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Abstract 

This work is concerned with the three point bend impact test on polymers. A test series 
with three different polymers was performed and the time to fracture from the three 
point bend impact test was measured. Data from a round robin within ESIS, which was 
performed as a part of this work, is also presented. A dependency of the time to fracture 
with impact velocity was found and was explained with a thermal model. Numerical 
modeling of the three point bend test with a finite volume program was employed to 
enhance understanding of the test and to obtain dynamic correction functions, which 
are necessary to calculate K and G from time to fracture. A simple model of the three 
point bend test and a more complicated model, which included contact effects, were 
analyzed. A good fit with the experiment was found for the contact model. The anvils 
were found to be important only at a late stage in the test. Various test parameters 
were varied to investigate their influence on the dynamic correction function. The 
contact stiffness was found to have an important influence on the shape of the dynamic 
correction function. Due to the nonlinear contact stiffness the impact velocity also 
affects the dynamic correction function. For a polymer specimen and a steel striker the 
specimen width and the specimen material were found to have only a small influence 
on the dynamic correction function. The dynamic correction function for G was found 
to exhibit higher oscillations than the dynamic correction function for K and hence the 
former is a more sensitive parameter. The time to fracture results from the test series 
were converted into K and G with a procedure based on the numerical analysis. 
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Nomenclature 

Latin alphabet 

a Crack length 
bi Polynomial coefficients 
Cb Bar wave speed 
Cl 	Longitudinal wave speed 
ct  Transverse wave speed 
Cr 
 Rayleigh wave speed 

f 
	

Geometry factor 
Body force vector 

fg Upper frequency bound 

gd Dynamic correction function 

ix Unit vector in x-direction 
kd Dynamic correction function 
k1 Contact stiffness 
k2 Specimen stiffness 
n 	Unit vector of outward normal 

Radius 
t Time 
t 
	

Traction vector 
t f 	Time to fracture 
t 9 	Time to fracture from gold lines 
tr  Rise time 
is 	Time to fracture from strain gauge 

Displacement 
Displacement vector 

y 
	Distance from neutral axis 

z, Critical distance 

for the energy release rate 

for the stress intensity factor 



Nomenclature 

A 	Area 
B Thickness 
Cm 	Machine compliance 
CS 	Specimen compliance 
D Diameter of Caustic 
E Elastic modulus 
Ek 	Kinetic energy 
ES 	Strain energy 
• Energy release rate 
G, 	Critical energy release rate 
Gd 	Dynamic energy release rate 
G8t 	Static energy release rate 
H (t) Heavyside function 
I 	Identity tensor 
J J integral 
K Stress intensity factor 
K, 	Critical stress intensity factor 
Kd 	Dynamic stress intensity factor 
K,t 	Static stress intensity factor 
L Specimen length 

Mb 	Bending moment 
P Load 

Pmax Maximum load 
S Span 
S Surface of body (Chapter 3) 
T 	Temperature 
Tm 	Transition temperature 
U Strain energy density 
UQ 	Area under load-displacement curve 
✓ Impact velocity 
✓ Volume of body (Chapter 3) 
W 	Specimen width 

We 	External work 
X 	Nondimensional time 
Xo 	Starting point of kd  versus X curve on x axis 
1D 	One dimensional 
2D 	Two dimensional 
3D 	Three dimensional 
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Nomenclature 

Greek alphabet 

a 	Stiffness ratio 
F, ro  Paths around the crack tip 
Da 	Crack extension 
AT 	Temperature rise 

Strain tensor 
Angle 

A, au 	Lame constants 
1) 	Poisson's ratio 

vo 	Opening displacement of a point along a crack face 

vt 	Half of the crack tip opening displacement 
Energy calibration factor 

p 	Density 
Stress tensor 

ayyt 	Stress component in y-direction at the crack tip 

go 	Constant stress value 
Period of specimen oscillation 
Dimensionless specimen compliance 

V 	Nabla operator 

Main abbreviations 

CMOD Crack mouth opening displacement 
CTOD Crack tip opening displacement 
DSIF 	Dynamic stress intensity factor 
DOF 	Degree of freedom 
ESIS 	European Structural Integrity Society 
FD 	Finite Difference 
FE 	Finite Element 
FV 	Finite Volume 
IRC 	Impact response curve 
LEFM Linear elastic fracture mechanics 
OPB 	One point bend 
PE 	Polyehtylene 
PMMA Polymethylacrylate 
PVC 	Poly-vinylchloride 
SENB Single edge notched bend specimen 
SIF 	Stress intensity factor 
TPB 	Three point bend 
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Chapter 1 

Background 

1.1 Introduction 

Today polymers are found in a multitude of applications. In many cases it is necessary 
to know the fracture toughness of these materials and there is an increasing demand 
for the high rate properties of polymers. The automotive industry, for example, uses 
a large volume of polymers for car components and is especially interested in the frac-
ture properties at impact rates. For quasi-static loading rates there are standard test 
procedures for the determination of fracture toughness and critical energy release rate 
available [1, 2]. For intermediate rates of loading below lm/s a test procedure was 
developed by the European Structural Integrity Society (ESIS) [3]. For loading rates 
greater than lm/s there is no standard test procedure for polymers available. The aim 
of this project is therefore to contribute towards a possible standard test method for 
determining fracture toughness and critical energy release rate for polymers at high 
rates (> 1m/s). 

1.2 Dynamic fracture mechanics 

1.2.1 Basic definitions 

This work only deals with fracture in Mode I. Therefore it is convenient to use K for 
the opening mode stress intensity factor Kr and G for the opening mode energy release 
rate G I . 

For a plane crack of a length a in a body of arbitrary size and loaded in Mode I the 
stress intensity factor K is defined as 

K = lim 27rr a- yy  (r, 0) 	 (1.1) 
r-->o 
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Y 

X 

a 

Figure 1.1: Coordinate system and stresses. 

with the radius r , the angle 0 and the principal stress in y-direction cryy (r, 0) (Figure 1.1). 
This relationship is valid for a stationary crack with constant or transient loading as 
well as for a moving crack. 

G  = dWe  dE, dEk  (1.2) 
dA dA dA 

with the external work, We, the strain energy, E5 , the kinetic energy, Ek, and the 

change in fracture area, dA. G has the units of J/m2. The calculation of G from the 
global energy balance is only possible in the case of a crack advance and it is usually 
applied for calculating G for a moving crack as in [4]. 

Seen from a local perspective G can be defined with the crack tip closure integral, which 
was introduced by Irwin [5]. Irwin's contention was, that, if a crack is extended by a 
small amount, Aa, the energy absorbed in the process is equal to the work required to 
close the crack back to its original length. This can be expressed as 

Da 

G = lim —
1 

f o-  v dx yy o 
Da-40 Act 

0 

where v, is the opening displacement of a point along a crack face [6, 7]. This expression 
for G is particularly suitable for computational purposes. Rybicki and Kanninen [6] as 
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the global position G can be derived from the global energy balance. G can then be 
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well as Jih [8] used the crack tip closure integral to calculate the SIF in a FE program 
via Equation 1.4. The crack tip closure integral can be calculated for stationary cracks, 
as it does not need a crack advance. 

(1 - v2) K2  
G = E 	

(1.4) 

for plane strain, where E is the elastic modulus and v is the Poisson's ratio. For plane 
stress the factor (1 — v2) has to be omitted. With Equation (1.4) it is possible to 

calculate K from G obtained with the crack tip closure integral. It should be noted 
that even for a moving crack a relationship between K and G exists, which in this case 
depends upon the crack speed [9]. 

1.3 Stress wave propagation 

Stresses in a body propagate as stress waves at certain speeds. This is important 
because it means that it takes a certain, finite time for the stress wave to reach a 
particular point in the body. Stress waves from a point of impact interact with the 
crack and create a change in the stress field around the crack tip. In an analytical 
study Brock [10] found indications that it is a complicated pattern of direct and reflected 
waves that essentially generates brittle fracture at the crack tip in a three point bend 
(TPB) test. This also means that the crack tip stress field is affected by the specimen 
geometry. The information of the specimen geometry is transported to the crack by 
reflected stress waves. 

There are different types of waves which travel at different velocities. Detailed descrip-
tions of stress waves can be found in [11] and [12]. In a thin bar the stress state is 
approximately one-dimensional [12]. The velocity of a wave propagating under a 1D 
state of stress can be calculated from 

cb =- (—E  
P ) 

(1.5) 

where cb  is usually called the bar wave speed. The material density is denoted as p. 

In an infinite, elastic medium free from body forces there are two types of stress waves 
[11]. The first is the longitudinal wave with the wave speed 

(A+2/12 .  
ci = 

P 

In the case of a stationary crack in a static or transient field a relationship between K 

and G exists with [9] 

(1.6) 
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It is also called dilatation wave or pressure wave (P-wave). A andµ are the Lame 
constants, which can be expressed with E and v as 

A= (1 + v) (1 — 2v) 

and 	 E 
Ft = 	 2 (1 + v) • 

The latter, tc, is also called the shear modulus. The second type of waves in an infinite, 
elastic medium are transverse waves with a wave speed of 

v E (1.7) 

(1.8) 

(1.9) 

This type of wave is also called the shear or S-wave. In contrast to longitudinal waves, 
shear waves do not change the volume of the body. 

At a surface a different type of waves can propagate which are called Rayleigh waves. 
They are confined to a thin layer close to the surface and the Rayleigh wave speed 
depends upon the Poisson's ratio with 

Cr = f (v)ct 	 (1.10) 

where f (v) is a function which satisfies the Rayleigh equation for a given v. Values 
for f (v) can be found in [11]. For example for a Poisson's ratio of v = 0.33 we find 
f (v) = 0.932. 

For a thin plate in plane stress the longitudinal wave speed is given by 

(P(1—v2) 
2 

— /12)) 

This relationship is only valid when the wavelength is very large compared to the 
thickness of the plate. If the wavelength is very small compared to the thickness of the 
plate, longitudinal waves travel with the Rayleigh wave speed. Transverse waves in the 
thin plate in plane stress have the same wave speed as transverse waves in an infinite, 
elastic medium. 

For plane strain the longitudinal and transverse wave speeds are the same as for the 
infinite, elastic medium. 

Bohme [13] found that the interaction of the first longitudinal wave fronts with the 
crack generates an initial decrease of the stress intensity factor (SIF) in the TPB test. 
The first significant increase of the SIF was found at times comparable to the arrival 
time of the first direct transverse wave. 
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Figure 1.2: The TPB test configuration. 

1.4 The quasi-static three point bend test 

Figure 1.2 shows the test setup of the three point bend test with a single edge notched 
bend (SENB) specimen. For the determination ofiC, and G, at low testing rates under 
quasi-static conditions there is a standard test procedure available [2]. This procedure 
uses the load-displacement curve to obtain the fracture toughness and the critical strain 
energy release rate in a displacement controlled test. Linear elastic fracture mechanics 
(LEFM) is applied. If LEFM is valid, the fracture toughness can be calculated from 

Prnax  Kc= 	
1 

B yv
.n.7 

2  

(1.12) 

Prnax is the maximum load from the load-displacement curve in Figure 1.3. B is the 
thickness of the specimen and W is the specimen width. f is a geometry factor, which 
is dependent on a/W, the notch length ratio and S/W, the span ratio. For a SENB 
geometry f is calculated [14] with 

(1.13) 

for S/W = 4 and for a notch length ratio a/W between 0 and 1. The critical strain 
energy release rate is calculated from the area under the load-displacement curve, UQ 
(Figure 1.3) with 

(1.14) 

21 

UQ  
Gc= f 	 BWq5 



Background 

• 

Pmax 

UQ 

	o. 
Displacement d 

Figure 1.3: Schematic load-displacement curve. 

where 0 is the energy calibration factor, which can be found tabulated in the test pro-
cedure. UQ  should be corrected by subtracting the energy absorbed by the indentation 
of the specimen. 

1.5 The dynamic three point bend test 

1.5.1 Overview 

Dynamic three point bend tests with notched samples have been performed for quite 
some time. Instrumented Charpy tests have been reported since 1926 [15] when the 
tests were conducted to determine the impact energy. 

Various dynamic effects occur in the impact test. They make an evaluation of the test 
along the lines of the static procedure difficult to impossible, depending upon the test 
speed. Therefore Nash [16] did an analysis of the hammer forces and bending moments 
occurring in the impact test. He used a beam model, which is a 1D theory, to calculate 
the striker force and the bending moment in the beam during the test. Under the 
assumption of the stress distribution across the beam width to be similar for the static 
and dynamic case a stress intensity factor can be calculated from the central bending 
moment. This underlies many 1D methods. 

One of the very important issues in a displacement controlled test is the influence of 
the contact stiffness between striker and specimen. Nash and Lange [17] investigated 
the influence of the contact stiffness on the TPB impact test. They used a beam model 
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with the first bending mode only and did calculations with and without a linearized 
contact law. Nash and Lange found good agreement with experiments for the model 
including contact effects. They concluded that a model without inclusion of contact 
stiffness does not yield a realistic description of the impact process. They also remarked 
that it is difficult to determine the initiation time from the load-time curve, as peaks 
in this curve are due to the dynamics of the system and not necessarily connected with 
crack initiation. Initiation time was measured in [17] with a strain gauge. 

Saxon [18] connected the first peak in the load-time signal with the inertia loading from 
the acceleration of the specimen from rest to the striker velocity. He also linked the 
oscillations recorded after the inertia peak with the flexural response of the specimen. 
Saxon found that the initial load imparted to the specimen is governed by elastic wave 
mechanics. 

Turner [19] pointed out that the prime effect in the TPB impact test is the specimen 
inertia. He introduced nondimensional factors such as a characteristic time, which is 
scaled with the natural frequency of the beam. Turner found that the contact stiffness 
is an important parameter in the TPB impact test and that the initial slope of the test 
can be related to the contact stiffness. He concluded that the whole test is governed 
by the vibrational characteristics of the beam-pendulum nose system. He proposed 
to calculate K from the central bending moment. He also proposed a time to fracture 
approach. As the determination of time to fracture from the load trace is not advisable, 
he recommended the use of strain gauges close to the crack tip or conductive strips 
across the crack path for this purpose. 

Kishimoto [20] derived a simple formula for the dynamic stress intensity factor (DSIF) 
using Nash's analysis [16]. The DSIF is assumed to be proportional to the displacement 
of the specimen at the center. All bending modes except for the fundamental mode 
were neglected. Good agreement with a finite element (FE) solution was achieved 
for a saw-tooth shaped load input. It should be noted that this loading pattern is 
an idealized case. Also, the assumed rigid hinge connection between specimen and 
anvil does not hold in the experiment. This was also shown experimentally by Bohme 
and Kalthoff [21]. In [22] Kishimoto presented an improved version of his model from 
[20] and included the effect of rotatory inertia and transverse shear deformation using 
Timoshenko's beam theory. Both models calculate the SIF via a convolution integral 
from the striker load, which is an input parameter. 

Kalthoff [23] did experiments with the shadow optical method of caustics, which is an 
optical tool for measuring stress intensity and applied this technique for investigating 
dynamic fracture phenomena. In a transparent material the displacements around the 
crack tip act as a divergent lens for parallel light passing through the specimen (Figure 
1.4). A shadow area can be observed, which is surrounded by a luminous curve, the 
caustic. Examples of caustics in transmission and reflection can be seen in Figure 1.5. 
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Figure 1.4: The principle of the shadow optical method of caustics. From [23]. 

For a non-transparent specimen a mirrored front surface is required. Due to surface 
deformation, light rays near the crack tip are reflected towards the center line and a 
similar caustic is obtained. The size of the shadow pattern is related to the SIF at the 
crack tip. The diameter of the caustic, D, is proportional to the SIF with 

K cx 
	5 	

(1.15) 

Kalthoff and Bohme [23, 24] used a 24 spark high speed camera for photographing the 
shadow patterns under dynamic loading. The SIF was then obtained from evaluating 
the diameter of the caustic on the photographs and its conversion via Equation (1.15). 

Bohme, together with Kalthoff [24, 21] did experiments on large epoxy specimens (Fig-
ure 1.6). He used Caustics in transmission to measure the DSIF. He also instrumented 
the anvil and the striker with strain gauges and recorded the specimen movement at 
the anvils with an optical system. 

Bohme found that, as a first reaction to the impact, the specimen moves away from the 
anvils. In the case of a short specimen with length, L, to width, W, ratio L/W = 4.1 
and the span to width ratio S/W = 4 a second impact occurs at the anvils. This 
was found not to be the case for longer specimen with S/W = 5.5. The movement of 
the specimen at the anvil contact point only started after a characteristic time. This 
time was found to coincide with the time needed for the transverse stress wave from 
the impact point to reach the anvils. Bohme concluded that the loss of contact at 
the anvils contradicts the boundary condition of a constant, zero displacement at the 
supports, which is often assumed in beam models e.g. in [16, 20]. Between the time of 
the striker impact and the impact of the specimen onto the supports the specimen is 
in a one point bend mode. This means that in this period the vibration pattern of an 
unsupported beam is excited. 
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Figure 1.5: Typical caustics in transmission and reflection. From [23]. 
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Figure 1.6: Bohme's test setup and the response of a short SENB specimen with 
S/W = 4.1. From [23]. 
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Giovanola [25] took the concept of the one point bend a stage further and proposed 
the use of the so-called one point bend (OPB) test. In line with the findings of Bohme, 
he claimed that it is in many cases unnecessary to support bend specimen at high 
impact rates. Brittle fracture occurs in many cases before the anvil has interacted with 
the specimen. The applicability of the OPB test is limited by the maximum loading 
time and the maximum SIF, which are dependent upon the specimen dimensions, the 
material properties of the specimen and the impact velocity. Giovanola suggested the 
use of ballast at the end of the specimen to increase the maximum loading time and 
the maximum SIF. 

Peuser [26] analyzed experiments performed by Bohme and Kalthoff [24, 21] on large 
epoxy specimens. He used a finite difference (FD) scheme as well as a beam model. The 
measured striker load was used as an input into both models. Peuser was the first who 
included the anvil stiffness into a model of the TPB impact test. The supports were 
modeled as linear springs, which can only be subjected to compression. This was based 
on the importance of the anvils in the impact process, which was reported by Bohme 
[21]. In agreement with the experiment, Peuser found that the specimen first moves 
away from the supports, then it impacts on the support and bounces back again. This 
was observed for rather short specimens with a length to width ratio of L/W = 4.1. A 
beam model with 2 beams connected with a hinge and a torsion spring was also applied. 
The supports were again modeled as springs and the anvil stiffness was determined 
experimentally. The stress intensity factor was calculated from the angular distortion 
from the center of the beam. This is equivalent to the proportionality of the SIF with the 
displacement at midspan (assuming a constant beam stiffness). Reasonable agreement 
with the experimental SIF was achieved with the beam model and the measured load-
time curve as an input. The accuracy of the beam model was reported to become worse 
with increasing L/W ratio. 

1.5.2 Determination of a transition time 

Ireland [27] proposed the restriction of the range of applicability of the static load based 
procedure to times to fracture, which are larger than the duration of three oscillations 
of the measured striker load 

t f > 3 T 
	 (1.16) 

with T being the period of oscillations of the specimen, which can be approximated as 

T = 1.68— 
S 
 ( 

W 2 
(EBC,$) 

1 

cb 
(1.17) 

where S is the support span, W is the specimen width, B is the thickness, E is the 
elastic modulus, Cs  is the specimen compliance and cb is the bar wave speed. This time 
of 3r was considered as a transition time to separate the initial, dynamically influenced 
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time from the time, when a quasistatic procedure can be applied. Kalthoff [23] showed 
that this criterion does not hold in all cases. Depending upon the test conditions (like 
the contact stiffness) and the specimen geometry the transition time for using the static 
procedure can be significantly longer than 37-, as it can be seen in Figure 1.7. What is 

4.0 
N.  

E 
X 

30 

cc 

0 
cc 

U 

LL 20 

in 1.0 
In W 
•— 

40 

30 

20 

10 

I ms 	2ms 	3ms 	 0 	203 us 	400 us 	600 us 	600 us 

0 	It 	2T 	 4t 	St 
	

0 
	

It 
	

2t 
	

3t 
	

4t 
TIME t 
	

TIME t 

Figure 1.7: Stress intensity factors for two different experiments. From [23]. 

also obvious in the diagrams is that the dynamic effects at the crack tip (Krat in Figure 
1.7) are much lower than the dynamic effects in the striker signal (Kid" in Figure 1.7) 
and that they decrease faster to an insignificant level. Bohme [28] presented transition 
times for different specimen geometries based on SIF measurements at the crack tip. 
These transition times are for most specimen geometries smaller than the transition 
time proposed by Ireland. The disadvantage is that, although the dynamic effects have 
fallen within the +10% envelope and no dynamic correction needs to be applied, the 
SIF has to be evaluated at the crack tip, which means that instrumentation of the 
specimen is still necessary in most cases. 

1.5.3 The time to fracture approach 

For highly dynamic tests Kalthoff [29, 30] introduced the concept of impact response 
curves. For fixed test conditions such as striker geometry, impact velocity, specimen 
material and geometry a unique relationship between dynamic fracture toughness and 
time can be found. Kalthoff called this fracture toughness-time relationship impact 
response curve. It depends only on the elastic reaction of the specimen-striker system. 
Initially these curves were determined with caustics in reflection mode [29] on large 
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steel samples. In [30] a calibrated crack tip strain gauge was used to determine these 
curves. Once such impact response curves are known, they can be used to obtain 
the dynamic fracture toughness from the time to fracture only. This is illustrated in 
Figure 1.8. This technique can be applied to any material with the same material 
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Figure 1.8: Determination of the dynamic fracture toughness by the impact response 
curve concept. From [30]. 

properties (E, v) under the same impact conditions. The use of this technique was 
especially proposed for steels. The concept of impact response curves (IRC) [29] is 
also applicable to the one point bend test. Giovanola [25] proposed measuring the IRC 
with a calibrated strain gauge or directly with the elastic singularity solution of the 
crack tip strain field measured with a strain gauge. The advantage of the IRC method 
is that time to fracture can be measured quite easily without the need for calibrated 
strain gauges. Kalthoff [29] proposed the use of two uncalibrated strain gauges. One 
gauge is located on the striker and records the time of contact between striker and 
specimen. The other gauge is placed on the specimen close to the crack tip and records 
initiation. This technique avoids the necessity of calibrating the striker and especially 
each specimen. The disadvantage of this method is that for each testing condition a new 
impact response curve is needed, which involves exact measurements with calibrated 
strain gauges. 
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Bohme [24, 31] took the concept of impact response curves further and introduced a 
nondimensional time X with 

X = —W  
cit 	 (1.18) 

where t is the time and ci is the longitudinal wave speed. He determined experimentally 
a dynamic correction function 	

Kd 	 (1.19) kd = Kst 

with the dynamic SIF Kd and the static SIF K5t  for several specimen geometries (Figure 
1.9) with caustics. The advantage of the concept is the normalization of time with 

Figure 1.9: Dynamic key curves for 4 different specimen geometries. From [28]. 

respect to wave speed and width. The curve remains the same for materials with 
different elastic properties i.e. different wave speeds as well as for different specimen 
widths, as long as the specimen proportions are held constant. Bohme called these 
dynamic correction functions dynamic key curves. Looking at the curves in Figure 1.9 
it is easy to see that some specimen geometries are more favorable than others. The 
transition time for the dynamic correction function to fall within the +10% envelope 
is the lowest for specimen of Type I. This favorable specimen geometry has a span to 
width ratio of S/W = 4, a length to width ratio of L/W = 5.5 and a notch length 
ratio of a/W = 0.3. The highest transition time is observed for Type IV, which has 
a transition time more than 4 times higher than Type I. Apparently longer specimens 
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with L/W = 5.5 give a much better response with less dynamic effects than shorter 
specimens with L/W = 4.1. 

In order to calculate Kd with the dynamic key curve concept the time to fracture has 
to be measured. This can be done the same way as proposed for the impact response 
curve method. The dynamic fracture toughness is calculated [31] from 

Kd = Kit • kd (X = tiff /W) 	 (1.20) 

with the dynamic correction function value evaluated at the time to fracture, t f . The 
static fracture toughness Kst  is evaluated [31] with 

f E 	Vt f 
K8t = z1) 	(1 + Cm/Cs ) 

(1.21) 

where V is the impact speed and 1/.; is the dimensionless specimen compliance after 
Bucci [32] with 

w  
11) = 0.24 ( S  )3  (1.04 + 3.28 (--s—)

2 
 (1 + v)) + 2 (TS  ) 2  ( 

(4.21 (W) — 8.89 (wa  )2  + 36.9 (wa  )3  — 83.6 (147a  ) 4  + 174.3 (wa  )5  

—284.8 ( c.rTt7) 6  ± 387.6 (wa  )7  — 322.8 ( cv;)8  + 149.8 ( W )9  

and the specimen compliance 

(1.22) 

Cs  = EBIP 	 (1.23) 

where B is the specimen thickness and Cm  is the machine compliance. The static 
fracture toughness is, in this case, computed via an equivalent load calculated from the 
displacement and the compliance. Thus Equation 1.21 is equivalent to Equation 1.12 
with the difference that in Equation 1.21 the machine compliance is taken into account. 

1.5.4 Models of the TPB test 

Numerical models with FE or FD can achieve a good match between the model pre-
dictions and the experiment, but they do not provide much insight into the physical 
process involved. Moreover, an analytical solution provides some understanding of the 
influence of the various parameters involved in the test [33]. A simple analytical model 
is also very useful for a straightforward evaluation of test results. That is why many 
studies have been undertaken to find appropriate analytical models. Various models 
have been developed for the dynamic TPB test. 
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1.5.4.1 Force input models 

Many models use the measured force signal as an input to calculate the SIF response 
at the crack tip. Several of them were already mentioned [16, 26, 20, 22] in Section 
1.5.1. The disadvantage of all force input models is that they require an accurate 
measurement of the force-time record. Furthermore, the point of initiation cannot be 
accurately detected from the load signal at high rates [19]. This means that expensive 
instrumentation of the specimen is necessary. 

Marur [34] calculated the dynamic SIF response of the TPB specimen to the experi-
mental load with a FE model with beam elements. A linearized anvil contact stiffness 
was used. The agreement with the experimental SIF history was better for short beams 
than for beams with an overhang. For short times the agreement is not good, presum-
ably because the beam elements do not capture the dynamic stress field at the crack 
tip accurately. The anvil reaction was modeled quite accurately. 

Rokach [35] developed a hybrid experimental/numerical method. He established a re-
lationship between the SIF, the recorded striker load, the recorded anvil load and the 
specimen response via a convolution integral and a unit step function. The nonlinearity 
of the contact zone is thereby included in the force signal. The impact DSIF response 
functions can be derived analytically or numerically. Numerically it can be obtained 
with a FE model and a unit step load. Another possibility is to use the modal super-
position method. Eigenfrequencies and weight coefficients were calculated from a FE 
model for this purpose. If the first eigenfrequency alone is used the model coincides with 
Kishimoto's solution [20]. Rokach [36] showed that the higher modes are important at 
short times. 

Weissbrod [37] developed a procedure for short Charpy specimens. The dynamic SIF 
was determined with a convolution integral using the measured force signal. The re-
sponse of the sample to a unit impulse is calculated with the finite element method. A 
fracture gauge or a strain gauge is used in this procedure to determine the instant of 
fracture. This means that instrumentation of the specimen is necessary and a calibrated 
loadcell is also needed, as the accuracy of the measured force directly affects the SIF 
result. 

1.5.4.2 Load-point displacement models 

These models are complete models in the sense that, assuming a linearly changing 
displacement, i.e. a constant velocity, the whole impact process is modeled. Except for 
the impact velocity, no measured data are needed. 

Williams [38, 39] developed a one mass two spring model with the specimen mass, the 
contact stiffness and the specimen stiffness. This one degree of freedom model allows 
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the calculation of a dynamic correction function for G as well as for the SIF. It shows 
a significant dependence on the contact stiffness. 

A one degree of freedom model with the specimen modeled as an Euler-Bernoulli beam 
developed by Williams [40] includes the contact stiffness and higher modes of the spec-
imen. The contact stiffness is modeled as a linear spring. A rigid hinge connection 
between the specimen and the anvil is used. A procedure is proposed to calculate the 
contact stiffness from Hertz's solution and the beam model. In analogy with Equation 
(1.19) a dynamic correction function for the energy release rate, gd , is defined in [40] as 

Gd 
gd = ry 

k-7 st 
(1.24) 

where Gd is the dynamic strain energy release rate and G,,t  is the static energy release 
rate. 

Using a 2D FE program, Marur [41] found a significant influence of the specimen 
overhang, when L > S, on the SIF-time curve. If the anvil node was fixed in the 
computations, the influence of the overhang vanished. This is sensible, as the vibrational 
pattern is forced to be the same by fixing the nodes. 

In [42] Rokach used a 2D FE model with the commercial program ADINA with a 
linearized anvil contact stiffness. Computing the anvil force, he showed that the as-
sumption of a permanent contact between specimen and support is invalid. Rokach 
claimed that there is only a small influence of the way the linearization of the contact 
stiffness is performed on the SIF results. He also found that the contribution of higher 
modes is only important for L/S > 1. He proposed that for a Charpy type specimen 
with L/S = 1.375 the first two eigenmodes should be used. 

An analytical model with the specimen modeled as rigid body halves with a hinge for 
the process zone was developed by Orynyak [43]. The SIF was calculated from the angle 
of the hinge. Springs were placed between striker and specimen and between specimen 
and supports to account for contact effects. Some disagreement with measurements was 
found. This was due to the simplification of the specimen halves which were modeled 
as rigid bodies. 

Marur [44] developed a 2DOF 2 mass, 2 spring, 2 dashpot model for the TPB test, 
which he solved numerically. The SIF was taken to be proportional to the force in the 
spring representing the specimen. Marur showed that there is considerable influence of 
the contact stiffness ratio (contact stiffness divided by specimen stiffness) on the beam 
response. 

A model with an elastically constrained free-free Timoshenko beam was proposed by 
Marur in [33]. To include the effect of the overhang, the full length of the beam was 
modeled. The supports were modeled as springs, active only in compression. The model 
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has 2DOF, the rigid body translation mode and the fundamental bending mode. The 
displacement was applied through a linear spring, representing the contact stiffness. 
The impact process was divided into two phases: the free phase and the constrained 
phase, as the specimen gains contact with the supports at a defined period of time. 
Relatively good agreement with experimental data was achieved for short specimens 
with L/W = 4.1. For long specimens with L/W = 5.5 the model does not predict the 
SIF-time dependency satisfactorily. Marur believed that this is due to the influence of 
higher modes. The influence of higher modes for longer specimen was also reported by 
Rokach [42]. 

A 3DOF model for the OPB test was developed by Marur in [45]. A dynamic analysis 
of the OPB test was performed with the impactor modeled as a point mass with an 
initial velocity acting on the specimen, which is represented by a Timoshenko beam. 
Only the first vibrational mode is taken into account. Again, this model is reasonably 
accurate only for short beams, as otherwise there is a significant influence of higher 
vibrational modes. 

Lorriot [46] and Landrein [47] proposed a 2DOF 2 mass 2 spring model to model 
the specimen and specimen-striker interaction. The specimen stiffness was modeled 
as a spring with the stiffness of a notched Timoshenko beam. The agreement with 
experiments was not very satisfactory. 

A 2D FE model with the contact effects taken into account was presented by Rokach 
in [48]. Striker and support were modeled as rigid cylinders. This is approximately 
true for brittle polymers, but for metallic materials the finite stiffness of striker and 
supports affects the contact stiffness. Good agreement with Baines dynamic key curve 
measurements from [24] was observed. Rokach found that the variation of the Poisson's 
ratio within a certain range does not affect the dynamic correction function greatly. He 
proposed using the bar wave speed, cb for the nondimensional time to normalize out the 
Poisson ratio influence. Rokach also studied the influence of the specimen geometry on 
the oscillation pattern of the DSIF-time record. He found that oscillations are larger for 
shorter specimens. Rokach reported that the smallest dynamic effects were observed for 
L/W = 5.0 — 5.5 and a/W = 0.3. In the initial period the dynamic correction functions 
were found to be independent of the specimen length. This is expected because as long 
as no stress waves from the ends of the specimen have returned to the crack tip, the 
crack is unaware of the specimen length. 

A linearized expression for the contact stiffness between a cylinder and a beam is 
derived by Rokach in [49] from 3D FE studies. A convolution type expression for 
the one point bend test in conjunction with the linearized contact stiffness leads to a 
simplified analytical expression for the DSIF time record. Only the first eigenmode is 
taken into account. With this simple model, the peak SIF and the time of the peak for 
a OPB test can be approximated. This is useful for planning OPB tests. 
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1.5.5 Instrumentation 

Ireland [50] showed the importance of the experimental equipment for the TPB impact 
test. With limited frequency response equipment the recorded signals are distorted, 
since the high frequency parts of the signal are attenuated. The same applies if filtering 
of the data is performed. Equipment such as amplifiers should therefore have sufficient 
frequency response. Filtering should only be used in special cases and with a clear 
understanding of the overall effects of limited frequency response. 

1.5.5.1 Strain gauges 

Strain gauges are commonly used for the instrumentation of the striker as well as the 
specimen. They have a limited frequency response themselves. The frequency response 
of the strain gauge is dependent upon the gauge size. Smaller gauges have a better 
frequency response i.e. smaller rise times. For relatively small strain gauges of 3mm on 
steel the upper frequency bound is higher than 300kHz [51, 52]. This corresponds to a 
rise time smaller than 1its. Winkler [53] proposed to use the rise time instead of the 
upper frequency bound, as it is more descriptive and can be directly compared with 
time dependent changes in the measured signal. Assuming a first order behaviour the 
rise time can be calculated from 

tr 	 (1.25) 
fg 

where f g  is the upper frequency bound. The capacity of the wiring and the following 
strain gauge amplifier further lowers the frequency response of the system [53]. The 
total rise time can be approximately calculated from 

2  tr  ti 	t2  (1.26) 

where tri  is the rise time of each device in the signal chain. The device with the slowest 
response in the signal chain is the limiting factor. 

For direct measurements of the magnitude of the stress intensity factor from a strain 
gauge the placement of the gauge is very important. Dally [54] investigated the influence 
of strain gauge placement on the accuracy of the SIF measurement. The SIF is obtained 
with strain functions expressed as infinite series. These series can be truncated when a 
certain amount of error is accepted. Dally found that there are three regions for strain 
gauge placement. Region 1 very near the crack tip is invalid due to 3D and plasticity 
effects. The far field region 3 is invalid, as the truncated series does not describe the 
strain field. He therefore found a region 2 between region 1 and 3, where the truncated 
series solution represents the strain field to a given accuracy. Dally concluded that a 
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single gauge with proper placement and orientation can be used to measure the SIF 
with sufficient accuracy. 

1.5.5.2 Displacement measurement 

Instead of measuring the striker load or the strain close to the crack, it is also possible 
to measure the displacement. Marur [34] found that the load point displacement is less 
sensitive to test conditions than the striker load. Optical measurement systems are 
often used for such displacement measurements. 

Lorriot [46] and Landrein [47] used a laser displacement system to measure the spec-
imen displacement. The big advantage of such a system is that there is no need for 
instrumenting the specimen, which is very important for routine testing. It should be 
noted that the measurement system used by Lorriot and Landrein has a very limited 
frequency response. 

Sharpe and Bohme [55] measured the crack tip opening displacement, CTOD, with 2 
measurement points on opposite crack faces with a laser interferometer. Good agree-
ment with a crack tip strain gauge was achieved. 

De Luna and coworkers [56] used a high speed photography technique with 4 cou-
pled CCD cameras to obtain the crack mouth opening displacement, CMOD, from the 
recorded images. From CMOD they calculated the DSIF. 

If the specimen is loaded with a Hopkinson bar, the impact velocity, which is the first 
derivative of the displacement with respect to time, can be determined from the strain 
measured with strain gauges on the bar. Dutton and Mines [57] found that in the case 
of a specimen loaded with a Hopkinson bar the impact velocity cannot be regarded as 
constant during the test. The displacement is therefore not linear with time. 
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Chapter 2 

TPB Impact Tests 

2.1 Introduction 

As the main purpose of this work is to contribute towards a test standard for high 
rate TPB impact tests on SENB specimen, experiments with different materials were 
carried out to check the applicability of the test technique for these materials. The 
main value to be determined in such an experiment is the time to fracture. As there 
were some doubts about the practicability of a fracture time based approach the focus 
of the experimental work was on the accurate determination of fracture time. A round 
robin was conducted within ESIS TC4 as a part of this project to obtain experience 
from different labs with the test technique and improve the test procedure. First the 
results from the author will be presented. The results from the labs taking part in the 
round robin will then be compared with the results from the author. 

2.2 Experimental 

Three materials were tested for this work; polymethylacrylate (PMMA), unplasticied 
poly-vinylchloride (PVC) and medium density polyethylene (PE). All three materials 
were supplied in 10 mm thick sheets. A single edge notched bend specimen (SENB) 
geometry was used with a width, W, of 16 mm and a thickness, B, of 8 mm. The span, 
S, was 64 mm, equivalent to a S/W ratio of 4. The length of the specimen was 88 mm, 
equivalent to a L/W ratio of 5.5, which was found to be the best ratio to minimize 
dynamic effects [48]. The notch depth ratio a/W was chosen to be 0.3 for the same 
reason, so the precrack was approximately 4.8 mm long. Due to the different toughness 
of the materials, different notching techniques were applied. For the PMMA impact 
tapping in a special notching rig was used. The rig was designed to guide a razor blade 
perpendicular to the surface during the tapping process using a hammer. A precrack 

36 



TPB Impact Tests 

  

Ram 

 

    

  

Loadcell 

 

Contact strip 

  

Strain gauge 

itill i 

Gold strip 
(rear side) 

Figure 2.1: The TPB test setup. 

could then be pushed ahead of the blade into the material in controllable small steps of 
around half a millimeter. For the tougher PVC and PE samples a notch was machined 
up to almost the final depth and then a razor blade was sliced across the bottom of the 
notch, generating a small, sharp extension of the notch. For both notching techniques 
a new razor blade was taken for each specimen. Heavy duty industrial blades were 
used to prevent big crack tip radii due to bending or breaking of the tip of the blade. 
The actual crack length was measured after each test under a microscope using a CCD 
camera and image analysis software. Five equidistant measurements over the thickness 
were taken and subsequently averaged. 

The tests were conducted at room temperature using a 20 kN high speed servohydraulic 
testing machine (Model 1343, Instron Ltd.) with a maximum velocity of around 28 m/s. 
A displacement controlled mode was selected for testing and the test setup is shown in 
Figure 2.1. The specimens were tightly held in position with rubber bands on a three 
point bend fixture with flat supports. The load was applied with a titanium striker 
with a tip radius of 2 mm. A titanium alloy was chosen because it is very stiff with a 
low density. The load was measured by a 2.2 kN piezoelectric load cell (208A03, PCB 
Piezoelectronics Inc.). The natural frequency of the striker-load cell combination was 
measured as 28 kHz. A very thin layer of gold with a thickness less than 1 pm was 
sputtered on the top face of each specimen with a sputter coater designed for coating 
electron microscope samples. A voltage of 5 V was applied to the contact strip. In 
case of contact between specimen and striker a voltage step occurs due to earthing the 
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Figure 2.2: Time to fracture determination. 

striker. This gives a very clear and fast indication of contact between specimen and 
striker. The same gold strip technique was also tried to measure the time of initiation 
via crack propagation on the sides of some specimens. A thin line (around 1 mm 
width) of gold was sputtered in front of the crack tip and when the crack propagated, 
the line was broken and a voltage drop occurred in a resistor in series with the gold 
strip. The aim behind this was to explore whether it is possible to avoid the expensive 
and time-consuming instrumentation using strain gauges and nevertheless measure the 
fracture time accurately. To measure crack initiation, a single 120 SZ foil strain gauge 
(CEA-06-032UW-120, Measurements Group Inc.) with a grid size of 0.7 x 0.7 mm was 
placed approximately 1 mm away from the crack tip. A fast 900 kHz strain gauge 
amplifier was used to to amplify the strain gauge signal. The signals from the load 
cell, the strain gauge and the gold strips were recorded by two 100 MS/s PC-based 
oscilloscopes (PS 200, Pico Technology Ltd.). The time to fracture, t s , was taken from 
the strain gauge trace and Figure 2.2 shows how the time to fracture is measured from 
the strain signal. t, was measured from the point where the strain signal started to 
rise to the peak value. Two straight lines were drawn to determine the former and the 
latter is taken as the highest point. 
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Cranfield University 
ICI 

CU 	drop tower 
ICI 	drop tower 
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Table 2.1: Participating laboratories, abbreviations and test machines. 

Laboratory Abbreviation Test machine 

Imperial College 	 IC servohydraulic 
Politecnico di Milano 	PDM 	drop tower 
University of Leoben 	UOL servohydraulic 

2.3 The high rate round robin 

As a part of this project a round robin within ESIS TC4 was performed [58]. ESIS 
TC4 is Technical Committee 4 from the European Structural Integrity Society (ESIS) 
dealing with Polymers and Composites [59]. This round robin is the second on high 
rate testing within ESIS TC4. The first round robin on this topic was performed in 
1998 by Bohme [60, 61]. The aim of this second round robin was to check the feasibility 
of the experimental technique of measuring time to fracture at high rates of loading in 
a TPB test and also to improve the test procedure, which is given in Appendix A. Four 
other labs in Europe took part in this round robin, which can be found together with 
their abbreviation listed in Table 2.1. 

The same materials as mentioned in Section 2.2 were tested in the round robin. The 
specimens for the round robin were machined at Cranfield University. The notching 
was done at Imperial College by the author the same way as the samples for the tests 
performed at Imperial College. This was done to ensure that differences in the results 
are not due to specimen preparation or notching, which can have a big influence on the 
results. 

The participating labs used different test machines to load the specimens. Three labs 
used drop towers (Table 2.1), namely CU, ICI and PDM, whereas IC (see Section 2.2) 
and UOL used servohydraulic test machines. The drop towers from CU and PDM are 
spring assisted to generate a high test velocity without the need of a very high drop 
tower. Except for ICI all labs used a crack tip strain gauge to measure t, as described 
in Section 2.2. ICI used a gold strip on the side of the specimen to determine crack 
initiation and the difference from the the contact strip rise to the initiation time was 
taken as ts. A correction for the time for the stress wave to reach the crack tip was 
applied. 
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Figure 2.3: Test trace for PMMA at 2m/s. 

2.4 TPB impact test results 

Typical test traces for each material are shown in Figure 2.3 to 2.14. In the figures the 
signal from the gold line on the side of the specimen is called crack propagation, as it 
acts in a similar way to a crack propagation gauge. The other curves show strain, load 
and the signal from the contact strip on top of the specimen. 

Typical test traces for PMMA are shown in Figure 2.3 to 2.5. At a velocity of 2m/s 
(Figure 2.3) the strain gauge signal is quite close to a triangular pulse which is due to 
the brittle nature of this polymer and a clear maximum point can be detected. The 
load has a minimum around 130its, but no loss of contact is observed. Even at this 
comparably low velocity the load signal does not give a reasonable indication of the 
crack tip loading. The delay of the load signal due to the propagation time of the 
elastic waves in the striker to the loadcell is around 8,us. In Figure 2.4 test data for 
4m/s is displayed. The strain signal is again fairly triangular with a sharp peak and 
a steep drop. The signal from the contact strip shows that specimen and striker stay 
in contact until and even after initiation occurs. Initiation happens during the inertia 
peak while the specimen is still accelerating. This is characteristic for high rate tests 
and brittle failure. Figure 2.5 shows a test at 27m/s and the strain signal is no longer 
triangular, but shows a maximum peak and then oscillations before it finally drops. 
These oscillations could be due to multiple initiation of the crack at different points of 
the precrack and subsequent crack arrest. The surface of the specimen breaks at the 
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Figure 2.4: Test trace for PMMA at 4m/s. 

point where the strain gauge signal finally drops, which can be observed in the signal 
from the crack propagation strip on the opposite side of the specimen. The first and 
highest peak is taken as the point of initiation. The initial spikes in the strain gauge 
and the crack propagation signal are caused by the steep change in the contact strip 
signal. This change induces a voltage in the grid of the strain gauge and in the gold 
line on the side of the specimen. 	Examples of test traces for PVC are shown in 
Figure 2.6 to 2.10. At a test velocity of 1m/s (Figure 2.6) the load and the strain signal 
show typical oscillations, which occur in a TPB impact test. The first peak in the load 
signal is the inertia peak from the acceleration of the specimen [18]. This first peak 
is only observed in the load signal, but not in the strain gauge trace. The subsequent 
oscillations in the load signal are due to flexural vibrations of the specimen. The 
amount of dynamic effects in the strain gauge curve is significantly smaller than in the 
load signal for this test. Crack initiation causes a steep drop in the strain signal. After 
a delay of around 10ps the load signal drops also. This time depends on the distance of 
the load transducer from the tip of the striker. Contact between specimen and striker 
is observed until 70ps after initiation. For PVC at 2m/s (Figure 2.7) initiation occurs 
during the second peak of the striker load oscillation. The specimen almost bounces 
off the striker at this velocity. At 8m/s (Figure 2.8) initiation occurs within the inertia 
peak. It would be a mistake to determine the time to fracture from the peak of the 
load signal, which has nothing to do with initiation. The gold line on the side of the 
specimen fractures 3ps after the peak in the strain gauge signal. At 16m/s there seems 
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Figure 2.5: Test trace for PMMA at 27m/s. 

Figure 2.6: Test trace for PVC at lm/s. 
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Figure 2.9: Test trace for PVC at 16m/s. 

to be some plasticity in the contact area, as the load signal shows a plateau at the peak 
(Figure 2.8). The drop in the signal from the gold line coincides with the peak of the 
strain gauge signal for this test. Contact between specimen and striker is observed until 
initiation and for some 60,as afterwards. In Figure 2.10 a dataset for PVC at 27m/s 
is given and the strain gauge trace is almost triangular. There is again a remarkable 
amount of coincidence between the strain trace peak and the drop in the signal from 
the gold line on the specimen side. 

Figures 2.11 to 2.14 give test traces for PE. The time to fracture measured by the strain 
gauge, t8 , is much longer than for tests with PMMA because of the ductile nature of 
PE. The slowly falling strain after initiation is representative of a slower falling crack 
propagation signal. It can be seen also that for this material the load signal does not give 
a reliable measurement of the actual crack tip loading at high velocities (> 2m/s). In 
Figure 2.11 for PE at lm/s there is a considerable amount of plasticity. The oscillations 
in the load signal are small and they are damped out after a few cycles. The strain 
signal is also rounded, indicating plasticity. At lm/s the drop in the strain signal 
coincides with a drop in the load signal due to the long fracture time. At 2m/s (Figure 
2.12) a loss of contact can be observed between striker and specimen. This is the reason 
for a negative (tensile) striker load around 200,as. From the crack tip strain curves an 
embrittlement with increasing loading rate can be seen. From a rounded strain signal 
at lm/s the shape changes to a steep drop at 2m/s. At 8m/s a plateau in the load 
signal is observed, which indicates plasticity between striker and specimen. The strain 
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Figure 2.10: Test trace for PVC at 27m/s. 

signal rises linearly with a rounded peak and decreases slowly. Due to a shorter time to 
fracture this decrease is even slower than the loading of the crack at 27m/s in Figure 
2.14. 

The signal from the gold line in front of the crack, whose signal is called crack propa-
gation in the graphs agrees quite well with the peak of the strain gauge signal for PVC 
and PE. The time from the gold lines, t9, as it was called, is measured from the rise of 
the contact strip signal to the drop in the signal from the gold line in front of the crack. 
The problem arising is that the time ts, which is the time within which the stress at the 
crack tip reaches the initiation value, is measured from the point when the strain rises 
to the peak point before the final drop. Part of the difference between is  and t9  is the 
traveling time of the stress wave to the crack tip. This assumes that the drop of the 
crack propagation signal coincides with the peak in the strain gauge signal. Another 
issue is the determination of the point where the crack propagation signal from the gold 
strip indicates crack initiation. For PMMA and PVC, which are quite brittle, a line 
was extrapolated from the linear falling part of the curve up to the extension of the 
constant value. The intersection of the two lines was taken as the point of initiation. 
In a ductile material as PE, the curve is much more rounded and therefore it is more 
difficult to determine the point of initiation with this method. A parabolic fit of the 
rounded part of the curve intersecting with the extension of the constant value would 
be a possible answer. The rounded part is thought to be due to two reasons. First the 
ductile nature of PE resulting in a plastic zone, which also affects the surface and can 
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Figure 2.11: Test trace for PE at lm/s. 

lead to a slow breakdown of the very thin gold line. The other reason is the growth of 
shear lips on the surface of the specimen, which can be seen on the fracture surface. 
If the crack first grows inside the specimen and then subsequently the shear lips fail, 
this could explain the observed curve. This behaviour of PE was reported by Leevers 
in [62]. It can be seen from the graphs presented that the more brittle the material 
(e.g. PMMA), the bigger the dynamic effects. In a ductile material such as PE most 
of the energy is absorbed in the comparatively large plastic zone while in brittle mate-
rials stress waves are reflected backwards and forwards in the specimen without being 
immediately absorbed. 

In this work the gold lines on the side of the specimen were only used to compare 
initiation times determined from them to the results obtained with strain gauges to 
evaluate the potential of avoiding expensive strain gauges on the specimen and replace 
them with a gold line ahead of the crack tip. In order to be able to obtain is  from tg  
it would be necessary to subtract the time from the first contact to the time when the 
strain at the crack tip rises, but this time can only be calculated roughly. This time is 
basically the time for the transverse stress wave to reach the crack tip [13], but surface 
unevenness can cause electrical contact between the striker and the gold line before 
any significant load transfer. This could be the reason that the difference between the 
contact strip signal rise and the strain rise in the crack tip strain gauge is not equal 
to the time of the transverse stress wave to reach the crack. A further indication for 

46 

3000 



-200 0 

0.5 

4 

3 

2 

o 

C
on

ta
ct

  s
tr

ip
,  s

tr
a

in
  g

a
ug

e  
vo

lta
ge

  [
V

]  

PE 2 m/s 

-0.1 
200 	400 	600 	800 1000 

ontact 
0.4 

0.3 

0.2 

0 
0.1 

0.0 

TPB Impact Tests 

Time [ps] 

Figure 2.12: Test trace for PE at 2m/s. 
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Figure 2.13: Test trace for PE at 8m/s. 
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Figure 2.14: Test trace for PE at 27m/s. 

surface unevenness as a cause of this difference is its velocity dependence. For higher 
velocities significantly smaller time differences between electrical contact of striker and 
specimen and the rise in the crack tip strain are observed. 

For lower testing rates the difference between the assumed point of initiation between 
the crack propagation line signal and the strain gauge peak are relatively small, making 
it possible, cheap and easy to use as an alternative to crack tip strain gauges. Also the 
difference between the rise in the contact strip signal and the rise in the strain gauge 

signal is small compared to is  for low velocities, but if necessary a correction for the 
time for the transverse wave to reach the crack tip can be applied. Gold lines on top 
of the specimen as well as on the sides of the specimen are then preferable. 

Fracture times for the three materials tested versus test velocity are displayed in Figure 
2.15. Data for an Epoxy from [40] was added also. The specimen dimensions for the 
tests on Epoxy were 6.5 * 13 * 71.5mm so that the absolute values of fracture time are 
lower due to the smaller specimens. PMMA has the lowest time to fracture values of 
all three materials tested. The fracture time values for PMMA fall almost linearly in 
the double logarithmic plot with a slope of around —1.3. The slope of the decrease is 

leveling off at around 10m/s. The is  values for PVC are in between those of PMMA 
and PE. Like PMMA, PVC also exhibits a slope of around —1.3 and a leveling off at 
around 10m/s. PE, which is the toughest polymer tested, exhibits the highest fracture 
time values for all velocities. Again, the slope is about —1.3 up to 10m/s. A prediction 
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Figure 2.15: Fracture time versus impact velocity. 

with a thermal decohesion model from [63] for the initiation time for PE was added in 
Figure 2.15. It shows quite good agreement with the experimental data, not only for 
the slope, but also for the absolute value. The slope is predicted by the model as —4/3. 
In Figure 2.16 all materials are displayed with shifted t, values. This demonstrates 
that the —4/3 velocity dependence of the initiation time is valid for a wide range of 
materials and velocities. This is especially interesting as data from three thermosets is 
displayed as well in Figure 2.16. Epoxies C and D are rubber toughened Epoxies (15phr) 
with different curing temperatures [64]. They also show the same velocity dependence. 
Epoxy data from [40] is again added in this graph. At high velocities above 10m/s the 
slope becomes lower for all materials. The velocity when the values leave the —4/3 line 
varies with the material. This characteristic —4/3  slope can be explained from thermal 
considerations. At high impact velocities it is possible that the heat is trapped in a 
small zone around the crack tip due to the low thermal conductivity of polymers. For 
a given temperature rise, AT, in a small zone around the crack tip [65] and for G equal 

to G, it is possible to write 
G, a ATU oc (Vt)2  

and from that a proportionality between t, and V can be derived as 

is  cc V-1 

(2.1) 

(2.2) 
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Figure 2.16: Shifted fracture time versus impact velocity. 

which is the slope observed in the test data. This means that there are indications that 
the fracture of the tested polymers could be a thermal phenomenon at high impact 
velocities. At a certain material dependent threshold value the slope reduces. This 
could be due to a different process becoming dominant. 

For the is  results shown above a maximum standard deviation of 28% of the mean value 
was found for PVC at 4m/s. The typical value for the standard deviation of fracture 
time was found to be about 10% of the mean is  value. In Chapter 7 the time to fracture 
results will be used to calculate Kd and Gd. 

2.5 High rate round robin test results 

The round robin test results are presented in Figure 2.17 to 2.20. The results from 
the author, which were presented in the previous section are denoted as IC in the 
round robin results. Results for PMMA are displayed in Figure 2.17. There are two 
sets of UOL results denoted as UOLA-s and UOLA-f. They were obtained with a 
slow strain gauge amplifier with 50kHz upper frequency bound in the case of UOLA-s 
and with a fast strain gauge amplifier with 1MHz upper frequency bound in the case 
of UOLA-f. There is a remarkable difference between these two. The slow amplifier 
increases the fracture time at high rates by more than 50%. This shows the necessity 
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Figure 2.17: Fracture time versus impact velocity for PMMA. 

Figure 2.18: Fracture time versus impact velocity for PVC. 
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Figure 2.19: Fracture time versus impact velocity for PE. 

Figure 2.20: Fracture time versus impact velocity for all materials. 
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of fast equipment to obtain accurate results. The IC results for PMMA are in good 
agreement with the results from the other labs. The scatter for PVC (Figure 2.18) is 
lower than for PMMA. The values from ICI for PVC at 3.5m/s are slightly higher than 
the rest. PDM has the lowest values for is  whereas the IC results are higher. The 
lowest scatter is observed for PE (Figure 2.19). The ICI results at 3.5m/s are higher, 
which is probably due to the way t, is determined (from the gold lines). In comparison 
to the other labs the IC results for PE are low, especially at 8 and 16m/s and higher. 
All materials together are displayed in Figure 2.20. Again, it is remarkable that they 
all follow the —4/3 slope. 

The results from the round robin are quite promising and the scatter is not too big for 
the second iteration loop i.e. the second round robin. It should be noted that there 
are usually 6 iterations necessary to obtain a test protocol which can be the basis for 
a ESIS standard [66]. The typical standard deviation for all materials was about 11% 
of the mean t, value. The minimum standard deviation observed in the round robin 
for t, was 1.2% of the mean value and the maximum was 29%. The results from the 
author were found to match well with the results from the other labs. 

53 



Chapter 3 

Finite Volume Analysis Methods 

3.1 Introduction 

To attain a deeper understanding of the dynamics of the TPB test it is important to 
model the test accurately. With a dynamic contact procedure recently developed for 
the finite volume (FV) program used, the FV method is a powerful tool to analyze the 
TPB test, especially as one of the aims of this work is to investigate the influence of 
the contact stiffness on the test. The additional advantage of the FV program used is 
that the program allows full access to the code and therefore it is possible for the user 
to implement his own routines e.g. for the calculation of the SIF. As the main focus 
of this work is on the analysis of the TPB test, only a brief outline of the principles of 
the FV method is given here. Following that, the methods used in the FV analysis are 
described. 

3.2 The FV method 

The FV method is usually employed in computational fluid dynamics. Demirdzic [67, 7] 
applied the FV method for stress analysis and Ivankovic [68, 69, 70] applied it for the 
analysis of dynamic fracture problems. 

The conservation of linear momentum is the basis of the FV method for stress analysis. 
In the case of dynamic equilibrium of an arbitrary part of a solid body of volume 
V bounded by a surface S the momentum equation expresses the balance of surface, 
acceleration and body forces. The momentum balance can be expressed as [69] 

at a  j p---t dV = Pr • n dS + f pf dV 
v 	s 	v 

(3.1) 
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where t denotes time, o is the stress tensor, u is the displacement vector and f is the 

body force vector. n is the unit vector of the outward normal to the surface S and p is 

the material density. The material is assumed to be homogeneous and isotropic. It is 
also assumed that the material is linear elastic and obeys Hooke's law 

= 2pe + AtreI 	 (3.2) 

where A and ji are the Lame constants and I is the identity tensor. The strain tensor 

E is defined for small strains as 

	

E = 	+ 	. 	 (3.3) 

With Equations 3.2 and 3.3 the momentum equation can be entirely expressed in terms 
of the unknown displacement vector u as 

f au dV = f {p[Vu + (Vu)T ]+ [AV • u 	n dS. 	(3.4) 

Equation (3.4) is still exact and the body forces are neglected. 

Boundary conditions have to be specified at all boundaries of the solution domain. They 
can be either of Dirichlet type, which is a displacement boundary condition, specify-
ing the displacement at the boundary, or of Von Neumann type, which is a traction 
boundary condition, where the boundary traction t = n • a is specified [67]. A mixed 
boundary condition is often required, where the normal component of the boundary 
displacement and the tangential component of the traction vector is prescribed [71]. 

In the FV method the solution domain is subdivided into a finite number of N contigu-

ous non-overlapping control volumes or cells, with a computational node placed at its 
centre, where the value of the displacement vector components as well as the physical 
properties of the material are stored. This process is called spatial discretization. The 
control volume is defined by the coordinates of its vertices and it can be of arbitrary 
polyhedral shape with an arbitrary number of cell faces where faces of the ith  cell are 

denoted by S3 , (j = 1, 2, ..., ni). 

The global conservation of momentum can now be expressed summarily for the entire 
solution domain as [70] 

r  a au N 

ENJ P79idvi=EEJ fp [Vu + (Vu)1 + [AV • u I]} nj 	(3.5) 
i=1 	Vz 	 i=1 j=isi  

To solve Equation (3.5), a coordinate system must be chosen and the displacement vec-
tors have to be resolved into their components along the chosen coordinate directions. 
Cartesian coordinates are the best option. They offer a simple form of constitutive re- 
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lations and a strong conservative form of the momentum equations [67]. Furthermore, 
the integrals in Equation (3.5) have to be approximated and distributions of dependent 
variables and physical properties in space and time have to be assumed. A piecewise 
linear second order accurate approximation is adopted for the spatial distribution of 
the displacement field and the material properties. Like the space domain, the time 
domain is also discretized. The time is subdivided into an arbitrary number of time 
steps. An unconditionally stable first order accurate fully implicit temporal differencing 
scheme is employed. The integrals in Equation (3.5) are usually approximated by the 
second order accurate mid-point rule. 

As a result of the FV discretization 3 mutually coupled sets of N nonlinear algebraic 
equations with 3 unknown displacement components are obtained for 3D problems. The 
equations are linearized and sets of equations for each dependent variable are temporar-
ily decoupled. A system of linear algebraic equations is obtained for each displacement 
component. A segregated solution procedure is used to solve these equations iteratively 
[67]. 

Due to the equation segregation and the iterative solver the FV method is well suited for 
solving nonlinear problems efficiently [72]. This is important, as the contact between a 
cylinder and a flat body, which needs to be modeled in this work, introduces nonlinearity 
into the formulation. 

3.3 The FV program: FOAM 

A commercial FV package called FOAM (Field Operation And Manipulation) [73] is 
used in this work. FOAM is a C++ library of discretization routines, used primarily to 
create executables, which are called applications, that are designed to solve a specific 
problem in continuum mechanics [74]. FOAM is supplied with pre- and post-processing 
environments. One of the advantages of FOAM is that new applications can be created 
by its users, which gives it a high degree of flexibility. FOAM is programmed in an 
object-oriented manner. Provided the required objects and their functions and proper-
ties [75] are known to the user, they can be used to write specific routines efficiently. 

3.4 The contact procedure 

A newly developed contact procedure is used in this work, which was developed by 
V. Tropsa and A. Ivankovic, both from the Strength of Materials section of Imperial 
College. The procedure has been implemented in FOAM and it is based on fully 
implicit updating of the contact parameters: i.e. contact surfaces and forces. Due to 
its implicit nature the contact procedure is very accurate. The contact surfaces and 
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Figure 3.1: The crack tip closure method in FV. 

forces are updated within each time step until convergence is achieved. A fine mesh in 
the contact regions is needed to obtain an accurate contact stress distribution. Local 
mesh refinement is therefore necessary. The procedure was used successfully in the 
dynamic analysis of the impact wedge peel test [76]. 

3.5 Local mesh refinement 

A local mesh refinement procedure [77] was used within FOAM to increase the resolution 
at certain places, e.g. around the crack tip to obtain the SIF from the local stress field. 
The mesh refinement was also necessary for the contact procedure in order to have 
enough cells in the contact zones. The procedure used splits up a cell into four cells in 
a defined region. Repeated use of the procedure at certain places allows refinement of 
the mesh to the extent required. 

3.6 Numerical methods for K and G calculation 

3.6.1 The determination of G with the crack tip closure integral 

The crack tip closure integral was introduced in Chapter 1. As mentioned there, this 
method is well suited for numerical routines and was used successfully in FE programs 
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[6, 8]. In the FV representation the crack tip closure integral is a work per unit area 
done by the forces which, if applied to 'cracked' cell faces, would close them back to 
their original position [7]. For computational purposes a cell size Aa is selected. It is 
convenient to keep the elements of the same size [6], which is easily achieved in the FV 
method. As the variation of the local stress field is small when the crack advances a 
short distance Da, it can be assumed that the forces required to close the crack faces 
back are equal to the force at the crack tip cell and one can obtain [7] 

G ^ o-yyj vt 	 (3.6) 

where ayy, is the stress component in y-direction at the crack tip and vt  is half of the 
crack tip opening displacement at the cell next to the tip (Figure 3.1). One of the 
big advantages of this method is the simplicity of the calculation. It also offers good 
accuracy even for coarse meshes [6, 7] i.e. the method is reasonably mesh insensitive. 
This saves computation time and it makes the crack tip closure integral a fast and 
economic method for the calculation of G. Equation (3.6) was implemented into FOAM 
to obtain G and, via Equation (1.4), the SIF. 

3.6.2 The determination of G with the J integral 

The dynamic J integral is a widely used method for the calculation of G in FE studies 
[78, 79, 8]. The J integral has the physical meaning of the energy release rate in 
elasticity. The advantage of the dynamic J integral is that it is path independent. For 
dynamic loading conditions and a stationary crack G can be calculated with a path 
independent J integral as [79] 

aui 	 a2ui  au • 
G = J = f 

o 	 A 
(Un1  — criinj—) dr 	 + f

o ate  
p 	 a; dA 

ax r  
(3.7) 

where the area Ao is enclosed by the paths F and ro and the crack faces whereby F 
is shrunk on the crack tip (Figure 3.2). ni is a unit vector normal to F or ro  and 
that points away from the crack tip. n1  is the component of ni in x-direction. U is the 
strain energy density and u is the displacement vector. The material density is denoted 
as p and a is the stress tensor. This form of the dynamic J integral is well suited for 
computational purposes, as it can be evaluated around any curve encircling the crack 
tip. 

In a discretized form suitable for a FV program Equation (3.7) can be written as 

G = E [2 	: e) (n • i x ) - (o-  • n) • (ix  • gradu)]LF 
ro 

[ 002; (i x  • gradud LA 	(3.8) 
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Figure 3.2: The J integral paths r, ro  and the area Ao. 

where Ar is the length of a cell face along the path, AA is the area of a cell face in the 

xy-plane and e is the strain tensor. ix  is the unit vector in the x-direction. Equation 
(3.8) was implemented in the FV program FOAM by using FOAM operators [75] for the 
spatial and temporal derivatives. The integral path was chosen to run along internal 
face centers, as the field quantities needed are easily available there. The cells are of 
square shape in the xy-plane and hence a rectangular path is convenient. The size of 
the rectangle can be varied to check the path independence. 

3.6.3 The determination of K from the local stress field 

From the definition of the SIF in Equation (1.1) it can be seen that, in the vicinity of the 
crack, for small values of r and in the crack path plane with 0 = 0, K is proportional to 

the product of o-yy  and r112 . This dependence can be exploited to calculate K directly 
from the local stress field [7] for a TPB impact test. This is useful as it allows the 
comparison of the SIF from this direct method with results from indirect methods. In 
a log scale plot (plotting log o-yy  versus log r) the 'K' dominant region shold exhibit a 
slope of —1/2 (Figure 3.3). With a linear fit of the region with r-1/2-dependence in 
the log scale plot, a SIF value can be obtained. This direct method requires a very fine 
mesh in order to model the local stress field accurately. 

After identifying the region with the r-1/2-dependence in the log scale plot, the selected 
cell faces (Figure 3.3) were fitted with a least squares procedure and a linear fitting 
function in MATHCAD. The cell face at the crack tip was excluded from the fit, as the 
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Figure 3.3: The stress at the crack tip as a function of logr for a TPB impact test. 

singularity cannot be modeled accurately. K was then obtained from the intercept of 
the linear fit. 

3.6.4 The determination of K from the bending moment 

Several authors [16, 20, 40], who propose 1D analytical models of the TPB test, calcu-
lated the dynamic SIF from the bending moment. The underlying assumption for the 
validity of the proportionality of the SIF with the bending moment is that the stress 
profile at midspan in the dynamic case is the same as in the static case. At short times, 
when stress wave effects are dominant [24], it would be expected that deviations from 
the static stress distribution occur. One way of checking the accuracy of the assumption 
of the proportionality of the SIF with the bending moment is to compare the SIF from 
the bending moment with the SIF calculated with a different method such as the crack 
closure integral. 
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Figure 3.4: Determination of the bending moment. 

In a symmetrical beam aligned along the x-axis under pure bending the bending moment 
can be calculated from [80] 

Mb = f Cixy dA 	 (3.9) 
A 

where y is the distance from the neutral axis in y-direction and A is the total area of 
the cross section. Equation (3.9) is only valid if the deformation is sufficiently small. 

In order to calculate the bending moment from FV results, a discretized form of Equa-
tion (3.9) is necessary. This allows the bending moment to be calculated from a sum-
mation over the cell faces on the boundary at midspan with 

Mb = E (ti • ni) yiAi 
i=1 

(3.10) 

where N is the number of cell faces within the boundary patch for which the moment 
is calculated and Ai is the area of each cell face (Figure 3.4). The boundary traction 
vector for each cell face is denoted as ti, ni is the face normal and the distance of the 
cell center from the neutral axis is yi. Due to the fact that the boundary at midspan is 
a symmetry plane, there is no shear component of the traction i.e. the traction vector 
has only a component in the x-direction. 
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With Equation (1.12) and Mb = P • S/2, where P is the load and with the span S = 4W 

it is possible to express K as a function of the bending moment 

Mb  K 	 f 
2BW1•5 

(3.11) 

where f is a geometry factor, which can be calculated with Equation 1.13 and B is 

the specimen thickness. The calculations of K from the bending moment were done in 
MATHCAD, where the stress distribution for the boundary at midspan was imported 
for each time step. For each time step Equation (3.10) was evaluated to yield the 
bending moment. The dynamic SIF from the bending moment was then obtained via 
Equation (3.11). 

3.7 The calculation of the dynamic correction functions 
kd  and gd 

The dynamic correction function kd determines the amount of dynamic correction which 

needs to be applied to K evaluated quasistatically from time to fracture to correct for 
the dynamic behavior at the crack tip. With the applied displacement 

u = V • t 	 (3.12) 

where V is the impact velocity and t is time and by using Equation 1.21 which assumes 
a linear contact stiffness 

Ka u 

and with Equation 1.19 it is possible to write 

Kd  (t) 	t1  
kd  (t) = Kst  (no  t  

(3.13) 

(3.14) 

where Kst  is evaluated quasistatically at the displacement u1, which is the displacement 

reached at the time t1  in the dynamic calculation. t i  can be chosen arbitrarily for small 
deformations and a linear contact stiffness and ui can then be calculated with Equation 
3.12. For convenience half of the maximum displacement of the dynamic analysis was 
used to calculate Kst . For a FV analysis of a big epoxy specimen with W = 0.1m and an 
impact velocity of lm/s the maximum displacement was 0.002m, which corresponds to 
a time of 2ms. Therefore the displacement ui = 0.001m was used for the determination 
of K3t  and the dynamic FV analysis was performed from 0 to 2ms. Then kd  was 

calculated for each time step ti with K d  (ti), K3t  (u1) and t i  = lms via Equation 3.14. 

In the case of a nonlinear contact stiffness Equation 3.13 is only a first order approxima-
tion and the displacement at which Kst  is evaluated is important. kd  was calculated the 
same way as for the simple model with a linear contact stiffness, as half of the maximum 
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displacement yields an average contact stiffness. This is a reasonable approximation 

and leads to an average value for Kst. 

The dynamic correction function for G, gd, can be calculated from kd  via Equation 1.4 

as 
gd = 4. 	 (3.15) 

Dynamic effects can be expected to be higher for gd  than for kd  due to squaring of the 

kd  curve and the fact that both curves oscillate around unity. 
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Chapter 4 

Finite Volume Analysis of the 
TPB Impact Test 

4.1 Introduction 

Modeling of the TPB test is important to enhance understanding and to obtain dynamic 
correction functions for specific test conditions. In this chapter a simple FV model of 
the TPB test is presented, which shows good agreement with the experiment. The 
simplicity of the model lies in the way the boundary conditions are applied. 

4.2 The simple model 

The simple model uses point loads as a boundary condition at the contact points of 
striker and anvil with the specimen (Figure 4.1). The experiment analyzed is a dis-
placement controlled test with a constant applied velocity. The displacement is applied 
on a single boundary face center on the top patch of the specimen to approximate the 
effect of a rigid striker. The assumption of a rigid striker is a reasonable approximation 
for a metal striker (usually Aluminium or Titanium) in contact with a polymer speci-
men. The simple model shows a linear contact stiffness change with increasing load and 
bouncing is allowed at the striker contact point. In a real contact between a cylinder 
and a flat surface the contact stiffness will be nonlinear with the applied displacement 
due to the change in the contact area, whereas in the simple model the area on which the 
displacement is applied remains constant. Similarly the anvil is modeled as a boundary 
face center which is allowed to move up to allow bouncing, but is constrained in its 
downwards movement. The specimen modeled was a big SENB specimen with a width, 
W, of 0.1m, a span to width ratio, S/W, of 4 and a length to width ratio, L/W, of 
5.5. The notch depth ratio, a/W, was 0.3 and the thickness, B, was 0.01m. The elastic 
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Figure 4.1: The simple FV model. 

modulus, E, was 3.38GPa, the density, p, was 1216kg/m3  and the Poisson's ratio was 
0.33. These values were taken from &Mime [24] to allow a direct comparison between 
model and experiment. In all the results shown in this chapter the impact velocity V 
was lm/s as in the experiment, except for one FV analysis with V = 10m/s. The FV 
program was operated in a 2D plane stress mode. In the initial FV simulation a mesh 
of 1100 (20 x 55) square cells was used. Subsequently the cell length in each direction 
was halved, which resulted in a mesh with 4400 cells. The number of cells was then 
again increased by a factor of 4 to 17600 cells. This mesh was subsequently used for the 
rest of the calculations, except for the results obtained by the local stress field method, 
where a local mesh refinement was performed to increase the resolution of the analysis 
close to the crack tip resulting in a mesh with 32576 cells. Two levels of local mesh 
refinement had to be used and to have fine enough cells in the area around the crack 
tip it was also necessary to make the width 10 times smaller and W = 0.Olm was the 
result, whereby a/W, L/W and S/W were held constant. This is the size of a Charpy 
V-notch specimen [81], but the a/W ratio is 0.3 instead of 0.2 in the case of the Charpy 
V-notch specimen. The time step for the model with 1100 cells was 1ps, for the model 
with 4400 cells 0.5ps and for the model with the fine mesh a time step of 0.1ps was 
utilized. In the model of the small specimen with W = 0.Olm a time step of lOns was 
used. 
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Figure 4.2: The dynamic correction function kd  for three different meshes with increas-
ing mesh size. 

4.3 FV analysis results 

In Figure 4.2 kd  results for three meshes with increasing mesh density are displayed 
together with kd  measurements from Caustics by Bohme [24] for large specimen with 
W = 0.1m. The kd  values from the FV analyses were calculated employing the crack 
tip closure integral method. The striker and anvil loads are shown in Figure 4.3 and 
4.4 respectively. Looking at the striker load it is apparent that it converges towards 
the experimental results with increasing mesh size. The initial slope of the striker load 
curve decreases with increasing mesh size. The reason for that is that the contact 
stiffness is lowering with increasing mesh size. The contact stiffness is determined in 
this model by the stiffness of the cell where the displacement is applied. The smaller 
the cell, the smaller the stiffness and hence the lower the initial slope will be. The best 
fit with the measured striker load was observed with the fine mesh with 17600 cells. 
One of the reasons for differences between the fine mesh and the experiment lies in the 
fact that the actual contact stiffness is nonlinear, as a cylindrical striker is in contact 
with a fiat surface, the upper side of the specimen. This means that in the experiment 
the contact stiffness actually changes with the applied displacement. The anvil load 
in Figure 4.4 shows big differences between the FV results and the experiment. It 
seems to be more sensitive to the contact stiffness than the striker load. None of the 
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Figure 4.3: The striker load for three different meshes with increasing mesh size. 

three different meshes models the anvil load well. This is due to the fact that in the 
experiment the anvil was machined from epoxy to make it more compliant in order 
to allow the anvil load to be measured with strain gauges [24]. This results in a soft 
anvil with a low contact stiffness. The assumption of a negligible deformation of the 
anvil cannot be applied in this case. The lower contact stiffness at the anvil is reflected 
in the lower force and the longer period of oscillation. The oscillation period in the 
experimental results would suggest that the anvil contact stiffness in the experiment 
is about half of the contact stiffness for the fine mesh. The anvil reaction is not too 
important for the kd  results, as it affects the SIF at the crack tip only at a late stage 
of the test. 

In Figure 4.2 the first peak of the kd curve changes with different meshes used. Also the 
initial slope of the kd  curve changes. The slope gets lower with increasing mesh size, 
which is due to the lower striker force, which changes the loading pattern at the crack 
tip. This shows that contact stiffness affects the shape of the kd  curve. The subsequent 
oscillations are also affected by the contact stiffness, as the natural frequency of the 
whole system is altered with a change in contact stiffness [19]. The change in natural 
freqency is reflected in the change of the oscillation period for different meshes in 
Figure 4.2. With increasing mesh size the kd  curves from the FV analysis approach the 
measurements. For the FV results shown later on in this chapter the fine mesh with 
17600 cells was used, as it gave the closest fit with the experiment. 
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Figure 4.4: The anvil load for three different meshes with increasing mesh size. 

Figure 4.5: The dynamic correction function kd  for the three point bend (TPB) test 
and the one point bend (OPB) test versus nondimensional time. 
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Figure 4.6: The striker load for the three point bend (TPB) test and the one point 
bend (OPB) test versus nondimensional time. 

Figure 4.7: The anvil load for the three point bend (TPB) test versus nondimensional 
time. 
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In Figure 4.5 the results for the fine mesh and Baines measurements are again dis-
played, now versus the nondimensional time X, where X = citIW. Also plotted is a 
curve for kd  from FV analysis of a one point bend (OPB) test. In the OPB test there 
are no anvils, which results in dynamic loading only, as inertia is the only load in this 
test and the quasistatic response of the specimen is a simple translation. This can be 
seen in the graph for increasing X, where kd  goes towards 0 for X > 9. For X < 9 
a three point bend (TPB) test is, as far as the crack is concerned, essentially a OPB 
test for this specimen configuration and test setup. This is due to the delayed response 
from the anvils, the reasons for which are twofold. First there is some delay due to the 
time needed for the longitudinal stress wave to reach the anvil and then come back to 
the crack tip. It takes Xr.,:.-, 2.2 for the wave to reach the anvil from the point of impact, 
which can be seen in Figure 4.7, where a small rise in the anvil force is observed at this 
time. A longitudinal wave needs X = 2 to travel a distance of 2W from the middle of 
the specimen, but due to the fact that the point of impact is on the top of the specimen 
and the anvil is on the bottom, the time needed for the wave to reach the anvil from the 
point of impact is X = -4 which is around 2.2. In addition to the time for the stress 
waves to travel to the anvil and back the specimen bends away from the anvils in the 
first instance due to the dynamics of the system. The specimen is, for a short time, in 
contact with the anvil and then moves away from the anvil. In the experiment this first 
peak is not recorded. This could be due to the fact that the anvils in the experiment 
were very compliant and hence the height of the first peak is very small and therefore 
remains undetected. The specimen regains contact with the anvil in the experiment 
only after X > 7. No change in the SIF at the crack tip is observed until X P-- 9, as 

it needs again X = 2 for the information of regained contact at the anvil to reach the 
crack tip. From Figure 4.5 it is obvious that the anvil reaction is not important at 
times up to XP--1 9 (for a/W = 0.3, L/W = 5.5 and S/W = 4). BOhme suggested [31] 
that for this specimen configuration kd should be set to 1 in the quasistatic time range 

where X > 9.2, as kd remains within a ±10% envelope in this time range. This means 
that either a dynamic procedure can be used, where kd  corrects for dynamic effects 
and there is no influence of the anvils, or for longer times a quasistatic procedure is 
applicable, where no dynamic correction is necessary. The explanations above show 
that in many cases the anvil reaction is not important in a high rate test for the given 
specimen dimensions. 

4.4 K from the local stress field 

The stress intensity factor K i.e. the dynamic correction function kd was also calculated 
from the local stress field and the results are compared with the results from crack tip 
closure for the fine mesh with additional mesh refinement in Figure 4.8. The results 
show that kd  from the local stress field yields the same results as crack tip closure. 
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Figure 4.8: The dynamic correction function kd  from crack tip closure and from the 
local stress field. 

This demonstrates that it is valid to calculate K from the dynamic energy release rate 
with Equation (1.4) in the case of a stationary crack in a transient stress field. As the 
crack closure integral is a fast and efficient method to determine K indirectly via G, it 

is preferable to the direct method of computing K from the stress field, which needs a 
very fine mesh and therefore more computation time and also a cumbersome evaluation 

procedure. 

4.5 K from the bending moment at short times 

Several 1D models of the TPB test use the bending moment, Mb , at midspan to calculate 

the SIF and kd  [16, 43, 40]. With a dynamic 2D FV analysis it is possible to check 

the validity of the assumption of K oc Mb. The results in Figure 4.9 were calculated 
with the fine mesh and local mesh refinement around the crack tip for W = 0.01m, 

a/W = 0.3, L/W = 5.5 and S/W = 4. At times less than 40/./s, which is equivalent 

to X < 7, the assumption of the proportionality of the bending moment at midspan 

and K is not valid, as K from the bending moment is not equivalent to the SIF at 
short times. A 1D model which uses the bending moment to calculate K will therefore 
not give accurate results at short times. Considering the fact that it is at short times 

with X < 9, where a model for the calculation of kd  is needed, as otherwise kd  can be 
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Figure 4.9: The dynamic correction function kd  from the bending moment at midspan 
and crack tip closure. 

set to 1 with good accuracy, the presented data indicate that 1D models, which utilize 
the bending moment to calculate K, are not suitable for the prediction of the dynamic 
correction function kd . 

4.6 	The limits of applicability of kd  curves in the case of 
a linear contact stiffness 

Once a dynamic correction function is determined, it is important to know to which 
tests it can be applied, as it is very time consuming to obtain a separate kd  curve for 
each test. The dynamic correction function kd  can be used for other test conditions 
under certain circumstances. 

4.6.1 Varying impact velocity 

As the dynamic K is scaled with the static K, a change in impact velocity does not 
affect the shape of the kd  curve when the contact stiffness is linear. This can be seen 
in Figure 4.10, where both curves for V = 1m/s and V = 10m/s follow the same line. 
This is only true if all the stiffness components in the system are linear. This is the 
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Figure 4.10: The dynamic correction function kd  for two different impact velocities. 

case in the simple model, as the contact stiffness is determined by a single cell, which 
is compressed in a linear manner and the beam in bending is also linear. 

In reality, the contact stiffness is nonlinear and this changes the shape of the kd  curve 
with velocity due to the fact that the actual forces are not linear with impact velocity. 
This means that, strictly speaking, a dynamic correction function is only valid for the 
velocity at which it was obtained, if a nonlinear contact stiffness is involved. This will 
be investigated further in Chapter 5. 

4.6.2 Varying specimen width 

The advantage of using a nondimensional time is that a change in specimen width does 
not affect the kd  curve if the contact stiffness is assumed to be linear. Figure 4.11 
shows this and the curves for W = 0.01m and for W = 0.1m follow the same line. This 
demonstrates that it is possible to use kd  curves obtained from a big specimen with 
W = 0.1m to evaluate a test with a specimen width of 0.01m. It is therefore possible 
to use a kd  curve for any specimen width, provided that a nondimensional time is used 
and all other specimen dimension ratios, i.e. a/W, L/W and S/W, are held constant. 
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Figure 4.11: The dynamic correction function kd  for two different specimen widths. 

Figure 4.12: The dynamic correction function gd  in comparison with kd . 
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4.7 The dynamic correction function gd  

With Equation (3.15) gd  can be easily calculated from kd  by squaring it. Figure 4.12 
shows the dynamic correction function gd  for the fine mesh with 17600 cells in compar-
ison with kd . Overall, the amount of dynamic effects is higher for gd  than for kd . The 
gd  curve from the simple model and the fine mesh oscillates within a ±22% envelope 
after the first peak. This is about twice as much as for kd , which stays within a ±10% 
envelope after the initial peak. 
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Chapter 5 

Finite Volume Analysis of the 
TPB Impact Test with a Contact 
Procedure 

5.1 Introduction 

Studies with analytical models [38, 40] have shown that the shape of the dynamic cor-
rection function kd  is strongly dependent upon the contact stiffness between specimen 
and striker. It is obvious that the eigenfrequency of a one mass two spring model is al-
tered if the stiffness of the first spring, k1, is changed. Although the specimen stiffness, 
k2, remains constant, the change in k1  alters the response of the whole system and hence 
affects the dynamic correction function kd . The influence of the contact stiffness can 
also be expected in a more accurate numerical 2D model of the TPB impact test, but 
no 2D analysis on the effect of the contact stiffness on the dynamic correction function 
kd  was found in the literature. Furthermore, the contact between the striker and the 
specimen is nonlinear i.e. the contact stiffness varies with the applied displacement. A 
linear spring, as used in the mass spring model, is only an approximation of this non-
linear contact stiffness and will lead to errors. In this chapter an investigation of the 
influence of the contact stiffness on the TPB impact test is presented, where a contact 
procedure is used, which accurately models the contact between striker and specimen 
as well as between anvil and specimen. 

5.2 The model with the contact procedure 

In the model from Chapter 4 the boundary conditions were applied on single cells. The 
model presented in this chapter uses a FV representation of striker, anvil and specimen 
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Figure 5.1: The model including contact effects. 

in conjunction with a contact procedure to find the contact forces and areas for each 
time step. The model with the contact procedure is shown in Figure 5.1. The top of 
the striker was displaced with a constant velocity and the bottom of the anvil was fixed. 
Due to symmetry, only half of the specimen and the striker had to be modeled. As in 
Chapter 4, B8hmes experiment [24] with a big SENB epoxy specimen with W = 0.1m 
and a/W = 0.3, L/W = 5.5, S/W = 4 and B = 0.01m was modeled to allow a direct 
comparison between model and experiment. The material properties for epoxy [24] 
were taken as E = 3.38GPa, p = 1.216kg/m3, and the Poisson's ratio as 0.33. The 
dimensions for striker and anvil, which were not given in [24] were determined from 
images of the test setup. The first tapered part of the striker in Bohme's setup was 
used in the model, which was 0.03m high and 0.03m long with a thickness of 0.01m, 
thereby matching the specimen thickness. The striker tip radius was 0.008m and the 
striker material was steel with a modulus of 210GPa, a density of 7800kg/m3  and a 
Poisson's ratio of 0.3. The dimensions of the anvil were also taken from [24] with a 
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height of 0.03m, a length of 0.02m, a thickness of 0.Olm and an anvil tip radius of 
0.Olm. 

Local mesh refinement was necessary to have a sufficient number of similar sized cells at 
both sides of contact. The mesh refinement and modeling of striker and anvil increased 
the mesh size from 17600 (the mesh size previously used) to 25875 cells. Five levels of 
local mesh refinement were used at the striker and anvil contact areas of the specimen. 
Due to a finer mesh only four levels of local mesh refinement were needed for striker 
and anvil. The SIF was obtained with the crack tip closure integral method. 

The material properties of epoxy were used for the anvil for one calculation, but due 
to numerical instabilities of the contact procedure for compliant anvils the properties 
of steel were used for the anvil for the other calculations. For the model of the steel 
specimen a steel striker was used with the material properties reported above and the 
anvil was set to be rigid, again to avoid numerical instabilities of the contact procedure. 
The time step in all the computations with the big epoxy specimen was lits. For the 
steel specimen a time step of 0.3pts was chosen. 

One FV analysis was performed for a small epoxy specimen with W = 0.01m and 
a/W = 0.3, L/W = 5.5, 81W = 4 and B = 0.Olm. A radius of 0.002m was used both 
for the anvil and the striker. Here the time step was set to 0.1ms. For the FV analysis 
of a small PE specimen with W = 0.Olm the properties of a MDPE material with a 
modulus of 1GPa, p = 940kg/m3  and a Poisson's ratio of 0.3 were used together with 
a time step of 0.16ps. 

In all the results shown in this chapter the impact velocity V was lm/s as in the 
experiment, except for the FV analyses on the velocity dependence of kd , where V was 
set to 1, 10 and 30m/s. The FV program was used in a 2D plane stress mode for all 
the calculations in this chapter. 

5.3 The results from the contact model with a steel anvil 

In Figure 5.2 the dynamic correction function kd  is displayed for the model with the 
contact procedure together with Bohme's measurements from [24] and the results from 
the simple model from Chapter 4. For the contact model a steel striker, an epoxy 
specimen and a steel anvil were used. The steel anvil was chosen, as the contact 
procedure used experienced numerical instabilities for compliant anvils and furthermore 
steel is the most likely anvil material to be used in a test. A steel anvil in contact with an 
epoxy specimen shows only small deformation of the anvil, which the contact procedure 
can handle without instabilities. The analysis employing the contact procedure models 
the experiment considerably better than the simple model, especially in the initial part 
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Figure 5.2: The dynamic correction function kd  for the contact model with a steel 
striker, epoxy specimen and steel anvil in comparison with the simple model and ex-
perimental data from [24]. 

for X < 9. As discussed in Chapter 4 the anvils start to influence kd  for X > 9 and the 
steel anvil in the model is considerably stiffer than the epoxy anvil in the experiment. 

Looking at the striker load in Figure 5.3 very good agreement between the contact 

	

model and the experiment can be seen for X < 16. At X 	11 the striker loses the 
contact with the specimen i.e. the specimen bounces and the contact is established 
again at X 16 in the contact model and for X ti 17 in the experiment. From the 
striker load it is obvious that the contact model fits the experiment closer than the 
simple model i.e. it is a better model. 

Figure 5.4 shows the anvil load from the contact model in comparison with the anvil 
load from the simple model and Bohme's measurements. Whereas it fits the experiment 
better than the simple model, the anvil load is still not satisfactorily modeled. As 
mentioned above, this is due to the fact that in the experiment a compliant epoxy anvil 
was used and the contact model employs a steel anvil. The stiffness of the latter is 
higher, which explains the higher initial slope of the anvil load. 
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Figure 5.3: The striker load for the contact model with a steel striker, epoxy specimen 
and steel anvil in comparison with the simple model and the experiment. 

Figure 5.4: The anvil load for the contact model with a steel striker, epoxy specimen 
and steel anvil in comparison with the simple model and the experiment. 
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Figure 5.5: The dynamic correction function kd  for the contact model with an epoxy 
anvil in comparison with results for the steel anvil and the experiment. 

5.4 The results from the contact model with an epoxy 
anvil 

To investigate the influence of the anvil on kd , a FV model with the contact procedure, 
an epoxy anvil, as used in Bohme's experiment, and a steel striker was analyzed (Figure 
5.5). Despite the fact that numerical oscillations at the anvil contact point occurred 
during the computation, the kd  curve is closer to the experiment. Especially the second 
peak of the kd  curve is predicted better by the model with the epoxy anvil. This is due 
to the influence of the anvil at this time and the fact that the anvil force in this model is 
close to the one observed experimentally (Figure 5.6). The anvil force from the model 
with the epoxy anvil in Figure 5.6 exhibits oscillations, which are purely numerical 
and at X = 23 the calculation was terminated. Further improvement of the contact 
procedure to account for 'soft' contacts in a more stable manner was beyond the scope 
of this work and therefore was not attempted. The results nevertheless show that the 
epoxy anvil does change the forces at the anvil and that a model with a compliant anvil 
is capable of reproducing the experimental forces recorded there. The results also show 
that the epoxy anvil does change the behaviour of the system and therefore alters the 
kd  curve. The difference in kd  for X < 9 between the model with an epoxy and a steel 
anvil is due to the way the kd  curve was normalized. Although the Kd values at times 
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Figure 5.6: The anvil force for the contact model with an epoxy anvil in comparison 
with results for the steel anvil and the experiment. 
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Figure 5.7: The striker force for the contact model with an epoxy anvil in comparison 
with results for the steel anvil and the experiment. 
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Figure 5.8: The influence of the striker stiffness on the dynamic correction function kd . 

X < 9 are not affected by the anvil (Chapter 4), the static stress intensity factor K,,t  
is and hence, due to the normalization of Kd with K,,t , kd  is different in this region for 
the model with the epoxy anvil. This means that the difference only arises from the 
way kd  was calculated. The striker force for the model with the epoxy anvil in Figure 
5.7 demonstrates that the good fit of the anvil force has an impact on the striker force 
and the agreement with the experiment until X Pe. 20 is very good. 

5.5 	The influence of the striker stiffness on kd 

Studies with analytical models [38, 40] show that the dynamic correction function kd  
is dependent on the contact stiffness between specimen and striker. Experimentally kd 
curves were measured for the combination of a steel striker, an epoxy specimen and 
an epoxy anvil, as reported in [24] and [31]. A numerical study [48] used only a rigid 
striker and a rigid anvil to model the kd  curves reported in [31]. The effect of the contact 
stiffness was not investigated. Following the results from the mass spring model studies 
and by using the contact procedure a study of the influence of the contact stiffness 
was performed. The contact stiffness was varied in a wide range by varying the striker 
stiffness i.e. the elastic modulus of the striker from 210GPa to 0.2GPa (Figure 5.8). 
The influence of the contact stiffness on kd  is apparent. For metallic materials like steel 
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Figure 5.9: The dynamic correction function kd  for a steel specimen with a steel striker 
and an epoxy specimen with a steel striker compared to Bohme's measurements with 
a steel striker, epoxy specimen and epoxy anvil. 

(E P.-.1 210 GPa), titanium (E 130 GPa) or aluminum (E 70 GPa) with a modulus 
20 or more times higher than the epoxy specimen (E = 3.38GPa) the curve remains 
virtually the same. If the specimen material properties are also used for the striker, 
which is the curve with E = 3.4GPa, the shape of the curve changes considerably. 
Especially the initial rising part of the curve is substantially lower and no pronounced 
initial peak is observed. This makes sense, as due to the lower contact stiffness the load 
increase will be slower and this limits the rise of the SIF at the crack tip. By decreasing 
the contact stiffness further this effect becomes more pronounced and the initial slope 
decreases steadily. For a striker modulus of 0.2GPa the initial slope is only about a 
fifth of the initial slope for a steel striker. It is apparent from the results that the kd 
curve from Caustics [24] is only valid for the striker contact stiffness for which it was 
determined. 

Figure 5.8 showed that if the same material was used for striker and specimen, here 
epoxy, a very different kd curve can be expected. This has implications on testing 
metals. If a steel specimen is tested with a steel striker, the ratio of the contact stiffness 
to the specimen stiffness will be similar to the ratio for an epoxy striker and specimen 
and therefore a similar curve could be expected. Figure 5.9 shows both curves and 
their similarity is striking. The amount of dynamic effects in kd  curves in case of the 
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Figure 5.10: The dynamic correction function kd  for striker radii of 0.008 and 0.002m 
compared to Bohme's measurements. 

same material for specimen and striker is drastically reduced in comparison with a rigid 
striker. The steel specimen with the steel striker combination had a rigid anvil to avoid 
the problem of numerical instability at the anvil. From Figure 5.9 it is obvious that 
the application of a kd  curve measured with a comparably rigid striker and an epoxy 
specimen to a test with a steel specimen and a steel striker leads to wrong results. It 
should also be noted that the stiffness of a steel specimen is about 50 times higher than 
a polymer specimen for the same specimen size. Therefore the stiffness of the testing 
machine is in many cases no longer negligible in comparison with the contact stiffness. 
This will affect the shape of the kd  curve and the initial slope of the curve will become 
even lower. 

5.6 	The influence of the striker radius on kd  

The influence of the striker radius on kd  is not so important for practical applications 
of the kd  concept, as this radius can be prescribed in a test protocol. The striker 
radius in a Charpy test for polymers [82] is prescribed as 0.002m by ISO 179-1 and 
for metals ASTM E23 [81] prescribes a striker tip radius of 0.008m. Bohme used a 
striker tip radius of 0.008m for a big specimen with W = 0.1m and the kd  curve for 
these dimensions was presented in Figure 5.2. In addition to that a TPB test with a 
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Figure 5.11: The dynamic correction function kd  for impact velocities of 1, 10 and 
30m/s compared to Bohme's measurements. 

striker radius of 0.002m was analyzed with the FV program for the big specimen with 
W = 0.1m and the kd  curve for this striker radius can be seen in Figure 5.10 together 
with the curve for a striker radius of 0.008m and measurements from [24]. There is 
some influence of the striker radius, but although the radius was changed by a factor 
of 4, the impact on the kd  curve is not very high and the initial peak is lowered only 
by about 5%. Therefore it is obvious that changes in the striker radius in the order 
of 10%, 20%, or even 50%, as they could happen in practical applications e.g. due to 
machining inaccuracies or wear of the striker tip, have a negligible effect on kd . 

5.7 	The influence of the impact velocity on kd  

Due to the fact that the contact stiffness is nonlinear, the impact velocity can influence 
the shape of the kd  curve. FV calculations were performed at 10 and 30m/s in addition 
to the results for lm/s to investigate the influence of the impact velocity. Figure 5.11 
shows these curves and a noticeable influence of the impact velocity on the kd  curve 
is apparent. A change in impact velocity changes the contact stiffness and therefore 
the natural frequency of the system. With increasing velocity the load increases and 
therefore a rise in contact stiffness is observed. This contact stiffness rise makes the 
system stiffer and increases the natural frequency, which can be seen in the oscillations 
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Figure 5.12: The dynamic correction function kd  for impact velocities of 1, 10 and 
30m/s compared to Bohme's measurements for X < 5. 

in Figure 5.11, which shows a shorter oscillation period with rising impact velocity. 
Furthermore, as a direct effect of the increasing contact stiffness the initial rising part 
of the kd  curve becomes steeper with impact velocity. Figure 5.12 shows a close-up of 
the region for X < 5. It should be noted here that the measurements for X < 2.5 were 
taken at an impact velocity of 8m/s [24] and these measured points are closer to the kd  
curve for 10m/s than the curve for 1m/s. Although the measured kd values are higher 
than the results from the FV model, the slope of the measured kd  curve is very similar 
to the slope of the 10m/s calculation. This shows the velocity dependence of the kd 
curve in the experiment. 

The impact velocity dependence of the kd curve implies that one curve determined at 
a specific impact velocity is, strictly speaking, only valid for this particular velocity. 
This is similar to an impact response curve [29], which is also only valid for a particular 
velocity. If a certain amount of error is accepted, a kd  curve can be used for velocities 
close to the velocity at which it was determined and the bigger the velocity difference, 
the bigger this error will be. 
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Figure 5.13: The dynamic correction function kd  for two different specimen widths 
compared to Bohme's measurements. 
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Figure 5.14: The dynamic correction function kd  for two different specimen materials 
compared to Bohme's measurements. 
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5.8 	The influence of the specimen width on kd 

As discussed in Chapter 4 a kd curve is not dependent upon the actual specimen width, 
W, if plotted versus nondimensional time and if a linear contact stiffness is assumed, 
prevailed that the specimen dimension ratios, a/W, L/W and S/W, are held constant. 
Even with a nonlinear contact stiffness, the kd  curve is almost independent of the 
specimen width as can be seen in Figure 5.13. The specimen width is varied here by 
a factor of 10 and the difference between the two curves is at its maximum 3%. It 
should be noted that in the case of the big specimen with W = 0.1m the striker radius 
is 0.008m and for the small specimen with W = 0.01m the striker radius is 0.002m. 
The small specimen is of the same size as a Charpy specimen with a/W = 0.3 and the 
big specimen is the specimen size which Bohme used in his experiments, which was 10 
times larger than a Charpy specimen in order to make the measurements easier and 
more accurate. Most practicable specimen sizes lie between the Charpy specimen and 
the big specimen and hence one kd  curve can be used for these specimen widths with 
good accuracy. 

	

5.9 	The influence of the specimen material on kd  

In most cases a steel, titanium or aluminum striker is used for TPB impact tests on 
polymers. Therefore the influence of the striker stiffness is negligible as most polymers 
have an elastic modulus which is of the same order of magnitude as epoxy and hence 
much lower than the striker modulus. PE is on the lower side of the spectrum of 
elastic moduli for polymers and therefore it was chosen to show the influence of the 
elastic modulus of the specimen on the kd curve. In Figure 5.14 the plots of kd  from a 
FV analysis of a Charpy size epoxy specimen and a PE specimen are compared. The 
maximum difference between kd from the epoxy and the PE specimen is about 3% for 
a modulus difference of 340%. The impact of the specimen modulus on kd  is therefore 
fairly small, hence the curve for the epoxy specimen can be used for tests with a 'rigid' 
striker on different polymers with good accuracy. 

5.10 The dynamic correction function gd  from the contact 
model 

As mentioned in Chapter 4 the dynamic correction function gd can be calculated by 
squaring kd  (Equation (3.15)). Figure 5.15 compares kd  and gd  from the contact model, 
which were obtained for the big epoxy specimen (W = 0.1m) with steel striker and 
anvil. In Section 4.7 the dynamic correction function gd  was shown to exhibit a higher 
degree of dynamic effects than kd. This is also true for the results from the contact 
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Figure 5.15: The dynamic correction functions kd and gd versus nondimensional time 
for a big epoxy specimen with W = 0.1m and steel striker and anvil. 
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Figure 5.16: The influence of the striker stiffness on the dynamic correction function 
gd  for a big epoxy specimen with steel anvil. 

90 



0 
O 

O 
O 

0.8 

0 5 30 10 	15 	20 	25 

Nondimensional time X 

1.6 

1.4 

rn 
c 1.2 
0 

0 
1.0 

0 

35 

0 0.6 _ 
co 

0.4 
C 

0.2 

0.0 

Impact velocity: 1m/s 
Impact velocity: 10m/s 
Impact velocity: 30m/s 

Finite Volume Analysis of the TPB Impact Test with a Contact Procedure 

Figure 5.17: The dynamic correction function gd  for impact velocities of 1, 10 and 
30m/s and a big epoxy specimen with steel striker and anvil. 

model. Due to the fact, that gd  is kd  squared, and that kd  oscillates around unity, the 
oscillations of the kd  curve are amplified in gd . For X < 4.2 gd  is lower than kd , but 
after that gd  shoots up to 1.35 at X = 6.9. The slope of gd  for X < 4.2 is initially lower 
than kd , but then higher, due to the nature of the kd-gd  conversion. The Figures 5.16 
and 5.17 show the influence of the contact stiffness and the impact velocity on gd . They 
were calculated from the results shown in Figures 5.11 and 5.8. The dynamic effects 
are amplified in all the cases and therefore one can say that gd  is more sensitive to a 
change in the test setup than kd . 
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Chapter 6 

Finite Volume Analysis of the 
Center Cracked Panel 

6.1 Introduction 

In Chapter 1 it was mentioned that the energy release rate G can be defined in a global 
or a local way. G can be calculated with a global method like the global energy balance 
and this method was applied to moving cracks in [4]. If there is no crack advance i.e. in 
case of a stationary crack, the global energy balance cannot be applied. In the case of 
a stationary crack G is the energy which would be available if the crack would advance. 
The crack tip closure integral is, in comparison to the global energy balance, a local 
method and can be used for a stationary crack. It is based on the assumption that if 
a crack is extended by a small amount, the energy absorbed in the process is equal to 
the work required to close the crack back to its original length. To find out whether 
the global and the local energy release rate calculations agree, the dynamic J integral 
can be used. The dynamic J integral can be applied to any path surrounding the crack, 
whether there is a crack advance or not. Depending upon the path along which the 
integral is evaluated this method can be seen either as a global method, when the path 
coincides with the boundary of the domain, or as a local method, if the path is close to 
or shrunk onto the crack tip. Therefore the J integral is an appropriate method to show 
that the global and the local calculation indeed yield the same results, independent of 
the chosen path. Due to the fact that even the simple model of the TPB test from 
Chapter 4 has a large number of cells and since it is a bending problem it takes a long 
time to converge. Nevertheless the mesh was found not to be fine enough to give good 
results when the J integral was applied. Therefore a different test case was sought to 
compare the J integral method with the crack closure integral method. A center cracked 
panel with a stress step applied was chosen, as this problem is easy to solve and there 
are also results available in the literature for comparison. In this chapter gd  curves for 
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Figure 6.1: The center cracked panel. 

the center cracked panel from three different paths are compared with gd  from crack 
tip closure and a comparison with results from the literature is also performed. 

6.2 The finite volume model of the center cracked panel 

Results for a center cracked panel were found in [83, 8] and in order to allow comparison 
with these results the same panel size and material properties were chosen. The panel 
is shown in Figure 6.1 and only a fourth of the panel had to be modeled for symmetry 
reasons. The part of the panel which was modeled is displayed in Figure 6.2 together 
with the three paths, which were chosen for the J integral evaluation. The panel had 
a length of 0.104m, a height of 0.04m and a crack length, a, of 0.024m. The material 
properties were taken from [8] as E = 75.61GPa, v = 0.286 and p = 2450kg/m3. Four 
different meshes were used and the first, the coarse mesh, had 260 square cells. Then 
each cell of the coarse mesh was split into four cells for the medium mesh with a total 
number of cells of 1040. This mesh was then refined again by a factor of four to the 
fine mesh with 4160 cells. By applying another refinement step a very fine mesh with 
16640 cells was generated. For all these meshes a dynamic FV analysis was performed 
for the duration of 20ps after a uniformly distributed stress step aoH(t), where H(t) 
is the Heavyside function, with ao = 1MPa was applied on the top and bottom ends 
of the panel parallel to the crack. The crack was assumed to be stationary under this 
time-dependent loading. The time step for the FV analysis with the coarse mesh was 
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Figure 6.2: The three different paths used for the J integral evaluation. 

0.1tts. For the FV analysis with the medium mesh the time step was halved to 5Ons, 
the fine mesh had a time step of 25ns and for the very fine mesh a time step of 12.5ns 
was used. The FV program was operated in a 2D plane stress mode, where the front 
and back faces were defined as stress free. 

6.3 	Comparison of gd  from the dynamic J integral and the 

crack closure integral 

In Figures 6.3 to 6.6 the gd  curves from the crack closure integral and the dynamic J 
integral for the four different meshes with increasing mesh refinement are presented. 
For the coarse mesh (Figure 6.3) it is immediately obvious that different J integral 
paths yield very different results. The further away the path is from the crack tip, the 
bigger the differences are. Obviously this mesh is too coarse for an accurate result of 
the J integral method. This is only a numerical problem, as the J integral method 
is apparently quite mesh sensitive. The crack closure integral results are already very 
accurate, even for this coarse mesh, which will be discussed later. The small path, which 
is closest to the crack tip, gives the best results and follows the crack tip closure results 
closely in the first third of the curve. The results from the medium mesh (Figure 6.4) 
show improvement and approach the crack tip closure results. Only the big path close to 
the edge of the domain yields values, which are initially far too high. The intermediate 
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Figure 6.3: The dynamic correction function gd  for the coarse mesh from the crack 
closure integral method compared with results from the dynamic J integral from three 
different paths. 

path shows some oscillations as well. The curve for the small path is already very close 
to the crack tip closure curve. Moving on to the fine mesh in Figure 6.5 there is almost 
complete agreement of all J integral path solutions with the crack tip closure result. For 
the very fine mesh in Figure 6.6 all four curves agree very well. Therefore one can say 
that the dynamic J integral yields the same result as the crack tip closure in this case of 
a stationary crack with transient loading. Figure 6.7 shows the crack tip closure results 
for all four different meshes. The difference between the results for different meshes is 
very small. The coarse mesh shows some higher results between 12 and 17ps, but even 
there the difference is only about 3%. The curves for the other three meshes are very 
close. The conclusion that one can draw is that the crack closure integral method is 
quite a mesh insensitive method for calculating K and G, whereas the J integral is very 
demanding in this respect. The mesh insensitivity together with the fact that the crack 
tip closure integral method is very easy to implement in a computer program makes 
this method superior to the dynamic J integral. 

The results demonstrate that the crack tip closure integral yields valid results for G, 
which agree with the dynamic J integral and further, that the dynamic J integral yields 
the same results, whichever path is chosen, as long as the mesh is fine enough. Therefore 
no difference between local G and global G was found. 
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Figure 6.8: The dynamic stress intensity factor Kd divided by the static infinite plate 
solution for the results from crack tip closure compared with results from Jih [8] and 
Nishioka [83]. 

6.4 Comparison between Kd from the crack closure inte-
gral with results from the literature 

The dynamic SIF from the crack closure integral normalized with the SIF for the infinite 
plate is shown in Figure 6.8. Also shown in this graph are two previous solutions by 
Nishioka [83] and Jih [8], obtained by employing the finite element method with an 
implicit Newmark time integration scheme. The curve from Nishioka [83] was calculated 
from a singular element method and Jih [8] calculated K from the crack closure and 
the dynamic J integral method, which was evaluated with a small path close to the 
crack tip. The FV results are quite close to the FE results, although a bit lower in the 
initial rising part of the curve. In the FE results high-frequency oscillations are visible, 
whereas the FV results are very smooth. The oscillations in the FE results are thought 
to be of numerical nature, as the smallest possible physical oscillation period would 
be 6.9its for a longitudinal wave reflected between the edge of the panel and the crack 
surface. The oscillation period for a wave being reflected between the top and bottom 
of the plate would be 13.8ps. The FE results rise faster, but show ringing, whereas the 
FV results exhibit more numerical damping. 
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Chapter 7 

Kd and Gd from Time to Fracture 

7.1 Introduction 

A test series of three materials tested at impact velocities ranging from 0.2m/s to 27m/s 
was presented in Chapter 2. These results were presented there as time to fracture, t s , 
versus impact velocity. Although this led to some interesting conclusions, the main aim 
of the TPB impact test is the determination of the dynamic fracture toughness, Kd, 
and the dynamic critical energy release rate, Gd. Based on the finite volume results 
from Chapter 4 and 5, this chapter describes a procedure to obtain Kd and Gd from 
time to fracture. 

7.2 The calculation of Kd and Gd from is  

Although most equations necessary for the calculation of Kd and Gd were presented in 
Chapter 1 they are shown again here for clarity. 

The quasistatic fracture toughness can be calculated from the time to fracture is  with 
(Equation 1.21) 

f  E Vt, Kst  = 	, 	. 	 (7.1) Ow (1+ a / 
where E is the elastic modulus of the specimen, V is the impact velocity and a is the 
stiffenss ratio 

2 
ki 

	

a =- —, 	 (7.2) ic 
with the contact stiffness k1  and the specimen stiffness k2. f is a geometry factor and 
for a SENB geometry with a span, S, to width, W, ratio of S/W = 4 and for a crack 
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length ratio a/W between 0 and 1 we find 

6 (47 ) (1.99 - (-47 ) (1 - (w))  (2.15 — 3.93 4) + 2.7 (a-7 )2 )) 
f = 	 . 	(7.3) 

(1 + 2 (-47)) (1-  (r,a-v)) 2  

, is the dimensionless specimen compliance after Bucci [32] with 

0= 0.24 ('v .;)3  (1.04 +3.28 (1) 2 (1+0) +2 G-vS-)2  ( (T17 ) 

(4.21 (W)  - 8.89 ( wa  )2  + 36.9 ( wa  )3  - 83.6 ( wa  )4  + 174.3 (147a )
5 

-284.8 ( c-f171--)6  + 387.6 (-a147 ) 7  — 322.8 (.-1/--va-)8  ± 149.8 ( Twa  )9) 	(7.4) 

where v is the Poisson's ratio. Equation 7.1 yields the fracture toughness value before 
any dynamic correction. It is linearly dependent on E and i s  and it also depends on 
a. As discussed in Chapter 5 the contact stiffness changes nonlinearly with the applied 
displacement. Previous studies [84, 40] yielded values for a between 9 and 11.4 for an 
epoxy specimen with W = 0.013m and a titanium striker with a tip radius of 2mm. 
A variation of a between 9 and 12 affects K.,t  only by about 2%. For polymers with 
different modulus a can be expected to be fairly similar, as k1  as well as k2  are affected 
by a change in modulus. The comparison between the epoxy and the PE specimen 
from Figure 5.14 shows the similarity of the curves for the different specimen materials, 
which means a similar stiffness ratio a. A value of a = 10 was used in this study for 
the three tested polymers. 

From the fracture time from the strain gauge t 3 , a nondimensional time X can be 
calculated with 

X = X0  + 
cit., 	

(7.5) 
W 

where X0  is the starting point of the kd  curve on the x-axis, W is the specimen width 
and q is the longitudinal wave speed with 

\ 
ci = 	 

(p(1E- v2)) 2  
(7.6) 

where p is the density and v is the Poisson's ratio. Xo is determined by the time a 
transverse wave needs to reach the crack tip from the point of the striker impact at 
midspan. Xo can be obtained from a kd  versus X graph and we find X0  = 1.2 for a 
SENB test and a/W = 0.3 in Figure 7.1. 

With the nondimensional time at fracture, X, the dynamic fracture toughness can be 
calculated with 

Kd = kd (X) • Kst 	 (7.7) 
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where kd  is a suitable dynamic correction function for the particular specimen geometry 
and test conditions (Section 3.7). 

The static energy release rate G8t  can be calculated from IC8t  via 

Gst — 	 (7.8) 

and analog to Equation 7.7 Gd can then be calculated with 

Gd = 9d (X) . Gst 	 (7.9) 

where gd is the dynamic correction function for G, which was described in Section 3.7. 

7.3 The elastic modulus 

The elastic modulus of the specimen is important for the evaluation of Kd and Gd 

from time to fracture. Both Kst  and Gst  depend linearly on the specimen modulus 
E. The amount of dynamic correction is also affected by E, as X is a function of 
E°-5  via the longitudinal wave speed and the X value affects the dynamic correction 
i.e. the position on the kd  curve. The elastic modulus of some polymers is known 
to be rate sensitive. In many cases the modulus increases with rate and this leads 
to an increase of Kd and Gd with rising impact velocity. Initial experiments to obtain 
values for the rate-dependent modulus during the ESIS TC4 round robin showed a large 
scatter between different laboratories and methods and were abandoned, as it was found 
that the accurate determination of the rate dependent modulus would need a separate 
research project. Therefore low rate modulus values were used for the calculation of Kd 

and Gd. Quasistatic TPB tests at 1.3mm/min were carried out on three specimen per 
material for PMMA and PVC and the mean values were taken. A modulus of 2.96GPa 
was found for PMMA and for PVC a modulus of 3.05GPa was obtained. From previous 
measurements by S. Hazra at Imperial College [85] the modulus of the pipe-grade PE 
was known to be 1GPa. 

7.4 	The determination of the dynamic correction 

As discussed in Chapter 5 the shape of the kd  curve depends upon the contact stiffness. 
A kd  curve can be used for different specimen widths with good accuracy. A change 
in the specimen modulus also does not affect the kd  curve greatly if the specimen is 
a polymer specimen and a metal striker is used. However, the impact velocity has a 
significant influence on the kd  curve and some form of correction for this influence can 
be necessary to keep the error small. If there is a large difference between the impact 
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Figure 7.1: The dynamic correction function kd  for impact velocities of 1, 10 and 30m/s 
and the concept for the kd  determination. 

velocity at which the kd  curve was determined and the impact velocity at which the 
test is performed, a correction is necessary. In the test series presented in Chapter 2 
the impact velocity varies between 0.2 and 27m/s. We can see from Figure 7.1, which 
shows the curves presented in Section 5.7, that there is a big difference between the kd  
curves for 1 and 30m/s and hence there is a need for a velocity dependent kd  curve. 
A simple concept was therefore used to obtain values for the dynamic correction for 
different impact velocities (Figure 7.1). For X > 12 a quasistatic time range is defined, 
where no dynamic correction is applied and hence kd  = 1. A dynamic time range is 
defined for X < 12 and a dynamic correction is applied. This dynamic correction takes 
into account the velocity influence on kd  with a linear interpolation for the actual test 
velocity between the kd  values for 1, 10 and 30m/s. For example for V = 2m/s and 
X = 3, a linear interpolation at X = 3 between the kd  values for 1 and 10m/s is 
performed, which yields an approximation of the kd  value for 2m/s. 

Polynomial curve fits of the kd  curves for 1, 10 and 30m/s were performed with a least 
squares procedure for X between 1.22 and 12. These curve fits can be used to obtain 
a kd  value for a specific impact velocity and X value. The polynomials are of the form 

f (X) = E biX i 
	

(7.10) 
i=0 
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Table 7.1: Polynomial coefficients. 

Coefficient lm/s 10m/s 30m/s 
bo 1.39633163 1.35992392 1.18420293 
bl  -3.53165057 -3.47395435 -3.02602141 
b2 3.13176244 2.99267672 2.47642342 
b3  -1.25022024 -1.07780992 -7.37938420E-01 
b4  2.82569960E-01 2.01513620E-01 7.62253600E-02 
b5  -3.88005100E-02 -1.94281600E-02 7.45259516E-03 
b6  3.28060344E-03 6.53570264E-04 -2.79680250E-03 
b7  -1.66227978E-04 3.89838867E-05 3.00348303E-04 
b8  4.62332167E-06 -3.99235643E-06 -1.47652362E-05 
b9  -5.44038813E-08 9.62883560E-08 2.82499880E-07 

where bi are the polynomial coefficients, which are displayed in Table 7.1 for 1, 10 
and 30m/s and N = 9. For sufficient accuracy a 9th order polynomial had to be 
used. Between 2.2 < X < 12 the curve fits do not deviate more than ±1.2% from the 
numerical curves from Figure 7.1. From 1.6 < X < 2.2 the curve fit stays within a 
±3% envelope. Only for very small times to fracture (X < 1.6), the curve fit does not 
yield accurate results, as the relative error becomes too high. 

The scheme presented above is a modified version of &dime's concept [31, 61], where 
the kd  curve was divided in a quasistatic and a dynamic time range and for the dynamic 
time range a polynomial approximation of the kd  curve for V = lm/s was used. Bohme 
used X = 9.2 for the division between the dynamic and quasistatic time range, as his 
kd  curve was equal to 1 at this time and after this time the kd  curve stays within a 
± 10% envelope. In this work, X = 12 was used, as the dip around X = 10 becomes 
deeper with impact velocity and hence a dynamic correction is also necessary in this 
region. 

Figure 7.2 shows the test results from Chapter 2, now converted into nondimensional 
time X, plotted against impact velocity. Due to small times to fracture, the results for 
PMMA are in the dynamic time range for impact velocities greater than 3m/s. For 
high impact velocities of more than 6m/s the X values are in the dynamic time range 
for all three tested materials. This means that, although deviations from kd  = 1 are 
outside the ± 10% envelope for X > 12 and V = 10, 30m/s, they do not matter for the 
calculation of the results, as the materials tested fail at low X values (X < 8) at these 
velocities anyway. 

Figure 7.3 shows the amount of dynamic correction for each test. Due to the nature of 
the correction, significant dynamic correction values are found only from 4m/s onwards. 
Due to the high fracture time, the dynamic correction for PE is greater than 1 at high 
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Figure 7.3: The value of dynamic correction for the tests for PMMA, PVC and PE 
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velocities, whereas PMMA and PVC show a reduction of Kst  in Kd i.e. a dynamic 
correction with kd  < 1 at 16 and 27m/s. 

7.5 The sensitivity of Kd and Gd to errors in t8 

Errors in is  can arise from inaccuracies in the measurement of fracture time. A certain 
amount of error will therefore always be present in t, and it is important to know the 
effect of the error of t, on Kd and Gd. In Chapter 2 it was found that the average 
error of t, can be considered to be about 10%. Due to the high slope in the initial part 
of the kd  curve, Kd is very sensitive to errors in t, in this region. An error analysis 
showed that for X = 2, which is the worst case which can happen (the smallest time 
to fracture and the steepest part of the curve), and an error on is  of ±10%, the error 
on kd  will be ±29%. Kst  will also be affected, but as Kst  is linear with t,, the error on 
it will be ±10% also. The error on Kst  and is  together yield an error of +41%/-34% 
on Kd. The total error is hence magnified from 10% to 41% in the worst case. This 
is quite a big error and clearly the method needs improvement. If the error is random 
error and not systematic, then taking several measurements at the same impact velocity 
and averaging them will clearly improve the accuracy of the Kd value. In this study 
three replications at most velocities were performed and from these a mean value was 
computed. As Gd is proportional to Kd, the error on it will be more pronounced than 
the error on Kd. The error on Gd for the ±10% error on is  will be +100%/-59%, 
which is rather large. This is expected as it was found in Section 4.7 that gd  and hence 
Gd is a more sensitive parameter than Kd. We can conclude here that the error on 
t, can be enlarged by a factor of 4 in the worst case for Kd and by a factor of 10 for 
Gd. Therefore a very accurate detection of the fracture time is needed in conjunction 
with averaging of several measurement points per velocity to obtain accurate Kd and 
Gd values. 

7.6 The dynamic fracture toughness results 

Figures 7.4 to 7.6 show the dynamic fracture toughness Kd for the three polymers 
tested. The graphs show the individual measurements as well as the mean toughness 
values for each velocity. The toughness values for PMMA in Figure 7.4 show quite a big 
scatter, especially from 1 to 4m/s. This scatter comes from the scatter in t s , which is 
magnified by the data evaluation procedure, as discussed in Section 7.5. The averaging 
procedure brings more clarity in the results and we find a falling fracture toughness up 
to 8m/s, where Kd levels off at about 0.6MPam05. For PVC in Figure 7.5 we find falling 
toughness values up to a minimum of 1.1MPam" at 8m/s and then the toughness rises 
again with impact velocity. The observed scatter is lower for PVC than for PMMA. 
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Figure 7.5: The dynamic fracture toughness Kd for PVC with the mean value for each 
impact velocity. 
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Figure 7.11: The dynamic energy release rate Gd for PE together with a fit with a 
thermal decohesion model. 
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Kd and Gd from Time to Fracture 

For PE the scatter is even more reduced (Figure 7.6) and it also exhibits a tendency 
of a minimum toughness of 1.1MPam°•5  at an impact velocity of 8m/s and then the 
toughness increases again for V > 8m/s. Figure 7.7 shows the mean toughness values 
for all three tested materials. PMMA exhibits the lowest toughness values, whereas 
the Kd values for PVC and PE are quite close. In Figure 7.8 the fracture toughness is 
displayed versus fracture time. The toughness of PMMA falls with decreasing fracture 
time, whereas for PVC and PE a minimum at 40/2s (PVC) and 90ps (PE) is observed. 

7.7 The dynamic energy release rate results 

The dynamic energy release rate results for the three materials tested are presented 
in Figure 7.9 to 7.11. Due to the large changes the Gd values are plotted on a log 
scale. In comparison to Kd the scatter is increased in Gd due to the nature of the 
Kd-Gd  conversion. A fit with a new thermal decohesion model [86] was added. The 
values for the fitting parameters, the critical distance, z,, and a transition temperature, 
T T,, are given in the graphs. Except for the low T,,,•  value for PMMA, the values for 
z, and T, are quite realistic. The results from the thermal decohesion model lead to 
the conclusion that the rise in G at high rates could be due to thermal effects. By 
calculating the mean value for each impact velocity Figure 7.12 is the result, which 
shows the tendency for the tested materials more clearly. For PMMA we find a slightly 
falling Gd value up to 8m/s, above which Gd then stays constant at about 1200J/m2. 
For PVC and PE a tendency with a minimum at 8m/s is observed, as we found it for 
Kd for these materials. Up to 8m/s Gd drops by an order of magnitude for PVC and 
PE. Figure 7.13 shows a plot of the dynamic energy release rate versus the fracture 
time. Similar to Figure 7.8 Gd for PMMA decreases with falling fracture time and a 
tendency with a minimum energy release rate at 400s for PVC and at 90/is for PE is 
observed. 

111 



Chapter 8 

Summary and Conclusions 

The aim of this work was to contribute towards a possible standard test method for Kd 

and Gd for polymers at high rates of loading. The understanding of the test was im-
proved with numerical analysis and the results from this analysis were used to improve 
a previous test procedure and to calculate Kd and Gd for a series of tests. 

A test series with PMMA, PVC and PE was performed and the time to fracture, t,,, 
was measured for a wide range of impact velocities. Data from a round robin within 
ESIS TC4 with these three materials, which was performed as a part of this project, is 
also presented. The observed time to fracture showed a relatively large scatter and a 
further round robin would be advisable to improve the accuracy of the measurements. 
The time to fracture was found to exhibit a —4/3  dependency with impact velocity in 
a double logarithmic diagram not only for the thermoplastics tested, but also for three 
epoxy materials. This tendency was explained with a thermal model, which indicates 
that the fracture process could be a thermal phenomenon caused by heat trapped in a 
small zone around the crack tip. 

A simple finite volume (FV) model of the three point bend (TPB) test, where striker 
and anvil were modeled by special boundary conditions on single cell faces was ana-
lyzed. The analysis results showed reasonable agreement with experiments performed 
by B8hme [24] for the dynamic correction function kd . The anvils were found not to be 
important in the initial stage of a high rate test, as they influence the kd  curve only at a 
late stage of the test, where in most cases with a high impact velocity fracture initiation 
has already occurred. In the initial stage a TPB test is therefore actually a one point 
bend test. From a FV analysis with the simple model it was further found that the 
dynamic stress intensity factor (SIF) from the crack tip closure integral method agrees 
with the SIF obtained from the basic definition of K, i.e. from the local stress field. An 
analysis of the method of calculating K with the bending moment at midspan showed 
that at short times this method does not agree with the SIF found at the crack tip and 
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Summary and Conclusions 

hence 1D models of the TPB test using the bending moment to cacluate the SIF will 
not yield accurate SIF values at short times. 

Investigations of the applicability of a kd  curve to other test conditions than the ones for 
which it was determined showed that for a linear contact stiffness the impact velocity, 
V, can be changed without affecting the kd  curve. The specimen width, W, can also be 
varied without a change in the kd  curve, if the specimen dimension ratios, a/W, which 
is the crack length to width ratio, L/W, the specimen length to width ratio and the 
span to width ratio, S/W, are held constant. The dynamic correction function for the 
energy release rate gd  was found to exhibit larger oscillations than kd , because gd  = 

A FV model of the TPB test with a contact procedure, which allows accurate modeling 
of the contact problem, gave a significantly better fit with the experiment. It was 
found that the contact stiffness at the anvil affects the kd  curve at a later stage of the 
test and that the model with a compliant epoxy anvil showed better agreement with 
the experiment than the model with a steel anvil, as in the experiment a compliant 
epoxy anvil was used to enable measurement of the anvil load. It was also found that 
the contact stiffness between striker and specimen plays an important role and affects 
the shape of the kd  curve. A change of the striker stiffness, which affects the contact 
stiffness, yielded a high degree of change in kd , whereby a lower striker stiffness reduced 
the initial slope of the kd  curve. Virtually the same kd  curve was found for an epoxy 
striker and specimen and for a steel striker and specimen, which led to the conclusion 
that the application of a kd  curve determined with a steel striker and a polymer specimen 
to a test with a steel striker and specimen will lead to wrong results. From the FV 
model it was found that a change of the striker radius has only a small effect on the 
kd  curve. The striker radius is usually prescribed in a test protocol and hence minor 
striker radius variations, which can occur due to inaccuracies from machining or wear 
of the striker tip, will have a negligible effect on the kd  curve. 

If the contact model was used, the impact velocity was found to have a significant 
influence on the kd  curve due to the nonlinear contact stiffness. The contact stiffness 
becomes higher with increasing impact velocity and hence the initial slope of the kd  
curve increases. The initial peak and the subsequent oscillations of the kd  curve also 
increase with rising impact velocity. If a kd  curve is used for the evaluation of a test 
with an impact velocity different than the one at which the curve was determined, 
errors will occur. For small velocity differences these errors are negligible, but if the 
impact velocity is drastically changed, a correction is necessary to keep the error of kd  
small. 

The specimen width has only a small influence on kd  for the model including contact 
effects, as long as the specimen dimension ratios, a/W, L/W and S/W, are held con-
stant. Therefore a kd  curve obtained with a particular specimen width can be used for 
tests with other specimen widths. The specimen material does not affect the kd  curve 
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significantly if the specimen is made from a polymer and if a metal striker is used, 
which can be considered as rigid in comparison. One kd  curve can therefore be used for 

a comparably rigid striker and different polymers with good accuracy. 

A check of the energy release rate results from the crack closure integral method was 
performed by comparing the results from the crack closure integral method with the 
results from the J integral for a stationary crack in a transient stress field. A center 
cracked panel with a load step applied was used for this purpose. For a converged FV 
solution the results from the crack closure integral method agreed perfectly with the J 
integral method. It was further found that there is no difference between a global and 

a local G value by using different paths for the J integral. The converged FV solution 
was found to yield the same results for any path, whether close or far from the crack 
tip. The crack closure integral method is easy to implement and very mesh insensitive, 
which is a big advantage over the J integral method, which was found to be very mesh 
sensitive and also more difficult to implement in a FV program. 

Kd and Gd for the test series for PMMA, PVC and PE were evaluated from time to 
fracture with a procedure based on that used in the data analysis of the previous round 
robin [61] and the results of this work. Some modifications of the procedure of the 
previous round robin were done in the light of the results of the numerical analysis of 
the test. Due to a large variation in impact velocity a correction was performed by 
interpolating between the 1, 10 and 30m/s kd  curves to obtain a dynamic correction 
for a particular impact velocity. This correction was applied in the dynamic time range 
for the nondimensional time, X < 12, whereas for X > 12 a quasistatic time range was 
defined, where no dynamic correction was applied. Polynomials fitting the numerically 

evaluated kd  curves for 1, 10 and 30m/s were presented, which can be used in the 
dynamic time range to obtain kd . This dynamic correction procedure could be the 
basis for more improvements by performing another TC4 round robin on this subject 
and one step towards a possible test standard for TPB impact tests. An error analysis 
showed that Kd and Gd are very sensitive to errors in the time to fracture. In the worst 

case, for a small value of t, in the steepest part of the kd  curve, the error on t, can 

be magnified by a factor of 4 in the case of Kd and by a factor of 10 in the case of 

Gd. Taking the mean value of several measurements per impact velocity will drastically 

reduce the random error on Kd and Gd and hence is recommended. A rise in fracture 
toughness was found for PVC and PE at high velocities > 8m/s, whereas for PMMA 
only a small drop of the fracture toughness with a subsequent plateau from 8 to 27m/s 
is observed. The energy release rate shows the same tendency as the fracture toughness, 
but the changes with impact velocity are larger, as Gd is proportional to K. 
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Appendix A 

Here the test procedure is given, which was distributed to the participants of the round 
robin as a guideline. 

HIGH RATE ROUND ROBIN 2001: 
Kc AND Gc AT HIGH RATES OF LOADING FOR 

POLYMERS 

A. RAGER 

1. System requirements 

1.1 Testing machine 

A fast testing machine, which is able to cover a range of velocities from 0.2 to at 
least 10 m/s (up to 32 m/s is preferred) is needed. Either servohydraulic 
machines or drop weight towers can be used. The peak loads may go up to 6 
kN. The speed has to be constant at least during the time when the striker has 
contact with the specimen (displacement control). Furthermore the test velocity 
has to be measured accurately. 

1.2 Contact detection circuit 

A circuit as shown in the figure below should be used. 

Power 
Supply 
5V DC 

The frequency response of this equipment should be checked with a high rate 
test of at least 10 m/s. The rise time of the contact strip signal should be 
measured and it should be less than 400 ns for a rise from 10 to 90 % of the 
signal. 
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1.1 Strain measurement 

A fast strain gauge amplifier has to be used for the crack tip strain gauge. The 
upper frequency bound at a gain of 100 (necessary for common foil gauges) has 
to be higher than 500 kHz. If there are doubts about the amplifier then a check 
with a signal generator and a scope is necessary for measuring the rise-time. 
If conductive strips on the sides of the specimen are used for the detection of the 
point of fracture initiation, then also the rise time of the system (corresponding to 
an upper frequency bound: tr  * fg  = 0.35) has to be known. The upper frequency 
bound should also be higher than 500 kHz. 

1.2 Load measurement 

The load is measured either with a piezo loadcell or with an instrumented striker. 
The piezo loadcell has to be less than 20 mm away from the nose of the striker. 
The measured resonance frequency of the striker/loadcell system should be 
higher than 25 kHz. Otherwise a smaller and therefore lighter striker should be 
used and/or the material should be changed (aluminium, titanium preferable). 
An instrumented striker with strain gauges should have the gauges less than 20 
mm away from the tip of the striker. If a strain gauge amplifier is used, it should 
fulfil the same conditions as mentioned in 1.3. 
The striker should be wider than the thickness of the specimen (here 8mm). 

1.3 Signal recording 

For signal recording a digital storage scope with at least 20 MS/s at 8 bit and at 
least 4 channels is needed. 
Alternatively a PC with oscilloscope cards (specifications as above) and 
appropriate software can also be used. 

1.4 Test rig 

A rigid test rig with flat and parallel supports and a span of 64 mm is needed. 
The striker has to be parallel to the supports. The position of the specimen 
should be kept constant by stops which may be glued onto the supports with 
superglue and which may be removed afterwards. The specimen should be kept 
in place with rubber bands (machine vibration). 
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2. Testing details 

The following signals should be recorded versus time: 
tics contact strip voltage 
Use 	initiation detection (strain gauge/ gold strip) 
P 	Load 
u 	striker displacement (if possible) 

2.1 Specimen 

The chosen specimen geometry is 16*8*88 mm. The precrack has to be 4.8 mm 
in length for an aNV ratio of 0.3. The specimens are supplied already precracked 
for this round robin. 

2.2 Specimen preparation 

The top edge of the specimen has to be covered with a sputtered, continuous 
layer of gold (resistance from striker position to contact point less than 110. 
Therefore a sputter-coater used for electronmicroscope samples is needed. The 
layer should be very thin (about 50[1m). 
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The specimen has to be equipped with a crack tip strain gauge. The strain 
gauge has to be placed as close to the crack tip as possible as displayed in the 
figure below. 

Crack tip strain gauge 

The strain gauge should be carefully aligned parallel to the specimen. The strain 
gauge leads should be fixed to the specimen by adhesive tape, otherwise they 
may come off due to machine vibrations or peel off the strain gauge. A grid size 
of 1.5*1.5 mm or smaller is recommended for the strain gauge. 
Alternatively a conductive strip (very thin sputtered gold) across the crack tip can 
be used. The problem arising is that this procedure should measure the time to 
fracture at the crack tip. Due to variations in the time between contact detected 
by the contact strip and the rise of the strain gauge signal is  cannot be measured 
or calculated accurately from a gold line on the specimen side. A compensation 
for the travelling time of the stress waves from the top of the specimen to the 
crack tip can be done, but will be inaccurate. 

2.1 Crack length measurement 

The crack length should be measured at 5 equidistant positions over the 
thickness of the specimen. A mean value of these five lengths should be taken 
as the crack length. 

2.2 Time to fracture determination 

The time to fracture at the crack tip is measured from the strain gauge (or from 
the gold line with the problems given above). The point where the strain signal 
starts to rise is taken as a starting point of the crak tip loading. The highest peak 
in the signal is taken as initiation. 
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2.0 

Initiation 

2.5 Experimental plan 

The test velocities should be from the following list, depending upon the 
capabilities of the test system at the upper end: 
0.2 1 2 4 8 16 m/s (or as a last value the maximum velocity of the machine). 
Three replications for each velocity should be performed 
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3. Test results 

The signal traces should be stored in an Excel-97 compatible spreadsheet in a 
folder with the abbreviation of the testing institution followed by signal traces 
(e.g.: IC signal traces). The name of the file should be given according to the 
specimen number written on the specimen. The following table shows the 
necessary format of the spreadsheet. 

ICA10.xls 

time 	u 
[s] 	[m] 

P 
[N] 

Usg 
[V] 

Ucs 
[V] 

-1.000E-04 -2.001E-04 2.4 0.1436 2.148 
-9.939E-05 -1.988E-04 -5.7 0.1319 2.148 
-9.875E-05 -1.975E-04 -5.7 0.1358 2.148 
-9.811E-05 -1.962E-04 2.4 0.1358 2.148 
-9.747E-05 -1.949E-04 2.4 0.1358 2.148 
-9.683E-05 -1.937E-04 2.4 0.1202 2.109 
-9.619E05 -1.924E-04 -5.7 0.1436 2.148 
-9.555E-05 -1.911E-04 -5.7 0.1358 2.148 
-9.491E-05 -1.898E-04 -5.7 0.128 2.148 
-9.427E-05 -1.885E-04 -5.7 0.128 2.148 
-9.363E-05 -1.873E-04 -5.7 0.1319 2.148 
-9.299E-05 -1.860E-04 2.4 0.1397 2.148 
-9.235E-05 -1.847E-04 -5.7 0.1319 2.189 
-9.171E-05 -1.834E-04 -5.7 0.1397 2.189 
-9.107E-05 -1.821E-04 2.4 0.1358 2.189 
-9.043E-05 -1.809E-04 -5.7 0.1358 2.189 
-8.979E-05 -1.796E-04 2.4 0.1358 2.189 
-8.915E-05 -1.783E-04 2.4 0.1358 2.189 
-8.851E-05 -1.770E-04 -5.7 0.1241 2.148 
-8.787E-05 -1.757E-04 2.4 0.1319 2.148 

In order to be able to evaluate many test results from different laboratories it is 
necessary that the format of the data is standardised. Please include in the file 
individual graphs for u, P,Ucs and UsG versus time. Also please use SI units as 
shown in the file above. 

The test results should be stored in an Excel-97 compatible spreadsheet. 
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IC test results.xls 

test no. V 
[m/s] 

W 	a 
[m] 	[m] 

b 
[m] 

is 
[s] 

ICA1 0.2 0.016 4.906E-03 0.008 1.52E-03 
ICA2 0.2 0.016 5.574E-03 0.008 1.54E-03 
ICA3 0.2 0.016 4.758E-03 0.008 1.38E-03 
ICA4 1 0.016 4.976E-03 0.008 2.73E-04 
ICA5 1 0.016 4.438E-03 0.008 2.37E-04 
ICA6 1 0.016 5.292E-03 0.008 3.13E-04 
ICA7 1 0.016 4.518E-03 0.008 2.52E-04 
ICA8 2 0.016 4.802E-03 0.008 1.41E-04 
ICA9 2 0.016 5.232E-03 0.008 9.90E-05 
ICA10 2 0.016 5.512E-03 0.008 1.11E-04 
ICA11 4 0.016 4.516E-03 0.008 4.50E-05 
ICA12 4 0.016 4.464E-03 0.008 4.26E-05 
ICA13 4 0.016 4.910E-03 0.008 3.65E-05 
ICA14 4 0.016 4.926E-03 0.008 5.70E-05 
ICA15 8 0.016 4.598E-03 0.008 1.99E-05 
ICA16 8 0.016 4.736E-03 0.008 1.99E-05 

Please use the same type of spreadsheet as in the example in order to make the 
data reduction easier. 
Also a list with the machines used and measurement devices with their 
specifications should be provided so that in case of big differences of the results 
we may be able to deduce a possible source of the differences. 
The tables for the results should be stored in one Excel file (as described above) 
with the following abbreviations used for the testing institutions: 

Testing institution Abbreviation 

Cranfield University CU 
ICI ICI 
Imperial College IC 
Politecnico di Milano PDM 
University of Leoben UOL 
University of Twente UTW 

Please send the results files before September to Alexander Rager, IC, either per 
email or on a 100 MB zip disc. The results files will be evaluated at IC and the 
data will be presented at the next ESIS TC4 meeting in October. 
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Enquiries and data to: 

Alexander Rager 
Mechanical Engineering Department 
Imperial College of Science, Technology and Medicine 
Exhibition Road 
London SW7 2BX, UK 
0044 171 5895111 57232 (Extension) in office 398 
a.racier@ic.ac.uk 
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