed as an interest-rate 

derivative since the investor has the optionality to exchange (or "swap") the 

instrument for equity. In addition, this optionality offers to the investor a limited 

downside protection with respect to the interest-rate exposure. 

Equity Exposure  

The future stock price evolution will add or deduct value from the convertible bond. 

Actually, the market conception for the future probability distribution of the returns of 

the underlying stock will be one of the most significant driving factors of the returns 

on the convertible bond position, alongside with the actual realisations of the stock 

price. In other words, the stock price and the implied volatility, a market parameter 

that summarises in a way what we have referred to as the probability distribution 

characteristics of the returns of the stock price, are significant sources of risk and have 

a determinant role in pricing and hedging of a convertible bond position. 

The fact that the instrument is primarily a fixed-income security offers a downside 

protection with respect to the stock price performance and implied volatility 

fluctuations. So the convertible bond can also be viewed as an equity derivative. 
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Credit Exposure  

As in every corporate fixed-income security, the credit spread of the issuer has a 

significant role in the valuation of the security. Movements in the credit spread of the 

issuer have a direct effect on the Bond Floor value of the convertible bond. 

Currency Exposure  

Some convertible bonds convert into stock that is denominated into a different 

currency than the currency of issuance of the convertible bond. In such cases, the 

conversion value is subjected to currency fluctuations. 

Modelling Exposure  

Each of the previously identified exposures has to be taken into account when pricing 

a convertible bond. In addition, special features like calls and puts, conditional 

conversion, and reset provisions for the strike, when included in the instrument 

specifications, need to be accounted for in the pricing model. All these modelling 

requirements constitute the convertible bond a very complex instrument to price. As it 

was mentioned in the previous chapter, the need for adequate pricing and hedging 

convertible bond models has resulted in the development of specialised software 

products. 
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CHAPTER 3 

RELATIVE PRICING FRAMEWORKS  

3.1. Relative Pricing 

The various approaches in the theory of asset pricing can be categorised under two 

main categories. These are equilibrium pricing and arbitrage pricing. The work 

presented in this report employs approaches that fell under the category of arbitrage 

pricing. In this section, before proceeding in the methods for extracting implied 

structures used in arbitrage pricing, the difference between equilibrium and arbitrage 

pricing is briefly discussed (material is based on references [4] and [6]). 

Equilibrium pricing is directly borrowed from economic theory and is an attempt to 

provide absolute pricing. This approach is based on the effort to explain prices and 

returns on the financial markets by applying optimisation rules on the agents in the 

economy. In a model of a general equilibrium type, the demand and supply sides of 

the equilibrium are explicitly characterised in terms of optimised production and 

consumption decisions. However, this approach requires very strong assumptions 

about the economy, in particular, a definition of the risk preferences of the agents 

(investors). In other words, this approach is based on placing restrictions on the 

assumptions underlying the pricing method and the more restrictive these assumptions 

are, the more precise the pricing is. 

On the other hand, arbitrage pricing makes the main assumption that there are no 

arbitrage opportunities in the market. In other words, it assumes that all the agents in 

the market are greedy and act in such a way as to optimise their profit. This further 

leads into an assumption that there is an arbitrage free equilibrium status in the market 
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and whenever arbitrage opportunities appear these are eliminated by the agents in the 

market that take advantage of them in an efficient fashion. 

Arbitrage pricing provides relative pricing. Since in the arbitrage pricing framework 

there is the main assumption that all the existing securities in the market are traded in 

an arbitrage-free world, then non-liquid or new securities can be directly priced in 

terms of a portfolio of other liquid securities whose prices are known. 

3.2. Determination of the Discount Function 

In a relative pricing framework it is desired to have methods of determining the zero-

coupon yield curve based on the information supplied by the market. In this section, 

some of the most common methods for extracting the market discount function are 

discussed. Even though in the associated work to this thesis, the discount factor curve 

employed is based on the swap market, methods for extracting the curve from the 

Treasury market are also presented. The methods which are based on the Treasury 

market are included simply for completeness and for comparison, as well as for 

justification of the choice for a swap market based curve. 

3.2.1. Treasury Market 

In reference [6], a direct method is shown for defining the zero-coupon rate curve 

from the coupon bond market prices. To define n distinct zero-coupon rates, a 

collection of n coupon (or zero-coupon) bonds is required. The usual case is to use 

default-free coupon bonds, like the US Treasury bonds, because they provide 

information about the risk-free structure of interest rates. Next, the n-dimensional 

vector /3, of coupon bond prices at time t (where T denotes transposition) and the 

n x n matrix F of cash flows (coupons and principal) corresponding to the n assets are 

defined. 

pt  = 	 pttl 	 (Eq.3.2.1) 

F =(F ( j) ) 	i = 1,2,...,n , j = 1,2,...,n 	 (Eq.3.2.2) 
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If the zero-coupon bond prices at time t are represented by vector B„ then equation 

(3.2.4) can be assumed to hold. 

B, 	 2 ))7. 	 (Eq. 3.2.3) 

P, = F • B, 	 (Eq. 3.2.4) 

Provided that the matrix F is invertible (implying that there is no linear dependence in 

the pay-off of the bonds), then the vector B, can be estimated based on equation 

(3.2.5). Having extracted the implied zero-coupon bond values, the interest rates 

R(t, t, — t) can be extracted from these prices based on equation (3.2.6). 

B, = F -1  • P, 	 (Eq. 3.2.5) 

R (t, t, — t) = 	1 
 ln[B(t,t, )] 	 (Eq. 3.2.6) 

t, — t 

The direct approach presented above, even though it is simple and not computationally 

intensive, comes with some difficulties. It requires distinct linearly independent bonds 

with the same coupon dates, which is something difficult to achieve. In addition, this 

technique is not robust with respect to the changes in the set of bonds used for 

extracting the implied zero-coupon rates. 

Due to the drawbacks of the direct approach, indirect methods have been developed. 

These involved fitting the data to a pre-specified form of the zero-coupon yield curve. 

Like in the direct method, a choice is made of n default free bonds whose prices define 

the vector of equation (3.2.1) and their cash flows the matrix of equation (3.2.2). 

However, in the case of the indirect method, the cash flows matrix Fsti )  is defined for 

a time s where s 	. 

In reference [6], the general approach followed in the indirect methods is summarised 

as follows. A specific form of the discount function B(t,$)-- f (s — t; fil ) of the zero- 

coupon rates R(t, s — 	g(s — t; )32 ) needs to be postulated, where A and fi2  are the 

vectors of parameters. In the first case, the function f is usually defined under the form 

of a polynomial or exponential spline functional. For the case of the function g, this is 

usually defined in such a way that the parameters in P2  are easily interpretable. 
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Defining the theoretical prices of the securities based on equation (3.2.7) for the case 

of the discount function approach and based or equation (3.2.8) for the case of the 

zero-coupon rates approach, the set of parameters fi* is estimated through the 

optimisation program defined by equation (3.2.9) so that the estimated prices best 

approximate the actual observed market prices of the chosen securities. 
pi =ZF (' ) f (s — t; A) 	 (Eq. 3.2.7) 

A i 
Pr =ZFs( l )  exp[— (s — t)g(s — t;132 A 

A 	 n r A  i 
2\ 

fl* = argminZ P' —Pr 
fl 

(Eq. 3.2.8) 

(Eq. 3.2.9) 

In both of references [4] and [6], it is stated that these models suffer from the risk of 

possible misspecification of the set of parameters of the vector fi used in the 

definition of the zero-coupon yield curve. Even though the described approaches are 

mathematically simple, the practical implementation of them needs to be performed in 

a very delicate manner. The success of any of these approaches depends largely on the 

suitability of the basis function chosen to describe the behaviour of the discount 

function. 

3.2.2. Swap Market 

The above-discussed approaches were based on data obtained from the Treasury bond 

market. Of special interest to the work presented in this report is the derivation of the 

discount function from the swap market. Apart from the fact that the zero-coupon 

yield curve based on the swap market is the reference for credit analysis, the swap-

market-based curve plays a key role in the pricing and hedging of derivative products. 

A stochastic model for the dynamics of the zero-coupon yield curve is required when 

pricing and hedging interest-rate derivatives or floating rate bonds. 

Information on parameters, like the volatilities and the correlation matrix of the 

discounting rates, used in such stochastic models are already available in the market 
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through liquid instruments like caps and swaptions, which are derivatives on LIBOR 

and swap rates. 

In reference [48], in addition to the recognition of the above reasons, the author 

extends the basis of the increased importance of the swap market to other factors and 

effects like decreasing liquidity and efficiency of the government debt markets, 

improved uniformity across the swap markets of different countries with respect to the 

government debt markets, swap market features like increasing liquidity, with narrow 

bid-ask spreads and wide spectrum of maturities, etc. 

The most popular approach for extracting the zero-coupon curve involves combining 

and bootstrapping observed market interest rates. Commonly, the curve is divided into 

three term buckets, even though in some cases a fourth bucket is also included. The 

four possible buckets are the following: 

• The short end of the term structure is derived using interbank deposit rates like 

LIBOR rates. This usually employs the overnight (0/N), the tomorrow/next 

(T/N), 1 week (1WK), lmonth (1M), 2 months (2M) and 3 months (3M) rates. 

• The middle area of the term structure is derived from futures (interest rate 

futures contracts) or FRAs (forward rate agreements). This bucket will usually 

cover the period up to 2 years. 

• The long end of the term structure is based on swap rates that are derived from 

the swap market. This part of the term structure covers the period from 2 years 

to 10 years. 

• The very long end of the term structure. It is also very common to extend the 

previous part of the curve to cover the period up to 30 years. Equivalently, 

some practitioners prefer referring to the period covering the part of the curve 

from 10 to 30 years (in some cases even longer) as the very long end of the 

curve. 

The following table, named "Table T.3.1 Market Data —Currency GBP", presents a 

structure of market data that includes the rates corresponding to the buckets listed 

above. These will form the basis for the calculations presented later as an example of 

the construction of the discount factor swap curve. 
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TABLE T.3.1 
Market Data - Currency GBP 

Close of Business 18 February 2003 
Rate Type Tenor Label Rate RateType Tenor Label Rate 

LIBOR 0/N 0.0328000 SWAP 2yr 0.03700 
LIBOR T/N 0.0338000 SWAP 3yr 0.03880 
LIBOR 1WK 0.0353375 SWAP 4yr 0.04040 
LIBOR 1M 0.0369094 SWAP 5yr 0.04170 
LIBOR 2M 0.0369500 SWAP 6yr 0.04275 
LIBOR 3M 0.0369375 SWAP 7yr 0.04365 

FUTURE 19-Mar-03 96.325 SWAP 8yr 0.04440 
FUTURE 18-Jun-03 96.515 SWAP 9yr 0.04500 
FUTURE 17-Sep-03 96.545 SWAP 10yr 0.04550 
FUTURE 17-Dec-03 96.485 SWAP 12yr 0.04625 
FUTURE 17-Mar-04 96.360 SWAP 15yr 0.04680 
FUTURE 16-Jun-04 96.215 SWAP 20yr 0.04700 
FUTURE 15-Sep-04 96.070 SWAP 25yr 0.04680 

SWAP 30yr 0.04655 
SWAP 40yr 0.04585 

The calculation of the continuously zero-coupon compounded rates rc. (r) for each of 

the parts of the curve has its own methodology and is based on the completion of the 

calculations in the previous parts of the curve. The parameter r represents the time to 

maturity corresponding to the rate r, (r) and can be quoted into number of days, in 

which case we use the notation Td  , or into number of years, in which case we use the 

notation Ty  . 

The Short End 

For the short end of the curve the calculations are restricted into transforming the 

deposit (cash) rates rd  into continuously compounded rates based on the day count 

convention followed. The number of days in a year based on the conversion followed 

is denoted by td y  . It could be the case that the input cash rates are expressed under a 

conversion with t d,y,c,ash  and we want to follow a different convention with td y  . In 

this way, we have two different times to maturities as number of years, T ycash  

corresponding to the initial convention that the input cash rates are expressed to, and 
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fdf d ,y,cash( t ) =  1+ rd 	t SD, ED,cash(l) 

df d ,y,cash( t )= dfCD,SD(i) x  fdfd,y,cash(t) 

(Eq.3.2.11) 

(Eq.3.2.12) 

1 
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r y  that corresponds to the final convention td y  that we want to follow in our 

calculations. 

The terms dfd , y,c„,h(i) and dfdy (i) are also introduced and represent the discount 

factors corresponding to the rates under each convention. It is also required to 

introduce the forward discount factors, fdf d , ),,cash (i) and fdfdy (i) , and the forward 

rates, frd , y,cash (i) and frdy(i), corresponding to each of the conventions. The forward 

rates and discount factors notation have been introduced because most of the cash rates 

are expressed as forward rates. 

Equations (3.2.10) to (3.2.12) summarise the calculations for obtaining the discount 

factor corresponding to each of the cash rates under the original year convention of the 

cash rates. The parameters SD(i) and ED(i) correspond to the starting and ending date 

of each cash rate, and CD corresponds to the calculations date. The parameter 

dfcv,sp(i) corresponds to the discount factor for the period extending from the 

calculations date to the starting date of the cash rate. 

ED(i)— SD(i)  
t  SD,ED,cash( t )=  

t  d ,y,cash 
(Eq.3.2.10) 

The results from the calculations carried out when applied the three above equations to 

the cash rates of the example are included in table (T.3.2). 

TABLE T.3.2 
Rate Rate Tenor Forward Rate Start Date End Date Time 

i Type Label Rate (Yes/No) SD ED Period fdf df 

,-  CN.I CO
 .4'  LO

 CO
 

LIBOR 0/N 0.0328000 18/02/2003 19/02/2003 0.002740 0.999910 0.999910 
LIBOR T/N 0.0338000 Forward 19/02/2003 20/02/2003 0.002740 0.999907 0.999818 
LIBOR 1WK 0.0353375 Forward 20/02/2003 27/02/2003 0.019178 0.999323 0.999140 
LIBOR 1M 0.0369094 Forward 20/02/2003 22/03/2003 0.082192 0.996976 0.996794 
LIBOR 2M 0.0369500 Forward 20/02/2003 21/04/2003 0.164384 0.993963 0.993781 
LIBOR 3M 0.0369375 Forward 20/02/2003 21/05/2003 0.246575 0.990974 0.990794 
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Next, the resultant discount factors must be transformed to continuous rates under the 

desired final year conversion. These calculations are summarised in the following 

equations. 

dfd,y,cash (i) = dfd,y (i) 	 (Eq.3.2.13) 

(\ 	ED(i)— CD 
tCD,EDlt 	 (Eq.3.2.14) 

td,y 

dfd  y(i)= e-r,(i)xtc,n  rD 	
(Eq.3.2.15) 

The continuous rates for 2y. = tCD,ED 	where i E [1,6], can be calculated based on 

equation (3.2.16): 

II. (T y, )= 	= 
in [dfd  0, (] 

(Eq.3.2.16) 
tCD,ED(i) 

 

The final continuous annual rates of the example are included in table (3.3) and are 

obtained by applying the resultant figures of table (3.2) into equations (3.2.13) to 

(3.2.16). The assumption was made throughout the calculations corresponding to 

tables (3.2) and (3.3), that both, the input cash rates and the required final conversion 

to be followed, depict the use of the values td , y ,r.ach  = td y  = 365 . 

TABLE T.3.3 
Rate Original Original Calculations End Date Time to Maturity Continuous 

i Rate Type Tenor Label Date CD ED (ED-CD)/tdy df Annualised Rate rc 
1 LIBOR 0/N 18/02/2003 19/02/2003 0.002740 0.999910 0.032799 
2 LIBOR T/N 18/02/2003 20/02/2003 0.005479 0.999818 0.033298 
3 LIBOR 1WK 18/02/2003 27/02/2003 0.024658 0.999140 0.034875 
4 LIBOR 1M 18/02/2003 22/03/2003 0.087671 0.996794 0.036631 
5 LIBOR 2M 18/02/2003 21/04/2003 0.169863 0.993781 0.036724 
6 LIBOR 3M 18/02/2003 21/05/2003 0.252055 0.990794 0.036695 

At this point, the calculations of the continual annual rates based on the LIBOR 

forward rates have been completed. However, in order to proceed to the calculation of 

the rates of the middle area, another two rates need to be calculated, the rate for the 

zero tenor and the rate that corresponds to the starting date of the first future. The zero-

tenor rate is needed so that we can define rates for the maturities between zero and 1 

day by interpolating. The second rate is needed in order to calculate the discount factor 

for the starting date of the first future. 
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The preferred interpolation technique in the work associated with this thesis was the 

piecewise cubic spline interpolation, which will be the default technique for 

interpolating on any structure, especially the risk-free rates term structures. It is 

desired to apply the same interpolation technique on the risk-free rate structure when 

running a pricing model as the technique used when the term structure was actually 

being developed. In this case, the term structure is developed by employing piecewise 

cubic spline interpolation. If it is desired to maintain consistency, then the same 

technique must be used later on in the pricing models when interpolation is required 

on the input risk-free rates term structure. 

The results from applying the cubic spline interpolation technique on a set of data with 

n observation sets, is a group of (n —1) sets of the parameters (A, , 	Each set 

corresponds to an equation of the form shown in (3.2.17) below and represents the 

cubic polynomial Si (ry  ) connecting the points of the structure (r, (i), rc, (i)) and 

(i + 1), r (i + 1)). If it is required to obtain the corresponding rate rc  for a maturity 

ry  , and ry  lies in the interval (Ty 	r y(i+1)), then equation (3.2.17) will return the 

desired result (i.e. r, =Si  y) ). Appendix II offers more details on the piecewise cubic 

spline interpolation technique. 

Si  (r y  )= 	+Bi  y 	 y (i)) C (1"  y z,, (i))2  Di (r y — T y (i)) 	(Eq.3.2.17) 

After applying cubic spline interpolation on the resultant short end of the zero-coupon 

risk-free rate term structure of table (3.3), the sets of parameters of the cubic 

polynomials corresponding to this structure were obtained. These are included in table 

(3.4). 

TABLE T.3.4 
Polynomial Rate i 

i to i+1 A B C D 
1 1 -> 2 0.032799 0.188714 0.000000 -830.077594 
2 2 -> 3 0.033298 0.170022 -6.822556 116.992286 
3 3 -> 4 0.034875 0.037424 -0.091493 -0.953852 
4 4 -> 5 0.036631 0.014531 -0.271810 1.323024 
5 5 -> 6 0.036724 -0.003337 0.054415 -0.220684 
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In order to demonstrate the use of these polynomials, interpolation was carried out by 

employing the polynomials and the corresponding rates for 400 tenor values in the 

range [0.002740 , 0.251955] were calculated. The graph of these 400 tenor points and 

the resultant rates are included in graph (3.1). 

Figure (F.3.1) Zero-Coupon rates for the Short End 
Without the Zero-Tenor rate and based on 400 points 
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Even though the polynomial equations corresponding to the parameters of table 

(T.3.4) are supposed to be used only for interpolating, in the case of the zero tenor rate 

we deviate from this rule and use the first polynomial for performing extrapolation. 

Entering a tenor value r y  equal to zero into the polynomial equation with i =1, the 

returned tenor value is 0.032299. The zero-tenor rate is included into the short-end 

zero coupon rates as shown in table (3.5). 

TABLE T.3.5 
Rate Original Original Calculations End Date Time to Maturity Continuous 

i Rate Type Tenor Label Date CD ED (ED-CD)/tdy df Annualised Rate rc 
0 DUMMY Zero Tenor 18/02/2003 18/02/2003 0.000000 1.000000 0.032299 
1 LIBOR 0/N 18/02/2003 19/02/2003 0.002740 0.999910 0.032799 
2 LIBOR T/N 18/02/2003 20/02/2003 0.005479 0.999818 0.033298 
3 LIBOR 1WK 18/02/2003 27/02/2003 0.024658 0.999140 0.034875 
4 LIBOR 1M 18/02/2003 22/03/2003 0.087671 0.996794 0.036631 
5 LIBOR 2M 18/02/2003 21/04/2003 0.169863 0.993781 0.036724 
6 LIBOR 3M 18/02/2003 21/05/2003 0.252055 0.990794 0.036695 

The same procedure is followed as before and a new set of polynomials is established 

based on the tenor values and continuous rates of table (3.5). The new set of 

polynomials is presented in table (3.6). 
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TABLE T.3.6 
Polynomial Rate i 

i to i+1 A B C D 
0 0 -> 1 0.032299 0.180899 0.000000 211.012274 
1 1 -> 2 0.032799 0.185651 1.734347 -1055.061371 
2 2 -> 3 0.033298 0.171396 -6.937390 119.243966 
3 3 -> 4 0.034875 0.036878 -0.076778 -1.049864 
4 4 -> 5 0.036631 0.014696 -0.275246 1.340442 
5 5 -> 6 0.036724 -0.003384 0.055274 -0.224168 

A set of rates corresponding to 400 tenor values in the range [0.0 , 0.251955] is 

calculated based on these polynomials and are presented in graphical form in figure 

(3.2). As it can be observed, the only difference with the graph of figure (3.1) is that 

we have included rates in the tenor range [0.0 , 0.002740]. In other words, with the 

inclusion of the dummy zero-tenor zero-coupon rate, we are able to interpolate for and 

calculate the continuous rates for the small additional tenor range [0.0 , 0.002740]. 

The middle area 

The starting date of the first future which is shown in table (3.7), is the 19th  of March, 

2003. We will denote the time to maturity corresponding to this date as r,,,spfi,,„„, and 

is equal to r) SDfutures = 0.079452 . This maturity period (tenor) is within the tenors 

corresponding to the third and fourth rates obtained for the short end of the structure. 

Hence, the corresponding rate to the tenor r., = 0.079452 can be calculated by 
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fdfd, y, Future (i ) = 

1+ 
'100- 

100 

dfd,   y, Future (i ) = df Spfutures x  fdf d ,y,Future( i ) 

df ,v,Future( i ) df CD ,SD(l —1 )x fdf d,v,Future(i) 

t y 

dfd, y, Fut u re ( i ) = df d ,y( i ) 

t  CD,ED,) 
ED(i)—CD  

df d 	It cp,ED (i)*  

(Eq.3.2.19) 

(Eq.3.2.20) 

(Eq.3.2.21) 

(Eq .3 .2.22) 

(Eq.3.2.23) 

X t  SD,ED, Future (i ) 

i = 7 

i E [8,13] 
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employing the third polynomial. Employing equation (3.2.17) with i = 3 , the resultant 

rate is rc (r,= 0.079452)= 0.036493 and we denote this rate as rc SDfutures  . From this 

rate and tenor values, the discount factor for the tenor which covers the period up to 

the starting date of the first future can be calculated and is found as shown in the 

following equation. 

exp(— 0.079452 x 0.036493) = 0.997105 df SDfutures exp(—rc SDfutures X r  ),SDfutures)=  

The equations governing the calculations of the continuous rates i E [7,13] 

corresponding to the futures prices are presented next with the resultant values shown 

in the last column of table (3.7). The futures prices are denoted as lifid  (i) and 

correspond to the prices included in the third column of table (3.1). 

ED(i)— SD(i) 
t 	 — 

td,
SD,ED,Euture( i ) 

y, Future 
(Eq.3.2.18) 

The assumption regarding the conversion on the number of days per year to be 365 has 

been made for the case of the futures. So, it holds that td,l,F„t„re  = td,v  = 365 . From the 

next equation, we can calculate the continuous rates for T  Y = t  CD,ED (i) where 

iE [7,13] : 

rc (r y ) = r,(i) = 
ln[dfd , y  (4] 

t  CD, ED ( i) 

(Eq.3.2.24) 
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TABLE T.3.7 

Rate Rate Tenor Future Starting Ending Time Time to maturity Continuous 
i Type Lable Price F(i) Date Date Period fdf_df (ED - CD)/tdy Annualised Rate rc 
7 FUTURE 19-Mar-03 96.325 19/03/2003 18/06/2003 0.2493 0.9909210.988052 0.328767 0.036561 
8 FUTURE 18-Jun-03 96.515 18/06/2003 17/09/2003 0.2493 0.991386 0.979541 0.578082 0.035758 
9 FUTURE 17-Sep-03 96.545 17/09/2003 17/12/2003 0.2493 0.991460 0.971176 0.827397 0.035349 
10 FUTURE 17-Dec-03 96.485 17/12/2003 17/03/2004 0.2493 0.991313 0.962739 1.076712 0.035268 
11 FUTURE 17-Mar-04 96.360 17/03/2004 16/06/2004 0.2493 0.991007 0.954080 1.326027 0.035450 
12 FUTURE 16-Jun-04 96.215 16/06/2004 15/09/2004 0.2493 0.990652 0.945161 1.575342 0.035802 
13 FUTURE 15-Sep-04 96.070 15/09/2004 15/12/2004 0.2493 0.990297 0.935990 1.824658 0.036253 

It should be noted that in the above calculations an error has been introduced because 

the convexity adjustment required when the forward rates are calculated based on the 

futures rates, has not been accounted for. Interest rate futures have zero convexity 

since their payoff is fixed per basis point change regardless of the level of the 

underlying interest rates. However, the convexity nature of instruments like Forward 

Rate Agreements (FRAs) and swaps means that a long position in FRAs and/or swaps 

and a short position in futures has a net positive convexity. This positive bias in favour 

of the short sellers of futures contracts has to be removed from the futures rates in 

order to derive an unbiased estimator of the equivalent forward rates. The convexity 

bias is of the magnitude of one to basis points for maturities around a year and 

increases with term to maturity. For the purposes of this thesis, this error due to the 

futures bias is allowed and no additional adjustments are made to the continuous rates 

resulted from the futures prices. 

The next step involves performing cubic spline interpolation on the sets of rates and 

tenors that correspond to the medium area of the term structure - the two last columns 

of table (3.7) - plus the last pair of values (tenor and continuous rate) of the short end. 

The resultant polynomials parameters based on the cubic splines technique are 

summarised in table (3.8). 

TABLE T.3.8 

Polynomial i 
Rate i to 

1+1 A B C D 
6 6 -> 7 0.036695 -0.001507 0.000000 -0.0405549 
7 7 -> 8 0.036561 -0.002223 -0.009333 0.0214020 
8 8 -> 9 0.035758 -0.002886 0.006674 -0.0067036 
9 9 -> 10 0.035349 -0.000808 0.001660 0.0010752 
10 10 -> 11 0.035268 0.000220 0.002465 -0.0016833 
11 11 -> 12 0.035450 0.001135 0.001206 -0.0004000 
12 12 -> 13 0.035802 0.001662 0.000906 -0.0012120 
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Based on table (3.8), the continuous rate corresponding to 1 year from the calculation 

date is rAr = 1) = 0.035265 , and is found by applying the 1 year tenor to the 

polynomial with index number 9. This rate will correspond to the first coupon of the 2 

year swap. 

The next step would be to calculate the zero-coupon rates for the long end which 

covers the period up to maturities of 10 years. These rates are calculated based on the 

bootstrapping method which is described later on. However, because these 

calculations are also performed for the very long end of the curve, we choose to 

calculate together the zero-coupon rates for the two last parts of the curve. The only 

difference in the calculations for the two last parts of the curve is the fact that 

interpolation has to be carried out on the coupon rates of the very long end in order to 

obtain the missing annual swap maturities. 

The cubic splines technique is applied to the swap coupon-rates of table (T.3.1). The 

results from the cubic spline process applied on the swap rates table is shown in table 

(T.3.9) below. The swap rates obtained for the missing years based on the resultant 

polynomials from the cubic splines application of table (T.3.9) are included in table 

(T.3.10). The set of polynomials corresponding to the swap coupon-rates is a different 

and independent set to the set of polynomials derived previously for the zero-rates. 

TABLE T.3.9 
Coupon-Rate Rate Tenor Swap Polynomial Swap Rate 

Index k Type Label Rate m k to k+1 A B C D 
1 SWAP 2yr 0.037000 1 1 -> 2 0.037000 0.001836 0.000000 -0.000036 
2 SWAP 3yr 0.038800 2 2 -> 3 0.038800 0.001728 -0.000109 -0.000019 
3 SWAP 4yr 0.040400 3 3 -> 4 0.040400 0.001454 -0.000165 0.000011 
4 SWAP 5yr 0.041700 4 4 -> 5 0.041700 0.001158 -0.000131 0.000024 
5 SWAP 6yr 0.042750 5 5 -> 6 0.042750 0.000966 -0.000061 -0.000005 
6 SWAP 7yr 0.043650 6 6 -> 7 0.043650 0.000829 -0.000077 -0.000002 
7 SWAP 8yr 0.044400 7 7 -> 8 0.044400 0.000670 -0.000082 0.000013 
8 SWAP 9yr 0.045000 8 8 -> 9 0.045000 0.000543 -0.000044 0.000001 
9 SWAP 10yr 0.045500 9 9 -> 10 0.045500 0.000458 -0.000040 -0.000001 

10 SWAP 12yr 0.046250 10 10 -> 11 0.046250 0.000289 -0.000045 0.000003 
11 SWAP 15yr 0.046800 11 11 -> 12 0.046800 0.000107 -0.000016 0.000001 
12 SWAP 20yr 0.047000 12 12 -> 13 0.047000 -0.000014 -0.000008 0.000001 
13 SWAP 25yr 0.046800 13 13 -> 14 0.046800 -0.000050 0.000001 0.000000 
14 SWAP 30yr 0.046550 14 14 -> 15 0.046550 -0.000055 -0.000002 0.000000 
15 SWAP 40yr 0.045850 
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TABLE T.3.10 
Tenor Swap Tenor Swap Tenor Swap 
Label Coupon Rate Label Coupon Rate Label Coupon Rate 
11yr 0.045917 22yr 0.046943 32yr 0.046431 
13yr 0.046497 23yr 0.046900 33yr 0.046366 
14yr 0.046674 24yr 0.046851 34yr 0.046298 
16yr 0.046891 26yr 0.046751 35yr 0.046227 
17yr 0.046954 27yr 0.046703 36yr 0.046154 
18yr 0.046991 28yr 0.046654 37yr 0.046080 
19yr 0.047005 29yr 0.046603 38yr 0.046004 
21yr 0.046978 31yr 0.046492 39yr 0.045927 

The initial swap coupon-rates and the additional swap coupon-rates calculated based 

on the last application of the cubic splines interpolation technique are presented 

graphically as a complete set - covering all annual maturities from 2 years to 40 years 

- in figure (3.3). 

For a coupon paying swap, the quoted swap rate corresponds to the annual coupon 

value c . This is summarised by the following equation: 

c = quoted swap ratex Notional 	 (Eq.3.2.25) 

The parameter m will be used for representing the annual coupon frequency, in other 

words, the number of coupons per year. The total number of remaining coupon 

payments is denoted by M and is given by M = L'rr,y x mi, where 2-T y  represents the 

time to maturity of the swap in number of years and the operator L.] represents the 
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1 	100 — c X e—r 	— C3yr X e-r̀ ' 2 Yr r2" 
rc,3 yr  = 	x In 	

3yr 

1-3yr 	 (100 F C3 yr ) 
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rounding down to the first integer value. The equation relating the swap information 

presented here is as follows: 

100 = E—c  xe-ri r  + Notional+ 	xe-rr r7 	 (Eq.3.2.26) 
(m-1 	\ / 

j=i m 	I \ 	 m 

Solving for the rate ri, , the equation will look as follows: 

/ 	/  
100— 

z  C  X e —r r m-i 
" 

jM 	J rT = --
1

xln 	\=1 	
(Eq.3.2.27) 

TT. 	(Notional+  C  
m 

Based on the last equation, the rate rT  can be calculated if all the rates corresponding 

to the coupon rates (apart the last one which coincides with the maturity) are known. 

This leads to the employment of the bootstrapping technique. The current calculations 

example can be used to demonstrate this technique. In this example, the swap rates 

correspond to coupon swaps with a coupon frequency equal to one and a notional of 

100. This results in simplifying equation (3.2.27) in the form of equation (3.2.28) for 

the 2 year swap. The rate reyr  was calculated by interpolating on data of the middle 

area of the term structure, which was calculated based on the Futures input data. 

Hence, the rate rc.,2yr  can now be calculated from equation (3.2.28), where c2yr  

corresponds to the coupon of the 2 year coupon swap. 

Having calculated the rc,2, rate, the rate rc ,3yr  can now be calculated based on the 

rc,lyr and the r ,2yr  rates, as shown by equation (3.2.29). 
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Having calculated the rc,3yr  rate, the rate rc 4yr  can now be calculated based on the 

rc,lyr rc 2yr and the rc,3yr  rates, as shown by equation (3.2.30). 

The same process continues until all the continuous rates are obtained up to the rate 

corresponding to the longest dated swap. This process is called bootstrapping. For the 

outlined example, the resultant rates from bootstrapping are included in table (T.3.11). 
TABLE T.3.11 

Tenor Continuous 
annualised rate rc Tenor Continuous  

annualised rate rc 
Tenor  Continuous  

annualised rate rc Tenor  Continuous 
annualised rate rc 

2yr 0.036352 12yr 0.045935 22yr 0.046434 32yr 0.045344 
3yr 0.038148 13yr 0.046200 23yr 0.046336 33yr 0.045205 
4yr 0.039766 14yr 0.046383 24yr 0.046230 34yr 0.045058 
5yr 0.041096 15yr 0.046504 25yr 0.046123 35yr 0.044904 
6yr 0.042184 16yr 0.046585 26yr 0.046019 36yr 0.044744 
7yr 0.043130 17yr 0.046631 27yr 0.045917 37yr 0.044578 
8yr 0.043928 18yr 0.046645 28yr 0.045814 38yr 0.044406 
9yr 0.044572 19yr 0.046628 29yr 0.045708 39yr 0.044231 
10yr 0.045114 20yr 0.046585 30yr 0.045595 40yr 0.044053 
11yr 0.045571 21yr 0.046519 31yr 0.045474 

Final Annualised Continuous Rates Curve 

Graph in figure (F.3.4) presents the final annualised continuous rates term structure 

which combines the short end, the middle area and the long and very-long end parts of 

the curve obtained in the previous calculations. 
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Figure (F.3.5) The zero-coupon rates curve 
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The resultant structure of the curve does not seem to have the shape of any of the 

common yield curve shapes like the following: 

(i) For a normal yield curve the long-term rates are greater than short-term 

rates, so the curve has a positive slope. In other words, for a normal yield curve, the 

term spread, which is the difference between rates on the longer maturity and rates on 

the shorter maturity, is positive. 

(ii) For a flat yield curve the yield for all the maturities is essentially the same 

and the term spread is roughly zero. 

(iii) For an inverted yield curve the long-term rates are smaller than short-term 

rates, so the curve has a negative slope and a negative term spread. 

Figure (F.3.5) includes a zooming of the final curve into the lower than three years 

tenors. As it can be observed from both figures (F.3.4) and (F.3.5), the final curve has 

characteristics of two common yield curve types, the normal and the inverted types of 

yield curves. For the maturities up to a bit more than one year, the curve seems to be 

an inverted yield curve and then becomes a normal curve since it has a positive slope 

for the maturities beyond one year up to around 18 years. Beyond the maturities of 18 

years, the curve takes once more the shape of an inverted yield curve. 
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A similar shape of yield curve as the final yield curve calculated in this section is 

discussed in reference [50]. In that case, an inverted Treasury yield curve (negative 

term spread) was observed for a given period while the Swaps based curve had a 

positive overall term spread, presenting however features similar to the final curve 

presented here (inverted in the lower and middle area of the curve and with longer 

maturities preserving the positive term spread). The author explains that the failure of 

the swap curve to totally invert following the inversion of the Treasury curve might be 

explained by the fact that risky yield curves, like the swap curve, are more closely tied 

to firm behaviour and invert less often. The author extends his explanation with the 

argument that, in an inverted Treasury market, private firms will tend to issue more 

longer-term debt in the place of shorter-term debt, and the resultant supply will result 

in upward yield curve slope. 

The Discount Factors Curve 

The zero-coupon annualised continuous rates curve can equivalently be expressed as a 

discount factor curve. The relationship between the discount factors and the rates has 

already been presented previously in this section, like in equation (3.2.23). This is 

repeated here in equation (3.2.31). Figure (F.3.6) includes the graph of the resultant 

discount function for the calculations carried out in this section. 

df, (i) = e-1;(1))(r(i) 
	

(Eq.3.2.31) 
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Employing the Final Yield Curve in the following chapters 

The graphical form of the final continuous rate curve is presented in figure (3.4) and 

the graphical form of the discount factors curve is included in figure (3.6) above. In 

table (3.12) below, the tenors and the respective annualised continuous rates (denoted 

as "rc") and discount factors (denoted as "df'), are set along side the indexing for the 

tenor points. 

TABLE T.3.12 
Rate 

Index i 
Tenor 
(years) Rate rc df Rate 

Index i 
Tenor 
(years) Rate rc df Rate 

Index i 
Tenor 
(years) Rate rc df Rate 

Index i 
Tenor 
(years) Rate rc df 

0 0.0000 0.0323 1.0000 14 1.5753 0.0358 0.9452 28 14.0000 0.0464 0.5224 42 28.0000 0.0458 0.2773 
1 0.0027 0.0328 0.9999 15 1.8247 0.0363 0.9360 29 15.0000 0.0465 0.4978 43 29.0000 0.0457 0.2657 
2 0.0055 0.0333 0.9998 16 2.0000 0.0364 0.9299 30 16.0000 0.0466 0.4746 44 30.0000 0.0456 0.2547 
3 0.0247 0.0349 0.9991 17 3.0000 0.0381 0.8919 31 17.0000 0.0466 0.4526 45 31.0000 0.0455 0.2442 
4 0.0795 0.0365 0.9971 18 4.0000 0.0398 0.8529 32 18.0000 0.0466 0.4319 46 32.0000 0.0453 0.2343 
5 0.0877 0.0366 0.9968 19 5.0000 0.0411 0.8143 33 19.0000 0.0466 0.4123 47 33.0000 0.0452 0.2250 
6 0.1699 0.0367 0.9938 20 6.0000 0.0422 0.7764 34 20.0000 0.0466 0.3939 48 34.0000 0.0451 0.2161 
7 0.2521 0.0367 0.9908 21 7.0000 0.0431 0.7394 35 21.0000 0.0465 0.3765 49 35.0000 0.0449 0.2077 
8 0.3288 0.0366 0.9881 22 8.0000 0.0439 0.7037 36 22.0000 0.0464 0.3600 50 36.0000 0.0447 0.1997 
9 0.5781 0.0358 0.9795 23 9.0000 0.0446 0.6696 37 23.0000 0.0463 0.3445 51 37.0000 0.0446 0.1922 
10 0.8274 0.0353 0.9712 24 10.0000 0.0451 0.6369 38 24.0000 0.0462 0.3297 52 38.0000 0.0444 0.1850 
11 1.0000 0.0353 0.9653 25 11.0000 0.0456 0.6058 39 25.0000 0.0461 0.3157 53 39.0000 0.0442 0.1782 
12 1.0767 0.0353 0.9627 26 12.0000 0.0459 0.5762 40 26.0000 0.0460 0.3023 54 40.0000 0.0441 0.1717 
13 1.3260 0.0354 0.9541 27 13.0000 0.0462 0.5485 41 27.0000 0.0459 0.2895 

The final curve calculated in this section was used in the simulations of the convertible 

bond pricing frameworks presented in the chapters to be followed. This curve is 

referred to as the curve in the Bond currency curve or the Domestic currency and is 

one of the market based inputs to the pricing models. 

In the calculations of the following chapter, the required tenors do not coincide with 

the tenor points of the final curve. Consequently, interpolation has to be carried out in 

order to obtain the continuous rates corresponding to the tenors encountered in the 

calculations. As previously discussed, in order to maintain consistency, the default 

interpolation technique in the pricing models is the cubic splines, the same used here 

for deriving the final curve. Since the same curve and the same interpolation technique 

are employed throughout the thesis, the resultant polynomials for the Bond currency 

curve used here are the polynomials used throughout the thesis for performing 

interpolation for the interest rate in the Bond currency. Table (3.13) includes the 

parameters of the resultant polynomials and the two tenor points defining the periods 

that each polynomial covers. 
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TABLE T.3.13 
Polyno 
mial i 

Rate i 
to i+1 A B C D 

Polyno 
mial i 

Rate i 
to 1+1 A B C D 

Polyno 
mial i 

Rate i 
to k-1 A B C D 

0 0->1 0.0323 0.1809 0.0000 211.0108 18 18->19 0.0398 0.0014 5.5E-06 -0.0001 36 36->37 0.0464 -0.0001 -7E-06 9E-07 
1 1->2 0.0328 0.1857 1.7343 -1055.0538 19 19->20 0.0411 0.0012 -0.0002 4E-05 37 37->38 0.0463 -0.0001 -4E-06 1 E-06 
2 2->3 0.0333 0.1714 -6.9373 119.2412 20 20-a21 0.0422 0.0010 -4E-05 -1E-05 38 38->39 0.0462 -0.0001 -9E-07 1E-06 
3 3->4 0.0349 0.0369 -0.0769 -1.0475 21 21->22 0.0431 0.0009 -0.0001 -2E-06 39 39->40 0.0461 -0.0001 2E-06 -4E-07 
4 4,5 0.0365 0.0190 -0.2491 -1.2082 22 22->23 0.0439 0.0007 -0.0001 1E-05 40 40->41 0.0460 -0.0001 1E-06 -5E-07 
5 5->6 0.0366 0.0147 -0.2789 1.3673 23 23->24 0.0446 0.0006 -4E-05 1E-06 41 41->42 0.0459 -0.0001 -3E-07 -5E-07 
6 6->7 0.0367 -0.0030 0.0632 -0.3703 24 24->25 0.0451 0.0005 -4E-05 -2E-06 42 42->43 0.0458 -0.0001 -2E-06 -5E-07 
7 7->8 0.0367 -0.0002 -0.0281 0.0976 25 25->26 0.0456 0.0004 -5E-05 -2E-06 43 43->44 0.0457 -0.0001 -3E-06 -5E-07 
8 8->9 0.0366 -0.0028 -0.0056 0.0151 26 26->27 0.0459 0.0003 -0.0001 3E-06 44 44->45 0.0456 -0.0001 -5E-06 8E-08 
9 9->10 0.0358 -0.0027 0.0057 -0.0049 27 27->28 0.0462 0.0002 -4E-05 4E-06 45 45->46 0.0455 -0.0001 -5E-06 9E-08 
10 10->11 0.0353 -0.0008 0.0020 0.0002 28 28->29 0.0464 0.0001 -3E-05 4E-06 46 46->47 0.0453 -0.0001 -4E-06 1E-07 
11 11->12 0.0353 -0.0001 0.0021 0.0025 29 29,30 0.0465 0.0001 -2E-05 4E-07 47 47->48 0.0452 -0.0001 -4E-06 1E-07 
12 12->13 0.0353 0.0002 0.0026 -0.0025 30 30->31 0.0466 0.0001 -2E-05 4E-07 48 48->49 0.0451 -0.0002 -4E-06 1E-07 
13 13->14 0.0354 0.0011 0.0008 0.0022 31 31->32 0.0466 3E-05 -2E-05 5E-07 49 49->50 0.0449 -0.0002 -3E-06 1E-07 
14 14,15 0.0358 0.0019 0.0024 -0.0107 32 32->33 0.0466 -2E-06 -1E-05 5E-07 50 50->51 0.0447 -0.0002 -3E-06 1E-07 
15 15->16 0.0363 0.0011 -0.0056 0.0150 33 33->34 0.0466 -3E-05 -1E-05 6E-07 51 51->52 0.0446 -0.0002 -2E-06 2E-07 
16 16->17 0.0364 0.0005 0.0023 -0.0010 34 34->35 0.0466 -0.0001 -1E-05 8E-07 52 52->53 0.0444 -0.0002 -2E-06 4E-08 
17 17->18 0.0381 0.0021 -0.0007 0.0002 35 35->36 0.0465 -0.0001 -9E-06 9E-07 53 53->54 0.0442 -0.0002 -2E-06 6E-07 

To demonstrate the performance of the interpolation approach, the rates were obtained 

for 1000 tenor values which were equally space in the tenor range [0.0 , 40] based on 

the resultant polynomials included in the above table. Figure (3.7) includes the graph 

of the resultant continuous rates and figure (3.8) includes the graph of the respective 

discount factors. The polynomials were also used for calculating the rates for 1000 

tenor values which were equally space in the tenor range [0.0 , 3] and the results are 

presented in figure (3.9). 
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Figure (F.3.9) The zero-coupon rates curve up to 3 years (1000 points) 

0.038 

 

0.037 
U 
taz! 0.036 

2 0.035 

0.034 • 
• 

0.033 • 

0.032 

 

Chapter 3 
	

Relative Pricing Frameworks 

0 
	

0 5 	 1 	 1.5 	 2 	 2.5 	 3 
Tenor (Time to maturity in number of years) 

The tenor-points obtained based on the polynomials demonstrate that the cubic splines 

interpolation technique performs well in the case of the utilised zero-coupon rates 

curve and meets the requirements of the work of this thesis. As already mentioned, any 

tenor points required for the needs of the simulations and calculations in the following 

chapters are obtained based on the same polynomials. 

The curve in the Equity (Foreign) currency 

For the pricing of Dual currency convertibles, the zero-coupon rates curve in the 

Equity (Foreign) currency is required as well. Table (3.14) includes the securities used 

for determining the zero-coupon rates curve in the Foreign Currency. 

TABLE T.3.14 
Market Data - Equity (Foreign) Currency 

Close of Business 18 February 2003 
Rate Type Tenor Label Rate RateType Tenor Label Rate 

XIBOR 0/N 0.0340000 SWAP 2yr 0.04430 
XIBOR T/N 0.0350000 SWAP 3yr 0.04510 
XIBOR 1WK 0.0365375 SWAP 4yr 0.04580 
XIBOR 1M 0.0381094 SWAP 5yr 0.04640 
XIBOR 2M 0.0392500 SWAP 6yr 0.04695 
XIBOR 3M 0.0400000 SWAP 7yr 0.04750 

FUTURE 19-Mar-03 95.885 SWAP 8yr 0.04800 
FUTURE 18-Jun-03 95.750 SWAP 9yr 0.04845 
FUTURE 17-Sep-03 95.670 SWAP 10yr 0.04880 
FUTURE 17-Dec-03 95.600 SWAP 12yr 0.04940 
FUTURE 17-Mar-04 95.580 SWAP 15yr 0.04990 
FUTURE 16-Jun-04 95.525 SWAP 20yr 0.05040 
FUTURE 15-Sep-04 95.500 SWAP 25yr 0.05070 

SWAP 30yr 0.05085 
SWAP 40yr 0.05100 
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The decision was made to introduce a dummy currency instead of using an actual one 

in order to introduce some generalisation and abstractness in the framework. For the 

case of the introduced currency, the cash rates are denoted as XIBOR so that the 

parallelism to the LIBOR rates is more indicative. In exactly the same fashion as the 

derivation of the continuous rates for the Bond (domestic) currency, the zero-coupon 

continuous rates for the Equity currency were derived and are presented below in table 

(3.15), as well as in the graph of figure (3.10). 

TABLE T.3.15 
Rate 

Index I 
Tenor 
(years) Rate rc df Rate 

Index j 
Tenor 
(years) Rate rc df Rate 

Index I 
Tenor 

(years) Rate rc df Rate 
Index j 

Tenor 
(years) Rate rc df 

0 0.0000 0.0335 1.0000 14 1.5753 0.0428 0.9348 28 14.0000 0.0492 0.5025 42 28.0000 0.0504 0.2442 
1 0.0027 0.0340 0.9999 15 1.8247 0.0431 0.9244 29 15.0000 0.0493 0.4774 43 29.0000 0.0504 0.2320 
2 0.0055 0.0345 0.9998 16 2.0000 0.0434 0.9169 30 16.0000 0.0494 0.4535 44 30.0000 0.0504 0.2204 
3 0.0247 0.0361 0.9991 17 3.0000 0.0442 0.8759 31 17.0000 0.0495 0.4308 45 31.0000 0.0504 0.2095 
4 0.0795 0.0377 0.9970 18 4.0000 0.0449 0.8357 32 18.0000 0.0497 0.4091 46 32.0000 0.0504 0.1991 
5 0.0877 0.0378 0.9967 19 5.0000 0.0455 0.7966 33 19.0000 0.0498 0.3884 47 33.0000 0.0505 0.1892 
6 0.1699 0.0390 0.9934 20 6.0000 0.0461 0.7586 34 20.0000 0.0499 0.3688 48 34.0000 0.0505 0.1797 
7 0.2521 0.0397 0.9900 21 7.0000 0.0466 0.7215 35 21.0000 0.0500 0.3502 49 35.0000 0.0505 0.1708 
8 0.3288 0.0401 0.9869 22 8.0000 0.0472 0.6856 36 22.0000 0.0500 0.3325 50 36.0000 0.0505 0.1623 
9 0.5781 0.0411 0.9765 23 9.0000 0.0477 0.6511 37 23.0000 0.0501 0.3158 51 37.0000 0.0505 0.1542 
10 0.8274 0.0417 0.9661 24 10.0000 0.0481 0.6184 38 24.0000 0.0502 0.2999 52 38.0000 0.0505 0.1466 
11 1.0000 0.0420 0.9589 25 11.0000 0.0484 0.5871 39 25.0000 0.0502 0.2848 53 39.0000 0.0505 0.1393 
12 1.0767 0.0422 0.9556 26 12.0000 0.0487 0.5572 40 26.0000 0.0503 0.2705 54 40.0000 0.0506 0.1323 
13 1.3260 0.0425 0.9452 27 13.0000 0.0490 0.5290 41 27.0000 0.0503 0.2570 

The resultant curve can be characterised as a normal curve, i.e. the tenor spread is 

positive and the slope of the curve is positive as well. Like in the case of the Bond 
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currency, cubic splines interpolation is performed on the resultant curve in order to 

obtain the values of the rates at the tenor points required in the calculations and 

simulations in the following chapters. The resultant polynomials when the cubic 

splines technique is employed on the Equity currency rates curve are included in the 

following table. 

TABLE T.3.16 
o yno 

mial j 
ate j 

to j+1 A B C D 
Polyno 
mial j 

Rate 1 
to j+1 A B C D 

Polyno 
mial j 

Rate j 
to j+1 A B C D 

0 0->1 0.0323 0.1809 0.0000 211.0108 18 18->19 0.0398 0.0014 5.5E-06 -0.0001 36 36->37 0.0464 -0.0001 -7E-06 9E-07 
1 1->2 0.0328 0.1857 1.7343 -1055.0538 19 19->20 0.0411 0.0012 -0.0002 4E-05 37 37->38 0.0463 -0.0001 -4E-06 1E-06 
2 2->3 0.0333 0.1714 -6.9373 119.2412 20 20->21 0.0422 0.0010 -4E-05 -1E-05 38 38->39 0.0462 -0.0001 -9E-07 1E-06 
3 3->4 0.0349 0.0369 -0.0769 -1.0475 21 21->22 0.0431 0.0009 -0.0001 -2E-06 39 39->40 0.0461 -0.0001 2E-06 -4E-07 
4 4->5 0.0365 0.0190 -0.2491 -1.2082 22 22->23 0.0439 0.0007 -0.0001 1E-05 40 40->41 0.0460 -0.0001 1E-06 -5E-07 
5 5->6 0.0366 0.0147 -0.2789 1.3873 23 23->24 0.0446 0.0006 -4E-05 1E-06 41 41->42 0.0459 -0.0001 -3E-07 -5E-07 
6 6->7 0.0367 -0.0030 0.0632 -0.3703 24 24,25 0.0451 0.0005 -4E-05 -2E-06 42 42->43 0.0458 -0.0001 -2E-06 -5E-07 
7 7->8 0.0367 -0.0002 -0.0281 0.0976 25 25->26 0.0456 0.0004 -5E-05 -2E-06 43 43->44 0.0457 -0.0001 -3E-06 -5E-07 
8 8->9 0.0366 -0.0028 -0.0056 0.0151 26 26->27 0.0459 0.0003 -0.0001 3E-06 44 44->45 0.0456 -0.0001 -5E-06 8E-08 
9 9,10 0.0358 -0.0027 0.0057 -0.0049 27 27->28 0.0462 0.0002 -4E-05 4E-06 45 45->46 0.0455 -0.0001 -5E-06 9E-08 
10 10,11 0.0353 -0.0008 0.0020 0.0002 28 28->29 0.0464 0.0001 -3E-05 4E-06 46 46->47 0.0453 -0.0001 -4E-06 1E-07 
11 11->12 0.0353 -0.0001 0.0021 0.0025 29 29->30 0.0465 0.0001 -2E-05 4E-07 47 47->48 0.0452 -0.0001 -4E-06 1E-07 
12 12->13 0.0353 0.0002 0.0026 -0.0025 30 30->31 0.0466 0.0001 -2E-05 4E-07 48 48->49 0.0451 -0.0002 -4E-06 1E-07 
13 13->14 0.0354 0.0011 0.0008 0.0022 31 31,32 0.0466 3E-05 -2E-05 5E-07 49 49->50 0.0449 -0.0002 -3E-06 1E-07 
14 14->15 0.0358 0.0019 0.0024 -0.0107 32 32->33 0.0466 -2E-06 -1E-05 5E-07 50 50->51 0.0447 -0.0002 -3E-06 1E-07 
15 15,16 0.0363 0.0011 -0.0056 0.0150 33 33->34 0.0466 -3E-05 -1E-05 6E-07 51 51->52 0.0446 -0.0002 -2E-06 2E-07 
16 16->17 0.0364 0.0005 0.0023 -0.0010 34 34->35 0.0466 -0.0001 -1E-05 8E-07 52 52->53 0.0444 -0.0002 -2E-06 4E-08 
17 17->18 0.0381 0.0021 -0.0007 0.0002 35 35->36 0.0465 -0.0001 -9E-06 9E-07 53 53->54 0.0442 -0.0002 -2E-06 6E-07 

Concluding Remarks for Yield Curves Construction 

The construction of the discount factor term structure in this section, has demonstrated 

in a detailed and practical manner the nature of the assumptions and approximations 

that usually depict such procedures. There is a considerable number of different 

versions for these procedures in the practitioners world, some more delicate and 

sophisticated, some other more simplistic and with less assumptions. For example, in 

reference [6], the derivation of a zero-coupon yield curve from swap prices is 

summarised into three main steps: turning the raw data into equivalent zero-coupon 

rates, writing zero-coupon rates in terms of B-spline functions, and fitting that function 

through an Ordinary-Least-Squares (OLS) method. The last part of this approach is 

considerably different from the overall approach followed in this section. 

The aim of this section was not to present the best or the most popular approach to 

curve construction. On the contrary, the objective was to demonstrate the importance 

of having knowledge of the origins and the procedures involved in the extraction of 

market quantities necessary for the pricing models, with all the assumptions and 

approximations these procedures introduce. Nevertheless, a technique was chosen that 
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returns smooth and well-fitted to market data (prices of securities used for deriving the 

curves) zero-coupon continuous rates curves. In addition, the polynomials used for 

interpolating on the Bond and Equity currency rates were also derived and their usage 

was demonstrated. 

3.3. Implied Volatilities in Equity Derivatives 

Assuming that the underlying stock follows a geometric Brownian motion process in a 

risk-neutral world as the process described by equation (3.4.1), then equations (3.4.2) 

and (3.4.3) provide the closed form solution introduced by Black and Scholes for 

pricing European call and put options. The options on the stock with a price S have a 

strike K and maturity T , and are priced for time t based on a risk free rate rt T  and 

volatility cr, T  (the standard deviation of the logarithmic returns). The resultant prices 

correspond to a tenor r =T - t . 

dS , =(r,,T  - q)S , dt + S , 0-, T  d, 	 (Eq.3.4.1) 

C(S, t) = Se-̀ t (T 	)— Ke' T (T-̀ ) N(d2  ) 	 (Eq.3.4.2) 

P(S,t)= Ke ri' r(T-t)  P11-  d 2 )-  Se"(T-t)  A f(-  d1 ) 	 (Eq.3.4.3) 

x 1 2 

	

1 	 Y 
N(x) = 	 fe 2  dy 	 (Eq.3.4.4) 

2n _ 

log(fl + 	q+ 
 2  
-1  (7,2  )(I' - t) 

K 	' 
f rtT - 	

1. 
d, = 	 (Eq.3.4.5) 

crtT VT  - t 

	

logN +  (r,T  - q 	1-27.)(T - t) 
K 	' 	2 '' d2  = 	 = di  — (7,,T  AIT -t 	 (Eq.3.4.6) 

a  t,T VT -t  

It has been observed that when the historical volatility is used in these formulas, the 

obtained options prices, as a rule, do not reflect the actual option prices traded in the 

market. This is even true for liquid options; hence there is a discrepancy between the 

Black-Scholes framework and the actual market. To overcome this problem, the 

market participants have adopted a different approach; they calculate the implied 
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volatilities of the options based on respective traded prices. The volatility parameter in 

the above equations becomes another way of expressing a traded quantity, the option 

price, through a transformation depicted by the Black-Scholes equation. 

In the options markets, the participants use the term "smile" as reference to the 

dependency of the implied volatility from a Black-Scholes option model, to the strike 

price of the option. The general form of a smile, which actually looks more like a 

"smirk", is presented in figure (3.11). It can be observed that the volatility used to 

price a low strike option is significantly higher than that used to price a high-strike-

price option. In other words, the volatility decreases as the strike price increases. In 

addition to a volatility smile, traders use a volatility term structure when pricing 

options. This means that the volatility used in pricing depends on the maturity of the 

option. Combining the smiles with the term structures, traders create a volatility matrix 

for each security, which is based on the strike price and the time to maturity. In other 

words, the one dimension of a volatility matrix is strike price and the other is time to 

maturity, and the resultant graph in this case is the volatility surface. 

Implied 
Volatility 

Strike price 

Figure 3.11 Volatility smile implied by equity options 

Summarising, it is obvious that the market has its own view on the volatilities for 

pricing options. What is more important is that the market views on volatility are 

different from the actual volatilities of the securities. On the contrary, market decision 

on the volatilities values are more affected by factors like moneyness (how much out 

of the money or how much in the money an option is) and time to maturity (time 

horizon). 
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3.4. Implied Volatilities in Currency Options 

Consider the following: 

The risk free rate of the domestic currency. 

rt
F 
	The risk free rate of the foreign currency. 

X, 	The exchange rate for translating units in the foreign currency into units in the 

domestic currency. 

6t 	The standard deviation of the log-normal returns of the exchange rate X, . 

Assuming that the exchange rate follows a geometric Brownian motion process similar 

to that assumed for the stock in the previous section, then, in a risk-neutral world this 

process is described by the following equation. 

dX, =(r;i3  r F )X, dt + X, o , dw, 	 (Eq.3.5.1) 

The call and put options priced based on equations (3.5.2) and (3.5.3) are options on 

an exchange rate with a current value E and have a strike K and maturity T . They 

are priced for time t based on a domestic risk free rate r,DT  , a foreign risk free rate ri FT  

and volatility crty  . The resultant prices correspond to a tenor r=T—t. The function 

N(*) has already 

di  

log( 
d2  = 

C( X,t ) 

P(X,t)= 

been defined 

X 

= 

log ( 
 K 

Ke-rti:T (T-I)N(— 

in 

+ 

= Xe-rriT (T-̀ )N(d1 )— 

equation (3.4.4). 

d2 )— Xe-rt'l (T-I)N(— 

rtDT  _ r FT + 1 0_2 
t, 	2  6t ,T 

Ke-6(T-t)N(d2 ) 

di ) 

(T  - t ) 

(Eq.3.5.2) 

(Eq.3.5.3) 

(Eq.3.5.4) 

(Eq.3.5.5) 

S  
+(r°  

cr, T  VT — 

tT — rFt,T — 2 —1  0-2tT  

t 

—t) 
— t = di — Cir.], 

Cit,T VT - t 
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If the forward exchange rate is introduced and defined as shown in equation (3.5.6), 

then, equations (3.5.2) to (3.5.3) can be re-written as shown in equations (3.5.7) to 

(3.5.10). 

P(X,t)=e 

log 
d2  = 

C(X,t)=e-ri (T IFt ,T  

F 

ri)T(1.  tiK 

log 
di  = 

= 

X N(-  

Ft,T 

(rtf -rt.r)x(r-t) 

X A I (di ) - K X N(d2 )] 

d2 	Ft,T  X A 1(-  d1 )] 

1  +—cr, (T —t) 
2 	' 

(Eq.3.5.6) 

(Eq.3.5.7) 

(Eq.3.5.8) 

(Eq.3.5.9) 

(Eq.3.5.10) 

K  

F  t T \  1  

cri.T AIT 

2 at'
2 
T

j'—t) 

—t 

/ 

K = di — crt ,T ,IT —t 
crtx 	— t 

Like in the case of stock options, the market convention depicts the construction and 

employment of volatility smiles. However, the smile in the case of currency options 

looks more like a "smile" as shown in the following figure, in contrast to the "smirk" 

more-like type of volatility structure of the stock options. Combining the smiles with 

volatility term structures like in the case of stock options, traders can create a volatility 

matrix for each exchange rate, which is based on the strike price and the time to 

maturity. 

A 

Implied 
Volatility 

  

Strike price 

  

Figure 3.12 Volatility smile implied by currency options 
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CHAPTER 4 

INPUTS TO THE CB PRICING FRAMEWORKS  

In the following chapters there will be presented two mainly CB pricing frameworks, 

the one-dimensional and the two-dimensional configurations. However, for both cases, 

the required inputs are the same to some extent. So, in this chapter, we take the 

opportunity to define these inputs and set the respective notation that will be followed 

throughout the thesis. The inputs to the CB pricing framework are identified into two 

sources, the inputs based on the convertible bond contract description and the inputs 

based on market information. The two sections of this chapter are each devoted to the 

presentation of one source of input information. 

Dates and Time parameters 

Before proceeding to defining the input parameters, some general comments are 

included on the conversions followed in the notation of the dates and time parameters. 

Subscripts will always be used for indexing purposes, while superscript will always be 

used for adding information to the parameter, unless it is stated otherwise. 

In the simulations, all actual dates are represented and input as a number of days since 

the end of the 19th  century (Microsoft Excel format) and parameters of the form t°  are 

reserved for actual dates of this format. The choice was made to follow the Microsoft 

Excel format for representing dates, which is a number of type double, because all 

simulations were performed in DLLs called in a VBA code in Microsoft Excel (inputs 

and outputs were in Microsoft Excel spreadsheets). So, a value of the form t =1 

corresponds to the 1st  of January, 1900, while a parameter of the form to  = 37622 

corresponds to the 1st  of January, 2003. 
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The parameter t with no superscript always represents time in number of years, while 

the parameter I' d  always represents time in number of days, both t and td  with 

reference to a specified date. For the purposes of this thesis, the default referenced date 

is the calculations date which means that both, t = 0 and td  =0 , correspond to the 

Calculations Date, which is denoted as t a'CD  . The parameter r is reserved for 

representing time to maturity in number of years, while rd  represents time to 

maturity in number of days. 

4.1. Inputs based on the CB Contract Description 

Like every instrument, a convertible bond has some fixed contract information. The 

terminology around the convertible bond was presented in chapter 2. Here, the 

standard notation followed in this thesis for the contract information is presented, 

alongside with its interpretation. 

The life duration of the instrument is depicted by its Issue Date taiD  and its Expiring 

date t a' ED  , also referred to as the Maturity Date. The Calculations Date must satisfy 

the following condition. In other words, we can only carry out the calculations for 

dates lying between the issue date and the expiration date of the instrument. 
t ID < tCD < t ED 	 (Eq.4.1.1) 

The Redemption Value, denoted as P Rd  , and the Face Value, also referred to as the 

Notional and denoted as P F  , are not necessarily equal, which is true for some 

instruments. Equation (4.1.2) must always hold, where RCR  denotes the Conversion 

Ratio, and K denotes the Strike. 
pF 	RCR x K 	 (Eq.4.1.2) 

The no conversion period which is represented by the variable td'NaCaa v  , is a 

parameter expressed as a number of days. This is the period prior the maturity of the 
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convertible bond, during which no conversion to equity can take place. This is a very 

common and standard contract feature of convertible bonds and the following equation 

gives us the last date ta' Lastc"' that conversion can take place. 

ta,LastConv = ta,ED — t d,NoConv (Eq.4.1.3) 

td NoConv 

I 
ta,ID 	 ta,CD  ta,LastConv 	 ta,ED 

Figure (4.1) 
No Conversion Period 

Coupons Schedule 

The coupons are always expressed in terms of an annual coupon rate, denoted as 

r cPn , and a coupon frequency, denoted as en . The coupon frequency defines the 

number of coupon payments per year, while the coupon annual rate defines the total 

coupon cash flow per year as a percentage of the Notional (Face Value). In addition, 

the coupon dates will either be established with reference to the maturity date and with 

the last coupon date coinciding with the maturity date, or with respect to the first 

coupon date, which is denoted as t a' FirstcPn . Based on this information, the coupons 

structure can be established. The coupons structure with nom  distinct coupon dates is 

represented by the matrix CcP" E %2Xne 4  
P  which is made of two fields, the date's field 

a,Cpn 	a Cpn t 	= • 	 } and the cash values en  = ten 	to be received as f=0,1,2,...,ncp  —1 	 i=0,1,2, ..,nep, —11 

coupons on the respective dates. 

q0
Cpn  Cpn 	 Cpn 

ql 	 qi  
,Cpn 	 Cpn 

qnc,,,, —2 
Cpn 

qnC  —1 pn  

a Cpn 	to Cpn to  

to 
ID 	 ta,CD ta ED 

Figure (4.2) 
The Coupon Schedule 
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Cpn 	rCpn 
X P F 

qt 	— 
100x q

Cpn 

, 1 	i < nc,p,, 

, 1 	i < ncp, 

(Eq.4.1.4) 

(Eq.4.1.5) 

(Eq.4.1.6) 

ta,Cpn = ta,FirstCpn > ta,ID o   

e,cpn t NumDaysPerYear 
cpn 

ta,Cpn < ta,ED 

Chapter 4 	 Inputs to the CB Pricing Frameworks 

For the purposes of the work presented in this thesis, it was decided to define the 

coupon dates and cash flows based on the first coupon date. So, the first coupon date 

to'cPri  is set equal to the respective contract based input parameter if this input 

parameter satisfies the condition that it is equal or greater than the issue date of the 

convertible bond. Then, the rest of the coupon dates, starting with the second coupon 

date trPn  , are calculated by adding to the previous date the time interval between the 

coupon dates (this is equal to the number of days in one year divided by the coupon 

frequency). This action is repeated until we have reached the expiration date of the 

convertible bond, since no coupon date can be greater than the expiration date. The 

coupon cash flows are then calculated based on the face amount. The calculations are 

summarized in the following three equations. Division by 100 in equation (4.1.6) is 

required only in the case that the coupon rate r cm is quoted as a percentage. 

For each coupon date greater than the calculations date, the time parameters are 

calculated based on equations (4.1.7) to (4.1.10). 

tc1,Cpn = ta,Cpn ta,CD 	ta,Cpn > ta,CD 0 	< ncpn  

td,Cpn 
1- Fim  = 	

ta,Cpn > ta,CD 0 ▪ < ncpn  

NumDaysPerYear 

1.1,cpn = ta ,ED e,Cpn 	ta,Cpn > ta,CD 0 	< ncpn  

d,Cpn 
TCpn = 	Zi 	ta,Cpn > ta,CD 0  ▪ < ncpn  

NumDaysPerYear 

(Eq.4.1.7) 

(Eq.4.1.8) 

(Eq.4.1.9) 

(Eq.4.1.10) 
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Call Schedule 

Inputs to the CB Pricing Frameworks 

  

A call schedule with nes  distinct call periods is represented by the matrix 

sc € 5i6xne5 which is made of six fields (columns): 

c (1) The call values field vcs  = L s 	nes  —1 • 

(2) The starting dates field ta' SD.CS 
 = fa,SD,CS 

(3) The ending dates field ta'ED'cs a,ED,CS 
'i=0,1,2,...,nes  —1 }* 

(4) The triggers (conditions) field ccs  = f,cs 
c-0,1,2,...,n„ 

d C (5) The grace periods (in number of days) field wd,CS = {w,_01 2 ..... nes  —11.  

(6) The field with the additional flags for the conditions y
CS 
 {)1CSO ,1,2  ti ff  -I }' 

For the purposes of this thesis, the default type of calls is the American type since 

European type of calls are a more simplistic case and can be easily dealt within a 

framework already supporting American type of calls. An American type of call with a 

call value vics  is consider to be active (valid) during the period starting from the date 

tra,CS,SD to the date ta'
CS,ED , which in most cases is just the day before the next call date 

t ,̀1;ics  . In other words, a call value vics  is consider to be active for the period 

ta,CS,SD < to < taT.S.SD Usually , the last call is active for the period ta,CS,SD < .a < 
t 

a,ED 
n(s-1 	, 

and, in this way, its active period ends just before the maturity of the instrument, i.e. 
ta,CS ,EDD 

= ta'ED —1  • 

CS 	 CS 	
Ci

CS 	 CS 
 Co 	Cl C.+1  

CS 
CC  nes —2 	ncs —1  

ti  
a CS SD 

to  
,a CS SD  a,CS SD 

ti+1  
ta,CS.SD 
ncs —2  

a CS SD 
Ines -1  

CS 
Vncs  _2  vCS 

nes  —1 

to 
ID t.a,CD 	 ta,ED 

Figure (4.3) 
The Conditional Call Schedule 
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The following relationships hold. 
Ca, S,SD 	a,ID 	a CS ED 	ci,ED 

t o 	> t 	t 	< t ncs -1 

t a,CS,SD <ta,CS,ED ,0<i<ncs 

t a,CS,SD > fa,CS,ED 	
1  < n  
• 

i -1 	 CS 

(Eq.4.1.11) 

(Eq.4.1.12) 

(Eq.4.1.13) 

For each starting and ending call date greater than the calculations date, i.e. 
t a.CS,SD > ta,CD and t a' C  

S,ED > ta,CD respectively, the time parameters are calculated 

based on the following equations. 
d CS SD t  Ca, S,SD t a,CD 

	

CS
'
SD 

= 	
t"i 	 = 	 (Eq.4.1.14) 

NumDaysPerYear NumDaysPerYear 

d,CS,SD 	 t a,ED t a,CS,SD 

	

cs' SD = 	  (Eq.4.1.15) 
NumDaysPerYear NumDaysPerYear 

t d CS ED 	 e ,c5,ED _ ta,CD 
CS ED 

	

= 	 = 	 (Eq.4.1.16) 
NumDaysPerYear NumDaysPerYear 

CS,ED = 	  (Eq.4.1.17) 
NumDaysPerYear NumDaysPerYear 

A call event can either take place conditionally or unconditionally. In the case of an 

unconditional call, the issuer will have the right to accelerate the redemption of the 

bond within the specified call period and at the specific call value. However, in the 

case of a conditional call, the issuer's right for early redemption exist only if a 

condition is satisfied. For the case of convertible bonds, a condition on a call would be 

that the price of the underlying share exceeds a level for a number of consequent days; 

this number of days is commonly referred to as the grace period. 

The share price level which is used in the condition for determining whether the issuer 

can call the bond is defined as a percentage of the strike. Consider the example where 

there is a call value vrcs  equal to 102, a condition value ccs  equal to 115 and a grace 

period Wd ' CS  equal to 20. For this example, the convertible bond can be called at the 

price of 102% of its face value, given that the underlying share price has exceeded the 

level of 115% of the strike for 20 consequent days. 
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The last column of the call schedule contains a flag which is useful for the cases of 

convertible bonds with a reset schedule. Because in these cases the strike can change 

during the life of the convertible bond, it needs to be specified whether the level for 

determining the level of the trigger must be applied on the prevailing strike or on the 

initial strike (as it was defined on the issue date of the convertible bond). 

Put Schedule 

The Put Schedule has been defined in the same fashion as the call schedule. A put 

schedule with nps  distinct put periods is represented by the matrix C PS  E 916"Ps which 

is made of six fields (columns): 

(1) The put values field VPS = 	 —11' 

= ftti, 0SD,,,2PS nrs _11.  (2) The starting dates field ta  ' SD  ' PS  

I a , ED, PS f  (3) The ending dates field ta D  ' PS  —1 }* 

f (4) The triggers (conditions) field c PS  = 1CiP=0S  
12.. np,5  —11' 

(5) The grace periods (in number of days) field wd , PS  
w1

d , 
=0 

P
,1
S  

2 ..n ps  —11' 

PS 	f PS (6) The field with the additional flags for the conditions y = 1,2, . vs  —11* 

PS 	 PS 
V0  

••••? 

PS 	PS 	 PS 	 PS 

	

V i+1 	 V n ps 	V n  
	  •••• I 	  

 

a , 1PS ,SD ta , PS ,SD 
n Ns —2  

ta , PS, SD 
n 

ta , PS ,SD 	t a , PS ,SD 	 ta, PS ,SD o   

to 
ID ta,CD 	 a ED 

Figure (4.4) 
The Put Schedule 

The periods for the puts have been defined in exactly the same fashion as for the call 

schedule, and these are calculated based on equations (14.1.18) to (14.1.24). 
,a,PS ,SD f a ,ID 	f a PS ,ED 	ta , ED (Eq.4.1.18) 

6  nrs. 
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ta,PS,SD < to,PS,ED ,Oi<nps 	 (Eq.4.1.19) 

a,PS.SDa,PS,ED 	< < n  > ti _i 	, 	PS (Eq.4.1.20) 

The following equations hold for each starting and ending put date greater than the 

calculations date, i.e. t > ta,CD and  tia,PS,ED > ta,CD respectively. 

d PS" SD 	 ta,PS,SD t a,CD 
tiPS,SD 	ti  

(Eq.4.1.21) 
NumDaysPerYear NumDaysPerYear 

r ps,sr, = d S.P ,SD 	 ta,ED _ tla,PS,SD 

(Eq.4.1.22) 
NumDaysPerYear • NumDaysPerYear 

t PSED t a,PS,ED ta,CD 
PS

'
ED 

= 	

d 
i" 

(Eq.4.1.23) 
NumDaysPerYear • NumDaysPerYear 

PS,ED = 	ri '  ' r, 	 (Eq.4.1.24) 
NumDaysPerYear • NumDaysPerYear 

Even though the conditionality feature encountered in call schedules, no conditionality 

is encountered in put schedules. However, we have included, or actually introduced, a 

form of conditionality in the put schedule used in this thesis. This conditionality 

almost mimics the conditionality included in the call schedule. The only difference is 

in the triggering condition which has been reversed. A condition on a put depicts that 

the price of the underlying share is lower (instead of higher like in the case of a 

conditional call) than a level for the grace period. So, both conditional and 

unconditional puts are allowed in the put schedule. 

Resets Schedule 

Another structure that could be included in the contract information of a convertible 

bond is the Reset Schedule. A reset schedule with ngs  distinct reset dates is 

represented by the matrix C Rs  E 9i5" which is made of five fields. 

(1) The reset dates field ta'RS =tt1a,R5 
'0,1,2 	n R -11* 

lower, (2) The lower reset limits field vlower,RS = 
Pi=0,1, 

RS  
2, ,n —11 

ipper,R5 = tvtyper,RS (3) The upper reset limits field vt  1012, n Rs —1 • 
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d PS ED 	 ta,ED _ ta,PS,ED 



, 0 	i < nRs  

tic3r,RS,SD > ta,ID 	ta,RS < ta,ED 
n RS I 

ta,RS > ta,RS i< l < M RS 
upper,RSlower,RS 

> Vi  

(Eq.4.1.25) 

(Eq.4.1.26) 

(Eq.4.1.27) 

tr
RS 

= 	  
NumDaysPerYear NumDaysPerYear 

d RS 	 ta,RS ta,CD 
(Eq.4.1.28) 

Chapter 4 	 Inputs to the CB Pricing Frameworks 

(4) The number of days for averaging field wd'R'S = f
" 

r ,d,RS 
=01.2 .nRs  —11' 

= ty,R=s0,1,2, ,nRs  1. (5) The field with the additional flags for the conditions yiRS 

upper,RS 	upper,RS 	 upper,RS 	upper,RS 	 vupper,RS 	upper,RS 
V0 	 Vi+1 nRs  —2 	V nRs _i  

lower,RS 	lower,RS 	 lower,RS 	lower,RS 	 lower,RS 	lower,RS Vo 	 Vi+1 	 VnRs_2 	
v 

nRS 

a RS 
t' o  ta,RS 	 ta,RS 

      

      

tiu.+:1RS a RS tit'Rs —2 
a RS 

tnns —1 

      

to ID 	 ta,CD 	
t
a
'

ED 

Figure (4.5) 
The Reset Schedule 

The following equations include the relationships that must hold in order to include a 

reset schedule in the calculations. 

The following time parameters are calculated for each reset date greater than the 

calculations date, i.e. ta, RS > ta,CD 

R S = 
rd,RS 	 ta,ED _ ta,RS 

(Eq.4.1.29) 
NumDaysPerYear NumDaysPerYear 

A reset with the set of parameters ftra'RS ,Vilower,RS 
,V

upper,RS  ,Wd,RS 
 y,RS  I can take place only 

the date 1-a' Rs . The flag yiRS  determines whether the initial strike (defined on the 

issued date) or the prevailing strike will be used as reference for determining the new 

strike on the date tia' RS  . Whichever is the case, we refer to the chosen strike as K' . 

The strike resets to a new value K" based on the average share price over the last 
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,CDS a,CDS 
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aCDS  
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d RS 
IV' 	number of days and this average is denoted as S 	. The rules for defining the 

new strike K" are summarised by the following equations. 
lower .RS 	 vapper,RS 

K = S 'RS 	
Vi 	

x 
 	K < 1 i  S '' RS  < 	 

100 	 100 
x K 

	

V 	 vupper,RS 	 upper,RS =i  — i K 	x K 	S t:''RS  > 	 

	

100 	 100 
x K 

 

	

lower, 	- 	vlower,RS 

	

= Vi 	x K
, 

S ,9,Rs < 	x K
, 

K  

	

100 	 , 100 

(Eq.4.1.30) 

4.2. Inputs based on Market Information 

The rest of the inputs to the pricing framework of a convertible bond are market based 

information. The share price on the calculations date which is denoted as S cl)  and 

the continuous dividend yield which is denoted as eiv  and expressed as an annual 

percentage of the stock price, are both two standard inputs to the convertible bond 

pricing framework. As an alternative, we also allow for a continuous dividend yield 

term structure to be input in the framework. A continuous dividend yield term 

structure with ncys  distinct sets of parameters is represented by the matrix 

CcCDS ••,--,2xn 	 a,CDS fa.CD01 S `I's  which is made of two fields, the dates field t 	= t_ 	and —1  

CDS { cos the continuous dividend yield values field q 	— a — .L/=0,1,2, „N ib -11' 

CDS 	CDS 
q0 	I  q1 

  

CDS 	CDS 	 CDS 	CDS 
qi 	I 	Vi+1 

•••• I 	
ncas —2 qncns —1  

► OP. O. • • • • 

 

 

  

tu.4,1CDS 
ti + 

 
to  ta,CDS 

n CDS -2 	`ncos  -1 

ta,CD = ta,CDS 	 ta,ED o   

Figure (4.6) The Continuous Dividend Yield Term Structure 

a CDS a.CDS ) • A continuous dividend yield qiCDS  corresponds to the time period k 	,ti+1 	. i.e. 

from the date and including the date t:i' CDS  up to the date and excluding the date ti  +, jcps 
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In the case of the last continuous dividend yield nc,D„  ss _1  in the term structure, this yield 

is valid indefinitely from the date and including the date t"'en3CDS, In addition, the n 

relationships shown in equations (4.2.1) and (4.2.2) must hold and the respective time 

parameters are calculated for the corresponding dates based on equation (4.2.3). 

CDS 
ti 	= 

toa,DDS = ta,CD 

ta.CDS > ta f DS 

tld,CDS 

9  

= 

1 	i  < nCDS 

ta,CDS — ta,CD 

(Eq.4.2.1) 

(Eq.4.2.2) 

(Eq.4.2.3) 
NumDaysPerYear NumDaysPerYear 

However, in some cases, instead of the continuous dividend yield, a discrete dividends 

structure is used. The discrete dividends structure with nms  distinct dividend dates is 

represented by the matrix CDDs 2xnp„s  which is made of two fields, the dates field 

,a,DDS tf
i=
a,DDS 	 and the cash values DDS 

	
DDS = , 0,1,2, ,n -1 	 q 	= 

{ 
V1= to be received as 0,1,2 	 ADDS-1 

dividends on the respective dates. 

DDS 	DDS 	 DDS 	,DDS 
q0 	ql 	 qi 	 qi+1 

 

DDS 
gnms -2  

DDS 
qnDDS 

 

I 	 I 	 I 

to 	 t1DDS 	tia DDS 	 ta,DDS tai,TDS 

	

ta,DDS 	
to 

DDS  

	

DDS -2 	n DAS -1  

a CD to ED 

Figure (4.7) 
The Discrete Dividends Schedule (Term Structure) 

In the case of a dual currency convertible bond, the exchange rate between the bond 

currency and the equity currency on the calculations date is an additional and required 

input and is denoted as X tb=ce,,, . In general, the exchange rate for translating units from 

b ye  the bond currency to the equity currency is denoted as X , while the exchange rate 

for translating units from the equity currency to the bond currency is denoted as )W b  

For any point in time, the following equation holds. 

xible  XXi=1  lb 
	 (Eq.4.2.4) 
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The volatility of the underlying stock, which will be used for referring to the standard 

deviation of the logarithmic returns of the underlying stock, will be denoted as us  . 

This is a significant input parameter to the pricing framework since, as it was pointed 

out in the previous section, it summarises the view of the market on the future 

probability distribution of the returns of the underlying stock. Instead of a single 

volatility parameter, a volatility term structure can also be used. A volatility term 

structure with nvs  distinct sets of parameters is represented by the matrix Cvs ate 2xnvs 

which is made of two fields, the dates field ta' vs  = f a ,VS 
,nvs  —1 and the volatility 

values field ays  = 
fr 

 VS0 1,2, ,ri vs —11* The volatilities are expressed as percentages. An 

input volatility value equal to 40 corresponds to 40%. 

A volatility value oivs   corresponds to the implied volatility of an option on the 

underlying stock expiring on the date t"I' vs  . In addition, the relationships shown in 

equations (4.2.5) and (4.2.6) must hold and the respective time parameters are 

calculated for the corresponding dates based on equation (4.2.7). 
toa,vs = ta,CD 

ta,VS 72.,> ta,VS 	, 15i< nvs  

tVS 	t d VS 	 ta,VS 	ta,CD =  
NumDaysPerYear NumDaysPerYear 

(Eq.4.2.5) 

(Eq.4.2.6) 

(Eq.4.2.7) 

VS 
anvs -1  

ta,VS 
nvs -1- ta,ED ta,CD 

tic,VS 7 1)   a VS ta,VS 

Figure (4.8) : The Volatility Term Structure 
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Discount Factors Curves (General) 

It was preferred to input the discount factors instead of inputting the corresponding 

interest rates because, in this way, it was avoided the need for defining which market 

convention for discounting has been used in the derivation of the rates. The approach 

here is to input the discount factors and calculate the corresponding annual continuous 

rates. 

Three discount factors curves were employed in the calculations: 

The Risk-Free Discount Facatto2rxs curve in the Bond (Domestic) currency 

which is denoted as C RFb  E 

,

RThis is actually the discount factors 

curve that was calculated in the previous chapter based on the swap 

market prices of the GBP currency. We will refer to this curve as the 

risk-free curve in the domestic currency, even though there is 

embedded risk in the swap market. 

(ii) The Risk-Free Discount Factors curve in the Equity (Foreign) currency 

which is denoted as CRFe This discount factors curve was 912xnR, 

calculated based on the derived zero-coupon rates curve of the dummy 

currency introduced in the previous chapter as the Equity (Foreign) 

currency. 

(iii) The Risky Discount Factors curve in the Bond (Domestic) currency 

which is denoted as C Risk)DF e 	This is an abstract curve 

introduced as the discount factors curve used for discounting cash flows 

of the corporate that issued the abstract convertible bond employed in 

the calculations presented in the following chapters. The corporate 

curve is considered more risky than the swap market based curve, 

hence we denote the corporate curve as the Risky Discount Factors 

curve. 

Before proceeding in defining each of the required discount factors curves, some 

definitions and conditions which are accountable for all the employed discount factors 

curves, are outlined in order to avoid repetition. 
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All the dates must be in ascending order. 
ta,DF > tia,1DF 	, 1 	< nDF 

All the discount factors must be in descending order. 
d~DF < diDc 	, << n - DF 
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Let us consider a general discount factor curve that is similar in structure to the three 

discount factors curves used in the calculations. This curve has nDF distinct sets of 

parameters and is represented by the matrix C DF E 
9 2xn„F which is made of two 

fields, the dates field ta'DF =Itia,0DF12,.. and the discount factors field —1 

dDF 
= a DF f.DF 

i012,...,n„-J. A discount factor diDF is used for discounting cash flows from 

the date tia' DF to the calculations date ta' cD 

,o a DF 	,a DF t 
to CD 	

11 
ta,DF ,

i+1
a,DF l 

to ED 

ta,DF 
`nDE -1 

Figure (4.9): The Risk Free Discount Factors Curve 

The following relationships must hold for a given discount factors curve: 

(i) The first date is greater than the calculations date. This means that the 

zero-tenor rates and discount factors introduced in the previous chapter for the two 

calculated curves, which are the Bond and Equity curves, are not included in the 

structures of the two curves as presented here. 
tou,DF > ta,CD 	 (Eq.4.2.7) 

(ii) The first discount factor is a positive quantity that is equal to or smaller 

than 1 and the last included discount factor is greater than zero. 
doDF <1 

dDF >0 n DE 

(Eq.4.2.8) 

(Eq.4.2.9) 

(Eq.4.2.10) 

(Eq.4.2.11) 
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The following quantities are also calculated based on an input discount factor curve: 
d DF 	

to 
,DF ta.DF 

t
DF 

= 	
t 

NumDaysPerYear NumDaysPerYear 

DF 
= 

ln(di
F 

ti

DDF  
, 0 

(Eq.4.2.11) 

(Eq.4.2.12) 

At this point, we can introduce the notation specifically to each of the discount factors 

curve and the correspondence of the specific parameters of each curve to the general 

case presented above. 

Risk-Free Discount Factors Curve for the Bond (Domestic) Currency 

gi  

A risk-free discount factors curve of the Bond Currency with n RFb  distinct sets of 

parameters is represented by the matrix C RFb e 2xn„Fb which is made of two fields, the 

dates field ta' R  Fb = {t ia , 0RF1 b2,  
.1 2 RFb —1 } — and the discount factors field d RFb = Id RFb 

(4  t =0,1,2 	n RI b 11 

	

d,RFb Id RFb 	 RFb 	RFb The two sets of time parameters t 	= ti=  '0 1 2 	„. 	 = {, _11 and t 	,i=0,1,2,...,n RI b —1 }  are ,, 

calculated based on equation (4.2.11) and the set of the rate parameters 
RR, {RFb 

r 	ri=o 1 2 	1 } is calculated based on equation (4.2.12). 

Risk-Free Discount Factors Curve for the Equity (Foreign) Currency  

A risk-free discount factors curve of the Equity Currency with n RFe  distinct sets of 

—RFe parameters is represented by the matrix 	912xnRF' which is made of two fields, the 

dates field tel,RFe = fta' RFe 	and the discount factors field d RFe 	RFe 
"i=0,1,2, .,nRFe  —11' 

RFe 

	

d ,RFe Id RFe 	 RFe The two sets of time parameters t 	= t. =012 ,...,n —I 	and t 	=
{ 	

-- ti=0,1,2,...,nRF,1 / are 

calculated based on equation (4.2.11) and the set of the rate parameters 

r RFe 
= {i;

RFe 
,2,, n e  —1 is calculated based on equation (4.2.12). =0,1  

Risky Discount Factors Curve for the Bond (Domestic) Currency 

A risky discount factors curve of the Bond Currency with nR,,kIDF  distinct sets of 

parameters is represented by the matrix C Risk)DF 	 which is made of two 
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fields, the dates field ta'ffiskYDF =Itit
.i,oRiiskrFn 	

and the discount factors field 
R, 

2 	 AIDE 

RiskyDF = RiskyDF 
i=0,1,2,....n, ,„ 	The two sets of time parameters td 'RiskY

DF 	{td,RiskyDF 
'i-°,1-i••••,nftiskyDE —I 

and t 
RiskvDF tRiskyDF 

- 	= t • - 	 are calculated based on equation (4.2.11) and the set of 0.1,2 	 

the rate parameters r
Ri skyD F = Risks'DF 	

,DF _ i } is calculated based on equation (4. 2.12). i=0,1,2,....n 

The 	set of risky rates r
RiskyDF ,Interp 	RiskyDF Interp 

— r 	' 	corresponding to the dates i=o,1,2,...,nRn 

• ,RFh
= 

{f a RFb 	
1 } of the risk-free discount factors curve can be established by ,rtim 

interpolating on the risky rates rRIrk yDF = Risk 
r1=0,1

yDF 
2 	1 which correspond to the dates 

R• iskyDFR'skyDF 
= 1 'i-0,1,2 	nR~sx  0, —1 } The default interpolation technique is the cubic splines 

RiskyDF,Interp {,RiskyDF,Itzterp 
method. Based on the last set of risky rates r and the set of 

= 
	i i=0,1,2,...,n b —1 

risk-free rates r RFb
= r 

RFb 
e =0,I,2,•••, t1R,b -1 1, the set of spreads s

RiskyDF = fc,.RiskyDF 
b —1} can be 

calculated as shown by the following equation. This set of spreads is the spread 

structure of the corporate that have issued the convertible bond used in the calculations 

and is over the zero-coupon rates of GBP swap market which was calculated in the 

previous section. 

RiskyDF 	RiskyDF,Interp 	RFh 
Si 	= r,. 	 — r re i = 0,1,2,..., nRFb — 1 	 (Eq.4.2.13) 

Imported Credit Spread Structure 

Information regarding the credit standards of the issuer is required for pricing 

purposes. The credit of the issuer will affect the discounting process of the cash flows 

and instrument values. There are three ways that this information can be input in the 

pricing frameworks presented in this thesis. Based on the first way, the credit spread 

can be simply considered as a constant spread over the risk-free rate and represented 

by the variable S b . The second way which has already presented above when the 

discount factors curves were defined, involves employing the risky discount factors 
curve and calculating the corresponding risky rates. Then, based on the risky rates and 
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the risk-free rates, the credit spread structure can be calculated based on equation 

(4.2.13). 

Finally, based on the third way, a function for the credit spread in the form of a curve 

structure can be imported directly and used to calculate the risky rates. A credit spread 

structure with n distinct sets of parameters is represented by the matrix 
s, pread E  3t2xn which is made of two fields, the dates field ta,spread = ffa,spread 	

1 and =0,1,2,...,n-1 

the credit spread values field spread {,spread 
J i=0 1 2 	11' The credit spread values are 

expressed as percentages. An input credit spread value equal to 1.2 corresponds to 

1.2%. A credit spread value spread is used in discounting cash flows from the date 

ipspread to the calculations date t"' CD  

spread 
"spread 4 ,spread oi+1  spread Si  4 spread sl spread so  

to 

a t' CD 	o  RFb 
ti 

to ta ED 	`i+1 
ta,spread ta„spread 

nwread 

Figure (B.11) : The Credit Spread Structure 

The default method for defining the credit spread structure in the following chapters 

will be based on the risky discount factors curve and the corresponding risky rates, as 

shown in equation (4.2.13). 
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CHAPTER 5 

STEP DATES 

The choice of the dates corresponding to the steps of the trees used in the pricing 

frameworks of this thesis was of significant importance for the methodology 

developed. First of all, the chosen step dates are a determining factor for the sampling 

quality of the trees. In addition, the presence of many "events" in the pricing of the 

convertible bonds pre-determines a number of dates that need to be included in the 

tree. "Events" is a term used in this thesis for referring to coupon dates, call dates, etc 

and is further defined later on in this chapter. 

Even though the number of steps to be used in the calculations is an input parameter 

and is denoted as Ninp„„ this is only an initial estimate of the number of steps to be 

used, or, stated more correct, this is just the origin in the process for determining the 

final number of steps N and the respective final step dates. In this chapter, it is 

demonstrated how this number N inp„, is redefined and the processes it goes through in 

order to get to its final value N . 

The remaining part of this chapter is devoted to the presentation of the calculations for 

obtaining the values of various parameters at the tree nodes, like the forward rates, 

forward volatilities, the bond floor, etc. 

Overview of the process for defining N 

The first two sections of this chapter are devoted to this process. In the first section, 

using the input parameter N ,np„, as an origin, an initial estimate of the number of steps 

denoted as N eq„iiy  is defined through a process that aims in improving the sampling 

quality resulting from the chosen step dates. In the second section, an additional 
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number of dates are included in order to account for the event dates. At the end of the 

process in the second section, there is an additional short procedure for adding some 

more steps which we will refer to as the intermediate steps. This short procedure aims 

in improving the sampling quality when the initial number of steps Ninp„, exceeded 

the number of days to expiration. The result of the overall process of the two sections 

is the final number of steps N . 

5.1. Basic Step Dates 

First of all, the number of days n daysToED  to the expiration date is established. 

ndaysToED = 
ta'ED ta'CD 	 (Eq.5.1.1) 

The number of steps Ne*q„ity  represents an initial estimate of the final number of steps 

Arel„,ty  of this section — not the final number of steps N - and is calculated as follows: 

NE, 	= 2 N ...quit) 	, 	input 

* N =N Equity 	input l< N <n input — daysToED (Eq.5.1.2) 

* N Equity = ndaysToED 	ndaysToED < N input 

Then the time step td  ' equifY  between two steps on the tree is calculated. The result 

At d'equilY of equation (5.1.3) can only be an integer number of days since the floor 

value of the division is used. In addition, the value Atd' equitY can not be smaller than 

one because in equation (5.1.2) the value Ne*q„ity, was set equal to ndaysToED if N  e gully 

last was smaller than ndaysToED • The value Atd' E '''*  is set as shown in equation (5.1.4). 

This value is actually the reminder of the division in equation (5.1.3) and is used to 

determine the date of the last step in such a way as to coincide with the expiration 

date. The floor function rounds down to the closest integer value. 

j(  -* At  d ,Equity 	floor ndaysToED 

N Equity,  

  

 

(Eq.5.1.3) 

(Eq.5.1.4) 

 

At d Eq"it)  = n 	— N* 	x Atd  ' Eq"itY  daysToED last 	 Equity 
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The actual new estimate of the steps on the tree as determined up to this point is 

denoted as Ne,„10  and is defined based on the following equations. 

N** 	= N* At d' Eq"it)'*  = 0 Equip 	Equitylast 
(Eq.5.1.5) 

N** 	=N*  +1, Atd 	> 0 Equity 	Equity 	 last 

However, for many cases, the process up to this point results in step dates that are very 

unevenly distributed over the time line starting from the calculation date and ending 

with the expiration date. Let us consider an example where the number of days to 

expiration ndalsToED is equal to 705 and the original number of steps N inp  „t  is equal to 

300. Based on equation (5.1.2), the value Nelpi, will also be equal to 300. The 

calculated time step At d  ' eq"a' is found to be equal to 2 based on equation (5.1.3) and 

the time step Atid,;:q""Y''' is found to be equal to 105 based on equation (5.1.4). This 

means that the first 300 steps will be evenly spaced over the first 600 days of the life 

of the security and for the last 105 days of the life of the security their will not be 

included any steps in the calculations apart from the last step corresponding to the 

maturity. 

To overcome this problem, the procedures corresponding to the following equations 

have been introduced. We are also introducing the new time steps AtIdc;Equih'  , At2d 'Eq"lt)  

and At/da'sEt quit)  , the factor M and the number of steps Neq„,,,, .1, and N,2nd' There are equih'

two possible paths in the calculations at this point, distinguished into cases A and B. 

For the cases where the last time step is greater than the rest of the time steps by more 

than two times, the calculations are carried based on case B, otherwise the calculations 

are carried out based on case A. 

Case A: Atd' Eq"ifY'*  < 2 x At d' eq"i"'  last 

Atids;EquilY  = At d  ' equitY  

Atd' E""itY  — 0 2nd — 

Atd  ' Equkv  = At d 	.* last 	last 

N  equity,lst = N  E quity 

N  equity,2ncl = 

(Eq.5.1.6) 
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The ceil function rounds up to the closest integer value. 

Case B : Atd' Eq"itY'*  > 2 x At d  ' eq"itY  last 

M =1 + Atd xquitY 

At i ;EquitY = At d  ' equitY  l.s

A d , Equi ty 
2nd 	M x Atd .E""itY  1 st (Eq.5.1.7) 

 

(AT* 	A f c , Equity ( 
" Equity '2nd 	)— ndaysToED  Nequity,lst = ceil 

 

(M — 1) x At d qui tY  

 

   

* Nequity ,2nd = NE  tv Nequity,ist 

At d  'EquitY =
d , Equity 	 AX td Eq"itY  last 	nthivsmEn — [(AT 	x Ati,„ equity ,lst 	 )+ ( N  equity ,2nd 	2nd 

The total number of steps N e vin, (including the maturity) up to this point — this means 

without the dates that will be added in the next section - is calculated as follows. 

N equity = (N equity,lst x Atids;Eq"itY )± (AT amity ,2nd x A t2d,;dEqun) 	Atida;Et g"i' = 0 
(Eq.5.1.8) 

For the example with the number of days to expiration nclaysToED equal to 705 and the 

original number of steps Ninp„r  equal to 300, the case B would be applicable. The 

resultant number of steps and time steps would be as follows: Atids;EquuY = 2 

Atd 'Eq"itY = 6A td  Eq"itY =1 N 	= 274 and Nequit y,2nd = 26 . This means that for 26 2nd 	, 	last 	 equity ,1st 

steps, the time step between them has been increased from 2 days to 6 days and as a 

result the last time step has been decreased from 105 days to 1 day. This example has 

demonstrated the benefit of including the procedures corresponding to case B above. 

Depending on whether the parameter A/elJury 2nd is equal to zero or not, the respective ,  

step dates ta,Equifysteps = Ja ,EgnitySteps / are calculated based on one of cases A and B. i=0,1,2,...,N r.q„,,, 

Case A: = 0 NNur.ty ,2nd 

  

 

toa,EquitySteps ta,CD 

t  a ,EquaySteps, r 	 i  q uitySteps At d ;Equity , 1 	i < N Eq„ity  —1 

(Eq.5.1.9) 

(Eq.5.1.10) 
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a,EquitySteps 
= t

a,CD 
to 

ta,EquitSteps 
i-1 

ita,EquityStepsI  

At d  ' EquitY  1st 

A 
d  ' Equkv  2nd 

Chapter 5 	 Step Dates 

ta,EquitySteps = ta,EquitySteps ± A  f d , Equity 
N Equity 	 N Equity-1 	 1st 

ta,EquitySteps — ta,EquitySteps 	A , Equity 
N Emily 	N Equitv-1 	last 

,if Atd' EmitY =0 last 

,if At d  ' E""itY  > 0 last 

(Eq.5.1.11) 

Case B: Nequity ,2nd >0  

A d, Equity 
'2nd 

At d  ' EquitY  last 

t; 
 a,EquitySteps 

t ia,EquitySteps 

t  a, EquitySteps 
N Equity 

t  a ,EquitySteps 
N Eclairs 

= ta,EquitySteps 
NEquity-1 

= ta,EquitySteps 
NEquiry-1 

, 1 5  l 5 N Egnits,1st 

, 15 i < N Eq„ity —1 

,if AtId;stE" itY  = 0 

,if Atld;sEt "" itY > 

(Eq.5.1.12) 

(Eq.5.1.13) 

(Eq.5.1.14) 

(Eq.5.1.15) 

The above calculations, in both cases A and B, take into account the case where the 

last time step is not equal to the time step used in the rest of the steps, but it is equal 

to Atiaa'E
quity . 

So, care has been taken for ensuring that the procedures up to this point 

will result in a last step date that is equal to the expiration date ( t N
a,EqilY

'
Steps = tED 

)
. 
The E   

a,Equirysteps = ia,EquitySteps 	. 
Is 

 
equity dates vector t 	 also shown diagrammatically in the 1=0,1,2, 	 s ,q,„„ 

following figure in the case that Are ,2nd is equal to zero. If it is not equal to zero, it 

means that some of the time steps are not equal to Atidc;Eq"itY  , but are equal to At 2di;dEq"itY  

instead. 

Atlaa,sEt quity 

or Ata,',Equ'Y i   

t1
a
s
,
t
Eq„ity 	A

tl
a
s
,
t
Eq„ity 

,a,EquitySteps 4a ,Ecp itySteps 
11 	 t2  

Atfic;EquitY  

1_,EquirySteps 	 f a,Eqt itySteps 

At ia  ' EquitS  

1.4 

	
1st 

ta,EquitySteps ta,EquaySteps 
N Equity —2 	N &pin" —I  

ta,EquitySteps ta,ED 
N  Equity — 

ta,EquitySteps = ta,CD 

Figure (5.1) : The Equity Steps Dates 

66/188 
Implementing Arbitrage-Free Models 	 CQF, Imperial College 
for Pricing Convertible Bonds 	 Michalis Simillis, 2004 



Chapter 5 

5.2. Additional Step Dates 

Step Dates 

  

At this point, a number of steps dates have been specified based on the input required 

number of steps. This forms the minimum number of steps to include in the tree. 

However, there is still the possibility that some event dates have not been included in 

the steps of the tree. It is desirable to have steps on the event dates since most of the 

types of events, like discrete dividends and coupons, introduce discontinuities in the 

pricing process. Since one of the reasons that the trinomial tree implementation was 

chosen over the binomial tree implementation was the benefit of having a variable 

time step, it is reasonable to introduce additional steps to include any event dates that 

are not already included in the equity steps. 

The following dates qualify as event dates: 

(1) Coupon Dates. 

(2) Discrete Dividends Dates. 

(3) Call Dates (Starting and Ending Dates). 

(4) Dates of which the stock price is included in the grace period for 

conditional calls. 

(5) Put Dates (Starting and Ending Dates). 

(6) Dates of which the stock price is included in the grace period for 

conditional puts. 

(7) Reset Dates. 

(8) Dates of which the stock price is included in the averaging process for 

the resets. 

(9) The last conversion date ta' Lastc"v. 

The algorithm goes through all the event dates and adds a step date for each event date 

not already included in the steps dates. The final number of steps dates is denoted as 

N and the final steps dates are denoted as t a' sh's  = 	N„ }. 

In figure (5.2), there is a diagrammatically description of an example where there are 

Namio, steps defined based on the input required number of steps Nmp„, and by 
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following the procedures of section (5.1). However, there is a number of event dates, 

hence more steps dates have been included in the final steps dates as depicted by the 

procedures presented in this section. The first line of the figure includes the initial step 

dates as resulted for this example based on the procedures of section (5.1), the second 

line includes the events dates and the third includes the final step dates. 

For the event dates that were coinciding with any of the initial steps dates 

t
a,EquitySteps

— 
 ia,EquitySteps 	there was no need to include extra steps. In more detail, i=0,1,2 ..... o,„„. 

the 	final steps ta,Steps = 1, a,Steps '4=0,2,6,8,10,12,14,15 correspond to the initial step dates 

t
a,EquitySteps =ia,EquitySteps }. The final dates ta'srePs = fi

-
7 
„ 

a,i,3  steps 8 11 
 ,13} where included t   

because of the event dates, like, for example, step date t3' StePs  was added because of 

the event date toa 'cs's°  which is a staring call date. No extra dates were required for the 

cases of the event dates to'cPn  , toa,RS  and t2' DDS  since corresponding dates are already 

included in the initial steps dates. For example, to'cPn  is equal to the initial step date 

ia,EquitySteps so there is no need to add another step date. '2 

toa,EquaySteps — t  a,CD 
a,EptitySteps 	a,ED t A rq,,,t,  .8 	— t 

„a E, 	quitySteps 
tl 

Atlas;Eq"itY Atl"st 

tc;,EquitySteps 

3  1 

1stEquitY 	
At a, Equity 

tc,EquitySteps 
4 

Atia,tEquity s  

7 
 

,a,EquitySteps 

5  

A t  a,Equity 
It'ist 

ta,EquitySteps 
' 6 

A  ta,Equity 
1st— 

,a,EquitySteps 

At1 a E 
ui , 

s  ; q I)  

t a,EquitySteps 

4 —110  4 	Ifr 

f a , DDS 
a,CD 	'0 1 

1 t  a ,CS 
1 40 

,SD 	t  a ,cPn 
`0 
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'0 1 
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I 	`1 tia ,cp,, 

I  
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1 	`2 
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 I 	1 
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Figure (5.2) : Establishing the final steps dates 

68/188 
Implementing Arbitrage-Free Models 

	 CQF, Imperial College 
for Pricing Convertible Bonds 

	 Michalis Simillis, 2004 

eps 
15 



Chapter 5 	 Step Dates 

Intermediate Steps 

Up to this point, steps have been included by permitting time steps with size only an 

integer number of days greater than or equal to zero. In other words, no allowance was 

made for time steps smaller than one day length. In this thesis, the term intermediate 

steps will be used for the additional steps added between the dates ta.c°  and ta'c°  +1. 

These additional steps are included only in two cases as described next and the time 

step between them is smaller than one. 

In the first case, intermediate steps are added because the final number of steps N*  is 

not smaller than the initially required number of steps N inp„t  . This would most 

probably be the case where ndma,„ED  < N inp„, . In this case, the temporary number of 

additional steps is referred to as Nfrrm and is simply calculated as follows. 

N Int rni 	0 , 1st 	 N*  N input 

N
Interm = 	

— 
N* 	m.  

1st 	input 	 " znput 

(Eq.5.1.16) 

One of the inputs to the pricing frameworks is the minimum number of steps 

N  MtnFtrstEvent before the first event date. For example, if there is an event date just 2 days 

after the calculations date, then in the best case scenario, only two steps have added up 

to that point. This means that there will be only 5 nodes at the first event date, 

meaning that the sampling at that node will be poor. If a number of intermediate nodes 

is added between the dates ta,CD and t°  ' CD  + 1, then the sampling for the first event 

date will be improved. 

So, in the case that NminFirstEvent NFirstEvent where NFirstEvent is the number of steps to the 

first event date, the number of additional steps to be included is equal to 

N  MinFirstEvent N  FirstEvent • If this number is positive, then, before calculating the required 

number of intermediate steps, a check is made if there are any dates between the 

calculations date and the first event date that have not been included in the step dates. 

If there are any available dates, then these are included in the steps dates. The number 

of the added step dates because of the required number of steps to the first event date 
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is denoted as N AddToFtrctEvent • Then, if it is the case that the number of step dates to the 

first event is still smaller to the required number of dates (to the first event), then the 

number of intermediate numbers to be added N2Inntderm  is calculated as follows. 

N Inte rm = 0 , 
2nd 	 N 	 + N 	 N AddToFirstEvent 	FirstEvent > 	MinFirstEvent 

N Interm = 
FirstEvent) 9 otherwise 2nd 	MinFirstEvent 	AddroFirstEvent 

(Eq.5.1.17) 

The final number of intermediate steps to be included is denoted as N I'm and is 

calculated based on N n and ATterm a 	Inte 
1st 

 
2nd • 

N  Interm = 
"

Interm 	Interm > Interm 
1st 	' 	1st 	2nd 

N  Inte rm = 
"

Interm 	Interm < 	 Interm 
2nd 	1st 	" 2nd 

(Eq.5.1.18) 

The Final Step Dates 

Ste s 
.N The 	final set of step dates is denoted as t a 'Steps = a P 	and includes the r=0,1,2  

intermediate step dates as well. The number of the final step dates is denoted as N 

and is calculated as follows. 
N  = N. N  Intern? _L 

 AT AddroFirstEvent 
	 (Eq.5.1.19) 

Having specified the final steps dates, the following parameters can also be calculated. 
Atod,Steps = 0  

Atd,Steps —
i  
	i  ta,Steps —t a,Steps 

At  d ,Steps 

NumDaysPerYear 
AtstePs = i   

(Eq.5.1.20) 
1 < i < N 

1<i<N 	(Eq.5.1.21) 

td. ,Steps =ta,Steps _ ta,CD i   

tstePs = 

d'  Steps = t 	— a,ED ta,Steps 

,d Steps 
ti 

NumDaysPerYear  

0<i<N 	 (Eq.5.1.22) 

0<i<N 	 (Eq.5.1.23) 

(Eq.5.1.24) 

0<i<N 	(Eq.5.1.25) 

d Steps 

NumDaysPerYear 

rSteps = 
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5.3. Forward Values 

Having established the number of steps and the respective dates, we continue with the 

calculations of the remaining information at the steps. 

Risk-free and Risky rates 

Initially, the polynomials presented in chapter 3 as the result of the cubic splines 

technique applied on the risk free rates curve in the bond currency, are used for 

interpolating and obtaining the values of this quantity at the step dates. The resultant 

bond currency risk free rates are denoted as r RFb„steps = ri=RFb,
0,1,

steps  
2,...,N 1. Based on these 

, rates, the discount factors Ci RFb,steps = 
"i

RFb
1 02
steps

,...,N 9 
the forward discount factors 

fd RFb,steps = trd RFb,steps} 
.1" t=1,2,...,N 

c RFb, steps 	RFb,steps .. 	= and the forward rates 	 ri=1,2,...,N can also be 

calculated. 

d iRFb,steps = 	 Steps e = exp(— riRFb,steps  X ti Steps) 

RFh, steps 
RFb,steps = "  fd  

RFb, steps 
"i-1 

friRR), steps = ln(fdiRFb,steps) 

✓ At5tePs  

(Eq.5.3.1) 

(Eq.5.3.2) 

(Eq.5.3.3) 

1<i< N 

1<i<N 

In the previous chapter, three possible ways were presented for obtaining the credit 

spread structure based on the inputs to the pricing framework. At this point, cubic 

splines interpolation is applied on the resultant credit spread structure in order to 

obtain the credit spread value at the each step and the resultant spread values are 

denoted as steps = is_tw 	Based on the risk free rate in the bond currency and the 

credit spread value at each step, the risky rates r Rishsteps = {...R isky - 	,step.s can now be 

Risky,steps = 	.Risk y,steps calculated, and based on these the risky discount factors d 	 and the ",=N 

Rksky steps = {_,,4 nIsq,steps , 
risky forward discount factors fd 	 N} 

Risky,steps r RFb,steps steps 
— 0<i<N 	 (Eq.5.3.4) 
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dRisky,steps = e-r,m*"' sk.Ps xt rps 

= exp(—  Risky steps 
x  tSteps) 

Jed RiskY ,step is  = 
dRisky,steps 

ceiskY,steps 

Step Dates 

0<i<N 	(Eq.5.3.5) 

(Eq.5.3.6) 1<i<N 

Dual Currency Convertible Bonds 

If the convertible bond is a dual currency one, then the same procedures need to be 

carried out for obtaining the risk free rates in the equity currency at the steps, 
ffe,steps _ {RFe,steps 	 RFe,steps 	, RFe,steps r and the respective discount factors d 	— {ai=0,1,2.. N} and 

forward discount factors fdRFe'steP' {ARFe2,stepNs 1. The risk free rates are obtained by 

interpolating on the input equity currency risk free curve while the discount factors are 

obtained based on equations (5.3.7) and (5.3.8). In addition, for dual currency 

convertible bonds, the forward exchange rates are also required at the steps, and these 

are calculated based on equations (5.3.9) to (5.3.11). The exchange rate for translating 

units from the bond currency to the equity currency at step i is denoted as X ib/e  , 

while the exchange rate for translating units from the equity currency to the bond 

currency is denoted as X:lb 
. The calculations of the exchange rates are initialized by 

setting the exchange rate for translating from the bond currency to the equity currency 
e at step 0 equal to the input parameter X blte,„ as shown in equation (5.3.9). 

d RFe,steps = r  RF rep tSteps 

= exp( RFe'steps 
 Xti

Steps) 

iRFe,steps 

fd
RFe steps Ct  

i 	 RF di_ie,steps 

v .ble vble 
'1=0 = t=t" 

0<i<N (Eq.5.3.7) 

(Eq.5.3.8) 

(Eq.5.3.9) 

r R11,,strps xi ;Steps 	 —r RFe,strps 	t 

b I e 	ble e ' 	
— 

x
0  
b I e e  )( i =xA  

„, 	r  RFe,steps xi  Steps 	 _r  Reb,sfrps xtiseq, 
e 	e ' 

A  RFe,steps 
v .ble _ xble L-1 1  
Xi 	0 d RFb,steps 

1<i<N (Eq.5.3.10) 

  

,e'ex)rm=lrib = 	1 	0<i<N 	(Eq.5.3. 1 1) 
)&e  
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Continuous Dividend Yield 

Step Dates 

  

We allow for a different continuous dividend yield to be defined at each step and the 

respective vector is denoted as q ={q1=11.2 , N}. If the continuous dividend yield is not 

employed, then the data of the vector q =1(1,112, ,N are set equal to either the input 

value ev  or to zero if the case is that no continuous dividend yield will be employed. 

However, if it is the case that the continuous dividend yield term structure qcDS  will 

be employed, then the data of the vector q = {q,=11, 2, .,N } are obtained by interpolating 

on the term structure. For the continuous dividend yields the interpolation is 

performed based on the step function method as described by the following equations. 
CDS „ 

Vi 	clk 
CDS 

q1 = qk  

a,CDS< ta,Steps 	a,CDS 
'k 	 'k+1 
t a,CDS < ta,Steps 
L'k 

k= 	cDs —  2 
(Eq.5.3.12) 

k= rims  — 1 

Volatility 

By performing cubic splines interpolation on the input volatility structure 
cvs E  ai2xn, the volatility is obtained at each step. The new values are denoted as 

Steps = 	te s p 
= " i-0 1 2,...,N}• Because the calculation of Vega sensitivity is based on shifting „ 

stps
„ , the volatility term structure by 1%, the new set of volatilities crsteps = l6,=0  1 2 N } is 

1% _ {,steps, 1% shifted by 1% and the shifted volatilities are denoted as crsteps, 
— 	1. .,N  

C.3"teps,1% . 1.01X Cr;tePs 	0 < i < N 	 (Eq.5.3.13) 

{
steps  The set of forward volatilities fa 	= tfcrisf,P2c N  and LI 	= fui=12, ,N} are 

established for each set of volatilities based on the following equations. 

 

(Steps steps steps 	Steps 
Cr;Y 	 )

2 t
i-1  

41  Steps i  

 

1<i<N 	(Eq.5.3.14) 

    

fasteps,1%  
(crsteps,1%)2  t. 

 
Steps _(crsteips,1%)2 

ti-1 
ps 

AtStePs  
1<i<N 	(Eq.5.3.15) 
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5.4. The Bond Floor 

The Bond Floor 17.straight = strai ght 
b,i3O 2  N I.  and the Accrued Interest AI = {AI i=0,1,2,...,N} „ 

are calculated at each step. The Bond Floor is simply the value of the straight bond, 

the convertible bond without the optionality to convert to Equity. Since the coupon 

dates are accounted for as event dates, it is the case that the coupon dates are included 

in the step dates. 

Cs The coupon cash flows q
Cpn,steps 

= lq,=0,
pn ,

1
teps 
2 	N I are established at each step. For the steps 

that correspond to a date in the coupons schedule CcPn  E Nricpn , the value is non-zero 

as shown in equation (5.3.19), while for the rest of the steps the coupon cash flows are 

simply equal to zero. 
en,steps = qkCpn 	t c! ,Steps = t a,Cpn if 	 k 

Cpn,steps = 0  
otherwise 

0< i < N, 0 	<nci,„ 	(Eq.5.4.1) 

g DiscCpn,steps = tgiDto'scri;n Nteps} The set of discounted coupons 	 is calculated by discounting 

the coupon cash flows back to the calculations date as shown in equation (5.3.20). 
DiscCpn,steps„Tr  Risky,steps X qiCpn,steps 

0<i<N 	 (Eq.5.4.2) 

Finally, the sums of the discounted coupon cash flows ScPn'tepc 
= ts fiCponi s2teps N} at each 

step are calculated based on equation (5.4.3). For each step, the sum of all the 

discounted coupon cash flows with greater or equal step index is compounded in order 

to obtain the value of the sum of the coupon cash flows on the step date. 

1 cCpn,steps = 	 V ,DiscCpn,steps 	0 < i < N 	 (Eq.5.4.3) i 	 {' Risky,steps L.,d  vk 
d k=1 

The Bond Floor value at each step is calculated by adding the discounted notional and 

the sum of the discounted coupon cash flows. 
d .c Risky.steps 

v strai ght = ,4,1  N  	x  p Rd + Cpn,steps 
b.i 	Ri.sky,steps 

cif i 
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The Accrued Interest is the part of the next coupon payment that has accrued. This is 

calculated at each step by multiplying the next coupon payment by the proportion of 

time between the next and the previous coupon date that has elapsed. 

t;,0Steps = ta,ID 

X Cpn 	ta,ID < ta,Steps < qo  

Cpn 
X qk  

A11=0= 0  
t a,Cpn ta,Steps 

Ali =  ° ta,Cpn
) 	ta'ID 

t a,Cpn ta,Steps 

Al i = 	  t a,Cpn ta,Cpn 
k 1"k-1  

if 
t p_Ci pn < ta,StepsSt 	< ta,Cpnk 	

1 k < nCpn 

0<i<N 

(Eq.5.4.5) 

5.5. Sum of Discounted Discrete Dividends 

In the case that a Discrete Dividends structure is employed, we need to establish the 

sum of the discounted discrete dividends at each step on the tree. These values are 

denoted as S D1vs,steps = iDt'vsi:s2teps N}. The sum of discounted discrete dividends at each 

step is established in exactly the same way as the Bond Floor value. The main 

difference is that the risk-free discount factors are used instead of the risky discount 

factors. 

Since the discrete dividends dates are accounted for as event dates, it is the case that 

the discrete dividend dates are included in the step dates. The first action involves 

establishing the dividend cash flows vDivs,steps 
={

VDivs,steps
i=0 1 2 N} at each step. For the steps „ 

that correspond to a date in the input discrete dividends structure CDDs E 2gt  xnms 
, the 

value is non-zero as shown in equation (5.5.1), while for the rest of the steps the 

dividend cash flows are equal to zero. 
Divs,steps 	DDS 

vi 	— qk  
vDirs,steps = 0 

} if ta,Steps = t ka,DDS 

otherwise 
0<i< N, 0k<11Dps 	(Eq.5.5.1) 
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Dise Then, the set of discounted discrete dividends vDiseDivs,steps = 
vi=0,1

Divs,steps  
,2, ..,N 	is calculated 

by discounting the discrete dividend cash flows back to the calculations date as shown 

in equation (5.5.2). 

v
DiscDivs,steps 	RFb,steps

XV 
 Divs,steps 

i  0<i<N 	(Eq.5.5.2) 

Finally, the sums of the discounted discrete dividends at each step are calculated based 

on equation (5.5.3). For each step, the sum of all the discounted discrete dividends 

with greater or equal step index is compounded. The resultant value is the sum of the 

discrete dividends as it would be on the date corresponding to the step. 

Divs,steps
N  = 	1 ,,DiseDivs,steps 

S̀i 
 

fRFb,steps 	k d 
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CHAPTER 6 

TRINOMIAL TREE FOR THE STOCK PROCESS  

The most volatile factor involved in the pricing of a convertible bond is the price of 

the underlying equity. Interest rate fluctuations and spread fluctuations play a 

significant role as well, but their magnitude and their effect on the convertible bond 

price is not of the same level as the equity. Only in the case of very out of the money 

convertible bonds can be stated that the effect of the interest rates and spreads is 

greater since the convertible bonds are traded as straight bonds. Another significant 

factor for dual currency convertible bond prices is the exchange rate, which is 

accounted for in a two-dimensional tree approach in the next part of the thesis. 

The stochastic process for the underlying equity was implemented in the form of a 

recombining trinomial tree. The important benefits arising from implementing a 

trinomial tree like variable time step and employment of term structures for interest 

rates, spreads, volatilities and continuous dividend yields, have already been 

discussed. 

A trinomial tree implementation involves two basic processes, the forward induction 

and the backward induction. During the forward induction, the transition probabilities 

from one node to the nodes of the next step are calculated, as well as the realisations of 

the parameter of the stochastic process, in our case this would be the equity stock 

price. The pricing of the instrument, in our case this would be the convertible bond, is 

performed during the second process, the backward induction. In this chapter, we 

present the various calculations involved in the forward induction part. 

In the first section, the general approach to trinomial trees implementation is 

presented. Then, in section (6.2), the equations involved in the calculation of the 

transition probabilities and the stock prices are outlined. Section (6.3) is devoted in 
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establishing the conditions under which the calculations result in valid probabilities, 

because the structure of trinomial trees does not guarantee valid probabilities, in 

contrast to the binomial trees and the implicit finite difference methods. 

In section (6.4) we are introducing the conditional probabilities. The conditional 

probabilities were introduced through the work of this thesis in order to enable 

accounting for the conditional calls and puts, as well as the resets. The calculations 

during the forward induction which involved the conditional probabilities are 

presented in the last section of this chapter. 

6.1. The General Approach 

The general methodology followed in the implementation of the trinomial tree Equity 

model here is based on the description of a basic implementation of the same model 

included in chapter 3 of reference [8], where the authors also recognise the advantages 

of variable time step and employing term structures for the interest rate and the 

volatility, offered by this configuration. The first extension to their model as it was 

presented in the reference is fitting the model to structured data, while a more 

significant extension is the introduction of the conditional probabilities. 

The stochastic differential equation for the risk-neutral geometric Brownian motion 

(GBM) model of an asset price paying a continuous dividend yield 8 is given by 

equation (6.1.1). This is the Black-Scholes based stochastic differential equation, 

which ensures arbitrage-free conditions for the implementation. 

dS = (rt  gt )S dt + crt  S dz 	 (Eq.6.1.1) 

By setting: 

	

x = ln(S) 	 (Eq.6.1.2) 

the stochastic differential equation is changed as follows: 

dx = ,u,dt + cr, dz 	 (Eq.6.1.3) 

(3 2 

= 	- (5; - 	 (Eq.6. 1.4) 
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Up to this point, the equations governing the behaviour of the stochastic process have 

been in continuous form. Replacing the continuous form time step dt with the discrete 

form time step At and the space step will result in changing the equations form into 

discrete form. 

= peAt + a, Az 	 (Eq.6.1.5) 

,Ur = 	— 
0_2 	

(Eq.6.1.6) 

In figure (6.1) a representative branching configuration of a node in a trinomial tree 

with the evolution of x as defined by equation (6.1.5), is presented. We have allowed 

for a variable time step configuration and the employment of structured data. The 

relationship between the parameters of the processes depicted by equations (6.1.5) and 

(6.1.6), and the parameters of the trinomial process as defined in figure (6.1) is 

obtained by equating the mean and the variance over the time interval At and 

requiring that the three probabilities on the tree sum to one. These are summarized by 

equations (6.1.7) to (6.1.9). 

At, 

Figure (6.1) Representative Node 
Configuration (General Case) 

E[Ax] = Pu,i-1(&)+ 	 Ax)= viAti (Eq.6.1.7) 

E [Ax
2] = 	• i ( AX 2 )+ pm,i 	(o)+ Pd,t-[ 

(AX2 ) = Ci7 Ati  (Eq.6.1.8) 

Pit,i-1 +  Pnr,i-I 	Pd,1-1 — (Eq.6.1.9) 

The equations above will result in the probabilities given by equations (6.1.10) to 

(6.1.12). 
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P.,,-] 

Pd.= 

1 
2 

62  At, + due?  Ati?  ,ui Ati  
(Eq.6.1.10) 

(Eq.6.1.11) 

(Eq.6.1.12) 

Ax2 

cr? At,+,u?
1 
 At? 

1 
2 

Ax2 

cr? At, + ,u,2  Ati?  
Ax2 dx 

As a final comment, in reference [8] it is proposed that the space step Ax is set 

according to equation (6.1.13). 

Ax = 61/3At 	 (Eq.6.1.13) 

6.2. Forward Induction 

Having presented the general framework, we continue with the specifics of the 

implementations of this thesis. First of all, we need to specify a referencing system for 

the nodes of the tree. It was desired to create and maintain a nodes reference system of 

the form (i, j) where the letter i is used for the indexing of the steps and the letter i is 

used for the indexing of the nodes at each step. The step index i can take the values 

i = {0,1,...,N}, while at the ith  step, the nodes index j can take the values 

j = 	+1,...,-1,0,1,...,i —1,4. This is also demonstrated in figure (6.2) included in 

the next page. 

At each step there is a set of parameters involved in the calculations. Calculation of 

most of these parameters has already been presented in the previous chapters. The 

remaining parameters to calculate are the drift ,u, and the probabilities 	, pd,;_, 

and pd , r-1 . These are calculated based on the following equations which are based on 

the general equations presented above but adjusted to notation of this thesis. 

( fo_.:teps _ fr,RFb,steps _ 
2 

	

1 	 f cr :crePsT At 	+ 	(AtictePs T  gi AtfePs \  
P ti 	--- 2 	 Ax2 Ax 

(Eq.6.2.1) 

(Eq.6.2.2) 

80/188 
Implementing Arbitrage-Free Models 	 CQF, Imperial College 
for Pricing Convertible Bonds 	 Michalis Simillis, 2004 



Pd ,i-1 

1 

2 
(fCr:tePs  Atrs  

Ax2 

(furl' Ate  + (Atri- )2  
(Eq.6.2.3) 

(Eq.6.2.4) 

1 = Pnz,i-1 Ax  2 

( 	t;tePs 	At  :reps 

Ax 

(2,2 

(0,0) 

(N,2) (3,2)" 

(3,3 

(N,-2) 

(N,-N+2) 

(N,-N+1) 

(N,1) 

(N,0) 

(N,-1) 

• 
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If it is the case that the convertible bond is a dual currency one, then equation (6.2.1) is 

replaced by equation (6.2.5). 

= frRFe,steps 	 furbt  
	steps.  y 

2 
(Eq.6.2.5) 

Figure (6.2) Indexing On The TrinomialTree 
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In figure (6.3) there is a diagrammatical presentation of the calculations involved in 

the transition from a node (i —1, j) to the three possible nodes in the next step. 

At'rePs t   

,(i -1, j) 

j +1), Si = 

(i, j) , S i,, = 

(i, j -1), 51 ; = d x 

dui  = frRFb,steps _ S 

------ 	 ' 

	

Step (i —1) 	t." 	 . 	Step (i) /•  

	

(friRF b,steps ,  farps , 	 (fri RFb,steps f at:steps 	 ) 

fd, 

Figure (6.3) Representative Node Configuration 

In the above figure, a multiplication factor u has been used for calculating the stock 

price Si+1, j±i  at node (i + 1,1+ 1) and a multiplication factor d has been used for 

calculating the stock price S;_1 j _1  at node (i —1, j —1). These multiplication factors are 

fixed across the tree since they are calculated based on the fixed space step, as 

illustrated by the following equations. 

u = 	= exp(Ax) (Eq.6.2.6) 

d = 	= exp(—Ax) (Eq.6.2.7) 

uxd= 1 (Eq.6.2.8) 

Taking advantage of the recombining structure of the trinomial tree, there is no need 

for establishing the stock values at all the time steps. A vector S e lx(2N+1) is 

initialized for containing the values of the stock at the respective nodes at the time step 

N of the tree. For the rest of the time steps 0 —> (N —1), any stock values can be 
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mapped to respective stock values of the last time step because the following 

relationship holds. 

Of course, for each Si, j  there is the limitation that the nodes index reference j for the 

time step i is limited between — i to + i . References outside this range are not 

permitted in the implementation, and the mapping of  Si,]  on the vector S E 911x(2N+1) 

limited in the permitted range of j at the specific step. This is also illustrated by the 

following equation where the stock price Si  is an element of the vector S E 911x(2N+1) 

and the stock price S i ,i  is an element of the vector S i  E 9i1x(2i+1). 

	

Si ,  = Si 
	 V/ E 	i] 	 (Eq.6.2.10) 

The elements of vector S E 1x(2N+1) are calculated based on the following equation. 

	

S •=S0  e idx 
	

Vje[—N,N] 	 (Eq.6.2.11) 

Employing the constants u=d -1  =edx  and 	= d =e-dx  , the above equation can be 

simplified as follows: 

S 	= S 0 (e Ax y 
s ,  = S0./ 

Vj 	N, 	 (Eq.6.2.12) 

  

Alternatively, this can be rewritten as follows. 

S • =UXS 
	

VjE [— N,N] 	 (Eq.6.2.13) 

The respective equations utilizing the down multiplication factor are as follows: 

S_1  = S 0 (e-  

s_ j =sodi 

(Eq.6.2.15) 
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E [— N,N] 

E [— N,N] 

(Eq.6.2.14) 



j=1N 

j = —1 —> —N 

" 	
= sCD,NoDivs = s CD 	,steps 

0 	 " 0 

S • = U X S j-1 

S•=dx S .1 • +1 

(Eq.6.2.16) 

(Eq.6.2.17) 

(Eq.6.2.18) 

i-1 = ' 	2 	Axe 	Ax 
1 (  a? At, + At?  + ,u,At,\  
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In the actual computations, the stock value So  is set equal to the current share price 

(with the exclusion of the sum of the discounted discrete dividends on that date), and 

then, recursively, the rest of the stock prices are established in vector S E lx(2N+I), as 

demonstrated by the following equations. The parameter SCD,NoDivs denotes the actual 

share price on the calculations date after the discrete dividends have been subtracted. 

6.3. Valid Tree Probabilities 

We are introducing the derivation of the conditions that must be satisfied in order to 

have transition probabilities that are strictly positive and smaller than one. One 

drawback, perhaps the only significant one, of the trinomial tree configuration is that it 

does not guarantee by construction greater than zero (strictly positive) and smaller 

than one transition probabilities. Negative and greater than one transition probabilities 

arise in a trinomial tree for certain combinations of market based input data like rates 

and volatilities. It has been proved that these combinations of data actually arise when 

there are arbitrage conditions in the market, or at least during of the derivation of the 

input data, arbitrage-free conditions were not maintained. 

The transition probabilities at any node on the tree are given by the following three 

equations. 

(Eq.6.3.1) 

(Eq.6 .3.2) 

(Eq.6.3.3) 

A 	 2 

	

1 _ 1 	a, 	F ,u, At, pm,i  
Ax2 

1 (  a? At, +,u,2  At 2  ,u,Ati \  
P d 1-1 — Ax2 

	

2 	 Ax 
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The parameter p, is given by equation (6.3.4). 

(Eq.6.3.4) 

The space step Ax must of course satisfy the basic requirement depicted by the 

following relationship. 

Ax > 0 	 (Eq.6.3.5) 

Starting with 	, 

6i
2 Ati  +,te 

pm,i_ i  < 1 	1  < Ax2 	1  

62 Ati  +,te  
> 0 

Axe  
(Eq.6.3.6) 

All the parameters in equation (6.3.6) are squared, so they are definitely positive. The 

time step At, is by definition positive. So, the condition depicted by equation (6.3.6) is 

always satisfied. 

Based on the condition that the probability p„, 1  must be strictly positive: 

P.,i-1 > 0 	1 6i2  Ati  + ,u,2  At; > 0 Q,2 At, + p2i2  Ati? < 1  
Ax2 Ax 

AX > Ja2  Ati  + (Eq.6.3.7) 

Next, we consider the conditions for the probability p,,_1 . In the case that pi  = 0 , the 

probability p„,_1  is simplified as below. 

62 Ati  
PL, 	— 2 2 .6oc 

 

(Eq.6.3.8) 

The requirement p„,_1  < 1 results in the following. 

1311,,  < 	47,2  At, < 1  
2,6x2  

 

    

2 
	 (Eq.6.3.9) 
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In the case that A. # 0 , for the condition 

<1 	
1 
2 

26a2  

The roots of the equation are given by: 

that p„,i _I  < 1 : 

(o-? At + t7 Ott  

Trinomial Tree 

<1 

for the Stock Process 

(Eq.6.3.10) 

(Eq.6.3.11) 

(Eq.6.3.12) 

(Eq.6.3.13) 

Ax2 	 AJC  

Ati + 	At7)> 0 

Ax1,2 = 
pi Ati ± 	)11,3At, + 4 x 2 x (a-7 Ati  + Ati2 ) 

4 

,ui Ati ± Al9p7At,3' + 862 Ati  
Ax1,2 = 

So the resultant ranges are given by: 

Ox < Axi  = 
pi  At, 

4 

— V9,u,2At7 + 8o-,2  At, 

Ax 
> Ax2 = 

,ui Ati + 

4 

V9pi2 At2 +8cr,2  Ati  
4 

Now, we consider the condition that the probability p„,,_1  must be strictly positive. In 

the case that 	= 0 , this requirement results in the following. 

o Ati  > 0  
2Ax2  

It is obvious that the requirement p„ i_1 > 0 is always satisfied if ,ui  = 0 . 

In the case that 	# 0 , the requirement p„,_1  > 0 results in the following. 

6,2  At, + Cl, At,2  ,u,Ati >0  
Ax2 Ax 

Cri2 Ati +,u;2Ati2 	,ui Ati  
Ax2 (Eq.6.3.15) 

In the case that p, > 0 , the requirement depicted by the relationship in equation 

(6.3.15) is always true since the right-hand side is always negative and the left-hand 

side is positive. 
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In the case that pi  < 0, the resultant relationship is derived as following. 

cri2  Ati  + ,u2 Ati2 	> 0  
Ax2 

.2 Ati  + pi2 Ati2 > 
Ax2 	Ax 

< 6i2  Ati  +  itt7 Ae 	
(Eq.6.3.16) 

Next, we consider the conditions for the probability pd ,,_1 . In the case that pi  = 0 , the 

probability pd i_1  is as shown by equation (6.3.17). This is the same with equation 

(6.3.9) for p„,_, . If we consider 	being the actual drift after the application of the 

branching process, then it should be expected that p„ i_1  = d when 	= 0 . 

0'7 Ati  
Pd.i-1= 2AX2 

In the case that pi  # 0 , the requirement d <1 results in the following. 

< 1  
1 	o-7 Ati  +,ui2 Att? 	<1  
2 	Ax2 

 
Ox 

2Ax2  + pi Ati Ax—(62 Ati + itti2 Ati2)› 0 

The roots of the equation are given by: 

pi Ati ±VgAt +  4 x 2 x (67' Ati  + ,t,t7 Ae Ax3,4 4 

pi Ati ± i19,u,2Ati2 +862 Ati  
AX34 — 4 

So the resultant ranges are given by: 

—,u,Ati  — i19,teAti2  + 8o-7 
< Ax3 = 	

Ati 
4 

— 
Ax> Ax4 = 

pi Ati  + V9p7Ae +8ce  Ati  
4 

(Eq.6.3.17) 

(Eq.6.3.18) 

(Eq.6.3.19) 

(Eq.6.3.20) 

(Eq.6.3.21) 
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In the case that ,u, # 0 , the requirement pdi_1 > 0 results in the following. 

cr,? Ati  +,u,2 At 	,u,At, > 0  pa ,i _i > 0 	Ax2 	AX 

0;3 At, +,u,3At7  > ,u,At, 
Axe 	Ax 

(Eq.6.3.22) 

In the case that A < 0, the requirement depicted by the relationship in equation 

(6.3.22) is always true since the right-hand side is always negative and the left-hand 

side is positive. 

In the case that ,u, > 0 , the resultant relationship is derived as following. 

67 At, + p2  At,3  pi Ax  > 0 Ax2 

o',3  At, + ,u,3  At7  > 
Ax2 	Ax 

dx < 6
2 At 	2 A t2 

(Eq.6.3.23) 

 

Summarizing, the required conditions are as follows: 

Ax > 0 	 (Eq.6.3.5) 

Ax > Vo.,2  At, + p,2 At,3 	 (Eq.6.3.7) 

o-,2 At. 	. Ax >  

	

	= 0 	 (Eq.6.3.9) 
2 

0-3 At. + 	At3 	. Ax < " 	,u, # 0 	 (Eq.6.3.16) 
Ati 

,u,Ati — ii9p7At7.  + 8c At, 
Ax < Ax3  = 

4 if pi # 0 	(Eq.6.3.20)/ (Eq.6.3.21) 
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The effort is now concentrated on excluding conditions from the above list. If it is 

proved that all the roots AX{x,2,3,4} are smaller than AlCi2 Ati  +1u,2  At2 , then because of 

condition in equation (6.3.7), the conditions of the two sets of equations, 

(6.3.12)/(6.3.13) and (6.3.20)/(6.3.21), can be removed from the required conditions. 

In other words, if the smallest permissible value by the condition of equation (6.3.7) 

satisfies the conditions of the two sets of equations (6.3.12)/(6.3.13) and 

(6.3.20)/(6.3.21), then we can remove the two sets of equations from the conditions. 

To prove that all the roots AX11,2,3,41 are smaller than -\462 At, +,u2 At2 , we need to 

prove the following: 

9,u
4  
2At2 + 80-2 At 

Vcr? At, +,u2At2 > WAt + 
i  

, 	0 (Eq.6.3.24) 

By squaring both sides of the equation (both sides are positive): 

2  
Vcr? Ati  +,u? At > 	

Ati  + V9P,2At,2  + 8o-,2 Ati  
4 

(cr? Ati  + ,ui2  At? )x16 > pi2At? + 2 x 	x A/8 cr,2 At, + 9,u,2Ati2 + 8 o-,2 Ati  + 9,u,2At? 

8 ce Ati  + 6 ,u7 At, > 2x ,ui Oti  x j8 so-,2 Ati  + 9,u2 At? 

We can further square both sides as follows: 

(80;2 Ati  + 6 ,u2 At, > (2 x Ati  x o-? Ati  + 9,u? At? )2  

64o-:J At? +96 a? At /./i2Ats2 +36 	At:t  > 4,ui 2At? (8 cr? Ati  +9 le At? ) 

6464 At? + 96 c? ,ui2Ati3  +36,u;t At:t  > 32 cri2iti2At, + 36 ,u,4.1 At, 

6464 ot2 + 64 cr,2 ,ui2At,? > 0 

64x'2 At2(612  + sui 2 Ati  > 0 	 (Eq.6.3.25) 

Proving that relationship of equation (6.3.24) is valid comes down to proving that 

(6.3.25) holds. And (6.3.25) holds because the right-hand side will always be a 

positive non-zero value. 
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For ,u, = 0 , equation (6.3.7) becomes Ax > Vo-,2  At, which is greater than At, 
2 

the minimum value depicted by equation (6.3.9) for ,u, = 0 . So, the condition of 

equation (6.3.9) is covered by equation (6.3.7). Putting together equations (6.3.7) and 

(6.3.16): 

cr At. +/./  Atz  
V6, At, + At, • < <  " " , if ,u, #0 1,1t1 lAt, (Eq.6.3.26) 

Ax> 	At,, if ,u, =0 

 

The conditions of equation (6.3.26) also cover the requirement that Ax > 0, since both 

of the bounds of the conditions in equation (6.3.26) are positive numbers. 

It must also be pointed out that if the conditions of equation (6.3.26) reverse, then we 

will not have a viable model. In other words, if quantity A, could become greater than 

quantity B, , as defined in equations (6.3.27) and (6.3.28), then the system collapses. If 

condition shown in equation (6.3.29) holds, then there is no such case. 

= 1612 At, + 	At, 	 (Eq.6.3.27) 

c73 At + 	. B, = " " , 	,u,# 0 	 (Eq.6.3.28) 

Ai  <13,, if ,u, # 0 	 (Eq.6.3.29) 

or, 

2 At, + pi  At, < 	  2 	2 	o',2 At, 	ti2  
Cji 	 , if p, 0 ,u, At, 

From equation (6.3.29) we have the following: 

1  < Vo-7 At, +,u7  At7 
1,u, At, 

/eAt, < cr,2  At, + ,u7 	At, >0 

(Eq.6.3.29) 

(Eq.6.3.30) 
< Vo-7 At, + ,u,z  At? 

Since it has been set from the beginning that the time step is positive non-zero 

quantity, this means that equation (6.3.29) always holds. However, this is proved only 
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to hold between the quantities A, and B, of a specific step. Due to the fixed value of 

the space step Ax across all the steps, we redefine equations (6.3.26) and (6.3.29) as 

follows. 

Amax < Ax < Bmin 	 (Eq.6.3.31) 

Amax < Brain 
	 (Eq.6.3.32) 

If the last equation does not hold, then there is no way that a space step Ax value can 

be calculated that will satisfy the conditions for valid probabilities. 

6.4. The Conditional Tree Probabilities 

In this section, the conditional tree probabilities are introduced as a concept and 

defined. For this task, the following notation is introduced and employed: 

• The probability 	J  is defined as the probability of being at a tree node (i, j) 

given that we have started from the origin which is node (0,0). 

• The probability ilf:: j  is defined as the probability of getting to the tree node 

(i, j) by first getting to node (i —1, j —1) and then branching upwards. 

• The probability v,7 is defined as the probability of getting to the tree node 

(i, j) by first getting to node (i —1,1) and then branching to the middle. 

• The probability yt,dj  is defined as the probability of getting to the tree node 

j) by first getting to node (i-1, j +1) and then branching downwards. 

• The probability 	is defined as the probability of branching upwards from 

the tree node (i —1, j —1) to the tree node (i, j), given the fact that we are at the 

tree node (i —1, j —1). 

• The probability 27f  is defined as the probability of branching to the middle 

from the tree node (i —1,1) to the tree node (i, j), given the fact that we are at 

the tree node (i —1, j). 

91/188 
Implementing Arbitrage-Free Models 	 CQF, Imperial College 

	

for Pricing Convertible Bonds 	 Michalis Simillis, 2004 



Chapter 6 	 Trinomial Tree for the Stock Process 

• The probability 2 ,̀1 j  is defined as the probability of branching downwards from 

the tree node (i —1, j +1) to the tree node (i, j), given the fact that we are at the 

tree node (i —1, j +1) . 

We will refer to the probabilities 2, , 2,', and 4, as the conditional probabilities. In 

order to introduce the conditional probabilities, we consider the more general case 

than the case of the trinomial tree presented here with respect to the defined transition 

probabilities. The transition probabilities p„,, pn,, and pd ,,, are the same for all the 

nodes je i,i] at step i for the purposes of the work of this thesis. Since we want to 

account for the more general case, we assume that the transition probabilities are 

different for each node at each step, hence, we follow the notation K J  , pi  7 j  and ptdi  , 

for introducing the conditional probabilities. 

We consider that the transition probabilities are available and known quantities, 

calculated based on the previous material presented in this thesis. The following 

equations determine the values of the introduced conditional probabilities. 

	

= /3:-‘1J-1 	J-1 

= Pmi ,i ' 

Kdj = 

7iJ = 

V!` • A:! 	" . = 

(Eq.6.4.1) 

(Eq.6.4.2) 

(Eq.6.4.3) 

(Eq.6.4.4) 

(Eq.6.4.5) 

(Eq.6.4.6) 

(Eq.6.4.7) 

(Eq.6.4.8) 

2' . = J 	7ri,j  

j 

I, 

The probability Km  of the origin node is equal to one. 

7r0,0= 1  
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It is important to specify that any conditional probabilities with node reference (i, j) 

not in the permissible range, are equal to zero. This is also true for the probabilities 

	

=0 	if i0 [0,N] or j0[—i,i] 	 (Eq.6.4.9) 

	

= 0 	if ie [0, N] or j0[—i,i] 	 (Eq.6.4.10) 

	

Aff =0 	if i0 [0,N] or j0[—i,i] 	 (Eq.6.4.11) 

	

= 0 	if i0[0,N] or j0[—i,i] 	 (Eq.6.4.12) 

The sum of the conditional probabilities for a given node 	 j) is equal to one by 

construction, as shown next. 

d 	 ±K.+Vid 	 + + = + 	+ 	= 	 	.1 (Eq.6.4.13) 1,j 	r,j 	z, 

Atri's 

Figure (6.4) Representative Node Configurations for the 
transition probabilities and the conditional probabilities 
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6.5. Accounting for Schedules in Forward Induction 

Having established the conditional probabilities, we are now in position for developing 

a methodology for dealing with challenging features encountered in convertible bonds. 

To be more specific, in this section, we present the part of the introduced methodology 

for dealing with conditional calls, conditional puts and resets, that takes place during 

the forward induction process. 

Conditional Calls 

For a conditional call, we need to specify whether the call will be active at each of the 

nodes of the tree falling in the time period of the call (between the starting and ending 

dates of the call). Because of the inclusion of the trigger, this becomes a path-

dependent issue which we overcome by proposing a probability-weighted approach. 

Let us consider a conditional call with the set of parameters 
fvkcs ,tka,SD,CS ,tka,ED,CS ,c,kCS ,wkd,CS y  kCS in the call schedule. This set means that this call 

covers the period from tk"'sD'cs to  tka,ED,CS it has a grace period wk ,CS and a trigger ckcs  

which is applicable on the prevailing strike IC, j  at each node if the flag ykcs is  equal 

to 1 or on the original contract-defined strike K if the flag ykcs is  equal to 0. We are 

assuming that all the call period extended to include the grace period is within the 

period used for pricing. In other words, we are assuming that, for this example, 
(tka,SD,CS widc ,cs +1), ta,CD , where ta' c'D  is the calculations date. 

The first action would be to define the flag i7.:Jigg"'call  for each node in the tree that lies 

in the period (tka' sD' cs  — 4,cs +1) to  tk,,,ED,cs The flag is set equal to one if the stock 

price at the node plus the sum of the discounted discrete dividends at that step is 

greater than the trigger times the appropriate strike (either the prevailing or the 

original). The strike used is denoted as 1( 1 . 
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K;.1  = K 

=K 

Trigger,Call =1 ii  

= 0 

Trinomial Tree for the Stock Process 

(Eq.6.5.1) 

(Eq.6.5.2) 

if Yk =1  
if YES  =0 

CS 

if S 
▪ s iDivs,steps > 	 

too  
f_,CS 

Si,]if 
	▪ s Divs,steps < 'k  x K . 

100 

The next action would be to define the probability 	ritgger,Call for each node in the tree 

that lies in the period t ka'SD'CS 
to t  ka,ED,CS The following process is repeated for each 

node in the defined range. Let us consider the node (m,n) which lies in this range. To 

define the value of IT nTzirngg
er,Call of this node we need to include the flags 	 frigger,Call of all 

the nodes in the time period (tma's'ePs — kwd,cs .) + 1to tma's' . The next figure includes all 

the nodes involved in defining ir.Tringger,Call  if the grace period whd:cs  was equal to 3. 

(in — 2,n+ 2) 

(m — 2,n + 1) 

 

(m —1,n +1) 

 

(m — 2,n) 	 (m-1,n) 

(m-2,n-1) 	 m —1,n — ) 

(m — 2,n — 2) 

Figure (6.5) Nodes Included in calculating IcTrigger,Call 

For the specific case, first we calculate the parameter Ir.Tr!gger,Call,* for each of the nodes 

(m-1,n-1), (m —1,n) and (m—l,n+l). 

Trigger,Call,* = Trigger,Call 	kAd 	Trigger,Call)± 	 Trigger,Call) 
1Cm-1,n-1 	 m-1,n-1 • t.-n-2,n-2 	m-1,n-1 • .111-2,n-1 	n1-1,n —1 	m-2 ,n 

(Eq.6.5.3) 
,Trigger,Call,* 

m—I,n 
= Trigger,Call xl0c1 Trigger,Call)

± 
 (ont 	Trigger,Call) 	(in 

• m-2,n-1 	Am-1,n • (vm-2,n 
Trigger,Call )1 

• n1-2.n+1 

(Eq.6.5.4) 
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TrTrigger ,Call = Trigger,Call „Kld 

	

, 	 , 	
ATrigger,Call 	(2m 	„t Trigger ,Call) , (la , Trigger,Ca 11 ).1 

m—I n+ I 	111-1,r1+, 	in—,n+1 • 'Vnz-2,n 	"m-1,n+1 `Pm-2,n4-1 	n/-1,n+1 `vnt-2,n+2 

(Eq.6.5.5) 

The probability Jr 'gger ,Ca" can 

Trigger ,Call = ,gTrigger,Call x pdm,  
m ,a 

now be calculated as follows. 

n 	mTrigi gner 	,*)± (2- nni,n rt. 	,*)± (2:n, 	g
a 	

mTr_igi,gner+ fall ,* 

(Eq.6.5.6) 

As already pointed out, the probability IrTrizgger .Call is calculated for each node in the 

tree that lies in the period tka' sD' cs to t  ka,ED,CS Calculating these probabilities means that 

the process for accounting for this conditional call during the forward induction has 

completed. For any additional conditional calls, the same procedure is repeated. 

Conditional Puts 

The same actions are involved for accounting for conditional puts during forward 

induction. The only difference is in the calculation of the flag jiTrii
gger ,Put 

Let us consider a conditional put with the set of parameters 
tvkps tka,SD,PS ,tka,ED,PS ,c kPS ,wkd,PS y  kPS in the put schedule. This set means that this put 

covers the period from tka' sD' Ps  to tk"' ED' Ps  , it has a grace period wkd' PS  and a trigger ckPs  

which is applicable on the prevailing strike K,, at each node if the flag ykPs  is equal 

to 1 or on the original contract-defined strike K if the flag ylic's  is equal to O. We are 

assuming that all the put period extended to include the grace period is within the 

period used for pricing. In other words, we are assuming that, for this example, 
(tk a, SD , PS 	

wk 
d , PS + ta ,CD , where t"'CD  is the calculations date. 

The first action would be to define the flag j,Trit"".P"` for each node in the tree that lies 

in the period (tk"' sD' Ps  — 4, 
PS + 1) to tka' ED' PS  . The flag is set equal to one if the stock 

price at the node plus the sum of the discounted discrete dividends at that step is 
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greater than the trigger times the appropriate strike (either the prevailing or the 

original). The strike used is denoted as IC: j  . 

= K 

U' Yr = 1  

if 	 = 0 
(Eq.6.5.7) 

Trigger, Put 
j 

Trigger,Put = 0 
, j 

PS 

if 	 S iPivs 	< 	k  X 
loo 

PS 

if S 	cyDivs,steps 	C 
j + 	X K 1  

100 

(Eq.6.5.8) 

ut 
The next action would be to define the probability 

7. ciTriigger, P 
for each node in the tree 

. 
that lies in the period tk".s"s  to tt

ED,ps 
 Let us consider the node (m,n) which lies in 

this range. To define the value of ffmTringger , Put o f this node we need to include the flags 

Trigge r, Put o f 
	 a ,Steps _ ,.,c 1,PS + .1) . 	. a , Step i 
all the nodes in the time period (tm to tin 	. The ij 	 " k 

configuration of figure (6.5) includes all the nodes involved in defining
mTrt nn gger , Put if 

the grace period wkd' Ps  was equal to 3. 

For the specific case, first we calculate the parameter A-Trigg'P"'*  for each of the nodes 

(m —1,n —1) , (m -1,n) and (m —1,n +1) . 

ic  Trigger , Put ,* = Trigger ,Put x pd 	A•Trigger,Put 	2 	A•Trigger , Put _L  9t1 	 ATrigger ,Put 
m-1,n-1 	ni-1,n -1 	 7m-2,n-1 	 m -2, n 

(Eq.6.5.9) 

irTrigger ,Put ,* = A•Trigg 
vm-1,n  

er,Put x kld 	Trigger , Put 	( .2m 	t Trigger 	er,Put ' 	(Iu 	tTrigger, Put ll 
` m-1 ,n 	 'm-2,n-1 '''rn-1,n 	 m-2,n +1 

(Eq.6.5.10) 

irTrigger,Put ,* 	 Trigger,Put x pd 	rnTrig2gner ,Put )± (Anmi ,n+i 	'nTirig2gner+, rut )„... (yi 	ATrigger,Pia A  
"m-1,n+1 	`7m-1,n+1 	"m-1, n +1 ‘, 	 "M-Ln+1 '7n1-2,n+2 

(Eq.6.5.11) 

The probability 
7.1.mTri.gger.put 

 can now be calculated as follows. 

Trigger , Put ,* IrTri gger , Put = Trigger,Put x  )d 	,Trigger , Put ,*)± (2 m
,n 

,Trigger , Pta ,*)+ 
/71, ft 	 n 	"m,n 'm-1,n-1 	 1,n 'm-1,n 	 ,n • gm-1, n +1 

(Eq.6.5.12) 
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Resets  
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Whenever there is even a single reset in the convertible bond contract information, the 

pricing framework of this thesis includes the parameter Ki.1  which is the prevailing 

strike at each node 	 j). The prevailing strike was already included above in the 

calculations for accounting for conditional calls and puts. The strike K00  is set equal 

to the original — contract — strike, or, in the case that there has been a reset date before 

the calculations date, the strike K00  is set equal to the prevailing strike on the 

calculations date, which is a parameter that has to be included in the inputs of the 

pricing framework in this case. For the rest of the steps, the prevailing strike is defined 

as shown in the next equation, with the exception of the reset dates. 

Ki, 	= (11/721  ,n K i-1, j-1)± (2171,n • K i-1,j)± (21: 1,n • Ki-1,;+1) 
	

(Eq.6.5.13) 

Let us consider a reset with the set of parameters ft,,a,,RS ,vklower,RS ,vkupper,RS ,wkd,RS y kRS in  

the call schedule. This set means that this reset will take place on the tka' Rs  , it has an 

averaging period wk 'RS and a lower and upper reset levels of v k"''er' Rs and vupper,RS 

which are applicable on the prevailing strike K 1 , at each node if the flag ykRs  is equal 

to 1 or on the original contract-defined strike K if the flag ykRs  is equal to 0. We are 

also assuming that, for this example, (ttRs _ wkd,Rs +1 )>, ta,a, , where ta' CD  is the 

calculations date. 

The first action would be to calculate the average stock price SiA ,7e for each node in 

the step m where tnal'StePs = 
t  ka,RS i.e. the reset k takes place at step m. Let us consider the 

node (m, n) which is one of the nodes at step m. To define the value S,tzer.aige of this 

node we need to include the stock price of all the nodes in the time period 
(tma,Steps wk,CS + 1) to t:s"s that are part of the paths passing through node (m, n) . The 

next figure includes all the nodes involved in defining StA'ne,r j̀'ge if the averaging period 

,cs wkd 	was equal to 3. 
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(m — 2,n + 2) 

(m — 2,n + 1) 	 — 1, n + 1) 

(m — 2,n) 	 (m-1,n) 

(m — 2, n 1) 	 m-1,n-1) 

(m — 2,n — 2) 

Figure (6.6) Nodes Included in calculating SnA,vnerage 

For the specific case, first, we define the values of the parameter S,A;erage'*  for each of 

the nodes (m — 2,n — 2), (m — 2,n — 1) , (m — 2,n), (m — 2,n + 1) and (m — 2,n + 2). 

Sc Divs,Steps Average,* 
— - " m-2, n-2 	m-2,n-2 ▪ "m-2 

S Average,* c 	 Divs,Steps 
tn-2,n-1 	" m-2, n-1 ▪ " m-2 

S Average,*— " c 	+ S Divs,Steps 
m —2,n 	m —2,n 	m-2 

c Average,* 	 c Divs,Steps 
tn-2,n+1 - " m-2,n+1 	" m-2 

S Average,* 	c 	
+ S Divs,Steps 

"m-2,n+2 ",n-2,n+2 m-2 

(Eq.6.5.14) 

(Eq.6.5.15) 

(Eq.6.5.16) 

(Eq.6.5.17) 

(Eq.6.5.18) 

Then, we calculate the parameter S,A  iver"ge'*  for each of the nodes (m —1,n — 1) , 

(m — 1, n) and (m — 1, n + 1) . 

S 
Average,* = c 	c Divs ,Steps 	2d 	Average,* 

tn )—1,n-1 	" m-1,n-1 	m-1 	"m-1,n-1 " no--2,n-2    

( Average,*) 
▪ rm-1,n-1 • S  niti-2,n  ,cnig—e  1*  )± 	 "m-2,n 

c Average,* =" 
	

c Divs,Steps 	(9d 	c Average,*) 
m-1,n 	m-1,n 	" m-1 	 m-2,n —1 

+ , 	
s mAve2r ge , 	

(11'n"  1-1,12 s 
nAve2r Average,* 

S, Average,* =' 
	▪ L' 

Divs,Steps 	( .2d 	c Average,* 
m-1,n+1 	n/-1,n+1 	n/-1 	 —1,n+1 • L.' m-2,n 

+  (
)an: 	c Average,*),_ 2i nr 	c Average,* ) 

	

" 	n+1 "nt-2,n+1 	" 1-1,n+1 	m-2, n+2 

(Eq.6.5.19) 

(Eq.6.5.20) 

(Eq.6.5.21) 
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The parameter si7rage' 4  for node (m, n) can now be calculated. 

s n 	m,n 

 

Average,* = s 	s fivs ,Steps 	2d 	c Average ,* 
c'in,n • " tn-1,n —1 
s_veir,cnige,*)+  (Azni 1,n 	Average,*) 

" m-1,n+1 

Finally, the average stock price S7 e an g e  is calculated as follows. 

S
Average,* 

c Average 
" m,n 	d ,CS 

Wk 

(Eq.6.5.22) 

(Eq.6.5.23) 

Once the averaging process has been completed and all the average stock prices 

SnAv,er
[

gem m] have been calculated at the reset date, we are in position for resetting the 

strike at each of these nodes. The strike is set based on the lower and upper levels 

which are found by multiplying the values vic'wer' Rs  and yapper, RS by the appropriate 

strike (either the prevailing or the original). The strike used is denoted as K . . 

= Ki,j  

K J = K if 

tf y kRS =1 

y kRS = 0 (Eq.6.5.24) 

lower, RS 

. 	
s Average < vk  

upper, RS 
K 

= c Average 	 V k 	x 	< 
j x K:,  in, j 

100 	
— nr, 100 

v  upper,  ,RS vkupper,RS 
K. . = 	k 	x Ki,i 	

cAverage 
	x 

100 100 
lower,  ,RS 	 lower,  ,RS 

= V k 

 100 	
cA x 	 verage  vk  

100 
x  " nz, 

(Eq.6.5.25) 
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CHAPTER 7 

CALCULATING THE CB PRICE AND THE 

SENSITIVITIES 

The Backward Induction process and the calculation of the sensitivities are the 

subjects of this chapter. In the previous chapter, the Forward Induction process was 

presented, while, in its proceeding chapters the input data structures were listed. The 

outcomes of the Forward Induction process are the stock prices on the trinomial tree 

with their associated probabilities. For the case of conditional calls and puts there is 

the additional outcome which is the probability of triggering the conditional call/put at 

each node, while for the case of resets the additional outcome is the average 

probability-weighted stock price at the nodes of the step on the reset date. So, at this 

point, we are in position to price the convertible bond and calculate it sensitivities by 

carrying out Backward Induction. 

7.1. Backward Induction 

The first action involved in the Backward Induction process is establishing the 

convertible bond price at the nodes of the tree on the expiration date (last step on the 

tree). Then, by working backwards on the tree, the price of the convertible bond is 

calculated at the nodes of the remaining steps until the convertible bond price for the 

calculations date (step with index zero) has been established. 

First, some notation is introduced. The indexing of all the parameters introduced here 

follows that of the equity trinomial tree, as shown in figure (6.2). The convertible bond 

price at a node on a tree is denoted as Vibj  , while the holding value of the convertible 

bond is denoted as V it and the converting value of the convertible bond is denoted as 

101/188 
Implementing Arbitrage-Free Models 	 CQF, Imperial College 
for Pricing Convertible Bonds 	 Michalis Simillis, 2004 



Chapter 7 	 Calculating the CB price and the Sensitivities 

Vi`7" . The holding value Vi,ht  at a node represents the value of the convertible bond to 

the investor at node (i, j) which is one of the possible realisations at time t 'step'`,  if the 

investor does not convert at node (i, j), holds the convertible bond, and either 

converts later on in time or holds the convertible bond to maturity. The converting 

value Vier at a node represents the value of the convertible bond to the investor at 

node (i, j) which is one of the possible realisations at time t,a' stePs  , if the investor does 

convert at node (i, j). The final value of the convertible bond at node (i, j) is the value 

, which is the optimal value to the investor between the holding value Viht  and the 

converting value ViT 

In the cases where the convertible bond is callable, then the call value at any node 

j) is denoted as Viet  , while in the cases that the convertible bond is puttable, then 

the put value at any node (i, j) is denoted as Vi i:t  . In this implementation, a convertible 

bond is allowed to be callable and puttable at the same time and at the same node. 

However, no calls or puts can be active on the expiration date since the value of the 

convertible is defined by its redemption value. The put value at any node (i, j) is 

calculated based on the following equation. 

V P  = V PS  j 	k 

V = 0 

t ka,PS ,SD < ta,steps < t ka,±Pi S ,ED 	< k (nps. 
,dl E [0, N — 1], Vj E [— i] 

otherwise (no put is activated) 

(Eq.7.1.1) 

In the case of the call price Viet  , the accrued interest has to be taken into account as 

denoted in the following equation. 

vici  = vkcs tk 	— 1, 	— '
a,CS ,ED 0 < k 	n 1+1 

a,CS,SD < a ,steps < t 	 < ( cs  —1) 	, 
,Vie [0,N —11,Vje[—i,i] 

V,.`J = 0 	otherwise (no call is activated) 

(Eq.7.1.2) 

If it is the case that there is a call and put active at the same time, then, usually, in 

these cases the call value is higher than the put value, locking in this way the price of a 
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straight bond (without optionality to convert) into the range between the two values, 

the put and the call value. However, in the case of the convertible bonds, the range is 

violated on the upward side because the conversion value comes into play since there 

is the optionality to convert to Equity. 

The exchange rate parameter X fe lb  will appear in the following equations without 

making any distinguish between dual currency and single currency convertible bonds. 

To simplify the calculations and description here, the exchange rates are set equal to 

one across all the steps in the case of a single currency convertible bond. In the case of 

a dual currency convertible bond, the parameter Xf ib  represents the forward exchange 

rate as was described in a previous chapter. 

Another important note to make regards the distinguish between "pure" stock values 

Sid  and "actual" stock values Si:1  . The pure stock values are the stock values that are 

included on the equity trinomial tree. As you can recall, those stock prices are the 

diffused stock prices based on an initial stock price that did not include the sum of the 

discounted discrete dividends (the sum of the discounted discrete dividends was 

subtracted from the initial stock price used in the diffusion). Adding the sum of the 

discounted discrete dividends at any step to the pure stock prices will result in the 

actual stock prices. 

S i 	r 	
s pas,steps 	Vi [0, N], Vj E [-- 	 (Eq.7.1.3) 

At all the nodes of all the steps, the conversion flag 	onvAlloxed is simply defined based 

on the following equation. Conversion is not allowed during the no-conversion period 

at the end of the convertible bond life which includes at least the maturity date. 

Conversion is also not allowed at the intermediate steps, the steps added between the 

calculations date and the calculations date plus one. As a reminder, these steps were 

added for improving the sampling performance of the tree and they have time step 

sizes smaller than one day. 

, Conversion Allowed at i: 	tContAlloxed .1  
Vie [0, N], Vj E [—i,i] 	(Eq.7.1.4) 

Conversion Not Allowed at i: AConvAlloned = 0 
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Probability Weighted Discounting 

For the cash-flows discounting, we follow the probability weighted discounting 

approach, which is an important notion already followed in the industry when there are 

risk-free and risky cash flows involved in a pricing framework. In the case of the 

convertible bond, the risky cash flows are a result of the bond-like features of the 

convertible bond, which are the coupon cash flows and the redemption (maturity) cash 

flow. The risk-free cash flows are a result of the equity-like features of the convertible 

bond, which is the conversion value — the stock price and the dividends. 

At each node, based on which is more optimal, the convertible bond price can either 

reflect the conversion value of the convertible bond or the holding value of the 

convertible bond. If the convertible bond value reflects the conversion value, then the 

forward risk-free rate — the forward risk-free discount factor actually - should be used 

for discounting it. In the case that the convertible bond reflects the holding value, 

things become more complicated because the holding value reflects all the possible 

future outcomes and these include cases where the conversion takes place at some 

point in the future and cases where no conversion takes place and the convertible bond 

is held to maturity. So, it is not clear which discounting factor to use, the risk-free or 

the risky one. 

To overcome this challenging situation, we are introducing another two parameters for 

each node on the tree, the flag Converted  and the probability iC Jt!nverted During the Si,i

backward induction, it is decided at each node whether to convert or not. If at a node it 

is decided to convert, then the flag rYiCinverted is set equal to one, otherwise is set equal 

tinverte d to zero. Then the probability of conversion 	is set as shown in the following 

equations. The initialisation of this process starts with setting both the flag and the 

probability for all the nodes at the maturity step equal to zero, since no conversion is 

allowed ever on the maturity date. 

A•Converted n  

Converted = 
1=N 

Vj e N, N] 	 (Eq.7.1.5) 
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iC'oi nverted = 0 

• Converted =1 

Converted = AConverted 
j 	

x i
,u 

if decided to hold 

if decided to convert 

n 	Converted  
/11, j+1

)+i gi±ij  

Calculating the CB price and the Sensitivities 

V ie [0,N — 1],V j E [— 	(Eq.7.1.6) 

Converted 	 Converted 
)+ ',d 	

T
z+1, —I (Eq.7.1.7) 

Vi 	[0, N — 	Vj e [— 	] 

The probabilities 7rC(inverted  are employed in the discounting process, and this is 

demonstrated in the descriptions to follow for the rest of the calculations. 

Calculations at Maturity:  (i = N) 

Backward Induction begins with the calculation of the convertible bond price at the 

last step, which is the step that corresponds to the maturity date. The holding value of 

the convertible bond is calculated as the sum of the redemption value and any possible 

coupon cash flows on that day. 
vh = pRd i fpn,steps 
' 1, 

The final convertible bond value is simply calculated based on the following equation: 
vi bd 	 = 	E  [ 	N i 	 (Eq.7.1.9) 

Calculations at the rest of the steps:  (i = (N —1)—> 0) 

Starting from step i = N —1 and working backwards on the tree until step i = 0 

(inclusively), the following calculations are repeated at each step. 

First, the conversion value is calculated as depicted by equation (7.1.4) above and re 

vi c jonv RCR x 	x  s 	 fonvAllowed = 1 

vc cony = 0 	 = 0  i j   E [— i,i] 	(Eq.7.1.10) 

The holding value is calculated as the probability weighted sum of the connected 

nodes in the following in time step, plus any coupon values. Three intermediate values 
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Vi,hj" 	and 	, are calculated before the final value v", is established. The 

probability of converting is also taken into account. 
vh, = KirConverted v 	RA,steps)± 	 Converted )X  fdRisky,stepsk( 

	 1+1  V j E i,j 	
(Converted 

— J". /+1 	"i+i 4+1 	J"i+1 

(Eq.7.1.11) 
,h m 	K Converted 	RFb,steps)+  + 	)x  fd Risk y 	)ix p  X ja 	 E = 	 i+i 	" i,j 	i+I 	 Ind 	1+1,j 

(Eq.7.1.12) 
vrihid = KffiC±(17eirted x  fdiR+Fi b,steps)+  0+  Converted )X Li Risky,stepslix 	 E j-1 	J"i+i 

(Eq.7.1.13) 
vh.  = 11Cpn,steps +V h

:`[ 

	

+vh:tn +vh:d 	E [— i,i] 	 (Eq.7.1.14) 

Then, according to the presence of calls and puts, the final convertible bond value at 

each node is calculated based on equation (Eq.7.1.15). The convertible bond is initially 

set equal to the minimum of the holding value and the call value (if the convertible 

bond is callable at that step). Then, the result is compared to the converting value and 

the put value (if the convertible bond is puttable at that node), and the maximum of the 

three values is used as the final convertible bond value at that node. In the absence of 

any calls at a node (i, j), then the parameter Ve j  is simply not included in the 

equation. In the same manner, in the absence of any puts at a node (i, j), then the 

parameter 17,"; is simply not included in the equation. Finally, in the cases where no 

conversion is allowed at a node (i, j), then the parameter Vi cj"" is simply not included 

in the equation. Actually, 1717 is equal to zero in the cases where no conversion is 

allowed, so the result of the following equation is not affected anyway. 

	

Vb = max(vic7v ,w:i,minkhi,vi,c 	v  je 	 (Eq.7.1.15) 

Once the above calculations have been performed at all the steps, the value of the 

convertible bond on the calculation date, VcD  , is set equal to the value Vobc, which is 

the value of the convertible bond at the zero step of the tree. 
vCD =v0b0 	 (Eq.7.1.16) 
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Dual Currency Convertible Bonds 

As it has already been pointed out, for the case of dual currency convertible bonds the 

forward exchange rate X,elb  at each node is not equal to one like in the case of single 

currency convertible bonds. The calculation of the forward exchange rates for dual 

currency convertible bonds has already been presented in the previous chapter. 

Another difference in the approach for the pricing of the dual currency convertible 

bonds is in the discounting process. The risk-free cash flows for dual currency 

convertible bonds are discounted based on the equity (foreign) currency. The risky 

cash flows are still being discounted based on the risky discount factors which 

correspond to the bond (domestic) currency. Equations (7.1.11) to (7.1.13) are 

replaced by the following three equations when pricing dual currency CBs. 
h,n 	K,Converted 	RFe,steps)+((i „Converted),, fA RLsky,steps )ix  

i,j 	 L4 1+1 	 (+14+1 	 "i+1 	

17b 

v  i+1,j+1 

T7h m 	Converted 	c_7 RFe,step.$) 	Con ve et ed )x  fdiREcsky,steps 
V 	= 	 x .1" i+1 	

1_ 	,7 
 

lh 
p,,, XVi+1,j 

h d 	K Converted „, 	RFe,steps)± 	 Converted x  fdiR+riisky,steps kt, p  
X v = 	Aftii+1 	-,+1,, 	 d,i 	1+1,j-1 

(Eq.7.1.18) 

Vj E 	i] 

(Eq.7.1.19) 

7.2. Backward Induction for Resets and Conditional Calls/Puts 

Conditional Calls 

When conditional calls are present, then there are some modifications in the 

calculations. In the previous chapter, it was described how the conditional calls are 

accounted for. Essentially, the probability of triggering a conditional call 47"
er,Call 

was calculated for all the nodes j) that fell within the period of a conditional call. 

To complete the calculations for accounting for a conditional call, we need, for each 

node in the conditional call period, to calculate the value of the convertible bond in the 
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case that the call is activated — triggered — and in the case that is not activated. Then, 

the final convertible bond price at that node will be the probability weighted sum of 

the two values, based on the probabilities Trjigger,Call and (1_ gTrii gger, Ca 11 ). 

In more detail, let us consider the general case of a node j) which falls within the 

conditional call period. Let us also denote the convertible bond price at that node with 
-,,b,CallTriggered the call activated as vi.j 	 and the price without the call activated as 

iCallNotTriggered  Then, equation (7.1.15) is used as described in the calculations above, 

once with a call value Vici  which is calculated by adding the conditional call's call 

value and the accrued interest, and once without the call value. This is also shown by 

the following equations. Like before, the conversion value is included in the equations 

if conversion is allowed and the put value is included in the calculations if a put is 

activated. 
vb.CallTriggered = rnav (vconv v.tt m 

...
in(v.h  vc )) 

1,j 	 1, j 	r ' ,if". V  i,j, 	
. 

 (Eq.7.2.1) 

vh,CtzlINotTriggered max (V. (1!" VP. , ,j, VP .) 	 (Eq.7.2.2) 

The final value of the convertible bond at a node within the period covered by a 

conditional call is calculated as follows. 

	

V
b 	,Trigger,Call vb,CallTriggered 	2.t.Trigger,Callvb,CallNotTriggered 

	

,j 	'1,j 	 ij 	 t,j 	 i,j 

Conditional Puts 

During the Backward Induction process, the treatment of the conditional puts is in 

exactly the same fashion as that for the conditional calls. To complete the calculations 

for accounting for a conditional put, we need, for each node (i, j) in the conditional 

put period, to calculate the value of the convertible bond in the case that the put is 

triggered and in the case that is not. Then, the final convertible bond price at that node 

will be the probability weighted sum of the two values, based on the probabilities 
giT,riigger,Put and 	— ,Trigger,Put). 

j 
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Let us consider the general case of a node j) which falls within the conditional call 

period. The convertible bond price at that node with the put activated is denoted as 
vb,PutTriggered and the price without the put activated is denoted as V.b,PutNotTriggered  Then, j 

equation (7.1.15) is used as described in the calculations above, once with a put value 

Vi"j  and once without the put value. This is also shown by the following equations. 

Like before, the conversion value is included in the equations if conversion is allowed 

and the call value is included in the calculations if a call is activated. 
b,PutTriggered = max (V.ct!ny V. P min (Vh. V.c J 	V t, j 	, t, j 	 t, j 	t,j 

v  b,PutNotTriggered = 	cony ,,„‘„; 	ill v  c 
j 	 aA V j thin v 	:I 

(Eq.7.2.4) 

(Eq.7.2.5) 

The final value of the convertible bond at a node within the period covered by a 

conditional put is calculated as follows. 

,1 
 b 	rigger, Put vb,PutTriggered 	21.Trigger,Put ). b,PutNotTreggered 
j 	+ , I 	t, j 	 z. j 	v j 

Combining Conditional Puts and Calls 

To cover the extreme, but plausible, case where the period of a conditional call and the 

period of a conditional put overlap, we consider a general node 	 j) which falls in 

this overlapping period. We calculate four possible values: The convertible bond price 
V  bCallPutTriggered at that node with the conditional put and the conditional call both ,3  

triggered, the convertible bond price Vb1CallTrIggered at that node with the call activated 

and the put deactivated, the convertible bond price V 
b,PutTriggered  at that node with the 

put activated and the call deactivated, and, the convertible bond price vib 3,NoneTriggered at 

that node with both the put and the call deactivated. 
b,CallPutTriggered 	 co 

h  V.' V ; 
= 

l' J 	 a 	V  . 
	v 	min( 1V.  j ,  r, j ))  

Y 	 i 
b,CallTriggered = max (17.c"v min (V.h. d 	id' i, / 

VV b
'

PutTri
gg

ered 
= max(Vc'" V.". V h  ,. j 	 r j 	1, j , 	z,j 

v  b,NoneTriggered = max(V.'!" ' V.h. Y i.J i,/ 

(Eq.7.2.7) 

(Eq.7.2.8) 

(Eq.7.2.9) 

(Eq.7.2.10) 
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The final value of the convertible bond at a node within the period covered by both a 

conditional call and a conditional put is calculated as shown next. 

	

v
n 	_ (,Trigger,Call ,Trigger ,Put .17 b,CallPutTri ggered 

	

, j 	" j 	"'I, j 	 j 

▪ 	((

(
• 71.T.  rigger,Call (-1 	,Trigger,Put ). 	b,CallTriggered 

1, j 	1 	i,1 	 j 
.1 	

"
,Trigger,Call) ,Trigger,Put 	b PutTriggered 

1 	r, j 	 j 	V  j 
4. 	c  rigger,Call ). 	 Trigger, Put vi yoneTriggerect) 

(Eq.7.2.11) 

Resets 

Resets have been fully accounted for in the Forward Induction process. The only 

comment to make for the calculations during the Backward Induction process 

regarding the resets, is on the use of a different conversion ratio at each node instead 

of a fixed strike like in equation (7.1.10). It was shown in the previous chapter how the 

strike k J  is calculated for each node (i, j) on the tree when reset dates are present. 

This means, that for each node (i, j), a conversion ratio KR must be calculated based 

on equation (7.2.12), where P F  is the Notional (Face Value). Finally, equation 

(7.1.10) is changed into the form of equation (7.2.13) when resets are present. 

cony 
	CII Vi j 	= Ri 	X 

17c (!nv = 0  ,,j i  

RCR 

elb 
	 * X Si 

F p 
 

ontAllowed i  	= 

ConvAllowed = Vi E i, i] 

(Eq.7.2.12) 

(Eq.7.2.13) 

Ki , 

7.3. Sensitivities 

At the end of the previous section, a convertible bond price was established based on 

the current input information from the contract and the market. Even though the 

contract information are fixed and do not vary for an instrument, market information 

are subjected to changes and variations. It is of the greatest importance to investors, 

issuers and analysts to be able to quantify these variations, or the sensitivity of the 

instrument to the various market quantities that affect the instrument's price, and, as 

110/188 
Implementing Arbitrage-Free Models 	 CQF, Imperial College 
for Pricing Convertible Bonds 	 Michalis Simillis, 2004 



Chapter 7 	 Calculating the CB price and the Sensitivities 

an extension, to use these sensitivities for creating positions for hedging most of the 

factors that the price of the instrument is exposed to. 

This section can be considered as a step further to the calculation of the convertible 

bond price. The sensitivities of the convertible bond to the share price and the 

volatility of the share price are studied, as well as the sensitivity to the decaying of the 

time to maturity. 

Delta and Gamma 

The delta is defined as the sensitivity of the convertible bond price to fluctuations in 

the underlying share price. The gamma is defined as the rate of change of the delta 

with respect to share price fluctuations. The delta and gamma sensitivities are 

calculated in this pricing framework based on two methods. 

Numerical Differentiation 

We use the term numerical differentiation to refer to the calculation of the sensitivities 

when the pricing framework is run more than one times, with the additional runs 

carried out with shifted parameters. In the case of delta, after the convertible bond 

price V c°  has been established based on the current market information, it is 

recalculated again twice based on the same information but with a shifted share price. 

We are considering a shift of 0.1% applied to the pure share price on the calculations 

date as shown in equation (7.3.1). The total shift in the equity value of the convertible 

bond is shown in equation (7.3.2), and this is simply the share price shift multiplied by 

the conversion ratio. The convertible bond price is recalculated based on the two 

shifted share prices and the two new calculated convertible bond prices are denoted as 
vCD,up and V cD'd'n  . The delta is calculated as demonstrated in equation (7.3.5). 

	

AS = 0.001 x S CD,NoDivs 	 (Eq.7.3.1) 

ASTotal = 
RCR x As, 	 (Eq.7 .3 .2) 

	

sCD,up = sCD,NoDivs , A 
Lia

cr 	 (Eq.7 .3.3) 

	

sCD,down = sCD,NoDivs AS 
	

(Eq.7 .3.4) 
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(Eq.7.3.5) 

The gamma equation is derived by starting from the definition of equation (7.3.8) 

where gamma is expressed as the rate of change of the delta with respect to share price 

fluctuations. The definitions of equations (7.3.6) and (7.3.7) are pre-requested for the 

process. The parameters are also presented diagrammatically in figure (7.1). 
v CD,up _VCD 

A" t' ND 
AS Total 

v CD 	CD ,down 
down 

V CD _VCD, 
 A ND = 

clown F  = 	_ "ND  

A S  Total 

vCD,up _VCD VCD _vCD,down 

F  = 'ND 'ND  = 	AS Total 	AS  Total  
Aup — Adown 

AS Total 	 AS  Total 
V CD, up _ VCD — (v CD _vCD,down)v CD, — 2 x v  CD + v CD . dawn 
 = 

\ 2 
( AS  Total)2 	 ( AS  Total 

v  CD ,up 2 XV CD v  CD ,down 
F= 	

V' 	 Total )2  

AS  Total 

(Eq.7.3.6) 

(Eq.7.3.7) 

(Eq.7.3.8) 

(Eq.7.3.9) 

AS <-÷ 	1, As 	s  CD , NoDivs 

CD ,NoDivs 1 	S 
s  C D ,d own 	sCD,up 

Figure (7.1) Delta and Gamma Sensitivities 
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Tree Embedded Sensitivities 

Based on this approach, instead of re-calculating the convertible bond price by re-

running the whole pricing framework for shifted share prices, we use the calculated 

convertible bond prices at the first step after the calculation date. Following this 

method, the delta sensitivity is calculated based on the following equation. 
v1b1  _ vib 

A= 

	

	  ( RcR x  xrb x 
11 \ 1

)_ ( R R xelb x s* c 
-1 	t  

(Eq.7.3.10) 

As it can be observed, the conversion value has been used in the above equation. This 

is the general case of the equation and covers the cases of both single currency CBs 

where the exchange rate is simply Xi" =1 and dual currency CBs where the forward 

exchange rate Xr b  is calculated based on the interest rate differentials of the two 

currencies. In addition, it covers the case where there are resets and the conversion 

ratio could be different across the nodes, as well as the cases where there are discrete 

dividends, since it uses the actual stock prices which include the sum of the discounted 

discrete dividends in their value. 

Since we have identified that the conversion value of the convertible is used in the 

calculation of the delta, equation (7.3.10) is re-written as follows. 

A 

For the gamma calculation, the necessary 

Aup 

Adown 

F = 

	

V —  b 	V b  • 1,1 	1,-1 = 

derived as follows. 

(Eq.7.3.11) 

(Eq.7.3.12) 

(Eq.7.3.13) 

(Eq .7.3.14) 

v c 	_viiconv 1   

equations are 

V"—V"  1,1 	1.0 = 

	

vIelonv 	c (o) nv 

Vb  — V h 
= 	1,0 	1,-1 

Qup — Adown Qup Adown 
 

wr 	iy _ vcorr 

vcobv 
ri3O 

vconv — vconv 
1,1I,0 Vc"v — Vc m̀v  vcoav 	1,0 	1,1 / Vcry  i Vriv 

2 ,1,0 2 2 
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r 	cony 	conv 
V1,1 	— V1,-1 

I)  —VI' 	V1 I0 	1 1,1 	1,0 
vi.cionv _ycoonv 	y o  conv _1 1conl y 

vnv• 	ny 1c _vco 1  

Adorn 

(Eq.7.3.15) 

2 	J 	 2 

The tree embedded sensitivities is preferred over the numerical differentiation method 

because of the following two main reasons (also outlined in reference [35]): 

• Numerical differentiation involves running the trinomial tree for an additional 

time in order to obtain the delta sensitivity and for an additional extra time, two 

additional times in total, in order to calculate the gamma sensitivity. This 

means that the numerical differentiation approach is significantly more 

computationally demanding than the tree embedded sensitivities approach. 

Actually, for the latter, the additional computations involved are neglible 

compare to the overall computations of the tree. 

• In the case of the numerical differentiation, the resultant delta sensitivity is a 

ladder-like function of the underlying value, in our case, the conversion value. 

This means that the delta function of the conversion value is not differentiable 

at the kinks of the ladder; hence we can not actually calculate a gamma value. 

Both drawbacks of the numerical differentiation are significant. For these reasons it 

was decided that the default calculation of the sensitivities was based on the tree 

embedded sensitivities approach. Finally, it should be pointed out that because the 

convertible bond prices and the conversion values used in the calculations of the delta 

and gamma sensitivities are located at the first step after the calculations date step, this 

means that the calculated sensitivities correspond to that point of time which is ta'IstePs 

and not to the calculations date. In other words, an approximation is involved when 

following the preferred approach, since we are approximating the sensitivities on the 

calculation date by using the sensitivities of another point in time. The smaller the first 

time step Atiste,Pc is, the smaller the approximation error becomes. 
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Theta 

Calculating the CB price and the Sensitivities 

   

The rate of change of the convertible bond price with respect to the passage of time is 

referred to as the theta sensitivity, sometimes also referred to as the time decay of the 

convertible bond price. By construction, the theta sensitivity is calculated based on the 

tree embedded sensitivity approach. The time shifted value of the convertible bond 

ybo  is there ready to be used. 

vb vb 
=  1,0 0,0  

At  legs 
(Eq.7.3.16) 

Vega 

Vega is defined as the sensitivity of the convertible bond price to changes in the 

volatility of the underlying stock price. In the implementation of the pricing 

framework of this thesis, Vega is calculated as the change in the value of the 

convertible bond for a parallel upward shift to the volatility structure of 1%. A new 

convertible price VcD"gal%  is calculated after the actual volatility structure irf reP' is 

replaced by its shifted version Crsteps,1% and the pricing framework is run for one more 

time. 

Vega =V CD  ' vegal%  — Cv  D 	 (Eq.7.3.17) 
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CHAPTER 8 

EVALUATING THE PRFORMANCE OF THE MODEL 

Having established the pricing framework of the convertible bond in the previous 

chapter, we are now in position to evaluate the resultant model and study various 

aspects of the convertible bond. For this task, we follow two approaches, the spectrum 

analysis and the scenario analysis and simulation, each approach offering different 

insights to the developed model's assumptions and output parameters. 

The characteristics of a dummy convertible security were defined and used throughout 

the simulations. This security is a GBP (British bound) denominated 5-year 

convertible bond with a face value and redemption value both equal to 1000. The issue 

date of the security is the 16/01/2003 and the expiration date is the 30/01/2008. The 

initial conversion ratio is equal to 20 resulting in an initial strike equal to 50, and the 

no conversion period is equal to 5 days. The valuation date is the 18/02/2003, and the 

share price of the underlying of the CB on that date is assumed to be equal to 40.2, 

meaning that the CB is slightly out of the money. The volatility term structure and the 

continuous term structure of the underlying security are included in the next table. 

TABLE T.8.1 
Share Price Volatility Continuous Dividend Yield 

Structure Structure 

Date Volatility (%) Date Continuous  Dividend Yield (%) 
19/02/2003 20 19/02/2003 1 
12/03/2003 21 12/03/2003 1.1 
10/03/2004 22 10/03/2004 1.2 
14/01/2005 23 14/01/2005 1.3 
16/04/2006 23.5 16/04/2006 1.35 
19/04/2007 24 19/04/2007 1.4 
17/10/2008 24.5 17/10/2008 1.45 
18/05/2009 24.75 18/05/2009 1.475 
20/03/2010 25 20/03/2010 1.5 
19/07/2011 25.15 19/07/2011 1.515 
20/01/2031 25.25 20/01/2031 1.525 
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The characteristics of the security presented up to this point were kept fixed 

throughout the simulations. However, there is a significant range of characteristics that 

are outlined next which are included in the definition of the security only if it is stated 

so. For example, the default case is that the security is a zero-coupon security. For the 

simulations that it is stated that the security is a coupon-paying security, a coupon 

schedule is employed which is defined based on a first coupon date set as the 

16/01/2004, a coupon frequency of once per year (annual) and an overall annual 

coupon rate of 2%. The inclusion of coupon payments increases the bond floor level 

and this increase is proportional to the coupon rate. This is demonstrated in the 

following graph. 

Figure (F.8.1) Bond Floor (Straight Bond Value)  
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It is also the default case that the convertible bond is a single-currency security. In the 

cases that it is stated that the security is a dual currency one, then the currency of the 

underlying security is assumed to be the dummy currency whose interest rate and 

discount factors curves were presented and calculated in chapter 3. The exchange rate 

for translating the equity currency (dummy currency) units to the bond currency units 

(GBP) is assumed to be equal to 0.5 on the calculations date. Of course, the exchange 

rate on the dates corresponding to the step dates of the trees are calculated based on 

the interest rate differentials of the two currencies, as it was shown in the previous 
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chapters. The following graph presents the exchange rate evolution with time when the 

initial exchange rate is equal to 0.5 and the interest rate differentials are defined based 

on the two interest rate curves presented in chapter 3. 

Figure (F.8.2) Exchange Rate for translating Equity currency units to 
Bond currency units 
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Discrete dividends schedule can be included in the implemented pricing framework. 

Nevertheless, the default security does not include a discrete dividends schedule and 

the discrete dividends schedule presented in the next table, table (T.8.2), is only 

included in the pricing only in the cases that is specified so. The evolution of the sum 

of the discounted discrete dividends is presented in figure (F.8.3). 

TABLE (T.8.2) 

Discrete Dividends Structure 
Date Dividends (Value) 

30/03/2003 0.11 
26/03/2004 0.18 
28/01/2005 0.45 
28/04/2006 0.65 
29/04/2007 0.75 
25/10/2008 0.92 
24/05/2009 0.98 
24/03/2010 1.04 
21/07/2011 1.11 
20/01/2012 1.2 
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Figure (F.8.3) The evolution of the Sum of Discounted Discrete 
Dividends 
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The default security is not callable, puttable or resetable. However, in the cases that it 

is stated otherwise, the call schedule, the put schedules and the reset schedule included 

in the following tables, are employed. In the schedules, calls and puts without a trigger 

are hard calls, while in the case of resets there may or may not be an averaging period. 

TABLE T.8.3 
Call Schedule - Hard Calls & Soft (Conditional) Calls 

Call Value Starting 
Date Ending Date Trigger (%) Grace Period 

(days) 
Prevailing Strike (1) 
or Initial Strike (0) 

1040 16/01/2004 15/01/2005 115 12 1 
1030 16/01/2005 16/01/2006 
1020 17/01/2006 17/01/2007 
1020 18/01/2007 18/01/2008 

TABLE T.8.4 
Put Schedule - Hard Puts & Soft (Conditional) Puts 

Put Value Starting 
Date Ending Date Trigger (%) Grace Period 

(days) 
Prevailing Strike (1) 
or Initial Strike (0) 

980 19/07/2005 19/07/2006 90 10 1 
990 20/07/2006 20/07/2007 

1000 21/07/2007 17/01/2008 

TABLE T.8.5 
Reset Schedule 

Date Lower Limit Reset 
Range (%) 

Upper Limit Reset 
Range (%) 

Number of Days 
for Averaging 

Prevailing Strike (1) 
or Initial Strike (0) 

15/04/2005 75 100 25 1 
12/10/2006 85 115 
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8.1. Spectrum Analysis 

In this thesis, spectrum analysis for a quantity is performed by calculating the value of 

the quantity for a given range of share price values. Each of these share price values is 

input to the developed pricing framework as the share price on the calculation date and 

the returned value or output is one of the realisations of the quantity which can be the 

convertible bond price or any of the sensitivities. 

Three inputs are requested in order to specify which stock prices we need to calculate 

the respective realisations of the quantity for. The starting stock price of the spectrum 

is denoted as S cp' ssP  and the ending stock price of the spectrum is denoted as 
sCD,ESP while the number of samples is denoted as M . It worths reminding that the 

superscript "CD" denotes that the value corresponds to the calculation date defined in 

the pricing framework. The floor (minimum) value for the starting stock price is 

denoted as S cD' ssP' = 0.0001 and the final starting stock price S'''cD,SSP employed is 

defined based on equation (8.1.1). However, in the cases where a discrete dividends 

schedule is included, this minimum value is offset by the sum of the discounted 

discrete dividends. 
s*,CD,SSP = sCD,SSP 

s*,CD,SSP = sCD,SSP,min 

Sc)if 	
,SSP > sCD,SSP,min 

otherwise 
(Eq.8.1.1) 

In order to carry out the spectrum calculations successfully, it must holds that the 

ending stock price is greater than the starting stock price and that the number of 

samples is greater than 1. These conditions are represented by the following two 

equations. 
sCD,ESP > s*,CD,SSP 	 (Eq.8.1.2) 

M > 1 
	

(Eq.8.1.3) 

Based on these three input values, the spectrum space step AS sPectrwn  and, 

consequently the stock prices employed in the spectrum are established. These stock 

prices are denoted as S CD,spectrunt = Is  ,c11 D6sce2c fru mm 1 

120/188 
Implementing Arbitrage-Free Models 	 CQF, Imperial College 
for Pricing Convertible Bonds 	 Michalis Simillis, 2004 



Chapter 8 	 Evaluating the Performance of the Model 

cCD,ESP s*,CD,SSP As  spectrum = 	  (Eq.8.1.4) 
M —1 

soCD,spectruni = s*,CD,SSP 

(Eq.8.1.5) sCD,spectrum = CD,spectrum ± As  spectrum 	m c  [I, m— 
 
 1] 

m " m--] 

The starting stock price of the spectrum and the ending stock price of the spectrum 

were set equal to 0.01 and 100.01 respectively, while the number of samples was set 

equal to 100. The resultant spectrums of the convertible bond price, the option only 

value, the delta, the gamma and the theta, for the zero-coupon convertible coupon (the 

default case) are presented in figures (F.8.4) to (F.8.8). The respective spectrums for 

the coupon-paying convertible bond, the convertible bond with a discrete dividends 

term structure, and the dual currency convertible bond are included in these figures as 

well. 

Coupon Schedule  

The main effect of the inclusion of a coupon schedule in the features of a convertible 

bond is on the level on the bond floor, as it was also pointed out earlier. It also results 

in reducing the absolute level of the sensitivities delta, gamma and theta, of the 

convertible bond. 

Discrete Dividends term structure  

Based on the resultant spectrums, it can be concluded that the inclusion of a discrete 

dividends affects the valuation of the convertible bond. This was expected since the 

inclusion of discrete dividends results in jumps in the share price at the nodes 

corresponding to the discrete dividends dates. 

Dual currency 

Since for the single currency convertible bond the conversion ratio was 20, setting the 

exchange rate equal to 0.5 and the conversion ratio for the dual currency convertible 

bond equal to 40, the parity value of the convertible bond when translated to the bond 

currency remains unchanged. However, this is true only for the calculation date since 

for the future dates the exchange rate does not remain fixed at 0.5 until maturity of the 

convertible bond. Actually, the exchange rate moves based on the interest rate 
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differentials as it was demonstrated in figure (F.8.2) for the two yield curves employed 

in this thesis. This has an effect on the convertible bond pricing as it is shown in the 

following five figures and it should be accounted for. 

Figure (F.8.4) Convertible Bond Price Spectrum 
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Figure (F.8.5) Option Only Value Spectrum 
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Figure (F.8.6) Delta spectrum 
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Figure (F.8.9) Convertible Bond Price spectrum (Calls) 
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Call Schedule  

Including a call schedule results in a negative portion of option value (positive for the 

issuer, negative for the investor). In the case of the single-call convertible bond, the 

call is a hard call at 1000 starting on the 15/01/2005 and ending on the 29/01/2008. 

For the case of the all hard calls convertible bond, the call schedule is used as defined 

previously with the difference that all calls are considered as hard calls. 

Figure (F.8.10) Option Only Value spectrum (Calls) 
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Figure (F.8.13) Theta spectrum (Calls) 
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Figure (F.8.11) Delta spectrum (Calls) 
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Put Schedule  

Including a put schedule results in an additional positive portion of option value 

(negative for the issuer, positive for the investor). In the case of the single-put 

convertible bond, the put is a hard put at 980 starting on the 15/01/2005 and ending on 

the 29/01/2008. For the case of the all hard puts convertible bond, the put schedule is 

used as defined previously with the difference that all puts are considered as hard puts. 
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Figure (F.8.19) Convertible Bond Price spectrum (Resets) 
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Reset Schedule  

Including a reset schedule results in an additional positive portion of option value 

(negative for the issuer, positive for the investor). In addition, the overall shape of the 

sensitivities is altered significantly. In the case of the single-reset convertible bond, the 

reset is a non-averaging reset on the 15/04/2005 resetting in the range 75% to 100%. 

For the case of the all non-averaging resets convertible bond, the reset schedule is used 

as defined previously with the difference that no averaging is performed for any of the 

resets. 

Figure (F.8.20) Option Only Value spectrum (Resets) 
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Figure (F.8.21) Delta spectrum (Resets) 
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All Features  

The all features convertible bond includes the call schedule, the put schedule and the 

reset schedule as they were defined above. This is the most complicated configuration 

of all the convertible bonds simulated and demonstrated the precision limitations of 

the implemented model in calculating the sensitivities when the security is very 

complex. 
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Figure (F.8.28) Theta spectrum (All Features) 
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Producing the CB price spectrum based on delta and gamma 

Theoretically, the CB price spectrum can also be produced based on the delta and 

gamma sensitivities. So, instead of producing the CB price spectrum by running the 

pricing framework for each stock price in the spectrum as we did when producing the 

numbers for the previous figures, we employ the delta A and gamma F sensitivities, 

as well as the convertible bond price Vb'c°  corresponding to the current share price 
s  CD We simply calculate the convertible bond price corresponding to the stock prices 
sCD,spectrum = mCD0T2ctru xtni 	of the spectrum by using the sensitivities to calculate the 

change in the CB price when the current share price S c°  change to each stock price 

in the spectrum. We denote the actual convertible bond price spectrum (CB prices 

calculated by running the pricing framework for each stock price) as 
,,b spectrum = b,spectrum 	the convertible bond price spectrum produced based on the m=0,1,2 	M-1 

a delta sensitivity as Vb,delta 
— 

b,del
1
t
2 M-11, and the convertible bond price spectrum „ , 

produced based on the delta and gamma sensitivities as Vb
'

gamma 
= 117 b'ga"" m=0,1,2, ,M -11* 

If the parameter RcR  denotes the prevailing conversion ratio on the calculations date, 

then the conversion values Vc°"= 	 corresponding to each of the stock 

prices of the spectrum can be calculated. 
v  cony = R  CR x s  CD,spectrum 	m = 0,1,2,..., M —1 	 (Eq.8.1.6) 

The change in the conversion value c5Vc°"y  = 	, M-1} with reference to the 

current share price can then be calculated as shown in the next equation. 
nc;onv = vnczonv (RCR x  sCD) 	

= 0,1,2,..., M — 1 	(Eq.8.1.7) 

Based on the change in the conversion value for each point on the spectrum, the 

spectrum can now be produced based on the delta and gamma sensitivities. 
vb,delta = vb,CD + x  (5vncrtv) 	

M = 0,1,2,...,M —1 	(Eq.8.1.8) 

vb,CD (Ax  rvtiv 
c 	)±(-21  x x 6v,,c,"nvy) 	in= 0,1,2,..., M — 1 	(Eq.8. 1 .9) 
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Figure (F.8.29) Producing the convertible bond price spectrum based 
on the sensitivities 
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The resultant numbers are presented graphically in the next figure. As it can be 

observed, if both sensitivities are employed, then the produced spectrum is closer to 

the actual spectrum. This also demonstrates that the pricing framework performs 

successfully in calculating the sensitivities of the convertible bond. Hence, this 

sensitivities output from the calculations can be successfully be used for hedging 

positions in the convertible bond priced. The performance of the pricing framework 

with respect to the calculation of the delta and gamma sensitivities is further studied in 

the following section. 
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8.2. Scenario Analysis and Simulation 

The resultant pricing framework was developed based on methods assuming 

continuous time parameters and conditions. A very strong and significant assumption 

was that the investing decisions, as well as the arbitrage-free conditions employed in 

the stochastic process of the stock, are part of a continuous time world. To be more 

precise, the initial derived equations governing the behaviour of the developed model 

are consisting of continuous time parameters, and then these equations and parameters 

are transformed to discrete form in order to carry out the numerical method — trinomial 

tree — for the pricing of the convertible method. This discretisation process mainly 

consists of the assumption that the continuous time parameter dt can be replaced by a 

very small time step At , and as At approaches zero, the calculations become more 

precise since the discrete form approaches better the continuous form of the model. 

As a result of the continuous form of the model, the stochastic process of the 

underlying stock is based, among other assumptions, on the assumption that the 

replicating portfolio employed for calculating the transition probabilities is 

continuously re-balanced as a re-action to changes in the share price. This assumption 

is of course extended to the discrete form of the model, where it is assumed that the 

replicating portfolio employed for the stock process is re-balanced at each step. The 

purpose of the scenario analysis carried out in this section is to study the effect of this 

assumption in the cases where actual re-balancing is taken less frequently than 

assumed, which is also the case in the real-world. The effect of this assumption is 

quantified by calculating the "re-hedging" error at maturity when performing Monte 

Carlo simulation with discrete re-hedging at each step of the Monte Carlo paths. 

The Monte Carlo employed in the calculations corresponding to both of the following 

sub-sections, involves simulating the stock price evolution from the calculation date to 

the expiration date of the convertible bond. In order to enhance the performance of the 

simulations, the Monte Carlo module was implemented based on the antithetic 

technique approach. 
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Theoretically — meaning based on the assumptions of the theoretical replicating 

portfolio governing the behaviour of the stock process - re-hedging takes place without 

affecting the bank account. This is the approach followed in the first series of 

simulations and presented in sub-section (8.2.1), while in sub-section (8.2.2) we 

consider the case where bank account can be altered in order to carry out perfect re-

hedging at each re-hedging point, assuming that in this way the re-hedging error will 

be reduced. 

We consider four different versions of the theoretical portfolio and denote these 

versions as TP1, TP2, TP3 and TP4, and four versions of the active trading approach 

and denote these as AT1, AT2, AT3 and AT4. Each version is explained as follows: 

• TP1/AT1: For these versions we assume that the convertible bonds position is 

hedged with a position in stocks (underlying of the convertible bond) and that 

convertible bonds are held to maturity. 

• TP2/AT2: For these versions we assume that the convertible bonds position is 

hedged with a position in stocks and that convertible bonds may be converted 

at any of the re-hedging points if that is considered profitable. This will result 

in unwinding the portfolio and all positions are translated to cash. 

• TP3/AT3: For these versions we assume that the convertible bonds position is 

hedged with a position in stocks and an options position (same underlying), 

and that convertible bonds are held to maturity. 

• TP4/AT4: For these versions we assume that the convertible bonds position is 

hedged with a position in stocks and an options position (same underlying), 

and that convertible bonds may be converted at any of the re-hedging points if 

that is considered profitable. This will result in unwinding the portfolio and all 

positions are translated to cash. 

For all the versions, it is assumed that the position in convertible bonds on the 

calculation date includes a number of convertible securities equal to n 03c  > 0 . First, 

the price of the convertible bond V b,CD  and the delta Ab,CD and gamma Fb 'c°  

sensitivities corresponding to the current share price S CD  are calculated based on the 

pricing framework at hand. The price of the option V w' CD  , and the delta Aw'cl3  and 
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gamma F'`'D  sensitivities corresponding to the current share price s CD  are also 

calculated based on the same framework. It is assumed that the option is on a single 

share, hence the conversion ratio of the option in equal to one. 

For versions TP1, TP2, AT1 and AT2, the number of shares n yh„r„ for hedging the 

convertible bond positions on the calculations date is defined based on the delta 

sensitivity of the convertible bond. Then, the cash account V "ch'cD  on the calculations 

date is defined as the sum of the values of the convertible bond position and the equity 

position. 
_ _ Ab,cp x R  CR x , n shares 	 "CBs 

V cash,CD =(n
CBs XV 1'4'1+ share.s. X S") 

(Eq.8.2.1) 

(Eq.8.2.2) 

For versions TP3, TP4, AT3 and AT4, the number of options n0p105  for gamma 

hedging the convertible bond positions on the calculations date is defined based on the 

gamma sensitivity of the convertible bond and the option. Then, the number of shares 

shares  for hedging the convertible bond positions and the options positions on the 

calculations date is defined based on the delta sensitivity of the convertible bond and 

the option. Then, the cash account Vcash' c°  on the calculations date is defined as the 

sum of the values of the convertible bond position, the options position and the equity 

position. 
ub,CD x  pp CR 

".\11CBs  
n options = 	F  w,CD 

= _(Ab,CD x  — CR 

	

R 	xnas)—(Aw'cp xnoptions ) n shares 

v cash ,CD =(n 	 n.hcires S CD  ) X  V 	)+ (fl 	XV w  'CD  )±( CBs 	 options  

(Eq.8.2.3) 

(Eq.8.2.4) 

(Eq.8.2.5) 

If the number of re-hedging points is denoted as N Hedging  , then the dates and 

corresponding times of the re-hedging points are denoted as ta'Hedging dpngNnedgmg 

and 	I lledging  = fleodfi7 ..,N  Hm 	respectively. All parameters related to the re-hedging 
ging 

points with index equal to zero, i = 0 , correspond to the calculations date parameters. 

In other words, LI'()Hedging = ta,CD The re-hedging points are set in such a way that the 
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Hedgin  time distances dtHedging = { 
at. 	g N 	between the re-hedging points are roughly t=0,1,2.. 	ned ,,„?   

equal. 

t inedging 

 = NumDaysPerYear 

dtHedging  = t Hedging t  CD = 
1=0 

o   

dt  Hedging  = # Hedging—  Hedging  
t 	 = 	N Hedging  

tin _Hedging 

(Eq.8.2.6) 

(Eq.8.2.7) 

i = 0,1,2,... N Hedgrng  

If the number of simulation paths is equal to M , then for each simulation path, the 

share prices S m 	
= 

{
c, Hedging

2, 	} is established for each re-hedging point g  rterfeirte  M -1 	m, — ,Hegi  01n2  

based on the diffusion process. Of course, it holds that S„H,e`giing2,...,A1-11.,=0  = S CD  . The 

diffusion process employs the forward volatilities (established based on the volatility 

term structure), as well as the forward rates, which are denoted as 

fr 
Hedging1 	

„ 
Hedging 	 Based on the later, the forward discount factors = fr 	 }. i=o,1,2,...,N„,,,„ 

fdf  Hedging  = icdc Hedging 	
girt 19 as well as the forward compounding factors 

fef 
fledging  = tfcf.Hoectig2ing N llovn,  }, are calculated. 

f
df  Hedging  = e- rxdt!" i   

fcf i
Hedgin

g=e 
 rxdrikM" 

i = 0,1,2,..., N Hedging  

i = 0,1,2,..., N Hedging  

(Eq.8.2.8) 

(Eq.8.2.9) 

,For each realisation of the share price S 
fledging  
m=0,1,2,.. 	= {sin71 ,1ed_gt n2g, 	 the following .. 	 ,Nmeqnig  

corresponding quantities are obtained by employing the convertible bond pricing 

framework: The CB prices V ni=0,/, 2,...,M-1  = 	 j=1 , 2, ,ArlledwIR 	the convertible bond delta 

Ab 
t sensitivities A m=0,1,2,...,m_1 = {-in 	 the convertible bond gamma sensitivities 

F
b 

—m=0,1,2,...,Ai -1 = {Fmb  ,i=1,2,. .,Nurderng 	the option prices V :=0, 1,2,...,M-1 = .,N Het/ Het/,gin 
the 

option delta sensitivities 4:=0,1,2,...,M-1 = 	 1/ and the option gamma 
Hrdging 

sensitivities Fm_0,1,2,...,A1-1  = 
tlrrleirtg 
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Based on the above values, re-hedging takes place at each re-hedging point of each 

path and the resultant quantities are the following: The number of shares 
shares shares 

n m=0,1,2„..,M —1 = 	 Hedging }, 
the number of CBs nCBs 	CBs 

m=0,1,2, ..,M —1 = n m,i=1,2,...,A1m,dgthg 	the 

{„ options number of options 	n Options  
m=0,1,2,...,M -1 — "tri,i=1,2,...,N 	and 	the 	cash 	account 

f 

cash 	 iv
m 	

cash 
=0,1,2,...,M 	

— 
	 Red.,*  } • 

Details on the re-hedging methods for each version are further presented in the 

proceeding sub-sections. However, for versions TP2, AT2, TP4 and AT4, conversion 

is allowed at the re-hedging points of the simulation paths and the approach is the 

same in the cases where unwind takes place. If the pricing framework returns a flag 

which denotes that is optimal to convert at a re-hedging point, then, the positions are 

unwind and everything is translated to cash as shown in the following equation. This 

means that at the proceeding points only simple cash compounding will be carried out. 

For versions TP2 and AT2 the number of options is always equal to zero. 
cash = 	Hedging 	cash 	CBs 	vh 	shares sy, s ,eidging 	(nniopjt 	x v mwi) 	(Eq.8.2. 10) jcji 	— 	nm,i-1 " 	 1i-1 "` 

On maturity date, all the positions are translated to cash. The share prices on maturity 

date are denoted as S ED = trEI—D0,1,2,...,M —1 the respective options prices are denoted as 

,ED = ni= w,ED 
 2 M-1 9 and the redemption value of the convertible bond is denoted as 

P Rd 
. The final cash account values Vcash' ED = 

m
cash

0 	M I 
,ED 	on the maturity date are , — 

calculated as follows: 

  

,
`

lledeng 
Nifrdging ) 	y jnCi.aNshnedgio 	CBs 	 ) Rd V 

ni ,N Hedging 

x  p 
 

 

v cash,ED = frmaz 
e 

m = {0 , 1 , 2 , M —1} 

  

   

„options 	v  w,ED 	„i shares 	ED m,N 11 ,,dging 	v m 	m,Nuedging X  m 

(Eq.8.2.11) 

The above equation holds in this exact form for the versions TP3 and AT3. In the case 

of the versions TP 1 , AT 1, TP2 and AT2 no positions in options are included, hence 

the parameter n
m 

ions is zero. In addition, for versions TP2, AT2, TP4 and AT4, for 
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some paths conversion may have taken place earlier at any of the re-hedging points, 

hence, on maturity, only simple compounding of the cash positions is involved. 

8.2.1. Theoretical Portfolio Approach 

For version TP1, re-hedging involves calculating the change in the value of the 

convertible bond position and then investing this amount in the shares position. In 

other words, the convertible bond position value is kept constant and unchanged and 

the number of CBs is re-calculated. Then, any profit (loss) is invested in (withdraw 

from) the shares position. For the cash account, simple compounding takes place. As a 

reminder, parameters with reference i = 0 correspond to the calculations date and are 

the same across all the simulations paths m = 0,1,2,...,M —1. The same equations hold 

for version TP2, with the difference that unwinding can take place at the re-hedging 

points if it is optimal to do so. 
CBs 	b 

CBs "m,i=0 m,i=0  n = mi m = {0,1,2,...,M 	i = {1,2,..., N Hedg,„g } 	(Eq.8.2.12) 

(n shares
m,i m,i-1  

)xv 
n  shares 	 n 	n 	v 

m,i 	 s  Hedging 
m,i 

m = {0,1,2,...,M 	= {1,2,..., N Hedging } 

v cash = fcf.Hedging x v n i  cash 

(Eq.8.2.13) 

m = {0,1,2,..., M —1}, i = {1,2,..., N Hedging 	(Eq.8.2.14) 

In the case of version TP3, the first step at the re-hedging points involves calculating 

the number of CBs based on the new convertible bond price and keeping constant the 

convertible bond position value. Then, the number of options required to delta hedge 

the convertible bond is calculated. Finally, the combined change in value of the 

convertible bond position and the warrant position is invested in (withdraw from) the 

shares position. For the cash account, simple compounding takes place. The same 

equations hold for version TP4, with the difference that unwinding can take place at 

the re-hedging points if it is optimal to do so. 
nCB.s xvh 

CBs 	m4=0 	m,=0 
nmi = m = {0,1,2,...,M 	= 	 (Eq.8.2.15) 
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Ab,cp x R  CR X 
options 

nm,i  Aw,cp 

 

m = {0,1,2,..., M —1}, i = {1,2,..., N Hedgmg 	(Eq.8.2. 16) 

 

(.shares x  Hedging )± K.CBs r,CBs )x v b t.L. K.options noptions)x v w 
shares 	 " rn,i 	 tn,i 	'`m,i n = 	  m.i 	 c  Hedging (Eq.8.2.17) 

V cash = fcf / 	m i  Hedging x vcash m 	 l  m = 	M —1}, 1 = 	N Hedg.8  (Eq.8.2.1 8) 

Figure (F.8.30) Probability Distribution of the cash account at 
maturity (5 rehedging points) - Versions TP1, TP2, TP3 and TP4 
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8.2.2. Active Trading Approach 

For version AT1, re-hedging is performed exactly in the same way that the initial 

hedging positions were set up. The number of convertible bonds is kept constant. The 

number of shares is defined based on the delta sensitivity of the convertible bond at 

each point. The cash needed to be invested in (withdraw from) the shares position is 

taken from the cash account (compounding is also carried out for the cash account). 

The same equations hold for version AT2, with the difference that unwinding can take 

place at the re-hedging points if it is optimal to do so. 

n'hare' =—Ont,ix  R" x nCBs 	 (Eq.8.2.19) 
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Figure (F.8.31) Probability Distribution of the cash account at 
maturity (5 rehedging points) - Versions AT1,AT2, AT3, AT4 
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v cash = ( f,f  Hedging v cash)  j.. K., shares 	.,,shares)x 	
J

1 
in,i 	Jui i 	 ' 	"m,i (Eq.8.2.20) 

In the case of version AT3, the number of convertible bonds is also kept constant. 

Then, the number of options nrny for gamma hedging the convertible bond positions 

on the calculations date is defined based on the gamma sensitivity of the convertible 

bond and the option. Then, the number of shares n::.:Ires for hedging the convertible 

bond positions and the options positions on the calculations date is defined based on 

the delta sensitivity of the convertible bond and the option. Finally, the cash account is 

adjusted based on the change in the value of the warrants and shares position. The 

same equations hold for version AT4, with the difference that unwinding can take 

place at the re-hedging points if it is optimal to do so. 

	

x R" x aces  options 	m,i  (Eq.8.2.21) — 

nns,hrs = _(Abmi x  RCR 
' CBs)—  (Awm,i X n rii"" 	 (Eq.8.2.22) 

vmcash = (.c,,c Hedging x vnclash )4.Efloptions 	optMns)x v w j+Knmshai res nsharel s )x  s mIlijdging 

	

,i-1 	n  ma - 

(Eq.8.2.23) 
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CHAPTER 9 

TWO-DIMENSIONAL TREES 

For dual currency convertible bonds, the exchange rate is another significant factor 

which has a future uncertainty to the same level like the stock price. This fact and the 

existence of liquid exchange rate derivatives are the main reasons that the dual 

currency convertible bonds participants are using two-factor models for pricing their 

CB positions, one factor for the underlying stock and one factor for the exchange rate. 

Effort was made to employ a two-dimensional configuration that employs a 

correlation between the two stochastic processes. However, limitations are introduced 

when including the correlation and the employment of term structures and variable 

time steps as determined in chapter 5 is excluded. In order to maintain the framework 

structure as presented in the previous chapters, the decision was made to resort to a 

configuration with a zero correlation between the two stochastic processes. Both, the 

correlated and the uncorrelated structures are introduced in this chapter. 

9.1. Correlated Stock and Exchange Rate Processes 

Initially, the notation and indexing of the parameters is in continuous time form, and 

then changes into discrete form, following the notation used in the previous chapters. 

The following parameters are defined: 

E, 	The exchange rate for translating units in the foreign currency into units in the 

domestic currency, the bond currency. 

criE 	The standard deviation of the log-normal returns of the exchange rate Et  . 

SF 	The asset price with dividend 8t  denominated in the foreign (equity) currency. 

r F 	The risk free rate of the foreign currency. 
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us 	The standard deviation of the log-normal returns of the stock Si in the foreign 

currency. 
p  tES The correlation of the exchange rate Et  and the stock SF . 

r
D 	The risk free rate of the bond (domestic) currency. 

S° 	The asset price in the domestic currency. 

Replacing the asset price Sr and the exchange rate E; with their respective natural 

logarithms as shown in equations (9.1.5) and (9.1.6), equations (9.1.7) and (9.1.8) are 

obtained. 

x fs  = ln(SiE  (Eq.9.1.5) 

x,E  = ln(E, ) (Eq.9.1.6) 

a „ 	qt — 	a,S 	--1 cr, =(r F _ 	ES 	E 	(Sy) S 	s dt+o-, dwt  (Eq.9.1.7) 

D 
- r;F 

- -
1 (E 

)Z j dt + cif dwiE  (Eq.9.1.8) 

Up to this point, the equations are in continuous form. The respective equations in 

discrete form are obtained by replacing di with At , dxts  with &vs  , and de with 

Ax E  . For the rest of the parameters, the subscript t is replaced by the subscript i 

which will be used for the discrete form of the equations to denote the index of the 

step on the trinomial trees that will be employed here. 

As in the previous chapters, the risk free curves in the equity (foreign) and bond 

(domestic) currencies are available, as well as the term structures of the volatility and 

the continuous dividend rate. In addition to these structures, we assume that the term 

structure of the volatility of the exchange rate and the term structure of the correlation 

of the stock and the exchange rate are also available. The only change in the notation 

from the previous chapters is in the notation for the stock volatility. In order to 

differentiate the stock volatility from the exchange rate volatility, the stock volatility is 

denoted as o-is'sreP' and the exchange rate volatility is denoted as 6E,.rreps 
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Chapter 9 	 Two-Dimensional Trees 

Two trinomial trees, one for the stock and the other for the exchange rate are 

employed. Representative node configurations of each tree are presented in the 

following two figures. 

pis _ 

Step (i —1) 
( ARFi e,steps fo ;5,isteps 

Figure (9.1) Representative Node Configuration of the Equity Tree 

trPs  

11E = f rUb,steps 

Step(i —1) 
(f riRr.steps fcriE,isteps) • \ 

E,steps 
RFe,steps 

ft (2 RFb,steps 	E,steps) ti 	Cri 

Step(i) 

Figure (9.2) Representative Node Configuration of the Exchange Rate Tree 
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Chapter 9 	 Two-Dimensional Trees 

The next figure presents a representative node configuration of the two-dimensional 

tree resulted from the combination of two trinomial trees when there is a non-zero 

correlation between the two processes. 

Node j +1,k —1) xis  j+1.= xis Li  + AxS 

S  1, j+1,k-1 Ei,j+1,k-1 	v E 	vE 	AXE  

Node (i, j +1,k +1) xis.,1+1 = 	+ Axs  

Si, j+1,k+1 ,  t, j+1,k+1 	X j,k+i  = j_i,k  E. 	 X 	LI 
A 

 A  
_E 

xiS j_1= xiS 1,1  ArS Node °, j —1,k +1) 
. 	v 	v  S  j-1,k+1 E1,j-1,k+1 E 	E 	A vE 

Al,k +1 = "4-1,k 

Figure (9.3) Representative Node Configuration 

The equations determining the values of the transition probabilities must be 

established by accounting for the conditions that must hold for the expected values, the 

variances and the covariance of the changes of the natural logarithms of the stock price 

and the exchange rate. 

Ek,ics 	Ati 	 (Eq.9.1.9) 

E[Axs Axs  = 	Ati  + (p,:s)2  Ati2 	 (Eq.9.1.10) 

E[AX E ]= fliE  Ati 	 (Eq.9.1.11) 

E[AXEde]= (f6E )2  Ati  + (ti E )2  At 	 (Eq.9.1.12) 

ElAxsAxE PIES f f 0. iE At, 	 (Eq.9.1.13) 

In addition, the sum of the probabilities must be equal to one. 

uu,i-1 	P ud,i-1 	P nzm,i-1 	P du ,i-1 	P dd d-1 = 
	 (Eq.9.1.14) 
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Two-Dimensional Trees 

In order to simplify the notation, we also introduce the following parameters: 

(Its Pis  Ati  
Axs 

= (fo-is  Ati  + is  )2  Ott  
(Axs 

g7 Ati  
Qi 	Ax E 

yE = (fcrE y Ati +(uiE  Ati2  
WET 

Pi  

fcr fcr jE 
= V,. ES  	Ati 

Axs AxE 

S S QS 

wrS =VS QS 

Wr E =17,E QE 

=vi E QE 

V S 

(Eq.9.1.15) 

(Eq.9.1.16) 

(Eq.9.1.17) 

(Eq.9.1.18) 

(Eq.9.1.18) 

(Eq.9.1.19) 

(Eq.9.1.20) 

(Eq.9.1.21) 

(Eq.9.1.22) 

Based on equation (9.1.9): 

Pud,i-1 X+  AXS )+  Pnund-1 .  o + (Pdud-1 + 	AXS)= 	At; 

Pdud-1 —  P• ddd-1 = 
ns 

Based on equation (9.1.10): 
)2 

Pudd-1XAXS  + Pmmd-1. 0 +( Pdud-1 +  Pdd,i-1XAXS  = 

Puu,i-1 + Pudd-1 ±  Pdud-1 ±  P• dd,i-1 =ViS  

Based on equation (9.1.11): 

(Eq.9.1.23) 

2 	)2  Qtr2 Ott  + (11s 

(Eq.9.1.24) 

(19„„,1_1+ 	Ax E )+ Pmmd-1 . -1- (Pud d-1 +  Pddd-1X— AX E )= le At. 

E  Puud-1 ±  Pdud-1 	 P• dd,i-1 = Qi 

Based on equation (9.1.12): 

(13  uud-1 Pdud-1)(AXE )2  Pmmd-1 .  0+(Auld-I +  Pddd-1)(AXE  = 

Puu,i-I 	Pdu,i-I 	Pudd-1 	P• dd,i-1 =Vi E  

(Eq.9.1.25) 

fo_iE 2 Ati + Ey Ati2 

(Eq.9.1.26) 
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= Ax E 

(fa,s  )2  At, + (As  )2  At2  
(fcrir )2  At,+(p,E At! 

Axs 
(Eq.9.1.29) 

Chapter 9 	 Two-Dimensional Trees 

Based on equation (9.1.13): 
iE (puti,i-1± Pdd ,i-1)(AXS AXE )+  P Innz,i-1 0  +  (P du,i-1 P ,i-1X AXS  AX

E)= piEs fcris fa  Ati 
 

P nu ,i-1 	Pdd ,i-1 P du,i-1 	P itd 
	.yES 	 (Eq.9.1.27) 

Equations (9.1.24) and (9.1.26) have the same left hand sides and this imposes a 

relationship as shown in the next equation: 
yS = yE 

This last equation can further be elaborated as: 

(fps) At, + (pis  )2  At2  — (faiE )2  Ati +(piE  Ati2  
(Ars' )2 
	

(AXE )2 
(Axs  = (f.o.;3 )2 At, +  (12)2 

 At2 
 

(AXE )2 (fo- f 2 Ati (PiE 
)2  Oti2 

(Eq.9.1.28) 

The ratio QtS  which has been introduced in the last equation imposes a relationship 

between the space steps of the two trees. As it will be further discussed later, this 

relationship imposes limitations on the implementation of correlated processes in the 

frameworks employed in this thesis. 

Combining equations (9.1.23) to (9.1.26) and employing equations (9.1.19) to 

(9.1.22), results in the new set of equations (9.1.30) to (9.1.33). 

+ Eq.(9.1.24) 
Eq.(9.1.23) 

s Pud,,_i ) 17: Qts  + vis  
n.,1-1± Pnd ,i L = 2 

Eq.(9.1.19) 

(Eq.9.1.30) = 2 

2 ' 	Pdd ,j-1)=Y S  QiS  — Eq.(9.1.23) dit,i-1 	P dd ,i-1 

Eq.(9.1.20) 

w S 

Pdu,i-1 + Pdd ' i-1 2 

Eq.(9.1.24) 

2 

(Eq.9.1.31) 
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wE 

P ud i-1 P dd d-1 = 2 
(Eq.9.1.33) 

P uu d-1 P dd ,i-1 2  P dud-1 = 2 

wS wE 

3 ' Pud d -1 = 2 

WS 	 wi E_ 2.  yES 

Chapter 9 	 Two-Dimensional Trees 

Eq.(9.1.25) 
2  • (P„„,,_1+ Pd„,,_1)=QE  +Y E  + Eq.(9.1.26) 

Eq.(9.1.21) 

W E 
P uu d -1 + P du • i-1 2 

 

wE 

uu.i-1 	P dud , -1 — 2 

(Eq.9.1.32) 

Eq.(9.1.26) 
2  • (Pud,i-i P ad d-1) V  i E  QIE  — Eq.(9.1.25) 

Eq.(9.1.22) 

  

P ud d-1 P dd ,i-1 = 
W E 

2 

  

Next step involves combining the last four derived equations and obtaining two new 

equations. 

Eq.(9.1.30) 	 ws±wE 
Puu,i-1+ 	P dd + Eq.(9.1.33) 	 2 

wS wE 

Puud-1 P dd d-1 + 2  P ud d -1 _ 2 

Eq.(9.1.31) _wE 
2 pdu ,,_1 	P dd d-1 	Putt 4-1 — 	2  + Eq.(9.1.32) 

(Eq.9.1.34) 

(Eq.9.1.35) 

Equation (9.1.27) can be re-written as follows: 

Pun d -1 + P dd d -1 = P du d-1 P lid ,i_T Vi ES  

Replacing equation (9.1.27) into equation (9.1.34): 

ES W S wE 

P dud-1 + P ud 	i 
u 	

= 2  P ud -1 2 

(Eq.9.1.36) 
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Replacing equation (9.1.27) into equation (9.1.35): 

ES 
w S 

P du,i -1 + P ud ,i -1 
a_ 
-1- 
 v 

i 
 j_ 
	 = 2 

  

  

wS wi E 2.  vi ES 

3 ' 2 
(Eq.9.1.37) 

Based on the last two derived equations, equations (9.1.36) and (9.1.37), we can solve 

for the probabilities pd„ ,,-1  and p„d.,_1 . 

3x Eq.(9.1.36)} 	3ws +3wiE_ 6yES 	w E 217  1 ES 

— Eq.(9.1.37) 	
8 Plid,i-1 = 	 2 

= 2 

= 	+Vi E  +2Qis  — 	— 2Vi Es  

vt E 	2 • vi Es 	QiE 

P ud , i-1 = 	8 	 4 
(Eq.9.1.38) 

3x Eq.(9.1.37)} 	3ws+3wE _ ovEs —Ws _ wE±  2v Es 

ii-   — Eq.(9.1.36) 	8Pd„, 	 2 

3yS + 3Q tS 3y5 3Q iE 4yE S y5 

= V S  + Vi E  — 2Q,S + 2QiE  — 2Vi Es  

(Eq.9.1.39) 

The equations determining the probabilities p„„ i_, and P dd ,i-1 can be obtained by 

repeating the steps involved in equations (9.1.34) to (9.1.39) which resulted in the 

equations for the probabilities p„d ,i _ i  and iv du I_1 • The first step involves combining the 

equations (9.1.30) to (9.1.33) in order to obtain two new equations. 

Eq.(9.1.30) 	 W S W E 

+ Eq.(9.1.32) 	 P Pdu,i-i —2 	2 
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+wi E +2.vEs 
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w S ±w E 

2  Puu,i-1 	Pud,i-1± Pdu -1=  "
r  

i 
 

2 

Eq.(9.1.31) ws wE 

2  Pdd ,i-1 	Pud,i-1 	ud- Pd1 = + Eq.(9.1.33) 	 2 	2 

VV 
Ti7 • S , VVE 

2  Pdd ,i-1 	ud,i-1 	Pdu,i-1 = 	2  

(Eq.9.1.40) 

(Eq.9.1.41) 

Equation (9.1.27) can be re-written as follows: 

Pudd-1 = 131411,i-1+ Pdd,i-l — Vi ES  

Replacing equation (9.1.27) into equation (9.1.40): 
wS +wiE 

Puud-1 Pdd,i-l — ViES  2  Puud-1 = 2 

(Eq.9.1.42) 

Replacing equation (9.1.27) into equation (9.1.41): 

ES / • 
+ P1111,i-1 	Pddd-1 —  v 2Pdd,i-1 = 2 

Wis  + Wi E  + 2 • ViEs  
+ 3  Pdd,i-l= 2 

(Eq.9.1.43) 

w S ±wiE 

Based on the last two derived equations, equations (9.1.42) and (9.1.43), we can solve 

for the probabilities pi,„,,_, and 

3 x Eq.(9.1.42) 	3Ws  +3wE + 6vi Es ws wE ...... 2y ES 

— Eq.(9.1.43) 	8P.,i-1 = 	 2 

3Vs  + 3QS + 3VE  + 3QE + 4V Es  — V s  + Qis  — Vi E  + W 
8p„„,i_i  =  2 

8 puu.,  = yS y E 2Q,S 2QiE ± 2y ES 

P
yS 	viE ± 2 yEs Qs QE 

= 	 4-8 	 4 
(Eq.9.1.44) 
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3x Eq.(9.1.41 
8 Pdd,i-i — 3W

s+ 3WE + 6VEs _W s _WE — 2VEs  
Eq.(9.1.42) 	 2 

8  P dd -1 = ViS ViE 2Q1S  — 2Q iE 2ViEs  

V S
±viE +  2.vEs Qs+

Q1E 
 

P dd d -1 = 	8 	 4 
(Eq.9.1.45) 

The only equation that has not been employed up to this point is equation (9.1.14). 

This equation can be re-written as follows: 

P 	d-1 = 1  — P uu d-1 P ud ,i-1 P dud-1 — P dd d-1 

Substituting for the probabilities on the right hand side as these are defined by 

equations (9.1.38), (9.1.39), (9.1.44), and (9.1.45), we can obtain an equation for the 

probability of the middle branch. 
VS 	 ± 2  vi ES 	QI 	v 7,5 E 	1 	yE 2  . yES QI S QiE 

vi S 	2  vi ES 	 viS vi E ± 2.  v i ES QS' Q 

8 	 4 	 8 	 4 

4VS  + 4V E  
Pmat,i-l =  8 

vs + vE 
P mni,i-I — 1 	ii (Eq.9.1.46) 

As it was demonstrated and summarised in equation (9.1.28), V,s  and V,E  must be 

equal, hence, equation (9.1.46) can be re-written as follows: 

= 1  — 
VS 

=1— ViE 	 (Eq.9.1.47) 

In figures (9.1) and (9.2), the two trees that constitute the two-dimensional 

configuration are presented diagrammatically, while their combination is presented in 

figure (9.3). The relationships between the probabilities presented in the three figures 

are summarised by the following equations. 
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2 
S n 	n  

P m,i-1 Pm d = Pmmd-1 =1—  V i S  =1—Vi E  

Two-Dimensional Trees 

(Eq.9.1.48) 

(Eq.9.1.49) 

(Eq.9.1.50) 

(Eq.9.1.51) 

(Eq.9.1.52) 

s 	 Ws „ 
Pun,i-i+ • 	= 2 

WS 

Pd,i-1 = Pdud-1 +  P• dd d-1 

E 	 WE 

 

Pud-1 = P au d-1 P• dud-1 = 2 

W E 
Pd,i-1 	Pudd-1 +  P• dd,i-1 = 

It is worth stating the number of nodes Ni  involved at each step i in this 

configuration. This is determined according to the following equation. 

N i =1+4•Im 
m=1 

Ni =l+ 4 i•(i+1)  
2 

Ni =l+ 2 • i • (i +1) 	 (Eq.9.1.53) 

It was shown that a relationship is imposed between the space steps of the two trees 

constituting the two-dimensional configuration. This relationship was summarised in 

equation (9.1.29) which is re-produced here as well. 

AxS 
Q ES 	 . = 

I Ax E A  
(f o-, 	Ati  + (ills l At,?  
(fo-iE  Ati  + ( fit tiE  At,? 

This equation means that in order to maintain the re-combining nature of the two trees 

and account for the correlation between the two processes, then only the following two 

approaches are plausible within this framework: 

(i) 

	

	We must not include any time-varying parameters and all parameters 

involved, like the volatilities, the risk-free rates, the continuous 

dividend yield and the correlation must be constant values throughout 

the two-dimensional configuration. In addition, the time step has to be 

constant and the same for all the steps in the tree. 
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(ii) 	We can include term structures in the configuration which could result 

in time varying volatilities, rates, dividend yield and correlation, but the 

time step At, will be defined at each step based on equation (9.1.29). 

This will also mean that the last step, the maturity step most probably 

will have to be non-recombining since it is very unlike that the time 

steps resulting from this process will be such that the maturity is 

matched on one of the tree steps. 

Both of the solutions for implementing the correlated two-dimensional model just 

discussed, deviate from the configuration developed in the previous chapters of this 

thesis. The implementations in the previous chapters were based on time varying 

parameters and some of the time steps were defined based on event dates. For this 

reason, the implementation of the two-dimensional configuration presented in this 

section was not implemented. 

9.2. Uncorrelated Stock and Exchange Rate Processes 

The two-dimensional configuration presented next assumes that the correlation 

between the two processes is equal to zero. In other words, it is assumed that the two 

processes are independent. As in the previous section, we consider two dimensional 

trees as presented in figures (9.1) and (9.2), included in the previous section. Since the 

two processes are totally independent, the equations determining the values of the 

transition probabilities of each tree can be derived separately. Then, the nine transition 

probabilities of the combined configuration can be calculated based on the transition 

probabilities of each tree. 

Stock Tree 

Basically, there are no changes in the equity (stock) tree configuration and it is the 

same as in the one-dimensional implementation for the dual currency convertible 

bonds presented in the previous chapters. This is due to the fact that the term in the 

drift equation of the stock which includes the correlation is eliminated since the 
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correlation is assumed to be equal to zero. The equations governing the values of the 

parameters on the trinomial tree of the stock are outlined next. 

pis 	 fril?Fe,steps 	
(f 	,steps )2  

2 

	

1 	
(fai

S,steps)2 
At7eP s  (11;5  AtrPs Y ± 	Ati'tePs  

	

Pu
'
i-l= 2 	 (6 as y 	 Axs 

Pnzd-1 =1  

(f 0_,S steps )2 Atisteps +(le At IstePc )
2 

x  

(fcriS,szeps) At 2
'tep'  +(AS  g tePs Y 	Atf ePs  

(&s s)2 
	 Axs 

U = 	
VS = exp(Axs) 

d = CA's  = exp(—Axs  ) 	 (Eq.9.2.6) 

SF = F
e 

 ArS  
i,I o,o Vi E [1, 	E 	i,i1 	 (Eq.9.2.7) 

Exchange Rate Tree 

The equations governing the values of the parameters on the trinomial tree of the 

exchange rate are outlined next. 

r.S _ 1  
Fd,i-1 2 

(Eq.9.2.1) 

(Eq.9.2.2) 

(Eq.9.2.3) 

(Eq.9.2.4) 

(Eq.9.2.5) 

s teps 2 
	1,1,  ' At E 	1 ( 

	 steps ( 	z- E,steps )2 	steps 	(A  At:E 	teps 2  
jai  Ati + 

 
Pit,i—i = 

2 	 (AxE )2 	 + 	AxE 
i 

E 
( 1-0_,steps )2  Qt̀  tees +  ( tt E ,steps)2  

,,,, 
Fm,i-1 =1 	J  	i r.  

2  

(AxE y 

( ( fcri E,steps) 
E 	1 	 Atisteps + ( AE AtIteps)2 	AE At;steps 

Pdd-1 =  2 	 (AxE)2 	Ax.E 

U = e
AxE 

 = exp(AxE ) 

d = e 	= exp(—AxE ) 

= E. 	
t. 	

Vi E [1, N], 	E  

(Eq.9.2.8) 

(Eq.9.2.9) 

(Eq.9.2.10) 

(Eq.9.2.11) 

(Eq.9.2.12) 

(Eq.9.2.13) 

(Eq.9.2.14) 
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Combination of the Stock and the Exchange Rate Trees  

In order to combine the two trees we need to account for every possible combination 

of events, and this results in a 9-nomial configuration as presented in figure (9.4). 

Node (i, j +1,k —1) 

Si, j+1,k-1 ,Ei,j+1,k-1 

S S — - Xj_i,j  + OX s 

E E 	A vE 
xi k-1 — - xi-1,k 

Node (i, j +1,k) 

Si,j+1,k Ei, 1+1,k 

vS 	
xi DX — 	1,i  

E 	E 

Node (i, j +1,k +1) 

S̀ i, j+1,k+1 

	

S 	S 
— 	Ax s 

	

vE 	vE _L  A 
"'
,E 

" 

Node(i, j —1,k —1) 

S  r, 
S S S 

xi, j-1 — - X 	— LAX 

E EE 
xi,k-1 — - xi-1,k 

Node (i, j —1,k) 	Node (i, j —1,k +1) 
S i, j-1,k 'Ei,j-1,k 	 S i,j _i,k+I ,E,,  • i• 1,k+1 

S _ S  	S 	 S 	S  	S Xi,  j_1 —xi-1,j — QCxi,  1_1 _ — xi_1,i  — !,X 

E_ E 	 E E 
+ 

A vE Xi,k  — Xi_i,k  xi,k+1 = xi-1,k  ' 

Figure (9.4) Representative Node Configuration 

The node j,k) on the combined configuration corresponds to the combination of 

node 	 j) on the Equity tree with node (i, k) on the exchange rate tree. The node 

j) is the jth  node at the ith  step of the equity tree, and this holds for 

Vi E [0, N],Vj 	i,i]. The node (i,k) is the kth  node at the ith  step of the exchange 
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rate tree, and this holds for ViE [0, N],Vk E 	it The set of parameters 

,E, j,k ,S,D, J ,k ) is defined for each node on the combination tree as shown in the 

next equations. 

= Si ,  1, j,k 	i,j 

= 

S .P = S F  xE i,j,k 	j,k 

ViE [0, AT], Vj E 	Vk E 

Vi 	[0, N], Vj e 	Vk E 

Vi E [0, MX/ E 	Vk 	i] 

(Eq.9.2.15) 

(Eq.9.2.16) 

(Eq.9.2.17) 

The new nine transition probabilities are defined based on the following equations. 
E 

	

Puu,i-1 = Pud '‘ -1 Pud-1 	 (Eq.9.2.18) 

Pum,i-1 = 	X 

	

Pm,i-1 	 (Eq.9.2.19) 

	

Pudd-1 = Pu,iPdd-1 	 (Eq.9.2.20) 

= 	 (Eq.9.2.21) 

Pmmd-1 	Pmd-1 	 (Eq.9.2.22) 

Pmdd-1 -= 	Pd,
E  

X i-1 	 (Eq.9.2.23) 

E 

	

Pdud-1 - Peld-1"' 
v 

 Pud-1 	 (Eq.9.2.24) 

Pdm,i-1 
_ 

P
s
d,i-1 X Pm 

	

,i-1 	 (Eq.9.2.25) 

Pd Pddd-1 - Pd 

	

d X-1 Pdd-1 	 (Eq.9.2.26) 

One of the basic relationships in both trees is that, for each tree independently, the 

transition probabilities at any node sum to one. 
ns 

u,i-1 ▪ a .1-1 ▪ V d 	= 	 (Eq.9.2.27) 

n  E  
▪ Pmj-1 ▪ Pdj-1 = 	 (Eq.9.2.28) 

Based on equations (9.2.18) to (9.2.28), the nine defined transition probabilities sum to 

one and this is demonstrated as follows. 

Puud-1 +  Pumd-1 ±  Pudd-1 -1-  Pmud-1 +  Pmmd-1 +  Pnidd-1 ±  Pdud-1 +  Pdmd-1 +  Pdd,i-1 

-= (PIStd-l X  PiEtd-1)-1- (PtStd-l X  PnEid-1)-f (PiStd-I X  PdEd-1)-1- (PnSid-l X  PrEed-1) 

X 	P + (PnSid-l X  PmE  d-1)±(PtSnd-I X  PdE,i-1)-1- (PdS 	 cS1d-I X  PnEld-1)±(PdS  d-1 X  PdEd-1) 
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The last equation evolves as shown next. 

Puttd-1 	Plund-1 	Pud d-1 	Pniztd-1 	Pnund-1 	Pnzd.i-1 	Pclud-1 	Pclind-1 	Pdd d-1 

	

nS 	v 	nE 	nE )4_ nS v  E 	E 
= 	ud-1 "G" itd-1 + 	+ 	d-1 ' ad-1 's (Pud-1 ' P nid-1 	PdE,i-1) 

nS v  E 4_ E + Pd d-1 "(Pud-1 ' Prnd-1 PdE  -1) 

	

S 	+ S 	 n  
= len d-1 Ps d-1 	d ,i-1

)v 
 (13  u d-1 +  E 

	pd,i_1)=1x1=1 

So, the final result is equation (9.2.29). 

Putz,i-1 	 Pud ,1-1 	P tnud-1 ±  nun,i-1 P nu -1,i-1 + 	Pdind-1 	Pddd-1 = I 	(Eq.9.2.29) 

Parameters and Notation 

It should be pointed out that all the parameters presented in the previous chapters for 

the one-dimensional trinomial tree, are still valid and exist in the stock trinomial tree 

of the two-dimensional configuration with the same notation exactly. For example, for 

the case of resetable convertible bonds, a parameter K. was introduced and defined 

as the prevailing strike (i, j). The same parameter K1  j  is calculated in the same 

manner in the two-dimensional configuration and it holds that K,1  is the prevailing 

strike for all the nodes (i, j,k =[—i,i]). The same conditions would apply for example 

in the case of the flag iTrligger,C"11 when a conditional call is included in the features of 

the CB. In general, all the defined parameters in chapter 6 for the one-dimensional 

configuration are applicable for the two-dimensional configuration as well. 
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CHAPTER 10 

EVALUATING THE TWO-DIMENSIONAL MODEL 

In the previous chapter, two configurations for implementing a two-dimensional tree 

framework were presented. It was decided to follow the configuration with the 

uncorrelated processes because the configuration with the correlated processes could 

not be adjusted to the overall pricing framework presented in this thesis. In this 

chapter, the processes involved in the backward induction for pricing the convertible 

bond based on the two-dimensional configuration, are outlined. The calculation of the 

additional sensitivities, as well as the spectrum analysis for this pricing framework, is 

also presented. 

10.1. Calculating the CB price and the Sensitivities 

Forward Induction is carried out for each tree independently. The additional 

computations presented in section (6.5) are still available in the stock tree and 

employed if conditional calls/puts and/or resets are included in the features of the dual 

currency convertible bonds. In other words, nothing has changed from the previous 

chapters as far as the behaviour and the capabilities of the equity tree during the 

forward induction process are concerned. 

However, the description of the Backward Induction has to be done in detail because 

this is the point where the two trees are combined. Next, the notation followed for the 

parameters included in this chapter is outlined: 

• Node (i, j) is a node on the stock trinomial tree. 

• Node (i, k ) is a node on the exchange rate trinomial tree. 

• Node (i, j, k ) is a node on the combined configuration of the two trinomial 

trees. 
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At all the nodes of all the steps, the conversion flag iCtitnkvAllowed is simply defined based 

on the following equation. 

Conversion Allowed at i: 	 j 
AConvAlloRed =1 i ,k 

V i E [0, NiVj E 	Vk E 	i] 
Conversion Not Allowed at i: 	ConvAllowed = 0 

j,k 

(Eq.10.1.1) 

Probability Weighted Discounting 

For the cash-flows discounting, we follow the probability weighted discounting 

approach like in the previous chapters. Two parameters for each node on the tree, the 
flag 	nkverted and the probability Iriccinkverted  are defined. During the backward induction, 

it is decided at each node whether to convert or not. If at a node it is decided to 

convert, then the flag Lknverted is set equal to one, otherwise is set equal to zero. Then 

the probability of conversion 7rcli(),nkverted is set as shown in the following equations. The 

initialisation of this process starts with setting both the flag and the probability for all 

the nodes at the maturity step equal to zero, since no conversion is allowed ever on the 
Cnverted maturity date. The probabilities gi , j k 	are employed in the discounting process, and 

this is demonstrated in the descriptions to follow for the rest of the calculations. 

Converted 0 
'2i=N , j,k 

,r.Converted — 0 
"r=N , j,k 

Vje [—N,N],Vk [—N,N] 	 (Eq.10.1.2) 

	

iC',.ionkverted 
0 	if decided to hold 

Vi E [0, N —1],V j E 	ilVk E 

	

AConverted = 
1 	if decided to convert 

 

(Eq.10.1.3) 
(pi,uu  	i  Con verted+ik+ 	( pi, urn  iriC_Foindve+rit ,ekd)+ ( pi,ud 27.1.C+oin.iv.e+rit Converted —1 ) — 

+ ( pi,mu 	ive krt+edi )+  ( pi.. ffi Converted) ± I.C+orie,krted1 ) 

+ 
( 	

Ir T .Converted 	 Converted. 
13  t,du "i+1, j-1,k+1) 	( 	

Converted 
P i,dtn • "i+1, j-1,k) ' (P i,dd • "i+1, j-1,k-1 

Converted = AConverted X t, j,k 	 j ,k 

  

`die [0,N —1],Vj E 

(Eq.10.1.4) 
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Calculations at Maturity:  (i = N) 

Backward Induction begins with the calculation of the convertible bond price at the 

last step, which is the step that corresponds to the maturity date. The holding value of 

the convertible bond is calculated as the sum of the redemption value and any possible 

coupon cash flows on that day. 
j,k 	pRd en,steps 	N ,t1 j 	N,N],Vk E N,N] 	(Eq.10.1.5) 

The final convertible bond value is simply calculated based on the following equation: 

V h  =V h  j,k 	j,k i=N,Vje[—N,A1 ],VkE[—N,AT] 	 (Eq.10.1.6) 

Calculations at the rest of the steps:  (i = (N —1) 	0) 

Starting from step i = N —1 and working backwards on the tree until step i = 0 

(inclusively), the following calculations are repeated at each step. 

First, the conversion value is calculated as depicted by equation (7.1.4) which is 

reproduced here as equation (10.1.7). 
conv = RCR x ijc  C X 

y ,c 17: 0 

ConvAllowed = 
j,k 

„tConvAllowed = 0 
j,k 

Vj 	Vk E 	 (Eq.10.1.7) 

 

The holding value is calculated as the probability weighted sum of the connected 

nodes in the following in time step, plus any coupon values. Nine intermediate values 
v h,uu vh,um v h,ud v hmtt vh,mm v h,md v h,du v h,m 

and 
v h,dd are calculated before vi,J,k 9 	 j ,k 	j ,k 	v  j,k 	j,k 	j,k 	j,k 	v  j,k 	 j,k 9  

h ,k  the final value V 	is established. The probability of converting is also taken into 1, j  

account. 
v  h,uu = K,.Conyerted x 	iRce,steps)_}. 	71. iC4ni.v+vir ke +d 	 Riskysteps i )x  
Y I,j,k 	"'(+1,j+1,k+1 	 /IX gt 	X Vb  

	

MO 	1+1, j - f-i,k+i 

I hues = KirFonverted x 	RFe ,steps 	((1._ ,.Converted )x 	Risky,steps )]x 1+1,j+1,k 	.1"1+1 	 1+1, j+1,k 	i"i+1 	 j+1,k 

Risky,steps v 	\z vb v h:ud = K7riC_Foi n irt ked fd
-1 	

iRe +c,steps )1_ (0[ 	 +,Converted
j 
	fad i+1  

	

P ud j 	i+1,j+1,k-1 i 1, +1.k-1 j ,k 

h,mu 	sConv:erted x  fd iR+  Fi 	)4.  (0 	+ e,steps 	il 
j,k+1 )

x  Converted 	
d1+1 	)IX n 	x v .± j 

	

mu.i 	1n ,,k+1 
Risky,steps 

f , j ,k 	1+1,j,k+1 

(Eq.10.1.8) 

(Eq.10.1.9) 

(Eq.10.1.10) 

(Eq.10.1.11) 
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h,mtn = K,Converted x  1;4 .RFe,steps)+(0.  
i,j,k 	'1+1,j,k 	J`w z+1 

Converted) 	Riskr,step•sik, 	 h — 	 X fd i+, 	Pmtn,i X  i+1,j,k 

vh,md _KirConverted x fd iR+Fi e „step, 	_ 
j,k 

,Converted) 	Risky steps)! ..t.i+1,j.k-1 X fd i+1 	• x P md 	+l,
i b 

 j.k-1 
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"i+1,j-1,k+1 	 J " 1R+Isky  
irConverted 	 stepslix p du,ix y+b 1, j_  

1,k+1 

IT Converted),„ "+ 
i 
 iRisky,steps 

i+1,j-1,k 	 Pdtn,i "-sv  i+1,j-1,k 1 

vh,dd = klr.Converted x  fd iRFe,.steps)+qi_ 
'w t+1, j-1,k-1 	J 

(Eq.10.1.12) 

(Eq.10.1.13) 

(Eq.10.1.14) 

(Eq.10.1.15) 

(Eq.10.1.16) 

h,thi ke +d X  fdiR+Fie,steps 
i, 

	

	
)+0_ 

j,k  

= 
i,j,k 	

KriCizivelr,tked x  fd iR±Fi e,step.$)+  

irConverted )x 
J 
 .Ri.sky,stepsil,„ 

1w1+1,j-1,k-1 	“1+1 	 Pdd,i 

h 	= 	Cpn,steps ±vh:tut j_vh:unz 
V v  i,j,k 	qi 	v  i,j,k 	V  i,j,k 	t,j,k 

v 	+V 
 h mm 	h,rnd _L v h,du 

i,j,k 	
,k 	

v  t,j,k 	i,j,k 
dm 

i,j,k  

Vj e e [—i,i] 

(Eq.10.1.17) 

Then, according to the presence of calls and puts, the final convertible bond value at 

each node is calculated according to equation (Eq.10.1.18). Based on this equation, the 

convertible bond is initially set equal to the minimum of the holding value and the call 

value (if the convertible bond is callable at that step). Then, the result is compared to 

the converting value and the put value (if the convertible bond is puttable at that node), 

and the maximum of the three values is used as the final convertible bond value at that 

node. In the absence of any calls at a node (i, j), and consequently node (i, j,k), then 

the parameter vic, is simply not included in the equation. In the same manner, in the 

absence of any puts at a node (i, j), then the parameter V,P j  is simply not included in 

the equation. Finally, in the cases where no conversion is allowed at a node (i, j,k), 

then the parameter yur: is simply not included. 

jk  = max (ViTly 	, n  (vi 	VjE [-- 	Vk E 	(Eq.10.1.18) 

Once the above calculations have been performed at all the steps, the value of the 

convertible bond on the calculation date, VcD  , is set equal to the value Vob0,0  which is 

the value of the convertible bond at the zero step of the tree. 

v CD = 0,0,0 	 (Eq.10.1.19) 
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When conditional calls are present, then there are some modifications in the 

calculations. In the previous chapter, it was described how the conditional calls are 

accounted for. Essentially, the probability of triggering a conditional call Z
Tr

j
gger,Call 

was calculated for all the nodes (i, j,k) that fell within the period of a conditional call. 

To complete the calculations for accounting for a conditional call, we need, for each 

node in the conditional call period, to calculate the value of the convertible bond in the 

case that the call is activated — triggered — and in the case that is not activated. 
b ,CallTriggered 

= max(V.' VP 	h  V c )) 	 (Eq.10.1.20) j,k j,k 	1,j mmk r   j.k 

V b,CallNotTri ggered (vconv vp vh = 	
"- I k 	 " ,j,k V 	t, j,k 

The final value of the convertible bond at a node within the period covered by a 

conditional call is calculated as follows. 
17 h 	= grTrigger,Call vb.CallTriggered 	(1 	 ) vb,CallNotTriggered . 

j,k 	j 	v  j,k 	 j 	 v  

Conditional Puts 

During the Backward Induction process, the treatment of the conditional puts is in 

exactly the same fashion as that for the conditional calls. To complete the calculations 

for accounting for a conditional put, we need, for each node (i, j,k) in the conditional 

put period, to calculate the value of the convertible bond in the case that the put is 

triggered and in the case that is not. 
vb,PutTriggered =max p ronv 

	

V 	min (V. h  V c  i )) 
V 

j,k 	 j,k 

vb,PtallotTriggered = max (17'" min(Vh. j,k 

	

i,j,k 	 f,j,k 	j 

(Eq.10.1.23) 

(Eq.10.1.24) 

The final value of the convertible bond at a node within the period covered by a 

conditional put is calculated as follows. 

VI) 	
Trigger ,Put vb,PutTriggered 	7.1. Tr tgger ,Put ) vb,PatNotTriggered 	(Eq.10.1.25) ,,,,k 	 j 	 j,k 	 t, j 	 j,k 
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Combining Conditional Puts and Calls 

To cover the rare, but plausible, case where the period of a conditional call and the 

period of a conditional put overlap, we consider a general node j,k) which falls in 

this overlapping period. We calculate four possible values: The convertible bond price 

r
b,CallPutTrt ggered at that node with the conditional put and the conditional call both ,k 

triggered, the convertible bond price Vi b  jfka
llTrtggered at that node with the call activated 

and the put deactivated, the convertible bond price Vb:PutTriggered at that node with the 

put activated and the call deactivated, and, the convertible bond price vib,iNkoneTriggered  at 

that node with both the put and the call deactivated. 

ri,jk 	= max(V``!" VP min(V j  h  V' )) b,CallPutTri ggered 
t, j ,k 	 / ,k 	j 

vb:CallTriggered = max 	, min  khj,k  Kei  
i,j,k 

b,PutTriggered 	 cony 	p 	h 
j ,k 	 t, j ,k 	r  1,j 	1,j,k 

b,NoneTriggered V 
t, j,k 	 = max (ViTkv, 

The final value of the convertible bond at a node within the period covered by both a 

conditional call and a conditional put is calculated as shown next. 
..Trigger ,Call ffTrigger.Put vb,CallPutTriggered) 

j,k 	1"1,j 	 I, j 	Y  t, j,k 

rt.Trigger,Call 	„Trigger,Put ). b,CallTriggered 
, j 	 11".  I, j 	 v  t, j,k 

+ ((1 
„.„Trigger,Call) ii,T rigger, Put vb,PutTriggered) 

""1, j 	 t, j 	v  1, j,k 

+ (0_ 	;TT.  :jigger .Call ). 	Trigger,Put ) Tis b,NoneTriggered 
t, j 	 V  I, j,k 

Resets 

With very few changes in notation, the approach for Resets is the same as before. 
D F 

RCR = 	 (Eq.10.1.31) 

vicio7 = KIR x x 
c; j7,  vi 	0 

ConvAllowed = 1 
j, k 

pConvAllowed 0 
j,k 

Vj e [— i,i] , Vk [— i,i] 	(Eq.10.1.32) 
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(Eq.10.1.28) 

(Eq.10.1.29) 

(Eq.10.1.30) 
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The same sensitivities are calculated as before, with the additional sensitivities to the 

exchange rate and the volatility of the exchange rate. Only the sensitivities based on 

the method of the tree embedded sensitivities are calculated for this two-dimensional 

framework. 

Delta And Gamma 

The delta sensitivity to the stock price is defined as As  . 

As = 
va b 	b 	17b 

— 
— 

v 
1,1,0 	'1,-1,0  

as, i,conv _„,„„„ 
v 1,1,0 	v 1,-1,0 

(Eq.10.1.33) 

The gamma sensitivity to the stock price is defined as Fs  and is calculated in equation 

(10.1.36). 

vb  — vb  

	

As,up = 	1,1,0 	1,0,0 
cony ycno,nov 

11 b —V b 

	

AS ,down —  1,0,0 	1,-1,0  
v1coonov 
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a2vb  
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(Eq.10.1.34) 

(Eq.10.1.35) 

(Eq.10.1.36) 

The delta sensitivity to the exchange rate is defined as AE  

1,0,1,0,-1 
AE  = '17b  V" 	V1  b  aE (Eq.10.1.37) 

The gamma sensitivity to the exchange rate is defined as FE  and is calculated in 

equation (10.1.40). 

17b — i AE,up = 	1,0,1 	1,0,0  

	

vcon 	I  v _vco oonv 
1,0,1 

   (Eq.10.1.38) 
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(Eq.10.1.39) 

(Eq.10.1.40) 

If the correlation of the stock price and the exchange rate was included in the pricing 

framework, then the sensitivity F S  ' E  could be calculated based on the second 

derivative as shown in the next equations. 
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(Eq.10.1.41) 

Theta 

The rate of change of the convertible bond price with respect to the passage of time is 

referred to as the theta sensitivity. 
b 	b V 0  =  1,0,0 — 0,0,0  

At:slefs i   
(Eq.10.1.42) 

Vega 

Vega is defined as the sensitivity of the convertible bond price to changes in the 

volatility of the underlying stock price. The value VCD ,vegal%,S of the convertible bond 

is obtained when we re-calculate the price after we have shifted the term structure of 

the volatility of the stock price by 1% upwards. 

Vegas =vCD,vegal%,S _V CD 	 (E 10.1.43 

165/188 
Implementing Arbitrage-Free Models 	 CQF, Imperial College 
for Pricing Convertible Bonds 	 Michalis Simillis, 2004 



Chapter 10 	 Evaluating the Two-Dimensional Model 

We can also calculate a Vega as the sensitivity of the convertible bond price to 

changes in the volatility of the exchange rate. The value VCD,vegaME of the convertible 

bond is obtained when we re-calculate the price after we have shifted the term 

structure of the volatility of the exchange rate by 1% upwards. 

Vega E = vCD,vegal%,E _vCD 	 (Eq .10.1.44) 

10.2. Spectrum Analysis 

The same approach as in section (8.1) is followed here for the evaluation of the 

performance of the model. Spectrum analysis for a quantity is initially performed by 

calculating the value of the quantity for a given range of share price values. However, 

in addition to the analysis of section (8.1), for the case of the two-dimensional model 

evaluated in this section, additional spectrum analysis is performed for the same 

quantities for a given range of exchange rate values. 

Share Price Spectrums 

The resultant spectrums of the convertible bond price, the option only value, the delta 

and gamma sensitivities to the stock and the theta sensitivity are presented in figures 

(F.10.1) to (F.10.5). 

Figure (F.10.1) Convertible Bond Price Spectrum 
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Figure (F.10.3) Delta (to the share price) spectrum 
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Figure (F.10.2) Option Only Value spectrum 
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Figure (F.10.5) Theta spectrum 
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The inclusion of the exchange rate tree has clearly an effect on the spectrums of all the 

quantities with respect to the share price. The resultant figure for option only value 

demonstrates clearly the transformation of the additional optionality into option value. 

This additional optionality corresponds to the possible rewards coming from the 

upside of the exchange rate. Realisations of the future exchange rate which are greater 

than the current forward exchange rate result in profits for the investor of the dual 

currency convertible bond. 

The upside of the exchange rate was not accounted for in the one-dimensional 

configuration. In the case of the one-dimensional model introduced in the previous 

part of the thesis, Part B, the forward exchange rate was calculated and employed at 

each step of the tree. However, this configuration did not take into account the 

volatility of the exchange rate, or, in other words, the fluctuations of the exchange rate. 

Here, in the two-dimensional configuration, the fluctuations of the exchange rate and 

the possible realisations of the exchange rate other than those depicted by the interest 

rate differentials are accounted for. Realisations of the exchange rate smaller than the 

forward exchange rate do not result in any additional returns to the investor, but they 

do not result into losses since the investor will not choose to convert if he could realise 

losses due to the exchange rate realisation. On the other hand, he can enjoy the upside 

of the exchange rate. Additional profits could be realised if the future exchange rate 
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realisations are greater than the forward exchange rate. These additional profits are 

translated into an additional option value. Hence, dual currency convertible bonds 

inherit some FX derivatives characteristics. 

Exchange Rate Spectrums 

The resultant spectrums of the convertible bond price, the option only value, the delta 

sensitivity to the exchange rate and the gamma sensitivity to the exchange rate are 

presented in figures (F.10.6) to (F.10.9). 

Figure (F.10.6) Convertible Bond price spectrum 
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Figure (F.10.8) Delta (to the exchange rate) spectrum 
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Figure (F.10.9) Gamma (to the exchange rate) spectrum 
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These graphs demonstrate in a more direct way the effect of the exchange rate on the 

price of the convertible bond. The levels of the sensitivity of the convertible bond 

price to the exchange rate are shown to the last two graphs. Based on these results, it 

can be stated that a dual currency convertible bond has a significant sensitivity to the 

movements of the exchange rate and a position in a dual currency convertible bond 

should be related to a hedging FX position, in addition to the hedging of the equity 

exposure which is required for all the types of convertible bonds. 
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Finally, the surfaces of the convertible bond price and option only value as resulted 

based on a grid defined by the stock price and the exchange rate, are included in the 

next two figures. 
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CHAPTER 11 

CONCLUSION 

The material presented in the previous chapters is summarised in this concluding 

chapter of the thesis. Then, an effort is made to evaluate the contribution of the work 

of this thesis and to identify the limitations of the proposed pricing frameworks. The 

main conclusions are also discussed and recommendations for future work are made. 

11.1. Thesis Summary 

The convertible bond instrument and the respective market were presented in the 

introductory chapters. The various convertible structures were listed and categorised 

based on their attributes. Convertible bond specifications were outlined and an 

example demonstrated the structure of a standard convertible bond. Chapter 2 finished 

with the identification of the market sources of risk inherited in a convertible bond 

structure. 

The theoretical foundations of the work presented in this thesis are based on arbitrage 

pricing. This allows employing market information based on a relative pricing 

approach. For the purposes of this thesis, market information was required for the risk-

free curves, the risky curves, the Equity and FX implied volatilities, and other market 

based parameters. In chapter 3, it was demonstrated in detail the derivation of the risk 

free curve for the Bond currency based on market data on the GBP currency. The aim 

of this chapter was not to present the best or the most popular approach to curve 

construction. On the contrary, the objective was to demonstrate the importance of 

having knowledge of the origins and the procedures involved in the extraction of 

market quantities necessary for the pricing models, and all the assumptions and 

approximations these procedures introduce. Nevertheless, a technique was chosen that 

returns smooth zero-coupon continuous rates curves which are well-fitted to market 
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data. In addition, the polynomials used throughout the thesis for interpolating on the 

Bond and Equity currency rates were derived and presented in this chapter. 

Part A of the thesis finished with chapter 4 where the inputs to the CB pricing 

framework were recognised and the notation of the thesis for the input parameters was 

defined. The input parameters were also categorised into input parameters based on 

contractual terms and input parameters based on market parameters. 

In the first chapter of Part B, chapter 5, the methodology for defining the number of 

steps and the respective dates was presented. This methodology aimed in improving 

the sampling quality of the tree. Having determined the step dates, the calculations for 

the realisations at the tree steps of all the deterministic parameters that are non-

dependent to the stock price realisations, were formulated. 

The most volatile factor involved in the pricing of a convertible bond is the price of 

the underlying equity. The stochastic process for the underlying equity was 

implemented in the form of a recombining trinomial tree. A trinomial tree 

implementation involves two basic processes, the forward induction and the backward 

induction. Chapter 6 was devoted to the forward induction of the trinomial tree process 

developed and implemented for the purposes of this thesis. The conditions under 

which the calculations result in valid probabilities were established, because the 

structure of trinomial trees does not guarantee valid probabilities. Finally, the 

conditional probabilities were introduced in order to enable accounting for the 

conditional calls and puts, as well as the resets. 

In Chapter 7, the introduction of the one-dimensional pricing framework was 

completed by presenting the procedures involved in the Backward Induction on the 

tree and the methods for the calculation of the sensitivities of the instrument. Then, in 

Chapter 8, the evaluation of the one-dimensional model developed in this thesis was 

evaluated based on spectrum analysis and scenario analysis. 

Two possible configurations for implementing a two dimensional-tree framework 

were presented in chapter 9. It was decided to follow the configuration with the 
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uncorrelated processes for the stock price and the exchange rate because the 

configuration with the same correlated processes could not be adjusted to the overall 

pricing framework presented in this thesis. In chapter 10, the calculations involved in 

the backward induction for pricing the convertible bond based on the two-dimensional 

configuration, were outlined. The calculation of the additional sensitivities, as well as 

the spectrum analysis for this pricing framework, was also presented. 

11.2. Contribution 

The contributions of this thesis in the area of pricing and analysis of convertible bonds 

are as follows: 

• The traditional trinomial tree configuration which is consistent with the Black-

Scholes equation for the stochastic process of a stock price was employed. As 

part of the contribution of this thesis, this trinomial-tree configuration (which 

allows for a variable time step and use of term structures of the market 

parameters) was employed in a unified framework for pricing convertible 

bonds. 

• Methods for establishing the number of steps and the step dates were 

introduced in this thesis. These methods aim in improving the sampling quality 

of the pricing numerical technique, with emphasis to the inclusion of the event 

dates. 

• The traditional trinomial tree configuration employed was extended by 

introducing the conditional tree probabilities in order to deal with path 

dependency in cases where resets and conditional calls and puts are part of the 

contract specifications of the instrument. 

• Methods for analysing the performance of the model and for studying the 

behaviour of the convertible bond were introduced in the form of spectrum 

analysis and scenario analysis. Graphical results were obtained from the 

implementation of the one dimension model. 

• The two-dimensional tree configuration for two correlated processes as 

described in relevant literature (reference [35]) was considered. As part of this 

thesis contribution, the equations determining the calculation of the transition 
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probabilities were re-derived based on the approach followed in the literature 

for the one-dimensional approach (the traditional trinomial-tree configuration). 

Most importantly, as part of this thesis, the relationship between the space 

steps of the two combined trinomial trees and the time step, as well as with the 

market parameters, was derived as presented in equation (9.1.29). This 

relationship does not allow variation in the time step or use of term structures 

of market parameters. 

• A two-dimensional structure of two uncorrelated processes was employed. As 

part of the contribution of this thesis, this configuration which allows for a 

variable time step and use of term structures of the market parameters was 

employed in a unified framework for pricing convertible bonds. 

• Like in the case of the one-dimensional configuration and as part of this thesis 

contribution, the two-dimensional tree configuration employed was extended 

by introducing the conditional tree probabilities in order to deal with path 

dependency in cases where resets and conditional calls and puts are part of the 

contract specifications of the instrument. 

• Graphical results were obtained from the implementation of the two-

dimensional model. 

11.3. Conclusions 

Based on the results of the spectrum analysis of the one-dimensional configuration 

many observations were made on the behaviour of the convertible bond and these are 

discussed next. The inclusion of a coupon schedule affects the valuation of the 

convertible bond since it introduces discontinuities in the Bond Floor time line to 

maturity. Discontinuities are also introduced when a discrete dividends schedule is 

employed, this time on the stock price tree. The resultant spectrums demonstrated that 

the coupon and discrete schedules must be accounted for if they are part of a 

convertible bond security. 

Calls have a negative effect for the investor's value since they reduce the investor's 

optionality, while puts have a positive effect for the investor's value since they 

increase the investor's optionality. These results were anticipated and verified from the 
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respective spectrum analysis. In the case of out of the money convertibles, it was able 

to specify the negative option value introduced due to the inclusion of the call 

schedule, while in the case of puts, a positive option value was introduced. If 

conditionality was present in the schedules, then this reduced the effect of each 

schedule — less negative option value from the call schedule, less positive option value 

from the put schedule. 

Resets schedules have positive value for the investor if they are resetting the strike 

downwards and negative value if they are resetting the strike upwards. This was also 

observed in the results of the spectrum analysis. Introducing a downwards resetting 

date added value to the investor. However, introducing another reset date which resets 

upwards and downwards reduced the positive effect of the first reset date. 

The resultant spectrums for the extreme cases where all the features were activated 

demonstrated the limitations of the implementation. The obtained spectrums were not 

smooth as those resulted from the previous calculations. Increase in the number of 

steps in order to increase the precision could be considered. However, in all 

numerical-techniques based pricing frameworks there is always a point where we have 

to trade-off between precision and speed. 

The scenario analysis had two objectives. The first objective was to demonstrate the 

error introduced because of the fact that the discrete-form implemented configuration 

was based on conditions derived from continuous-form assumptions and equations. 

This was demonstrated through the simulations of the theoretical portfolio approach 

and the result was the probability distribution of the re-hedging error on the maturity. 

The observed shape of the distribution, which has a significant portion of noise 

because the number of paths of the Monte Carlo was restricted to 1000 due to very 

heavy computationally simulations, showed that there is a bias in favour to the 

investor of the convertible bond. The second objective was to demonstrate the fact that 

when allowing perfect re-hedging at the re-hedging points, the bias in favour of the 

investor slightly increases and the probability distribution is less dispersed. 
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The derivation of the two-dimensional configurations, the correlated and the un-

correlated, demonstrated the restrictions introduced when the correlation between the 

two processes is non-zero. The resultant graphs from the spectrum analysis performed 

based on the implemented two-dimensional configuration, demonstrated how 

significant is the effect of exchange rate in the valuation of dual currency convertible 

bonds. 

Finally, it was recognised through this work that instruments like convertible bonds 

involve complicated processes with the employment of various numerical techniques 

within the same framework. Consequently, convertible bonds model risk is not 

negligible and CB market participants should ensure that they comprehend the 

assumptions and the limitations of the models employed. 

11.4. Limitations 

Precision of the calculated parameters in numerical techniques is usually a trade off 

with computational efficiency. 

In the case of the one-dimensional configuration, no significant limitations are 

identified with respect to computational efficiency. Even in the case of embedded 

conditionality where there are additional computations requirements, the pricing 

configuration can provide results efficiently and enables the repetitively use of the 

pricing function in spectrum analysis and scenarios simulation, or in a portfolio with a 

number of convertible bonds positions. 

In the case of the two-dimensional configuration, the computational burden is greater 

than in the case of the one-dimensional. In the case of embedded conditionality where 

there are additional computations requirements, this becomes even more evident. Even 

though it was possible to use the two-dimensional pricing configuration in spectrum 

analysis efficiently and without sacrificing on precision, it was found that the same 

pricing function could not be used successfully in scenario simulation because 

computationally it was very demanding. 
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11.5. Future Work 

Conclusion 

   

Extensions of this work and in general on the existing market approaches for pricing 

convertible bonds, can be performed. Some of the possible extensions are identified as 

follows: 

• The sampling quality of the tree can always be improved. Methods that are 

already employed in pricing frameworks of other instruments for defining the 

optimum number of steps could be employed for maximising the sampling 

quality of the pricing configurations introduced in this thesis for pricing 

convertible bonds. 

• Robustness of the trinomial tree is reduced by the possibility that negative 

probabilities could be calculated and employed for some sets of input 

parameters. This is an issue that all practitioners are faced with when 

employing trinomial trees and there is on-going research for overcoming this 

limitation of trinomial trees. 

• A solution to overcome the restrictions in the two-dimensional configurations 

with correlated processes where the employment of variable time step or term 

structures of market parameters is not allowed. 

• Interest rate risk and credit spread risk (or simply credit risk) in convertible 

bonds were issues not dealt with in this work. There is available research in 

these areas of convertible bonds. Other techniques could also be considered, 

like Monte Carlo approaches where the computational requirements increase 

linearly with the addition of more processes. 

In general, a spectrum of techniques and approaches are being considered and studied 

in the industry for pricing convertible bonds. However, it has to be recognised that the 

magnitude of the published research and overall literature on this subject is not 

representative of the volume of the trading activity, and what's more important, the 

complexity of this instrument. The main reason for this situation could be the fact that 

valuation of this instrument involves a combination of a number of numerical 

techniques, constituting this area of quantitative research a challenging subject. 
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So  (x)x <— — x < x 0 	1 
S1(x)x1  (x) 	 x2  

_2(x) 	xN-2 < x < xN-1 

s(x) (Eq.I.2) 

APPENDIX I 

Cubic Splines Implementation  

The material presented in this Appendix is extension of the respective material 

included in references [24], [31] and [32]. 

A spline function provides a solution to situations where continuity of derivatives is a 
concern when interpolating. A polynomial between each pair of table points and 
whose coefficients are not determined strictly locally is a spline. The non-locality is 
not complete but it provides smoothness in the interpolated function up to some order 
of derivative. Splines have less possibility of wild oscillation between the tabulated 
points than other polynomial interpolation methods, hence they are considered more 
stable. Here, we are concerned with the most popular and most implemented spline 
methods, the cubic.  splines. The interpolated function for a cubic spline is smooth in 
the first derivative and continuous through the second derivative. 

Natural Cubic Spline 

Given the known values of equation (Eq.I.1), we want to construct the set of functions 
shown in equation (Eq.I.2). 

Y 	Yo ,YoY2 ,Y3 ,••• ,YN-2 ,YN-1 
Or 

(X0 9  YO (XI,  Yi),  (X2 9  Y2 )9 • • • ( xN-2 YN-2 (xN-1 YN-1 ) 

(Eq.I.1) 

In equation (Eq.I.2), Si  (x) denotes the cubic polynomial that will be used on the 
subinterval Ix x , j  j+1 
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The conditions are summarised as follows: 
a. S(x) is a cubic polynomial, denoted as Si  (x) on the subinterval 

ki ,xj+1.1 for each j = 0,1,2,...,N — 2. 
b. S(xj)= y j  for each j = 0,1,2,...,N —1. 
c. Si  (x j±i  )= Si+, (x j+1) for each j = 0,1,2,..., N — 3 . 

d. S;(xj+1)= Si±i j+i) for each j = 0,1,2,...,N —3. 

e. S; j+1  = S;+1 j+1) for each j = 0,1,2, ... , N — 3 . 

f. S"(xo )= S(xN _i  )= 0 (free or natural boundary). 

We define the numbers 	 as follows. 

zi  =5"(x1) 	 j = 0,1,2,...,N —1 	 (Eq.I.3) 

Based on condition (f) above, the following holds: 
Zo = ZN-1 = 0 	 (Eq.I.4) 

We also define the numbers hj=0,1,2,...,N-2 • 

hi  = Xi+1  — Xi 	j =0,1,2,...,N- 2 	 (Eq.I.5) 

On the interval [xj,xj+1J , S is a linear polynomial taking the values z and z j+1  at 
the endpoints. Hence, 

S 	(X) 	

+1 

 	

I 
• )+ 

h 	'1+1 	
[X X j+11 	 (Eq.I.6) 

h •  

Equation (Eq.I.7) is obtained by integrating twice (Eq.I.6). 

Si (x)= zi+I x • )3  + 	 (x.+1 — 	+ cix+ d 	xj+1} 	(Eq.I.7) 
6h 	61/ 

Another form of the last equation is the following (E j  and F are two constants): 

Si  (X) = 
Z 	 Z 	\."3 

— X • )3 	 kX •
+1 	 J 	J .1 — X) -1- G • — X • )± F.(x +1  x) 

6h 6h. J  
[x • x • ,±1 	(Eq.I.8) 

The conditions that Si  (x j)= yj  and Si  (xj+1  )= y1+1  are applied to obtain the values of 
the constants Ei  and F . . The result is shown in equation (Eq.I.9). 

\ 	( 
yj  \•3  z / 	 t  S • (x)= Z1+1 	 (X X • 1 ± j  V • 	x

)3 
( 

+ 
Y

j
+1  IliZj+1 

 (x x )+ 	hi  zi 
kxj+1  — 4 

J i 	6h 	-1 	6h J • J+I 	
\ 

h
J 	 I 	 \ 

6 	i 	hi 	6 

[ X .1' X  .1+1  
(Eq.I.9) 
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The last condition to be imposed is that of the continuity in the first derivative. 
Differentiating equation (Eq.I.9), we obtain equation (Eq.I.10). 

S J  (x), 
 z 

J
4  1 

(x x 
j 
	

z / 

 

(- 
j+1x\ ±

y j÷ 

 

, hizi+, r y j  hiz, 
[x1' xp-1 ] 6hJ 	6hi 	 h1 	6 	

\h
i

6 
 

' 
(Eq.I.10) 

Introducing the parameter b., as shown in equation (Eq.I.11), then equation (Eq.I.10) 
can be also be written in the form shown in equation (Eq.I.12). 

- 	(y 	y j ) 	 (Eq.I.11) 

	

h-z • 	h.z 
S 1 	1.(x.)= 	.1+1 	

3 	
. +b 	[x. ' xJ+1 	 (Eq.I.12) 

	

6 	 I  

In the same fashion we can obtain S:1_1 (x) for the interval [x1_1, 
hi z • 	h• z- 

S'. (xJ )
6 	3 

J-1 	+ -1   [x.-11 x. J 	j (Eq.I.13) 

Setting the first derivatives of equations (Eq.I.12) and (Eq.I.13) equal to each other, 
then equation (Eq.I.14) is obtained (after re-arranging). This equation holds for all 
j =1,2,...,N - 2 since we want continuity in the first derivative across all the ranges. 

zi  _1  + 2(11.1 _1  + )z j  + 	= 	- 	[x • x J•1 	(Eq.I.14) 

For obtaining further simplification of the last equation, we introduce another two sets 
of numbers, u j  and vj  for j =1,2,...,N - 2. The new form is shown in (Eq.I.17). 

u j  =2(h-  1  +h.) 
	

(Eq.I.15) 
vi  = 6(bi  + bi-1 ) 	 (Eq.I.16) 

+ 	+ hizi+1  =v1 =1,2,...,N - 2 	(Eq.I.17) 

All the previous steps and equations result in a tridiagonal system of equations that 
must be solved simultaneously. The system of equations is shown in (Eq.I.18) where 
the simplicity of the first and last equations of this system is a result of condition (f). 

=0z1   
hozo  + ul z1  + h1 z2  = 
/1z, +//2z2  + h2z3  = v2  

+u z•+h.z. =v J J 	J 1+1 	J 
(Eq.I.18) 

hN _3Z N _3 + L1N _2 Z N _2 + hN _2 Z N _i = V Af _2  

= 0  
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The system of equations can also be written in the matrix and vector form of equation 
(Eq.I.19). 

1 
Ito  

0 
u1  hi 	0 • 

0 
0 

zo 0 
v1  

0 hl  u2 	h2  0 0 z2 V2 
: 	• 

0 	• • • 0 h j_1  u i  hi 	0 • • • 0 Zi V (Eq.I.19) 

0 0 hN-2 UN-1 hN-1 ZN_3 V N  _3  

0 hN-3 U N-2 hN-2 Z N-2 V N-2 

0 1 ZN —1 0 

The above system is simplified and reduced into the following form: 

u1 h1  0 • • • 0 z1  V 1 
hl  u2  h2 	0 0 z2  V2  

0 h2  u3 	h3  0 0 z3  V3 

. 	. . 
0 	• • • 0 h j_1  0 — • 0 Z1  V r  (Eq.I.20) 

0 O hN  _ 5  U N _4  hN  _4  0 ZN-4 V N-4 

0 

0 
0 hN_4 U N-3  

hN _3  

hN _3  

LlN_2  

ZN_3 

ZN-2_ 

V N _3  

V N-2_ 

After the above system of equations has been solved, the values z j  will be available. 
This could be the end of the calculations. However, some additional computations are 
carried out to bring the results in a more desirable form, the form presented in 
equation (Eq.I.21) which is the Taylor expansion of Si  (x) about the point x j  . 

S I • (x)= A + B •(x — x .)+ C •(x — x • )2 + D .(x — x JJJJJJJ 	 (Eq.I.21) 

Since the above equation corresponds to the Taylor expansion, then the parameters 
A1 ,  .1' . B C D. are defined as follows: 

A • = S • (x • J 	J J 	B = .(x J 	J 	J 	C • = S"  .) J 	J 	J 	D = S; j) 	(Eq.I.22) 

So, the first coefficient and the third coefficient are simply: 
A . = y • J 	J 

C = Zj  
2 

(Eq.I.23) 

(Eq.I.24) 
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Working out the coefficient of x3  in equation (Eq.I.9) will result in finding the fourth 
coefficient of equation (Eq.I.21) which is the coefficient of the respective parameter. 

1 
D =- —(z 	z j ) 	 (Eq.I.25) 

6h 

For the second coefficient in equation (Eq.I.21), the solution can be found through 
equation (Eq.I.12). 

hi 	hi 	1 
B•=-=--z• 	 - y •) 6 	3 	hi  J+1  

(Eq.I.26) 

The form of the solution in equation (Eq.I.21) enables the formulation of the nested 
form of S (x) which is the following: 

Si  (x) = y j  + - xi  
(

J 	

\ 
\ 	

kx )(Zi+  Zi  B.+(x-x J ) z 	
1 

i  + 	 i 	 (Eq.I.27) 
\ 

2 	6h 

Natural Cubic Splines Implementation Steps 

Input values are the N sets of points (x j , 	j = 0,1,2, ..., N -1 and xi+, > x j  . 

Step 1  
h

J 	J 
=x•

+1 
-x 	j= 0,1,2,..., N - 2 

b = 	• - y 
+.1 	• 	 j = 0,1,2, , N - 2 

Step 2  
Setting the triadiagonal system. 
uo =vo =0  

= 2(14 + ho  ) 
vl  = 6(b1  - bo ) 
Then, for j = 2,3,4,..., N- 2 : 

2 
ui  =2(hi  + hi-1 ) 

u 

v = 6(1) — bI-I) 

Step 3 
Solving the triadiagonal system. 
zo  = zN-t = 
Then, for j = N- 2, N - 3, N - 4,...,2,1 : 
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= 
v J • — hJ  Z 

 

Step 4  
Then, for j = 0,1,2,..., N — 2 : 

A = yj  
h 	h,1,  

B • 	
J 6 

z.
+ 	3 	h 	

.±, — y; 

z • 
C. = 

2 
( 

D • = 
1 

—kz •
÷1 

 — z;  
6h J  

In the four steps above, there is no danger of running into a division by zero. The 
parameters 	hi 	will 	always be 	greater than zero 	since x3+1  > , 
hence ui  > + hvo  > 0 . 

Interpolating 

If it is desired to obtain the y-value that corresponds to a point 
(x,,,, ym  ), x0  xm  5_ xN _ I  , then the following steps can be carried out. 

Step 1  
Establish which equation Si  (x) to use. The answer is in the form Sk  (x) and 
xk 	xm  5_ xk+i  . 

Step 2  
Calculate S k (x01 ) 

h„, = xm  — xk  

S k (X m )= Ak  h„, Bk  h„, Zk 	
1 rim(zk+i —  Zk) \ 2 6hk  
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