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ABSTRACT 

An apparatus of the "Burnett"-type has been constructed 

for the measurement of accurate compressibility factors of 

gases at pressures up to 100 bar. 	Results have been obtained 

in the temperature range 155 - 291 K for methane, nitrogen, 

two methane/nitrogen mixtures, one methane/nitrogen/ethane 

mixture and two natural gases. 

A method of data treatment using non-linear least-

squares analysis has been developed which included an 

investigation of the effect of experimental errors on the 

derived virial coefficients by means of data simulated on 

the computer. 

The compressibility factors for methane agree within 

.05% with those of Douslin et al. (43) above 0 °C and within 

0.2% of those of Vennix et al. (52) below 0 °C. 	The results 

for nitrogen are in good agreement with those of Crain et al. 

(34) and Canfield et al. (67). 	There are no previously 

published results for the methane/nitrogen system at low 

temperatures. 

Second virial coefficients of methane, nitrogen, argon 

and ethane were used to determine parameters of the Lennard-

Jones (n-6) and Kihara intermolecular potential models and, 

for methane, of the potential of Barker et al. (125). 	The 

latter and the Lennard-Jones (18-6) potential gave good 

agreement with the coefficient of the long-range dispersion 

interaction and the experimental third virial coefficients 

when the triple-dipole non-additive contribution was included. 

None of the combining rules tested were found to be 



adequate for all of the systems: CH4/N2,  CH4/Ar,  CH4/C2H6.  

and N2/Ar. A geometric mean correction factor, 

1  k12 (= 1  - (612 - (611'622)2)) of 0.03 was necessary for 

CH4/N2. 

The results for the multicomponent mixtures, including 

data on natural gases taken from the literature, were 

compared with the predictions of the extended corresponding-

states principle as due to Leland et al. (158). 	Agreement 

was excellent, within experimental error, above °C and 

fairly good below 0 °C. 
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CHAPTER ONE 

INTRODUCTION 

1.1 The Equation of State  

The equation of state of a perfect gas at pressure P, 

temperature T and molar volume V is, 

PV = RT 	 (1.1-1) 

where R is the gas constant. 

Real gases depart from perfect-gas behaviour because of 

the finite size of the molecules and the forces between them. 

The compressibility factor, Z, of a real gas is defined 

by 

PV 
RT (1.1-2) 

It is a function of temperature and pressure (or 

density) and is a convenient measure of the non-ideality 

of a gas because it is non-dimensional. 	As the pressure 

tends to zero and the gas becomes more ideal, Z approaches 

the value 1.0. 

The variation of Z with reduced temperature and pressure 

is of the qualitative form shown in figure 1.1. 	This graph 

has been plotted in reduced form, where reduced temperature 

and pressure are here defined by, 

TR T 	,R P = 
Tc 	Pc  

(1.1-3) 

where TC  is the critical temperature and Pc  is the critical 

pressure, as it is found that most simple gases roughly 

follow the same curves (the principle of corresponding states). 
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Many equations of state, both theoretical and empirical, 

have been proposed to express quantitatively the variation 

of the compressibility factor with pressure and temperature, 

but no one simple equation has yet been completely successful 

over the whole range. 	In this work most of the interest is 

in the low pressure region of figure 1.1 where the virial 

equation of state is appropriate. 

(a) The virial equation of state  

The virial equation of state is an expansion of Z as 

an infinite series in powers of density: 

Z = 1 	Bp + Cp2  + Dp3 

 

(1.1-4) 

 

An equation of this type, but in truncated form, was 

first suggested as an empirical representation of PVT data. 

The significance of the virial series is not in its usefulness 

in this respect, as the series appears to diverge at high 

densities (1) where other equations requiring fewer terms are 

preferable, but in the fact that it has sound theoretical 

foundations. 

It can be shown that each of the virial coefficients, 

B, C, D, etc., is related to the intermolecular forces in a 

direct manner (2). 	Statistical-mechanical calculation 

shows that the second virial coefficient, B, is'a function 

of the interaction between pairs of molecules, as described 

in Chapter 5, the third virial coefficient, C, is a function 

of the interaction between three molecules, and so on. 

The coefficients are independent of density and are functions 

of temperature of the general form shown in figures 1.2 and 1.3. 
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The second virial coefficient is one of the few 

macroscopic properties of a system which has a sound 

theoretical relationship with the intermolecular forces 

between a pair of molecules and which can provide quantitative 

information on these forces. 	However, very accurate 

experimental data are necessary. 

For mixtures it can be shown by the methods of statistical 

mechanics (2), as described briefly in Chapter 5, that the 

second virial coefficient is given by, 

BM1X . = 	x. 1J 
B.. 

 J  
i=1 j=1 

(1.1-5) 

where xi  is the mole-fraction of the i th. component. 

B 	is the second virial coefficient of the i th. pure 

component. 

Bij (i 	j) is the interactional second virial coefficient 

which is directly related to the interaction between molecule 

i and molecule j. 

Similarly, 

n n n 

Croix = 	 xi  x. xk ij  C 3 	k 
i=1 j=1 k=1 

(1.1-6) 

where Cijk is related to the interaction between the three 

molecules of type i, type j and type k. 

Thus by measurement of the compressibility factors and 

hence second and third virial coefficients of mixtures, it is 

possible to obtain information on the intermolecular forces 

between unlike molecules. 	In a multicomponent mixture the 
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interactions consist of interactions between pairs of 

molecules plus interactions between clusters of three 

molecules, and so on. 	However, the interactions between 

clusters of more than two molecules can largely (but not 

wholly) be described as the sum of interactions between 

pairs (pairwise additivity). 	For this reason it is 

necessary to have experimental data on the binary mixtures 

of the components of a multi-component mixture of practical 

importance, such as a natural gas, before its compressibility 

factor can be predicted with high accuracy. 

1.2 Compressibility factors of natural gas  

In the metering of large quantities of gas in pipelines 

the compressibility factor (or density) is required to 

obtain the measured flow-rate in units of mass per second. 

A small error in the pre-supposed value of Z at a certain 

temperature and pressure could lead to errors of millions 

of cu. ft. in the quantity of gas transmitted. 	The problem 

is more acute for natural gases, the compressibility factor 

of which varies considerably with temperature and pressure 

in the range of interest, than for town gas, the compressibility 

factor of which is fortuitously close to 1.0 because of the 

high hydrogen content. 

Ideally, it is desirable for Z to be measured or 

predicted as a function of composition, temperature and 

pressure to as high an accuracy as possible, or at least to 

an accuracy greater than that inherent in the actual 

metering. 

Knowledge of the volumetric behaviour of natural gas 
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and its components is also important in the design and 

operation of compressors and gas-treatment plants, particularly 

in relation to the liquefaction of natural gas, when 

information on Z at low-temperatures is required. 

The work reported here was initiated as the first part 

of a long-term project to measure accurately the com-

pressibility factors of the constituents of natural gas, 

their binary mixtures, then ternary mixtures, leading up 

to multicomponent mixtures. 	Data of this type are sparse, 

particularly at low temperatures. 

The gases studied in this investigation were methane 

(the major component of natural gas), nitrogen and their 

binary mixtures at temperatures from 155.9 K to 291.4 K at 

pressures up to 100 bar; this covers, approximately, the 

lighter shaded region of figure 1.1. 	Nitrogen is an 

important component in natural gas not only because it is 

inert to combustion but also because it is more ideal than 

methane and the higher hydrocarbons. 	The mole-fractions 

of the hydrocarbons tend to decrease in a regular manner 

along an homologous series and the compressibility factor 

of a natural gas consisting solely of hydrocarbons can 

usually be correlated with the average molecular weight or 

the specific gravity. 	The presence of only a small 

percentage of nitrogen upsets this correlation. 

As there was an immediate requirement for a predictive 

method capable of high accuracy, measurements were also 

obtained for three multi-component mixtures: a mixture of 

methane, nitrogen and ethane, and two natural gases. 	The 

results could then be compared with those of various predictions. 

This is done in Chapter 6. 



1.3 Other thermodynamic properties  

An equation of state based on accurate PVT measurements 

is important not only in interpolation of the data and 

prediction of the compressibility factor (or density) but 

also, of course, in connection with the calculation of other 

thermodynamic properties. The changes in thermodynamic 

properties of a gas over ranges of temperature and pressure 

are simply related to the equation of state. 	For example, 

we have for a reversible infinitesimal change in enthalpy 

of a fluid of constant composition, 

dH = TdS + VdP 

3H = 	T (L2) 
61D  T 	6P  T 

From the Maxwell relation, 

aS 	aV)  (7) = - (— 3T (1.3-3) 

we have 

3H 
(—) = aP T 

(1.3-4) 

Therefore, from an equation of state of the form 

V = f(T,P) 
	 (1.3-5) 

the partial derivative (ff) 	can be calculated. T   

For a change in enthalpy with both temperature and pressure, 

am dH = 	dT + ( H) dP aT (1.3-6) 

C
P 
 dT + (V - ) dP 

P 
(1.3-7) 

where C is the specific heat at constant pressure. 

13 
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. . the enthalpy H of a gas at temperature T1  and pressure P1  

is:- 

T1 	P1_ 

H = Ho 	C dT ir (V - T(a ) )dP (1.3-8) a 

0 	 0 

where Ho is an integration constant and is usually set to an 

arbitrary value at some chosen standard state, (P0, To), such 

as at 1 atm., 0 °C. 	The integration with respect to 

temperature is usually performed first, C taking the value 

at P0, and then the integration with respect to pressure 

is performed at temperature T1. 	Thus from a knowledge of 

Cp  at pressure Po  and from 414)p  and V, i.e. the equation 

of state, H - Ho  may be calculated. 

Similarly, TI  

S - So 

To 

dT 
T I 

Po 

(g) dP (1.3-9) 

High precision is required in the equation of state and 

hence in the PVT measurements, as accuracy is always lost 

on differentation of an equation of state. 	For the gas 

phase thermodynamic properties derived in this manner tend 

to be of higher accuracy than those from direct calorimetric 

measurements (3). 	Entropy changes cannot, of course, be 

measured directly by experiment. 

1.4 The Burnett Method of measurement of compressibility  

factor  

Burnett (4) proposed a method of measurement of the gas 
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compressibility factor that did not require accurate 

measurement of the volume, mass or absolute temperature of 

the gas under study. 	Other methods are described briefly 

in section 4.4(a); they either involve the determination 

of the pressure of a fixed volume of gas as a function of 

temperature (isochoric measurements), or the determination 

of the pressure as a function of volume at constant 

temperature (isothermal measurements). 

With reference to figure 1.4, a Burnett apparatus 

consists basically of a volume VA, at constant temperature 

TA, connected by means of an expansion valve, E, to a second 

volume VB at constant temperature TB. When TA is equal to 

TB  it is known as an 'isothermal' apparatus. 	At the start 

of an experiment VA  is charged with gas and the initial 

pressure Po is measured. 	The gas is then expanded through 

the valve E into the previously evacuated volume VB  and, 

after establishment of temperature equilibrium, the new 

pressure P1  is measured. Volume V is then vented and 

evacuated, another expansion of gas from VA  into VB  is 

carried out, and the pressure P2  measured. 	Expansions are 

continued until the minimum measurable pressure is attained; 

the sequence of pressures, Po  P1 	Pj 	Pn constitute the 

basic data of a Burnett 'run'. 

The number of moles of gas, no, in VA prior to the first 

expansion is given by 

P o A no = RTZ 
0 

(1.4-1) 

where Z0  is the compressibility factor at pressure Po. 
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1 A 	• B • no = 	RTZ1  
(1.4-2) 

After the first expansion, 
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P HenCel  p 
V + VB) Zo 

Z 	N. Zo 
 A 

(1.4-3) 

where N is known as the 'cell constant' or 'apparatus constant'. 

Similarly, after the second expansion 

1 	1 N. Z 	 (1.4-4) 
2 	2 

and after the jth. expansion, 

P1-1 	
N

-1 -1  	3-1  
P. - • Z. 

J 	 3 

From equations (1.4-3) and (1.4-4), 

P2' 
0 

and similarly, 

Pi.Ni = (z°  

(1.4-5) 

(1.4-6) 

(1.4-7) 

It can be seen that to obtain the compressibility 

factors from the experimental pressures, N and (Po  /Zo  ) must 

be determined; this is accomplished, directly or indirectly, 

from either a graphical or analytical method of data 

treatment. 	These procedures are described in Chapter 3. 

The Burnett method requires good temperature control 

and precise pressure measurements. 	As no accurate 

measurements of volume, mass of gas, or absolute temperature 



are necessary, the method is particularly suited to the 

determination of precise values of Z at low density and 

hence accurate second and third virial coefficients, 

particularly at low temperature, where other methods may 

lack the necessary precision at low pressures, and at very 

high temperatures where the accurate measurement of absolute 

temperature is difficult. 	However, as compressibility 

factors are not determined directly in a Burnett apparatus, 

their accuracy may be effected not only be experimental 

errors in measurement but also by such factors as the degree 

of curvature of the isotherm, the magnitude of N and hence 

the number of expansions in a run, and the method of data 

treatment employed: these factors are considered in detail 

in Chapter 3. 

(a) The non-isothermal Burnett Method  

In the 'isothermal' Burnett apparatus both volumes are 

maintained at the same temperature. At low temperatures 

the problem of temperature control with the conventional 

stirred-fluid bath can be difficult. 	It is much easier to 

ensure close temperature control and eliminate temperature 

gradients for each vessel separately. 	For these reasons 

a 'non-isothermal' Burnett apparatus may be employed, as in 

this investigation, in which, with reference to figure 1.4, 

volume VB  is at a temperature TB  which is easily maintained 

constant, such as 0 °C. 	Volume VA is maintained at the 

temperature TA  for which experimental compressibility factors 

are required. 	The expression equating moles of gas before 

and after the jth. expansion is then, 

18 



P3. 	.V -1 A 
P.j • VA 

TA.(ZA)j 
+ 
 TB"(ZB)j 

(1.4-8) 
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T .(Z ). A A 3-1 

 

The disadvantages of the 'non-isothermal' Burnett 

method are threefold. 	Firstly, the equation of state of 

the gas at temperature TB must be known either from published 

results or by performing an experiment with TA  = TB; 

however, it is fortunate that errors in the values of ZB  

lead to much smaller errors in the experimental values of 

ZA, as described in section 4.3. 	Secondly, some of the 

interconnecting tubing, valves, etc. constitute "dead-space 

volume" which is maintained at temperatures intermediate 

between TA and TB, and part of which must necessarily 

contain a temperature gradient. 	The interior volume of 

this dead-space must be known and corrections for the gas 

inside included in the calculation of ZA. 	Thirdly, the 

whole data treatment is rendered slightly more complex. 

Apart from the major advantage of easier temperature 

control, the non-isothermal Burnett method has the advantage 

that the expansion valve can usually be maintained at normal 

temperatures; many leakage problems occur with valves at 

extremes of low or high temperatures. Absolute leak-

tightness of the valve is essential to the accuracy of the 

method. Another advantage is that if the gas under in-

vestigation adsorbs on the walls of the vessel at low 

temperature then the effect of adsorption on the results is 

much smaller when VB is at a higher temperature where 

adsorption is insignificant (5). 	The problem of adsorption 

is discussed further in section 4.3(c). 



CHAPTER TWO 

DESCRIPTION OF APPARATUS AND EXPERIMENTAL PROCEDURE 

2.1 Introduction 

A general scheme of the 'non-isothermal' Burnett 

20 

apparatus is shown in figure 2.1. 	The first vessel, 

A, wasat the experimental emperature in the low-temperature 

system, described in detail in section 2.2. 	The second 

vessel, B, was situated in an ice-bath at 0 °C. 

Both vessels were double-walled and pressure compen-

sated, i.e. the same pressure existed both inside and out-

side of the inner vessel; this served to reduce the 

distortion due to pressure of the inner volume and enabled 

this distortion to be calculated with accuracy, as described 

in Section 2.9. 	The gas under study was confined within 

the inner volumes and the pressure difference between this 

gas and that in the outer volumes, which were directly 

connected to the pressure measurement system, was nulled by 

means of a Precision Pressure Gauge (Texas Instruments). 

Pressures between 25 bar and 110 bar were measured by 

means of an oil piston-gauge (or pressure balance). 	The 

oil was separated from the pressure-compensating gas by a 

differential-pressure cell (Ruska). 	Pressures below about 

25 bar were measured by means of a gas piston-gauge. 

The whole apparatus was situated in an enclosure, the 

temperature of which was controlled at a few degrees C above 

ambient room temperature by means of a toluene regulator with 

a proportionating head in conjunction with two 1000 watt 

heating elements; the air was circulated by two 10" fans and 
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the temperature inside the enclosure was constant to 

0.1 °C. 	Thus the piston-gauges, the dead-space volume 

and the electronic equipment were all maintained at a 

constant temperature. 

2.2 The Low Temperature System 

The low temperature system is shown in figure 2.2. 

The cylindrical stainless-steel pressure vessel is suspended 

within a copper radiation shield which is itself suspended 

within an evacuated outer jacket, the whole being situated 

in a Dewar containing refrigerant. 	Platinum resistance 

thermometers in the pressure vessel were used in conjunction 

with an automatic controller to govern the supply to heaters 

around the outside of the vessel, thus maintaining its 

temperature at a constant value. The temperature of the 

radiation shield was controlled by means of a differential 

thermocouple at about 1 °C. below that of the pressure vessel, 

which thereby was provided with a constant-temperature environ-

ment. 

The system was thus designed such that the heat loss from 

the pressure vessel was small and radiative, giving close 

temperature control and small temperature gradients within the 

vessel. 

(a) The Pressure Vessel 

The pressure vessel was of EN58J stainless-steel. 	It 

consisted of an inner volume, with walls of .125" thickness, 

containing the gas under study, and an outer volume, with 

walls of 1" thickness, containing gas at the same pressure. 

22 
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FIG: 2.2' 	LOW-TEMPERATURE SYSTEM  
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The interior surfaces of the vessel were polished 

to reduce adsorption and it was assembled using electron- 

beam welding (by courtesy of Vickers Ltd.) to prevent 

damage to the polished surfaces. 	The vessel‘ was provided 

with a central well, which housed the platinum resistance 

1" thermometer used for temperature measurement, and ten -6. 

diameter vertical holes drilled in the outer wall to house 

the controlling platinum resistance thermometers. 

A copper/constantan thermocouple was soldered to the 

pressure vessel at its mid-point and heaters of 32 s.w.g. 

cotton-covered manganin wire were non-inductively wound 

along the length of the outer wall. The heaters were 

electrically insulated from the pressure vessel by a layer 

of nylon% stocking material that was stretched over the 

vessel and then painted with Formvar (a solution of poly-

vinyl formal in chloroform), which also served as an adhesive. 

The thermocouple and heater circuitry is described in section 

2.4. 

(b) The Radiation Shield 

The copper radiation shield consisted of a 0.125" thick 

cylindrical side section to which were screwed top and bottom 

end plates. 	To the outside of each section were soldered 

the required thermocouple wires, as described in section 2.4. 

The pressure vessel was suspended from hooks screwed 

into the top of the radiation shield by means of several 

strands of strong nylon thread (dental floss), which acted 

as both thermal and electrical insulant. 	The radiation shield 

was similarly suspended from the top of the outer brass jacket. 
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The side section had two spiral grooves along its 

length, in which were embedded two cables consisting of 

all the electrical leads to the radiation shield and 

pressure vessel. 	One cable carried the heater leads and 

the other carried all thermocouple and thermometer leads; 

both also contained spare leads in order to avoid re-wiring 

of the radiation shield heaters in the event of breakage 

or shorting in the cables. 	Along the length of the side 

section were non-inductively wound 32 s.w.g. manganin 

wire heaters, insulated from the radiation shield by formvar-

painted nylon [stocking that also held in place the embedded 

cables. 	The top and bottom sections each consisted of two 

copper discs between which was sandwiched a heater of 

manganin wire wound on a circular sheet of mica. 

Heater and thermocouple leads from the top and side 

sections were passed down over the outside of the side 

heaters, from which they were insulated by nylon tape, 

and together with those from the bottom section they were 

soldered at point A to the appropriate leads in the embedded 

cables. 	Leads from the pressure vessel heaters, thermo- 

couples and platinum resistance thermometers were sheathed 

in P.V.C. sleeving, passed through the bottom plate of the 

radiation shield and similarly connected to the cable leads. 

The hole in the bottom plate was provided with a cover to 

prevent heat loss by direct radiation from the pressure 

vessel to the refrigerated outer jacket. 	All the soldered 

junctions at point A were covered with nylon tape and fixed 

at about 1 cm. from the bottom of the radiation shield so 

that they would be at about the same temperature. 



The leads at the top of the embedded cables were 

soldered at point B to the appropriate leads in the 

cables coming out of the low temperature system. 	The 

purpose of the spiral grooves was to ensure that the ends 

of the embedded cables at point A were reduced to the 

temperature of the radiation shield, thus eliminating 

heat transfer by conduction down the cables to the thermo-

couple junctions and platinum resistance thermometers. 

The inside of the radiation shield was covered with 

bright aluminium foil to reduce the heat loss by radiation 

from the pressure vessel. 	Eight holes of 0.125" diameter 

in the side of the radiation shield, drilled at an angle 

to avoid the transmission of direct radiation, assisted the 

quick evacuation of the interior. 

(c) The Inlet Tubes  

The two inlet tubes to the inner and outer volumes of 

the pressure vessel were of 0.063" o.d., 0.043" i.d. stainless- 

steel tubing. 	The tubing chosen was thin-walled, to reduce 

the heat transfer by conduction to the pressure vessel, and 

of small diameter in order to reduce the quantity of gas 

contained within. 

Before assembling 	,the low-temperature system, eleven 

copper/constantan thermocouples were attached to the tubes 

at the positions shown in Figure 2.3. 	The thermocouple 

junctions were insulated from the tubes by a thin sheet of 

paper coated with formvar and then covered with a further 

layer of insulating paper. 	A heater of 32 s.w.g. manganin 
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wire was then non-inductively wound over the tubes 

between thermocouples 2-and 10. 

The tubing leaving the pressure vessel was coiled 

to allow for thermal expansion and contraction and then 

connected by means of "Swagelok" couplings to the inlet 

tubes. 	These passed through a hole in the top plate of 

the radiation shield, from which they were separated by 

a teflon sleeve. The inlet tubes passed out to the 

atmosphere at the top of the central support tube through 

a brass adaptor, the seal being made by means of a soft-

soldered joint. 

The heater and thermocoqle wires were soldered at 

point B to the appropriate wires in the lead-out cables. 

The E.M.F. of each thermocouple was measured by a 

digital volt-meter ("Solartron") having a resolution of 

about 3 microvolts. 	The cold junctions were encapsulated 

in protecting glass tubes situated in distilled water / ice, 

and the terminals of the thermocouples connected into the 

D.V.M. through a mercury-bath switch. 

(d) The Outer Brass Jacket and Supports  

The cylindrical brass jacket surrounding the radiation 

shield was supported by means of four stainless-steel tubes, 

which were thin-walled to reduce heat transfer to the 

refrigerant from outside the cryostat. 	To the bottom of 

each support tube had been hard-soldered a brass collar, 

which allowed the tube to be soft-soldered readily into the 

top` of the outer jacket. 	The tubes were joined in a similar 
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manner to a 0.25" thick brass supporting plate which was 

bolted to the framework of the apparatus. 

The lead-out cables were sheathed in P.V.C. sleeving 

and wound several times around a copper ring.soldered to 

the underside of the top of the jacket. This served to 

cool the cables down,thus reducing their disturbing 

effect on the temperature control of the radiation shield. 

The central support tube contained the inlet-tubO r  . the 

second support tube contained the lead-out cables from all 

of the heaters and ,a third contained the lead-out cables from 

all of the thermometers and thermocouples. The fourth 

tube led directly to the vacuum system and contained no 

cables because of the possible breakdown of electrical 

insulation that would result from condensation of mercury 

from the diffusion pump. 

The cables passed through a black-waxed B29 brass 

cone/glass socket joint at the top of the support tubes. 

Each group of twelve wires were led out to the atmosphere 

through black-waXed B29 cone: socket seals. The seal was 

formed by baring the wires, embedding them into the black 

wax of the socket and inserting the waxed cone stopper. 

The wires were soldered onto 16 s.w.g. pins, of the same 

metal, mounted in a perspex disc on each stopper cone. 

The inside of the brass outer jacket was covered with 

bright aluminium foil to reduce heat loss by radiation from 

the radiation shield. The last stage of the assembly of the 

low temperature system was the soldering of the brass jacket 

to its lid. A low melting-point (115 °C) tin/indium solder 
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was used to avoid melting the soldered connections on the 

radiation shield and the other soldered joints on the 

outer jacket, and also to avoid damage to the inner electrical 

insulation. 

(e) 	The Cryostat  

The brass jacket was immersed in a refrigerating fluid 

contained in a large silvered Dewar flask. For temperatures 

of the pressure vessel below 200 K the refrigerating fldid 

was liquid nitrogen, the level of which was maintained to 

within 2 cm. by an automatic level controller. 

After several experiments at low temperature a small 

leak appeared in the evacuated brass jacket at the point 

where one of the support tubes was soldered into the jacket 

lid. This leak, which was present only when the jacket was 

immersed in liquid nitrogen, was temporarily cured by repeated 

application of rubber-based sealant solution. When the 

temperature of the pressure vessel was above 200 K a slurry 

of solid CO2/methanol was used as refrigerant. Although 

this is less convenient to use than liquid nitrogen, it avoided 

the problem of leakage. 

(f) 	Low Temperature System Cables 

All of the thermocouples were formed by joining 40 s.w.g. 

copper wire and 36 s.w.g. constantan wire using thermoelectric 

free solder. Wires of the same sizes were used for all the 

thermocouple leads from the low-temperature system to the 

measuring instruments. 
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The lead-out cables passed through the support tubes 

in contact with the refrigerant fluid. As variations in the 

refrigerant level led to changes in lead resistance, the 

thermometer and heater leads were of manganin wire, which has 

a much lower thermal coefficient of resistivity than does 

dopper. 	The heater leads were of 32 s.w.g. manganin wire, 

whereas the platinum resistance thermometer leads, which 

had to have a low resistance, were of 28 s.w.g. manganin wire. 

This was the largest diameter that could be manipulated easily 

during the wiring of the system. 

In the embedded cables there were no changing temperature 

gradients and so 32 s.w.g.copper wire was used for both heater 

and thermometer leads. 

From the pin-blocks at the top of the support tubes 

there were no restrictions on the size of leads and so 18 s.w.g. 

copper wire was used for the heater leads and for the control 

platinum resistance thermometer leads. The measuring platinum 

resistance thermometer leads were of coaxial cable with a 18 s.w.g. 

copper core and a copper sheath which served to reduce the 

pick-up of electrical noise by the core. 

2.3 Temperature Measurement  

The temperature of the pressure vessel was measured by 

means of a platinum resistance thermometer (Tinsley type 5187 L) 

No. 193958). 	It was of the type having a helium-filled outer 

platinum sheath and both resistance and potential leads, with 

a nominal ice-point resistance of 25 ohnts.f, 



The thermometer was calibrated at the National 

Physical Laboratory with respect to the International 

Practical Temperature Scale of 1948. 	The temperature 

was given by the Callendar van Dusen equation, 

t = 
R- R

o p/ 	 t 3 
4. 0 — 1 / 	p 	 7) ( — ) / t 	n/ t  

aR
o 	700 	100 	100 	100 

(2.3.1) 

where t = temperature in degrees C (IPTS 1948) 

R
t 
= resistance at t oC 

R
o 

= resistance at 0 °C. 

With a measuring current of 1mA the constants of the 

equation were calibrated as, 

R
o 

= 24.8370 ohm 

a = 0.00392617 

0 = 0 for T > 0 °C 

13 • 0.1096 for T < 0 °C 

• 1.4936. 

The differences between the IPTS 48 scale and the 

IPTS 68 scale (in effect the true thermodynamic temperature 

scale) are given by Hust (6). 	These differences in the 

range 150 - 325 K were fitted to a polynomial in temperature 

and the resultant equation used to change the measured values 

to the IPTS 68 scale. 

The maximum difference between the two scales in this 

range is .04 K. 

The thermometer resistance was measured by means of an 

A.C. Precision Double Bridge (Automatic Systems Laboratories 

Ltd., model H8). 	The ratio arms of the bridge were balanced 

by means of a 'quadrature' control and an 'in-phase' control 
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consisting of eight decade switches, which displayed 

the value of the ratio, 

r =  	(2.3-2) 

where R
t = resistance of thermometer 

R
s = resistance of a standard resistor. 

The standard resistor was of nominal 50 ohm 

resistance (Tinsley type 1659, No. 175884), with both 

resistance and potential leads. 	Its resistance at a 

temperature of i
s °C was given by 

R
8 	8 

= 50.0008 + (t - 20).10-5  ohms. 	(2.3-3) 

The bridge was set such that the voltage across the 

thermometer was about R
t mV, giving a current of 1 mA. 

Connections to the bridge were made by means of low-

noise plugs with gold-plated pins, to which the leads 

were carefully soldered, using thermoelectric-free solder. 

The bridge was equipped with a changeover switch 

which could change the positions of the ratio arms, thus 

giving a check on the-  accuracy of the balance position. 

Differences between the 'normal' and 'check' positions were 

usually equivalent to about .001 °C. 	The bridge sensitivity 

was equivalent to .0005 °C. 	The overall accuracy of the 

absolute temperature measurement was estimated as ± .005 K. 
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2.4 Temperature Control System 

(a) 	Temperature Control of the Pressure Vessel  

The principle of the temperature control system was 

that a series of platinum resistance thermometers in the 

wall of the pressure vessel comprised one arm of a Wheatstone 

bridge circuit, the unbalance signal from which formed the 

input to an electronic control unit. The output from the 

control unit supplied power to the heaters around the 

pressure vessel. 

The ten controlling thermometers (De Gaussa type P5), 

each of nominal 100 ohm resistance at 0 °C, were housed in 

ten equally spaced vertical wells in the outer wall of the 

pressure vessel. They were provided with silver extension 

leads which enabled them to be connected in series, giving 

a total nominal 1000 ohm resistance at 0 °C and a temperature 

coefficient of resistance of about 4 ohm / °C. Compensating 

leads of the same type of wire ran alongside the leads between 

the thermometers and the bridge. 

The bridge circuit is shown in figure 2.4. 	The ratio 

arms, R1 and R2, were set to 1000 Ohms, a value which was 

close to that of the thermometer, R4, in order to give 

optimum control. The variable resistance, R3, consisted 

of four decade boxes, which totalled 10,000 ohms in increments 

of 1 ohm, in series with a 10 x 0.1 ohm wire-wound resistance. 

Thus the value of R3 could be pre-set to the nearest 0.1 ohm, 

corresponding to 0.025 °C. At the control point, 

R4 . L‹.2 
R3 

(2.4-1) 
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The output sensitivity of the bridge was calculated 

as follows: 

When the bridge was 

resistance of the thermometers 

• • 	 Voltage across R4 

Voltage across R3  

• • 	 Output voltage 

just off balance, then the 

changed to R4  + SR4  
V(R4  + 6R4) 

(2.4-2) 

(2.4-3) 

(2.4-4) 

(2.4-5) 

+ SR4 (1000 

V R3 = 

* R4  + SR4) 

V R4 

(1000+R3) 

V(R +6R ) 4 

(1000+R4) 

V R 4 

(1000+R4  +6R4  ) 

1000.V.dR 

(1000+R4) 

2  (1000+R41 

The battery voltage was chosen as 6 volts, giving a 

bridge output of 6 microvolts for a change in temperature of 

0.001 °C at 0 °C (R4 = 1000 ohms, dit4 = 0.004 ohms). The 

bridge output increased at lower temperatures of the pressure 

vessel, e.g. 8.7 microvolts/0.001 °C at 190 K. 	(R4  = 670 ohms). 

The output voltage from the bridge formed the input 

to an electronic D.C. Null Detector (Leeds and Northrup, 

model 9834-2). 	This instrument was a high-gain, low-noise 

operational amplifier, giving an output voltage of from-0.5 to 

+ 0.5 volts, displayed on a front-panel meter. The maximum 

drift rate was about 0.1 microvolts per hour, corresponding to 

an 'apparent temperature change of about 0.001 °C during an 

experiment. 

The output from the Null-Detector provided the input 

to a Current-Adjusting-Type Control Unit (Leeds and Northrup, 

Series 60), which gave from 0 to 5 mA output. This instrument 

had 3-action control: proportional, integral and rate control. 



The proportional control functioned in rapid response to 

the error signal by providing a restoring signal in 

proportion. The integral control provided an extra 

restoring signal to maintain the control point at the 

correct set position at which the error signal was zero. 

Rate control supplied a further restoring signal in proportion 

to the rate of change of temperature. 

The output from the control unit was amplified by a 

Power Supply-Amplifier (Hewlett-Packard, model 6823 A). 

This provided a maximum power of 10 watts at 20 volts d.c. 

and 0.5 amp. 	It could also be used as a direct manually- 

controlled power supply; this was important when rapid 

heating of the pressure vessel was necessary. 

Ideally, the pressure vessel heaters should cover as 

large a surface area of the pressure vessel as possible and 

should have the optimum total resistance of 40 ohm consistent 

with the Power Supply/Amplifier rating. 	It was possible to 

meet these conditions using six sections of 32 s.w.g. manganin 

wire heaters, each of 240 ohms, connected in parallel to give 

a total resistance of 40 ohm. Alternate sections were connected 

in parallel inside the radiation shield and these two 80 ohm 

units were then joined outside the low temperature system. 

Thus in the event of failure in one of these 80 ohm heaters, 

the other could be used without recourse to rewiring of the 

pressure vessel. 

On assembly of the control system, much attention was 

paid to the removal of noise and feed-back interference caused 

by ground-loops in the Null-Detector. circuit. 	Even so, it 
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was not possible to use the Null-Detector at itsfull 

sensitivity because of unstable oscillations of the null 

detector output. At the setting used a change in 

control temperature of 0.001 °C resulted in a meter 

deflection of 2 mm. of scale. After adjustment of the 

control unit settings to give optimum control, it was 

found that it was possible to maintain the temperature of 

the controlling thermometers such that the meter reading 

of the null detector was constant to within 1 mm., 

corresponding to6;000520C. However, the temperature as 

measured by the central measuring platinum resistance 

thermometer exhibited slow oscillations of ± 0.001 °C. 

The slightly worse control at the centre of the pressure 

vessel was thought to be due to the time-lag involved in 

heat transfer across the outer wall and the layer of pressure- 

compensating gas. 

On establishment of equilibrium after an expansion the 

control temperature was usually less than the value before 

the expansion. These increments were about 0.003 oC for 

an expansion from 100 bar and decreased in magnitude with 

the pre-expansion pressure. The overall change during an 

experiment was about 0.005 °C to 0.01 °C. 	This phenomenon 

was thought to be due to the effect of the layer of compensating 

gas on the small temperature gradient across the pressure vessel. 



(b) 	Temperature Control of the Radiation Shield  

The control system is shown in figure 2.5. 

Copper /constantan differential thermocouples were 

used to monitor the differences in temperature between 

the pressure vessel and the side of the radiation shield, 

AB; between the top and the side, CD; and between the 

bottom and side, EF. Electrical connection between the 

three sections of the radiation shield was made by means 

of the copper of the shield itself. 

The thermocouple AB was connected in series with a 

microvolt source. This source consisted of the voltage 

taken across a variable number of small resistances in 

series with a 1 megohm resistor and a mercury-cadmium cell. 

The combined E.M.F. of the source and thermocouple provided 

the input to a Null Detector and C.A.T. Control Unit (Leeds 

and Northrup),of the same type that were used in the control 

system of the pressure vessel. 	Thus when the E.M.F. of the 

differential thermocouple was equal and opposed to that of the 

microvolt source, the radiation shield temperature was at its 

control point. The source could be pre-set at a value from 

5 to 100 microvolts; corresponding to a temperature of the 

radiation shield of from .15 to 3.0 oc below that of the 

pressure vessel. This was set for each experiment to as small 

a value as possible consistent with good temperature control 

of the pressure vessel. 

The output of the control unit was amplified by a Power 

Supply/Amplifier (Hewlett Packard, model 6824A), having a 

maximum output of 50 watt at 1 amp, which supplied the radiation 

shield and inlet tube heaters. 	The heater circuit is also 

shown in figure 2.5. The side section of the radiation shield 
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possessed four heaters of 32 s.w.g. manganin wire, each 

of 600 ohms, connected in parallel to give a combined 

resistance of 150 ohm. The top and bottom sections 

each possessed one heater of 45 ohms. The values of 

these heaters were approximately proportional to the mass 

of copper that they were required to heat. 

The E.M.F.'s across thermocouples CD and EF were 

indicated by means of a sensitive 10 ohm suspension 

galvanometer (Tinsley, SR4). 	By manual adjustment of 

the three rheostats, Rs, RT  and RB  in series with the 

radiation shield heaters, all three sections could be 

maintained at the same temperature. 	In practice it 

was found that after the initial setting of these rheostats, 

little further adjustment was required owing to the good 

thermal contact between the three sections of the shield 

and the high thermal conductivity of the copper. 

Rheostat RI controlled the current supplied to the 

inlet tube heater, which was of 90 ohms resistance. The 

supply to this heater could be cut off by means of the 

switch, S, to prevent over-heating at the top of the inlet 

tubes if rapid warm-up of the radiation shield were required 

before an experiment. 

In practice, the temperature of the radiation shield 

was controlled to within 0.1 °C, corresponding to ± 3 

microvolts in the output of the differential thermocouple. 

It was found that with solid CO
2/methanol as refrigerant, 

then at 295 K the required heating level of the radiation 

shield was nearly 1 amp and temperature control was difficult. 
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2.5 The Ice-Bath Vessel  

A diagram of the ice-bath vessel is shown in figure 

2.6. As in the case of the low temperature pressure 

vessel, the ice-bath vessel was double-walled and pressure 

compensated, enabling the variation with pressure of the 

volume to be calculated with accuracy. Another feature 

of the design was the provision of four interchangeable 

inner vessels of different lengths, giving four possible 

ice-bath volumes of 514.9 cc )  385-7 cc,28I.3 cc , and 176-2 cc (at 20°C). 

The accuracy of the results is effected by the particular 

volume used in an experiment, as described in section 3.4(g). 

The vessels were machined from EN58J stainless-steel 

and the interior surfaces polished to reduce adsorption. 

They were assembled by means of precision argon-arc welding. 

The inlet tube to each inner vessel was of .063" o.d., .043" 

i.d. stainless-steel tubing. 	An 'O'-ring in a groove at 

the top of the pressure compensating jacket formed the seal 

between the outer volume and the atmosphere. The inner 

vessel was held in place by means of the end-cap of the 
3  T!  

pressure compensating jacket and eight 	'-whit. stainless-

steel bolts which screwed through the end-cap and located on 

the top of the inner vessel end-plug. The tension in these 

bolts was adjusted to give a leak-tight seal at the 'O'-ring. 

The bolts also passed through a steel ring which was connected 
3" 

by means of four ri diameter steel rods to the framework of 

the apparatus and thus served to support the whole vessel. 

The vessel was situated in a large Dewar flask containing 

a mixture of distilled water and finely crushed ice. Good 
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circulation of water in the bath was provided by asix-

bladed stirrer inside a plastic tube with holes positioned 

as shown in figure 2.6 such that a vigorous pumping action 

resulted. 

A platinum resistance thermometer inserted in the 

bath indicated whether there was sufficient circulation 

of waterAln the bath. As a preliminary check on the 

temperature stability of the gas in the inner vessel, it 

was filled to about 80 bars with nitrogen and the pressure 

monitored by the oil piston-gauge. 	It was found that, as 

long as there was sufficient ice in the bath and the stirring 

rate was reasonably high, the fluctuations in temperature 

were less than .002 °C during a pressure measurement. Both 

of the independent vacuum systems comprised an oil rotary pump, 

a water-cooled mercury diffusion pump and a liquid nitrogen 

trap. One system maintained the vacuum in the outer jacket 

of the low temperature system, and the other was used to 

evacuate the ice-bath vessel prior to an expansion and to 

evacuate the apparatus at the end of an experiment. 

The vacuum in the pumping line was measured by means of 

an Ionization Gauge. Because of the small-bore inlet tubing 

of the ice-bath vessel, the pressure inside the vessel during 

its evacuation was greater than that measured by the Ionization 

Gauge. Therefore a few tests were carried out to determine 

the time of evacuation necessary. 

The ice-bath vessel, containing nitrogen at 1 atmosphere 

pressure, was directly connected to the pressure poktP of the 

Precision Pressure Gauge, the reference side being under vacuum. 

It was found that an evacuation time of 40 minutes was required 

to reduce the residual pressure to less than 5.10-5 bar, the 



minimum value that could be detected by the 	To 

be certain of complete evacuation, this time was increased 

to 60 minutes in the course of experiments. 

2.6 	Pressure Measurement 

(a) The Oil Piston-Gauge 

Pressures from about 25 - 110 bar were measured by 

means of an oil piston-gauge (Budenberg), having a piston/ 

cylinder unit, No. K231, of .125 in2 nominal piston area. 

Its characteristics are described in detail by Bett (7), 

who calibrated it against a standard mercury column. 

The applied pressure on the piston, i.e. the excess 

of internal fluid pressure over atmospheric pressure, was 

given by the quotient of the total downward force on the 

piston, F, and its 'effective area', A. 	Prior to the 

present study the piston/cylinder unit was submitted to the 

National Physical Laboratory for calibration of the effective 

area against a primary standard piston-gauge. With reference 

to figure 2.7, showing the piston/cylinder unit, the reference 

level chosen by the N.P.L. for specification of the applied 

load was that of the lower end of the piston at the mid-point 

of its range of movement, level C. During calibration the 

piston was balanced at its midway position and rotated freely 

at 35-40 revs/min, in both directions. 	The oil used as 

pressure transmitting fluid, both by the N.P.L. and in the 

present study, was a mixture of Shell 'Diala-B' and Shell 

'Talpa-30' in the ratio 3:2. 
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The effective piston area, A , at a pressure of P 

bars, was given by 

A = Ao  (1 + bP) 	(2.6-1) 

At 20 °C the calibrated values of Ao and b were, 

Ao = 0.806424 ± 0.000013 cm2  

b  = 4.0 . 10277  bar-1. 

The N.P.L. value of Ao differed from that found by Bett, 

0.806392 cm2, but agreement was reasonably good considering 

the possible effects of ageing on the piston area and that 

in the earlier calibration a different pressure standard and 

a different fluid, paraffin oil, were used. 

The effective area at a temperature t°C was, 

	

A = A (1 + 2a (t-20)) 	(2.6-2) 

= 11 :5 10-6  PC-1 	. 	 (2.6-3) 
A load was applied to the piston by means of counter- 

balancing disc weights supported on a stainless-steel weight 

carrier, as shown in figure 2.8. The carrier rested on a 

ball-bearing in the top of the piston-cap. 	If the total 

mass of the counterbalancing weights, carrier, ball-bearing, 

piston and cap is M, then the total downward force, F, on 

the piston at level C is, 

	

F = Mg - fa - fo + fs 	(2.6-4) 

g = acceleration due to gravity. 

fa = upward force due to buoyancy in air of all the 

weights, etc., above level B. 

fo = upward force due to buoyancy of that part of the piston 

submerged in oil. 

fs = downward force due to surface tension at the oil 

meniscus at the top of the piston. 
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(i) The Acceleration due to Gravity 

The absolute value of the acceleration due to gravity, 

g, was recently determined at the National Physical Laboratory 

(8).  
= 	9'81182 m.sec72 	(2.6-5) 

The value at the Department of Geophysics, Imperial College, 

+ was determined (1971) as equal to 9.81202 m.sec-2   - .00006 m.sec-2 

by using a comparative gravimeter. This was the value assumed 

for use in this investigation. 

(ii) Determination of the Mass of Counterbalancing Weights  

The piston-gauge counterbalancing weights were weighed 

in air on a 10 Kg. balance (Stanton Instruments), against 

rhodium-plated brass analytical weights which had been 

standardised at the N.P.L. in 1951. 	These analytical 

weights were checked, prior to the weighings of the piston- 

gauge weights, by comparison with a primary standard of mass. 

This standard was a chromium-plated brass integral weight 

which had been used on only three occasions since its 

calibration. 	It was therefore assumed to have the mass 

given in the calibration, which was 6653.759 gm., to the 

nearest 0.001 gm. 

With the standard integral weight on one scaleloen)  

the mass of analytical weights required for balance on the 

other pan were found to the nearest .002 gm. by the method 

of oscillations using a previously determined value of the 

balance sensitivity. The balancing was repeated with the 

integral weight moved to the other scale 'pan and the geo-

metric mean of the two readings taken to compensate for 

inequality in the lengths of the balance arms. The total 



mass of analytical weights was found to differ from that 

of the integral weight by less than 0.004_gm. Analytical 

weights used in this check were then balanced against 

others of the same total nominal mass. 	It was determined 

that the mass of no analytical weight differed from its 

nominal value by more than 0.003 gm. and so no corrections 

to these values were necessary. 

Each of the piston-gauge disc weights, the carrier, 

ball and piston were then weighed in air against the 

analytical weights by the same method of double weighing, 

to the nearest 0.005 gm. 

The true mass of the object being weighed was given 

by the mass of the balancing analytical weights corrected 

for the effect of buoyancy in air, 

m m  (1 + e (— — —)) B 	d 	dB  

MB = Mass of balancing brass analytical weights. 

d = Density of object being weighed. 

dB = Density of brass analytical weights. 

P = Density of air. 

(2.6-6) 

The densities of the relevant materials were, 

Cast Iron 	7.10 gm.cm 3 

Steel 	7.83 " 

Stainless steel 	7.90 

Brass 	8.40 

The value for the oil-blacked cast iron disc weights 

was that determined by Bett (7). The density of air was 

taken from tables of ambient air density given in Kaye and 

Laby (9). 
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TABLE 2.1 

Masses of Piston-Gauge Disc Weights, Carrier and Piston 

Weight No. 

Mass 	, 

December 1971 July 1969 December 1970 

18 6668.37 6668.37 6668.39 

19 6669.25 6669.25 6669.27 

20 6669.38 6669.38 6669.40 

21 6669.45 6669.46 6669.48 

22 6670.27 6670.27 6670.27 
23 6669.93 6669.93 6669.94 
24 6668.77 6668.79 6668.80 
25 6669.26 6669.26 6669.27 

115 6469.91 6469.91 6469.94 

116 6516.99 6516.98 6517.00 

117 6425.84 6425.84 6425.82 

60 2666.45 2666.46 2666.48 
61 2666.40 2666.42 2666.43 

62 2666.45 2666.46 2666.47 

64 1333.01 1333.03 1333.04 

65 1333.03 1333.05 1333.06 

66 666.18 666.19 666.20 
67 666.49 666.51 666.52 

69 	(steel) 266.709 266.707 266.708 
71 	( 	TT 	) 266.731 266.735 266.741 
141 	( 	ft 	) 266.499 266.503 266.506 
72 	( 	It 	) 133.333 133.335 133.344 
73 	( 	" 133.192 133.198 133.196 

Piston Unit 	(steel) 45.273 
Carrier 	(s.steel) 1130.879 1130.880 1130.881 
Ball 	(s.steel) 2.039 2.039 2.037 



Each object was reweighed on the same day and the 

results were reproducible to within 0.005 gm. 	The 

maximum buoyancy correction amounted to 0.17 gm. for the 

largest weights and the error in this correction was 

estimated as less than 0.005 gm. 	Hence the mass of each 

weight was taken as having a maximum error of ± 0 	gm. , 

for the largest weights, and ± 04,005 gm. for the smaller 

weights. 	Table 2.1 shows the values obtained on three 

separate occasions during the present study. 	It can be 

seen that most of the cast-iron disc weights exhibited a 

small increase in mass over this period, possibly due to 

an increase in adsorption of water vapour or to the effects 

of slight corrosion. 

A set of stainless steel analytical weights, ranging 

from 0.01 gm. to 100 gm., was used to supplement the set of 

disc weights. The true mass of each of these weights was 

found to be within 0.002 gm. of its nominal value. 

(iii) 	Buoyancy and Other Corrections to the Load on the Piston 

The upward force, fa, due to air buoyancy is given by 

fa = g. 	mwe/dw 	(2.6-7)  

where dw is the density of a weight of mass m and e  is the 

density of air. Air buoyancy corrections had to be made 

to all weights above point B (figure 2.7). 	The mass of 

piston and cap above level B was calculated from the 

dimensions of the piston and its total mass. 

The tables of ambient air density (9) in the ranges 

of 25 - 32 °C. and 730 - 780 mmHg atmospheric pressure 
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were represented for computational purposes by the following 

equation, 

e 	(1.180 - 0.0045 (t - 27) + 0.0016 (h - 767)).10-3  

(2.6-8) 

is the air density, in g.cm-3. 

t is temperature, C. 

h is atmospheric pressure, mmHg. 

The error resulting from use of this equation was estimated 

as less than .5%. The maximum error in the value of the 

density of the disc weights was estimated as 1.5%, giving 

a total maximum error in the buoyancy correction of 2%. 

This corresponded to an error in pressure of 3 parts in 106. 

The upward force, fo, due to oil buoyancy was, 

fo = g. V C eo 
	(2.6-9) 

where VBC is the volume of the piston between B and C, and 

co  is the density of the oil. 

However/the N.P.L. calibration included the additional 

pressure at C, caused by the hydraulic head of oil between 

B and C, with the oil buoyancy correction to the total load, 

i.e. fo = g.VBCeo 	g. eo.x.A 
	

(2.6-10) 

= geo  (A.17 + VCD) - geo.xA 
	

(2.6-11) 

= geo (VCD 	A(x 	Y)) 	 (2.6-12) 

x - y = 0.992 cm. 	VCD  ' = 0.947 cm
3 	

(2.6-13) 

VCD is the volume of that part of the piston between D and C, 

calculated from its dimensions. 



At 20 °C, fo  = 0.013 N, from equation (2.6-12); 

this value agrees well with the figure given by the 

N.P.L. of 0.014 N. 	The major error in the calculation 

of fo from equation (2.6-12) arose from the uncertainty 

in VCD  '' estimated as - 0.015 cm
3 leading to a maximum 

error in fo of about 0.0013 N. 	This corresponded to an 

error in pressure of 1.5.10-4 bar. 

The effect of surface tension was calculated by the 

N.P.L. as, 

fs = 0.0096 N 
	

(2.6-14) 

The oil-system is shown in figure 2.8. 	The 

hydraulic pump (Blackhawk) was employed for quick pre-

ssurization of the oil and the oil-injection pump provided 

fine changes in pressure. All valves were Autoclave 2-way 

needle valves with 4" o.d., .07" i.d. stainless-steel inter-

connecting tubing. 

Before the first pressure measurement, the base of the 

piston-gauge was levelled. During each measurement the 

carrier was rotated freely at about 40 revs. min-1 in such 

a way that there was no eccentricity in rotation. Oil 

leaking past the piston was periodically removed with paper 

tissue to maintain the correct shape of the meniscus. 	It 

was found that the gauge was capable of high sensitivity, 

its resolution being better than 5.10-5  bar, 	The short- 

term reproducibility on measurement of a constant pressure 

was better than 10-4  bar, the direction of rotation of the 

piston being immaterial. Just after each measurement, the 

temperature of the piston was measured with a mercyry-in-glass 

thermometer. This was felt to give a truer indication of 

the piston temperature than a thermometer permanently set into 

53 



the base of the gauge. 

(iv) Hydraulic Head of Oil 

With reference to figure 2.8, the pressure of the oil 

at the diaphragm of the Differential Pressure Cell was 

greater than that at level C by SP, where 

8P = 	ep • h. 	(2.6-15) 

eP is the density of oil at pressure 13  bars. 

The distance h+y was measured with an accurate cathe- 

tometer; the mean of several readings gave 

h+x = 34.597 cm. 	(2.6-16) 

Hence, 
h = (34.597 - 3.716) cm. 

h = 30.881 cm. 

The major errors in this figure were due to the 

uncertainty in the exact diaphragm position, which was 

given by a mark on the outside of the D.P.C., and to 

deviations from the true mid-point floating position. 

The maximum error in h was estimated as 0.05 cm, or 0.15%. 

The oil density was determined by means of a 25 ml. 

glass density bottle at temperatures from 25 °C to 32 °C. 

At each temperature the bottle was first filled with mercury 

to determine its volume and then with oil; the bottle was 

maintained in a water bath inside the temperature-controlled 

enclosure to ensure a steady, known temperature. The 

estimated maximum error in each of the measured values of 

the oil density given below is 0.0005 g cc-1  (Table 2.2) 

The density of the oil increased with pressure. A 

value for the compressibility,g, was calculated on the basis 

of measured values for mineral oils of similar constitution 
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to the mixture used (10). 

PP = Po (1  4. (3 P) 
p = 	io-5  bar-1  

This leads to a total maximum possible error in ep 

of 0.0015 g.ce 1  at 100 bar, or 0.2%. 	Combined with 

the errors in h, the maximum possible error in SP was 

about 0.35% at 100 bar, i.e. 0.35% of 0.028 bar. 

1.1= 0.0001 bar 

(b) The Differential Pressure Cell  

The differential pressure cell (Ruska), or D.P.C., 

served both to isolate the gas from the oil of the high-

pressure piston-gauge and to accurately null the pressure 

difference between the two media. 

It consisted of two stainless-steel pressure chambers 

separated by a thin, circular stainless-steel diaphragm. 

Attached to the upper surface of the diaphragm was the movable 

core of a differential transformer. A pressure difference 

between the two chambers caused a deflection of the diaphragm 

and thereby a change in the inductance of the transformer. 

The resultant signal was amplified and displayed on a Null 

Indicator adjacent to the pressure cell. The instrument 

had a maximum sensitivity of 0.0003 bar pressure difference 

for full scale deflection. 

With reference to figure 2.9, each chamber opening had 

been threaded to take a 3/8", 24 +.p.i. double male fitting 

(Ruska). 	One half of each fitting was machined to 4" o.d. so 

that it could be connected to the 4" o.d. pressure tubing 

by means of standard "Ermeto" couplings. 
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Before the introduction of oil into the lower chamber 

a temporary line of pressure tubing and a valve, E, were 

inserted so that the two chambers might be connected 

directly and the shift with pressure of the D.P.C. null 

position investigated. 

This null-shift was estimated from the calibration 

curve supplied by Ruska as being proportional to pressure 

below 110 bar and as having the value 

4P/P = 2.10-6 	(2.6-17) 

After nulling the indicator with both chambers open to 

atmospherdi on filling the cell with dry nitrogen at 100 bar 

a null shift of almost full scale deflection on maximum 

sensitivity was observed, corresponding to a AP of 3.10-4 

bar. 	This shift was very small and the difference between 

it and the value predicted by the calibration was negligible; 

throughout this work the Ruska calibration was used, therefore, 

to estimate the null-shift with pressure. 

After this preliminary check on the null-shift, the 

lower chamber was filled with the oil mixture,which had 

previously been filtered to prevent the introduction of 

metallic particles that might puncture the diaphragm. Before 

a pressure measurement, valves B and C were opened and the side-

tube, T, raised or lowered until the oil meniscus was level with 

the position of the diaphragm. The null indicator was 

then set on the null position at maximum sensitivity. The 

lower chamber was then alternately pressurised to 130 bar and 

then depressurised until a stable null was achieved. After 

each depressurization several minutes were allowed to elapse 

to give a steady cell temperature. During each pressure 
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measurement care was taken to ensure that the pressure in 

the upper chamber never greatly exceeded that in the lower 

chamber as this could have lead to a permanent shift in 

null-position. After a measurement the null-position at 1 

atmosphere was redetermined; usually a shift corresponding 

to a LP of up to 10-4 bar was noted. Whenever the change 

represented a AP of greater than 10-4 bar, the pressure 

measurement was immediately repeated. 

Throughout this study no deterioration in performance 

of the D.P.C. was apparent and the only servicing necessary 

involved the replacement of a faulty capacitor in the null-

indicator. 

(c) The Gas-Operated Piston Gauge 

The lowest pressure that could be measured accurately 

with the oil piston-gauge was about 10 bar owing to an 

increase in friction between piston and cylinder at low 

pressure. The instrument used at lower pressures was a 

gasoperated, oil-lubricatedpiston-gauge (Budenberg) with 

a working range of about 2-28 bar and a nominal piston area 

of 0.125 in2. 	A diagram is shown in figure 2.10. 

The nylon tubing connecting the various sections of the 

gauge was replaced by copper tubing with brass 'Simplifix' 

couplings to eliminate leaks. 	Mineral oil, grade S.A.E. 

10 (Castro3), was used to lubricate the piston/cylinder unit. 

The masses of the counterbalancing piston-gauge weights 

were determined on the 10 Kg. balance, using the same 

procedure as that described in section 2.6(a). 	The values 

obtained are shown in Table 2.3. 	Weights Nos. 1-10 were of 

oil-blackened steel, density 7.8 g.cc-1 1  and weights Nos. 11 and 

12 were of stainless-steel, density 7.90 g.cc-1. 
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Density of 3:2 Mixture of Shell "Diala B"  

and "Talpa 30" Oil  

Temp. 

20.0 (N.P.L.) 

25.1 

26.6 

27.5 

28.6 

29.8 

32.0 

Density q/cc at 1 atmos. 

0.8840 

0.8792 

0.8779 

0.8772 

0.8765 

0.8757 

0.8744 

TABLE 2.3 

Masses of Gas-Operated Piston-Gauge Weights  

Mass, g. 

Weight No. July 1969 
• - 

December 1970 

1 

2 

3 

4 

(steel) 
TT 

11 

tr 

5671.06 

5671.08 

5671.00 

2835.54 

5671.08 

5671.09 

5671.02 

2835.56 
5 11 2835.56 2835.59 
6 I/ 2268.22 2268.24 
7 11 1133.99 1134.01 
8 1134.04 1134.06 
9 ft 567.220 567.220 
10 11 283.494 283.496 

11 (stainless steel) 113.465 113.469 
12 113.453 113.455 
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The oil piston-gauge was used to calibrate the gas 

piston-gauge in the range from 7 to 28 bar (100 - 400 lb.in-2). 

The pressure of nitrogen in the ice-bath vessel was monitored 

by both gauges. 	It was found that the gas piston-gauge was 

sensitive to pressure changes as low as 10-4 bar, providing 

that the carrier was rotated at about 30 - 50 revs. min-1 , 

the direction of rotation being immaterial. Reproducibility 

to 2.10-4 bar was attained as long as the vertical floating 

position of the piston was constant, owing to the large effect 

of the buoyancy in oil of the submerged section of the piston. 

A marker of adhesive tape was attached to the outside of the 

piston/cylinder unit and the under surface of the rotating 

carrier was always aligned with the top of the marker. 	In use, 

the gas pressure caused oil to leak slowly past the piston 

and the reservoir level to fall, decreasing the buoyancy effect. 

It was necessary to replenish the oil before each measurement, 

topping up to the level of the filler plug, and to clear 

excess oil from the well at the top of the cylinder/piston 

unit. 

The total mass in grammes, m, of the counterbalancing 

weights, excluding the carrier and piston, were recorded at 

intervals of 25 lb. in-2 from 100 to 450 lb.in-2. It was 

found that the variation of the pressure, P, with m was very 

linear between 150 - 375 lb.in-2, 

p = 	a + Xm 	bar 	(2.6-18) 

a and X were determined by a least-squares curve fit, 

a = 0.68848 bar, standard deviation = 2.10-5 bar. 

= 0.00121606 bar.g-1 , standard deviation ; 4.10-8. 



Below 150 lb.in-2  the apparent pressure measured 

by the oil piston-gauge was systematically higher than 

the true pressure because of the high friction between 

piston and cylinder. 

In normal use of the gas-operated gauge, the pressure 

as given by (2.6-18) was corrected for the differences 

between the air density, e  and piston temperature, t, 

and the values at the time of the calibration, 0.00111g:g.cc-1  

and 27.5 0C respectively. 

P = a (1 - (f -0.00118)  + m X (1 - (e - 0.00118)') 

ec 	 CW 

(1 + 2.3.10-5  (t - 27.5)) 	(2.6-19) 

ec is the average density of the carrier and piston = 4 g.cc-1  . 
is the density of the weights = 7.8 g.cc-1. 

The gas-operated piston gauge was not used to measure 

pressures below about 2.5 bar as at these low pressures the 

frictional force on the piston increased and the calibration, 

i.e. (2.6-18), was probably invalid. 

(d) Atmospheric Pressure Measurement 

The atmospheric pressure was measured by means of a 

standard Fortin barometer of 13 mm. bore. 

The pressure is given by 

P = geth + AP 	 (2.6-20) 

g = acceleration due to gravity at barometer. 
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Ct =  density of mercury at barometer temperature, t 
oC. 

h = corrected height of mercury column at t °C. 

AP = small correction for the difference in levels between 

the barometer and the piston gauges. 



62 

As a check that the barometer was sound, it was 

compared with a similar, but new, barometer in a nearby 

laboratory. Their heights as measured with a metre 

cathetometer agreed to within 0.2 mm; this was taken as 

the maximum possible "intrinsic error" of the barometer. 

The measured height of the mercury column was corrected 

for capillary depression, according to values given by Gould 

and Vickers (11), and for the scale expansion. 	The reading 

was multiplied by (1 + at), where a is the linear thermal 

expansion coefficient of brass. 

a = 1.84.10-5. oC-1 
	

(2.6-21) 

The density of mercury at 1 atmosphere was obtained from 

tables given by Bigg (12). 	Errors in atmospheric pressure 

measurement are discussed in Section 6(f) of this chapter. 

(e) The Precision Pressure Gauge (P.P.G.)  

This instrument was a Model 145 Precision Pressure 

Gauge (Texas Instruments) with a Type 4 stainless-steel 

capsule having a quartz spiral Bourdon tube, rated at a 

maximum differential pressure of 8.5 bar (125 lb.in-2) at 

total pressures up to 136 bar (2000 lb.in 2). 	This type of 

nulling device was chosen mainly because of the very low 

change in volume with pressure exhibited by the quartz 

spiral (less than 1 part in 1010  up to the maximum pressure). 

A Texas Instruments low-pressure capsule had also been found 

to have high sensitivity and null stability (13). 

A diagram of the capsule and a scheme of the associated 

optical system are shown in figure 2.11. 	A light beam from:: 

the source passed through the sapphire window of the capsule 

and was reflected from the mirror attached to the quartz 
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spiral. 	The image was focussed onto two silicon photo- 

cells. When the image was divided equally between the 

two cells, the output from each cell was equal and opposed 

and no net current flowed through the associated ammeter 

circuit. 	A pressure difference across the spiral caused 

the mirror to deflect and the reflected light beam to 

move from its central position, giliing rise to a deflection 

on the meter: the sensitivity was of the order of 1 mm. 

of scale deflection for 10-4 bar pressure differential. 

The optical system, including photocells, was mounted 

on a worm-gear turntable that rotated about a central 

vertical axis. When the pressure and reference ports were 

directly connected the P.P.G. could be nulled by rotation 

of the turntable until there was no meter deflection. 

A digital counter was operated through a system of 

gearing from the turntable rotation, giving a reading of 

300.000 for the full-scale 100 ° rotation. 	When the 

operational mode of the P.P.G. was changed from 'METER' 

to 'SERVO', the output from the photo-cells actuated an 

electric motor which automatically drove the turntable around 

the capsule until the reflected light-beam was at the centre 

of the photo-cells. The digital counter reading, when 

multiplied by an appropriate calibration factor, indicated 

the pressure difference across the gauge. 	Supplementary 

photo-cells provided the restoring signal for the servo-system 

when the light-beam moved off the central photo-cells. 

The capsule was maintained in anenvironment at a 

constant temperature of 45 °C. 
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(i) Modifications to the P.P.G.  

The original pressure port of the capsule was 

modified in order to reduce the dead-space volume above 

the quartz spiral. 	With reference to figure 2,12, .125" 

o.d., .030" i.d. stainless-steel tubing was hard-soldered 

through the centre of the brass filler which was then 

machined to fit the lower part of the pressure port. An 

'0'-ring, .063' diameter, seating in a groove in the filler, 

formed the seal between the wall of the port and the filler. 

The whole unit was held in place by the original fitting, 

as shown. This modified fitting reduced the volume of the 

port from about 2cm3 to less than 0.1cm3. 

The second modification required the incorporation of 

an automatic device to protect the quartz spiral in the 

event of an excessive pressure differential across the gauge 

( > 8.5 bar). A general scheme of the automatic safeguard 

is shown in figure 2.13. 	The lines to the two ports of the 

P.P.G. were connected by a pneumatically-operated two-way 

needle valve (Autoclave). 	The supply of nitrogen (at 4 

bar) to the valve chamber was controlled by means of a 24 volt 

d.c., 3-way solenoid valve (ASCO). 	When the solenoid was 

energised, the pneumatic valve was in the closed position. 

An electronic switching device was designed and 

constructed by the Electronics Workshop. 	It amplified 

the output from the four most central photocells and, through 

an electronic gate, operated a bi-stable switch when the 

output from each of the photocells fell to a very small 

value, i.e. when there was essentially no light beam on 

any of the photocells. 	The switch cut off the 24 volts 

d.c. supply to the solenoid, thus causing the pneumatic 
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valve to open, connecting the pressure and reference 

ports of the gauge. 

It was found that when pressure was slowly applied 

to the reference port the switching mechanism operated 

satisfactorily at a pressure differential of about 4 bars. 

This corresponded to the point where the light beam was 

cut off by the steel capsule at the edge of the sapphire 

window. When pressure was applied to the pressure port, 

however, it was found necessary to reduce the size of the 

window with black photographic paper in order to obtain a 

sufficiently low triggering point, 7 bar. 

At first the electronic switch was occasionally 

triggered by spurious external electrical noise. 	This 

problem was solved by supplying both the P.P.G. and the 

electronic switching device from a different mains fuse 

box to that which supplied the rest of the laboratory. 

(ii) The Effect of Pressure on the P.P.G. Null Position 

After initial testing of the P.P.G. and adjustment 

of the light source to give a sharp, rectangular image on 

the photocells, the pressure and reference ports were connected 

and evacu&ted. 	It was found that the null position, 000.000, 

was stable to within .002 divisions, corresponding to about 

2.10-4 bar, over a period of one week. 

However, on filling both sides of the capsule to about 

100 bar, it was observed that the null position had changed 

to about 999.050, corresponding to an apparent pressure different- 

ial of 0.1 bar. 	The magnitude of this null-shift was not 

expected, neither from the published specifications of the P.P.G. 

nor from the known behaviour of a low-pressure glass capsule (13). 

It was established that, 
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1) The shift was very nearly proportional to the total 

pressure. 

2) At constant pressure, the shift was constant within 

.001 divisions over 24 hours: it was a real change in null 

position and not a hysteris effect. 

3) The magnitude of the shift depended on the particular 

gas in the capsule, being larger for methane than for nitrogen. 

The null-shifts for each of the gases studied were 

measured at intervals of about 3 bar up to 100 bar using 

the piston-gauges to measure the pressure. 	These calibrations 

are shown in Figure 2.14. Each was found to be reproducible to 

about .003 divisions, or 3.10-4 bar, at 100 bar. 	At the 

beginning of a new series of runs with a particular gas, the 

calibration was repeated. 

The null-shifts for each gas were fitted to a polynomial 

in pressure, usually a quadratic, which was used in the main 

data treatment computer program to calculate the true null 

position, to the nearest .001 divisions, from the true experi-

mental pressure. Before a pressure measurement the approximate 

null position was estimated, to the nearest .005 divisions, 

from the appropriate calibration curve and the approximate 

pressure as shown on a standard Bourdon gauge. The pressure 

difference between this set null position and the true null 

position was calculated using the gauge sensitivity as 

determined in section 2.6(e)(iii). 

The characteristics of the null-shift with pressure 

suggested that this phenomenon was due to the variation with 

pressure of the refractive index of the gas in the reference 

side of the capsule. 	With reference to figure 2.15, consider 
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therelative positions of the mirror, sapphire window and 

light source. When both the spiral and its surroundings 

are under vacuum, the light path is ABCDCBA. 	If Aa  is the 

refractive index of the air outside the capsule then, 

	

ya sin io = sin i 	(2.6-22) 

When there is the same pressure p in both sides of 

the gauge, it is assumed that the mirror remains at the 

same position (i.e. there are no strain effects on the spiral), 

and the light path is now A'B'CDCB'A'; if y is the refractive 

index of the gas in the capsule at pressure Pr 

sin i = p sin i 	(2.6-23) 

sin i
P 
 = A

P 
 sin i 	(2.6-24) 

Now as the dimensions of the gauge are such that AB » BD 

and AA'› BB' 

sin ip  - sin io 	AB 	(2.6-25) 

' • • 	AA' = AB sin io ( ,gyp  - 1) 	(2.6-26) 

The null-shift, ARp, is proportional to the angular deflection 

of the light beam from A, i.e. la' 

AR = 	(A  - 1) 
	

(2.6-27) 

where is a constant dppending solely on the dimensions of 

the gauge. 

The refractive index of a gas at pressure p is given, 

to a good approximation, by the Lorenz-Lorentz equation, 

2 

PP- 	I  . V = 11, 	(2.6-28) 
Pp2  + 2 

where 1p is a constant, its value depending on the gas, and V 

is the molar volume, 

V = RTZ 	 (2.6-29) 

For the gases under consideration and up to 100 bar, pp  - 1 

is small and 
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100 atmospheres, Z = 1.01, 

(6,11  ) 	.0297 
p N2 	1.01 	= 

At 

• • (2.6-34) 

2 
Pp 1 . 	2 	 • 	5  = (pp  - 1) . - v = 
1.; 	+ 2  

(2.6-30) 
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3V/ (P - 1) . Z 	= x 	(2.6-31) 2RT 

AR 	 (2.6-32) 

The variations of null-shift with pressure shown 

in figure 2.14 are certainly of a form consistent with 

equation (2.6-32). 	An approximate quantitative test 

can be performed: for example, when the gauge contains 

nitrogen at 1 atmosphere (at 45 °C). 

p p - 1 = .000297 and Z = 1  

• • 	from (2.6-31)5  

XN = .000297 
2 

 (2.6-33) 

For methane (at 1 atmosphere,p p  - 1 = .000443, 

Z .998, at 100 atmospheres Z = 0.90) the corresponding 

null shift at 100 atmospheres is , 

(AR ) 	= .0492 	(2.6-35) 
P CH4 

. . (ARpCH4 
1.64 	(2.6=-36) 

(ARpN2 

It can be seen from figure 2.14 that at 100 atmospheres 

(101.3 bar) the appropriate ratio is actually equal to 1.75. 

This agreement is good considering the approximations inherent 

in the development of equation (2.6-32), and tends to show 

that the cause of the null-shift is indeed that suggested. 

Further evidence comes from the relative sizes of the null 
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shifts for the mixtures, which are consistent with the 

preceding treatment. 

It can be seen that the magnitudes of these null-

shifts were due to a design-fault in this capsule; at 

the null position the mirror was inclifted at an angle to 

the flat sapphire window giving rise to a large angle of 

incidence at the window. 	This null-shift effect has been 

considered here in detail because it was one of the largest 

sources of error in pressure measurement.. 

(iii) Calibration of the P.P.G. Sensitivity 

As the P.P.G. was to be used as a means of absolute 

pressure measurement during the calibration of the dead-space 

volumes (secton 2.8), it was calibrated against the gas 

piston-gauge in the range from 10 to 25 lb.in-2  (.68 to 1.7 bar) 

at intervals of 1 lb.in-2 (0.69 bar). 	The P.P.G. was nulled 

before each measurement with both ports open to the atmosphere; 

the reference port was left open to the atmosphere throughout 

each measurement. 

Figure 2.16 shows the variation with gauge reading of 

the gauge sensitivity, i.e. pressure/gauge-reading. 	It can 

be seen that there was a definite periodic variation in 

sensitivity, the maxima recurring at intervals of 3.000 in the 

P.P.G. reading which corresponded to 1 	of turntable rotation 

or one turn of the wornIgear. 	It was therefore thought to be 

due to eccentricity in the worm gear. 

The gauge sensitivity at very low pressure differentials 

(less than .001 bar) was also required to correct for the 

difference between the set null position during a measurement 

and the true null position. 	This sensitivity was determined 

both for methane and for nitrogen by using the piston gauges 
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to measure small pressure changes about the null-position 

while the system was pressurized and under temperature 

control. 	It was found that the gauge sensitivity at the 

null position was equal to 0.105 bar/division with a 

standard deviation of .005 bar/division. 	This value 

agrees within experimental error with the extrapolation of 

figure 2.16 to zero reading. 

It can be shown by a treatment similar to that describing 

the null-shift variation that the gauge sensitivity about the 

null position also depends on the refractive index of the gas 

in the pressure port; it also depends on the exact angular 

position of the turntable, owing to the worm gear eccentricity. 

As the maximum difference encountered between the 'set' and 

the 'true' null positions was only .010 divisions these 

effects on the pressure correction were negligible. 

However, if the P.P.G. were to 'be used not as a nulling 

device, as in this study, but for the measurement of absolute 

pressure differences at high pressure then close attention 

would have to be paid to the aforementioned effects on gauge 

sensitivity and null position before high sensitivity could 

be attained. 

It is believed that the ideal differential-pressure null 

indicator for use in a Burnett apparatus of this type, where 

the indicator can be maintained at room temperature, would be 

a Texas Instruments P.P.G. designed such that the mirror was 

parallel to the sapphire window at the null position, thus 

reducing the null shift effect, and having a more sensitive 

spiral. Use of a more sensitive spiral would not only 

increase the gauge sensitivity but would also decrease the 

refractive-index effects: the pressure shift would be smaller 

for the same angular deflection. 



(f) 	Errors in Pressure Measurement 

There were three basic types of experimental error 

inherent in each series of pressure measurements which 

constitute a run, 

Type 1: Systematic errors proportional to the pressure. 

Type 2: Systematic efrors independent of pressure. 

Type 3: Random errors. 

As the accuracy of the derived compressibility 

factors depends essentially on the accuracy of pressure 

ratios as opposed to that of absolute pressures, Type 1 

errors are much less important than Type 2 and Type 3 errors 

of similar magnitude. Detailed investigation of the 

dependence of the derived results on the errors in pressure 

is given in Chapter 3. 

Type 1 errors arise from the uncertainty in the 

calibrated effective area of the piston of the oil piston-

gauge (2 parts in 105  max.) and of the gas piston-gauge 

(4 parts in 105  max.); others arise from uncertainties in 

the value of the acceleration due to gravity, in the buoyancy 

corrections, in the masses of the weights and in the null-

shift calibration of the P.P.G., totalling in all about 2 

parts in 105 max. 	Thus Type 1 errors have a total maximum 

of about 6 parts in 105, although the probable errors are 

much less than this. 

The more important Type 2 and Type 3 errors will be 

discussed in more detail, as an estimate of their magnitude 

is necessary, or at least helpful, in the data treatment. 

Random errors introduced by the piston-gauges were 

caused mainly by fluctuations in the control temperature, but 

these were small (-.5 parts in 106 maximum). 	For the gas 
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piston-gauge there were the further random, Type 3, 

errors caused by uncertainties in the correct floating 

position of the piston (± 2.10-4  bar max.). 	Others 

were caused by uncertainties in nulling the D.P.C. and by 

the D.P.C. null-shift (- 3.10-4 bar max.); uncertainties 

in barometric reading (± 3.10-4  bar max.); and errors in 

the P.P.G. null-shift calibrations (- 2 part in 105). 

Thus the total random errors were estimated as having 

a maximum of about ± 3.10-3 bar at 100 bar, decreasing to 

± 8.10-4 bar at low pressure. 	The probable random errors 

were estimated as about ± 2.10-4 to 8.10-4 bar. 

Systematic errors in pressure, Type 2, are difficult 

to estimate. 	The intrinsic error in the scale of the 

barometer gives rise to a maximum Type 2 error of 0.2 mm. 

(3.10-4 bar). 	Incorrect initial null-setting and zero-drift 

of the P.P.G. cause Type 2 errors, estimated as having a 

value of about 2.10-4  bar. 	Errors in the correction for 

the hydraulic head of oil gives rise to a small Type 2 error. 

An unknown systematic error must also arise from the extrapolation 

of the gas piston-gauge calibration to low pressure; it is 

probably only significant et pressures below about 3 bar. 

Total Type 2 errors in pressure measurement were therefore 

estimated as about 5.10-4 bar. 	These systamtic errors which 

are not proportional to pressure are probably the most 

important: as will be shown in Chapter 3, their magnitude 

is not readily apparent from the actual experimental data. 



2.7 Pressure and Density Gradients due to Gravity 

The gravitational pressure difference between two 

points separated by a small vertical distance, Sx, in a 

column of gas at temperature T is, 

SP = g.d.Sx 	
(2.7-1) 

5P  = 
	P.M. 	 (2.7-2) 

Figure 2.17 shows the various heads of gas that were 

present in the apparatus. For computational purposes the 

reference level was taken to be that of the topmost thermo- 

couple in the inlet-tubes. 

A preliminary calculation shows the expected order of 

magnitude of these gravitational efects. 

e.g. For methane at 218.8 K, 96.9 bar, Zc---• 0.46, M = 16, 

we have from (2.7-2), 

SP 
Sx 	2.10-4  bar cm -1 (2.7-3) 

This value is certainly large enough to warrant 

correction of the measured pressure for gravitational 

effects. 	However it is sufficiently small that, to a 

very good approximation, P and Z in equation (2.7-2) could 

be regarded as constant, 

i.e. AP = 5211  x RT.Z 	 (2.7-4) 

Equation (2.7-4) was used to calculate the pressure 

gradients for all of the heights shown in figure 2.17 except 

along h2, h5  and h7, where there were temperature gradients. 

Assuming a linear temperature gradient between one 

point (T1, Z1) and another (T2, Z2) separated by a distance 

h, then at height x above T1, 
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T = T1  + x/h (T2  - T1) 	(2.7-5) 

Z = ZI  + x/h (Z2  - Z1) 	(2.7-6) 

,n = sal 	Ox  
R • • Or- 

(Tl  + x/h (T2  - T1))(Z1  + 	(Z2  - Z1)) 

(2.7-7) 
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P+ AP 

cc,sP = 211_1 
P 	R 

dx 

P 
(T1 	+ x/h (T2 - T1  ))(Z + X/h(Z2  -Z1  )) 

(TZ ) 

	

In (1 + P + API 	AP gMh 	2 In 1
T  Z  

	

1 +P ' 	R 	1 2 

(2.7-8) 

(2.7-9) 

    

(T1Z2 - Z1T2) 

Equation (2.7-9) was used to calculated the pressure 

gradient along h5  and h7, and between each pair of thermo-

couples down the inlet-klibes:.-) 

It is to be noted that corrections for gravitational 

effects were not applied to the P.P.G. null as there was 

the same pressure gradient down both the teference and pressure 

sides and hence the null position was unaffected. 

It was believed that errors introduced by the use of 

equation (2.7-9) were negligible as the total corrections 

were small and all temperature gradients were nearly linear. 

When IT1  - T2I < 1 °C, equation (2.7-4) was used. 



2.8 	Calibration.oflYolumes 

For the purpose of calculating the quantity of gas 

in the inner volumes of the two vessels and their inter-

connecting tubing, they were considered as divided into 

eight sections as shown in figure 2.17. 

The volume of the pressure vessel, V1, included the 

inlet tubing up to the top of the radiation shield. 	The 

volume of the ice-bath vessel, V6, included-the tubing 

up to the level of water in the ice-bath. 

As the ratio V1/V6 was determined with accuracy in 

the treatment of the Burnett data, both V1 and V6 were 

estimated from the measured dimensions of the vessels and 

the values used as first approximations in the computer 

program, 

	

V1 = 360.9 cc at 0 °C 	(2.8-1) 

	

V6 = 281.1 cc at 0 oC 
	

(2.8-2) 

All the other sections constituted dead-space volume. 

The vessels were connected in such a way as to minimise 

as far as possible the length of the interconnecting, 

small-bore tubing. 	The Aminco-type fittings into the 

	

valVes required coned and threaded 	o.d. tubing. 

Short lengths of 	o.d., 0.070" i.d. stainless-steel 

tube were employed containing lengths of 0.063" o.d. steel 

rod to reduce their internal volume and that of the valves. 

Apart from the 0.063" o.d. inlet tubes, all other tubing 

consisted of 1"  o.d., 0.027" i.d. stainless-steel tube. 

'Swagelok' couplings were used throughout, containing 

steel rod to reduce their internal volume where necessary. 

80 



The volume per unit length of the inlet tubes was 

determined from the weight of mercury required to fill a 

measured length, 

Volume/cm = 0.00870 cc. 	(2.8-3) 

The volumes of the other dead-spaces were calibrated 

gas volumetrically using a small gas burette in conjunction 

with the P.P.G. as a pressure measuring instrument. 	First 

of all the gas burette, which had been calibrated previously 

by filling with mercury, was connected directly into the 

pressure port of the P.P.G. 	After nulling the P.P.G. with 

both sides open to the atmosphere the pneumatic safety 

valve was closed, and the air expanded from the P.P.G. into 

the burette. The pressures before and after the expansion 

were obtained by using the P.P.G. readings in conjunction 

with the appropriate gauge sensitity shown in figure 2.16. 

Hence the internal volume, V8, of the P.P.G. could be 

calculated. 

The other deadspace volumes were calibrated in a 

similar manner, the gas burette being connected into the 

tubing at point X. 

The final results were, 

V3 = 1.972 cc 	(metering-valve fully open) 

V4 = 0.882 cc 	(with expansion valve shut) 

V5 = 0-;026 cc 

V7 = 0.107 cc 

V8 = 0.592 cc 

The estimated maximum errors were 
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For V3, ± 0.015 cc 

For V4 + V5, ± 0.015 cc 

For V7 + V8, - 0.008 cc. 

2.9 	Pressure distortion of the vessels  

It can be shown (14) that the pressure distortion 

of an infinitely-long thick..-walled cylinder, in which 

the walls are not constrained by the ends in a radial 

direction, is given by, 

by _ 	
2 
1  

2 	1 (1".1  (3(1-20 r? + 2 (1 + v) r2) -  E(r.
0  - r.1) 

- (5 - 4v) ro2  P0) 

where 	6V = increase in volume 

V = volume at zero pressure 

r.1  = internal radius 

ro = external radius 

P = internal pressure 

Po - external pressure 

(2.9-1) 

= Poisson's ratio. 

E = Young's modulus of elasticity 

For a real cylindrical pressure vessel of finite 

length, equation (2.9-1) is an approximation, as there 

are end-effects; the walls tend to 'bulge' outwards 

when the internal pressure is greater than the external 

pressure and the ends are constrained. 

When Pi  = Po, equation (2.9-1) reduces to 
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—3(1-2i)) 	Pl  = — k P. 
1 (2.9-2) 
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where k is the bulk compressibility of the material 

of the vessel. 	Equation (2.9-2) is exact and 

independent of the shape of the pressure vessel; 

thus the pressure compensation of both vessels of the 

apparatus not only reduces the pressure distortion but 

also enables it to be calculated with accuracy. 

Only about 1% of the surface area of each inner vessel, 

where it was supported, was not pressure compensated. 

For EN58J stainless-steel (15), 

E = 1454 	kbar at 20 °C 

P = 	0.255 	at 20 °C 

= - 0.762.6.,66p 	(p in bar) 	(2.9-3) 

The effect of temperature on this distortion is small. 

For the inlet-tubes and interconnecting tubing in 

the other dead-spaces, the external pressure is effectively 

zero, and equation 	(2.9-1) 

6V 	( 	1 

reduces to 

2 	r2 ) + 2(1+v) P.  (2.9-4) V 	) 	(3(1-20r. 
E(r2-r.2) 

1 

For the inlet-tubes, SV = 
1,51 . 10- 	P (2.9-5) V 

For the narrow-bore .0625" 

SV _ 

o.d. 

3g  

tubing, 

10-6 ? 
(2.9-6)  V 

Equation (2.9-6) was used to calculate the pressure 

distortion of all other dead-spaces, which included the 

interiors of valves, 'Swagelok' couplings, etc.; the 

errors in this approximation are negligible compared with 

the uncertainty in the dead-space compressibility factors. 
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2.10 Preparation of Gas Mixtures and Gas Analyses  

The methane used was Matheson ultra-high-purity (99.99%). 

The analysis provided by the suppliers is shown in Table 2.4. 

An analysis performed on a mass spectrometer (MAT Varian, 

GD150) confirmed that the total impurities were not tore 

than 100 p.p.m. 	Nitrogen was supplied by Air Products 

(99.999%); the quoted maximum limits of impurities are 

shown in Table 2.4. Mass spectrometric analysis showed 

that the impurities totalled less than 20 p.p.m. 	Both 

methane and nitrogen were used without further purification. 

The three synthetic gas mixtures, A, B, and C were 

prepared by the Gas Quality Division of the Gas Council at 

Watson House. The constituent gases were mixed at about 

2 atmospheres pressure in a 500 m3 balloon for 24 hours 

before being compressed into cylinders. 	This technique 

avoided the problem of incomplete mixing that accompanies 

the mixing of gases at high pressures. The mass spectrometric 

analyses, together with the estimated limits of error7 are 

presented in Table 2.4. 

The composition of Mixture C agrees well with the 

results of an analysis by gas chromatography (Watson House); 

the mass-spectrometric analysis was used in all subsequent 

calculations. 

Of the two natural gases studied, Mixture 1 was a 

Phillips North Sea gas collected at a pressure of 76 bar 

(1100 lb.in-2), and Mixture 2 was a sample of natural gas 

originating from the No. 4 feeder main and compressed by 

Air Products Ltd. to full cylinder pressure. For complex 

hydrocarbon mixtures, analysis by mass-spectrometry is 

inaccurate and so both natural gases were analysed by gas- 



TABLE 2.4 Analyses of Gases  

Methane 

(Matheson) 
Mol.% 

Nitrogen 
(Air 
Products) 

Mol.% 

Mixture A 
(Mass Spec.) 

Mol.% 

Mixture B 

(Mass Spec.) 

Mol.% 

Mixture C 

(Mass Spec.) 

Mol.% 

Natural Gas 1 

(Gas 	Chrom.) 

Vol.% 

Natural Gas 2 

(Gas 	Chrom.) 
Vol.% 

Methane >99.99 48.4 ± 	.1 71.9 ± 	.1 76.8 ± 	.1 92.35 ± 	.5 93.09 ± 	.5 

Nitrogen .0016 >99.995 51.6 28.1 15.6 ± 	.1 2.3 ± 	.05 2.4 + - 	.05 

Oxygen <.0005 <.0005 0.4 0.24 

Ethane .0038 7.2 ± 	.1 3.7 + - 	.05 3.1 + - 	.05 

Propane <.0005 0.90 - + .04 +  0.63 - 	.04 

i-Butane 0.18 0.13 

n-Butane 0.24 0.14 

Pentanes 0.13 0.08 

Hexanes 0.06 0.04 

Heptanes 0.01 0.02 

Octanes 0.01 0.01 

Nonanes + 0.01 0.01 

Benzene 0.01 0.03 

Helium 0.06 0.04 

Carbon Dioxide <.001 <.0001 0.04 0.04 

Others <.0003 <.01 <.01 <.01 <.01 



chromatography in the Analytical Research Group at the 

Gas Council's London Research Station. 	The results 

of the analyses, together with estimated maximum 

limits of error, are shown in Table 2.4. 

2.11 Experimental Procedure  

On the day preceding the start of a series of 

expansions the following operations were carried out 

(1) The ice bath was prepared in order to ensure that 

the ice bath vessel was at the temperature of the bath 

at the start of the experiment the following day. 

(2) both vessels, the interconnecting tubing and 

the P.P.G. were fully evacuated. 

(3) The outer jacket was surrounded by refrigerant and 

the temperature of the pressure vessel controlled at a few 
o
C below the required experimental temperature. Then on 

subsequehtj.y filling the pressure vessel with gas the 

temperature would rise to about the required value. 

(4) The toluene regulator was adjusted to ensure that 

the cabinet temperature was controlled at a few deg. C 

above that of the surroundings. 

At the start of the run the ice bath was re-made 

with freshly crushed ice and distilled water, and the 

refrigerant around the outer jacket was replaced. The 

vacuums in the outer jacket and the vessels were checked. 

With the safety valve connecting 'pressure' and 'reference' 

ports open, the P.P.G. was nulled at 000,000 and the null 

position tested for stability. 	The whole system was then 

flushed through twice with the gas under investigation and 

re-evacuated. Both expansion valves were then shut and 
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while the evacuation of the ice bath vessel was continued, 

both volumes of the pressure vessel were slowly filled 

with gas to the desired pressure. Meanwhile the null- 

shift with pressure of the P.P.G. was either fully 

calibrated or measured at one or two pressures as a 

check on the previous calibration. 

After filling, the temperature of the pressure 

vessel was adjusted until it was close to the required 

control temperature. When rapid cooling was necessary 

a small quantity of helium, as a heat-transfer medium, 

was admitted to the outer jacket for a short period. 

As it usually led to a large temperature drop along the 

inlet tubes, this method of cooling was not used when the 

pressure vessel held a gas mixture at low temperature in 

order to avoid any condensation of liquid in the tubes and 

hence separation of the mixture. As the required experimental 

temperature was approached the controllers were set to 

'automatic' and the system allowed to come to equilibrium. 

When a steady temperature was attained, the null position 

of the P.P.G. was recorded and this value subsequently 

used as the null-position for the first pressure measurement. 

The safety-valve was then closed, isolating the volume of 

gas under study. 

Before the first pressure measurement the oil piston- 

gauge carrier was loaded with sufficient weights to balance 

the piston at a pressure just above the first experimental 

pressure. 	The D.P.C. was then nulled (as described in 

section 2.6(b)) and its lower chamber and the piston-gauge 

pressurized with oil, using the hand-pump, until the piston 

was floating. 	The upper chamber of the D.P.C. was flushed 



through with the gas under study to remove air and 

then filled to the first experimental pressure. 	The 

valve connecting it to the P.P.G. and the outer volume 

of the pressure vessel was then opened. By means of 

small adjustments to the compensating gas pressure and 

the weights on the piston-gauge, the piston was made 

to float at the correct height, with the D.P.C. at null 

at full sensitivity and the P.P.G. at the correct null 

position. 

The following were then recorded: the A.C. bridge 

reading and the temperature of the standard resistor; 

the barometer height and temperature; the temperatures 

of the cabinet and piston as measured with mercury-in-

glass thermometers; the E.M.F.'s of the inlet-tube 

thermocouples; the weights on the piston-gagge carrier. 

Measurements were repeated at intervals of about 

fifteen minutes until full temperature equilibrium was 

attained and the pressure was constant. 

Before an expansion, the ice-bath vessel was isolated 

from the vacuum system. Both fine metering valves were 

closed right down and both expansion valves opened. The 

fine-metering valves were slowly opened soAhat gas flowed 

into the two volumes of the ice-bath vessel and the P.P.G. 

reading stayed close tothe null position. 

During an expansion the temperature of the pressure 

vessel fell owing to the Joule effect. Therefore during 

and after an expansion the supply to the pressure vessel 

heaters was increased manually to bring the temperature 

back to the control point. Temperature equilibrium was 

regained after a length of time varying from 1 to 21/2  hours, 
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depending on the particular gas under study, its 

temperature and pressure. When a gas mixture at 

a low temperature was expanded, the pressure vessel 

was heated before an expansion to prevent possible 

cooling below the dew point and hence condensation of 

liquid. 

When the A.C. bridge reading was steady once 

again, the new pressure was measured. The expansion 

valve was left about 1/2  turn open until just before the 

measurement, when it was closed very slowly to prevent 

disproportionation of gas between the two vessels. 

After the new pressure measurement, the inner 

volume of the ice bath vessel was vented and then evacuated 

for about one hour. Expansions were continued until a 

pressure of 2.5 bar or less was attained. 	Pressures 

below 25 bar were measured, by means of the gas-operated 

piston-gauge (as described in Section 2.6(c)), which was 

vented between measurements to prevent undue loss of its 

lubricating oil. 

Each experiment extended over a period of from 2 to 

3 days. 	During this time the ice bath was re-made at 

1/2  day intervals and the refrigerating CO2/methanol 

mixture was replaced at intervals of about 1 day. 

After the last pressure measurement the safety-valve 

was opened and the P.P.G. null position measured; this 

enabled the shift in P.P.G. null throughout the run to be 

evaluated. 
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CHAPTER THREE 

TREATMENT OF EXPERIMENTAL DATA 

3.1 Introduction  

In order to simplify the description of methods of 

data treatment the case will first be considered of an 

'isothermal' Burnett apparatus in which both vessels are 

at the same temperature, T, and in which it is assumed that 

the cell volumes are independent of pressure. 	The treat-

ment for a 'non-isothermal' Burnett apparatus will be 

deferred until section 3.2(b). 

Reiterating the two basic equations pertaining to the 

isothermal 

P. 
= 

= 

Burnett 

N . 

apparatus, 

ZZ-1
. 
3  

as given in section 1.4, 

(3.1-1) 

(3.1-2) 

P. 

P
i 

. 

(72) 
0 

where N = V
A 

VB  
, the apparatus constant 

(Po/Zo 
is the run constant. 

There are essentially two types of methods of data 

reduction to obtain Zo 	Zn  from the pressure sequence 

Po 	P n' • the graphical and the analytical methods. 

In the original graphical method proposed by Burnett (4), 

N is obtained from an extrapolation of a plot of Pj_i/Pj  

against P. 	As Z -> 1 as P -' 0, it may be seen from (3.1-1) 

that P.
J-1J  

/P. 	N at zero pressure. 
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AsecondgraphicalplotofPj0 is then extrapolated 

to zero pressure to give (Po/Zo)' as may be seen from (3.1-2). 

By back substitution in (3.1-2) Z may be found. 

As N appears to the jth.power in (3.1-2) small errors 

in N accumulate and lead to large errors in the compressibility 

factors. 	Unless the gas under study is near-ideal the 

first extrapolation does not give the required precision 

in N. 	An improvement due to Canfield (16) involves the 

adjustment of N, within the error of the first extrapolation, 

to give final values of Z. such that Z. 

limiting behaviour at low density, i.e. 

with pj  at low density. 

An alternative is to obtain N from a calibration run 

with helium, which is very nearly ideal at normal temperatures 

and for which P
j-1 

 /P is essentially linear with pressure, 

enabling the extrapolation to be performed with accuracy. 

However, apart from the inconvenience of a separate 

calibration run, there is the possibility of real changes 

in N between runs, particularly if the apparatus is subjected 

to temperature cycling (13). 

Before describing the analytical method of data 

reduction it must be mentioned why these methods have in 

general surpassed the graphical method. 	The main reason 

is that the graphical method requires very precise measure- 

ments at low pressure 	.e. in the region where the second 

graphical plot is nearly linear. 	In a Burnett run the 

most precise values of P
i-1 

 /P occur usually in the mid-

range of the data: these points are hardly utilized at all 

in the second graphical plot. With an analytical method 

has the correct 

(Z.
J-1J 

)/p. is linear 



it is not necessary to have any low pressure points to 

obtain a result. 	Another disadvantage is that it is 

impossible to treat runs at the same temperature simultan- 

eously with the graphical method. 	In fact the only major 

advantage of the graphical method is that no equation of 

state need be assumed, unlike all analytical methods. 

3.2 Analytical Methods of Data Reduction  

In a non-graphical method of data reduction it must 

be assumed that the data can be adequately represented by 

an equation of state, 

Zj  = Z(pj, a1, a2 	ak  ... am) 

or 	Z. = Z( 	al' a2 	am) 

(3.2-1) 

The m parameters of the equation of state together 

with N and sometimes Po/Zo  are then determined by means of 

a non-linear regression analysis that is usually based on 

the principle of least-squares. 

The principle requires that the sum of the weighted 

squares of the residuals, called the objective function, S, 

shall be a minimum with respect to the M least squares 

parameters, 

S = 	R 2 	 (3.2-1) 

j=1 

where w, is a weighting factor equal to the reciproc441 of 

the expected variance in the jth. residual, and n is the 

number of data points. 

Each residual is the difference between an observed 
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dependent vaiiabde,Y3  ., and its adjusted value, Y.'. 

R. = Y.
J  - 
	 (3.2-3) 

Theadjustedvalues,Y.
] 
 ', are related to the least-

squares parameters, ak, by the equations of condition, 

F.(Y ,  X. a1, a2  3 7  3 9 	1, 	ak  ... am) = 0 
	

(3.2-4) 

where Xj  represents one or more independent variables. 

This is the general formulation of the least-squares problem 

as described by Deming (17). 	It requires that experimental 

errors occur only in the observed dependent variables, Y. 
J' 

and that these errors are randomly distributed. 

The particular objective function and equations of 

condition for application to Burnett data are partly a matter 

of choice. 	Weir et al (18), Hall and Canfield (19), and 

Barieau and Dalton (20) took as their objective function, 

n 

	

S = Zw. up. 	p.t) 2 
J 	J 

j =1 

(3.2-5) 

The adjusted pressures are related by the equations 

of condition, from (3.1-2), 

1  P.10 	Z = (. 2) Z. 
o  (3.2-6) 

and 
Z. 
3 

P.' 
3 

RTp. = Z(pi', a1, a2 	ak  ... am) 	(3.2-7) 

P,' is determined by an iterative solution of equations 

(3.2-6) and (3.2-7). 	The M least-squares parameters are 

am, N, and P o o /Z . Thisformulation of the 



Z. 
S = 	(PP-1  - N. L1)2  

i=1  J 	 J 
(3.2-8) 
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objective function is termed here 'Method B'. 

Method B is based on the assumption that errors occur 

only in the observed pressures and that they are random. 

However, there are normally present systematic errors in the 

observed pressures and errors in other variables, such as 

the temperature and the corrections to N for the effect of 

pressure. 	In the 'non-isothermal' Burnett apparatus errors 

in other variables are also introduced. 	Because of the 

presence of these additional errors, mostly non-random, 

other forms of the objective function were considered that 

might offer practical advantages over (3.2-5). 	One that 

was suggested from the form of equation (3.1-1) is 

where it is emphasised that the pressures, Pj7 are the 

experimental values and not adjusted ones. 	The equation 

of condition is the equation of state, 

P. 
Z. = Z(p.,... ak ... am) R pi 	a1  (3.2-9) 

The least-squares parameters are al 	ak  ... am, 

and N. 	This formulation of the objective function is 

termed 'Method A'. 

An objective function of this type has been criticized 

by Barieau and Dalton (21) on the grounds that it involves 

the sum of squares of a function of pressure rather than a 

true pressure residual, and because it introduces correlation 

between the residuals. 	These objections are based on the 

erroneous assumption that all systematic errors are absent. 



Pj-1 	j . P +1 	Z, 
J - 	j+1 

P.2  Z.2 
(3.2-10) 
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Method A has two possible advantages. 	Firstly, as it 

involves the ratio of experimental pressure, P /P any 

systematic error proportional to the pressure will tend to 

cancel out. 	Secondly, a saving in computational time 

results through the elimination of the need for the iterative 

solution of (3.2-6) to find adjusted pressures. 	This 	is 

especially so in the case of the 'non-isothermal' Burnett 

apparatus. 

Method A was compared with Method B (see section 3.4(b)) 

and, for the reasons given in that section, Method A was 

preferred and was adopted for use in the treatment of the 

experimental data of this work. 	The non-linear least-

squares procedure is described in section 3.2(a) and the 

extension of the method to the non-isothermal Burnett 

apparatus and the resultant computer program are described 

in sections 3.2(b) and 3.2(c).:  

It can be seen that, by eliminating N between the 

expressions for successive expansions, equation (3.1-1), 

J 

This suggests a further form of the objective function, 

n-1 

S 	wi  

j=1- 
(Pi-1 . 

Pj+1 	Zj 	.  Z-1 	j+1)2 
2 P. 	Z.2 

(3.2-11) 

N is now eliminated as a least-squares parameter at 

the expense of one data point. 	A few preliminary tests 

using this objective function showed that if offered no 

advantages over Method A; the results were very similar. 
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All analytical methods of data treatment suffer from 

one disadvantage; no matter what form of objective function 

or least-squares procedure is employed, a form of the equation 

of state must be assumed. 	Ideally the equation must be 

capable of representing the experimental compressibility 

factors with an accuracy greater than that inherent in the 

basic pressure measurements. 	At low or moderate pressures 

the equation chosen is usually the Leiden expansion, 

Z = 1 + alp + a2p2 + 	akpk 	+ ampm 
	

(3.2-12) 

The coefficients of this truncated polynomial are not 

identical to the corresponding virial coefficients, B, C, etc. 

which are coefficients in an infinite series. 	The value of 

m that gives the 'best-fit', in a least-squares sense, to 

the data does not necessarily provide the best estimates of 

the second and third virial coefficients. 	Also, a least- 

squares fit to all the data points in a Burnett run will 

not necessarily provide the best estimates of all the 

compressibility factors. 	The problems of obtaining accurate 

estimates of the second and third virial coefficients and 

the compressibility factors will be discussed in detail in 

sections 3.3 and 3.4. 

(a) The non-linear least-squares procedure for Method A. 

First trial values are assigned to the least-squares 

parameters al  0 • • am, which are the coefficients in the 

model equation of state, 

2 Pi  /RTpi  = Zj  = 1 + alpj  + a2Pj 	... akp. 	+ a p n 
j 	mj 

(3.2-13) 
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Equation (3.2-13) was solved by an iterative procedure. 

The Mth. least-squares parameter (M = m+1) was taken as VA, 

the value of VB  being calculated from the measured dimensions 

of the vessel. 	This is equivalent to taking (VA + VB)/VA, 

or N, as the Mth. parameter. 

The objective function, S, is given by 

S = 	
J 

yw R.2  
J 	

(3.2-14) 

j=1 

In the general formulation of Method A the residuals 

are functions of the observed dependent and independent 

variables and the least-squares parameters, 

R. = f(Y., X. 7  a1  a2  ... am) 

For the isothermal Burnett apparatus, 

P. 
R
j 	

- N . Z. 

(3.2-15) 

(3.2-16) 

R. For—nenon_isotherraalaurnett apparatus.is more  

complex, as described in section 3.2(b). 

S is to be minimized with respect to each of the 

parameters, 

aS = 0 	for k = 1, 2 ... M. 	(3.2-17) 

. from (3.2-14) 

j =1 

a R. 
CO j (---1) . R..= 0 	for k = 1, 2 ... M 	(3.2-18) aak  

This set of M equations are known as the normal 

equations and are non-linear in the parameters: they must 
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be linearized before a solution can be obtained. 

Assuming that approximate values of ak' exist such 

that 

ak ' = ak 	for k = 1 	M 	(3.2-19) 

Rj may be expanded as a Taylor series about its value 

when S is a minimum, 

R,(a1 ' a2' R.(a 1, 

aR, 	aR. 
+ 	Aam . aam 

+ aa2  

(3.2-20) 

This procedure is known as the Gauss-Newton method of 

linearization. 	Terms higher than the second are neglected. 

It follows from equation (3.2-18), 

n 	n 	 n R. 	R. 	R. 	R. 	R. aR. 
Aa 	(-1)(----1) + Aa2 	 :v.( 3)( 3) 	+ Aa 	W. (-3)( 1) 

	

1 2: wj aak  bal. 	j aak aa2 "" 	M 	J 	aa aalc   
j=1 	i=1 	j=1 

E wj(aak) 	
Rj' (a1',  a2 

i=1  

for k = 1, 2 • • •• 

(3.2-21) 

These are the linearized normal equations. 	The 

residuals, R.', are evaluated from the first trial values of 

the parameters, ak'. 	The derivatives 	are calculated 

	

and used as approximations to (-1) in the equations. 	(At 
aR. 

aak 

	
(.1111 ) 
aak 

the convergence point, i.e. when Aak  = 0, this approximation 

is exact). 

In matrix notation, equations (3.2-21) are 

X Da = Y 	 (3.2-22) 
1.1=1 

where X is a M by M matrix and Y and Aa are column matrices. 
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The solution to (3.2-22) is 

Aa = X-1  Y 	 (3.2-23) 

where X-1  is the inverse of the symmetrical matrix X. 

After solution of equation (3.2-23) the new approximation 

to ak is given by, 

ak = ak' 
	

(3.2-24) 

These new values of ak  are used in the recalculation of 

R.' and the solution of the normal equations, the iterations 

being continued until all the Aak have converged to very 

small values. 

The variances and covariances of the parameters are 

given, approximately, by 

2 _2 - a . xko.„  (3.2-25) 

where xk,1 is the element of the kth. row and ith.column 

of the inverse matrix, 2S71, and a2 is the variance of the 

data, an estimate of which is 

  

11)j . R.
2 

  

(3.2-26) 

 

j=1. 

   

  

- 

   

Thus the variance of the kth. parameter is 

 

  

wj . R.2 . xk,k 
j=1- 

(3.2-27) 

  

n - M 

   

It has been shown by Barieau and Dalton (20) that 

equation (3.2-27) is only an approximation to ak2, albeit 



100 

a very good approximation except for models with a high 

degree of non-linearity in the parameters. However, even 

the rigorously derived expression for ak2  given by these 

authors is only exact in the absence of any systematic 

error in the data. 	The presence of systematic error can 

lead to misleadingly small values of °k2' as will be shown 

in section 3.4. 

(b) Treatment of experimental data for the non-isothermal 

Burnett apparatus. 

The formulation of the objective function for Method A, 

as described by equations (3.2-8) and (3.2-9), is further 

complicated in the case of a real non-isothermal apparatus 

by the following, 

(i) Volume VB is at temperature T°  (0°C) with compressibility 

factors Z,. 

(ii) The gas in the dead-space volumes must be included. 

(iii) The volumes of the vessels vary with pressure. 

(iv) The pressures are not identical in each part of the 

apparatus because of gravitational effects; in particular 

the pressure in VB' 3 P.'  will be slightly different from that 

in VA, Pj. 

For the purpose of calculating the quantity of gas in 

the apparatus, it was considered as divided into eight 

sections of volumes V1 to V8, as shown in figure 2.17, 

containing n2  to n8  moles. 	(V1E VA  and V6 E.- VB  in previous 

notation). 

Equating no. of moles before and after the jth. 

expansion, 
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P 	V1.. J -1 	-1  
RT. 	Z. 	 + (n2 + n3 + n7 + n ). 8 j-1 

J-1  J-1  

	

P. V1. 	P.0  V6. 
J 	3  RT. Z. + RT°  Z3 

+ (n2  + n3  + n4  + n5 + n7 + n8 (3.2-28) 

On re-arrangement, the jth. residual is obtained, 

P. 	. 	T . 	P° J  R. 	 • 	j  / . Vl 3 	i  . 	. V6j  . T. , 

P. 	
( 

T. . Z. . V1.-1 	+ P. 	Z. . V1. 	To 
J-I J 	J-1 

R . T. 	. Z. 

V1. 
-1 	J-1  . 
J-1 

	+ n3 + n7  + n8)  j_1 

+ n3  + n4  + n5 + n7 + n8)j) 

(3.2-29) 

P. 
where Z. = — 	a.—I-- = 1 + 	+ RT.p. 	1p j 	a213 * 	-amP j 	(3.2-30) 

J J 

and similarly for Zcj), Z3j, etc. 

No 'adjusted pressures' are employed in Method A, and 

n2  - n8  are calculated before the iterative least-squares 

procedure commences and remain unchanged throughout the 

program. 

In volumes V3, V4 and V8 the temperature was constant 

and the no. of moles were given by, for example, 

P. V3. 
J 	J  

n3 = RT3. Z3. 
J 	J 

( 3 .2-3 1) 

In volumes V5 and V7, which were both very small, there 

was a temperature gradient that was assumed linear and 

'effective' temperatures, T5 and T7, were calculated for use 

in the equation corresponding to (3.2-31). 



In the inlet-tubing, volume V2, there existed a 

temperature gradient for which a special calculation was 

necessary. 	The E.M.F.s of the inlet tube thermocouples 

were first converted to temperatures by means of a poly- 

nomial fitted to the relevant calibration curve. 	Consider 

two adjacent thermocouples, Tk  and Tk+1' separated by a 

distance 1.. 	The no. of moles of gas in a narrow section 

of tubing, thickness 5x, at a distance x from thermocouple 

Tk is given by 

Pk 
RTx Zx 

. A . 5x 
5n - 	 (3.2-32) 

where A is the cross-sectional area of the tubing 

Zx is the compressibility factor at temperature Tx. 

Assuming a linear temperature gradient and a linear 

gradient in compressibility factor between thermocouples, 

102 

nk fdn f R(Tk 

k . A . dx 
+ x/1„(Tk  - Tk+1  ))(Zk  + x/t(Zk - k+1)) 

0 

(3.2-33) 

Integrating, 

nk  = 
Pk . A . L 	. T 	Zkl_i_

) 	(3.2-34) R(Tk Zk 	- Z 	
In (T

k  

k Tk+1 k+1 . Zk 

The equivalent expression for the pressure gradient between 

Tk and Tk+1 is, from (2.7-9), 

Pk 	g M 	T . Z Tk  k+1 APk 	 In (Tk Zk+1 - Zk Tk+1) 	Tk+1 . Zk  
(3.2-35) 



(c) Description of computer program. 

The computer program was written in the Fortran IV 

language for use on the University of London CDC 6600 

computer (or the Imperial College 6400 computer). 

Before the start of the actual least-squares procedure 

in the main program, the following subroutines were called 

1) TEMTEM. 	From the platinum resistance thermometer 

readings the temperatures, T1, were calculated from a 

solution of the Callendar-van-Dusen equation by means of 

a Newton-Raphson iteration. 	These values were then con-

verted to the IPTS 68 scale as described in section 2.3. 

2) PROIL. 	The experimental pressures were calculated as 

described in section 2.6. 	Allowance was made for the 

pressure-heads of gas between the D.P.C. (or the gas piston-

gauge) and the reference level, as described in section 2.7, 

and for the pressure head between this level and the ice-bath. 

3) VIRCO. 	For the gas under study and a given temperature, 

the appropriate polynomial coefficients a1  ... am  were 

calculated for use in computation of the compressibility 

factors, (Z2), - (Z8) 	for the dead spaces and ice-bath 

vessel, and for use as first trial values of the least-squares 

parameters at temperature T (see section 4.3(a)). 

4) ZEST. 	The compressibility factor at temperature T and 

pressure P is calculated by solution of 

Z = RT = 1+a1p+ a2p2 = .... am pm (3.2-36) p  

The iterative solution of this equation is obtained by a 

modification of the "Regula Falsi" method (22), which was 

found to converge more quickly to the right solution at 
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high density than a Newton-Raphson iteration. 

5) 	MSSTUB. 	This subroutine has two functions: it 

calculates the no. of moles of gas, n2, in the inlet-tubes 

by means of equation (3.2-34), and simultaneously it 

calculates the pressure gradient down the tubes by means 

of equation .(3.2-35). 	Each value of Zk was calculated by 

first calling VIRCO for temperature Tk  and then calling 

ZEST for temperature Tk  and pressure Pk. 

The non-linear least-squares procedure, as described 

in section 3.2(a) was then commenced, the parameters being 

the polynomial coefficients a1, a2 	ak 	am  and the 

volume of the pressure-vessel at zero pressure, V1. 	In 

subroutine PRAT the least-squares residuals were calculated, 

first determining the change in volume with pressure of V1 

and V6. 	For the first call of PRAT only, the weighting 

factors were calculated according to equations (3.4-8) - 

(3.4-10), setting 	10-5  and e = 7.10-5  bar. 	The 

derivatives aRj/Pj, etc., were determined analytically. 

In setting up the normal equations in the main program, 

the partial derivatives ayaak, etc., were determined 

numerically by changing each value of ak  by 1% in turn and 

recalling ZEST and then PRAT. 	The normal equations were 

solved by means of subroutine MATRIX, which solves a set of 

simultaneous linear equations by means of Gauss-Jordan double- 

pivotal elimination. 	Subroutines ZEST and PRAT were 

recalled, using the new values of a1  ... am  and V1, and the 

iteration continued until Aa1 < 10
-5 cm3 mole-1 and 

Aa2 < 10
-3 cm6  mole-2. 	Usually less than ten iterations 

were required; if the above convergence criteria were not 



satisfied after fifty iterations then convergence was 

assumed only if Aal  < 10-3  and L1 a2 < 10-1  

The whole least-squares procedure was contained within 

two repeat loops (DO loops). 	In the first the value of 

m was varied from m = 2 to m = 4, 5 or 6, and in the second 

the initial pressure considered in the fit, Pr, was varied, 

e.g. from Po  to P4  when m = 2. 

The total computing-time per run was about four. seconds. 

3.3 Determination of Accurate Virial Coefficients from the 

Least-Squares Analysis of Conventional PVT Data. 

The compressibility factor of a gas is given by an 

infinite series expansion in powers of density, the virial 

series, 

Z = 1 + alp + a2p2 + 	akpk 	+ 	(3.3-1) 

The series is convergent except in the vicinity of the 

critical point, in the liquid state, and at very high 

densities. 	The coefficient ak is the k + 1 th. virial 

coefficient. 

If one considers a set of experimental PVT measurements 

consisting of n data points (Z', p), then a least-squares 

curve fit to these points can be carried out, giving the 

n points (Z111 1 1  p). 	The least-squares residuals are, 

R- = (Z 	
- Z'). 
	 (3.3-2) 

and Z is the truncated polynomial, 

Zm' = 1 + a1  'p + a2' p2 + ak 
	... a fp 

	(3.3-3) 
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• The problem is to relate the coefficients of this 

`truncated series to the corresponding virial coefficients. 

It is a problem that has been considered by Michels, de Graaff 

and ten Seldam (23), Hall and Canfield (19) and Van Doren (24). 

In all of these treatments, in order to simplify the 

statistical analysis it is normally assumed that the 

experimental values of Z are subject to random errors but 

that the values of the density, p, are known exactly. 

Another polynomial can be considered, that of a 

least-squares curve fit to the hypothetical error-free 

points (Z, p), 

Zm = 1 + alp + a2p2 + 	akpk + 	amp 
	

(3.3-4) 

The mean square error involved in using ak'to represent 

the true virial coefficient, uk, can be shown to be (24), 

<(ak v  2> = <(akt - ak)›  + (3.3-5) 

The first term on the right of equation (3.3-5) is the 

variance of the kth. polynomial coefficient, ak2, and can 

be estimated from the experimental data, as shown in 

section 3.2(a), equation (3.2-27), 

i.e. ak
2 
= /w • R.2 . xk,k (3.3-6) 

 

j=1 

  

 

n - m 

  

where Rj  in this case is given by equation (3.3-2). 

The second term on the right-hand side of equation 

(3.3-5) is termed the bias in ak, and is introduced through 

the truncation of the infinite virial series. 
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Hall and Canfield present a criterion for estimation 

of the value of m that gives the "best-fit" to the data, 

2 i.e. when 	(Zm' - Z)j  is a minimum with respect to m. 

This criterion is)subject to several simplifying assumptions, 

2 m . 	w. (Z
m 
 - Zw). = minimum (3.3-6) 

 

n - m 

 

This enables m to be chosen such that the least-squares 

values, Zm  ' provide the best-fit to the true compressibility 

factors, Z. 	Hall and Canfield also present a criterion for 

the 'best-fit' to the virial coefficients, i.e. when 

equation (3.3-5) is a minimum with respect to m. 	This 

criterion is also subject to several assumptions: it 

contains, for instance, an expression involving the unknown 

true virial coefficients, ak, which must be approximated by 

the series coefficients, ak', from the 'best-fit' to the 

data. 	However, Van Doren (24) questions the validity of 

the Hall and Canfield criterion for the 'best-fit' to the 

virial coefficients. 	The statistical analysis presented 

by Van Doren shows that, from the experimental data alone, 

no estimate is possible of the second term on the right- 

hand side of equation (3.3-5), the bias in ak. 	Therefore 

no reliable estimate can be made of the errors involved 

in approximating the virial coefficients, ak, by the least- 

squares coefficients, ak'. 

In view of this disagreement and the over-simplifications 
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inherent in the statistical analysis of this problem, 

especially with regard to the neglect of systematic error 

in the data, it was deemed necessary to adopt a more 

empirical approach to the problem. An investigation of the 

results from non-linear least-squares fitting of simulated 

Burnett data was therefore instigated. 

3.4 Simulation of Burnett Data  

In a second computer program a model virial series 

was used to generate the 'exact' pressures and compressibility 

factors of a hypothetical Burnett run. 	Various error 

distributions, both random and systematic, could be super-

imposed on the exact data to give simulated experimental 

pressures, which were then submitted to the non-linear 

least-squares treatment of either Method A or Method B. 

Simulated runs were investigated for both methane and 

nitrogen, choosing the volumes and temperatures of the 

'apparatus' such that the results of the program could be 

compared with those of the actual experimental runs. 

The objectives of the program were 

1) To compare Method A and Method B, and to choose a 

method of data treatment that was capable of high accuracy. 

2) To examine the effect of various factors on the 

closeness of the derived virial coefficients and compressibility 

factors to those of the exact model. 	These factors are, 

i) The errors superimposed on the simulated data. 

ii) The degree, m, of the truncated virial series used in 

the least-squares fit and the maximum pressure, Pr, 

considered in that fit. 
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iii) The temperature and maximum density of the run, 

particularly in relation to the critical point. 

iv) The distribution of weighting factors. 

v) The magnitude of the apparatus constant, which determines 

the number of expansions in each run. 

In the simulated apparatus no dead-space volumes were 

assumed and the volumes of the vessels, VA and VB, were 

independent of pressure. 

Thus, for Method A, the objective function is, 

VA 	VB 

S = 	wi (P. 
J-1  

	

P. 	

( 
TZ. + 757

J 
 

VA 	

)2 	

( 3 . 4-1) 

j=r 	J 
TZ. 

J-1  

where 

P. 
Z. = 	= 1 + a p. 	2 

RTpj 	3  + a2 pj 	" akpj 	. ampjm 	(3.4-2) 

For Method B the objective function is, 

S = 	 Wj P.,  -- P.)2 
	

(3.4-3) 
j=r 

wheretheadjustedpressuresP.'are found such that 

p.' 	VA 	= 	(3.4-4) 
3 	A 

TZt 
J-1  

Pi' 
and Z

J 
= 1 + alpj' + a (p!)2 RTp.' 	2 3 

ak ( pj)k ... a (pOrn  m 

(3.4-5) 

VA 	VB  

1777)  TZ! 
J-1  
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Exact values of VA, VB, T, To (273.15K), the initial 

pressure Po' and the coefficients a1  . . am  and a1 ... am° 
 

are the parameters required to generate the values of 

P,Z and Z
j 
 for j = o 	n that constitute the simulated 

exact data. 	The last pressure, Pn' was such that Pn 	2 bar. 

Then, using these exact pressures, the non-linear 

least-squares analysis was applied to all the data using 

first m = 2 (B and C only), then m = 3, etc. 	This was 

repeated without considering the first pressure, i.e. in 

the range P1  - Pn  (r = 1), then in the range P2  - Pn  Cr= 2), 

etc. 	The maximum value of m used in a particular range was 

such that the least-squares degrees of freedom were never 

less than one, 

i.e. (n - r) - (m + 1) > 1 
	

(3.4-6) 

These same curve-fits were then repeated after various 

error distributions had been superimposed on the exact 

pressures. 	For a random error distribution, 

P. (experimental) = P. (exact) + e +3 
3  
P. 	(3.4-7) 

where ej  and gj  were independent of pressure and randomly 

distributed about a zero mean with standard deviations Cr 

and 6r respectively. 	These were chosen to cover the range 

of random errors expected in the actual experimental 

measurements: 

er = 0, .00015 and .00035 bar 

-5 = 0, 10-5 	and 2.10-5 



Theexpectedvarianceinp.is given by 

2 	2v
r 
 2 2 a

P 	= er + 0 P. . 	3 (3.4-8) 

The weighting factor for each residual, assigned on the 

prior assumption of the form of the error distribution, is 

given by the reciprocal of its expected variance, 

w. 	
=1/a R. 

2 	 (3.4-9) 

For Method A: 

	

aR. 	6R. 

aR 2 = (__1)2 op.  2 	( J 
)2 a 	2 

	

aP. 	+ 777-- 	P. 	(3.4-10) 

	

J -1 	J-1  

For Method B: 

aR. a  2 . (  3)2 a  2 	2 
R. 	ap. 	P. 	a P. (3.4-11) 

The partial derivatives in (3.4-10) were determined by 

straightforward partial differentiation. 

Systematic errors could also be assigned, 

P (experimental) = P (exact) + es + Xs  P. (3.4-12) - 

where es = 0, .00035 or .0007 bar 

and 	6s  = 0, 2.10-5  or 4.10-5  

Before describing the results of this program, mention 

should be made of an investigation by Levelt Sengers (25) 

into the least-squares analysis of PVT data. 	It was 

difficult to utilize the general results of Levelt Sengers, 

however, because only conventional PVT data were considered, 

not Burnett data. 	It was shown that a m = 2 fit to a 

111 
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certain number of measurements gave higher accuracy than 

a fit with larger m to the same number of measurements 

spread over a wider pressure range. 	In a Burnett experiment, 

increasing the range gives more measurements which might be 

expected to compensate to an unknown extent for the necessity 

of using a higher value of Furthermore, Levelt Sengers 

did not consider systematic errors: these are difficult to 

include in a statistical treatment and are best included in 

the specific set of simulated data under study and their 

effect investigated empirically. 

(a) The model virial series. 

It has been claimed by van Doren (24) that because the 

true virial coefficients are unknown, no information can be 

obtained from tests using simulated data obtained with an 

approximation to the virial series as the 'exact' model. 

This is true if there is no available prior information on 

any of the virial coefficients, but as only order of 

magnitude values are all that are really required in this 

application excellent approximations to B and C can be 

taken from the literature. 	Estimates of the magnitudes of 

higher virial coefficients may usually be obtained either 

from experimental PVT data or from theoretical calculations 

such as those based on the Lennard-Jones (12-6) intermolecular 

potential (26). 

If all theoretical virial coefficients are used in the 

model large discrepancies could arise between the com-

pressibility factors so calculated and the experimental values: 

a simulated Burnett run might have a different number of 



expansions than the corresponding experimental run. 	For 

the model series used here, experimental estimates of B, 

C, and D were obtained from the literature. 	With reference 

to figures 3.1 and 3.2, it can be seen that the experimental 

values of the fourth virial coefficient from different 

sources are in reasonable order of magnitude agreement with 

the theoretical values. 	For nitrogen, the four-coefficient 

equation of Wood et al (27) was employed in one set of 

tests on simulated data, and in another set the same series 

was extended to a6 (seven virial coefficients). 

The last coefficient, a6, was such that it contributed 

.0001 to Z at the maximum density encountered. 

For methane the higher coefficients were such that the 

ratio of successive coefficients was constant along the 

series and equal to the ratio of the earlier theoretical 

coefficients; this ensured a realistic convergence rate 

to the series and gave the required large increase in 

absolute magnitude of the higher coefficients at low 

temperatures. 	Coefficients up to a8  (the ninth virial 

coefficient) were used; the last contributed .0001 to Z 

at the maximum density encountered. 

In retrospect, perhaps an empirical equation of state 

would be simpler to use as the model provided, of course, 

that it could be reduced to virial form and that it gave 

realistic estimates of the lower virial coefficients. 

(b) Comparison of Method A and Method B. 

It was found that Method A and Method B both gave 

virtually identical sets of least-squares coefficients, 
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a1 	am.and compressibility factors Zo 	Zn  when 

simulated Burnett runs were treated. 	For a given con-

vergence criterion, such as Aa1 < 10
-5  cm-3  mole-1, 

Method B required about twice as many iterations. 	Also, 

because of its slower convergence and the extra iterative 

computation inherent in the calculation of the adjusted 

pressures Method B required about ten times more computing 

time than Method A. 	It was therefore felt that Method A, 

as described in section 3.2(a) and (b) should be adopted 

for further use both in this program and for treatment of 

the actual experimental data. 	Subsequently, all results 

given are from the use of Method A. 

(c) Isotherms of Low Curvature, 

The nitrogen runs cover the range from 155.9 to 

291.4K (TR  = 1.24 to 2.31) at densities up to a maximum 

of .007 mole cm-3 (pR = 0.63) and pressures up to 103 bar. 

All of these isotherms, except possibly the one at 155.9K, 

are of low curvature (on a Z - p plot) in a region where 

the virial series converges relatively quickly and the 

general results from simulated data are similar. 	As an 

example, the results for the simulated 218.9K isotherm 

are presented in Table 3.1; the maximum pressure is 97 bar, 

with a corresponding Zo  of .903759, and a four-coefficient 

model virial series was used to generate the simulated data. 

The results are characterized by the average absolute 

deviation in compressibility factor, 

n 

1171 	(n 	1 - r) 
	lz.(calc.) 	yexact) 

	
(3.4-13) 

j =r 



TABLE 3.1 	 116 
Simulated Data: Nitrogen 218.9K. Po  = 96.7 bar 

No errors 	y = 0 	e= o 

m = 4 
Po 	P1  

m . 3 
Po 	P 	2 1 	P Po 

m= 2 
P1 	2 P3 P4 

AB <10-3<10-3  .119 	.034 	.010 -.354 -.079 -.014 -.001 +.001 

0-  <10-46.10-4 .025 	.007 	.002 .078 .019 	.004 6.10-4 <10 4  

IAZI10-4  <.01 <.01 .4 	.08 	.02 2.0 .3 	.04 <.01 <.01 

Random errors 	yr  = 10
-5 	Er = 0.00015 

m = 4 m . 3 m , 2 
Po 	P1 Po 	p1 	P2 Po P1  p2  p3 p4 

AB .075 	.416 .107 	.042-.332 -.339 -.081 -.028 +.189 .10C 
0-B  .194 	.431 .067 	.147 	.311 .077 .047 	.088 .179 .585 

1E21.10 .32 	1.0 .75 	.15 	.86 1.9 .48 	.10 .57 .40 

Systematic errors 	ys  = 2.10-5 	6= 0 

m = 4 m = 3 m . 2 
Po 	P 1 P 	P2 o P1 Po 

p1 	P2  P3 P4 

AB .001 <10-3  .120 	.034 	.010 -.356 -.080 -.014 -.001 <10-3  

aB <10-4<10-4 .025 	.007 	.002 .078 .019 	.004 5.10_ <10-4 

11\1.164 <.01  <.01 .4 	.08 	.02 2.0 .3 	.04 <.01 <.01 

Systematic errors 	ys  = 2.10-5 	Es  = .00015 

m = 4 m , 3 m = 2 
Po 	P Po 	PI 	P2 Po p1 	P2 2 P3 3 P4 

AB .122 	.228 .212 	.143 	.207 -.465 -.079 	.046 .134 .274 
Cr B .033 	.058 .018 	.022 	.048 .091 .031 	.025 .038 .066 
lake .7 	.9 1.0 	.7 	1.0 3.2 .4 	.3 .6 .8 
Systematic errors 	y 	= 2.10-5 	Es  = .0004 

m = 4 m . 3 m . 2 Po 	1 P  o p1 	P2 Po  P1 	P2 P3 P4 
AB .225 	.461 .264 	.229 	.391 -.516 -.067 	.101 .262 .541 
(TB 

la0-4  1.11.3 

.062 	.111 

1.9 

.017 	.046 	.094 

1.4 	1.3 	1.6 

.094 

3.8 

	

.039 	.042 

	

.2 	' 	.6 

.074 

1.1 

.131 

1.6 



and by the deviation in the second virial coefficient, 

AB = B(calc.) - B(exact) = a1' 	a1 
	(3.4-14) 

and the calculated standard deviation of B, 613(.0.0. 

Because of the well-known high correlation between 

least-squares parameters, it was found that AB, AC and 

i
m were closely inter-linked: whenever AB was negative, 

AC was positive. A curve-fit that gave a good estimate of 

B also gave good estimates of C and the compressibility 

factors; therefore, to simplify the following discussion 

it will be confined largely to the variation in AB. 

When there were no errors in the pressures ( lc= 0, e = 0) 

the agreement between the least-squares parameters and the 

exact values was perfect for m = 4, i.e. when the number of 

coefficients in the fitting polynomial was equal to the 

number in the model. 	This was to be expected if the least- 

squares method was used correctly. 	For m = 3 and m = 2 

agreement was excellent over the lower pressure ranges but 

became systematically worse as Pr increased. When m was 

obviously too small, e.g. m = 2 in the range Po - Pn'  AB was 

much greater than the calculated value of aB because of the 

large 'bias', (a1  - a1)2, appearing in equation (3.3-5), that 

was unaccounted for in the calculation of aB. 

When random errors only were superimposed on the 

pressures the values of AB and 1171 increased as the 

range Pr  - Pn  became too narrow and -the number of measurements 

decreased. When the six-coefficient model was used to 

generate the simulated data the results were virtually the 
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same except that the m = 4 fit in the Po  - Pn  range was 

slightly worse. 	With m = 5 and m = 6 the fits were poor 

in the presence of even very small errors. 

For example, in figure 3.3 is shown the variation in 

AB with Pr'  • the random error distribution is characterized 

by Zir  = 10-5, er  = .00015 bar. 	The 'error-bars' represent 

the values of aB. 	For each value of m there is a particular 

pressure range, Pr - Pn, for which AB is a minimum, e.g. 

for m = 2 the optimum Pr  is P2. 	This optimum range does 

not necessarily correspond to the minimum aB. 	Only in 

smaller ranges for each m, where the fitting model is a good 

approximation to the exact model, does the value of aB 

represent a true standard deviation and it approximates the 

value of AB 

As the random errors decrease the relative shapes of 

these curves remain much the same but the minima are shifted 

slightly to smaller values of Pr  and, of course, are at 

much smaller values of AB . 	For quite a wide spread of 

random errors the optimum Pr  - Pn  ranges remain the same. 

When a systematic error proportional to the pressure 

was superimposed on the data (Table 3.1, ?i = 10-5, e = 0), 

the results were virtually identical to those for the exact 

pressures. 	This is because the objective function involves 

the ratio of experimental pressures, Pi-1/Pi , and this 

systematic error cancels out. 	As there are errors of this 

type in the actual experimental pressures, owing primarily 

to the uncertainty in the piston-area of the piston-gauge, 

this is an important feature of the method. 

No such cancellation occurred when a systematic error, es  , 
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independent of pressure, was superimposed on the exact data. 

In figure 3.4 is shown the variation in AB , with the 

systematic error distribution characterised by Ss  = 2.10-5, 

es  = .00015 bar. 	It can be seen that the general results 

are similar to those for random errors. 	However, the 

standard deviations, aB, now underestimate AB no matter 

what the pressure range. 	The presence of systematic errors 

is indicated in these results by relatively large changes in 

B and Z from curve-fit to curve-fit; a random error dis- 

tribution which would produce the same small standard deviations 

would lead to good estimates of B and C which were changed 

little from curve-fit to curve-fit, provided, of course, that 

m was not too small for the range considered. 

Thus it can be seen that for this simulated run the 

best overall estimates of B and of C, are given by the m = 2 

fit in the P2 - Pn range. 	This fit also gives the best 

estimates of the compressibility factors Z2  .... Zn. 	The 

best estimate of Z1 is given by either the m = 3 fit in the 

P1  - Pn  range, or by the m = 4 fit in the Po  - Pn  range, the 

latter giving also the best estimate of Zo. 	When the 

systematic error is larger, e.g. es  = .0004 bar (Table 3.1), 

the best m = 3 and m = 4 fits (P1 - Pn and Po - Pn respectively) 

give very similar values of B and of the compressibility 

factors but these are subject to relatively large errors, 

i.e. AB = .23 cm3  mole-1, IaZI = .00013. 	The m = 2 fit 

in the P2 - Pn range is definitely superior in this instance. 

This is because the more the parameters in the fitting equation, 

which is constrained to pass through Z = 1.0 at zero pressure, 

the more flexible is the curve-fit, enabling it to 'follow' 
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the systematic deviation at low pressure: in the simulated 

data Z does not tend to 1.0 at zero pressure because of the 

systematic error. 	This would give the wrong limiting 

behaviour at low pressure and hence the wrong estimate of B. 

Similar behaviour was found for the other simulated 

runs. 	For each Z. there was a particular number of fitting 

coefficients, m, and pressure range Pr  - Pn  which provided 

the best estimate of Z.. 	In general a m = 2 fit was best 

for the estimation of B and C, especially in the presence of 

relatively large systematic errors that are independent of 

pressure. 	Another reason for the choice of a m = 2 fit is 

that the uncertainties in the magnitudes of the model virial 

coefficients increase along the series and hence the 

uncertainties in the results from this program increase 

with the value of m. 	The general conclusion can be drawn 

that if the 'true' B were unknown, it would be dangerous 

to assume that the value of aB represented a realistic 

estimate of AB because of the possible presence of systematic 

errors, especially when a large value of m is used. 

(d) Isotherms of High Curvature  

The results for those simulated isotherms of methane 

above 234 K (TR > 1.21 and plIR ‹ .7) were basically similar to 

those for nitrogen, with the same conclusions being 

applicable. 	As the temperature approaches the critical 

temperature 190.5 K, the isotherms extend to higher 

densities (p = 1.14), where the virial series is more slowly 

convergent, and exhibit greater curvature on a Z - p plot. 

The optimum Pr  Pn  range for the m = 2 fit is shifted 
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to smaller values of Pr as the temperature decreases. 	In 

figure 3.5 are shown the resultant values of IEBI  for the 

simulated 248.5 K, 218.9 K, and 181.9 K Burnett runs, with a 

random error distribution characterised by yr = 10
-5 	= .00015 

bar. 	The overall increase in IABI at low temperatures is 

apparent. 	For the low temperature runs, unless the random 

errors were very small, the optimum range was such that the 

systematic difference between the fitting polynomial and the 

model virial series contributed significantly to IABI. 

For the 218.9 K, 204.6 K, and 192.6 K simulated runs it 

was found that m ?_ 5 was necessary to obtain a good estimate 

of Zo  and Z1. 	These fits produced relatively poor estimates 

of B and C, however, (e.g. AB 	= 0.5 cm3  mole-1) and of the 

lower compressibility factors. 	For these runs it is not 

usually possible to treat all of the data with one value of 

m and obtain good estimates of B and C and all of the 

compressibility factors. 	This conclusion pertains to most 

Burnett runs at low reduced temperature which extend to 

high pressure, and has not always been realised by previous 

experimentalists (for example (83), (29)). 	It is a con-

sequence of the wide spacing of high pressure Burnett 

measurements in a highly-curved region of the isotherm 

where the virial series is slowly convergent, or possibly 

even divergent. 

When the reduced densities, p = pipc, corresponding 

to the maximum pressure of each optimum range, Pr, are 

plotted against reduced temperature TR the results are as 

shown in figure 3.6. 	It can be seen that for TR  > 0.9 the 

optimum densities are only slowly changing functions of 
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temperature. 	This offers a convenient means of interpolating 

the results of this program to other temperatures in this 

region and of extrapolation of the results to methane/ 

nitrogen mixtures. 

(e) Weighting Factors  

Several simulated runs were retreated using weighting 

factors that were inconsistent with the known applied error 

distribution. 	It was found that for a given set of simulated 

'experimental' pressures, the results of curve-fitting were 

very similar when weighting factors were calculated according 

to equations (3.4-8) - (3.4-10) with y = 10-5  and e = 0.0 

to .0004 bar. 	Only when the higher pressures were weighted 

much too highly (e.g. ' = 0, e = .0004 bar) were the results 

significantly worse than those in which correct weighting 

factors were employed. 

(f) Comparison with the experimental data  

In Chapter 4, Tables 4.1 - 4.7, the results are presented 

of the treatment of the experimental data from this 

investigation; the lay-out of the Tables is explained in 

section 4.1. 	By comparing the results from the various 

curve-fits with those from the simulated data, the optimum 

curve-fits were selected. 	In nearly all runs the results 

showed a pattern that was reproduced by the simulated runs, 

and in enabling the optimum B, C and compressibility factors 

to be determined the use of simulated data proved invaluable. 

For some of the experimental runs at the higher reduced 

temperatures the maximum density was less than the optimum 

for m = 4; for these runs only m = 2 and m = 3 curve-fits 
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need be considered. 	This is probably also true for those 

runs well below the critical temperature, such as the 167.7 K 

(run 35) and 155.9 K (run 36) isotherms for methane, where 

the saturation vapour pressure limited the maximum density 

and hence the number of expansions. 

Some of the runs at TR > 1.3 show the absence of any 

substantial random or systematic errors, such as run 13 

(nitrogen 218.9 K) and run 19 (methane 263.1 K). 	In these 

runs excellent agreement is shown between the optimum curve-

fits and those in pressure ranges narrower than the optimum 

ranges. Many other runs show clearly the increase in the 

standard deviations as the range Pr  - Pn  is narrowed, owing 

to random experimental errors, e.g. run 14 (nitrogen 218.9 K) 

and run 24 (methane 234.1 K). 

Other runs show the presence of systematic errors. 	An 

example is run 30 (nitrogen 192.6 K). 	For the m = 2 fits 

as the range is decreased below the optimum (P2 - P8), the 

change in B (A(1)) is large compared with the standard 

deviation and is much larger than that due to isotherm 

curvature. 

It has been suggested (23) that a simple method of 

determining the correct value of m for a given pressure 

range would be to increase m until the residuals were dis- 

tributed in a random manner. 	Further increase in m would 

result in larger parameter standard deviations. 	However, it 

is very difficult to disentangle the two separate effects on 

the residuals of systematic experimental error on the one hand 

and an insufficient value of m on the other. 	Furthermore, 

if the pressure-range were large this procedure, although 
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leading possibly to the correct m for that range, would not 

necessarily provide the best estimates of B and C. 

In a recent publication, Waxman, Hastings and Chen (30) 

compared various rigorously defined methods of non-linear 

analysis (not including Method A), testing them on experimental 

argon data. 	As these authors realised, the results were 

model dependent, and a comparison of this sort does not give 

any real information on the accuracy of the methods as the 

'right' answer was unknown: simulated data must be used. 

The investigation of simulated data presented here goes some 

way towards answering some of the questions posed by Waxman 

et al. 

(g) The Magnitude of the Apparatus Constant  

This program was developed mainly for the study of the 

specific set of simulated data relevant to the experimental 

data, i.e. methane, nitrogen and their mixtures in a non-

isothermal Burnett apparatus with a particular fixed 

apparatus constant, (VA  + VB)/VA. 	The program has also 

been modified easily into a more general form, in which it 

can be used to study a range of gases in any Burnett apparatus, 

'isothermal' or 'non-isothermal', with a variable apparatus 

constant, over a wide range of temperature and pressure. 

In this form it is more suitable for design applications, 

particularly with regard to the selection of the magnitude of 

the apparatus constant and pressure range for a set of 

proposed experiments. 

Weir (31) has shown that fora low-pressure (< 1 atmosphere) 

non-isothermal Burnett apparatus, the error expected in B 



depends on the magnitude of the non-isothermal apparatus 

constant, 

  

N' = VA + VB (3.4-15) 

 

V 

 

For a fixed initial pressure, aB  exhibits a minimum as N' 

varies. 	This behaviour can be explained qualitatively: 

when N' is too large, there are insufficient points on the 

isotherm and aB
2 increases because of the (n - m)-1  term in 

the equation for aB2 (equation (3.2-27)); when N' is too 

small, Pj/Pi _/--*1 and Zi/Zi _1--*1, and obviously in the 

limit when N' = 1, i.e. VB  = 0, no information is gained. 

The best value of N' changes according to the temperature 

TA  and the maximum pressure, Po. 

For these reasons the expansion vessel of the present 

apparatus was supplied with four interchangeable inner 

volumes, of sizes selected on the basis of the calculations 

of Weir. 	However, the analysis in the case of a high-

pressure Burnett apparatus is further complicated by the 

necessity of including the higher virial coefficients and 

by the fact that the maximum pressure for a fixed value of m 

varies with temperature. 

Several simulated runs for methane were therefore 

investigated in order to determine the variation of the 

experimental results with N'. 	The value of AB for the 

optimum curve fit passed through a shallow minimum at 

N' = 1.6 when T >210 K. 	As long as 1.4 < N' < 1.7 the 

results were satisfactory; this is in agreement with the 

calculations of Weir. 	Below TC  the value of N' required to 
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give maximum accuracy decreased: more expansions were 

required because the first pressure of each run was limited 

by the saturation vapour pressure. 

The volumes used for all the experimental runs were, 

360 cc 

VB =or; 280 cc. 

These gave the following values of N': 

273 K : N' = 1.78 

210 K 	N' = 1.6 

155.9 K : 	1.4 

These values are such that N' was the best from the 

choice available except perhaps at 291.4 K and below 170 K 

for methane, where N' was just too large. 	A smaller 

expansion volume leading to more measurements would have 

provided marginally improved accuracy for these few runs. 

On purely practical grounds the size of the expansion vessel 

was not changed, as it would probably have led to a new set 

of leakage problems that would have to be overcome. 
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CHAPTER FOUR 

EXPERIMENTAL DATA 

4.1 Experimental results of this investigation 

Compressibility factors and second and third virial 

coefficients of methane, nitrogen, two methane/nitrogen 

mixtures and three multi-component mixtures have been 

measured at temperatures from 291.4 K to 155.9 K. 	The 

results are presented in Tables 4.1 to 4.7. 	Compositions 

of the mixtures have already been given in Table 2.4. 

On the bottom half of each page are shown the results 

for several of the least-squares curve fits; at the top 

of each column is the number of coefficients used in the 

density polynomial series, m, and the pressure range included 

in the fit, Pr  - Pn. 	Each coefficient A(K) is given 

together with its standard deviation, SD, in units of (cc/mole)k. 

Thus A(1) refers to the least-squares estimate of the second 

virial coefficient, B, and A(2) refers to the third virial 

coefficient, C. 	V(A) refers to the estimate of the volume 

of the pressure vessel, which was the (m+1) th. least-squares 

parameter. 

At the top of the page the overall optimum compressibility 

factors are given, selected by comparing the results with 

the results of treatment of the simulated data as described 

in Chapter 3. 	The densities shown were obtained from the 

experimental compressibility factors by using the experimental 

absolute temperature, T, 

P = RTZ 
	 (4.1-1) 

where R = 83.147 bar.cc.mole.K. 
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The compressibility factors are, to the first order of 

accuracy, independent of the value assumed for R and T. 

The estimated maximum errors include those due to 

experimental errors in pressure, both random and systematic, 

and the uncertainties introduced by the truncation of the 

virial series. 	These are necessarily larger than is super- 

ficially apparent from the standard deviations in the optimum 

curve-fit, for the reasons given in Chapter 3. 

In addition, the total errors in the results must also 

take into account the effect of various systematic uncertain-

ties introduced by the use of a 'non-isothermal' Burnett 

apparatus, which are discussed in section 4.3. 

4.2 Experimental virial coefficients of this investigation  

The experimental second and third virial coefficients 

of methane, nitrogen and the two methane/nitrogen mixtures 

are reproduced in Tables 4.8 and 4.9 together with the errors 

given in Tables 4.1 - 4.4. 	The total limits of error must 

also include those systematic errors discussed in section 4.3. 

The interactional second virial coefficient of a binary 

mixture,  B12, is given by 

B mix 	x1 
2B11 + 2x1x2B12 + x 

	
22 
	(4.2-1) 

where B mix is the second virial coefficient of the mixture 

with mole fraction x1 of methane and x2 of nitrogen. 	In 

Table 4.9 are shown the values of B12  calculated from (4.2-1) 

for each mixture, with their associated errors, using the 

pure component second virial coefficients of Table 4.8. 	It 

can be seen that there are no systematic differences between 



the two sets of values; the mean was adopted for use later 

in this study, in Chapter 5. 

The interactional third virial coefficients C112  and 112 

C221 are similarly given by 

C = 3C mix 	x1 111 + 3x
12 x2C112  + 3 

22 x1C221 + x
23 C222 	(4.2-2) 

From the results for the two mixtures at each temperature 

the two equations of the above form were solved to obtain 

estimates of C112 (methane-methane-nitrogen) and C221 

(nitrogen-nitrogen-methane). 	These are shown in Table 4.9 

together with their associated errors. 

4.3 Total Error Analysis  

(a) The Equation of State at 0 

The largest systematic errors present are usually caused 

by the uncertainties in the equation of state assumed for 

the gas in the ice-bath. 

For each gas studied a four-coefficient polynomial 

in density was assumed, 

P/RTp = Z0  . (1 + alp + a(11 p2 	a3p3 	aoe4) (4.3-1) 

a1  is the second virial coefficient at 0 0 

o a2  is the third virial coefficient at 0 °C, etc. 

The values used are given in Table 4.10. 	For methane 

they are the coefficients of Douslin et al (32) (see section 

4.4(c)), which reproduce Z0  to within 0.0001 up to 100 bar. 

The error in 30  is estimated as -.1 cm3  .mole-1 and in C°  as 

± 75 cm6.mole-2. 	For nitrogen, the coefficients are those 
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obtained byre-treating graphically the data of Michels 

et al (33) (see section 4.4(d)). They reproduce both the 

Michels compressibility factors and those of Crain and 

Sonntag (34) to within .0002 up to 100 bar. 	The error in 

B°  is estimated as ± .2 cm3.mole-1  and in C as ± 150 cm6.mole-2. 

For methane/nitrogen mixtures the second and third 

virial coefficients at 0 °C were obtained from an interpolation 
• 

of the results of this investigation. 	Each set of mixture 

raw data was re-treated two or three times, each time re-

adjusting the 0 °C equation of state, until the virial 

coefficients at 0 °C were consistent with the interpolated 

values. 	B°  is estimated as accurate to 	 0.4 cm3.mole-1, 

about half of which is due to the errors in interpolation, 

and C°  is estimated as accurate to ± 200 cm3.mole-1. 	In 

retrospect, additional accuracy could have been gained by 

carrying out runs at, or close to, 0 °C. 	The higher 

coefficients were chosen such that Z°  at the higher pressures 

agreed well with the values interpolated from the results at 

other temperatures. A double interpolation in both 

temperature and pressure was necessary. 	Z°  at 96 bars was 

estimated as accurate to ± .0007. 

For the multicomponent mixtures runs were carried out 

either at or very near to 0 °C and any interpolation necessary 

was small. 	Z°  at 100 bar was estimated as accurate to 

± .001. 

To determine the effect of errors in the 0 °C equation 

of state on the experimental results, several runs were 

re-processed (methane and nitrogen at 291.4, 248.5, 218.9, 

181.9 and 155.9 K). 	Both Be  and C°  were subjected in turn 
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to a 1% increment, resulting in small changes in the 

experimental B(T) and C(T) values. 	In Table 4.11 are 

presented the resultant derivatives, 613(T)/613°, 6C(T)/b13°, 

613(T)/aC°  and 6C(T)/6C°. 	These values were very similar 

for both methane and nitrogen. Also shown are the maximum 

uncertainties, 5B(T) and 5C(T), in B(T) and C(T) arising 

from the estimated maximum errors in 130  and C°  for methane, 

nitrogen and both binary mixtures. 

The derivatives aZ(T,P)/613o and 6Z(T,P)/6C°, shown in 

figure 4.1, were found to be virtually independent of 

temperature and were smooth functions of pressure. 	If 

different, more accurate values of 130  and C°  become accepted 

figure 4.1 may be used to apply the necessary small corrections 

to Z(T,P); it is emphasized that both curves of figure 4.1 

must be used in conjunction with one another. Any small 

changeinZ°(P.)leads to a small change in all Z(T) values, 

but it was found that the quantity 5Z(T,P.1 )/5Z°(Pi) was 

approximately constant for each isotherm, the values ranging 

from 0.15 to about 0.3. 	For example, an uncertainty in 

Z°  at 0 °C, 100 bars of .0005 leads to an error in Z(T) at 

100 bars of between .00008 and .00015. 	In Table 4.12 are 

listed the maximum errors in Z for each run arising from the 

estimated uncertainties in Z°. 

(b) Other Systematic Errors  

Errors in other variables which are independent of 

pressure, such as the volumes and temperatures of the dead-

spaces, will tend to have an effect on the experimental 

second virial coefficients. 	Those errors which increase with 



pressure, however, such as those in the dead-space 

compressibility factors, tend to have a small effect on 

B(T) but can lead to relatively larger errors in the high- 

pressure compressibility factors. 	The equations for use 

in calculating Z in the inlet-tubes and other dead-spaces 

were found by fitting four-coefficient polynomials in 

density to the data of Tables 4.1 - 4.7. 	The errors in 

these equations were found to have an insignificant effect 

on the results. 

Only two errors could lead to a maximum error in B(T) 

of more than .005 cm3.mole-1  or to a maximum error in 

Z(T,P) of more than .00005; firstly, uncertainties in V3, 

the largest section of the dead-space volume; secondly, 

uncertainties in T6, the ice-bath vessel temperature. 	The 

maximum value of 3B(T)/W3 is 0.7: therefore the estimated 

uncertainty in V3 of .015 cc leads to an error in B(T) of 

.01 cc/mole. 	The maximum value of 613(T)/6126 is 0.25: 

therefore the estimated uncertainty in T6 of .02 K leads to 

an error in B(T) of less than .01 cc/mole. 	These are both 

negligible. 

(c) Adsorption  

It is known that adsorption of gas on the walls of the 

containing vessel can be a serious problem in Burnett 

measurements at temperatures below the critical temperature. 

In the design of the vessel, an effort was made to ensure 

that the interior surfaces were clean and highly polished in 

order to reduce the possibility of adsorption. 

There are two reasons for the belief that the effect of 
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adsorption was insignificant in this investigation. 

Firstly, the results of the curve-fitting to each low-

temperature run, particularly the magnitudes of the standard 

deviations, were consistent with the errors expected in 

experimental pressure. 	Serious adsorption could be expected 

to result in much larger standard deviations and also much 

larger apparent curvature on the isotherms. 	Secondly, the 

effect of adsorption would tend to manifest itself as a 

change in the expected value of V1, the volume of the low- 

temperature pressure vessel (35). 	In figure 4.2 these 

volumes are plotted against temperature. 	There are no 

systematic differences between the values obtained for 

different gases: they all deviate from a smooth, nearly 

linear function of temperature by less than .1 cm3  (.03%). 

The differences at low temperature are within the expected 

errors inherent in the curve-fitting procedure. 	In 

treatment of simulated data it was found that if the 

derived least-squares value of V1 was in error by 0.1 cm3  

then it was usually accompanied by errors in B of about 0.2 

to 0.3 cm3.mole-1 in C of about 100 - 150 cm6.mole-2 and 

in Z(T,P0) of from .0002 to .0003. 

As already mentioned in Chapter 1, the design of the 

'non-isothermal' apparatus is such that errors due to 

adsorption are less than in the standard 'isothermal' 

apparatus. 	In the latter it can be shown that as the gas 

adsorbs in both VA and VB at low temperature the errors due 

to adsorption are accumulative (35). 



TABLE 4.1 
EXPERIMENTAL DATA FOR METHANE 

RUN 23 	291.41 K 

M=3 	130•..P6 

M=2 ) P1 -P6 

M=3 
	

M=4 
P1.-P6 

	

361.140 
	

361.134 
.017 

	

-45.755 	.45.816 

	

.094 	.179 

	

2679.4 
	

2773.1 

	

68.5 	156.2 
-4.0 .164  -9.6 .164  
1.4 .164 	5.1 .104  

10.6 .106  
5.3 .106 

M=3 
PO -P6 

361,186 
.024 

45.471 
.079 

2464.2 
. 33.8 
.58 .104  
.40 .104  

.83645 

.89671 	.8966G 

.93955 	.9394. 4 

.96577 	.96565 

.98092 	.98083 

.98945 	.98946 

.99419 	.99416 

.'83633 

.89659 

.93943 

.96564 

.98082 
698939 
.99416 
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PRESSURE 
	

PRESSURE 
LBoiS(1.IN. 	BAR  

1448.752 99.8880 
837.073 57.7141 
476.307 32.8402 
266.916 18.4032 
148.105 10.2115 
81.698 5.6329 
44.917 3.0969 

Z = PV/RT 
(OPTIMUM) 

.8364 

.89670 

.93954 

.96576 

.98091 

.98945 

.99419  

DENSITY LEAST-SQUARES 
MOLE/DC.10 	FIT 

4.9284 
2.6563 
1.4426 
0.78647 
0.42966 
0.23496 
0.12857. 

OPTIMUM COEFFICIENTS  

By CC/MOLE = -45.50 
Cp CC/MOLE1 = 2489 
V(A), 	CC 	= 361.18 

ESTIMATED ERRORS 
(MAX.) 
.15 
100 
.05 

2 .0002 

OPTIMUM FIT 

M=2 
P1 -P6 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 
	

M=2 
PO •P6 

V(A) 361.158 361.182 
SD .016 .015 

A(1)  -"45.579 -45.500 
SD .024 .040 

A(2)  2512.4 2489.3 
SD 3.9 11.1 

A(3)  
SD 

A(4)  
- SD 

Z(0) .83638 
Z(1)  .89665 .89670 
Z(2)  .93947 .93954 
Z(3)  .96571 .96576 
Z(4)  .98088 .98091 
Z(5)  .98943 .98945 
Z(6)  .99418 .99419 

M=2 
P2 •../36 

361.148 
.010 

-45.674 
.043 

2574.0 
-20.2 

.93946 

.96567 

.98085 

.98941 

.99417 
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TABLE 4.1 

EXPERIMENTAL DATA FOR METHANE 

RUN 19 	263.08 K 

PRESSURE PRESSURE 
iBe/SQ,IN. 	BAR 

.Z = PV/RT 
(OPTIMUM) 

DENSITY LEAST-SQUARES 
MOLE/CC.103 	FIT 

1448.325 99.8586 .74800 6.1029 M=4 f  PO .•P6 
928.850 64.0420 .82871 3.5328 M=3 P1 -P6 
576.275 39.7328 .89286 2.03437 

346.771 23.9090 .93565 1,16819 
204&455 14.0967 .96218 0,66978 M=2 P2-P6 
119.055 8.2086 .4,97803 0.38370 
68.818 4.7448 098732 0.21970 

OPTIMUM COEFFICIENTS 

B, CC/MOLE = 	-58.34 
C, CC/MOLE1= 	2788 
V(A), CC 	= 	360.74 

ESTIMATED ERRORS 
(MAX.) 
.07 

50 
.04 

Z .0001 

OPTIMUM FIT 

M=2 
P2-P6 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

V(A) 
SD 

A(1) 
SD 

A (2) 
SD 

A(3)  
SD 

A(4)  
SD 

Z(0) 
Z(1)  
Z(2)  
Z(3)  
Z(4)  
Z (5)  
Z (6)  

M= 2 
PO ••P6 

360.719 
.010 

-58.390 
.011 

2800.8 
1.5 

.74796 

.82867 

.89280 

.93561 

.96215 

.97801 

.98731 

M=2 
P1-P6 

360.737 
.005 

-58.350 
.010 

2791.6 
2.1 

.82870 

.89285 

.93565 

.96217 

.97802 

.98732 

M=2 
P2-P6 

360.740 
.0U9 

-58.339 
.026 

2787.8 
8.9 

.89286 . 

.93565 

.96218 
.97803 
.98732 

M=3 
PO . )6 

360.743 
.008 

.019 
2777.6 

6.4 
.22 	.104  
.06.104  

.74801 

.82872 

.89286 

.93566 

.96218. 

.97803 

.98732 

M=3 
P1 . 36 

360.739 
.014 

.58.339 
.051 

2785.9 
27.7 

	

.09 	.104  

	

.43 	.104  

.82871 

.89285 

.93565 

.96218 

.97803 

.98732 

M=4 
PO-P6 

360.737 
.022 

58.349 
.091 

2794.4 
59.6 

	

-0.2 	.104  

	

1.5 	.104  

	

0.3 	.10 6  
1.2 ele 

-.74800 
$82870 
,89285 
4,93565 
.96217 
07802 

..98732 



OPTIMUM COEFFICIENTS 	ESTIMATED ERRORS 
(MAX.) 
.10 ..  

75 
,04 

Z .0001 

B, CC/MOLE = -66.48 
C, CC/MOLE1 = 3015 
V(A), 	CC 	= 360.46 

OPTIMUM FIT 

M=2 
P2-P7 
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TABLE 4.1 

EXPERIMENTAL DATA FOR METHANE 

RUN 20 	248.54 K 

PRESSURE PRESSURE 
LB. /SQ. IN. 	BAR 

Z = PV/RT 
(OPTIMUM) 

DENSITY LEAST-SQUARES 
MOLE/CC.103 	FIT 

1439.944 99.2807 .68035 
990.015 68.2592 .77032 
652.848 45.0123 .84934 
412.765 28.4592 .90591 
253.367 17.4690 .94282 
152.638 10.5240 .96578 
90.915 6.2683 .97971 
53.783 3.7082 .98803 

7.0612 
4.2879 
2.5645 
1.5202 
0,89660 
0,52731 
0,30962 
0.18162 

M=4 p - POP7 
M=3 P1-P7 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 
P1-P7 

M=2 M=2 
P3-P7 

M=3 
PO-P7 

M=3 M=4 
PO ••.P7 

V(A) 360,473 360.463 360.452 360.456 360.458 360.460 SD .006 .005 .005 .004 .005 .008 A(1) ••••66.448 -66.479 -66.525 -66.510 -•.66.504 •.-66.505 SD .008 .011 .018 .007 .017 .027 
A(2)  3005.9 3015.2 3036.4 3035.2- 3032.4 3632.2 SD 1.6 3.3 8.1 2.1 7.8 15.3 
A(3)  

SD 

	

.104 -0.35 	.104  
.02 	.it 	.10 	.104 

	

-0.3 	.104  

	

.3 	.104  
A(4)  -0. 0 	.106  

SD .2 	.106  

Z(0) .68035 .68035 
Z(1)  .77035 .77032 .77032 .77032 
Z(2)  .84936 .84934 .84933 .84933 .84933 
Z(3)  .90593 .90591 .90588 .90589 .90590 .90539 
Z(4)  .94284 :94282 .94279 .94280 .94281 .94231 
Z(5)  .96580 .96578 .96576 .96577 .96577 .96577 
Z(6)  .97971 .97971 .97969 .97970 .97970 .97970 
Z(7)  .98803 098803 .98802 .98802 .98802 .9881.12 
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TABLE. AA 

EXPERIMENTAL DATA FOR METHANE 

RUN 24 	234.05 K 

PRESSURE PRESSURE 
LB./S(1.IN. 	BAR 

Z = PV/RT 
(OPTIMUM) 

DENSITY LEAST-SQUARES 
• MOLE/CC.1e 	FIT 

1144.975 78.9432 .65574 6.1862 M=4 i  PO-P7 
832.275 57.3834 .75334 3.9142 M=3 t  P1-P7 
571.661 39.4146 .83539 2.4245 
374.357 25.8110 .89475 1.4824 
237.212 16.3552 .93441 0.89945 M=2 t  
147.166 10.1467 .95974 0.54328 
90.115 6.2132 .97551 0.32730 
54.739 3.7741 .98519 0.19686 

OPTIMUM COEFFICIENTS 
	ESTIMATED ERRORS 

	OPTIMUM FIT 
(MAX.) 

B, CC/MOLE = -75.89 .15 
Ct  CC/MOLE2 = 3299 .100 
V(A), 	CC 	= 360.20 .05 

Z .0001 

M=2 
P2-P7 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 
P1•..137 

M=2 
P2-P7 

M=2 
P3-P7 

M=3 
PO ..•P7 

M=3 
P1..•137 

M=4 

V(A) 360.230 360.202 360.224 360.192 360.193 360.195 
SO .018 .020 .032 .019 0030 .043 

A(1)  -75.811 -.75.894 -75.799 .75.951 -75.949 -75.941 
SD .029 .049 .120 .041 0098 .161 

A(2)  3272.0 3298.5 3254.2 3343.1 3341.8 3336.2 
.SO 

A(3)  
5.9 1409 54.4 13.7 

-0.99 	.104  
48.0 

.•1.0 	.104  
98.7 

-0.8 	.104  
SD .12 	.104  *7 	.104  2.2 	.104  

A(4)  410' 
Sp 1.7 	6106  

Z(0) .65574 .65574 
Z(1)  .75341 .75333 .75334 .75334 
Z(2)  .83544 .83539 .83536 .83536 .83537 
Z(3)  .89482 .89475 .89479 .89472 .89473 .89473 
Z44) .93445 .93441 .93446 .93438 .93438 .93439 
Z(5)  .95978 *95974 .95978 .95972 .95972 .95972 
Z(6)  .97554 .97551 .97554 .97550 .9755C 0 97550 
Z(7)  .98520 .98519 .98520 .98518 .98518 .98518 



OPTIMUM COEFFICIENTS 

B, CC/MOLE = -87.16 
C, CC/MOLE1= 3551 
V(A), 	CC 	= 360.03 

ESTIMATED ERRORS 
(MAX.) 
.30 
200 
.08 

Z .0005 

OPTIMUM FIT 

TABLE 4.1 
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EXPERIMENTAL DATA FOR METHANE 

RUN 21 	218.87 K 
• 

PRESSURE 	PRESSURE 
	

Z = PV/RT 
	

DENSITY 	LEAST-SQUARES 
LB. /SQ.IN. 	BAR 
	

(OPTIMUM) - MOLE/CC.103 	FIT 

1406.197 96.9539 .4610 
1139.705 78.5799 .5220 
930.215 64.1361 .4_201 
717.510 49.4706 .7226 
517.933 35.7102 .8096 
354.220 24.4226 .8746 
233.244 16.0816 .9195 
149.806 10.3287 ..9492 
94.705 6.5297 .96818 
59.27 8 4.0871 .98022 

11.555 
8.271 
5.6837 
.3.7622 
2.4238 
1.5344 
0.96103 
0.59797 
0.37060 
0.22912 

M=6 PO-P9 
M=5 , P1-P9 
M=4 , P2139 
M=3 P3-P9 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 
P3 ...P9 

M=2 
134P9 

M=2 
P5-P9 

M=3 
P2 ..•P9 

M=3 
P3-P9 

M=3 
P4-P9 

V(A) 359.974 360.029 360.063 359.976 360.060 360.077 
SD .021 .011 .009 .031 .010 6016 

A(1)  "87.315 -87.161 -87.027 -87.321 "87'0014 "86.927 
SD .033 .026 .029 .066 .031 .072 

A(2)  3600.6 3551.2 3490.4 3607.8 3446.2 3381.8 
SD 7.1 7.8 12.9 23.1 15.6 51.2 

A(3)  .104  2.2 	.104  3.6 	.104  
SD .21 	.104  0.2 	.104  1.1 	*104  

Z(0) 
Z(1)  
Z(2)  .61989 
Z(3)  .72242 .72242 .72258 
Z(4)  .80950 .80960 080950 .80966 .80970 
Z(5)  .87448 .87462 .87469 .87448 .87468 .87472 
_Z(6) .91940 .91951 .91959 .91940 .91958 .91962 
Z (7) .94907 .94915 . 	.94921 .94907 .94921 .94924 
Z(8)  .96813 .96818 .96823 .96813 .96823 .96825 
Z(9)  .98018 .98022 .98024 .98018 .98024 .98026 
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RUN 21 
	

218.87 K (CONTINUED) 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

H=4 
P1-P9  

M= 4 
P2-P9 

M=4 
P3 ••P9 

M=5 
P1-P9 

M=5 
P2 •••1D9 

M=6 
PO -P9 

V(A) 360.046 360.086 360.079 360.093 360.075 360.104 
SD 30 	2 .023 .017 .030 .038 

A(1)  -87.034 -86.867 -86.905 .36.821 .86.933 -86.770 
SO .043 .045 - 	.120 .072 .171 *201 

A(2)  3422.8 3311.9 3347.6 . 	3263.7 3379.9 3224.7 
SD 19.3 28.5 106.3 53.8 171.8 226.9 

A(3)  4.2 	.104  6.9 	.104  5.6 	.104  9.1 	.104  3.8 	.104  la. 	.104  
SO .3 	.104  .7 	.104  347 	.104  1.7 	*104  7.5 	4104  7. 	.104 

A(4)  -3.4 	.106  :106  -4.1..iG6  -9.9 	.106  *3 .10 -11:6.106  
SD .2 	.106  e6 	.106  4.4 	.106  .2 	*106  15 	*106  3.5 	6106  

A(5)  3.1 	.108  -4. .108  4.3 	.108  
SD 1.3 .10 -10. 	108  3.9 	.108  

A(6)  - 	- -5 	.10m  
SD 10 	.10m  

Z(0) .46106 
Z(1)  .52198 .52205 .52207 
Z(2)  .62J01 .62008 .62009 .62006 .62011 

-Z(3) .72255 .72263 .72262 • .72265 . 4.72261 .72267 
2(4) .80964 .80972 .80971, .80974 480970 480976 
Z(5)  .87465 .87474 .87472 .87475 .87472 .87478 
Z(6)  .91955 .91964 .91963 .91966 .91962 .91968 

. 2(7) .94919 .94926 .94924 .94927 .94924 .94929 
2(8) .96822 .96827 .96826 .96828 .96825 .96829 
Z(9) .98024 .98027 .98026 .98628 .98028 .98029 



DENSITY LEAST-SQUARES 
MOLE/CC.103 	FIT 

10.801 
8.2937 
6.0890 
4.2772 
2.8985 
1.9151 
1.2444 
0.80012 
0.51097 
0.32496 
0.20611 

3 M=5 	P0• 310 

M=4 9 P2'4)1.0 

M=3 , 

M=2 , P5-P10 

.53756 
.64396 .64400 .64414 
074266 .74277 .74272 .74285 .74290 
.82239 .82256 .82263 .82245 .82264 .82270 
.88124 .88138 .88146 .88129 .88148 .88154 
.92222 .92232 .92239 .92226 .92241 092246 
.94974 .94981 .94986 .94977 .94987 .94992 
.96779 .96784 .96787 .96781 .96789 .96792 
.97947 .97950 .97953 .97949 .97954 .97956 

Z(0) 
Z(1)  
Z(2)  
2(3) 
Z(4)  
Z(5)  
Z(6)  
Z(7)  
Z(8)  
Z(9)  
Z(0) 

TABLE 4.1 
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. 	EXPERIMENTAL DATA 

	

RUN 22 	204.60 K 

PRESSURE 	PRESSURE 
LB./SQ.IN. 	BAR 

FOR 	METHANE 

Z = PV/RT 
(OPTIMUM) 

993.587 68,5054 .3728 
904.313 62.3502 .4419 
807,900 55.7027 .5377 
679.785 46.8695 .6441 
531.259 36.6290 .7429 
388.711 26.8007 .8226 
270.648 18.6605 .8815 
182.093 12.5549 .9224 
119.751 8.2566 .9499 
77.601 5.3504 .9679 
49.813 3.4345 .9795 

OPTIMUM COEFFICIENTS 

8 )  CC/MOLE = -100.14 
C, CC/MOLES' = 	3928 
V(A), CC 	= 	359.72 

ESTIMATED ERRORS 
(MAX.) - 
.25 
150 
.07 

Z. .0005 

OPTIMUM FIT 

M=2 
P5-P10 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 
P3-P10 

M=2 
P4 P.1.0 

M=2 
P5-P10 

M=3 
P2-P10 

M=3 
P3 'P10 

M=3 
Ple•Pi0 

V(A) 359.624 359.687 359.723 359.649 359.729 359.756 
SD .031 .024 .031 .035 .027 .040 

-A(1) -100.41 -100.26 -100.14 -100.34 -100.09 99.97 
SD .04 .05 .09 .06 .07 .15 

A(2)- 4018 3975 3928 399J 3866 3790 
SD 8 12 33 20 31 95 

A(3) 032 	.104  1.9 	0104  3.3 	.104  
SD .15 	.11l4" .4 .104  1.6 	•ii4  
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RUN 22 

TABLE 	4.1 

204.60 	K 	(CONTINUED) 

RESULTS OF NON LINEAR LEAST-SQUARES ANALYSIS 

M=4 	M=4 	M=5 	M=5 
P1-P10 P2-P10 P0-.1310 f1'.4310 

V(A) 359.814 359.761 359.751 359.787 
SD .029 .033 .045 .067 

A(1) -99.73 -99.93 -99.99 -99.78 
SD .06 .11 .17 .34 

A(2) 3618 37 40 3800 3605 
SD 26 64 118 316 

A(3) 8.3 	.104  5.7 	.104  3.2 	*104  11 .10+  
SD *4 	*104 1.4 *JO+  .3 	.104  12 .10+ 

A(4) -5.8 	.106  3.9 	.106  0.6 	.106  -13 	.106  
SD .2 	.106  1.1 	.106  4.4 	.106  23 	.106  

A(5) 2.9 	.108  6 	.108  
SD 1.9 	.108  15 	.108  

Z(0) .37277 
Z(1)  .44198 .44191 .44195 
Z(2)  .53780 .53773 .53771 .53776 
Z(3)  .64429 .64420 *64418 *64424 
Z(4)  .74300 .74291 .74289 .74296 
Z(5). - 	.82283 .82271 .82269 .82276 
Z(6)  .88167 .88155 .88153 .88161 
Z(7)  .92258 .92248 .92245 .92253 
Z(8)  .95000 .94993 .94991 .94997 
Z(9)  .96798 .96793 .96791 *96796 
Z(0) .97960 .97956 .97955 .97959 
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TABLE 4.1 

EXPERIMENTAL DATA FOR 	METHANE 

RUN 33 	192.64 K 

PRESSURE 	PRESSURE 
	

Z = PV/RT 
	

DENSITY 	LEAST-SQUARES .  
LBe/SQ,INe BAR 
	

(OPTIMUM) MOLE/CC*103  FIT 

662.282 45,6627 *4909 
590.581 40.7192 ..5976 
487.367 33.6028 .7000 
374.587 25.8269 .67864 
272.320 18,7758 .8529 
190.233 13.1161 .9009 
129.316 8.9160 .9343 
86.320 5.9515 .9568 
56.936 3.9256 .9718 
37.257 2.5688 .9817 

568064 
4.2539 
2.9967 
2.0502 
1.3743 
069089 
0.59580 
0.38833 
0.25219 
0.16337 

M=5 	P0..439 
M=4 , P1-P9 
M=3 , P2-P9 

M=2 , P3-P9 

OPTIMUM COEFFICIENTS 

B, CC/MOLE = ••112683 
C, CCIMOLE1 = 	4227 
V(A), CC 	= 	359.43 

ESTIMATED. ERRORS 
(MAX.) - 
.25 
150 
.07 

Z .0003 

OPTIMUM FIT 

M=2 
P3-P9 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

V(A) 
SD 

A(i) 
- 	SO 
A(2)  

SD 

M=2 
P2 •1:'9 

359.371 
.026 

113.03 
.07 
4305 

18 

M=2 
P3-P9 

359.433 
.034 

-112.83 
.09 
4227 
33 

M=2 
P4-•P9 

359.430 
.053 

112.85 
.20 
4235 
101 

M=3 
P1-P9 

359.473 
.035 

-112.60 
.09 
4034 

39 

M=3 
P2 ••P9 

359.464 
.052 

-112.64 
.19 
4059 

114 

M=3 
P3-P9 

359,416 
.049 

-112.92 
.30 
4306 
236 

A(3)  4.7 	.104  4.2 	.104  -1.9 4104  
SO -04 	sie 1.9 	.104  5.0 	.10*  

Z(0) 
Z(1)  .59763 
Z(2)  .69987 = 	.70006 .70004 
Z(3)  .78633 .78644 .78652 .78650 .78641 
Z(4)  .85276 .85292 .85291 .85300 .85298 .85288 
Z(5)  .90081 .90094 .90093 .90103 .90102 .90090 
Z(6)  .93418. .93428 .93427 .93436 .93434 .93424 
Z(7)  .95675 .95682 .95682 .95689 .95688 .95680 
Z(8)  .97177 .97181 .97181 .97186 .97185 .97180 
Z(9)  .98165 .98168 .98168 .98171 .98171 .98167 
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TABLE 4.1 

RUN 33 	192.64 K (CONTINUED) 

RESULTS OF NON-LINEAR LEAST-SQUARES ANALYSIS 

M=4 
P1-P9 

M=5 

V(A) 359.453 359.438 
SD .065 .082 

A(1)  -112.70 -112.82 
SD .24 .38 

A(2)  4117 4258 
SD 162 321 

A(3)  2.2 	.104  -5.3 	.104  
SD .4.1 	.104  11. 	.104 

A(4)  2.5 	.106  20.9 	0106  
SD 3.9 	.106  14.4 .106  

A(5)  .109  
SD 5. 	.108  

Z(0) .49094 
Z(i) .59760 	- .59758 
Z(2)  .70002 .70000 
Z(3)  .78648 .78645 
Z (4) .85296 .85292 
Z(5)  .90099 .90095 
Z(6)  .93432 .93429 
Z(7)  .95686 .95683 
Z(8)  .97184 .97182 
Z (9) .98170 .98168 



PRESSURE PRESSURE 
LBe/SQ.IN, BAR 

Z = PV/RT 
	

DENSITY 	LEAST- SQUARES 
(OPTIMUM) 	MOLE/CC.103 	FIT 

443.593 30.5847 .6518 
358.884 24.7442 .7445 
272.983 18.8215 .8187 
198.338 13.6749 .8746 
139.513 9,6192 .9146 
95.982 6.6177 .9426 
65.054 4,4853 .9616 
43.653 3.0098 .9745 

M=4 
M=3 

PO-P7 
p Pi-P7 

3.1033 
2,1981 
1.5203 
1.0341 
0.69551 
0,46432 
0.30846 
0,20425 
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TABLE 4,1 

EXPERIMENTAL DATA FOR METHANE 

RUN 34 	181:66 K 

OPTIMUM COEFFICIENTS ESTIMATED ERRORS 
(MAX.) 

By 	CC/MOLE = -125.71 .30 
C, CC/MOLE 4256 200 
V(A), 	CC = 359.39 .07 

Z .0003 

OPTIMUM FIT 

M=2 
P2-P7 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

V(A) 
SD 

A(1)  
SD 

A(2)  
SD 

M=2 
P1-P7 

359.314 
.032 

-125.98 
.08 

4390 
26 

- 	M=2 
P2-P7 

359.386 
.014 

-125.71 
.05 

-. 4256 
21 

M=2 
P3-P7 

359.419 
.014 

-125.54 
.07 

-4149 
40 

M=3 
PO-P7 

359.426 
.012 

-125.43 
.04 

3959 
20 

M=3 
P1-P7 

359.437 
.016 

.•125.38 
.07 

3912 
53 

M=4 
-P0• )7 

359.442 
- 	.028 

..125034 
.14 

-3867 
137 

A(3)  9.6 .iO4  10.7 	.104  13.2 .104  
SD .3 	.104  1.2 	.104  5.3 .104  

A (4) -4.8 	.106  
SD 7.3 	.106  

Z(0) .65174 .65176 
Z(1)  .74421 .74442 *74445 .74445 
Z(2)  .81858 .81872 .81881 .81883 .82884 
Z(3)  .87440 .87456 .87463 .87464 .87467 .87468 
Z(4)  .91449 .91463 .91470 .91471 .92474 .91475 
Z(5)  .94244 .94255 .94261 .94263 .94264 .94265 
Z(6)  .96155 .96163 .96167 .96169 .96170 .96171 
Z (7) .97445 .97450 .97453 .97455 .97456 .97456 
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TABLE 4.1 

EXPERIMENTAL DATA FOR. METHANE 

RUN 35 	167.67 K 

PRESSURE 	PRESSURE 
	

Z = PV/RT 
	

DENSITY 	LEAST-SQUARES 
LB. /SQ.IN. 	BAR 

	
(OPTIMUM) 
	

MOLE/CC.103 	FIT . 

298.822 20.6031 .7151 
237.158 16.3515 .7922 
179.424 12.3709 4851.9 
131.116 9.0401 .8962 
93.504 6.4469 .9280 
65.555 4.5199 .9505 
45.425 3.1319 .9662 

2.0667 
1.4805 
1.0417. 
0,7236 
0,4983 
0.341i2 
0,23250 

M=3 , PO-P6 

M=2 , P1-P6 

OPTIMUM COEFFICIENTS 

	

B, CC/MOLE = 	146.54 

	

CC/MOLE1 = 	4187 
V(A), CC 	= 	359.24 

ESTIMATED ERRORS 
(MAX.) 
. 40 
300 
.10 

Z .0004 

OPTIMUM FIT 

M=2 
P1-P6 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 
PO-P6 

M=2 M=3 	M=0 	M=0 	M=0 
POP6 	PO-P6 	PO-P6 	P0-.416 

V(A) 359.19 359.24 359.23 
SD .06 .08 .16 • 

A(i) .1464,71 1.46.54 -146.51 
SD' .13 .25 .69 

A(2)  4272 4187 4105 
SD 51 123 551 

A(3)  3.9 	.104  
SD 12.-:•104  

Z(0) .71501 .71509 
Z(1)  .79213 .79222 .79221 
Z(2)  .85180 .85190 .85189 
Z(3)  .89607 .89615 .89615 
Z(4)  .92795 .92802 .92802 
Z(5)  .95045 .95050 .95051 
Z(6)  .96611 .96615 896616 



PRESSURE PRESSURE 
BAR 

= PV/RT 
(OPTIMUM) 

186.515 12.8598 .7965 
143.608 9.9014 .8525 
107.127 7.3862 .8945 
78.125 5.3865 -.9253 
56.064 3.8655 .9475 
39.783 2.7430 -.9633 

_DENSITY LEAST-SQUARES 
MOLE/CC.103 	FIT 

1.2456 
0.8961 
0.63703 
0,44911 
0.31475 
0,21968 

M=3 	PO -.P5 

M=2 
P1-P5 

TABLE 4.1 
EXPERIMENTAL DATA FOR. .. METHANE 

RUN. 36 	155.89 K 

150 

OPTIMUM COEFFICIENTS 
	

ESTIMATED ERRORS 
	

OPTIMUM FIT 
(MAX*) 

B, CC/MOLE = 
C, CC/MOLE1 = 
V(A), 	CC 	= 

-167.93 
3718 

359.06 

_..60 
600 600 
.15 

Z. .0007 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 
P0..4)5 

M=2 
Pi-P5 

M=3 	M=0 
PO -P5 	P0•41 5 

V(A) 359.14 359.06 359.03 
SO .06 .08 .21 

Ati) -167,52 -167.93 -168.31 
SD .21 .39 1.41 

A(2)  3422 3718 4358 
SD 117 276 1669 

A(3)  -33 *104  
SD 59 	0104  

Z(0) .79670 .79647 
Z(1)  .85267 .85251 .85244 
Z(2)  .89469 .89453 *89446 
Z(3)  .92547 .92533 .92526 
Z(4)  .94762 .94751 .94744 
Z (5) .96337 .96329 .96323 

M=0 	M=0 
PO-P5 	PD-P5 



1507.290 103.9241 1.0010 
815.486 56.2258 .9935 
445.801 30.7369 .9945 
244.215 16.8380 .9964 
133.807 9.2257 .9979 
73.304 5.0541 .9988 

4.2844 	M=3 	P0•-.P5 
2.3357 
1.2756 
0.69744 M=2 Pi-P5 
0.38157 

- 0.20884 

TABLE 4.2 
EXPERIMENTAL DATA FOR NITROGEN 

RUN 6 
	

291.42 K 

-PRESSURE 	PRESSURE - 
LB./SO.1Mo 	BAR 

-Z PV/RT 
(OPTIMUM) 

DENSITY LEAST-SQUARES 
MOLE/CC•102 	FIT 

151 

OPTIPUM COEFFICIENTS 	ESTIMATED ERRORS 	OPTIMUM FIT 
(MAX.) 

132 	CC/MOLE = -6.20 .30 
Cy CC/MOLE = 1458 150 
V(A), 	CC = 361.23 .08 

Z .0004 

M=2 
T1-P5 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 	M=2 
	

M=3 	M=U - 
	

M=0 	M=0 
PO-P5 	P1-P5 

	
PO-P5 	--P0135 

	
PC-P5 

V(A) 361.112 361.232 361.268 
SD .059 .015 .010 

A(1) ..•6,582 ^6.200 - -5.987 
SD .112  .047 .038 

A (2) 1572.1 1457.6 1298.1 
SD 18.4 13.3 17.1. 

A(3) 3.6 	.104 
SO 2.3 	.104  

Z(0) 1.00067 1.00106 
Z(1)  .99320 .99347 .99356 
Z(2)  .99416 .99446 .99455 
Z(3)  .99617 .99638 :99647 
Z(4)  .99772 .99785 .99791 
Z(5)  .99869 .99877 499881 	- 



3.5865 
2.0062 
1,1225. 
0.62826 
0.35166 
0.19686 

M=3 , PO-P5 

M=2 Pi-P5 

OPTIMUM FIT 

TABLE 4.2 
-EXPERIMENTAL DATA FOR NITROGEN 

- RUN 9-- 	276.94-  K 

PRESSURE 
LB. /SQ.IN. 

PRESSURE 
BAR 

PV/RT --
(OPTIMUM) 

118J.937 81.4228 .9859 
661.445 4566E50 -.9872 
371.665 25.6254 o9'91,4 
208.715 14.39iJ4 .9947 
117.081 8.0724 .9969 
65.629 4.5249 49982 

OPTIMUM COEFFICIENTS - ESTIMATED ERRORS 
(MAX.) 

B, 	CC/MOLE = -9.38 .25 	- 
C I 	CC/MOLE = 1496 150 

- V(A), 	CC = 360.91 .07 
Z .0003 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 	M=2 	M=3 	M=0 	M=0 	M=0 
PO-P5 	P1-P5 	PO-P5 	PU-P5 	PO P5 	PO-P5 

V(A) 360,869 360.912 360.934 
SO .037 $050 .079 

A(1)  -9.545 -9.378 -9.247 
SC .083 .167 .327 

A(2)  1553.5 1495.9 1394.7 
SD 15.6 54.5 169.4 

A(3)  2.5 	ei0
4 

SO 2.6 .10 

Z(0)-- .98575 .98592 
Z(1)  .98710 .98721 .98726 
Z(2)  .99124 .99136 .99141 
Z (3)  .99462 .99470 .99475 
Z (4)  .99684 .99689 .99692 
Z(5) .99818 .99821 099823 

152 

DENSITY LEASTSOUARES 
MOLE/CC.10

3 
FIT 

M=2 
Pi •...P5 



M=3 	2  P0 ..•13 6 

OPTIMUM COEFFICIENTS 

Bi 	CC/MOLE = -12.95 
C, -- CC/MOLE = 1586 
V(A), 	GC = 360.59 

ESTIMATED ERRORS 
(MAX.) 
.25 
.D6 - 

Z 

OPTIMUM FIT 

M=2 
P1-P6 

M=2 	- M=2 
P1-P6 	P2•4'6" 

	

360.588 	360.558 
-.007 

-12.954 -13.093 

	

4035 	:4030 

	

1585.6 	1644,2 

	

8.6 	' 	12.0 

.97625 

.98339 

.98950 

.99367 

.99627 

.99783 

.98332 

.98942 

.99361 

.99623 

.99781 

TABLE 4.2 
EXPERIMENTAL DATA FOR NITROGEN 

153 

- RUN 17 	263.08 K  

PRESSURE 
LB. /SO. IN. 

PRESSURE ----
BAR 

1497.925 1302784 
86J,625 59.3381 
496.915 3442611 

.286,383 19.7454 
164,645 11.3519 

--- 	944481 - 	- 6.5142 
54.152 3.7336 

Z = PV/RT 
(OPTIMUM) 

.9751 

.9763 
-.9834 
.9895 
.9937 
499627 - 
.99783  

DENSITY LEAST-SQUARES 
MOLE/CC.103 	FIT 

4.8418 
2.7787 
1.5927 
019122 
0052232 
0.29892 
0.17106 

RESULTS OF NON-LINEAR LEAST-SQUARES ANALYSIS 

7,1= 

V(A) 
SD 

A(1)  
SD 

A(2)  
SD 

A(3)  
SD 

A(4)- 

Z(0) - 
Z(1)  
Z(2)  
Z(3)  
Z(4)  
Z(5)  
Z(6) - 

M=3 

- - 
360 • 614 

.033 
12.803 

- 41d8 
148004 

43,1 
2.1 • 104  
. 5 6104  

.97514 

.97631 
-498345 
.98957 
.99371 
.99631 
.99785 

M=3 
P1-P6 

360.546 
.L'08 

•••13,186 
.039 

1738.6 
25.3 

-3,0 .104  
*5 .I.04 

-.97614 
.98329 
.98939 
.99358 
.99621 
.99780  

130.4)6 	P -P6 
360.532 

.007 
•.13.304 

.039 
1886.9 

3045 
-11 .104  

1 6104  
13 4106  
1 .10 

.97492 

.97610 

.98325 

.98936 

.99355 

.99619 

.99779 



4.0706 
2.4005 
1.4119 
0482909 
0.48636 
0.28514 
0.16712 

OPTIMUM FIT 

M=2 

M=3 	P0-416 

M=2 P1-P6 

TABLE 4.2 
EXPERIMENTAL DATA FOR - .NITROGEN 

RUN -  10 
	

248,54 g 

- PRESSURE 	PRESSURE 
LBoiSQ,IN. 	BAR 

- Z - = PV/RT - 
(0PTIMUM) 

--DENSITY LEAST-SQUARES 
-MOLE/00.103 	FIT -,„ 

1169,198 80.6134 •9583 
697.018 48.0577 .9688 
414.461 ' 28.5761 69794- 
245,298 16.9127 49871 
144.635 9.9722 .99217 

-.85,065 5.8650 .99532 
49,949 3,4439 .99722 

OPTIMUM COEFFICIENTS ESTIMATED ERRORS 
(MAX.) 

131 	CC/MOLE = -16.86 .20 
Cy CC/MOLE = 1608 
V(A), 	CC 360.38 .05 

Z .0002 

- -RESULTS CF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 	M=2 
P1-P6 	P2-P6 

M=3 
PO-P6 

- V(A) 	360.379 	360.400 	360.400 
SD 	.coe 	.021 	.004 

A(1) -16.879 	-16.778 	-16.756 
SD 	.024 	.062 	.014 

A(2) 1608.3 	1560.9 	1517.8 - 
SD 	6.8 	20.1 	6.2 

A(3) 2.0 .104  
SO 	 .104  

41(4) 
SD 

M=4 
PO -P6 

360.409 
.005 

-16.698 
.029 

1464.8 
- 25.3 
3.9 .104  
.9 'le 

-2.2 .106 
1.1 	 6 .1.0 

M=3 
P1 -P6 

360.407 
.003 

-16.711 
.013 

1484.d 
9.7 

2.8 .104  
.2 ele 

M=0 
P0.-P6 

Z(0) 
Z(1) .96875 
Z(2) .97937, 
Z(3) .98711 
Z(4) .99217 
Z(5) .99532 
Z(6) .99722 

.97942 

.98716 
.99221 
.99534 
.99724 

.95830 

.96880 
*97943 
.98716 
.99221 
.99535 
.99724 

.96882 

.97944 

.98718 

.99223 

.99536 

.99725 

.95832 

.96882 

.97945 
*98719 
.99223 
.99536 
.99725 
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TABLE 4.2 
- EXPERIMENTAL DATA FOR NITROGEN 

RUN 11- 248.54 	K 

--:-PRESSURE 	PRESSURE - 
LB./SO.1N, 	BAR 

Z =- PV/RT 
(OPTIMUM) 

DENSITY 	LEAST-SQUARES 
MOLE/CC,103 	FIT 

1457.613 100.4989 .9566 5.0836 M=3 	, 
867.175 59.7896 .9637 3.0021 
516.530 35.6135 .9751 1.7674 
306.289 21.-1179 .9841 1.0384 
180.852 12.4693 .99025 0.60933 M=2 	, 
106.461 7.3402 .99414 -0.35729 
62.544 4.3123 .99651 11.20941 
36.700 2.5304 .99794 0.12270 

OPTIMUM COEFFICIENTS ESTIMATED ERRORS OPTIMUM FIT 
-(MAX.) 

B, CC/MOLE = -17.00 .20 M=2 
-Cy 	CC/MOLE = 1637 -100 P1-P7 
V(A), 	CC = 360.32 .05 

Z .0003 

RESULTS OF NON-LINEAR LEAST-SQUARES ANALYSIS 

M=2 - M=2 	M=3 	- M=3 	- M=4 	M=0 

-P1P7 	- 	P2-P7 	- P0-. )7 	- P1-P7 	PO-P7 	PO-P7 

-11(A) 360.322 360.299 360.349 -360.293 360.283 
--- 	SD .U14 .014 .030 .021 .032 

- -16.998 - -.*17.100. -16.837 --17.154 -17.242 
- - SO a33 .053 .094 .102 .174 
HA (2) 1636.8 - 1677.8 1530.6 - 1735.3 1847.3 - 

SD 7.8 20.1 - 	36.1 61.8 130.5 - 
A(3) 2.0 	.104  .104  .104  '77 7 

SD -.4 - .104  1.1 	.104  3.8 	.104  
- A(4) 9.0 	.10 

SD - 3.7 	.1.06  

Z(0) .95661 ..95644 
Z(i) - .96372  .96379 .96365 .96362 

Z(2)  .97507 .97502 .97514 .97500 -O97498 
Z(3)  .9841i .98405 .98419 .98404 .984U1 
Z(4)  .99C25 .99620 .99031 099619 .99016 

.99414 .99410 .99418 .99409 : .99407 
- Z(6)- -.99651 -.99649 .99654 .99648 .99647 
Z(7) .9979k .99793 .99796 .99792 .99791 



OPTIMUM COEFFICIENTS 

CC/MOLE = 	-21.57 
Cy CC/MOLE = 

	
1685 

V(A), CC 
	

360.13 

ESTIMATED ERRORS 
(MAX.) 
.25 
150 
.06 

Z .0003 

OPTIMUM FIT 

M=2 
- Pi •.-P6 

TABLE 4.2 
- EXPERIMENTAL DATA FOR NITROGEN 

RUN 12 
	

234.05 K 

 

PRESSURE - 
1.04/SQ,IN. 

PRESSURE 
BAR 

-2- = PURI- 
(OPTIMUM) 

-DENSITY 	LEAST-SQUARES 
MOLE/CC.103 	FIT 
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1198.314 82.6209 .9373 
740.589 51.0618 49534 
455,210 31.3788 968.8 
277,610 19.1405' .9801 
168.348 11.6072 .9876 

-101,688 - 7.0112 .99239 
61.265 4.2241 .99538 

4,5294 

1.6644. 
1.0036 
0,60394 
0,36305 
0.21807 

M=3 	(3013.6 

M=2 	P1 .•.P6 

RESULTS OF NONLINEAR LEAST-SQUARES 

M=2 	- M=2 	M=3 	M=3 
- P1P6 	F2-P6 	P0-•P6 	P1-•P6 

ANALYSIS 

M=4 	 M=0 
PO ••P6 	P()-P6 

V(A) 360.131 360.167 360.1- 64 363.175 360.172 
- 	SD .023 - .030 - 	.030 .053 *OH 
A(1)  -21.573 -21.425 -21,407 -21,352 -21.364 

. SD .057 .110 .094 .244 .464 
A(2)  1685.2 1626.2 1581.0 1545.5 15464,8 

SD 14.0 41.7 38.1 150,6 354.7 
A(3)  2.0 	.104  2.7 	.104  3. 	.104  

Sc 45 	.104  2.9 	itle 11 	8104  
A(4).. 1 	.106  

SO 11 	*166  

Z(0) .93732- .93734 
Z(i) .95339 .95348 .95350 .95350 
Z(2)  .96876 .96885 .96884 .96887 .96886 
Z(3)  ,980i).5 .98014 .98013 .98016 .98015 
Z(4)  .98759 .98765 .98765 .98767 .98767 
Z(5)  .99239 .99244 .99244 .99245 .99245 
Z (6) .99538 .99541 .99541 .99542 .99542 



1402.587 96.7050 .9022 
904.710 62.3776 - .92338 
579.825 39.9776 .94630 
367.468 25.3361 *96433 
230,686 15.9053 .97702 
143.832 9.9169 - .98546 
89.267 6.1548 .99089 
55.239 3,8086 .99433 
34,119 2,3524 .99649 

5.8896 
3.7119 
2.3213 
1,4437 
0.89451 
0,55295 
0,34130 
0.21047 
0012971 _) 

M=4 PO-P8 
M=3 , P1.•4)8 

M=2 	, P2 .43 8 

TABLE 4.2 
EXPERIMENTAL DATA FOR. NITROGEN 
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-PRESSURE 	PRESSURE.  
LB./SQ.IN-. 	BAR 

Z = PV/RT - 
(OPTIMUM) 

DENSITY - LEAST-SQUARES 
MOLE/CO.103 	FIT 

OPTIMUM COEFFICIENTS ESTIMATED ERRORS 
(MAX.) 

BY CC/MOLE = -27.30 .10 
C, CC/MOLE = 1794 50 	7  
V(A), 	CC = 359.88 .03 

Z .0001 

GPTIMUM FIT 

M=2 

RESULTS CF NON-LINEAR LEAST-SQUARES 

.M=3 
P1-P8 

ANALYSIS 

. M=2 
- P1P8 

. M=2 	-- 
P2•4)8 

M=2 - 

- V(A) 359.882 359.881 359.889 
. SD .005 - ,007 *009 

A(1)  -27.294 ....27O298 -27.260 
SD .0.09 .019 .038 

A(2)  1792.4 1793.6 1775.3 
SD 1.8 5.5 17.1 

A(3)  
SD .  

A(4)  
SD 

Z(0) 
Z(1)  .92338 
Z(2) - ,94630. . .94630 
Z(3)  *96433 *96433 *96435 
/(4) . .97702 497702 497704 

-Z(5) 98546 .98545 .98547 
Z(6)  .99089 -.99089 o99090 
Z(7)  .99433 699433 *99434 
Z(8)  .99649 .99649 .99649 

.92338 

	

.94630 	.94633 

	

.96433 	.96436 

	

- 897702 	.97705 
- .98546 .98549 

	

-.99089 	.99092 

	

.99433 	.99435 

	

*99649 	.99650 

359.882 
- 4009 .  

••27,294 
.034 

1792.1 
16.6 

.00 ,104  

.24 4104  

- M=3 
P2-P8 

359,895 
.012 

27.210 
.064 

1726.6 
47,2 

1.5 .104  
1.1 .104  

M=4 
PO-P8 

359.871 
.016 

-27.379 
.070 

1876.9 
43.3 

-3.3 .104  
1.0 *104  
4.2 .106  

* 8 .10 

.90221 

.92335 

.94627 

.96431 

.97699 
* 98543 
.99087 
.99432 
.99648 

RUN 13 
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TABLE 4.2 
EXPERIMENTAL DATA FOR NITROGEN 

-RUN 14 - 	. 218.88' 

 

PRESSURE - 
LB./SQ.IN• 

PRESSURE 
BAR 

Z = PV/RT - 
(OPTIMUM) 

DENSITY - LEAST-SQUARES - 
.3 

MOLE/CC610 	FIT 

     

1147.732 7961334 .9107 - 467737 M=4 	, PO-P7 
739.234 - 50.9684 69343 2.9972 M=3:1  P1-P7 
471.346 32.4982 .95525 1.8693. 

- 2976324 2064998 .97074 - 1.1604 
186.008 1268248 .98131 0.71811 M=2 P2-P7 
115.705 -'769776 .98824 0.44357 
71.701 469436 .99266 0.27365 
44.327 3.0562 699544 0616870_, 

OPTIMUM COEFFICIENTS ESTIMATED ERRORS 
(MAX.) 

OPTIMUM FIT 

132 	CC/MOLE = -27.32 .15 M=2 
Ci CC/MOLE = 1816 75 P2 •..P7 
1,1(A), 	CC = -359,87' 

Z .0002 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M= 2 	M=2 	M=2- M=3 	M=3 
Pi-P7 	PU-P7 	P1-P7 

M=4 
P0-P7 

V(A) 359,896 359.874 - 	359.855 359.916 359.863 359.850 
SD 

A(1) 
.019 

.-276234 
.024 

•..276321 
6041 

27.426 
6034 

276124 
.035 

27.392 
.050 

.•.276 0j0  38 
SD *042 .081 •199 .100 .151 .250 

A(2)  1777.5 1810.0 1868.1 1706.5 1872.7 1991.1 
SD 9.8 28.3 105.1 39.24  88.3 183.2 

A(3)  1.3 	.104  '...1•7 	6104  .104  
SD 0.5 	*104  1.6 	6104  5.3 	•1u4  

A(4)  8.2 	6101' 
SD 5.2 	6106  

Z(0) `69/085 691169 
Z(1) •93434 693439 .93426 693423 
Z(2)  .95530 .95525 .95535 .95523 .95519 
Z(3)  .97079 .97074-  .97069 .97085 697071 .97068 
Z(4)  •98136 .98131 698127 .98141 •98129 .98126 
Z(5)  .98827 .98824 6. 98820 .98831 .98822 .98819 
Z(6)  .99268 .99266 .99263 •99271 .99264 .99262 
Z(7) .99546 699544 -699543 .99547 699543 699542 



OPTIMUM COEFFICIENTS ESTIMATED 
(MAX.) 

ERRORS 	OPTIMUM FIT 

B, CC/MOLE = •••33047 .15 
C, CC/MOLE = 1874 75 
V(A), 	CC = 359.69 .04 

Z .0002 

M=2 
P2 ..P6 

TABLE -  4.2 
-EXPERIMENTAL.DATA FOR NITROGEN 

RUN 15 	-204461 K 
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- , PRESSURE 
LB0/SQ0IN0 

PRESSURE 
BAR 

Z - = PV/2T 
(OPTIMUM) 

DENSITY 	LEAST- SQUARES 
MOLE/CC.103 FIT 

11430456 78.8386 .8758 
7690595 53.0617 .9071 
510.754 35.2153 .93510 

- 334.052 2300321 .95638 
2150985 14.8916 .97136 
138.513 905501 .98147 
88.339 6.0907 .98812 

5.2911 
- 3.4384 
2.2136. 
164156 
0098115 
0057196 
0036232 

M=4 , Pa-P6 
M=3 	P1-P6 

V(A) 
-SO 

A(1)  
SD 

A(2)  
SO 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS - 

M=2 	M=2 	M=3 	K=3 	M=4 	1=0 
P1-P6 	P24) 6 	PO ..•P6 	P1-P6 	PO-P6 	P0•46 

	

359.676 	359.685 	359.737 	359.685 	359.662 

	

.011 	. 	.018 	*030 	.033 	051 

	

-33.493 	-33.465 	-33.275 	-33.463 	-33. 573 

	

.020 	0045 	.071 	.108 	.192 

	

188200 	1873.7 	1774.3 	1865.7 	1957.1 

	

4.1 	-1302 	23.7 	51.2 	114.8 
A(3)  1.6 	.104  6.2 01e -2.9 	.104  

SD .2 	4104  0.7 	0101  2. a .10 
A(4)- 3.8 	.106  

SD 2.3 	0106  

Z(0) .87602 .87584 
Z(1)  .90708 090723 .90711 .90705 
Z(2)  .93508 093510 093522 .93517j .93565 
Z(3)  .95636 .95638 95650 095638 .95633 
Z(4)  .97135 .97136 *97147 097136 097132 
Z(5)  098146 .98147 .98155 .98147 .98143 
Z(6)  .98811 .98812 - 098818 .98812 .98869 
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TABLE 4.2 
EXPERIMENTAL DATA FOR NITROGEN 

	

-6.8211 
	

M=4 * 

	

4.4633 
	

M=3 f P1-P8 
2.8890 
1.8544 
1.1835 

	

0.75236 T 	M=2 
0.47709 

- 0.30205 
0.19103_„, 

359.638 
.020 

-33.575 
*044 

1898.1 
10.7 

359.663 
.041 

-33.507 
.093 

1891.6 
31.7 

359.710 
.032 

-33.300 
- .067 

1770.2 
- 19.0 

1.75 .134  
-.15 .104  

RUN 16 	- 204.61 K 

PRESSURE 	PRESSURE 
LB./SQ.IN. 	BAR 

1448.508 99.8711 
978.034 67.4331 
654.996 45.1664 
432.062 29.7896 
281.187 19.3872 
181.147 12.4896 
115.883 7.9898 
73.786 5.0873 
46.837 3.2293 

Z = PV/RT 
(OPTIMUM) 

.8606 

.88807 

.91884,  

.94427 

.96292 

.97581 

.98441 

.99003 

.99366  

DENSITY LEAST-SQUARES 
MOLE/CC.103 	FIT 

OPTIMUM COEFFICIENTS ESTIMATED ERRORS 
(MAX.) 

OPTIMUM FIT 

By  
GI  CC/HOLE 

-V(A), CC 

= -33.57 .15 
1898 75 

359.64 .04 
Z .00012 

RESULTS OF NON-LINEAR LEAST-SQUARES ANALYSIS 

M=2 
P1 -P8 

M=2 
P2-P8 

M=2 
P3-P8 	PO-P8 

M=3 
P1•-P8 

-M=4 
• PO-P8 

359.655 
*U24 

33.504 
.672 

1859..8 
29.4 

.63 .10
4 

-.35 *164  

359.644 
.038 

-'33.573 
*134 

-1919.4 
69.6 

-143 .104  
1.4 .104  

-2-.1 .106  
.106  

7*-86064 
.88804 
.91886 
.94428 
.96294 
.97582 
.98442 
.99003 
.99366 

V(A) - 359.620 
SD - 	.016 

A(1) -33.626 
SO 	.026 

A(2) - 1911.5 
SD 	4.2 

A(3)  
SD - 

A(4)  
SD 

-774. 86079 

	

.88799 	---*88820 

	

-491880 	.91884 	 .91900 

	

.94421 	.94427 	494433 	* 34446 

	

.96286 	.96292 	.96299 - .96311 

	

.97578 	.97581 	.97586 	.97596 

.98439 .98441 -:-.98444 .98452 

	

.99002 	4.99003 	.99005 	.99010 

	

.99365 	.99366 	.99367 	..99370 

Z(0) 
Z(1) • 

- Z(2) 
"Z(3) 
-Z(4)  
-Z(5)  
Z(6)  
Z(7)  
Z(8)  

-.88807 
.91888 
.9443/ 
-.96297 
.97585 - 
*98444 
.99005 
.99367 
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EXPERIMENTAL DATA 

RUN 	30.._ 	- - 192.64 	K: 

TABLE 	4.2 
FOR 	NITROGEN 

:PRESSURE PRESSURE Z-= PV/RT- DENSITY 	-EAST-SQUARES 3 1 
LB0/SQ,IN. BAR (OPTIMUM) MOLE/CC•iD 	FIT 

1185.288 81.7228 *8329 6.1259 	M=4 	, 	P0-.138 
833.040 57.4361 ,8718 4.1179 	M=3 	$ 	P1- 21 8 
575.880 39,7056 69.066 2.7343 
390.774 26.9429 .9352 1.7986 
261.105 18,6025 ,9562 1.1754 
172,479 11,892C .9709 0,76466 	M=2 	P2 
113.026 7.7928 .98086 C*49601 
73,671 5.0794 .98750 0,32113 
47.846 3.2989 - .99187 L:420765 

OPTIMUM COEFFICIENTS ESTIMATED ERRORS 
T. (MAX.) 

OPTIMUM FIT 

B, 	CC/MOLE = -39.57 .20 -- M=2 
CI  CC/MOLE = 1981 100 
V(A), 	CC = 359.49 .05 

Z .0003, 

V(A) 
SD 

A(1) 
SD 

A (2)  
SD 

RESULTS OF NONLINEAR (EAST-SQUARES ANALYSIS 

M=2 	K=2 	M=2 	M=3 	- M=3 
P1-P8 	P2-.138 	P3-P8 	PU-P8 

	

359.456 	359.487 	- 359.531 	359,517 	
359:n35 - 

	

.021 	*021 .1119 	,U17 

	

-39.661 	•.39.573 	-.39,407 	39.446 	-39.462 

	

.033 	- 4048 	- 	.061 	.038 	.076 
2005.0 - 	1981.1 	1917.1 	1908.9 	1.91641 1916. 

	

5.9 	- 	12.2 	22.0 	11.7 
A (3)  1.3 	'104  1.2 	.104  

SD ,1 	,104  .4 	,1C4  
A (4)  

SD 

Z(0) .83286 
- Z(1) .87067 .87081 -487080 
Z(2)  .90654 .90661 .90688 .90667 
Z(3)  .93515 .93523 .93533 .93530 .93529 
Z(4)  895615 .95622 .95634 .95630 .95629 
Z(5)  -.97084 .97090 .97099 .97096 - .97095 
/(6) .98082 .98586 .98093 .98091 - 	',98690 

- Z(7) .98747 •98750 498754 .98753 .98753 
.Z(8) '99185: .99187 99190 .99189 .99189 

M=4 

359.519 
.033 

-39.436 
.120 

1902.6 
6649 

1.4 .10 
16'5 .104  

.1)41. .106  
1,1 .106  

.83286 
87081 
.90668 
.93532 
•95630 
.97096 
.98091 
*98753 
.99189 



359.344 
.022 

-45. 866 
.071 

2065.3 
32.3 

0.7 .104  
.4 0104  

359.357 
.031 

..•45.796 
.138 

2017.8 
8706 

1.6 s i04 
1.7 .104  

TA3LE 4.Z 
EXPERIMENTAL DATA FOR NITROGEN 

RUN 28 	--.71814.86 K - 

1.62 

PRESSURE - 
LD./SQ.IN. 

PRESSURE 
BAR 

- Z -=- PV/RT -DENSITY LEAST-SQUARES 
(OPTIMUM) 	MOLE/CC.1e 	FIT 

728.383 
518.513 
361.371 
247.581 
/674480 
112.282 
74.811 
49.638 
32.841 

50.2202 
- 35.7503 

24.9157 
17.0701 
11.5474 
7.7415 
5.1580 
3,4224 
2.2643 

.8532 

. 8932 

.92489 

. 94836 

.96501 

.97653 -

.98436 

.98962 

.99313 

3.8928 
- 2.6470 

1.7815. 
1.1904 
0.79135 
'.52427 
0.34653 
0.22870 
0.15078 

M=3 	P0-.P8 

M=2 P2-P8 

OPTIMUM COEFFICIENTS 

B, CC/MOLE = 	•••45.85 
C, CC/MOLE = - 2072' 
V(A), CC 	= 	359.35  

ESTIMATED ERRORS 
- (MAX.) 

.15 
100 . 

- .04 
Z .0002 	 

OPTIMUM FIT 

- M=2 
P2-P8 

RESULTS OF NON-LINEAR LEAST-SQUARES ANALYSIS - 

M=2 	M=2 	- • -•1=2 
	M=3 	M=3 

	
M=4 

P1 •••138 	P2-P8 	P3-P8 
	PO-PS 	P1-P8 	PO ..•P8 

.85315 

. 89319 	.89322 

.92488 	.92491 
.94834 	.94837 
. 96500 	.96503 
. 97652 	.97655 
. 98435 	.98437 
. 98962 	.98963 
.99313 	.99314 

V(A) 
SD 

A(i) 
: SD 

A(2) 
SD 

A(3) - -
SD 

A(4) 
SD 

Z(0) 
Z(1)  
Z(2)  
Z(3)  
Z(4.) 
Z (5) 
Z(6)  
Z(7)  
Z(8)  

	

359.332 	359.350 	35'9.344 
.016 - 4020 - .032 

-45.925 -45.850 -45.879 

	

.038 	.067 	.147 

	

2101.5 	2072.2 	2088.3 

	

10.2 	25.0 	76.6 

.89316 

.92485 	.92489 

	

.94831 	.94836 	.94835 

.96497 	.96501 	.96500 

.97650 	.97653 	.97652 

.98434 	.98436 	.98435 

. 98961 	.98962 	.98962 

	

.99312 	.99313 	.99313  

- 359.357 
• .044 

.231 
1995.4 

189.7 
3 .104  
6 .10 
*le 

7 0106  

. 85318 

. 89322 

. 92491 

. 84837 

.96503 

. 97655 
698438 
. 98963 
. 99314 



Z = PV/RT 
	

DENSITY' LEAST-SQUARES 
(OPTIMUM) 
	

MOLE/OC.10 	FIT 

.6592 	7.1368 

.7189 	5.3794 
3.9770 

.83056 	2.8913 

.77795 

.87413 	2.0739 

.90840 	1.4723 

.93432 	1.0372 

.95342 	- 0.72662 
496721 	0653705 
.97704 	0.35284 
.98399 	0.24504 

M=4-  I PO -P10 

M=3 9 P2-P10 

OPTIMUM COEFFICIENTS 

B, CC/MOLE = -65.96 
Cy CC/MOLE = 2540 
V(A), 	CC = 358.95 

- ESTIMATED ERRORS 
(MAX.) 
*20 
100 
05 
60003 

OPTIMUM FIT 

M=2 
FI.FP10 

- 

687413 
690840 
.93432 
.95342 
.96721 
.97704 
.98399 

-4-90831 
493423 
.95333 
.96714 
.97700 
.98395 

358,894 
. 6028 
•.666081 

.044 
2575.4 

1260 
...Doi. *10 

• 1 .104  
*65908 
.71882 
O77782 
683041 
.87400 
.90828 
493423 
.95334 
096715 
.97700 
.98396 

358.939 
.020 

-65.958 
.042 

2529.7 
14,4 

.35 6104  

.14 6104  

671891 
.77790 
.83052 
667412 
0 912,833 
693431 
695341 
.96721 
697704 
.98399 

358,945 358.903 

	

- .020 	6024 

	

..435.958 	--66,121 

	

.052 	$082 

	

254062 	2614.2 

	

17.0 	35.1 

TABLE 4.2 
- EXPERIMENTAL DATA FOR NITROGEN 

=RUN 29 	155.90 	K - 

PRESSURE 	PRESSURE 
LB. /SQ. IN. 	BAR 

884.558 60.9881 
727.119 50,1331 
581,659 40.1040 
451,467 31.1276 
340.820 23.4988 
251.430 17,3355.  
182.180 1265609 
133.239 8,9747 
92.200 6.3570 
64.811 4.4685 
45.330 3.1254 
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-- RESULTS OF NON-LINEAR LEASTSQUARES ANALYSIS 

M=2 	M=2 	- M=2 	---M=2 
	

M=3 
	

---M=3 
P2-•P10 	. 133P10. 	P4P10 	P5-4'10 

	
P0•..P10 
	

P1-.P1D 

358.917 -3586946 
SD .017 4014 

••66,025 
SD - 	.024 .028 

2558.1 2539.1 
SD 4.6 6.9 

- A(3) 
- 	SD 

-Z(0) 
Z(1)  
Z(2)  .77786 
Z(3)  .83047 .83052 
Z(4)  487406 :687414 
Z(5)  .90833 .90840 
-Z(6) .93427 -093433 
Z(7)  .95337 .95342 
Z(8)  .96718 .96721 
Z (9) .97702 697704 
Z(0) *98397 .98399 



RUN 29 

TABLE - 	4.2 

155.90 	K 	(CONTINUED) 

RESULTS OF NONLINEAR LEAST-SQUARES 

M=3 	M=3 	M=4 	M=4 

ANALYSIS 

M=5 
-7-P2.P10 P3P10 -- - PO-Pip P1•••P1b - 

V(A) 358.963 358.930 358.966 358.965 358.953 
SD .024 .030 .026 .036 .048 

- 	- 	A(1) -65.881 -66.019 -.65.853 -65.913 
SD .066 .109 .068 .123 .186 

A(2)  2493.1 2576.2 2465.8 2470.4 2509.1 
SO 28.8 61.7 31.i 71.3 128.9 

A(3)  .84 .10 -.6 	*104  1.8 	.104  1.7 	*101  1• 
SD .36 	.1C4  1.0 	.104  .5 	.104  1.6 	.104  3.9 	0104  

A(4)  -1.2 	8106  .106  .7 	.16(' 
SD .3 	.106  1.3 	.10e  5.4 	.10.6  

A(5)  .1U 
SO o3 	.10/  

Z(0) .65921 .65919 
Z(1)  .71896 .71896 .71894 
Z(2)  .77795 .77796 .77795 .77793 

-•Z(3) .83056 .83049 .83057 .83057 .83054 
Z(4)  .87417 .87410 .87418 .87417 .87415 
Z(5)  *90844 .90836 .90845 .90844 .90842 
Z (6) .93436 .93429 *93437 .93437 .93434 

-Z(7) .95345 .95339 .95346 *95346 .95343 
Z(8)  .96724 .96719 .96725 .96724 .96723 
Z(9)  .97707 *97703 .97707 .97707 .97706 
Z(D) .98401 .98398 .98401 .98401 .98400 
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TABLE 4.3 
EXPERIMENTAL DATA FOR MIX. A (CH4-48.4 N2-51.6 MOLE %) 

1398.179 96.4011 .9395 
775.037 53.4369 .9556 
429.775 29.6320 .9750 
237.333 16.3635 .98560 
130.613 9.0055 .99191 
71.723 4.9451 -.99551 
39.336 2.7122 .99752 

4.2346 	M=3 	P0-•P6 
2O3008 - 
1.2544 
0.68523 	M=2 	P1..•136 
0.37472 
0.20502 
0.11221 

7-RUN 25 - 
	291.40 K 

PRESSURE - - PRESSURE- 
LB./SO.IN 	BAR 

Z = PV/RT 
"(OPTIMUM) 

DENSITY 	LEAST- SQUARES 
MOLE/CC,;13-' 	FIT 

OPTIMUM COEFFICIENTS 

By CC/MOLE = 	:•22.28 
Cy CC/MOLE = 

	1853 
V(A), CC 	= 

	361..15  

ESTIMATED ERRORS 	OPTIMUM FIT 
(MAX.) 
.25 
	

M=2 
150. 	P1 ••'P6 
.06 	, 

Z .0003 

RESULTS OF NON--INEAR'LEASTSQUARES 

- M=2 - 	M=2 	M=3 	M=3 
Pi-P6 	P2-P6 	PO-P6 	P1-P6 

ANALYSIS - 

M=4 	- 	M=0 
PO-P6 	PC-F6 

V(A) 361.152 361.132 361.170 361.132 361.130 
SD - 	.025 .C41 -- .039 -- 	.062 .091 

A(1)  -22.279 .22.400 -22.145 -22.417 -22.451 
SD -.079 .213 .152 .394 .694 

A(2)  1852.7 1918.2 1737.4 1968.1) 2045.2 
SD 

A(3)  
24.2 111.0 7248, 

2.9 	.10 
320.5 

-2 .8 	.10 
678.3t  

-8.7 	.16-7  
SD 1.0 	.104  7.7 	810 2.5 	.101  

A(4)  14 	.106 

SD -31 406  

Z(0) - -493955 - .93945 
Z(1)  .95855 .95859 .95850 495849 
Z(2)  .97497 .97491 .97501 .97492 .97491 
Z(3)  .98560 .98555 .93565 .98555 .98555 
Z(4)  .99191 .99188 .99195 .99187 .99187 
Z(5)  .99551 .99549 .99553 o99549 .99548 
Z(6)  .99752 .99751 -.99754 499751 .99751 



RUN 	26 	248.53 . 1( 

PRESSURE 	PRESSURE 
LB./S(LIN. 	BAR 

1396-.714 96,300i 
869.023 59.9170 
553.229 36,7648 
322.080 22.2066 
192.312 13.2594 
113.967 708.578 
67.232 4.6355 
39.550 2.7269 

Z = PV/RT 	DENSITY 	LEASTSQUARES 
(OPTIMUM) 	MOLE/CO.10 	FIT 

.8630 - 5040E1 

.9930 3.2109 

.93733 1.8981 

.96126 1.1179 

.97660 0,65704 

.98604 -.0.38564 
'.99174 0.22619 
.99513 0,13261 

M=3 	PO-P7 

M=2 P2-P7 

TABLE 4,3 
- EXPERIMENTAL DATA. FOR MIX.A(CH4-48.4 1  N2-51.6 MOLE %) 
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OPTIMUM COEFFICIENTS ESTIMATED ERRORS OPTIMUM FIT 
(MAX.) 

B, CC/MOLE = 37000 .20 M=2 
C, CC/MOLE = 2097 100: P2-P7 
V(A), 	CC 	= 360.55 .05 

Z 	00002 

V(A) 
-- 	SD 
A(1) 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 -  ' 	M=2 - 	M=3 	M=3 	M=4 	M=0 
P1-P7 	PO -P7 	 PO -P7 

	

360.514- 360.548 	360,554 	360.565 	360.570 

	

,e23 	.026 	ot)23 	.034 	0046 

	

-7r374138 	37.00J 	 ••36. 884 	-36.850 
SD .050 - ..091 .063 .148 .227 

- J1(2) 2149.9 2096.9 2032.9 1997.1 1963.7 
SD 11.4 32.6 23.4 86.0 163.2 

A(3) '7- 200 	.104  2.6 	$164  3.9 	.104  
SD 03 	.ie 1.5 	.104  4.5 	.104  

-1.7 	010 
SD 4.3 	.104  

2(0) -.86295 .86298 
Z(1)  .93291 --,93301 .90303 .90304 
Z(2)  -.93725 .93733 .93734 .93737 .93738 
Z (3) .96117  .96126 .96127 .96130 .96131 
Z(4)  .97652 ,97660 .97661 .97664 .97665 
Z(5)  .9860,3 .98604 .98606 .98608 4:98608 
Z(6)- .99171 .99174 .99175 .99176 .99177 
Z(7) m99511 .99513 --  - .99514 .99514 099515 



360.009 
- .024 

-51.605 
.683 

2381,3 
32.3 

.91775 

.94705 

.96650 

.97902 

.98695 

.99191 

359.983 
.028 

-51.717 
.059 

2414.9 
17.5 

1,03 .10A  

.15 .164  

M=3 
131•-•P8 

359.961 
*HZ 

-51.799 
.116. 

2453.6 
50.3 

Ge5 $16 
0,6 $104  

M=4 
PO-P8 

359.961 
.051 

-51.838 
,184 

2467.5 
101.5 

-0.1 *104  
2.1 ,104  
0,8 .10e  
1.5 .106  

.76425 

.82162 

.87534 

.91765 
4194693 
496640 
.97895 
.98690 
.99188 

1=2 	M=3 
P3-P8 	Pi:-P8 

.76430 

.82167 	.82162 

.87589 	.87584 

	

.91773 	.91764 

	

.94698 	.94693 

.96643 	09664U 

	

.97898 	.97895 

.98692 	.98690 

.99189 	.99188 

TABLE 4,3 
EXPERIMENTAL PATA FOR MIX,A (CH4-48.4 7  N2-51.6 MOLE%) 
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RUN 27 	218.86 K 

	

- PRESSURE7 	PRESSURE 

	

LB./SQ.IN. 	BAR 

1359.582 93.7399 
942.690 64.9962 
637.958 43.9857 
419.630 28.9325 
269.903 18.6092 
170.896 11,7829 
107.100 7.3843 
66.679 4.5974 
41.341 2.8504 

Z = PV/RT 
- (OPTIMUM) 

.7643 

.8216 
.0875- 81 
.91761 
.94689 

- .96637 
.97893 
.98689 
.99187  

- DENSITY LEAST-SQUARES 
MOLE/CC.16

3 FIT 

6.7400 
4.3471 
2.7598 
1.7327 
1,0800 

- 0.67002 
0,41452 
0.25599 
0.15792 

M=4 , PO-P8 
M=3 P1-P8 

OPTIMUM COEFFICIENTS 

	

B, CC/MOLE = 	-51.86 

	

- C t  CC/MOLE = 	2486 
V(A), CC 	= 	359.95 

ESTIMATED ERRORS 
(MAX,) 
.20 
100 

Z 
405- 
60003 

OPTIMUM FIT 

M=2 
F2-P8 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 
131.••P8 

M=2 
P2-P8 

V(A) 359.935 359.947 
SD .021 .029 

A(1)  -51.893 -51.858 
SD .032 .066 

A(2)  2495.5 2485,7 
SD 5.8 17.4 

A (3). 
SO 

A(4) 
SD 

Z(0) 
Z(1)  .82157 
Z(2)  .87579 .87581 
Z(3)  .91758 .91761 
Z(4)  .94687 .94689 
Z(5)  .96635 .96637 
Z(6)  .97892 .97893 
Z(7)  .98688 .98689 
Z(8)  .99187 - .99187 



1.65 
TABLE 4.3 

EXPERIMENTAL DATA FOR MIX.AP448.4, N2-51.6 MOLE) 

RUN 31 	192.64 K 

- PRESSURE 	PRESSURE 
LBs/SQ.IN$ 	BAR 

Z = PV/RT 
(OPTIMUM) 

DENSITY 	LEAST-SQUARES 
MOLE/CO.103 	FIT 

981.677 67.6843 .6811 6..2042 M=4 	i P0P9 
754.823 52.0433 .7545 4.3062 M=3 P1-P9 
557.830 38.4610 .8215 2.9229 
396.793 27.3579 .87539 1.9511 
273.777 18.8763 .91537 1.2874 
184,757 12.7386 .94354 0184287 
122.792 8.4662 .96277 0.54900 M=2 	, P3-P9 
80.773 5.5691 .97564 0.35637 
52.775 3.6387 .98414 0.23J83 
34.327 2.3667 .98971 0.14930 

OPTIMUM COEFFICIENTS 

B. CC/MOLE = 	-69.37 
C, CC/MOLE = 	2819 
V(A), CC 	= 	359.55 

ESTIMATED ERRORS 
(MAX.) 
.30 
200 
.07 

Z .0004 

OPTIMUM FIT 

M=2 
P3 

RESULTS OF NON-LINEAR LEAST-SQUARES 

M=2 	M=2 	M=2 	M=3 
P2-P9 	P4•-P9 

ANALYSIS 

M=3 
P2-P9 

M=4 
PC-P9 

V(A) 359.481.359.551 359.519 359.519 359.581 359.547 
SO 6032 .625 .1 34 .038 .041 .a45 

-A(1) -69.621 -69,366 •••69.524 •-.69.460 •-69.161 -69.31.5 
SD .068 .073.147 .109 .166 .155 

A(2)  2916.9 2819.3 2903.7 2823.0 2630.2 2711.4 
SD 

A(3)  
17.5 26.274.0 47.3 1.6 	.1o4  99.9 

5.1 	•10-4  
87.4 

4,9 	.1.04  
SD .6 	.104  1.8 	*10 1.8 	.104  

A(4)  -3.3 	slab  
SD 1.3 	.1 76' 

, 	- 
- Z(0) .68106 
Z(i) .75451 .75456 
Z(2)  .82141 .82149 .82163 482155 
Z(3)  .87525 .  .87539 .87534 .87546 48754a 
Z(4)  .91518 .91537 -.91530 .91523 .91544 .91535 
Z(5)  .94338 .94354 .94346 .94347 094361 .94353 
Z(6)  .96265 .96277 .96270 .96272 .96283 .96277 
Z(7)  .97556 .97564 .97559 .97561 .97569 .97564 
Z(8)  .98408 .98414 .98411 .98412 .98418 .98415 
Z(9)  .98967 .98971 .98968 .93969 .98973 .98971 



Z = PV/RT - 
(OPTIMUM) 

.6239 

.7019 

.7759 

.83838 

.88681 
- .92232 
.94744 

- .96476 
.97653 
*98443 

6.4444 
-- 4.6479 

3•267 
2.2512 
1.5284 
1.0270 
0.68528 
0145512 
0.30129 
0819905 

M=4 $ PU-.P9 
M=3 	P1-'P9 

DENSITY LEAST-SQUARES 
MOLE/CC.103 	FIT 

359.301 
.035 

••.78,895 
.122 

31546D 
53.1 

.88679 

.92230 

.94741 

.96475 

.97651 

.98442 

359.299 
.031 

-78.867 
.076 

311.1.0 
30.6A  

1.21 •10.' 
.34 .104  

359.341 
.036 

.78.694 
.125 

3011.6 
67.2 

2.8 .104  
1.0 .104  

359.327 
.037 

.78.737 
.113 

3018,8 
6j.0 

3.7 .104  
- 1.2 4104  

....2•3 .106  
.8 .1116  

4,62390 
.70191 
.77600 
.83842 
.88684 
.92236 
.94747 
696480 
.97655 
.98445 

.70186 

	

.77594 	.77603 

.83836 	.83844 

.88677 	.88687 

	

.92230 	.92239 

.94742 	.94750 

	

.96475 	.96481 

	

.97652 	.97657 

.98442 	.98446 

TABLE 4.3 - 
EXPERIMENTAL DATA - -FOR MIX,A (CH4-48.41  N2-51.6 MOLE %) 
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- RUN 32 	181487 K 

PRESSURE 	PRESSURE 
LB./SO.IN• 	BAR 

881.856 60.8018 
715.467 49,3297 
556.061 38.3391 
413,925 28.5391 
297.256 20.4951 
207,745 14.3236 
142.394 9.8177 
96,297 6.6395 
64.527 4.4490 
42.975 2.9630 

OPTIMUM COEFFICIENTS 

B, CC/MOLE = 	-78.85 
Cy CC/MOLE = 	3136 
V(A), CC 	= 	359.31 

ESTIMATED ERRORS 
(MAX.) 
.20 
100 
.05 

Z -  10003 

OPTIMUM FIT 

M=2 
F3 ...P9 

RESULTS OF NON....LINEAR LEASTSQUARES ANALYSIS 

M=2 	M=2 	M=2 	M= 3 	M=3 	M=4 
P2 .•.P9 	P3 ..•P9 	P4 ••139 	P1 ••P9 	P2-P9 	PO ••P9 

V(A) 359.258 359,311 -  
SD *028 .023 

A(1)  - 79.016 ••78.854 
SD ,348 .057 

A(2)  3190.5 3135.5 
'SD 11.4 18.2 

A (3) 
SO 

A(4) 
SD 

Z(0) 
Z (1) 
Z(2)  .77586 
Z(3)  .83827 .83838 
Z(4)  .88667 .88681 
Z(5)  .92221 .92232 
Z(6)  .94734 .94744 
Z(7)  ,96470 •96476 
Z (8) .97648 .97653 
Z(9) ,9844J .98443 



3.-1407 
2.3214 
1.6834 
1.2046 
0,8533 
0.60012 
0.41988 
0029272 
0.20357 

M=3 , P0'418 

M=2 , 

J 
OPTIMUM FIT 

M=2 
P2 -P8 

M-2 	-•M=3 
	

M=3 
	

M=4 
P3-•P80 	PO-P8 

	
P1-P8 
	

PO •..P8 

358.940 
0070 

-108.106 
.281 

3733.7 
150.6 

.87518 

.91046 

.93646 

.95526 

.96867 

.97815 

359.003 
.057 

-107.739 
.182 

3423.2 
101.2 

6,7 *104  
1.6 .104  

359.034 
.082 

-137.585 
*345 ' 

3306.7 
245.0 

9.2 .104  
5.0 .1.04  

359.039 
.142 

-107.517 
.660 

3209.0 
61900 

15 .104  
23 .104  
-10 *106  
30 .106  

.69753 

.76935 

.82874 
'487540 
.91069 
.93667 
.95544 
.96881 
.97825 

.69746 

.76927 	.76934 

.82866 	.82872 

.87531 	.87538 
*91061 	.91067 
.93659 	*93665 
.95537 	.95542 
.98676 	.96880 
.97821 	.97824 

TABLE 4.3 
- EXPERIMENTAL DATA FOR MIX.AP4-.48.4$  N251,6 MOLE O 

RUN 37 	-155.88 K 
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PRESSURE -- PRESSURE 
LB./SQ.IN. 	BAR 

	

411.793 	28.3921 

	

335.550 ' 	23.1354 

	

262.220 	18.0794 

	

198,196 	13.6651 

	

146,058 	10,0704 

	

105.653 	7.2845 

	

75,405 	5.1990 

	

53.306 	3.6753 

	

37.432 	2.5809 

OPTIMUM COEFFICIENTS 

B, CC/MOLE = -107.91 
C, CC/MOLE = 3624 • 
V(A), 	CC = 358,98 

Z = PV/RT 
(OPTIMUM) 

.6975 

.7693 
48286 
.8753 
.9106 
.9366 
.9553 
.9687 
.9782 

ESTIMATED ERRORS 
(MAX.) 
.40 
250 
.08 

Z .0003 

DENSITY LEAST-SQUARES 
MOLE/CC*10  FIT 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

=M=2 
P1-438 

11=2  
P2-P8 

V(A) 358.906 358.982 
SD .048 .047 

A(1) -108.187 •107.912 
SD .105 .141 

A(2)  3745.3 3624.3 
SD 34.5 58.7 

A(3) - 
SD 

A(4)  
SD 

Z(0) 
Z(1): .76908 
Z (2) .82846 .82861 
Z(3)  .87509 .87527 
Z(4)  i91rI4d .91056 - 
Z (5) .93642 .93655 
Z(6) .95523 .95533 
Z (7) .96865 .96872 
Z(8) .97813 .97818 



M=3 PO-P6 
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TABLE 4,4 
EXPERIMENTAL DATA FOR MIX,B(CH471.91  N2-28.1 MOLE%) 

RUN 40 
	

291.40 K 

- PRESSURE 
LB. ISO, IN. 

1394,088 
785.078 
439.521 
244.026 
134.703 
74.091 
40,669 

PRESSURE: 
BAR 

96,1190 
54.1292 
30.3039 
16.8250 
9.2875 
5.1084 
2.8041 

Z .-PviRT-
(QPTImum) 

*9000- 
*9353 
.9618 
.9782 
.9378 
899326 
.99629  

DENSITY 	LEAST-SQUARES 
MOLE/CC.103 	FIT 

- 4,4081 
2.3885 
1.3005 
0.7099 
0.38805 
0.21227 
0.11617 

OPTIMUM COEFFICIENTS 

B, CC/VOLE = 	-32.19 
C, CC/MOLE = 

	
2135 

V(A), CC 	= 
	361.13 

ESTIMATED ERRORS 
(MAX.) 
.25 

7150 
.07 

z .0003 

OPTIMUM FIT 

M=2 
P1-P6 

RESULTS OF NON-LINEAR LEAST-SQUARES ANALYSIS 

M=2 	M=2 	M=2 
	

M=3 	- M=0 
	

M=0 
PO-P6 	P1-P6 
	

PO •..P6 
	

PIHP6 
	

P0-P6 

- V(A) 
SD 

A(1)  
SD 

A(2)  
SD 

A(3)  
SD 

Z(0) 
Z(1)  
Z(2)  
Z(3)  
Z(4)  
Z(5)  
Z(6)  

-361,092 361,133 361.038 

	

- .024 	-:*018 	•041 

	

32.339 	-32.168 	.-32*443 

	

.043 	-.055- 	.123 

	

2183.1 	2135,3- 	2270,8 

	

7.5 	- 16.5 . 	 53.9 

.89986 

	

-.93521 
	

.93530 

	

.96163 	.96175 	.96165 	- 
•97814 	*97823 

	
- $97811 

	

.98778 	.98783 	.98775 

	

.99323 	.99326 	.99322 

	

.99627 	.99629 	.99626  

361,140 

-•••32.126 
-.115 

2061.0 
53.8 

1.36 *154  
*71 .1d4  

.89998 
-.93532 
.96177 
.97825 
.96785 
.99327 
.99630 



360.609 
.835 

-49.323 
- .137 
2409,5 
75.4 

1.1 ,104  
1.2 '4,104  

.86355 

.91259 

.94616 

.96754 

.98867 

.98856 

360.603 
0051 - 

49.365 
.246 

2447,0 
166,44  

-0.3 e1U 
4.3 .104  
1.8 .10' 
3.7 *166  

.80282 

.86353 

.91257 

.94614 

.96753 

.98065 

.98855 

TABLE 4.4 
EXPERIMENTAL DATA FOR MIX, B il4••71. • 9 N2-28.1 MOLE 70 

RUN 38 - - 248.54 K-.- 

rPRESSURE 	PRESSURE 
LB. /SQ.IN. 	BAR 

Z - = PV/RT 
(OPTIMUM) 

- DENSITY .4LEASTSOUARES 
MOLE/OC,10 	FIT 

172 

1332.360 91.8630 .8028' 
856,556 59.0575 -.8635 
536.614 36.9983 091.28 
328.207 22,6291 .94615 
197,427 13.6121 .96753 
117,520 8.1027 .98066 
69.505 4.7922 .98856 

5.5369 
3.3093.  
1.9618 . 
1.1573 
0,68080 
0.39982 
0,23458 

M=4 PO-P6 
- M=3 3 Pi-P6 

OPTIMUM COEFFICIENTS 
	

ESTIMATED ERRORS 
	

OPTIMUM FIT 
(MAX.) 

B1 	CC/MOLE = -49.36 .20 
C, 	CC/MOLE = 2446 100 
V(A), 	CC = 360.61 105 

Z .0002 

RESULTS OF NONLINEAR LEAST-SQUARES 

M=2 
P2-P6 

ANALYSIS 

M=2 
	

M=3 
	

M=3 
	

M=4 
	

M=0 
P1-P6. 	P2-P6 

	
PO ••P6 
	

PI-P6 
	

PO .P6 
	

PO-P6 

V(A) 360.582 360,605 360.626 
- SD .015 .021 .021 

A(1)  49.439 -49.359 -49.252 
SD .031 .0.64 6054 

A(2)  2474.7 2446.0 2369,1 
SD 608 -  21.8 - 	19,4 

A(3)  1.73 	.104. 

SD .20 	0104.  
A(4)  

SD 

Z(0) .80287 
Z(1)  .86349 .86359 
Z(2)  .91253 .91258 .91263 
Z(3)  094609 094615 .94620 
Z(4) .  .96749 .96753.  .96757 
Z(5)  .98063 .98066 .98069 
Z(6)  .98854 .98856 .98858 
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TABLE 4.4 
EXPERIMENTAL DATA FOR MIX.B(CH4r.71.9, N2-28.1 MOLE%) 

RUN 39 	218.86 K 

PRESSURE 
LB. ISO. IN. 

PRESSURE 
. BAR 

Z = PV/RT 
(OPTIMUM) 

DENSITY 	LEAST-SQUARES 
MOLE/OG.1e 	FIT 

1296.867 89 -.4159 .6675 7.361 M=4 PO -P8 
953.523 65.7431 .7451 4.8485 M=3 P1-PB 
675.457 46,5711 .08201 3.1204 
458.653 31.6230 .8796 1.9756 
331,191 20,7664 .92197 1.2377 
193.250 - 13.3241 .95041 	- 0.77;j39 M=2 P3-P8 
122.113 8.4194 .96886 0.47753 
76,421 5.2690 *98060 0.29527 
47.538 3.2776 .98796 - 0.18231 

OPTIMUM COEFFICIENTS 

By CC/MOLE = 	-66.55 
C, CC/MOLE = 	2839. 
V(A), CC 	= 	360,06 

ESTIMATED ERRORS 
(MAX.) 
.25 
150 
.06 

Z .0004 

OPTIMUM FIT 

M=2 
P3-P8 

V(A) 
SD 

A(1)  
SD 

A(2)  
SD 

RESULTS OF NONLINEAR LEAST-SQUARES 

M=2 	M=2 	M=2 	M=3 
Pi-P8 	P2-P8 	 PO-P8 

	

359.955 	360.010 - 	360.063 	359.975 

	

.037 	.038 	- .049 	.048 

	

-66.881 	-66,744 - 	•••66.554 	-66. 831 

	

.048 	- .076 	0149 	.086 

	

2945.4 	2910.0 	2839.3 	2927.9 

	

8.1 	- 	18,4 	- 51.2 	. 	24.0 

ANALYSIS 

M=3 
Pi-P8 

360.045 
.046 

.•.660599 
.124 

2828.2 
4906 

M=4 
PO-F8 

360.071 
.056 

.•.66,472 
.177 

2736.7 
89.9 

A(3). 0.17 	s1l-.14  1.33 	.164  3.8 	.104  
- 	SO .26 	.1.04  .55 	.104  1.7 	.104  

A(4) -2.3 	.106  
SD 1.1 	0106  

- Z(0) :- 466735 066752 
Z(1) .74492 .74496 .74510 .74515 
2(2) .81995 .82005 82000 .82013 .82U18 
Z(3) .87933 .87948 .87959 .87938 .87956 .87962 

=7-7  Z(4) .92171 .92184 .92197 .92175 .92192 .92199 
Z(5)  .95821 ',95030 .95041 .95024 .95038 .95043 
Z(6)  .96873 .96879 .96886 .96875 .96884 .96889 
Z(7)  .98051 .98U54 .98060 .98052 .9-8058 .98061 
Z(8)  -.98790 .98793 .98796 .98791 .98795 .98797 



TABLE 444 
-EXPERIMENTAL DATA FOR MIX,B (CH4*71.9, N2-28.1 MOLE %) 

RUN 41 	192.65 

806.233 55.5878 .6166 .  
650.516 44,8515 - .7064 
496.451 34.2291 ,7869, 
360.621 24.8639 .8512 
252.213 17.3895 .89888 
171,695 11.8380 .93251 
114.752 7.9119 .95549 
75.755 - 5.2231 .97087, 
49.609 3,4204 .98103 

M=4 
M=3 

5.628 
3..9638 
2.7156 
1.8236 
0.12577 
0.79252 
0.51695 
0.33586 
0.21766 

PO-P8 
, Pi-P8 

OPTIMUM COEFFICIENTS 	ESTIMATED ERRORS 
(MAX.) 

6, CC/MOLE = -87,89 .25 
C, CC/MOLE = 3453 -150 
V(A), 	CC = 359.49 .06 

OPTIMUM FIT 

- M=2 
P3-P8 

PRESSURE 
LBs/SO.IN. 

PRESSURE 
EAR 

Z = PV/RT 
(OPTIMUM) 

- DENSITY 	LEAST-SQUARES 
- MOLE/CO.10 	FIT 

Z .0004 

M=2 
P2-P8 

41=2 - 
P3-P8 

- M=3 	- 
P1-P8 

V(A) 359.457 359.488 359.508 
SD .20 .024 --  .025 

A(1) *88oCO3 *87.894 -87.778 
SC .041 .071 .072 

. 	A(2) 3496,3 3452.5 3349.2 
- 	SD 11.5 27.1 33.7 
A(3) . 

SD 
A(4)  

SD 

Z(0) 
Z(1)  .70641 
Z(2)  .78678 .78688 
Z(3)  .85113 .85120 .85124 
Z(4)  .89881 .89888 .89893 
Z(5)  .93245 .93251 .93255 
Z(6)  .95544 .95549 .95552 
Z(7)  .97084 .97C87 .97090 
Z(8)  .98101 .98103 .98105.  

.78686 

.85122 

.89891 

.93253 

.95551 

.97089 

.98105 

.61662 

	

.70645 	.70637 

	

.78693 	.78684 

.85129 	.85120 

	

.89898 	.89888 

.93261 	.93251 

.95557 	.95549 

.97093 	.97087 

.98108 	, .98104 

RESULTS OF NON-LINEAR LEAST-SQUARES ANALYSIS 

M=3 	M=4 	- M=4 
P3-P8 	PO-P8 	P1*P8 

	

359.499 	359.531 	359.489 

	

.040 	.040 	.057 
-87.819 -87.651 -87.877 

	

.160 - .138 	.269 

	

3376.4 	3238.2 	3431.9 

	

101.5 	83.8 	218.8 
2112 •1g4 	6.4 *104 	0.1 .104  

	

1.9 0104  1.9 .104 	6.9 .104  .g 

	

4.1 $10 	2.9 0104  

	

1.5 6106 	7.6 .106  



PRESSURE - PRESSURE 
LB./SpoIN. 	BAR 

641.575 
528.897 
411.588 
205.094 
217.945 

- 151.620 
103.554 
69.868 
46.733 

44.2351 
36.4662 
28.3780 
21.0355 
15.0268 
10.4538 
7.1398 
-4.8166 
2,2221 

-.78470 
.84766 
7.89470 
.92838 
-.95183 
.96784 
.97863 

.84778 

.89484 

.92850 

.95192-
496790 
.97868 

TABLE 4.4 
EXPERIMENTAL DATA FOR MIX.B (CH4..-71.9, N2-28.1 MOLE%) 

- RUN• 43 	-1 81.86 K 
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Z = PV/RT - 
(OPTIMUM) - 

.6155 

.7059 

.7849 

.8478 

.8948 

.9285 
49519 
.96790 
.97868  

DENSITY LEASTSQUARES 
MOLE/CC.103 	FIT 

	

4.752 	M=4 	P0•4)8 

	

3.4166 	M=3 - 1 -  P1..-P8 
2.3913  
1.6410 
1.1106 
0.7446 

- 0.49607 
0.32913 
0.21775 

OPTIMUM COEFFICIENTS 

B t  CC/MOLE = 	-98.73 
C, CC/MOLE = 	3636 
V(A), CC 	= 	359.38  

ESTIMATED ERRORS 
(MAX.) 
.30 
200 
.08 

Z .0004H 

OPTIMUM FIT 

M=2 
P3-P8 

RESULTS OF NONLINEAR LEAST-SQUARES ANALYSIS 

M=2 	M=2 	M=2 	M=3 - M=3 	M=4 
Pi..‘-P8 	P2138 	P3-4)8 	PO-P8 	P1-P8 	PO-P8 

V(A) 359.212 359.319 359.278 359.355 -359.403 359.431 
'.7 = 	SD 	oe70 	.068 	.098 	.068 	.094 	.135 

A(1) -.99.241 	-98.947 	-98.725 	....98.741 	-98.562 	•-98.412 

	

SD 	.109 	.152 	.309 	.152 	.293 	.519 
A(2) 3831.2 	3733.5 	3636.0 	3562.6 	3461.5 	3327.9 

	

-.SD 	26.3 	47.7 	129.5 	60.6 	154.2 	359.4 
A(3)-- .1u4  4.0 	5.6 ei0 10.2 .10 

	

SO 	 6.2 oiiii - 2.2 .10 	9.4 .184  
A(4). 	 ..•5.5 ..166  

	

SD 	 8.7 *if,' . . , ... -.............,,_ -_-,.:.. 

Z(0) 
Z(1) 
Z(2). 
Z(3)  
Z(4)  
Z (5) 
1(6) 
Z(7)  
Z(8)  

.70553 

.78451 

.84739 
-.89446 
.92820 
.951M 
.96775 
.97857  

-.61542 

	

.70579 	.70588 

	

.78478 	.78487 

.84772 	.84783 

	

.89478 	.89489 

	

.92846 	.92855 

.95190 - .95197 

.96789 	.96794 

	

.97867 	.97870  

.61554 

.70593 
478492 
.84789 
.89495 
.92861 
.95202 
.96798 
.97873 



A.477 
1.060 

. 0.7523 
0.5298 
0.3710 
0.2588 

	

V(A) 	358.93 
SD 	.11 

	

A(1) 	-133.62 
SO 	.34 

	

. -A(2) 	3947 
SD 	160 

A(3) 
SD 

Z(0) 
(1) 

Z(2)  
Z(3)  
Z(4)  
Z(5)  

. 8112 

.8628 

.9017 
.9303 
.9510 
.9657- 

TABLE 4.4 
EXPERIMENTAL DATA FOR MIX.B(64-71.9 N2-28.1 MOLE%) 

RUN 42 
	

155.89 K 

176 

- PRESSURE 
LB. /SQ. IN. 

225,273 
171.928 
127.537 
92.653 
66.325 
46.981 

PRESSURE 
BAR 

15.532e 
11.8540 

8.7934 
6.3882 
4.5729 

- 3,2393 

--Z = PV/RT 
(OPTIMUM) 

.8112 
48628 

.9303 
.9510 
.9657  

DENSITY - LEASTSOUARES - 
MOLE/CO.ie. 	FIT 

OPTIMUM COEFFICIENTS 

B, CC/MOLE = 	-133.6 
C, CC/MOLE = 

	3950 
V(A), CC 	= 	. 358693  

-. ESTIMATED -ERRORS 
(MAX.) 
480 
700 
.15 

Z .0038 

OPTIMUM FIT 

M=2 
-PO-P5 

RESULTS OF NON-LINEAR LEAST-SQUARES ANALYSIS 

11=2 	M=2 . 	M=3 	M=0 	M=0 	-- M=0 
P0-435 	P1-P5 	PO-P5 	PO-P5 	PO-P5 	P0-•• P5 

359.03 
.18 

-133.14  
.72 

3652 
431 

.8630 

.9019 

.9305 

.9511 

.9658  

359.06 
.44 

-132.84 
2.52 
3164 
2510 

24 .104  
75 .104  

.8115 

.8631 
.9020 
.9306 
.9512 
.9658 



171' 

TABLE 4.5 
_-EXPERIMENTAL DATA FOR MIXTURE: G (CH41N2/C2M6). 

N 4 

	1441.41 
	 ±88 26.13 

52 7, 53 
30 8.37 
177, 54 
:.J.G.J.• 28 
57.47 

5, 510 _ 
3,1046 

	 1.7450 
0 • 9853 
0.55.51 

	

.L  • 9 837 	-11, 3127 
• 9908 	0,17E15 

----- 

ESTIMATED ERRORS 	OPTIMUM FIT 

PRESSURE_ -_"PRESSURE 	Z = PV/RT± 	DENSITY 	LEAST.- SOLAR E S 
LE. /SO. I 	BAR 	(OPTIMUM) 	MOLE/C C• 10- 	FIT 

99.382 
60.4i. 821 
36.372 
21. 261 - 
12.241 

0113 

"3, 962 

0 

=2_ s 

OPTIMUM COEFFICIENTS 

	 *7945 
8630 

.9161 
*9506 
,9715 

(.M A X • )  

=0 
	

M=0 
	

N=0 
Pa -P6 
	

PO-P6 
	

PO-P6 
	

PO-F6 

• 

PO-PG. 

360.871 
• 086 

52.750 
• 212 

2773.4 
-156,5 

0.56 • 104  
A . 53 - .04  

_ 
-.7,79448 . 

t  CC/ VOLE = 
I  CC/VOLE = . 
V(A), V(A) CC = 

•-52•90 
2826. 

360 , 85 

.50 
300 
 .10 

M=2 
,_..==_ 

 
F1-P6 - - 

	 V (A) 

ti(1) 
SO 

	 A (2) 
SO 

11(3) 

	 (P 
Z(1) 
Z (2) 
Z(3)  
Z(4)  
Z(5)  
Z(6)  

Pi-P6 

360. 848 
052 

-52.901 
*101 

2825.9 

.86310 
*91612 
• 95n62 
9 7 151 
• 98373 
• 99077  

*136314 
91625 
e 95070. _ 
• 9 7 1 5 6 
.98375 
.99078 

__-_-,.* 0007 

t.RESULTS 	NONLINE AR LEAST--SQUARES; ANALYSIS 



RUN 4 248.55 

T ABLE 4.6 
PERIMENTAL. DATA FOR MIXTURE: C (CH4/N2/C2H6) 

1394. 07 96.118_ 
65.264: 

.7008 
7852 

6.6367 
4:0219 946.58_ 

61 8. 87 42.670 8593 2.4028 
9. 22 _38 26.836 • 9122 1.4235 

238,17 16.421 9467 0 .8393 
3, 23 7. 9 6 8 o'4926 

85. 24 5.877 .9811. 0.28986 
3 -•'475 	 p..17.004 

M=4 	PO ...P7 

M=2 F2-P7  

RESULTS OF NON-LINEAR LEAST-SQUARES  ANALYSIS  

11=2 
132-PTL. 

360.422 

66.113 
.062 

3137.4 
20.8 

V=3 
Ri7p 

360.438 
.057 

.7.66,068 
.035 

-3 063 • 
46.9 

M=4 	V=0 	R=0 	R=0 
PO-P7 	PO-P7 	Pi;-P7 	PU•47 

(A) -Z360 • 391 
.071 SD 

vrA (1 ) 
SO 

T_•660159. 
.131 

	 -A (2 ) - 3154.1 
SD 88. 2 

.A (3) - 

SO 

	

1.0 	4104  

	

,- 2.6 	0106' 

0 • 	104  
A 4) `_-_  

SO 2. 2 	.106  

2(0) .70082 
7 (1) -  .78520 78526 
2 (2) 

- 
• 85926 .8. 5923 .85931 
.91224 .g1220 • 91229 Z(3) 

2 (4 • 94672 .94668 . 94676 
(5) *96813 - .96810 • 96816 

Z(6) .98110 • 98109 • 98112 
Z (7 ) .98885 .98885 	 .98886 

178 

PRESSURE 
LB. /SO. IN. 

PRESSURE 
BAR (OPTIMUM) 	 MOLE/M.03 	FIT 

DENSITY 	LEAST SQUARES 

8 , _CC/ ROLE 
C, CD/MOLE 
V(A) 

-66.11 
3137 

60..42 

ESTI MATED ERRORS 
	 (MAX.) 

150 
07 

.0005 

OPTIMUM FIT ._ 

M=2 
P2-P7 

:____OPTIMUM.COEFFICIENTS 
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1.57 *104  
• 66 .104  

••••42in4  
427 a le 

TABLE 4.5 
EXPERIMENTAL DATA FOR MIXTURE C (CH4/N2/C2H6) 

_ 	DENSITY 	LEAST 	SQUARES 
MOLE/CC. 101 	FIT 

RUN 48 	218.86.K 

_PRESSURE 
LE• ISO. IN. 

PRESSURE-ii 
RAR 

PV/RT 
(OPTIMUM) 

73.211 .5721 --7.033  M=4 FO-P8 1061. 83 
838.87 	___ 5 7 • 838 _ .6696 748 M=3 
625.80 43.147 .7646 3.1016 

.439. 88 30.329 .8411 9817 
295,32 20.362 .8964 1.2484 
19 2 • i 2 13.246 _69339 .7795 M=2 g P2-P8 -- 
122.45 8.443 • 9534 0. 4841 

 	7 7 • 1 4 5.312 '974/ ___ 0.2997 
4.8.08 3.315 • 9839 0 .1852 

OPTIMUN COEFFICIENTS ESTIMATED ERRORS 
(MAX.) 

0RTIMUM .FIT 

CC/ MOLE = -87.71 .30 M=2 
C , CC/MOLE . 3806 150 
V (A) g 	CC 360.00 • 08 

.8005 

RESULTS CF. :..NON-L INEAR LEASTSQUARES._ -ANALYSIS 

V(A) 
SC 

(I.) 
SD 

A(2) 
SCr' 

A13/ 
-s S0  

A(4) 

Z(0) _ 
Z (1) 
Z (2)  
Z (3)  
Z(4) 
Z (5) 

__Z (6) 
Z (7) 
Z(8) 

57200  

	

*66955 	.66964 

	

076445 _ 	.76466 
.84096 	.84114 	• 84/20 	.84093 	.84122 

.89648 .__._..-89626 _ .89654 

.93395 .93381 .93403 
__ _•95842 .95834 .95849 

.97404 • .97399 • 97409 
_ _._98388 . 	.98385 *98392 

M=4 
P0- P 8 

360.076 
• 072 

-87.355 
• 220 

3565.1 
115. 8 

5.7 .104  
2.2 .104  

-3.9 .106  
1.4 • 106  

.57214 
.66984 

• 76474 
.84130 

_ • 89663 
• 93411 
* 95856 
• 97414 
* 98395 

__M=2 M-2 
P2-P8 

359.934 359.999 
• 044 .044 

••87•860 -87.705 
_4053 .083  

3846.9 3805.6 

.66959 

.76447 .76458 

M= 3 
P1-P8 

M=2_M= 
P3 PO-P8 

.360. 007 359,920 360.004 
-- • 055 .071 .056 
.87•754 -87.923 8.74, 545 

• 157 • 121 .144 
3869.1 3879.4 3711.3 

- 35. 8 59.6 

• 89630 	.89644 

	

.93384 	.93395 

	

.95836 	.95843 

	

.97401 	.971+05 

	

*98385 	.98389 
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TABLE 4.6 
XPERIMENTAL DATA FOR NATURAL GAS_ NO.1.  

RUN 4 	291.39 K 
• 

-- PRE SSURE PRESSURE 
BAR 

Z`PV/RT 
(OPTIMUM) 

DENSITY 3 LEAST.•SOUA RES 
MOLE/OC.1 	FIT LB. /SO. IN. 

_1016.04 
586.14 
331.58 
185.03 
102.42 
56.43 

70 • 053 
40.4/3 
22.862 
12.757 ---- 

	 7.061. 
• 891 -- 

.8595 
89163 
.9523 
.9733 
.9852 	 
.9918_ 

3.364 
11.8295.: 
0.9909 

5410 
0.29584 

,0•16192 

M 

M=2- 7  P1-.P5 

1313-P5 

OPTIMUM COEFFICIENTS 

CC/ MOLE = 	-50.76 
C I  CC/ MOLE = 	2613 
V(A) I  CC 	_,-L_.361 • 66 

300 
.10 
• 0007 

-._OPTIMUM FIT 

M=2 
F i-P5 

RESULTS CF NON-LINEAR LEAST-SQUARES ANALYSIS 

M=2 
PO-P5 

M=2 _ M=3 m=0 	m=0 
. 	_ .POP5 

N=0 

ESTIMATED ERRORS 
( M A X ) 

361.557_, 361.656 361.689 

	

.054 	.033 .043 

	

.-51.168 	•-50.759 	50.521  

	

.115 	• 119 	.189 
2775.3- _- 

26•2_ 
• 5 

4564 	112.0 
• 5 .104  

1.0 .1o4 
Z ( 0 ) 

:Z (1..) 
	 Z ( 2 ) 	 • 95201 

(3) 	*97313 
	 Z 	.98510 

(5) _. _ `.99179-- 

.85924  	 • 85955 
•9 / 603 - .91625 	.91633 

• 95227 	 ___ • 95234 
.97330 	.97338 
.98521 	.98527 

• • 99185 ; 	99188  



RUN r..,4 273,76 K 

-CPTIMUM 	
_ 

 

=2 
F1-P 

- ESTIMATED ERRORS 
	 (MAX.) 

450 
_300 	 

.0007 

::`OPTIMUM COEFFICIENTS 

-BII.CC/ MOLE =- ;•'59405 
CI  CC/ MOLE = 	2844 
VIA) CC . 

TABLE 4.6 
XPE RIME NTAL DATA OR NATURAL GAS NO.-1:_ 

-PRESSURE : PRESSURE 
BAR 

- 	V./ RT 	= 
(OPTIMUM) LELISO4 IN, 

987.11 48236 
- 	601476 1414421 - .-8913 
354. 9324.471 49359 
205454 14. 172 
117.61 8.109 __.9789... _ 
66484. 	- 608 -9880 

DENSITY ---- LEAST-SQUARES 
a MOLE/CO I 	FI T 

RESULTS OF NON.LINEAR_LEAST-._SQUARES_ANALYSIS_ 

M= 2 

-:,.-.361.4'87 

M=2 M=3 	M=0. 	M=0 	M=0 . 	_ 
=P1-P5 _P0-#R5 	PO-P5 : 	PO-P5 

 
P0•45 

VIA ) 61. 4573 361.604 
SD 4045 .102 .076 

A C1 Yu- -__: 594354:. _7.59•051 --r - 584861 
SD *083 4211 _4.129 

I_A (2) : 	951.8 7 2 -='=284345 2680i-6 
SD  4548 3747 6747 

SC 
A(3) .  - 	- 

	

#1 	.104.  

	

0.8 	104  

482340 
.89111 489129 

Z (0) 482365 
_ 	Z (1) 	_,- --.89136- .  

2 ( 2 ) 49357C 	 .93592 .93599 
Z ( 3 ) 096285 _496301 • 96308 
Z(4) 497879 .97889 497594 

===== (5)_  .:49879E _.98802 - 

34E30 
2.4.0416 
141487 
046465
0,36:39 
042049 



-

ESTIMATED .  ERRORS 
(MAX.) 

650 
300 
• 10 

-.0007 — 

M=0 
0 

- M=0 
P0.46 

m= 	_A•!--= a .-- 
P1 	F2 .•.P6 

11=3 	— M.= 
PO •...P6 	 PO—P6 

_ 

- 

-182 
TABLE 4,7 

EXPERIMENTAL DATA _FOR NATURAL GAS. N0.2 

RUN 49 -- 	294,12 K 

—RESULTS OF NON••LINEAR -LEAST—SQUARES ANALYSIS 

1/ (A) 3 61 • 516 3E16468 361 • 528 
-6020 • 062 .035 _SC_-- 

A (1) 494 ••48,739 _ 8, 417 
SO 6052 -4,268 - 	,113--  

A(2) .... 2660,7_ 2779.9 2598.9 
SO 14.3 78•8 48, 

A (3) 

	

1.36 	6104  

	

.56 	*104  -SO 

Z (0) - — 682320 
Z (1 ) 688138 4,88835 
Z(2) *93495 .93484-7  • 93497 
Z(3)  .96332 *96320 .96335 
Z(4)  697964 97. 956 • 97967 

 	Z(5) • 98879 •.98874 • 9888i 
Z (6) 9938E. • 99383 -6 99387 

PRESSURE PRESSURE 
0.AR 	-- 

101,977 

"LE. /SO, IN, 

1479.04 
85 1.• 84 -.58,732 
48 3, 53 33,338 
27 Os 16 
149639  10,300 
_8 2.11 661. ___5. 
44. 97 3.101 

Z PV/RT 
(OPTIMUM) 

• 8232 
8884 

*9350 
*9633 _ 
O9796_ 

9888_ 
 	• 9939 

DENSITY LEAST-SQUARES 
-MOLE/CC. 103  . 	_FIT__ 

. 5..06:._ 
2,7033 
1, 4580 

-0, 7906 
O. 42F.9_ 
Oa 2341 
0,1276 

	

3 	F0-P6 

	

M=2 	F1••13 6 

OPTIMUM COEFFICIENTS 

92 	CC/ VOLE ••••"48 • 49 
C, CC/MOLE - 2661 
	1/ (A) 	CC 361.52 

CFTItIUM FIT 

M=2 
P1-.!:>6 



• - ^ 

TABLE 447 
EXPERIMENTAL DATA FOR NATURAL OAS J10.2.-- 

RUN 50 	273.16 K - 

PRESSURE 
LB. ISO. IN. 

PV/RT 
(OPTIMUM-)._ 

• DENSITY 	LEAST-SQUARES.  
_MOLE/CO.103 	FIT 

14680.3 
912.48 
55 it 30 
324.18 
18 7, 26_ 
L107003 
60.81 
34, 43 

PRESSURE  
DAR_ 

101.224 
62.913 
38.011 
22.351 
12011 
7.380.  
4.193 

-24 374 

.7686 
8407 

..9027 
_._.9428 
4.9670 
.9812 
.9893 
..9940 

5.860 
3.295 -- 
1.8539 

0438 
04  5879 
.3312_ 
0.1866 
.0.1052 

OPTIMUM COEFFICIENTS OPTIMUM FIT 

6,.CC/MOLE = 
C, CC/MOLE = 

- V(A) I _CC 	= 

57.75- 
2852 

". 361.38  

ESTIMATED ERRORS 
(MAX..) 

500 
4 15 
.0010 

RESULTS 	NON-LINEAR LEAST7SQUARES ANALYSIS 

M=2 	M=2 
P1!..P 

JA) ,.361..384 :7. '..-- 361•493, .___ 361 . 427 
SD 	60 49 .692 	.050  --:- - 

	

A(1 )57 J49:I :-5.7.282 	57.546 -  
SD 	.104 	.341 	.137 

	_A(2) :_ 	::2851se.-. 	2663.1' 	,..2732.8 	i 
0 

 
SD-_ 	24..4 _ 	132.4 	50.6 

A..97 .104  
SD - 	 .50 .ie..._ 

-- --  

	

_T(0)   .76059 

	

__:_7-±Z(1) 	,--.84068  
	Z(2) 	.90274 ._-__ .90298 	.90284 
-._ 	'Z:(3) 	_.9.4283 	.94313 	:_.9.4294 .  

Z(4)- 	.96704 	.96725 	.96712 

	

,1Z (5) 	.98119 	i .981.33-:±____:_L4.98124 -.,. 

	

Z(6) 	.98932 	.98941 	.98936 

	

.- 7..-±  Z (7)  	.99396.- 	----:e 99401 	• 99398= 



TABLE 4.8 

Experimental Virial Coefficients  

Temperature,  

Methane 

K. 	B, cm3.mole-1  C, cm6.mole-2 

291.41 -45.50 ± 	.15 2489 ± 100 

263.08 -58.34 ± 	.07 2788 ± 	50 

248.54 -66.48 ± 	.10 3015 ± 	75 

234.05 -75.89 ± 	.15 3299 ± 100 
218.87 -87.16 ± 	.30 3551 ± 200 

204.60 -100.14 ± 	.25 3928 ± 150 
192.64 -112.83 ± 	.25 4227 ± 150 

181.86 -125.71 ± 	.30 4256 ± 200 

167.67 -146.54 ± .40 4187 ± 300 

155.89 -167.93 ± 	.60 3718 ± ,600 

Temperature, K. 

Nitrogen 

B, cm3.mole-1 cm6.mole-2  

291.42 -6.20 ± 	.30 1458  150 
276.94 -9.38 ± 	.25 1496  150 
263.08 -12.95 ± 	.25 1586  150 
248.54 (run 10)  -16.88 ± 	.20 1608 100 
248.54 (run 11)  -17.00 ± 	.20 1637 100 
234.05 -21.57 ± 	.25 1685 150 
218.88 (run 13)  -27.30 ± 	.10 1794 50 
218.88 (run 14)  -27.32 "1" 	.15 1810 75 
204.61 (run 15)  -33.47 ± 	.15 1874 75 
204.61 (run 16)  -33.57 ± 	.15 1898 75 
192.64 -39.57 ± 	.20 1981 100 
181.86 -45.85 - + 	.15 2072 75 
155.90 -65.96 ± 	.20 2540 100 

184 



Temperature, 

B 	cm3.mole-1  12' 
K 	Mix A 	Mix B 

291.40 -20.0 ± 	.4 -20.2 ± 	.4 
248.53 -33.8 ± 	.5 -33.8 ± 	.4 
218.86 -48.4 ± 	.5 -47.8 ± 	.6 
192.64 -64.9 ± 	.7 -65.4 ± 	.7 
181.87 -74.5 ± 	.8 -74.5 ± 	.8 
155.88 -102.1 ± 1.0 -102.9 ± 1.7 

Temperature, 
6 l -2 

C112, 	cm .mole KC221, 
291.40 2080 ± 500 
248.53 2230 ± 300 
218.86 2430 ± 500 
192.64 3320 ± 600 
181.87 3520 ± 600 
155.88 4540 ± 1000 

185 
TABLE 4.9 

Experimental Virial Coefficients 	Mole fractions 

Methane/Nitrogen : Mixture A 	CH4: .4840 	N2: .5160 

C„cm6.mole 2 

1853 ± 150 

2097 ± 100 

2486 ± 100 
2819 ± 200 

3136 ± 100 

3624 ± 200 

Temperature, K B, an3.mole-1  

291.40 -22.28 ± 	.25 

248.53 -37.00 ± 	.20 

218.86 -51.86 ± 	.20 

192.64 -69.37 ± 	.30 

181.87 -78.85 ± 	.20 

155.88 -107.91 ± 	.30 

Methane/Nitrogen : Mixture B 

Temperature, K B, cm3.mole-1  

291.40 -32.19 ± 	.25 

248.54 -49.36 ± 	.20 
218.86 -66.55 ± 	.25 

192.65 -87.89 ± 	.25 
181.86 -98.73 ± 	.30 

155.89 -133.6 ± 	.80 

Mole fractions 
CH4: .7190 N2: .2810 

C, cm6.mole-2 

2135 ± 150 
2446 ± 100 

2839 ± 150 

3453 ± 150 

3636 ± 2• 00 
3950 ± 600 

Methane/Nitrogen. 	Interactional Virial Coefficients 

(subscript 1 refers to methane, subscript 2 refers to nitrogen) 

Mean  

-20.1 ± .4 
-33.8 ± .4 
-48.1 ± .6 

-65.2 ± .7 
-74.5 ± .8 

-102.3 ± 1.0 

6 -2  r cm .mole  

1590 ± 5• 00 
1880 ± 300 

2480 ± 5• 00 
2300 ± 6• 00 
2850 ± 600 

3130 ± 8• 00 



TABLE 4.10 

Coefficients in 0 °C Equation of State  

Z 	1 + a1  p + a2p2 + a3 p
3 + a4p4 

a1 	a2 	a3 	a4 

Methane -53.35 2620.0 7000 

Nitrogen -10.25 1500.0 6000 

Mixture A -27.87 1920.0 16000 -400,000 

Mixture B -38.70 2250.0 5000 -100,000 

Mixture C -52.85 2824.0 5600 

Natural Gas 1 -59.28 2850.0 20000 

Natural Gas 2 -57.55 2734 20000 
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TABLE 4.11 

Temperatures K ,  
291.4 248.5 218.9 181.9 155.9 

12,(T)/313°  .37 .34 .33 .25 .20 
2,B(T)/C°  .00005 .00004 .00004 .00003 .00002 

3C(T)/313°  13 31 56 68 78 
3C(T)/3C°  .19 .15 .08 .10 .13 

CH4 .04 .04 .03 .03 .02 
5B 

N2 .08 .07 .07 .05 .04 

cc/mole 	CH4/N2  .16 .14 .13 .10 .08 

CH4 15 14 12 14 18 
5c N2 33 28 23 29 36 

(cc/mold)2CH4/N2 50 45 40 50 60 

TABLE 4.12 

Estimated Max. Errors in Z(T) due to Uncertainty in Z0. 

5Z . 104 

Temperature, K 	CH4 N2 CH4  /N2  
Multi-component 

Mixtures 

291.4 1.0 1.6 3.0 5.0 
263.1 1.0 1.5 
248.5 1.1 1.5 3.0 4.0 
234.0 0.9 1.3 - 
218.9 1.1 1.5 3.0 4.0 
204.6 0.9 1.6 - 
192.6 0.6 1.4 2.5 
181.9 0.4 1.0 2.0 
167.7. 0.2 -- 
155.9 0.1 1.0' 1.0 

187 



20 30 	40 	50 	60 
PRESSURE, bar 

FIG. 4.1. 	EFFECT OF ERRORS IN 273.15K VIRIAL COEFFICIENTS ON EXPERIMENTAL COMPRESSIBILITY FACTORS.  
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4.4 Experimental Data of Other Workers  

(a) Experimental Methods  

There are a variety of available experimental methods 

for determination of PVT data and virial coefficients of 

gases. 	They have recently been reviewed in detail by 

Mason and Spurling (1). 	The methods fall into four basic 

categories, 

1) The constant-volume, normal-volume apparatus. 	The 

pressure is measured of a gas confined by mercury in a fixed 

volume at constant temperature. 	The quantity of gas in the 

apparatus is determined by an expansion into a known volume 

at N.T.P.; the mass of the gas is calculated from the normal 

volume, which, if not known with sufficient accuracy, must 

be measured independently. 	Alternatively, the gas may be 

confined by a diaphragm differential-pressure cell, enabling 

low temperature measurements to be made. 

2) The free-compression apparatus. 	A weighed sample 

of gas is confined by mercury in a volume which can be 

varied by withdrawing or injecting mercury. 

3) The Burnett-type of apparatus and similar expansion 

methods. 

4) Comparative methods. 	These are usually confined 

to low-pressure measurements of the second virial coefficient. 

The volumetric behaviour of the gas under study is compared 

with that of a reference gas, usually helium, for which the 

second virial coefficient is known accurately. 

(b) Extraction of Virial Coefficients from PVT Data 
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From the 

Z - 

virial equation 

B 	Cp + Dp2 

- 1 )  Lt = 	(Z 

of state, 

+ 	 

equation (1.3), 

(4.4-1 

(4.4-2) 

(4.4-3) 

P 

• 
. 	. 	B 

and C 

p-K) 

= Lt a — 1) (  p 
p -4o 

For the published data given in terms of experimental 

compressibility factors and densities, (Z - 1)/p was plotted 

against density, p, and B obtained from the intercept at 

zero density and C from the limiting slope at zero density. 

When the data was given in terms of pressure and density, 

it was first converted into compressibility factors only if 

the temperature was measured with sufficient accuracy. 

Older published compressibility factors were corrected, if 

necessary, using the correct thermodynamic temperature 

(IPTS '68 scale) and value of the gas constant, R. 	These 

corrections were usually small. 

Many of the results from apparatuses of category (1) 

are given in amagat units of density, which is defined as 

the volume of a given mass of gas at N.T.P. divided by the 

actual volume at the experimental temperature and pressure. 

These densities may be converted to units of mole.cm-3 if 

the normal volume is known accurately from independent 

measurements, as is the case with methane, nitrogen and argon. 

When the temperature was measured with sufficient accuracy, 

as in most of the work of Michels et al, e.g. (36, 37), the 

data was converted into compressibility factors and treated 
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graphically to obtain virial coefficients. 

The precision with which second and third virial 

coefficients may be obtained by this graphical extrapolation 

depends on the precision of the measurements, the lowest 

density to which they extend, and the curvature of the 

graphical plot. 	The absolute accuracy is very difficult 

to assess as it depends also on the absolute accuracy of 

the original data which is often not estimated by the 

original experimentalists. 

This method is preferred to that of curve-fitting in 

this instance because any systematic error at low density is 

shown up as a departure from linearity of the plot, and 

because it offers a convenient comparison of different 

data on the same isotherm. 	It is easier also to find and 

discard 'rogue' points. 	When the virial coefficients 

obtained by re-analysing the data did not differ significantly 

from those obtained by the experimentalists themselves, 

the latter values were used. 

In dealing with the calculation of virial coefficients 

from experimental data, Mason and Spurling (1) argue that the 

accurate determination of virial coefficients requires 

measurements down to at least 1 or 2 atm pressure. 	They cite 

as an example the results of Michels et al (38) for carbon 

dioxide where the values of B differ by as much as 3 am3.mole-1 

from those obtained by Butcher and Dadson (39), whose 

measurements extend down to 2 atmospheres. 	However, the 

(Z - 1)/p plots for Michels data are linear at low density 

and extrapolate with precision to zero density. 	A difference 

of 3 cm3.mole-1 cannot be attributed to the error in 
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extrapolation of Michels' data and must be due to systematic 

errors in one, or both sets of measurements. 

The literature contains many examples of different sets 

of 'high pressure' measurements (> 10 atmospheres) which 

show good agreement at the same temperature on (Z - 1)/p 

plots, e.g. methane above 0 °C (section 4.4(c)), and for 

which (Z - 1)/p is linear at low density. 	In these cases 

confidence can be placed in the value of B obtained by 

extrapolation as it is unlikely that two or more sets of 

data would exhibit identical systematic errors over a large 

range, particularly when obtained on different types of 

apparatus. 

At the present 'state of the art' in PVT measurements 

it appears that, at least for the gases considered here, 

estimates of B from recent precise 'high-pressure' measurements 

in general tend to be more accurate than those from low- 

pressure' measurements (below 2 atmospheres). 	For the 

latter type of measurements the non-ideality of the gas 

(i.e. the deviation of Z from 1) is very small and a much 

higher relative accuracy is required from the pressure 

measurement, usually with a precision mercury manometer. 	It 

is only at low reduced temperatures (T < Tc), where the 

isotherm curvature is high and the maximum pressure is 

limited by the saturation line, that 'low-pressure' 

measurements appear more reliable. 

(c) Methane  

Since the review by Tester (40) in 1961 there appears 

to be no satisfactory complete review of the PVT data of 

methane, so it will be treated here in some detail. 
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(i) Michels and Nederbragt (41) 

Using a constant-volume, normal-volume type of apparatus 

measurements were obtained from 273 to 423 K at pressures 

from 20 to 380 atmospheres. 	The results are believed 

accurate to within 0.1%. 

(ii) Schamp, Mason, Richardson and Altman (42) 

These workers used an apparatus of the same type as 

that used by Michels and Nederbragt and the results covered 

the same temperature range at pressures up to 230 atmospheres. 

Their results differed by a small amount (about 0.1%) which 

they attributed to a small quantity of ethane impurity in 

the methane used by Michels. 	The second and third virial 

coefficients, derived by graphical treatment of the data, 

are given in Table 4.13. 

(iii) Douslin, Harrison, Moore and McCulloch (43) 

Using an apparatus of the free-compression type, 

isochoric measurements were obtained from 273 to 623 K and 

densities from 0.75 to 12.5 mole.litre-1  (15 to 400 

atmospheres). 	The results are of high precision and are 

universally regarded as of high accuracy. 	The compressibility 

factors differ by less than .0003 from those of Schamp at 

densities up to 5 mole.litre 1  which is excellent agreement. 

Second and third virial coefficients were obtained by 

Douslin using a method of graphical extrapolation; these 

values are given in Table 4.13. 	The small differences 

between these values and those of Schamp are mainly due to 

the difference in the method of extraction of the virial 

coefficients, as retreatment of the data of Douslin by the 



TABLE 4.13 

Methane: Experimental Virial Coefficients of Other Workers 
(In units of cc/mole). 

	

(ii) Schamp (42)* 	(iii) Douslin (43).  

T,K 	B 	C 	T,K 

273.15 -53.37 2635 	273;15-53.35 2620 

298.15 -42.90 2430 	298.15-42.82 2370 

323.15 -34.38 2280 	303.15-40.91 2320 

348.15 -27.32 2170 	323.15-34.23 2150 

373.15 	-21.35 	2060. 	348.15-27.06 	1975 

398.15 -16.02 1900 	373.15-21.00 1834 

423.15 	-11.55 	1810 	398.15-15.87 	172 7 

423.15-11.40 1640 

(iv) Deffet (44)* 	448.15 -7.56 	1585 

T,K 	B 	C 	 473.15 -4.16 1514 

323.78 -34.30 2250 	498.15 -1.16 1465  
374.49 -21.35 2080 	523.15 +1.49 1420  
425.03 -11.30 1800 	548.15 +3.89 1385  

573.15 +5.98 1360 

(v) Olds (45)* 

	

	598.15 +7.88 	1345 

623.15 +9.66 1330 

195 

T,K 

294.26 -44.90 2520 

310.93 -38.93 2500 

327.59 -33.80 2400 

344.26 -28.95 2290 
360.93 -24.40 2100 
377.59 -20.57 2070 
427.59 -8.00 1750 
477.59 -3.75 1700 
510.93 	0.0 	1650 

(viii) Mueller (49)* 

T,K 

199.83 -104.6 3920 
227.60 -79.6 3250 

255.38 -62.3 2750 

283.16 -48.6 2490  

(vii) Kvalnes (48)* 

T,K 

203.15 -99.7 3700 
223.15 -82.5 3320 

248.15 -66.4 3000 

273.15 -53.7 2660 

(xi) Thomaes (53) 

T,K 

	

108.5 	-363.0 

	

125.2 	-268.5 

	

149.1 	-187.8 

	

186.4 	-126.2 

	

223.6 	-82.7 

	

249.3 	-68.5 

Re-treated data 	m large scatter on isotherm 



(xii) 

T,K 

Brewer (54) 

B 

TABLE 	4.13 (continued) 

(xiii) Byrne 	(55) 

T,K 
123.15 -264.3 110.8 3 -330.1 
148.15 -185.9 112.43 -319.9 
173.15 -138.7 114.45 -307.8 

198.15 -106.5 116.79 -295.5 
223.15 -83.6 121.25 -274.5 

128.84 -244.3 
136.75 -218.9 
148.28 -187.7 
162.29 -158.4 
178.41 -132.2 
202.49 -103.4 
221.10 -85.8 
243.80 -70.3 
273.17 -53.7 

196 
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method of 4.4(b) leads to values in even closer agreement. 

(iv) Deffet, Liliane and Fick (44) 

Using an apparatus of the free-compression type, results 

were obtained at three temperatures, 328.8 K, 374.5 K and 

425.0 K at pressures from 10 to 253 bars. 	Plots of 

(Z - 1)/p vs. p were smooth and B and C could be obtained 

with precision; these values are shown in Table 4.13. 

They are in close agreement with those of Douslin and 

Schamp. 

(v) Olds, Reamer, Sage and Lacey (45) 

Measurements were obtained on a free-compression type 

of apparatus at temperatures from 294 to 511 K and at 

pressures from 13 to 670 bars. 	The results are of lower 

accuracy than those of Douslin et al and were pre-smoothed 

prior to publication. 	The second and third virial 

coefficients obtained by graphical retreatment are shown in 

Table 4.13. 

(vi) Keyes and Burks (46), Freeth and Verschoyle (47) 

These early measurements above 0 °C have been super-

seded by the later, more accurate and extensive data already 

mentioned, and therefore were not considered here. 

(vii) Kyalnes and Gaddy (48) 

These early low-temperature measurements (203 to 473 K) 

at pressures from 20 to 1000 atmospheres were obtained on an 

early form of constant-volume, normal-volume apparatus. 

An accuracy no better than 0.1 to 0.2% is expected. 	Above 

273 K the (Z - 1)/p plots showed considerably more scatter 

than those of Douslin and the higher temperature isotherms 
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were rejected in favour of Douslin's. 	Below 273 K the data 

appear to show less scatter and the virial coefficients 

given in Table 4.13 were obtained by graphical retreatment. 

The lowest pressure on each isotherm is quite high and the 

points are not closely spaced, leading to an estimated error 

in B of about ± 1 cm3.mole-1 caused by the extrapolation 

alone. 

(viii) Mueller, Leland and Kobayashi (49) 

These workers obtained results at six temperatures 

from 144 to 283 K at pressures up to 500 bar using a Burnett 

apparatus. 	The experimental compressibility factors had 

been derived from the actual Burnett measurements by a 

graphical method of data treatment and then interpolated to 

evenly-spaced values of pressure. 	Plots of (Z - 1)/p vs p 

show considerable scatter on two isotherms (227.6 and 255.4 K) 

and for the two lowest temperatures insufficient points (3 

or 4) are given to enable virial coefficients to be extracted. 

The derived values of B and C for the other isotherms are 

given in Table 4.13. 

(ix) Hoover, Nagata, Leland and Kobayashi (50) 

A Burnett apparatus capable of very high precision 

was used in this work and second and third virial coefficients 

were obtained at 131.9 K and 191.1 - 273.2 K. 	The maximum 

pressure was 40 atmospheres. 	However, the compressibility 

factors from Hoover (51) show considerable scatter on a 

Z vs. P plot (e.g. as much as .2 to .5% at 240 K), which is 

completely incompatible with the high precision claimed for 

the virial coefficients. 	In view of this serious, unexplained 
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discrepancy these data were rejected as a source of virial 

coefficients. 

(x) Vennix, Leland and Kobayashi (52) 

A constant-volume apparatus was used, the cell being 

charged with a known mass of methane from a weighed cylinder. 

The volume of the cell was determined by a procedure 

involving Burnett expansions of helium into a cylinder of 

known internal volume. 	Isochoric measurements were obtained 

between .0025 and .225 mole.cm-3 at temperatures from 130 to 

273 K and at pressures up to 690 bars. 	The data which 

were estimated as accurate to 0.05%, were also presented as 

interpolated to even values of temperature. 	There are too 

few low density points to enable the virial coefficients to 

be extracted. At 0 0C the data are in excellent agreement 

with those of Douslin and of Schamp. 

(xi) Thomaes and van Steenwinkel (53) 

These authors measured the second virial coefficient at 

low pressure (below 1 atmosphere) and low temperatures 

(108 to 249 K). 	The volumetric expansion was compared with 

that of hydrogen. 	The values obtained are shown in Table 4.13; 

no corrections were applied for the effect of higher virial 

coefficients, which could be significant at the lowest 

temperature. 

(xii) Brewer (54) 

The second virial coefficients between 123 and 223 K 

were determined in a low-pressure apparatus by measurement 

of the pressure difference between two constant, equal volumes 
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of methane and helium. 	The second virial coefficient at 

0 °C was taken as - 53.75 cm
3.mole-1  and corrections were 

applied for the effect of the third virial coefficient. 	The 

results are given in Table 4.13; they are estimated as 

accurate to .5%. 

(xiii) Byrne, Jones and Staveley (55) 

The apparatus used was similar in principle to that 

of Brewer, the pressure difference between methane and helium 

being measured with a precision differential manometer. 

The second virial coefficient was measured at temperatures 

from 111 to 273 K. 	The value of 42.96 cm3.mole-1 was 

assumed for the second virial coefficient at 25 °C. 	Small 

corrections to the results were applied for the effect of 

adsorption, but none for the third virial coefficient. 	The 

results are given in Table 4.13. 

(xiv) McMath and Edmister (56), Lee and Edmister (57) 

Measurements were obtained by Lee at 298, 323 and 348 K 

with a Burnett apparatus. 	McMath obtained isochoric 

measurements at 264.3, 277.6 and 288.7 K in a constant-

volume apparatus, the density of the gas being taken from 

the isotherm of Lee at 298 K. 	Unfortunately the methane 

used was only of 99% purity and the results were not of 

sufficient accuracy to justify their inclusion here. 

(xv) Pavlovich and Timrot (58) 

These results covered a wide range of temperature 

(103 to 333 K), but were found by Douslin et al (iii) to be 

of very low accuracy and were therefore discarded. 



(xvi) Robertson and Babb (59) 

Very high-pressure measurements (up to 10 k bar) were 

determined from 273 to 473 K. 

(xvii) Jansoone, Gielen, Boelpaep and Verbeke (60) 

Measurements were obtained in the immediate vicinity 

of the critical point, giving accurate estimates of the 

critical constants: 

Tc 	190.50 K 

pc  = 0.010148 mole.cm-3 

(d) Nitrogen, 

Recent reviews of the PVT data on nitrogen have been 

published by Vasserman and Rabinovich (61), Wood et al (27), 

and Coleman and Stewart (62). 	All of the available data 

are not considered here, but only those results not rejected 

by these reviewers. 

(i) Holborn and Otto (63) 

This early work used a constant-volume, normal-volume 

apparatus to obtain measurements at temperatures from 143 

to 673 K and at pressures from 20 to 100 atmospheres. 	The 

second and third virial coefficients given in Table 4.14 are 

those obtained by Saville (64) from a curve-fit to the data 

after applying necessary corrections to the original figures. 

B is estimated as accurate to ± 1 cm3.mole-1. 

(ii) Onnes and van Ui.k (65) 

These early measurements were obtained at Leiden with 

a glass capillary free-compression apparatus at temperatures 

201 



TABLE 4.14 

Nitrogen: 	Experimental Virial Coefficients of Other Workers 
(in units of cm3.mole-1) 

(ii) 	Onnes 	(65) 

C 	T,K 	B 	C 

(i) 

T,K 

Holborn 	(63)' 

B 

143.15 -79.38 2814 
m
126.83 -102.2 3482 

173.15 -52.73 2313 128.69 -99.5 3488  

223.15 -26.28 1784 131.62 -94.5 3232 

273.15 -10.31 1546 141.88 -81.16 2992 

323.15 -0.83 1450 151.96 -69.63 2586 
373.15 +6.05 1425 170.90 -52.38 2022  
423.15 +11.58 1174. m192.05 -39.48 1929 
473.15 +15.53 1068 222.89 -24.8 1360 
573.15 +20.44 1068 249.53 -16.8 1552 
673.15 +23.77 1085 273.15 -8.96 868 

N293.15 -5.69 1228 
(iii) Michels 	(33),(66)* 

T,K g C (iv) Canfield 	(67)* 

273.15 

298.48 

322.92 

347.91 

372.88 

398.22 

423.04 

-10.25 
-4.78 

-0.52 

+3.00 

+6.31 

+9.20 

+11.90 

1500 

1405 

1400 

1385 

1260 

1185 

1040 

T,K 

133.15 

143.14 

158.15 

183.15 

223.13 

273.15 

-92.27 

-79.51 

-64.08 

-45.17 

-25.35 

-10.0 6 

3305 

2975 

2596 

2162 

1741 

1441 

(v) Crain (34) (vi) 	Saurel 	(68)* 

T,K B C T,K 
143.16 -79.45 2889 423.15 +11.25 1320 
163.16 -59.42 2392 473.15 +15.05 1265 
203.16 -33.85 1837 573.15 +20.30 1200 
273.15 -10.26 1517 673.15 +23.80 1140 

773.15 +26.10 1120 
873.15 +28.00 1040 
973.15 +29.25 1050 
1073.15 +30.10 1040 

202 

* Re-treated data 	Large scatter on isotherm 



203 

TABLE 4.14 (continued) 

(vii) Friedman (70) 	(ix) Witonsky (72) 

T,K 	B 	T,K 	B 

80 	-251 	448.15 	+14.28 

90 	-200.5 	523.15 	+18.34 

100 	-162.1 	598.15 	+20.83 

110 	-131.8 	673.15 	+23.40 

120 	-114.6 	748.15 	+24.75 

125.2 	-106.9 

150 	-71.2 	(x) Pfefferle (73) 

175 	-49.4 	T,K 	B 	C 
200 	-34.33 	303.16 -4.17 1485 
250 	-16.19 

273.15 	-9.50 

300 	-3.54 

(viii) Pool (71) 

T,K 

90 	-201 
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from 124 to 293 K and at pressures from 30 to 50 atmospheres. 

The second and third virial coefficients as determined by 

Saville (64) are shown in Table 4.14. 	Although of lower 

accuracy than those of Holborn and Otto, the results are 

useful at low temperature, where there is a scarcity of 

experimental third virial coefficients. 

(iii) Michels, Wouters and de Boer (33), Otto, Michels and 

Wouters (66) 

With a constant-volume, normal-volume apparatus 

measurements believed accurate to .05% were obtained at 

temperatures from 273 to 423 K and at pressures from 20 to 

410 atmospheres. 	Second and third virial coefficients 

obtained by graphical treatment of the data are shown in 

Table 4.14. 	B is estimated as accurate to ± .5 cm3.mole-1  

(iv) Canfield, Leland and Kobayashi (67) 

Canfield used a Burnett apparatus in conjunction with 

the graphical method of data reduction to obtain compressibility 

factors at temperatures from 133 to 273 K and pressures up 

to 500 atmospheres. 	There are apparently systematic errors 

at low pressure and the virial coefficients obtained by 

Wood et al (27) from a graphical treatment of the data are 

preferred. 	These are shown in Table 4.14. 

(v) Crain and Sonntag (34) 

These authors also used a Burnett apparatus, obtaining 

results at four temperatures from 143 to 273 K and pressures 

up to 500 atmospheres. 	The data are in excellent agreement 

with those of.  Canfield, within .05% except at very high 
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pressure. 	The virial coefficients given in (34) are shown 

in Table 4.14. 

(vi) Saurel (68) 

These results obtained with a modified free-compression 

type of apparatus are important as. they extend to high 

temperatures (423 to 1073 K); the pressure range is from 

10 to 900 atmospheres. 	The plots of (Z 	1)/p vs p are quite 

smooth, enabling B and C to be extracted with high precision; 

these values are shown in Table. 4.14. 

(vii) Friedman (69) 

These results were, obtained with a constant-volume 

gas thermometer, and extend to very low temperatures (from 

80 to 300 K) and pressures up to 200 atmospheres. 	The data 

have, unaccountably, not been published in the standard 

scientific literature but the experimental virial coefficients 

have been published elsewhere (70): the values of B are 

shown in Table 4.14. 	The overall precision in Z has been 

estimated as ± 0.1%, but this is still not sufficiently 

precise to enable meaningful third virial coefficients to 

be obtained at very low temperatures. 

(viii) Pool, Saville, Herrington, Shields and Staveley (71) 

One second virial coefficient, at 90 K, was obtained by 

expansion from a calibrated piezometer into a series of 

calibrated bulbs at 25 °C. 	The accuracy was estimated as 

± 2 cm3.mole-1. 

(ix) Witonsky and Miller (72) 

The results of these high-temperature Burnett measurements 
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(448 to 748 K) were given in terms of the 'pressure' virial 

coefficient, B', 

where Z = 1 + B'P + otIroe 

These values were converted to volume virial coefficients by 

means of the approximate relation, B = B'.RT. 	The results 

are given in Table 4.14. 

(x) Pfefferle, Goff and Miller (73) 

The same Burnett method was used as in (ix) but results 

were obtained at only one temperature, 303 K. 	The values of 

,B and C are shown in Table 4.14. 

(xi) Hall and Canfield (74) 

A low-temperature Burnett apparatus was used to study 

the helium/nitrogen system. 	Only two isotherms were 

determined for pure nitrogen, at 113 and 103 K, where the 

maximum pressure was very low (16 bar and 9 bar respectively), 

and the problems with the data treatment are large: these 

results were not used. 

(e) Methane/Nitrogen Mixtures  

(i) Keyes and Burks (75) 

These early measurements (1928) were obtained with a 

free-compression type of apparatus at temperatures from 273 

to 373 K and at pressures from 30 to 240 bars. 	Two compositions 

were studied; the data were re-treated graphically to obtain 

the second and third virial coefficients shown in Table 4.15. 

The (Z - 1)/p plots were quite smooth, indicating a reasonable 

degree of precision. 	Values of B12 were obtained for each 

mixture using the pure component virial coefficients of 

Douslin et al (32) (Table 4.13) and of Michels et al (33) 
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(Table 4.14). 	It can be seen that there are systematic 

differences between the values for different mixtures. 	The 

mean of the two values was used for purposes of data 

comparison. 

Estimates of C112 and C221 were obtained from the 

experimental third virial coefficients, by solving the 

equations, 

x1
3 C111 + 3x1

2x2 C112 	3x1x
22 C221  + x23 C222 

where x1is the mole fraction of methane and x2 the mole 

fraction of nitrogen. 

These values, shown in Table 4.15, are unlikely to be 

more accurate than ± 500 cm6.mole-2  because of the systematic 

differences between the mixtures. 

(ii) Brewer (54) 

By measurement of the pressure change on mixing at 

constant volume, the quantity E was obtained, 

where E = B12  - 2(B11 	B22)  

Only one measurement, at 0 °C, appears to have been carried 

out; B12 was re-calculated using the pure component virial 

coefficients of Douslin et al and of Crain and Sonntag. 	The 

result, believed accurate to about 1 cm3.mole-1, is given in 

Table 4.15. 

(iii) Krichevskii and Levchenko (76) 

The minimum pressure measured in this work was 100 

atmospheres and so virial coefficients cannot be extracted. 

Plots of (Z - 1)/p vs p for a few isotherms showed large 

scatter and the data were discarded. 



TABLE 4.15 

Methane/Nitrogen: Virial Coefficients of Other Workers 

(in units of Cm3.mole-1) 

(i) Keyes 

(1) 	X 	= CH4 

T,K 	B 

(75)* 

0.4332 

C 

(2) 

T,K 

X 	= CH4 

B 

0.80531 

C 

273.15 	-25.55 199 5 273.15 -42.35 2295 

323.15 	-12.15 1710 323.15 -25.28 1990 

373.15 	-3.05 1670 373.15 -13.57 1835 

T,K B12(1) B12(2) C112 C221 

273.15 -24.9 -23.4 1890 2170 

323.15 -11.2 -9.4 1780 1690 

373.15 -2.19 -0.6 1780 1710 

(ii) Brewer (54)* 

T,K 	B12  

273.15 	-25.54 

208 

* Re-treated data. 
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(iv) Bloomer, Eakin, Ellington and Gami (77) 

Results on mixtures at low temperatures and high 

pressure have been obtained but unfortunately the actual 

data remain unpublished. 	Tables of compressibility factors 

are presented which are the result of a fit of the Benedict- 

Webb-Rubin equation of state to the data. 	These tables 

represent the data to within 0.5%, but these authors presented 

no estimate of the accuracy of the original measurements. 

(v) Blake, Bretton and Dodge (78) 

Measurements were obtained at one temperature only 

(299.5 K) and at high pressures (300 to 5000 atmospheres), 

for two mixtures in a modified constant-volume type of 

apparatus. 	The results were pre-smoothed and presented at 

fixed intervals of pressure. 

4.5 Comparison with other workers  

A detailed comparison of the second virial coefficients 

can be made by presenting graphically the differences 

between the experimental values and those calculated from an 

arbitrary smooth function of temperature. 	That chosen was 

the function 

Bref (T) a1  + a 	+ a3/T3 + a (4.5-1) 

This equation was fitted to the experimental virial 

coefficients using the general non-linear least-squares 

procedure. 	The resultant coefficients are presented in 

Chapter 5, Table 5.2. 

The deviations' Bexp (T) - Bref (T), are shown in 
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figure .4.3 for methane and figure 4.5 for nitrogen. 	The 

third virial coefficients are compared with the previously 

published results in figure 4.4 for methane and figure 4.6 

for nitrogen. 	The interactional virial coefficients are 

compared directly: B12  in figure 4.7 and C112, C221 in  

figure 4.8. 

(a) Methane  

It can be seen that the second'virial coefficients of 

this work at the higher temperatures of our range are in 

excellent agreement, within experimental error, with those of 

Douslin and of Schamp. 	(The results of Michels are very 

close to these latter sets of values and for the sake of 

clarity are not shown.) 	At lower temperatures our results 

are in good agreement with the low-pressure results of Brewer, 

within experimental error, but some 1 to 3 cm3.mole-1 less 

negative than those of Byrne. 	The results of Mueller are in 

reasonable agreement with our values considering the scatter 

inherent in some isotherms, but the results of Kvalnes are 

some 1 to 1.5 cm3.mole-1 less negative. 	The results of 

Thomaes show considerable scatter. 

For the intermolecular potential study of chapter 5, 

the following second virial coefficients given in Table 4.13 

were not used:- 

(i) Michels (41), and Deffet (44), because they are duplicated 

by the results of Douslin (32) and Schamp (42), with which 

they are in close agreement. 

(ii) Thomaes and van Steenwinkel (53). 

(iii) Kvalnes and Gaddy (48). 

(iv) Mueller (49) (at 283 K). 

(v) Olds (45). 
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Each of the remaining experimental B values was assigned 

a weighting factor, w, for use in the curve-fitting of chapter 5, 

where w = 1 
a2 

(4.5-2) 

a is the probable error in the experimental value, estimated 

by consideration of both the quoted experimental errors and 

the deviation from a smooth curve through the data. For 

methane the data sets were weighted in the following order, 

those at the beginning being most highly weighted:- Douslin; 

Schamp; this work; Brewer; Mueller; Byrne. 

The third virial coefficients of this work (figure 4.4) 

are also in excellent agreement with those of Douslin and of 

Schamp at the upper end of our temperature range. 	Below 0 0C 

there are no other measurements of equivalent accuracy, but 

there is fair agreement with the results of Mueller and of 

Kvalnes, which show greater scatter. 

(b) Nitrogen  

It can be seen from figure 4.5 that the second virial 

coefficients of this work are in good agreement (within 0.2 to 

0.3 cm3.mole-1) with those of Crain, of Canfield, and of 

Michels. 	The results of Holborn, of Onnes, and of Friedman 

all show greater scatter but the differences are probably 

within their experimental error. 	The high temperature results 

of Saurel are in good agreement with those of Holborn but show 

a small difference of 0.6 cm3  .mole-1 from the result of 

Michels at 423 K. 	The results of Witonsky are also in 

reasonable agreement with those of Saurel, but show a little 

more scatter. 

On the whole there are no serious discrepancies between 
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the results of different experimentalists and in the inter-

mediate temperature range good agreement exists between our 

results and those of Crain and of Canfield. 	For the inter-

molecular potential study the following values of Table 4.14 

were not used, 

(i) Onnes and van Urk (65) (B only). 

(ii) Holborn and Otto (63) (below 300 K). 

(iii) Hall and Canfield (74). 

The remaining sets of data were weighted for use in 

curve-fitting in the following order of decreasing importance: 

Crain, Michels and this work; Canfield; Saurel; Witonsky; 

Pfefferle; Holborn; Friedman; Pool. 

Our third virial coefficients, figure 4.6, also agree 

within experimental error with the results of Crain and of 

Canfield, and, at the upper end of our temperature range, with 

the results of Michels. 	It can be seen that accurate 

measurements are still needed at lower temperatures, around 

the maximum of the third virial coefficient. 

(c) Methane/Nitrogen  

Our values of B12, figure 4.7, show scatter of less than 

1 cm3.mole-1 about a smooth curve through the data, which is 

within the estimated maximum limits of experimental error. 

The one point of Brewer at 273 K is in good agreement. 	If 

our results are extrapolated to higher temperatures, the 

curve lies some 2 cm3  .mole-1 below the results of Keyes and 

Burks, which is within the estimated experimental error of 

these early measurements. 

The scatter shown about a smooth curve through our 

interactional third virial coefficients, figure 4.8, is also 



within experimental error. 
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4.6 Comparison of Compressibility Factors  

As many of the experimental isotherms extended beyond 

the region where only second and third virial coefficients 

were important, it is necessary to compare the higher-pressure 

compressibility factors with the results of other workers. 

The results for the mixtures will be discussed in chapter 6. 

(a) Methane  

To facilitate the comparison of compressibility factor 

data an equation of state was employed; the differences 

between the calculated and experimental values may then be 

readily interpolated between temperatures and pressures (or 

densities). 	The equation of state used was that of Vennix 

and Kobayashi (79), as described in more detail in section 6. 

In figure 4.9 Z(experimental) - Z(calculated) is plotted 

against density for the 218.9 K, 204.6 K and 192.6 K isotherms 

of Table 4.1, and for the experimental isotherms in this 

temperature range of Vennix (52), of Mueller (49), and of 

Kvalnes (48). 

For the 218.9 K and 204.6 K isotherms our results are 

in good agreement with those of Vennix, the largest discrepancy 

being about + .001 (.2%) at a density of about .008 mole.cm-3 

on the 204.6 K isotherm. 	The data of Mueller show fairly 

large scatter but apart from one or two points they lie 

within .5% of our values. 	The compressibility factors of 

Kvalnes and Gaddy, however, show a systematic deviation which 

increases with density, reaching a maximum of .026 (7%) at 

-3 203.1 K and .0107 mole.cm . 
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At lower temperatures the only measurements of Vennix 

that fall within the density range of our results are at a 

density of .00255 mole.cm-3. 	At 192.6 K our value of Z at 

this density, after interpolation, is greater by about .0008 

(.1%) than that of Vennix. 	The corresponding difference at 

181.9 K is about .0013 (.2%). 	It appears that at our 

maximum density, .0058 mole.cm-3, on the 192.6 K isotherm the 

value of Z is larger still than that value interpolated from 

Vennix, the difference being about .005 (1%). 

In figure 4.10 Z(experimental) - Z(calculated) is plotted 

for our higher temperature isotherms at 234.0 K, 248.5 K, 

263.1 K and 291.4 K, and for the experimental isotherms in 

this range of Douslin (43), of Mueller (49), of Kvalnes (48), 

and of Vennix (52). 	It appears that our values of Z at 

the higher densities on the 291.4 K and 263.1 K isotherms are 

within .0003 (.04%) of the results of Douslin, after inter-

polation; this is within the limits of experimental error. 

There is again fairly good agreement with the low-density 

measurements of Vennix, and the systematic deviation from 

the data of Kvalnes is apparent. 	The results of Mueller 

exhibit fairly large scatter. 

It is to be noted that the deviation of the data from 

the Vennix-Kobayashi equation of state passes through a 

maximum at a density of about .002 cm3.mole-1. 	This 

deviation shows a maximum of .0008 at about 260-280 K then 

passes through zero with decreasing temperature and rises to 

-.0017 at 192.6 K. 	This behaviour arises because the equation 

of state was fitted below 0 °C to the data of Vennix (52), 

which does not really extend to sufficiently low densities. 
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In developing an improved equation of state for methane it 

should be constrained to give the correct B and C, or, 

preferably, it should be fitted to low density data, such as 

that presented in Table 4.1. 

(b) Nitrogen 

For the corresponding comparisons in the case of nitrogen, 

the thirteen constant equation of state of Wood et al (27) was 

employed. 	This equation had been fitted at low temperatures 

to the data of Canfield (67). 

In figure 4.11 are plotted values of Z(experimental) 

- Z(calculated) for the lower temperature isotherms of Table 4.2: 

204.6 K, 192.6 K, 181.9 K and 155.9 K, which are compared with 

the results of Crain and Sonntag at 203.2 K, 163.2 K, and 

143.2 K, and with those of Canfield at 183.2 K, 158.2 K and 

143.2 K. 

Agreement at 204.6 K with the results of Crain and Sonntag, 

after interpolation, is fairly good: within .0004 (.05%). 

At 181.9 K our results are within .0004 (.05%) of those of 

Canfield, after interpolation. 	The 183.15 K isotherm of 

Canfield shows a small systematic deviation at low density, 

as does the 158.15 K isotherm. 	Our results are in good 

agreement at 155.9 K with those of Crain and Sonntag, 

although the interpolation is not easy, and within about 

.0003 (.04%) with those of Canfield. 	It can be seen that 

the results of Canfield and of Crain and Sonntag on the 

143.15 isotherm are in excellent agreement. 

In Figure 4.12 the equivalent comparisons are shown for 

the higher temperature isotherms of this work: 218.9 K, 

234.0 K, 248.5 K, 263.1 K, 276.9 K and 291.4 K; with the 

223.2 K and 273.2 K isotherms of Canfield; the 273.2 K and 
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298.5 K isotherms of Michels et al; and the 273.2 K isotherm 

of Canfield. 

It is immediately apparent that the 273.2 K isotherm of 

Canfield differs by up to .001 in Z (.1%) from the other results 

at this temperature. 	Otherwise the agreement of our results, 

after interpolation, with other workers is good. 	Similarly, 

the results of Canfield at 223.2 K are up to .0008 (.1%) more 

positive than the values interpolated from our 218.9 K and 

234.0 K isotherms. 	On the whole, however, the agreement is 

very good between these sets of low-density nitrogen 

compressibility factor data. 

4.7 Experimental Results for Other Gases and Binary Mixtures  

Apart from methane, nitrogen and the methane/nitrogen 

system the gases considered in the intermolecular potential 

study, chapter 5, were argon, ethane and the methane/argon, 

nitrogen/argon and methane/ethane systems. 	In addition, 

propane and n-butane were included in the test of virial 

coefficient correlations, chapter 6. 

In collating the data much use was made of the compilations 

of Dymond and Smith (80) and of Mason and Spurling (1). 	The 

sources of the more accurate second and third virial coefficients 

are listed here, but only those values obtained by retreating 

the data are given in the Tables. 	Otherwise, the values 

used were as given in the original references. 

(a) Argon 

(i) Michels, Levelt and De Graaf (81), Michels, Wijker and 

Wijker (82): re-treated graphically (Table 4.16). 

(ii) Crain and Sonntag (34). 



(iii) Provine and Canfield (83); re-treated graphically 

(Table 4.16). 

(iv) Whalley and Schneider (84) re-analysed by Saville (64) 

(Table 4.16). 

(v) Holborn and Otto (85); re-analysed by Saville (64) 

(Table 4.16). 

(vi) Byrne, Jones and Staveley (55). 

(vii) Weir, Wynn-Jones', Rowlinson and Saville (18). 

(viii) Fender and Halsey (86). 

(ix) Pool, Saville, Herrington, Shields and Staveley (71). 

(b) Ethane 

(i) Michels, van Straaten and. Dawson (87); re-treated 

graphically (Table 4.17). 

(ii) Reamer, Olds, Sage and Lacey (88); re-treated 

graphically. 

(iii) Hoover, Nagata, Leland and Kobayashi (50). 

(c) Methane/Argon  

(i) Byrne, Jones and Staveley (55). 

(ii) Thomaes and van Steenwinkel (89). 

(d) Nitrogen/Argon  

(i) Crain and Sonntag (34). 

(ii) Brewer and Vaughn (90). 	B12 was re-calculated using 

more accurate values of B11 and B22 (Table 4.18). 

(iii) Zandbergen and Beenakker (91). 	B12 was re-calculated 

using more accurate values of B11  and B22  (Table 4.18). 

(iv) Knobler, Beenakker and Knapp (92). 	One point at 90 K, 

which was not utilized here because of the uncertainties in 

B for nitrogen and argon at this temperature. 
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(e) Methane/Ethane  

(i) Michels and Nederbragt (93); re-treated graphically 

(Table 4.19). 

(ii) Dantzler, Knobler and Windsor (94). 	B12 was re-

calculated using more accurate values of B11  and B22. 

(iii) Hoover, Nagata, Leland and Kobayashi (50). 

(f) Propane  

(i) Cherney, Marchman and York (95); •re-treated graphically 

(Table 4.20). 

(ii) Beattie, Kay and Kaminsky (96); re-treated graphically 

(Table 4.20). 

(iii) McGlashan and Potter (97). 

(iv) Kapallo, Lund and Schafer (98). 

(g) n-Butane  

(i) Connally (99). 	Presented in Table 4.21. 

(ii) Beattie, Simard and Su (100); re-treated graphically 

(Table 4.21). 

(iii) Jones and Kay (101). 

(iv) Bottomley and Spurling (102). 
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TABLE 4.16 

LE 22a: Experimental Virial Coefficients (Retreated) 

(in units of cm3.mole-1) 

(i) 	Michels 	(81), 	(82) 

T,K 	B 	C 

(iv)  

T,K 

Whalley (84) 

B C 

128.15 -115.3 2000 273.16 -21.88 1298 

133.15 -107.8 2275 323.16 -11.04 1096 

138.15 -100.8 2370 373.16 -4.34 1078 

143.15 -94.4 2410 423.16 +1.01 1014 

150.65 -85.6 2290 473.16 +5.28 912 

163.15 -73.20 2060 573.16 +10.77 818 

173.15 -65.10 1950 673.16 +15.74 - 

188.15 -54.70 1690 773.16 +17.76 

203.15 -46.25 1580 873.16 +19.48 - 

223.15 -37.26 1440 

248.15 -28.4 1320 

273.15 -21.35 1200 (v)  Holborn (85)  

298.15 -15.68 1100 

323.15 -11.16 1080 T,K B C  

348.15 -7.20 1000 173.15 -65.28 2000 

373.15 -3.96 984 223.15 -37.31 1463 

398.15 -1.14 950 273.15 -21.23 1195 

423.15 +1.32 920 323.15 -10.66 1003 
373.15 -4.06 1046 
423.15 +1.53 872 

(iii) Provine (83) 473.15 +4.98 966 
573.15 +11.34 - 

T,K B C 673.15 +15.58 - 
143.15 -94.0 2335 
158.15 -77.9 2180 

m183.15 -56.6 1560 

228.  

Large scatter on isotherm 
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Ethane: 

TABLE 	4.17 

Experimental Virial Coefficients (Re-treated) 

(in units of cm3.mole-1) 

(i) Michels (87) (ii) Reamer (88) 

T,K B C T,K B C 

273.15 -221.6 10,700 310.94 -164.4 7,500 

298.15 -185.5 10,680 344.27 -134.4 8,200 

322.76 -156.6 9,750 N377.60 -110.0 7,400 

347.66 -132.9 ' 	8,600 410.94 -90.0 6,700 

372.53 -113.8 7,800 444.27 -73.3 6,150 

397.85 -97.6 7,030 477.60 -59.0 5,450 

422.71 -83.65 6,400 N510.94 -47.0 4,800 

TABLE 4.18 

Nitrogen/Argon: Experimental Virial Coefficients (Re-treated) 

(ii) Brewer 

T,K 

(90) 

B12 B12 

(iii)  

T,K 

Zandbergen (91) 

148.15 -81.7 170.5 

173.15 -59.3 231.7 

198.15 -43.4 292.6 

223.15 -32.2 
248.15 -23.4 

273.15 -16.3 (iv)  Knobler (92) 

298.15 -10.82 

323.15 -6.19 T,K B12 

90 	-216 

Large scatter on isotherm 
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TABLE 4.19 

Methane/Ethane : 	Experimental Virial Coefficients (Re-treated) 
(in units of am3  .mole-1_ ) 

(ii) 	Dantzler 	(94) (i) 	Michels 	(93) 

T,K B12 C112 C221 B12 T,K 

273.15 -112.9 4500 9400 298.15 -93.4 

298.50 -92.1 4500 7000 323.15 -78.6 

322.99 -77.4 4000 6500 348.15 -67.0 

373.15 -55.5 

TABLE 4.20 

12Ec222.122: Experimental Virial Coefficients (Re-treated) 
(in units of cm3.mole-1) 

(i) 

T,K 

Cherney (95) 

B C 

(ii) 

T,K 

Beattie (96) 

323.15 -328 20,250 398.15 -209.3 18,400 
373.15 -239.8 19,200 423.15 -181.2 16,150 

398.15 -207.5 17,500 448.15 -158.6 14,400 
473.15 -138.2 13,300 
498.15 -120.6 12,000 

n-Butane : 	Experimental 

TABLE 	4.21 

Virial Coefficients (Re-treated) 

(i) Connally (99)** (ii) Beattie (100) 

T,K B C T,K 
344.26 -517.0 25,000 423.16 -326.6 37,250 
360.93 -464.7 40,000 448.16 -284.5 32,750 
377.59 -418.6 40,000 473.16 -250.5 29,500 
394.26 -381.3 39,500 498.16 -221.0 26,500 
406.85 -356.1 39,000 523.16 -196.5 24,900 
410.93 -348.6 38,500 548.16 -174.0 22,500 
444.26 -289.8 34,000 573.16 -154.5 21,350 

** Not re-treated 



CHAPTER FIVE 

INTERMOLECULAR POTENTIALS 

5.1 Introduction 

   

      

      

(a) The form of the intermolecular potential  

The potential energy of interaction, U(r), between two 

spherical non-polar molecules is a function of the inter-

molecular separation, r, having the general form shown in 
smati 	silurvf 

figure 5.1. 	At large r the 1:11,n,g range repulsive forces 

predominate. 	The latter are essentially due to the overlap 

of the electron clouds. 	The maximum energy of attraction 

is e, the potential well-depth. 

The most important long-range attraction between non-

polar molecules is caused by the dispersion (or London) 

forces, which may be described (1) as originating from the 

mutual interaction of instantaneous induced dipoles and 

multipoles. 	The potential energy due to dispersion forces 

is a series in inverse powers of r, 

U (dispersion) 	-=` _ C6 _ C8 
6 r • 	r8 

 

 

At large r, as U(r) tends to zero, the leading term 

in (5.1-1) predominates. 	In general, calculations of the 

short-range forces, which are highly complex, do not lead 

to any equivalent simple functional dependence on r, although 

an exponential dependence is a fair approximation. 

There are several means of obtaining information on the 

shape or size of the potential curve, or at least part of the 

curve (103), one of the most useful methods being through 
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experimental second virial coefficients. 	There follows 

a brief outline of the statistical-mechanical derivation 

of the dependence of B(T) on U(r). 

(b) The Intermolecular potential and the virial expansion  

The partition function for the grand canonical 

ensemble is 

E eµT ZN 	 (5.1-2) 
NCO 

where SN is the partition function for a canonical ensemble 

of N molecules with chemical potential p. 

-E; = E e A 
i=0 

(5.1-3) 

where Ei is the energy of the ith. quantum state of the 

system. 

As E = 0 when N = 0 

AN 
E e kT ZN 	(5.1-3) 
N1 

Equation (5.1-3) is a power series expansion in ep/kT.  

Now as the pressure of the system is related to E 

through the equation, 

PV = kT Ins 
then, 

PV - In { 	+ Eeli=6- ZN  
kT 	N?.1 	JJ  

(5.1-4) 
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The right-hand side of (5.1-4) may be expanded as an 

infinite series in ep/kT  . 	It may be shown that this can be 

converted to a series in powers of density by use of the 

relationship, 

No p = N = kT ainE 
V 	V \a 	)T,v  

(5.1-5) 

where No is Avegadro's number. 

By equating coefficients of the resultant series with 

those of the virial series, 

P = NkTp 1 + Bp + Cp2  +  	(5.1-6) 

we have 

B( T) = ( 2 Z.2  _ 
Z2 	2 No  

(5.1-7) 

C(T) = —V2( 

 Z 	Z 

 I2 Z3 
3 	

16 Z2
2  212  

52 )No (5.1-8) t  1 	Z2 	1 
1 

These equations are valid for quantum-mechanical systems 

and require no assumptions other than that Boltzmann 

statistics are applicable and that the expansion of I 

in powers of density exists, i.e. that the virial series is 

convergent. 

In the classical limit the canonical ensemble partition 

function for a monatomic gas of N atoms is, 

ZN 	A3N QN 
	

(5.1-9) 

where (27rmkT  .11- 
h 	/ 2  (5.1-10) 
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where QN  is the configurational integral, 

QN e jr ir _u(r 5)4T dr  , 	drN N!  (5.1-11) 

where U is the molecular potential energy of the N molecules. 

Assuming that the potential between molecules is 

independent of the angular orientation, 

Qi 	= f dr 	= V 	
(5.1-12) 

Q2 = 
	e U(r12)  dr, dr, 	

(5.1-13) 

From equations (5.1-9), (5.1-12) and (5.1-13), on 

substitution into (5.1-7), we have 

B(T) 	No / 	U (r12)/kT 

	

k 	e 	d r, ch-2  
2V 

V 

(5.1-14) 

On changing variables from r1 and r2 to r1 and r12, integration 

over r12  leads to 

9(1) = 

00 
—u(0/  

271-NI( — e 	kT r dr 

0 
(5.1-15) 

where r is the intermolecular separation. 

Thus the second virial coefficient is directly related 

to U(r) and information on the potential is often obtained 

from experimental measurements of B over a range of temperatures, 

as considered in the following section. 

The equivalent expression to (5.1-14) for the third 
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virial coefficient is not so useful as a means of obtaining 

information on U(r), for two reasons. 	Firstly, experimental 

third virial coefficients are much less accurate, and 

secondly an assumption must be made concerning the contribution 

to 'gr.1 	rN) of non-additive forces. 	
The total potential 

is given by, 

u(rt .... rN, = EE u(qj) u(r.. , tik  , rii() +.... —1-16) 

i.e. it is the sum of two-body terms (pairwise-additive) 

plus three-body, four-body ... N-body terms (pairwise non- 

additive). 	The second term in (5.1-16) is the contribution 

from three-body forces and must be included in Q3  and hence 

in C(T). 	The third virial coefficient is considered further 

in section 5.5. 

Equation (5.1-14) was derived for the classical-

mechanical second virial coefficient, Pdl, and corrections 

must be applied for quantum effects. 	At normal temperatures 

these corrections are given by a power series expansion in 

Planck's constant, h(2) 

B(T) = Bd(T) 	 ,,h2)13P) + \m2 / 

 

(5.1-17) 

 

where m = molecular mass 

B1  = first quantum correction 

second quantum correction. BIT = 

There is also a small correction for non-classical 

statistics that is negligible in the intermediate temperature 

range. 	The first quantum correction may be shown (2) to be, 



27r No g 
0 

34e B(0) = f Ar3(0) e (34/  chp 

	 f e—u(rhT  (du(r))2 r2 
dr 

24 r2k2T3 	 dr (5.1-18) 
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0 

(c) Inverse Laplace Transform of B(T)  

If the potential curve is considered as divided at the 

minimum into left and right branches, U(rL) and U(rR) 

respectively, then a new variable Ara may be defined as 

Ar3  = r3 3 - r L 	R 

= r3 

for -e <U<0 

0< U< 00 

Then by defining 

U + e 

and taking 4r as the independent variable it may be shown (104) 

from equation (5.1-14) that 

00 

(5.1-19) 

where p = 1 
kT 

This is aLaplace transform for which there exists an 

inversion. 	By inversion, 

3 	-118(p) e-Pe 
Ar3(1P) 	= 271- No  I—l 	( 	) (5.1-20) 

Thus no matter how accurate the data, U(r) cannot be 

obtained as an explicit function of r from second virial 

coefficients. 	Equation (5.1-20) shows that the width of 

the potential bowl can be obtained only as a function of the 



4. e 	 (-a\61 
[(7-- 	

cr 
a  -a) 	1/4 r-a) 

12 
u( r ) = (5.2-2) 
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well-depth,e . 	At present, the use of the inverse Laplace 

transform is limited by the lack of independent estimates 

of the well-depth, E ; when an independent estimate is available, 

as for argon (see section 5.3), the method should give 

information on the shape of the potential bowl (105). 	It 

would be necessary first to determine the effect of 

experimental errors in B on the result of the inverse Laplace 

transform. 

5.2 Pair Potential Models  

The usual procedure for obtaining information on the 

potential energy curve from second virial coefficients is 

to assume a model for the form of the potential. 	The model 

has two or more adjustable parameters which are determined 

from a comparison between the calculated and experimental 

second virial coefficients. 	The usefulness of the model as 

an approximation to the true pair potential may then be 

tested by considering its performance in the prediction of 

other thermodynathic and transport properties of the substance. 

Ideally, the model should be compatible with known theories 

of intermolecular forces. 

In this work, two three-parameter potential models were 

considered; firstly, the Lennard-Jones (n-6), 

- 6/n 
(0(1- 6/n) 

u(r) = 
(1 - 6/n) [09n--(05] (5.2-1) 

where the parameters are e , 	and n. 

Secondly, the Kihara spherical-core potential (106), 



The Kihara potential includes in the model a hard core 

of the molecule, radius a, inside which U(r) is infinite. 

By defining y = a/a , (5.2-2) can be written, 
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4 e[(1-Y 12 U(r) = r/o.  _ y 

 

6] 
(5.2-3) 

 

where the parameters are now e 	and y. 

Both the Lennard-Jones (n-6) and the Kihara potential 

contain the leading r-6 term in (5r.:1-1), but only the 

Kihara possesses the higher terms in r-8, etc., as well as 

spurious terms in r-7, r-9, etc. 

It is usual for a fixed value to be chosen for the 

repulsive exponent, n, in (5.2-1). 	When n = 12, (5.2-1) 

becomes the familiar two-parameter Lennard-Jones (12-6) 

potential (107) 

am 	an= 4e [(7) 	 (5.2-4) 

When n 

obtained, 

U(r) 

= 18, 

3/  3  2 

2 

the Lennard-Jones 

18 	2..\6 t 	
r) 

o:  ) 	( 

(18-6) potential is 

(5.2-5) 

Many other two and three-parameter potential functions 

have been proposed (2), differing essentially in the 

manner of representation of the form of the repulsive 

potential energy. 	It has been demonstrated by Hanley and 

Klein (108) that, among those three-parameter potentials 

that they studied, if the third parameter was fixed, e.g. 

n = 18 in the L-J(n-6) potential, then another three-

parameter potential could be found, e.g. Kihara spherical- 
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core with Y = 0.1, that fitted the data in the same manner. 

Because of the equivalence of three-parameter potential 

models in this respect, further examples were not considered 

here. 

(a) The Lennard-Jones (n-6) potential  

The classical second virial coefficient has been 

calculated by analytical integration after first expanding 

the exponential term in (5-,-2-1) as an infinite series (109). 

The result is an infinite series in 1/T, involving gamma 

functions, that is rapidly converging except at very low 

temperatures, 

ad(T) 
En-6)j+ 3]  2 

N 	-0) (n-6) 
3 	° 	k6/ 	' n.j! 

l=0 

 

 

[(n-6) 	j 3]  

(n-6)T) 6 	 (6j - 3 
(5.2-6) 

* 
where T = kT/e 

The same technique has been used by De Boer and Michels 

(110) to obtain the first and second quantum corrections. 

The corresponding expressions are given in full by Pollard (13). 

Calculation of B for the (12-6) and (18-6) potentials 

is simplified by use of the equality 

fa) 
	

a1  Da +1) 
	

(5.2-7) 

This mathematical convenience is one of the reasons 

for the choice of n = 12 in the first applications of this 

potential by Lennard-Jones. 	It has long been realised that 

a higher value of n is necessary to provide a good fit to 
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experimental second virial coefficients at low temperatures 

(86), and this fact has led to the use of the (18-6) 

potential (111) and the three-parameter (n-6) potential 

(108). 

(b) The Kihara Spherical-Core Potential  

The Kihara spherical-core potential is a special case 

of the general Kihara potential (106) for a convex core 

with superimposed 

for the series 

given by Pollard 

Bcl(T) for 

given by 

RCP) = 

where 

Fs  (T*) = 

L-J 

expansion 

(13)). 

the spherical 

-a 	N cr3 ( 
3 

3 • 21  ( 

(12-6) 	potential. 	(The 

for this general potential 

core potential, 

x3 	 1 	 2 

expression 

is 

(5.2-3) 	is 

FP*)  
(5.2-8) 

( 5.2-9 ) 

— 	{ (-4( ) 1— 'Y 3' 21(i 

zy2 F3(e) I 

EV 6j - 

F2,(T41 	+ 

6i+s 

12 Z./ j! Cam 
-413.-  

rly 	• 12 
J=0 

The corresponding first and second quantum corrections 

have been calculated by Weir (112). 

(c) Calculation of Potential Parameters  

The second virial coefficients for the L-J (n-6) 

and Kihara spherical-core potentials were calculated as 

described in sections 5.2(a) and 5.2(b), to an accuracy of 

0.01 cc/mole at each temperature. 	The general non-linear 

least-squares procedure (section 3.2(a)) was used to determine 

the parameters (3-  to .00001 nm, and e/k  to 0.01 K. 	For the 
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L-J (n-6) potential the third parameter was n and for the 

Kihara potential it was V. 	All derivatives, e.g. 613(T)/0- 

and aB(T)/3( 6/k) were determined numerically. 	The objective 

function that was minimized in the least-squares procedure.  

was 

Ew B(eXp•), Kcalc.)1) 
	

(5.2-10) 
i = I 

The experimental second virial coefficients with their 

associated weighting factors were those given in Chapter 4. 

The second quantum correction for the Lennard-Jones 

(12-6) potential was found to be less than .07 cc/mole for 

methane at 110 K. 	This is negligible compared with the 

experimental error and so the second quantum corrections 

were not included for the other potentials. 	However, first 

quantum corrections were included as they are by no means 

negligible, e.g. for methane at 110.8 K, the total correction 

to B is 7.41 cc/mole for L-J (18-6) potential and at 273.2 K 

it is 0.75 cc/mole. 

The parameters obtained for the Lennard-Jones (12-6), 

(18-6) and (n-6) potentials and for the Kihara potential are 

given in Table 5.1 for argon, methane, nitrogen and ethane. 

Column 4 gives the root mean square deviation, 

RMS = 11544 	 (5.2-11) 

It was shown by Hanley and Klein (108) that the second 

virial coefficient is insensitive to the form of the 

potential function in the range, 

2. < T 6 < 10 	 (5.2-12) 



TABLE 5.1 

Pair-Potential Parameters  

Lennard-Jones 
Lennard-Jones 

Lennard-Jones 

Kihara 

(12-6) 
(18-6) 

(n-6) 

Argon 

e/k,K 

118.6 
160.3 

166.4 

160.8 

y or n 

19.1 
.153 

a,nm 

.3458 

.3264 

.3240 ' 

.3259 

Methane 

C ,nm e/k,K y or n 

Lennard-Jones (12-6) .3820.  148.6 

Lennard-Jones (18-6) .3640 199.6 
Lennard-Jones (n-6) .3561 228.0 22.9 
Kihara .3614 209.2 .177 

Nitrogen 

a 1 nm e/k,K y or n 

Lennard-Jones (12-6) .3742 95.3 
Lennard-Jones (18-6) .3571 127.8 
Lennard-Jones (n-6) .3449 159.9 27.9 
Kihara .3528 139.4 .197 

Ethane 

c ,nm e/k,K y or n 

Lennard-Jones (12-6) .4911 202.4 
Lennard-Jones (18-6) .4605 277.1 
Lennard-Jones (n-6) .4375 347.1 26.6 
Kihara .4427 319.8 .211 
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where 
T 	 kT 

12-6 
612-6 

(5.2-13) 
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They recommend using experimental second virial 

coefficients that fall only outside this range. 	However, 

Ahlert et al (113) found that by using methane data only in 

the range 

0.8 < 
	

(5.2-14) 

it was possible to obtain more than one minimum in the 

objective function, (5.2-10). 	A necessary condition for 

uniqueness in the potential parameters was the use of 

experimental data that covered a broad temperature range. 

This was confirmed by Lin and Robinson (114) in a systematic 

study of the effect of the temperature range and number of 

data points on the uncertainties in the derived parameters. 

In general it is best to use experimental B values down to 

the lowest available temperature, and when the minimum value 

of T 12-6  is from 0.5 to 1.0, it is preferable to use data up 

to about T 12_6 = 10.0 to obtain minimum uncertainty in the 

parameters. 	All of the available data used in the present 

study falls within this wide temperature range. 	It is 

stressed that the preceding discussions refer to parameter 

uncertainty with respect to the particular potential model, 

and not with respect to the Elk and 0 of the true pair 

potential. 

To show the performances of the pair potentials in 

fitting the experimental data, the differences B 	Bref(T) 

for each gas are shown in figures 5.2 - 5.5, where the base 

line refers to the equation 

Bref(T) = as + a,/
T 	7T 

4_ ail 3  + a4/
T  4 

 
7  

(5.2-15) 
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The coefficients were obtained by fitting this equation 

to experimental data; they are given in Table 5.2. 	Use 

of this type of plot enables the differences between the 

calculated and experimental second virial coefficients to 

be conveniently presented. 

It is immediately apparent that the L-J (12-6) potential 

is a poor approximation, especially at low temperatures, 

for all the gases studied. 	There is little difference 

between the results for the flexible three-parameter 

L-J (n-6) and Kihara potentials, both of which give a good 

fit to the experimental data. 	The two-parameter L-J (18-6) 

potential does very well, but tends to give less negative 

values of B at low temperatures. 	On the basis of the 

goodness of fit to the experimental second virial coefficients, 

Only the L-J (12-6) potential must be rejected as an 

approximation to the true pair potential. 

In Table 5.3 the parameters obtained in this work are 

compared with those of other investigators, omitting the 

L-J (12-6) potential parameters. 	All of these values were 

obtained via second virial coefficients only. 	Others have 

often been derived from a joint fit to both second virial 

coefficient and viscosity data but these are not included 

here as many of these investigations used high-temperature 

viscosity data now known to be erroneous (115). 

It can be seen from Table 5.3 that there is in general 

good agreement between the different sets of parameters for 

a given potential, the small differences reflecting the 

different sets of data used. 	There are one or two exceptions, 

notably the results of Tee et al. (116) for the Kihara 
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TABLE 5.2 

Coefficients of Equation fitted to Experimental Second 

Virial Coefficients 

B = Al  + A2/T + A3/T
3 + A4/T 

Al A2 

• 

A3 A4 

Methane 51.40118 -25.1267 -0.298517 -0.0107310 

Nitrogen 45.04587 -13.8035 -0.115836 -0.0047443 

Argon 37.8635 -15.0738 -0.0911234 0.00170569 

Ethane 72.8718 -50.2603 -3.87578 0.445202 

Propane 98.9303 -86.7161 -6.17915 0.266462 

n-Butane 240.617 -225.079 4.89262 -3.15465 
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TABLE 5.3 

Comparison of Pair-Potential Parameters 

ARGON L-J 18-6 L-J 	n-6 Kihara 

6/k)K 	Vow 6/k,K 	cr,,,,,i n e/kiK 	'Cr,  ' ' 
This work 160.3 .3264 166.4 .3240 19.1 160.8 .3259 .153 

(144.4 .3332 0.1) 

Hanley and Klein 
(108) 161.2 147.5 16 140.8 0.1 

Dymond, Rigby 
and Smith(111) 160.3 .3277 

Lin and 
Robinson (114) 161.7 .3259 .155 

Tee, Gotoh 
& Stewart 	(116) 146.5 .3317 

Rossi and 
Danon 	(117) 140.4 .3101 .089 

Barker, Fock 
& Smith 	(118) 142.9 .3363 .1 

Sherwood and 
Prausnitz 	(119) 147.2 .3314 .125 

Calvin and 
Reed 	(120) 169.8 .3225 20.0 

Weir et al. 	(18) 163.7 .315 .164 

METHANE 

This work 199.6 .3640 228.1 .3561 22.9 209.2 .3614 .177 
Ahlert, Biguria 
& Gaston 	(121) 218.0 .3568 21.0 
Sherwood & 
Prausnitz 	(119) 204.3 .3620 
Tee, Gotoh 
& Stewart 	(116) 227.1 .3565 
Hoover 	(50) 207.5 .3633 

NITROGEN 

This work 127.8 .3571 159.9 .3449 27.9 139.4 .3528 .197 
Calvin and 

Reed 	(120) 133.4 .3532 19.3 
Sherwood and 
Prausnitz 	(119) 139.2 .3526 
Tee, Gotoh 
& Stewart 	(116) 96.3 .3694 0.0 
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TABLE 5.3 (continued) 

ETHANE L-J 	18-6 L-J 	n-6 Kihara 

6/k , K 	ac, mi 6/k , K 	cr ruiA 	n Elk  cr,;,..,  r 
This work 227.1 	.4605 347.1 	.4375 	27.9 319.8 .4427 .211 

Hoover (50) 352.0 .4116 

Tee, Gotoh 
& Stewart (116) 496.7 .3504 
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potential parameters of nitrogen and methane, and the results 

of Hanley and Klein (108) for the L-J (n-6) potential 

parameters of argon. 	With the three-parameter potentials 

a wider spread of values of 6/k  and C are obtained because 

of the greater flexibility introduced into the model by the 

extra parameter. 	It is noticeable that the sets of Kihara 

potential parameters for argon are of two types; one with 

0.1, one with y•-•-•.: 0.15. 	Setting y = 0.1 and repeating 

the least-squares fit, varying the other two parameters, 

gives a very similar result to that shown in figure 5.2. 

If the low-temperature argon data of Weir et al (18) and 

Byrne et al (55) are not included then a much lower value 

of €/k  results (about 150 K for the L-J (18-6) potential). 

The larger differences in the case of ethane are 

mainly due to the lack of accurate low-temperature virial 

coefficients. 

5.3 Multiparameter Pair Potentials  

There have been several attempts to determine the true 

pair potential of a gas by use of multi-parameter potential 

models or non-analytic forms of the potential. 	Nearly all 

of this work has been confined to argon, and the most 

successful of the recent investigations appear to be those 

of Barker and co-workers (122- 125). 

Barker and Pompe (122) chose the following form for the 

potential, 

 

, L Eczi+08 .,..L.6)  2 

	

0-9E 	- 

	

i=) 	 i=0 

 

U(R) =. E 

 

   

(5.3-1) 
where r = R/Rm 	R = molecular separation 

L = 3 
	

Rm= value of R at minimum of U(R) 
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5 was taken as very small and was included to prevent 

a spurious maximum in U(R) at small separations. 	The 

values of C6, C8 and C10  were found from the theoretical 

values of the dispersion energy coefficients. 	High energy 

molecular beam measurements, which give information on the 

potential at small values of R, and second virial coefficient 

data were then used to obtain the remaining parameters. 

Several sets of parameters were obtained, and one chosen 

on the basis of a comparison between experimental and 

calculated static lattice energy and zero-point energy of 

the crystal at 0 °K. 	These calculations required an 

assumption about the significance of non-pairwise additive 

forces (three-body and n-body forces), which is discussed 

in section 5.3 in the section on third virial coefficients. 

The potential of Barker and Pompe was later modified 

by Barker and Bobetic (123) to also give excellent agreement 

with the experimental specific heat and thermal expansion 

of crystalline argon below 12 °K. 	The same potential was 

found to predict closely the transport properties of gaseous 

argon (124), i.e. viscosity, thermal conductivity, self- 

diffusion coefficients and thermal-diffusion. 	To obtain 

good agreement between calculated and experimental thermo-

dynamic properties of liquid argon, Barker, Fisher and Watts 

(125) derived a new potential which is a linear combination 

of the Barker-Pompe and Barker-Bobetic potentials. 	This 

third potential (BFW) also agreed with the spectroscopic data 

on the Art molecule (127), which gives information on the 

magnitude of the well-depth,E and it also gave unchanged 

or sometimes improved agreement with the properties of the 

gaseous and solid states. 
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(a) The Reduced Barker-Fisher-Watts Potential  

Argon, methane and nitrogen are known to obey fairly 

closely the principle of corresponding states (3), which is 

discussed in more detail in Chapter 6. 	To conform to the 

principle of corresponding states the pair potential of each 

substance must be of the form, 

U«(R) = fa  Uo(R/g2) 	(5.3-2) 

where Uo(R) is the pair potential of a reference substance 

(in this case taken to be argon), and f and ga  are the 

scale factors for substance m, 

f Ea Cr& a (5.3-3) 

	

60 	oro 

The second virial coefficient is then given by 

	

B«(T) = 9« .BO(.0a) 	(5.3-4) 

The applicability of the BFW potential to methane and 

nitrogen was investigated through the assumption of the 

principle of corresponding states, i.e. that (5.3-4) is 

valid. 

The Barker-Pompe (BP) and Barker-Bobetic (BB) potentials 

for argon are both of the form given in (5.3-1), with 

constants given in Table 5.4. 	The BFW potential is, 

	

(---"UBFW 	 ‘4  75  UBB 	• 25 UBp 	 (5.3L5) 

The resultant parameters are, 

6/k = 142.095 K 
0 

Rm = 3.7612 A 

R
o 
= 3.3605 

(5.3-6) 



TABLE 5.4 

The Barker-Fisher-Watts Potential for Argon 

Constants of Equation 

Barker-Pompe 

(5.3-1) 

Barker-Bobetic 

€/k, K 147.70 140.235 

Rm' nm .37560 .37630 

Ro' nm .33410 .33666 

Ao 0.2349 0.29214 

Al  -4.7735 -4.41458 

A2 -10.2194 -7.70182 

A3 -5.2905 -31.9293 

A4 0.0 -136.026 

A5 0.0 -151.0 

C6 1.0698 1.11976 

C8 0.1642 0.171551 

C10 0.0132 0.013748 

a 12.5 12.5 

5 0.01 0.01 

T,K 

TABLE 	5.5 

Second Virial Coefficient for the BFW Potential 

B,cc.mole-1  T,K B cc.mole-1  

75.0 -317.3 223.15 -38.31 

84.03 -255.4 248.15 -29.24 

89.57 -22t.7 273.15 -22.11 

97.69 -193.2 323.15 -11.68 

102.79 -176.08 373.15 -4.47 

113.97 -145.95 423.15 +0.79 

128.15 -117.86 473.15 +4.77 

143.15 -95.98 573.15 +10.33 

163.15 -74.77 673.15 +13.97 

183.15 -59.24 773.15 +16.50 
203.15 -47.52 873.15 +18.32 

1073.15 +20.72 

2 56 
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Unfortunately, the calculated virial coefficients for 

none of these three potentials have been presented in a 

usable form. 	Therefore the second virial coefficient of 

argon for the BFW potential, with first quantum correction, 

was calculated by direct numerical integration of 

equations (5.1-15)and(5.1-18). A standard computer program 

employing Simpson's Rule integration was used. 	The range 
0 

of integration for each temperature was from 0.01 A to 

30.01 A, giving the classical second virial coefficient to 

an accuracy of about 0.03 cc/mole from 163.15 K to 1273.15 K, 

and to an accuracy decreasing at lower temperatures to about 

0.2 cc/mole at 75 K. 	A much smaller range of integration, 
0 

usually up to 8 A, was sufficient for the first quantum 

correction. 	The values-so obtained are presented in Table 5.5, 

the reduced temperature and second virial coefficient referring 

to, 

kT 	 ciNt 
T = e 	 u - zr4 7r NR (5.3-7) 

In figure 5.2 the deviations from the experimental 

second virial coefficients are presented. 	The fit is, on 

the whole, reasonable, but the calculated values tend to be 

too negative above 140 K as compared with the majority of the 

data. 

The second virial coefficients of argon for the BFW 

potential were then fitted to a polynomial in 1/T, 

Bo  + at 	a3 	a4 	ac 
TS 	T4 (5.3-8) 

which was taken as the reference equation for use in (5.3-4), 



This equation can safely be extrapolated to slightly higher 

temperatures but not to lower temperatures. 

The experimental second virial coefficients of methane 

and nitrogen were then fitted by the equation, 

B(T) = e . B0 (i/f) 	 (5.3-9) 

The resultant parameters, g3 and f, are given in 

Table 5.6, together with the coefficients of equation (5.3-8). 

The deviations between the calculated and experimental 

virial coefficients are shown in figures 5.3 and 5.4. 	The 

agreement is good except perhaps at low temperatures for 

methane. 	Part of this discrepancy is due to the larger 

quantum corrections for methane; the quantum corrections 

should not really be included in this corresponding states 

treatment. 	However, this introduces only a small error. 

Most of the discrepancy is due to the fact that the BFW 

potential gives values that are more negative in the mid-

temperature range than the experimental values of argon,but 

reasonable values at low temperature. When the equation 

in its reduced form (5.3-9) is fitted to methane data, it 

gives a good fit to the data of Douslin et al (32) in the 

mid-temperature range, and hence values of B that are too 

positive at low temperature. 	The actual experimental 

virial coefficients of methane and argon show, in fact, 

much better agreement with the principle of corresponding 

states than is apparent from figure 5.3. 

To fully test the applicability of the reduced BFW 

potential, (5.3-9) to methane and nitrogen, it would be 

necessary to compare experimental and calculated values of 
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Methane Nitrogen Argon 

g
3 	1,4060 	1.3266 	1 

f 	1.2226 	.7836 	1 

6/k, K 	173.7 	111.3 	142.1 

a, nm 	.3765 	.3693 	.33605 

Polarizability,X .00260 	.00176 .00163 
(nm)3  

Parameters of ref-
erence equation 

a1  31.84649 

a2 -1.000638.103 

a3 -1.48933 .106 

a4 	6.76968 .107 

a5 -3.55104 .109 
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TABLE 5.6 

Parameters of Reduced Barker-Fisher-Watts Potential 

TABLE 5.7 

Dispersion Energy Coefficients 

Calculated, 
(Dalgarno) 

11 , 10-79.J.m6 

Argon 	Methane 

143 

Nitrogen 

70 

reduced BFW 61.3* 148 84 

L-J (12-6) 112.0 255.0 144.5 

L-J (18-6) 69.5 166.5 95.0 

L-J (n-6) 65.8 139.9 72.1 

* Calculated, Leonard (126) 
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a range of thermodynamic properties as considered by 

Barker et al. for argon. Here the comparison is confined 

to the third virial coefficients, presented in section 5.5(b), 

and the dispersion energy coefficients. 

The dispersion energy coefficient, i.e. the coefficient 

of r-6 in the long-range part of the potential, may be 

calculated by the methods of quantum- mechanics, and recent 

estimates are believed accurate to within a few per cent. 

In Table 5.7 the calculations of Dalgarno (128) are compared 

with those for the reduced Barker-Fisher-Watts potential, the 

L-J (12-6), L-J (18-6) and L-J (n-6) potentials. 

The dispersion energy coefficient for argon from the 

BFW potential was set equal to the calculated value of 

Leonard (126), 

i.e . 	E . C6 	61.3 . 0-60 erg.cm6 	
(5.3-10) 

Therefore the coefficient for methane or nitrogen is 

given by 

= fa  ga6 	60 . 61-3.10 	erg.cm6  (5.3-11) 

The coefficient for the (n-6) potential becomes, 

from (5.2-1) 

= 
(6/n)(1 	 6 

.cr 

(I - 4) 
(5.3-12) 

It can be seen, from Table 5.7, that the (L-J) 12-6 

potential gives values that are much too high, and the (18-6) 

potential gives values that are much nearer the theoretical 

values, and in the case of argon the agreement is good. 
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The reduced BFW potential is superior in this respect, giving 

very good agreement, especially for methane. 

Recent new measurements of low-energy molecular beam 

scattering in the Ar/Ar system (129) and a re-analysis of 

the vacuum-u-V absorption spectra of Ar2  (130) have both 

shown that the pair potential of argon appears to be close 

to that of Barker, Fisher and Watts in both shape and size, 

e.g. within 0.5% of the value of E/k. 

However, all of these potentials give values of the 

second virial coefficients that tend to be more positive 

than the experimental values at low temperature (e.g. 

7-10 cm3.mole-1 at 100 K): this discrepancy is yet to be 

explained. 	It is a possibility that part represents 

experimental error on the virial coefficients, (18) (55); 

for methane the results of Byrne et al. (55) appear to be 

more negative at low temperatures than those of this work 

and of Brewer (54) (see section 4.5(a)). 

5.4 Anisotropic Potential of the Nitrogen Molecule  

It has been shown (131) that for a molecule which is 

non-spherical or anisotropic the intermolecular potential 

is the sum of an angle-independent term and several terms 

which depend not only on the separation between the 

molecules but also on their relative orientation. 	For a 

molecule such as nitrogen which possesses zero dipole moment 
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but a significant quadrupole moment, Q, the intermolecular 

potential is given by, 

U = U(spherical) + U(anisotropic) + U(q-q) 
(5.4-1) 

+ U(q-lui) + U(shape) 

where U(spherical) is the centrally-symmetric potential. 

U(anisotropic) is the effect of anisotropy on the long-

range dispersion forces. 

U(q-q) is the quadrupole-quadrupole interaction. 

U(q-µi) is the quadrupole-induced dipole interaction. 

U(shape) is the effect of anisotropy on the short- 

range exchange forces. 

To the first order, the second virial coefficient is given by 

B = B(spherical) + B(anisotropic) + B(q-q) 
(5.4-2) 

+ B(q-pi) + B(shape) 

The largest of the extra terms is usually due to U(q-q), 

which is proportional to Q4 and r-5. 	The above terms have 

been calculated (132) and applied to the determination of Q 

from second virial coefficients by Orcutt (133). 	Unfortunately, 

the L-J (12-6) potential was assumed for U(spherical) and this 

gives a poor representation of B(spherical) for the isotropic 

argon molecule. 	The potential parameters were determined 

from viscosity data, which are less sensitive to anisotropic 

effects, and from the differencebetween B(experimental) and 

B(spherical) IQ' was estimated to be 1.90.10-26  esu. 

A much better estimate of Q is obtained from experimental 

measurements which do not require an assumed form for the 
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central potential, such as induced birefringence measurements, 

which give 1Q1 = 1.52.10-26  esu (134). 	This is much 

closer to the results of quantum mechanical calculations, 

which give 1Q1 = 1.36.10-26  esu (135). 

Adjusting the results of Orcutt for these new values of 

Q has the effect of reducing considerably the total con-

tributions to B of the anisotropic terms, which are very 

sensitive to the magnitude of Q. 	For instance, 

AB 

T = 123.5 K T = 274.5 K 

Q = 1.90 -12.1 cm3.mole-1  -2.7 cm3.mole-1  

Q = 1.52 - 6.0 cm3.mole-1 -1.4 cm3.mole-1  

Q = 1.36 - 4.4 cm3  .mole-1  -1.0 cm3.mole-1  

These values are still specific to the L-J (12-6) 

potential but are probably of similar magnitude for the 

other potentials. 	The contributionsto B are still quite 

significant but the uncertainties in the calculations and 

in the magnitude of Q are such that little accuracy is 

gained in the estimation of the potential parameters of 

nitrogen if these contributions to B are first subtracted. 

5.5 Third Virial Coefficients  

The potential energy of interaction between three 

molecules (the three-body potential) may be written as the 

sum of pairwise additive terms plus a non-additivity 

correction, 

U(r12 r23 r31) = U(r12) + U(r23) + U(r31) + Au(r12, r23 r31) 

(5.5-1) 



where r12,  r23  and r31 are the lengths of the sides of the 

triangle bounded by the three molecules. 

The total third virial coefficient can be shown by the 

methods of statistical mechanics (2) to be the sum of a 

pairwise additive and a pairwise non-additive part, 

C = Cadd 	AC 
	 (5.5-2) 

where,for spherically symmetric potentials, 

Cadd = - 8 7r2 Nglfp  4 4  
12 '23 '13 r 	r r 12 23 13 	12 G  23 (5.5-3) 

AC = _ 8 7r2  1\1,,fffi e-AU123/ki 
3 

( U12+ U23+  U.13 VICT 

 

 

r12 r23 r13 dri2 dr23 dri3 (5.5-4) 

where f12 = e-u(r12)/kT-1, etc., 

and the integration extends over all values of r12, r13 r23 7 

which form the sides of a triangle. 

Comparisons of theoretical calculations of the third 

virial coefficient with experimental values have often been 

inconclusive because of the uncertainty surrounding the 

nature of the non-additive contribution. 	At long-range 

intermolecular separations the major contribution to non-

additivity arises from the Axilrod-Teller (136) triple-

dipole, dispersion interaction, which for spherically 

symmetric potentials is, 
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Lu123  = vi (.3c001  cos02 cos03  4- 

r r)3 
12 23 2 

(5.5-5) 

where 01' 02 and 03  are the interior angles of the triangle 
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bounded by r12,  r13  and r23, and v123  is a non-additive 

dispersion coefficient, given to a good approximation for 

a pure gas by 

123 
3 

— 4 a L' (5.5-6) 

where a = polarizability 

µ = dispersion energy coefficient of the pair potential. 

Sherwood and Prausnitz (137) showed that the non- 

additive contributions to C due to this interaction are by no 

means negligible, amounting to almost half of the total 

third virial coefficient in the vicinity of its maximum. 

At small intermolecular separations there is non- 

additivity due to short-range, three-body exchange forces (or 

triple-overlap interactions). 	These are difficult to 

calculate exactly, but calculations have been made by Sherwood, 

De Rocco and Mason (138), and by Graben, Present and McCulloch 

(139) based on the approximate theory of Jansen (140). 

They concluded that the contributions from three-body exchange 

forces tend to cancel the contributions from the triple- 

dipole dispersion forces. 	However, the theory of Jansen is 

now believed to greatly over-estimate the magnitude of the 

three-body exchange forces, a conclusion arrived at by 

Barker and Pompe (123). 

As described in section 5.3, Barker and Pompe obtained 

a range of two-body potential functions, of the form given 

by (5.3-1), which were all equally successful in fitting 

the data for argon on properties dependent on pair- 

interactions only. 	The calculated third virial coefficients 

for all of these potentials agreed within 10% of the 
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experimental values, which was estimated as just outside the 

experimental error, when the triple-dipole non-additive 

contribution was included. 	It was concluded that the effect 

of other non-additive interactions on the third virial 

coefficient must be small, especially as they would be 

expected to be sensitive to the exact form of the pair 

potential. 	On the assumption that all non-additive forces 

other than the three-body dispersion forces could be 

neglected, Barker et al. obtained excellent agreement between 

experimental and calculated values of a wide range of 

thermodynamic properties of gaseous, liquid and solid argon 

(see section 5.3). 	This was support for the validity of 

the aforementioned assumption. 

Dymond and Alder (141) have attempted to calculate the 

magnitude of the three-body non-additive forces by direct 

subtraction of Cadd from the experimental third virial 

coefficients, where the former was calculated for their 

numerically tabulated pair potential of argon (142). 	To 

obtain the experimental values of C, they 'reanalysed' the 

PVT data of Michels et al (81, 82) by using theoretical 

values of second, fourth and fifth virial coefficients and 

calculating C by difference. 	This method is highly subject 

to error, however, as a small difference between the 

calculated and experimental value of B will lead to a large 

error in C. 	Their values lie some 100 - 200 cc3/mole 

below those given in Chapter 4. 	Even so, it appears that, 

except perhaps at very small intermolecular separations, the 

three-body exchange forces may be neglected. 	Therefore for 

the purposes of calculation of the third virial coefficient 



= (2/37Noal 
 

Cadd 
—( 2.11) 

cn . (T*) Cadd 

no 

n=0 

(5.5-7) 
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for the potentials considered here, no corrections for 

non-additivity were included other than those for the 

triple-dipole dispersion interaction. 

(a) Third Virial Coefficients for Simple Potential Functions  

If the neglect of three-body non-additive interactions 

other than that given by (5.5-5) is accepted as a valid 

assumption then by a comparison of theoretical and 

experimental third virial coefficients further information 

may be obtained on the approximation of a simple pair 

potential function to the true pair potential. 	This is 

important for gases such as methane and nitrogen, for which 

there have been no systematic attempts to determine a true 

pair potential as there have been for argon. 

The models considered here are the Lennard--Jones and the 

Kihara spherical core potentials. 	For the L-J (12-6) potential 

the third cluster integral (5.5-3) has been evaluated by 

expansion as a series in (T*) 2  (143, 144), 

where T* = kT  
6 

For the calculations of this thesis the more recent 

results of Stogryn (145) have been employed, where the series 

expansion method was used for evaluation of both C*add and LC*, 

where 

co 	 - (n + 3/2.) 

v*E en (e) 2  
n=0 

a 
r3 

(5.5-8) 

(5.5-9) 



268 

c (n=1 ... 27) and c'(n=1 ... 22) are presented in 

(145). 	The results are believed accurate to 0.1% at T* = 0.5 

and to higher accuracy at higher temperatures. 

Similar calculations have been carried out by Stogryn (146) 

for the L-J (18-6) potential, the series expansionsbeing, 

00

add = 

(2n3+ 1) 

"-add 

	

	 (5.5-10) 
n.10 

- (4n+ 5) 
AC* 	= v*E en  • (-09 -6- 	( 5 . 5-11) 

n

o 

and c' for n=1 to 20 are presented in (146) and 

the results are believed accurate to about 0.3% at T* = 0.5. 

Unfortunately as yet no calculations have been performed 

for the three-parameter L-J (n-6) potential. 

Values of C*add and AC*/p* for the Kihara spherical core 

potential have been tabulated by Sherwood and Prausnitz (119) 

at discrete values of a* from a* = 0 to 0.85. 	All calculations 

were performed by numerical integration. 

First quantum corrections to C have been calculated for 

the L-J (12-6) potential only (147). 	Values for methane 

turn out to be 110 cm6/mole at 150 K and 16 cm6/mole at 200 K. 

These are within the present limits of experimental error and 

so quantum corrections were neglected throughout. 

(b) Third Virial Coefficients for the Reduced BFW Potential  

The principle of corresponding states requires that 

and 

• 

C (T)add  

AC(T) 

DC (T) 

96 Co (11f)add (5.5-12) 

= V*g6.6,C0(M) 
(5.5-13) 

= 5:k 93 	) 
o 	 (5.5-14) 
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where Cadd(T)  and ACo(T) refer to the additive and non-, o 
 

additive contributions to the third virial coefficient of 

argon for the Barker-Fisher-Watts potential. 	These were 

read to the nearest 50 cm6 mole-2 from figure 7 of (122). 

_•- 
(c) Results of Comparisons  

Third virial coefficients calculated according to the 

methods described in 5.5(a) and (b) are compared with the 

selected experimental values of Chapter 4, for methane 

(figure 5.6), nitrogen (figure 5.7) and argon (figure 5.8). 

The potential parameters used were those obtained by a fit to the 

second virial coefficients, as listed in Table 5.1. 	Values 

of the polarizability, a, were taken from (148) and are given 

in Table 5.6. 	For the reduced BFW potential, the values of 

g3 and f are those determined in section 5.3(a)'and given in 

Table 5.6. 

It is apparent from figures 5.6 - 5.8 that the L-J (12-6) 

potential, which provides an inadequate fit to second virial 

coefficients, gives third virial coefficients that are too 

high for all gases when the triple-dipole non-additive 

term is included. 

The L-J (18-6) potential gives third virial coefficients 

for argon which are close to those of the Barker-Fisher-

Watts potential, and are from 100 to 300 cm6.mole-2 smaller 

than the experimental values. 	For methane and nitrogen the 

results for the reduced BFW potential and the L-J (18-6) 

potential are also close and in good agreement with experiment. 

The Kihara potential generally gives values of C that 

are higher than those of the L-J (18-6) and BFW potentials, 
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although in good agreement with experiment for argon and 

nitrogen, but not for methane. 	There is some difficulty 

in calculation of LC* for a potential such as the Kihara that 

instead of a r-6 term has a (r-a)-6 term, as mentioned by 

Sherwood and Prausnitz (119). 

(d) Conclusions  

It has been shown that the Barker-Fisher-Watts potential 

(125), which is probably close to the true pair potential of 

argon, can be applied, in a reduced form, to the successful 

calculation of third virial coefficients of methane and 

nitrogen. 	It must be assumed, as with argon, that non-

additive contributions other than those due to triple-dipole 

dispersion forces are small. 	This reduced BFW potential 

also gives good agreement with the theoretical value of the 

dispersion energy (r-6) coefficient. 	It would be interesting 

to investigate further the applicability of this potential 

by comparison of calculated and experimental values of all the 

thermodynamic and transport properties of methane and nitrogen 

that were considered by Barker et al. for argon. 	This task 

will not be attempted here. 

It has also been shown that a simple analytical form of 

the pair potential, viz the Lennard-Jones (18-6) potential, 

is capable of giving good agreement with both second and third 

virial coefficients of argon, methane and nitrogen. 	It has 

been shown elsewhere to give a good fit to the experimental 

second virial coefficients of krypton and xenon (13). 	The 

dispersion energy coefficients are also in reasonable agreement 

with the theoretical values. 	Thus it is possible that the 

L-J (18-6) potential offers a convenient approximation to the 
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true pair potential for simple spherically-symmetric 

molecules, at least in the range of intermediate inter- 

molecular separation. 	This is important because by the 

use of a pair potential of simple analytical form the 

calculation of other thermodynamic and transport properties 

of the fluid is simplified. 	Although they give a slightly 

better fit to second virial coefficients, the three- 

parameter L-J (n-6) and Kihara potentials would offer no 

advantages over the L7J (18-6) potential in this application. 

5.6 Second Virial Coefficients of Mixtures 

The interactional second virial coefficient, B12, is 

given by, 
00 

B12(.0 	= 2r 	(1 - e  u (r12Vkl. rs  d r,, 	( 5.6-1) 
0 

where U(r12) is the intermolecular potential energy of 

interaction between a molecule of type 1 and a molecule of 

type 2 separated by a distance r12. 	B12  can be calculated 

for the potential models of section 5.2, requiring values for 

the interaction parameters E12, C12  and n12  (or y12). 	(For 

the L-J (18-6) potential n12  is, of course, equal to 18). 

These parameters were obtained for the L-J (18-6), 

L-J (n-6) and Kihara potentials by a non-linear least- 

squares fit to the,  experimental values of B12  for the mixtures 

methane/nitrogen, methane/argon, argon/nitrogen and methane/ 

ethane. 

The final parameters are shown in Table 5.8 (columns 1 

and 2). 	The experimental data for these mixtures have been 

presented in Chapter 4. 	The L-J (12-6) potential was not 
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considered because of its inability to fit the second virial 

coefficients of the pure gases. 

For a given potential energy function, the values of 

12 and E12 required to predict B12  are usually estimated from 

the known like-interaction parameters by means of "combining-

rules", the simplest of which is 7 

Rule 1 : 

triz. = 	1/2  (CI 

1  • 4  
E12. = 	(Ell a  

—22/ 

(5.6-2) is the Lorentz rule of additive diameters, 

which is exact for hard spheres, and (5.6-3) is the 

geometric mean rule of Berthelot. 

Many alternatives to the geometric mean rule have been 

proposed, 

Rule 2 : 

among which two of the more successful are, 

Ell 	= 	2E11E2.2i( E 	+ E22) 	 ( 5 . 6-4 ) 

3 / 	\a. 
Rule 3 	: 612. 	= 	(Ell  67.2.)  

0, k) (5.6-5) cr2.2.] [ 

Ii+ To. 

where I is the ionization potential. 

Rule 2, the harmonic-mean rule, was found to be the most 

successful by Lin and Robinson (149) in the application of the 

Dymond-Alder potential (142) to rare gas pairs not containing 

helium. 	For krypton and xenon Pollard (13) found that none 

of the rules tested was particularly successful, but that 

rules 2 and 3 were preferable. 	Rule 3 is based on the 

London formula for dispersion forces, and Rule 2 is loosely 

based on the Kirkwood-Mtller formula for the same forces. 
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Recently it has been shown by Good and Hope (150) that 

the form of the L-J (n-6) potential function suggests, on 

theoretical grounds, that the Lorentz rule of additive 

diameters should be replaced by a geometric mean rule, 

criz = 	(irit cr22 	 (5.6-6) 

On this assumption, Calvin and Reed (120) found the 

following rules successful in predicting B12  of seven mixtures, 

including methane/ethane and nitrogen/argon, using the 

rules and least-squares fitting using 

the (n-6) potential, n12  was set at the value given by 

(5.6-8). 	For the Kihara potential, assumption of the 

Lorentz rule of additive diameters requires that 

Yiz = 

 

(5.6-9) +622. 

For all tests and least-squares fitting, y12  was set 

equal to the value given by (5.6-9). 

In Table 5.8 are shown the values of 612 and E12 from 

the full least-squares curve-fitting (columns ,1 and 2), and 

in column 3 the values of n12  or Y12  given by equations (5.6-8) 

or (5.6-9). 	In column 4 the value of 612  given by the rule 

of additive diameters, (5.6-2), is shown. 	With 612 fixed at 

this value, further least-squares fits to the data were 

carried out, and the resultant parameter e12  is shown in 

column 5. 	This value of 12  was then used to determine the 

L-J (n-6) potential. 

Rule 4 : Ell 	= 

n 12 	= 

For tests of all 

E2.2)4  En 

4  C ntt n22 ) 

(5.6-7) 

(5.6-8) 
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TABLE 5.8 

Potential Parameters for Binary Systems  

Methane/Nitrogen 

. a'12 el2A 

(Full least- 
squares fit) 

n12 

(or yi) 

X12 	6124 
(A.M. rule + 
least-squares 

fit) 

k12 

L-J (18-6) .3655 152.5 .3605 155.0 .030 

L-J (n-6) .3537 183.7 25.2 .3505 185.6 .028 

Kihara .3600 164.2 .187 .3571 165.8 .029 

Methane/Argon 

L-J (18-6) .3414 181.3 .3457 178.7 .001 

L-J. (n-6) .3294 202.9 20.9 .3397 193.7 .006 

Kihara .3350 189.7' .166 .3436 182.5 .005 

Argon/Nitrogen 

L-J (18-6) .3436 143.2 .3418 144.2 -.007 

L-J (n-6) .3353 164.7 23.1 .3343 165.2 -.012 

Kihara .3403 150.6 .176 .3394 151.0 -.009 

.0. 

Methane/Ethane 

L-J (18-6) .4012 243.5 .4123 234.7 .002 

L-J 	(11-6) .3841 297.0 25.2 .3947 286.2 -.017 

Kihara .3897 270.9 .196 .4020 259.7 -.004 
I 
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geometric-mean correction factor, k12,  where 

(I - km) (E11 Ezz)1/2 
	

(5.6-10) 

The values of k12  are shown in column 6. 

In Table 5.9, the values of E12  given by Rules 1 - 3 are 

presented, and, in column 4, the value of E12 from the 

least-squares fit (from column 5 of Table 5.8). 	It is 

apparent that for methane/nitrogen and nitrogen/argon T12  
given by (5.6-6) is similar to that given by (5.6-2), and 

Rule 4 is identical to Rule 1. 	For methane/argon and 

methane/ethane they are only slightly different. 

Because most of the mixture data covers only a limited 

temperature range, the potential parameters obtained from 

the least-squares fit are not determined accurately, particularly 

for the more flexible three-parameter potentials. 	A more  

realistic test of the combining rules than a comparison of 

the values given in Tables 5.8 and 5.9 is the direct 

comparison of the calculated and experimental values of B12. 

Any rule must be regarded as acceptable if B12  can be 

predicted within experimental error. 	These comparisons 
12- 

are shown in Figures 	- 

Figure 5.9 : Methane/Nitrogen. 

The results for each rule are virtually independent 

of the potential model; those for the L-J (18-6) potential 

are shown. 	Rule 2 is good, but Rules 1 (and 4) and Rule 3 

both. give B12  values that are too negative. 

Figure 5.10: Nitrogen/Argon. 

The results for all rules are very similar. 	Those for 
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TABLE 5.9 

Combining Rules  

elq,  0.12  given by arithmetic mean rule) 

Rule 1 Rule 2 	, Rule 3 .Least -squares 
value 

Methane/Nitrogen 

L-J (18-6) 159.7 155.8 158.9 155.0 

L-J (n-6) 191.0 188.0 190.1 185.6 

Kihara 170.8 167.3 170.1 165.8 

Methane/Argon 

L-J (18-6) 178.9 177.8 176.5 178.7 

L-J (n-6) 194.8 192.4 192.6 193.7 

Kihara 183.4 181.8 181.1 182.5 

Argon/Nitrogen 

L-J (18-6) 143.1 142.2 142.2 144.2 

L-J (n-6) 163.1 163.1 162.6 165.2 

Kihara 149.7 149.4 148.9 151.0 

Methane/Ethane 

L-J (18-6) 235.1 231.8 - 234.7 

L-J (n-6) 281.4 275.3 - 286.2 

Kihara 258.7 252.9 - 259.7 
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Rule 1 and Rules 2 and 3 for the L-J (18-6) potential are 

shown. 	The results for the other potentials lie between 

these two curves. 	In general, rules 1 and 2 are satisfactory 

and rule 3 only slightly less so. 

Figure 5.11: Methane/Argon. 

The results are shown of Rule 1 for the Kihara potential 

and Rule 3 for the L-J (18-6). 	All the other results lie 

between these extremes, Rules 1 and 2 being satisfactory but 

Rule 3 giving too positive values of B12. 

Figure 5.12: Methane/Ethane. 

Again, the results for a particular rule tend to be 

independent of the potential. 	Those of Rules 1 and 2 for the 

L-J (18-6) potential are shown. 	Rule 1 is the most 

satisfactory and Rule 2 gives values that are slightly too 

positive. 	Rules 3 and 4 are generally worse. 	Conclusions 

are difficult for this system because of the low experimental 

acccuracy at low temperatures. 

For the systems studied here, Rule 2, the harmonic mean 

rule is overall the most satisfactory, and Rule 1, the 

geometric mean rule,almost as good except for the methane/ 

nitrogen system. 	For these relatively simple systems it is 

unnecessary to introduce more complex rules such as Rule 3, 

which involves ionization potentials. 

The deviations from Rule 1, the geometric mean rule, are 

conveniently characterized by the correction factor k12. 	Lt 

can be seen from Table 5.8 that the value of k12 for a 

particular mixture is independent of the potential model. 

It is estimated that the experimental error in B12  sets a 
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maximum error in k12 of about .005. 

Estimates of k12 have been obtained for a wide range 

of mixtures by Chueh and Prausnitz (151) from a correlation 

of gas mixture PVT data with the Redlich-Kwong equation of 

state. 	In this case, k12 is defined from the critical 

temperatures, 

- k m) (T T c1. c )1/1  (5.6-11) 

These values are in excellent agreement with ours for 

methane-nitrogen (see Table 5.10) but are up to .02 

larger for the other systems; the differences are still 

fairly small, however. 	The negative values of k12 that 

we obtain have no real physical significance but are simply 

the result of fixing 0-12  to that given by the rule of 

additive diameters, which is known to be only an approximation 

for real molecules. A correlation of k12 for many mixtures 

has recently been published (152). 

The excess free energy and the excess volume of mixing 

for liquid mixtures are very sensitive to the value of k12 

assumed in a theory of liquid mixtures. A value of k12 can 

be found that gives agreement between the theoretical and the 

experimental excess property, and a comparison with the k12  

from second virial coefficients is a severe test of the 

theory of mixing in the liquid state. 	In Table 5.9 are 

shown the results from two of the more successful recent 

theories: the 'van-der-Waals one-fluid' model (153) and the 

'van-der-Waals two-fluid'model (154). 	The relatively close 

agreement is an indication of the usefulness of these models 

in the prediction of the thermodynamic properties of natural 



TABLE 5.10 

Geometric-mean correction factors  

This work (L-J(18-6)) 

Chueh and Prausnitz 
(151) 

"Van-der-Waals 
one-fluid model" (153) 

"Van-der-Waals 
two-fluid model" (154) 

Methane/Nitrogen Methane/Argon Nitrogen/Argon Methane/Ethane 

.030 .002 -.007 .002 

.03 .02 .00 .01 

.033 .002 

.014 .021 .003 
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gas mixtures (see section 6.3). 

For systems such as those studied here, where the 

molecules do not differ greatly in size, k12  is relatively 

small. 	Systems with large size differences, such as 

CH4/C4F10, however, require values of k12 of about'0.1, and 

there is evidence that this failure of the geometric mean 

rule is mainly due to differences in size and not effects of 

asymmetry or of different ionization potentials (152-). 

When considering the prediction of the PVT properties 

of mixtures, or of other thermodynamic properties of mixtures 

the results are sensitive to the values of k12 assumed for 

each binary interaction. 	At present it is difficult to 

pre-determine k12 with sufficient accuracy unless there 

exists accurate data on the binary mixture. 

5.7 Third Virial Coefficients of Mixtures  

The third virial coefficient of a mixture of N 

components is given as a function of the mole fractions 

x1, x2  ... by 

.0 = EE:E: xi xi x 	(5.7_1) 
J 	k 

where Cijk is given by (5.5-2), (5.5-3) and (5.5-4). 

Calculations of Cijk for realistic intermolecular 

potentials are limited. 	Stogryn (145) has presented 

exact results for the Lennard-Jones (12-6) potential plus 

corrections for the non-additive triple-dipole term. 	These 

results were compared with those of the approximations of 

Rowlinson, Sumner and Sutton (144) and of Orentlicher and 

Prausnitz((155).. 	These approximations simplify the evaluation 

of the integrals in the calculation by expressingCijk as a 
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function of the reduced third virial coefficient of one pure 

component and the intermolecular potential parameters. 	The 

approximation of Rowlinson et al is, 

Ciik  (T) = (2/3  7 N0  Ciir 	. C*( 10 

where C*(Ts) = Ciii  (T)/(2/3  ir N. cri  3)Z  

Ti k = k I/€.0 

3 
and 	Eijk =Eij  EikEik  

The approximation of Orentlicher and Prausnitz is,. 

C-k 	= (2/3  "0 	
)2 
	(IV • cl(Tii: ) • cjIt CIO 	(5.7-6) 

where C*(T) is defined as in (5.7-3),Crijk  is defined as in 

. (5.7-5), and T*ij  = kT/Eij 	 (5.7-7) 

Stogryn concluded that neither approximation could be 

trusted to give accurate results in the vicinity of the 

maximum of Cijk unless the potential parameters of molecules 

1, j and k were not too different. 	At higher temperatures 

both approximations are usually satisfactory, but that of 

Rowlinson et al. is overall slightly superior. 

Because of the failure of the L-J (12-6) potential to 

provide a good fit to the second virial coefficients or to 

predict the third virial coefficient of pure components, 

comparison with experiment for mixtures will not be given. 

In a later paper Stogryn (146) has presented results for the 

L-J (18-6) potential based on the approximation of Rowlinson 

= 	k T/ei  

3 
Crijk = C u. 	k 

(5.7-2) 

(5.7-3) 

(5.7-4) 

(5.7-5) 
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et al. ((5.7-2) to (5.7-5)) and a similar approximation for the 

non-additive triple-dipole contribution. 	These are given 

by expansions in powers of T*, (5.5-10) and (5.5-11), 

where for mixtures, 

* - T,;( = ki/6uk 	C k - C 1/(2/3  'IT No  oil k 
(5.7-8) 

and 	P4' 	23/1  • Viik -.6V02.1c/(31/4  (fAU /AP fkik)4 	(5.7-9) 

where µ.j  are the long-range dispersion energy coefficients, 

i.e. 3/2. 	6 

= 3,2 	 (5.7-10) 

and Vijk  is a given function of µ..ij, a., etc. 

C112 and  C221 were calculated for methane/nitrogen 

and argon/nitrogen, and compared with the selected 

experimental data (see Chapter 4) in Figures 5.13 and 5.14. 

The potential parameters were those given by, 

cruz 	0:22) 	 (5.7-11) 

E.12. = (1 — kiz).(11 Ezzr 	(5.7-12) 

These are the values given in columns 4 and 5 of 

Table 5.8. 

For methane/nitrogen the agreement is within the limits 

of experimental error, and for nitrogen/argon the agreement 

is fair, the calculated values being too low as in the case 

of pure argon and nitrogen. 	However, in view of the 

probable large experimental errors in C112  and 0221, the 

approximation of Rowlinson et al. (144) in conjunction with 

the L-J (18-6) potential is successful in predicting the 

third virial coefficients of these two systems. 



This is further demonstration of the usefulness of 

the Lennard-Jones (18-6) potential as a model for. the pair 

potential. 
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CHAPTER SIX 

THE PREDICTION OF ACCURATE COMPRESSIBILITY 

FACTORS OF MULTICOMPONENT GAS MIXTURES 

6.1 Introduction  

There have been numerous methods proposed in the 

literature for calculation of the compressibility factor of 

a multi-component mixture such as a natural gas. 	A 

division into two types is possible: 

1) Methods which employ the principle of corresponding 

states combined with the concept of "pseudo-critical" 

constants for a mixture. 	These form the basis of the 

majority of compressibility factor charts in use today and 

tabulations such as the American Gas Association's comprehensive 

correlation (156). 	The principle of corresponding states 

has been modified and extended by, among others, Pitzer and 

Curl (157) and Leland and his co-workers(158). 

2) Methods which employ an empirical equation of state with 

a different set of constants for each component of the 

mixture. 	The best-known equations are those of Benedict, 

Webb and Rubin (159) and of Redlich and Kwong (160). 	These 

have since been modified and improved, in one way or another, 

and there are many recent examples of their use. 

6.2 The Principle of Corresponding States  

The application of the principle of corresponding states 

to the pair potentials of argon, methane and nitrogen has 

been considered in section 5.3(a). 	A substance, a, is said 

to be conformal with a reference substance, 0, if the pair 

potential of substance a is given by 
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U(r) = fa  .0 (r/ga  ) 
	

(6.2-1) 

where Uo(r) is the pair potential of the reference substance 

and fa and 	are 'energy' and 'distance' scaling-factors 

respectively. 

All two-parameter pair potentials, such as the Lennard-

Jones (18-6) are of the type given by equation (6.2-1). 

It follows, through a statistical-mechanical derivation 

(3), that the equation of state of substance a, assuming 

pairwise additivity, is 

 

.. 3 

P.gm  fa 

  

0m(PI V,T) = 0 
V3 7  11;  

g
a  

0 	(6.2-2) 

  

where 00(P,V,T) = 0 	 (6.2-3) 

is the equation of state of the reference. 

The factors a 	ga3 , and fa are identical to the 
3 ' 

ga 

ratios of the critical constants, Pm
c  

Pc  

 

and Ta
c  

Tc 
7 

0 
c  V 
0 

respectively, on the above assumptions. 

Equation (6.2-2) may be written, 

	

V 	T 	V 

	

Vc 	Tca 	
o Pc ' Vc 

a 	a 	o  

or 	Za = Z ( o 	c ' Vc T a 
 

i.e. 	= Zo (TR-  , 	a VR .) 

0 (6.2-4) • 

(6.2-5) 

(6.2-6) 

where T , VR are the reduced temperature and volume 
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respectively. 	Equations (6.2-4) to (6.2-6) are the 

standard expressions of the principle of corresponding 

states. 

However, this two-parameter form of the principle of 

corresponding states is not obeyed exactly by the majority 

of substances owing to molecular dissimilarities in shape, 

size, polarity, etc., and because of non-pairwise additivity. 

Departures from (6.2-6) have often been considered by 

including a third parameter, 	, 

Z
m = Z (T

R 	VR 	) 
	

(6.2-7) 

The third parameter may be, among others, the 

compressibility factor at the critical point, Zc, or 

Pitzer's acentric factor, w (157), which is defined as 

w = - log (P110 - 1.0 	 (6.2-8) 

where PR is the reduced vapour pressure at T
R = 0.7. 

Substances which have the same three-parameter pair potential, 

such as the L-J (n-6) or Kihara spherical core potential, 

conform to (6.2-7). 

Of the methods available for prediction of the 

compressibility factor or a multi-component mixture, the 

simplest is that based on the virial equation of state (161). 

It has the advantage that the mixing rules are exact for 

each of the virial coefficients. 	The principle of 

corresponding states has often been utilized in the correlation 

of experimental values of the second and third virial 

coefficients. 	The most successful of those correlations 

tested in this investigation were found to be those of 
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Pitzer and Curl (162), 

C  C  BP = BZ = (0.1445 + 0.073w) 	(6.2-9) 
RTC  VC  

(0.33 - 0.46w
) 	(

0.1385 + 0.5w
) 	(

0.0121 + 0.097w
) 	0.0073w  

TR 	R (T )2 	(TR)3 	(TR)8 

and Chueh and Prausnitz (163), 

C = (0.232(TR )-0.25+  0.468(TR)- )(1 - e(1 -1.89(T
R)2)) 	(6.2-10) 

+ d.exp (- 2.49 + 2.30TR  - 2.70(TR)2). 

The fourth parameter, d, effectively accounts for the 

non-additive contributions to C and is loosely related to the 

molecular polarizability. 

In figure 6.1 are shown the differences between the 

experimental reduced second virial coefficients and those 

calculated by the Pitzer-Curl correlation, using the critical 

constants and acentric factors given by Huff and Reed (164), 

i.e. ABR =B 22LE - 
B  calc 

VC 	VC  
(6.2-11) 

The data used are from the sources described in section 4.4. 

The correlation is good in the range 1<TR< 2, but gives 

values that are too positive at higher temperatures and too 

negative at lower temperatures. 	In figure 6.2 is shown a 

comparison between the experimental third virial coefficients 

and those calculated from the Chueh-Prausnitz correlation, 

using the same critical constants and acentric factors. 	The 

values of d used are given also in figure 6.2. 	This 
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correlation can be seen to be fairly good, except perhaps 

at high reduced temperatures. 

The correlations could be improved, especially the 

Pitzer-Curl correlation, using accurate recent data. 	This 

is a major task if it were extended to include all substances 

likely to be present in a natural gas mixture. 	Further 

investigation along these lines was not attempted here, 

however, because the virial series approach suffers from two 

disadvantages in the prediction of the compressibility factor, 

1) When only second and third virial coefficients are 

considered, it is limited to densities (or pressures) below 

a certain maximum. 	For example, if a 0.1% accuracy in Z is 

required, then the maximum pressure is about 80 bar for methane 

at 273 K, but only about 40 bar at 220 K. 	At the present 

time, experimental fourth virial coefficients have not been 

measured for the majority of gases so that the virial series 

approach cannot be extended to higher densities. 

2) Any correlation of B and. C separately is likely to be 

less accurate than a correlation of Z itself when used to 

predict Z. 

A brief test of the Pitzer-Curl and Chueh-Prausnitz 

correlations in this application is described later in 

section 6.3(d). 

A predictive method was chosen for use in this investiga-

tion that was applicable to high pressures and was also 

capable of high accuracy; it was taken from the work of 

Leland et al. (158, 165, 166) and is based on an extension 

of the principle of corresponding states. 	A description 

follows in section 6.3(a) of the use of this method. 	A 
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general treatment, giving a more rigorous theoretical 

derivation, has been presented by Rowlinson and Watson (167). 

The method has recently been applied successfully to the 

prediction of vapour-liquid equilibria, enthalpies, etc. by 

Gunning (168) and of critical behaviour of mixtures by Teja (169). 

6.3(a) The Extended Corresponding States Principle  

In this method corrections to the two-parameter form of 

the corresponding-states principle are introduced by the 

inclusion of additional terms, 9 and 0, called "shape factors". 

Methane was chosen as the reference substance; its shape 

factors, are defined as equal to unity, and its compressibility 

factor, Zo' is given by its reduced equation of state. 	The 

compressibility factor, Z1, of another substance at a 

reduced temperature and volume of T1
R and V1

R
' respectively, 

is then 

R 	R 
T1- 	V1_ t Zl  = Zo  vm.--- , T---  ) tpsi   

(6.3-1) 

Al and 01 are the shape factors relative to methane; 

they are functions of temperature and volume. 	They have 

been evaluated for the higher hydrocarbons by simultaneous 

solution of (6.3-1) and the corresponding equation for the 

fugacity-pressure ratio 

R V1  

( 	 (6.3-2) ITT 35-7.  

The shape factors were then correlated with Pitzer's 

acentric factor, w (157),and the critical point compressibility 

factor, Zc, and expressed as functions of reduced temperature 



and volume, 

Gi  = g(TiR  

= h(T1R, V1R' w1' Z1c) 
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These equations are given in full by Leach, Chappelear 

and Leland (158). 	They are found to be applicable not only 

to the higher hydrocarbons, but also to many other non-

spherical, non-polar molecules, such as nitrogen and carbon 

dioxide. 	It can be seen that their use introduces two 

extra parameters, w and Zc, into the corresponding states 

principle. 

This treatment is readily extended to mixtures through 

the concept of "pseudo-critical" temperature and volume, 

Tc m' and V m 	The formulae given here for the calculation 

of "pseudo-critical" constants are the consequence of 

assuming a model for mixtures which is known as the Van der 

Waals one-fluid model. 	Reasons for this choice are 

advanced in a statistical-mechanical analysis by Leland, 

Rowlinson and Sather (170). 

 

c c 
T IV m m E Ex1x3 e13T.,.1 

The summations are carried out over all components of 

the mixture. 

and q.j , are eliminated by means of the Lorentz-Berthelot 

combining rules, modified by the inclusion of shape factors, 

The binary interaction terms, 0. 	V 	G. ij, Vii,  ij 



0.3  .v j  = -1(-95.1fi 	J
) 	0.V?) 

1  )
1/3  3 1/3  

J 
(6.3-7) 

r. 1  
13 ij 	ji = (1 - k. ) (G.T ce.T.-)2  i 	3 (6.3-8) 

The parameter kij' which has a value specific to 

each pair of components, is the geometric mean correction 

factor discussed in section 5.6. 	Values for the important 

pairs methane/nitrogen and methane-ethane were taken from 

Table 5.8 (for the Lennard-Jones (18-6) potential). 	Others 

were taken from Chueh and Prausnitz (171). 

The pseudo-reduced temperature and volume of the mixture 

then become, 

T 
TR 	m  
m' Tc m' 

Vm Vm' = V m' 

(6.3-9) 

(6.3-10) 

Leland et al. show that, in the case of a mixture, it is 

necessary for thermodynamic consistency to replace TR and VR 

in the shape-factor equations by G.TR ' and 0.VR m 	m" 

respectively, so that (6.3-3) and (6.3-4) become, for each 

component in the mixture, 

(6.3-11) 

= h(9.1T 1, 0iVm
R
t, M 	

Z.
c
) i 	(6.3-12) 

The compressibility factor of the mixture is given by, 

Zm = Zo 	m (TR " Vm') 
	

(6.3-13) 
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G. = g(G.T " 	m 0.VR 	W. Z) m" 	i 
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(b) The Equation of State for Methane  

Methane is a convenient reference substance as it is the 

major component of natural gas mixtures. 	The equation of 

state chosen was that of Vennix and Kobayashi (79). 	It has 

twenty-five constants, obtained by fitting the equation 

to the accurate experimental data of Douslin et al. (43) and 

Vennix et al. (52). 	It covers the range 130 - 625 K for 

pressures up to 414 bar (6000 p.s.i.a.), with a maximum 

density of 0.36 gm./cc. 	The mean-square percentage deviation 

in the predicted pressures is 0.07%, including points in the 

critical and liquid regions. 	As an independent test of the 

equation, its predicted compressibility factors were found to 

agree, to within .001 (.15%), with the experimental results 

of this work in the range 218.9 - 291.4 K and up to 100 bar. 

At lower temperatures the agreement is within .3% (see 

section 4.6(a)). 

(c) Computer Program  

A computer program in the standard Fortran IV language 

has been written for use on the University of London CDC 6600 

computer. From the known composition of the mixture and the 

necessary parameters for each component, the shape factors 

and pseudo-reduced temperature and volume of the mixture are 

calculated in the program according to (6.3-5) to (6.3-13). 

It can be seen that these equations require an iteration for 

their solution; this iteration converges very rapidly. 	The 

compressibility factor is then calculated from the reduced 

Vennix-Kobayashi equation (6.3-13). 	This is the required 

answer for a given mixture volume or density; if the answer 
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is required at a given pressure, then a first trial value 

of the compressibility factor must be assumed and hence a first 

approximation to the mixture volume 

RT Z 
Vm

P m m (6.3-14) 
m 

Equations (6.3-13) and (6.3-14) must be solved by an 

iterative procedure. 	Convergence is rapid except in the 

region of the critical point or at very high pressures 

(greater than 400 bar). 

The average molecular weight of the mixture is computed 

and hence the density in gm./cc. or lb./cu. ft., obtained. 

(d) Test of the Predictive Method  

Table 6.1 shows a comparison between the experimental 

results for the methane/nitrogen mixtures and those predicted 

by the extended corresponding states principle (C.S.P.). 

Also shown for Mixture A are the results predicted by the 

Pitzer-Curl and Chueh-Prausnitz correlations in conjunction 

with the virial series (Virial). 	The Lorentz-Berthelot 

mixing-rules with the geometric mean correction factor were 

used (equations (6.3-7) and (6.3-8) without the shape factors). 

The failure of the virial series method at the higher 

densities is apparent, the deviation reaching a maximum of 

- .011 (2%) on the 192.6 K isotherm for mixture A. 	At 

248.5 K the equivalent maximum deviation is - .003 (.35%) 

but the C.S.P. method has a maximum deviation of only 

- .0014 (.16%). 

For both mixtures the overall agreement between experiment 

and the predictions of the extended corresponding states 
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principle is excellent at the higher temperatures (>218.9 K) 

but becomes progressively worse at lower temperatures. 	The 

overall maximum deviation is +1.1% for Mixture A on the 155.9 K 

isotherm and +1.3% for Mixture B on the 181.9 K isotherm. 

These positive deviations at low temperatures are partly due 

to the approximations of the mixing-rules as the corresponding 

deviations for pure methane and pure nitrogen are smaller and 

largely negative. 	However, high accuracy is not to be 

expected below about 190 K as only one or two experimental 

data points were used in fitting the Vennix equation below 

this temperature. 

In Table 6.2 is shown a comparison between the predicted 

(C.S.P.) and experimental compressibility factors for Mixture C 

(methane/nitrogen/ethane) and Natural Gases 1 and 2. 	The 

compositions of these mixtures have been given in Table 2.4. 

A few calculations were performed in order to determine the 

effect of errors in the composition on the predicted results. 

For Natural Gases 1 and 2 the only analytical error to have 

a significant effect is that in the quoted methane percentage 

(determined by difference). 	When the methane percentage was 

increased by 0.5, the estimated maximum uncertainty in the 

analysis, and the percentage of every other component decreased 

in proportion, then the resultant changes in Z are about .001 

maximum. 	In view of this fact, the agreement between 

experimental and calculated results for the Natural gases is 

excellent. 

Agreement for Mixture C is good at 273.0 K, but worsens 

with decreasing temperature, the deviations Zcalc  - Zexp 

becoming more positive, as with methane/nitrogen mixtures,and 
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TABLE 6•1 

COMPARISON OF EXPERIMENTAL AND CALCULATED _COMPRESSIBILITY FACTORS 
METHANE/NITROGEN MIXTURES 

P (BAR) Z(EXP)____2(CSP.) (BAR.) 	_Z(EXP) Z Z 

• 9345 .8616 • 8600 96,401 .9382 96.300 	*8630 
- 53.437 - .9586 -.9579 -.:59•917 	.9030 • 9022 • 94:20 

29, 632_-__..9750 .9745 36.765 	.9373 • 9366 .9368 
 	16.364 .9856 .9853 	- 22.207 	.9613 .9606 *9610 

9.006 ,49917 13,259 _ 	.9766 ..9919 . • 9761 .9764 
-44945 .9955 -.9954 7.858 -- .9860 • 9858 .9859 

4.636 	.9917 2 .71. 2- 9975  9975  9916 49916 

P (BAR) 2 (EXP) 2JCSP). Z (BAR) Z (EXP). 

.7643 67,684 .6811 93,740 • 7635 47575 
64.996- .8216 • 8217 -.8187 52.043 	---- .7545 
43.986 • 8758 .8757 •8744 38.461 •821.5 

:28.933 .9176 .9174 .9169 27.358 -.8754 
186609 .9469 *9467 •9465 18.876.*9154 
114,783 .9664 .9662 .9660 12,739 .9435 
7.384 •9789 •9788 _•9787 8.466 .9628 

-..9869 ,-.9868 -49868 5.569 .9756 4.597 
2. 850 .9919 .9918 • 9918 3. 639 .9841 

K 15•88. 181.87 K 

P (BAR) (EXP)____.2 (CSP) P (BAR.) _ Z(EXP,) 

28.392 _  .6975 60.802 •6239 .6271 
Itg• 330 *7019 •70 59 23,135 • 7693 
3 8.339 18,072 .7759 47792 • 8286 

' 	8 • 539 83 8 4 .8407 13.665 •8753 
20.495 .8868 .8884 10. 070 .9106 
14.324 .9223 _ 	• 9234 7.285 .9366 

9.818 .9474 .9482 5.192 • 9553 
- 6,640 .9648 .9653 -3.675 .9687 

4.449 .9765 .9769 2.581 .9782 

	

(CSP) 	7 (VIR.) 

	

.6825 	.6'734 

	

.7565 	•7491. 
• 82 30 	• 8185 

	

*8762 	• 8737 
__ 	• 9158 	• 9144 

	

.9438 . 	• 9429 
• 9629 	• 2623 
• 97 57 	• 27 54 

	

9842 	• 9840 

4.7052 
• 7748 
• 8327 
. 8783 
• 9127 

9381 
• 9565 
• 9695 
*9788 
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	 TABLE 6,1 (CONTINUED) 

-- MIXTURE 	*-9 % CH4, 

291.-40 K 
	

54 K 

- P (BAR)_ 	 Z (EXP) Z ICSP)- (BAR) ,  Z (EXP) -- 	(CSP )::-.  

96.119 .9680 8996 • - 91.863 • 8028 • 8030 
54.129 _.9353 .9349 59.058 .8635 .8633 
30.304 .9618 • 9614 36.998 .9126 • 9121 
16.825 	.9782 .9779 22.629 *9462 • 9456 

9.288 	.9878 .9876 ----,--113.612 .9675 *9672 
 	5.108 	69933 .9932 8•103__ .9807_ • 9804 
	2.804 .9963 .9962 4.792- .9886 -.9884 

- :L218.86 92.65 K 

P MARY. 	Z_(EXF) .Z (CSP) (BAR) Z (EXP) Z (CSP) 

*6675 

• 8201 

.6166 

.7064 

.7869 

-46221 
• 7113 
*7905 

89.416 55.58 
65.743 .7451__,___-.7468 ___  

8212 - 
44.852 

--::.34.229 571 
.310623 _08796 .8800 24.864 _ *8512 _68537 
20.766 .9220 .9221-- --17•389 .8989 - • 9006 
13.324 09504 09504 11.838 .9325: • 9337 

8.419 .9689 9689 • - 	7.912 • 9555 .9563 
5.269 .9806 .9806 5.223 .9709 • 9714 

13.278 .9880 .9880 3.420 .9810 • 9814 

• 

	 1 

- .181.'86 'lc, 

Z (EXP.) 

55.89.K 

P.(.BAR) (CSP) Z (EXP) Z (CSP) P (BAR) 
• 

.6236 15.532 - *8112 " 	• 8149 44.235 .6155 
36.466 .7059 • 7120 11 • 854 .8628 • 8656 
28.378 .7849 .7893 - 	*9017 --• 9039 
21.036 .8478 *8510 6.388 .9303 • 931.9 
15.027 .8948 .8970 - 4,573 .9510 . 9522 
10.454 .9285 .9300 	3.239 .9657 • 96E5 

7.140 .9519  	9530 
.9686 4,817 .9679 

3.222 .9787_, --...9792 
. . 	. 



--- 

43.147 .7646  .7699 
30.329 .8411.-= .8448 
20.362 .8964 ._-.8989.  

	

13.246 -.9339 	.9355 

	

8.443 • 9584 	.9594 
5.312: 4.9741 ---=-449747 
3.315 *9839 9843 

P(BAR) Z (EXP) Z (OSP) 

73, 211 4.5721 	• 5760 
	 57.83.8 	6696 - .6763 

273.76 K 	- 
(EXP) 

- 
.Z.:.(CSP) P (13AR).._.Z 

68.058 .8236 • 8234 
1421 .8913 • 8906 

24.471 .9359 • 9352 
14.172 .9630 • 9625 

8.109 .9789 • 9786 
	 -4•608 --.9880 • 9878 

TURAL GAS - NO. 	

291.39 K 
P..(BAR)_ Z.(EXP). .Z (CSP) 

70.053 .8595 .8594 
40. 413 .9163 --. 9157 

	

22.862 • 9523 	.9516 
124757 .9733 .9726 
7.061 .9852 9849 

	

3.891 - .9918 	• 9917 

NATURAL GAS NC.2 	 

294.12 K 
	

273.16 K 
P (BAR) 	Z (EXP) 	Z (CSD) 

	
(BAR) .-.--Z (EXP) -Z (CSP) 

101. 977 .8232 -- • 8245 
58.732 .8884 .8886 
33,3-38 .9350 :9348 
13.627 .9633 .9631 
10.300 .9796 .9795 
5.661  .9888 .9887 

-3 .101-49939 	.9938 

LO1.224 .7606 
8407 

• 7610 
• 8406 62.912.• 

38.011 .9027 '09022 
22.351 • 9428 .9423 
12.911 .9670 9667 

7.38t) .9812 • 9810 
4.193 .9893 .9892 
2.37(4 .9. 940 • 9939 

_COMPAP.ISCN OF EXPERIMENTAL AND CALCULATED COMPRESSIBILITY FACTORS 
MULTICOMPONENT MIXTURES _ 

6.8 % CM1+9 15.6 N21 ___:. 	C2H6j.. 

273.02 K 
	P (BAR). Z (EXP) Z (CSP) 

89..382 .7945 .7955 

	

60• 821 .8630 	48639 
-36.372 - .9161 - 9165 - 

	  21.• 261_ .9506 	• 9507 
	12e 241 .9715 - .9715 
	 6. 983 s 9837 	*9837 

	

-3, 962 .9908 	*9908 	 

248.55 K 
(BAR)- Z (EXP) 

-.47008 - 

Z (CSP) 

• 70 23 96.118 
65.264 .7852 _.7876 

--42• 673 :8593 = • 8609 
264, 83E _•9122 9131 

 	-.16.42.1 - 	.9467 - 	• 9472 
,9 • 875 __449681 __.._9684 
5.877 9811 • 98/3 
30475 .9889 9889 

218.86 K 
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reaching a maximum of .0067,(1%) at 218.9 K. 	It is 

difficult to assign this discrepancy at low temperature to 

one particular cause, as there are no accurate low 

temperature data on methane/ethane or nitrogen/ethane 

mixtures with which the method can be compared. 	There is 

an obvious need for such data. 

6.4 Review of Published Experimental Compressibility  

Factors of Natural Gases  

The literature since 1940 was searched for published 

compressibility factor data on natural gases and similar 

multi-component mixtures. 	The collected references to the 

experimental data were divided into three classes: 

I. Those where the maximum error in compressibility factors 

claimed by the authors is Jess than 0.5%. 

II. Those where the maximum error in compressibility factors 

is greater than 0.5%, or where no error estimates are given. 

III. Those where no actual figures for compressibility factors 

are published, but only correlations of the results. 

The data from Class I were compared with the predictions 

of the computer program in order to give an indication of the 

accuracy of the predictive method for various compositions, 

pressures and temperatures over a wide range. 	Differences 

between calculated and experimental compressibility factors 

are expressed as the average absolute percentage deviation: 

\ 	 Z (calc.) - Z (exp.)  

Z (exp.) 	x 100% 

No. of points 
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(i) Class I  

Eilerts, Carlson and Mullens (172) obtained compressibility 

factors for a typical natural gas and two mixtures of this 

gas with nitrogen (up to 19%) at pressures from 69 bar to 

345 bar (1000 p.s.i.a. to 5000 p.s.i.a.) and from 273 K to 

411 K. 	The authors quote an estimated maximum error in Z of 

0.2%. 	Calculated results were obtained for all three 

mixtures over the whole range. 	The average absolute deviation 

is 0.16% and the maximum deviation is 0.4%. 	Some comparisons 

between experimental and calculated results for Mixtures Nos. 1 

and 2 are shown in Fig. 6.3. 	These gases have the following 

general compositions: 

CH4 (%) 	N2 (%) 	C2H6 (%) 	C3-C8+(%) 

No. 1 	87.7 	0.7 
	

6.5 	5.1 

No. 2 	80.8 	8.5 
	

6.0 	4.7 

Robinson and Jacoby (173) obtained data for nineteen 

synthetic mixtures of methane, carbon dioxide and hydrogen 

sulphide with smaller amounts of nitrogen, ethane and propane, 

at pressure up to 110 bar (1600 p.s.i.a.) from 311 K to 366 K. 

The authors quote an estimated average uncertainty of 0.05%. 

Calculated results were obtained for ten multicomponent 

mixtures, with a total average absolute deviation of 0.08%, and 

a maximum deviation of 0.2%. 	Comparisons between experimental 

and calculated results for four mixtures are shown in Fig. 6.4. 

These gases have the following general compositions: 



O EXPTL. DATA OF EILERTS et al. 
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FIGURE 6,6 
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CH4 (%) CO2 	(%) N2 	(%) C2-C3 (%) 	(%) 

No. 	7 92.2 5.4 0.8 1.6 

No. 	9 78.3 19.7 0.6 1.4 

No.12 69.9 28.1 0.8 1.2 

No.14 79.5 1.4 0.8 2.0 16.3 

Sage et al. (174 - 176) measured compressibility factors 

of a series of natural gases as part of a study of vapour- 

liquid equilibria of reservoir fluids. 	The estimated maximum 

error is 0.3%. 	Data are reported at pressures up to 690 bar 

(10,000 p.s.i.a.) and from 311 K to 480 K. 	Calculated 

results were obtained for two gases, with a total average abso-

lute deviation of 0.2% for pressures up to 276 bar (4000 p.s.i.a.) 

and a maximum deivation of 0.5%. A comparison between 

experimental and calculated results for a San Joaquin natural 

gas (175) is shown in Fig. 6.5. 	The general composition of 

this gas is: CH4  89.5%; CO2  1.4%; C2H6  4.9%; C3-C6+4.2%. 

Even at 690 bar (10,000 p.s.i.a.), which is, strictly, 

outside the range of the Vennix-Kobayashi equation, deviations 

within 1% are obtained. 

Wolowski et al. (177, 178) have measured compressibility 

factors of various synthetic and natural gases (full 

references are given in (177)), at pressuresup to about 69 bar 

(1000 p.s.i.a.) and from 273-K to 293 K. 	The authors quote 

a maximum experimental error of 0.3%. 	Data from (32) on 

eight mixtures of interest were converted to compressibility 

factor's, as defined here, and compared with the predicted 

values. 	The average absolute deviation is 0.16% and the 

maximum deviation is 0.4%. 	Results for three mixtures are 
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shown in Fig. 6.6. 	The general compositions of these 

mixtures are: 

cH
4 

(%) 	N2 (%) 	coi (%) 	C2H6 (%) 	C3-C6+(%) 

No. 6 75.9 7.7 16.0 0.4 

No. 	7 93.4 1.9 3.5 1.2 

No.10 90.7 0.5 0.2 5.2 3.4 

(ii) Class II  

Some of the published data in this class are for 

natural gases similar to North Sea gas and at pressures below 

100 bar (1500 p.s.i.a.). 	It is believed that a comparison 

of the experimental with the predicted compressibility 

factors will give an independent assessment of the absolute 

accuracy of the data. 	Deviations of up to 1.5% were 

obtained in the case of Katz et al. (179) who give no estimate 

of experimental error, and deviations of up to 1% in the case 

of Verrien (180) who quotes a maximum uncertainty of 0.7%. 

Subramaniam, Kao and Lee (181) present data for substitute 

natural gases at temperatures from 163 K to 310 K. 	However, 

deviations from calculated values of up to 4% are obtained, 

even for the most simple gas mixtures at 310 K, and many 

serious inconsistencies are apparent. 

(iii) Class III  

An exhaustive study of natural gases using a Burnett 

apparatus has been carried out by Zimmerman et al. (1a2., in) 

About four hundred experiments were performed at temperatures 

and pressures usual in gas metering. 	The actual data are not 

published, but the results have been extensively correlated in 

the A.G.A. NX - 19 tables (156), the accuracy of which is 
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likely to be limited by the overall accuracy of the original 

data. 	To give a preliminary indication of the possible 

usefulness of these tables, the experimental results at 283.2 K 

for one of the Dutch natural gases, containing 14.3% N2  

(Slochteren, (178)) was compared with the predictions of both 

the A.G.A. tables (as calculated in (178)) and the extended 

corresponding-states principle. 	Both agreed with the data 

to within the experimental error of 0.2% up to 60 bars. 	The 

A.G.A. Tables are therefore of possible high accuracy and 

worthy of more extensive comparisons with the data of Class I 

to determine their usefulness as a method of predicting accurate 

natural gas compressibility factors without recourse to a 

computer program. 

6.5 Conclusions  

The results of the predictive method reported here agree, 

within the estimated maximum experimental error of 0.15%, with 

the measured compressibility factors of the two typical North 

Sea gases, Mixtures A and B. 	The predictive method is thus 

capable of high accuracy when used to calculate compressibility 

factors of relatively simple natural gases at low pressures 

(up to 100 bar) and ambient temperatures. 	It is stressed that 

a reasonably accurate analysis must be available before this 

high accuracy can be attained. 

A literature search has revealed that there exist 

published experimental compressibility factors for various 

natural gases, some dating back to 1940, which are of 

sufficiently high accuracy (within 0.3%), to form a basis for 

comparison with .a predictive method. 	These data, together 

with more recent experimental results, were compared with the 
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predictions of the computer program. 	Agreement, in general, 

was good. 

The comparisons show that the method can be used to 

predict compressibility factors for the following types of 

gases within the maximum error limits shown, and over the 

stated ranges of temperature and pressure: 

Natural Gases  

Standard 	High Nitrogen Content Non-Standard  

(Up to 10% N2, 5% 	(10 to 20% Nitrogen) (Up to 20% CO2, 

CO2, 5% H2S) 	 20% H2S) 

Up to 110 bar 0.15% 
	

0.3% 	0.3% 
273K to 310K 

110 bar to 
	

0.5% 	0.5% 
400 bar 
273K to 500K 

The results of the program have also been compared with 

the experimental results for a simple ternary mixture of 

methane, nitrogen, and ethane, viz. Mixture C. 	Agreement was 

excellent at the highest temperature, but deviations of 0.5 

to 1.0% are apparent as the critical point of the mixture is 

approached. 	It may be concluded that the predictive method 

is certainly useful at low temperatures, but no general claims 

as to its accuracy can be made when applied to other multi-

component mixtures because of a lack of other accurate low-

temperature compressibility factor data. A more stringent 

test of the extended corresponding-states principle is its 

ability to predict low-temperature vapour-liquid equilibria 

(168). 

The success of this particular method in the prediction 

of compressibility factors is a pointer to its usefulness 



when extended to the prediction of other thermodynamic 

properties of natural gases, particularly those properties 

which are in part derived from the equation of state of the 

mixture, i.e. enthalpy, entropy, and vapour phase fugacity. 

(168). 
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