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ABSTRACT 

Transportation is likely to be the greatest source of noise and local air pollution in urban 

centres and one of the major contributors to carbon dioxide emissions, which is the 

predominant greenhouse gas. A promising option for the decarbonisation of this sector, 

and for reducing local pollution, is the use of hydrogen as a transport fuel. In order to 

introduce hydrogen fuel in the transport sector the development of an infrastructure is 

an essential prerequisite. However, the design of a hydrogen delivery system is a complex 

venture that includes considerable uncertainties and numerous parameters that have to 

be considered in order to achieve its implementation. 

This thesis examines the potential of supplying hydrogen fuel produced exclusively from 

renewable energy resources to urban centres. The issue of the least-cost hydrogen 

infrastructure design is addressed by developing an original model able to assess the 

performance of different hydrogen pathways in terms of both economic and technical 

criteria while taking into account the evolution of the infrastructure over time, meeting 

increasing demand, and the renewable resource potential of the geographical region 

under study in order to perform resource optimisation. 

The model is designed by means of mixed integer linear programming and developed in 

MATLAB®. It is built in such a way so as to provide a generic framework for modelling 

several hydrogen fuel chains for establishing a hydrogen infrastructure that could be 

readily extended to different infrastructure patterns and geographical areas. 

The model is applied to the case of London examining the potential for delivering 

hydrogen fuel to such a large urban centre. The case study investigates the possibilities of 

developing a renewable hydrogen infrastructure able to deliver sufficient hydrogen in 

order to cover London's road transport fuel demand within a 50-year time horizon. The 

results include the description of a cost-effective infrastructure development scenario 

along with its corresponding overall cost. The case study illustrates that the hydrogen 

infrastructure development modelling approach developed in this study assists the 

identification of least-cost renewable hydrogen supply chain options. 
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C E R 

Introduction 

1.1 Background 

Every paper, report or thesis that includes the words hydrogen fuel in their title 

commences by referring to issues such as energy security, air and noise pollution, 

carbon emission reductions, greenhouse effect, ozone layer depletion and acid 

rain. In the previous years, the consequences of the use of carbon-based fuels had 

been discussed and a number of scientists had foreseen the severe environmental 

damage that entails their use. What comprised a prediction in the past became a 

reality in the present and frustratingly it is almost impossible to exaggerate the 

danger of continuing using fossil fuels. Recognizing the necessity for alternative 

fuels is the first necessary step in order to change this situation. Determining 

possible solutions and implementing the most promising among them is the 

subsequent step. At present, society has made the first step and is struggling to 

make the second one. 

However, the selection and use of clean fuels and energy sources can be 

prognosticated as one of the most intriguing challenges for the future of the 
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Introduction 

environment and society. One of the main sectors that depends heavily, if not 

exclusively, on fossil fuels and thus is a major contributor of air pollution is the 

transport sector. Worldwide it is responsible for about 25-35% of CO2  emissions 
(MacLean and Lave, 2003). This picture is getting worse as most of the future 

growth in energy is expected to take place in transportation (Dunn, 2002). 

Realizing the remarkable impact of the transport sector on the environment 

makes the decarbonisation of this sector an imperative need for the amelioration 

of the environmental quality. 

New and environmentally benign alternative fuels to the use of petrol and diesel 

are necessary to be introduced in the transport sector. A number of alternatives 

have been studied such as methanol, ethanol, methane and synthetic liquids from 

coal and natural gas and hydrogen. Among these, hydrogen is of keen interest and 

perhaps the most promising option because it holds the promise of reducing the 

dependency on fossil fuels, delivering deep cuts in greenhouse gas emissions and 

other air pollutants and improving the energy security simultaneously. 

Hydrogen is an efficient, versatile and clean-burning fuel. It can be used in both 

modified internal combustion engine and fuel cell vehicles without the emission 

of carbon dioxide, carbon monoxide, sulphur dioxide and particulates at point of 

use. It can be derived from a wide range of sources from fossil up to renewable 

energy sources by a number of different routes. The flexibility in its production 

may assist in the gradual switch of the transport sector from fossil fuels to 

renewable fuels. As hydrogen during combustion is almost free of polluting 

emittents, its environmental benefits strongly depend on the way of production. 

Thus, the energy used to obtain hydrogen is the factor that determines whether 

hydrogen is clean or dirty. 

Realistically, in the short term due to economic and technical factors the 

predominant source of hydrogen may be fossil fuels. Although fossil fuel derived 

hydrogen may produce less harmful emissions than conventional fuels, it limits 

the extent to which these emissions can be reduced. Fossil fuels as a hydrogen 

source eliminate most of the benefits offered by hydrogen. In order for hydrogen 

to fulfil its promise as an abundant, available and sustainable fuel, hydrogen from 

fossil fuels shall not be considered as the ultimate alternative to the current fuels 
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Introduction 

but as an interim step to a more sustainable transport fuel. The supreme 

sustainable fuel that has the potential to inhibit further environmental damage 

may be considered hydrogen generated from renewable energy sources. 

Renewable hydrogen may eventually replace fossil fuels and therefore free the 

transport system from carbon. Renewable hydrogen may be an ideal complement 

to electricity and together they may create an energy loop that is 100% renewable. 

Without renewables, hydrogen may just be another fuel that can to some extent 

mitigate the environmental impacts of the transport sector but will not solve any 

problem satisfactorily. In a world that strongly requires the use of clean fuels it is 
disappointing to have a fuel like hydrogen and not to exploit the fact that its 

versatile production allows its derivation from renewable energy sources. It is 

meaningless to talk about hydrogen if it is not a part of an integrated sustainable 

energy scheme. Hydrogen and renewable energy sources shall be considered as 

closely interwoven ingredients for a successful sustainable transport recipe. 

Renewable energy sources without hydrogen cannot supply a significant share of 

the world's energy demand as most of them are intermittent and broaden their 

role in the supply of clean fuels for transportation. On the other hand, hydrogen 

without renewable energy sources cannot be regarded as a totally clean fuel and 
thus unfold its environmental benefits. 

In order to introduce hydrogen fuel to the transportation sector the development 

of an appropriate fuel infrastructure is necessary. The required infrastructure 

involves fuel chains that consist of certain stages in order to deliver hydrogen to 

the point of use. The main stages of a fuel chain include the production, storage, 

transport and dispensing of the fuel. For each step in the chain there is a 

considerable variety of technologies, making the diversity of different possible 
fuel chains quite wide. The technology options available for each stage in the 

chains differ in technical, economic and environmental characteristics. Apart from 

these characteristics, they also vary in terms of current status and potential. Some 

technologies are mature and widely used, others are still at the development stage 

and others are in the transition from a proven technology to one in widespread 
use. 
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Introduction 

The focus of this study is on the exploration of the fundamental questions 

surrounding the development of a renewable hydrogen infrastructure such as, 

which and where are the available renewable energy resources that can be used as 

a primary energy feedstock. Or, is it more economical to start with large 

centralised production plants or small forecourt production facilities? Are storage 

and transport of hydrogen required, and if so, which technologies? In which form 

hydrogen is less costly to be delivered, in liquid form or as a compressed gas? 

How the infrastructure could be evolved to meet increasing demand? 

1.2 Aim and Objectives 

In recognition of the necessity for cleaner fuels and the potential of hydrogen as a 

candidate fuel that may assist in the amelioration of environmental quality this 

thesis addresses the potential for renewable hydrogen supply to urban centres in 

order to be used as a transport fuel and thus free the transport system from 

carbon based fuels and their ensuing repercussions. 

The central aim of this study is the development of a methodology to examine 

various fuel chains options in order to determine the least-cost renewable 

hydrogen infrastructure development plan. Being more specific, the thesis aims to 

assess the performance of diverse pathways involving the primary energy 

feedstock production, the hydrogen production, storage, and distribution 

technologies in terms of both economic and technical criteria. Moreover, given 

that market conditions, such as hydrogen demand, energy prices, GHG mitigation 

legislation, are expected to change in the future it accommodates the evolution of 

the infrastructure development over time. Emphasis is placed on the generality of 

the developed methodology in order to constitute a generic framework for 

modelling the variety of possible fuel chains for establishing a hydrogen 

infrastructure that could be readily extended to different conditions and 

geographical areas. 
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Introduction 

The main objectives that deliver this aim can be summarised as follows: 

➢ To assess the modelling approach of previous relevant studies aiming to 

identifying their strengths and weaknesses; 

➢ To determine the renewable energy resources that are available and 
suitable for the production of hydrogen fuel; 

➢ To examine the technical and economic characteristics of hydrogen 
production technologies; 

➢ To develop various possible fuel chains for hydrogen fuel; 
➢ To review the current status of technology for each component of the 

fuel chains; 

➢ To take into account the evolution of the supply options in time, meeting 

hydrogen demand; 

➢ To develop an algorithm able to model the development of a hydrogen 
fuel infrastructure; 

➢ To apply the algorithm to the case of London, determining for its specific 

conditions the least-cost renewable hydrogen infrastructure development 

plan, demonstrating the merits of the approach. 

1.3 Methodology, Scope and Limitations 

The modelling approach of this study is a combination of different technological 

fields. The model has been designed using XML, image processing and Mixed 

Integer Linear Programming (MILP) and has been developed in MATLAB. 

The issue of the infrastructure development is mathematically formulated as a 

MILP problem. A linear programming (LP) problem in which all the variables are 

constrained to take integer numbers is known as integer linear programming 

problem. In this study some variables were restricted to be integers and thus made 

the problem MILP problem. MILP models have the advantage of being more 

realistic than LP models. However, they have the disadvantage of being much 

harder to solve. As in MILP the variables can take the values 0 or 1, a MILP 

model may well support logical operations, such as decisions on the expansion or 

shut-down of production facilities. Because of this feature of MILP, the model is 

able to combine the different options. This combination is an essential ingredient 
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for the building up of the infrastructure. In modelling the planning and designing 

of an infrastructure a number of fixed costs at certain stages of the process have 

to be taken into account. MILP can support the inclusion of start up or fixed 

costs, making this another reason that justifies MILP as the preferred method to 

deal with the present problem. Moreover, the application of MILP incorporates 

dynamic systems and thus is used in this problem which is of dynamic behaviour. 

The assessment and comparison of different fuel chains is conducted using the 

Optimisation Toolbox from MATLAB. Presenting the results as they returned 

from MATLAB is unlikely to be understood other than being the developer of 

the model. For this reason, the creation of a graphical user interface (GUI) is 

necessary. Although various packages of software offer the possibility of creating 

GUIs, MATLAB is selected in order to avoid potential interconnectivity problem 

arising from developing the model and the GUI in different software. GUI is 

produced by using GUIDE, which is the MATLAB graphical user interface 
development environment. 

The GUI is the chosen way of entering data into the model. It is the mode of 

interaction between the user and the model. It passes the input data to the model 

and after the simulation shows the results. The data of the desired renewable 

hydrogen infrastructure development under study that enter into the model 

involve the formation of the fuel chains, which includes the selection of 

technologies for all the stages in a fuel chain; the choice of the geographical 

region under study; the choice of demand centres and the setting of the technical 

and economic values of all the parameters. 

The data entered into the GUI pass to the model through an XML file. More 

specifically, when the input data are imported, an XML file is produced and it 

passes the data into the model. XML, which stands for Extensible Markup 

Language, is a markup language that was designed to describe data and to 

concentrate on what data are. In other words, it can structure, store and send 

information. The XML technology has a wide range of uses, such as exchanging 

data between incompatible systems or using plain text files for sharing data, or 

creating new languages like WAP and WML (XML, 2005). In this study it is used 

for storing and carrying data. 
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The case study undertaken is intended to demonstrate the suitability of the 

modelling approach adopted. It comprises a large-scale problem in order to show 

the capability of the model to support a complex and large-scale problem. The 

choice of London as the urban centre under study is not arbitrary. London has 

shown particular interest in the use of hydrogen as a transportation fuel. The 

Mayor of London "strongly supports the development of hydrogen and fuel cell 

technologies in London as a means of providing low and zero-emission energy" 

(Joffe et al., 2003). The UK capital is one of the cities that have taken early action 

in the uptake of hydrogen fuel and hydrogen powered vehicles (fuel cell vehicles). 

This interest is justified as London is one of the cities of the world where road 

transport considerably contributes to environmental pollution. The promotion of 

hydrogen as a clean fuel may well be benefited by the fact that its environmental 

attributes could reinforce the endeavour to tackle the increasing pollution 

problems. An endeavour that is inevitable considering the strict targets with 

regard to the reduction of greenhouse gases that the UK government has 

committed itself, namely 60% reduction of CO2 emissions, with respect to 1990 
emission levels, by 2050 (DTI, 2003b). 

The model is also applied in a small-scale problem in order to show its correct 

and smooth operation. This small-scale case study is not intended to comprise a 

representative infrastructure development plan for the selected geographical 

region but to serve as a testing method that ensures the production of credible 

results. 

It should be mentioned that the present study examines the issue of a hydrogen 

fuel infrastructure that includes the stages from the primary energy feedstock 

production point to the demand centre point. The demand centre is considered as 

a single point and thus the dispersion of refuelling stations within the market 

place is not examined. The geographical allocation of the refuelling stations is 

outside the scope of this thesis. 

An extensive description and justification of the choice of the approaches taken in 

the research to achieve the objectives and aim of this thesis are presented in 

Chapters 3, 4 and 5. 
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1.4 Originality of Research 

The majority of previous studies on the design of hydrogen supply chains are 

focused on routes for hydrogen production from non-renewable energy sources, 

such as steam reforming of natural gas or electrolysis using non-renewable 

electricity (Ogden, 1999; Schoenung, 2001; Thomas et al., 1998). This general 

tendency is justified considering that in the near- to medium- term future 

hydrogen production may continue relying mainly on fossil fuels. Comparing 

various studies, differences among the main findings of each study can be 

observed. This discrepancy is mainly due to the different assumptions that have 

been considered in every study. Moreover, national strategies for the development 

of a hydrogen delivery system vary considerably from country to country because 

of different national constraints. There are many ways to develop a renewable 

hydrogen infrastructure and the best one depends on the key drivers and the 
location. 

To date, studies of the construction of a hydrogen infrastructure include the 

simulation and comparison of individual pathways, which consists of the primary 

energy feedstocks, production, storage, distribution and dispensing of the fuel, 

with respect of economic, greenhouse gas emissions, and energy efficiency factors 
(Mann et al., 1998; LBST, 2002; Simbeck and Chang, 2002; Oi and Wada, 2004). 

In the majority of the studies various assumptions have been made related to 

hydrogen demand, size of production units, distribution distance and prices of the 

feedstocks. Most of the projects carried out are limited in their general 

applicability and lay emphasis on individual pathway steady state simulation 

excluding the dynamics of the infrastructure over time. 

Up to now, there have been limited mathematical models that describe and 

integrate all components of a hydrogen delivery system within a single framework. 

Moreover, the role of optimisation techniques in developing a hydrogen 

infrastructure has hardly been examined. The use of optimisation in this field 

would give indications of the optimal design of a renewable hydrogen 

infrastructure assisting in the decision making of national and international 

policies for the uptake of hydrogen fuel. 
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The hydrogen-related studies that have been reviewed constitute a useful starting 

point for the development of the present model. Their strengths, weaknesses, 

results and methodologies have been studied thoroughly in an attempt to 
determine the best possible approach to achieve an original and valuable 

contribution to the problem of the renewable hydrogen infrastructure 

development. The model is developed in such a way so that it can perform 

resource and economic optimisation, spatial and temporal distribution of 

resources and hydrogen facilities, and design and optimisation of a renewable 

hydrogen supply infrastructure, attributes that distinguish it from other studies 

and reinforce its original contribution. 

1.5 Structure of the Thesis 

This Chapter has briefly described the primary problems associated with the use 

of current petroleum-based fuels in the transport sector and the need for 

alternative fuels as they constitute the motivation of this research. The proposed 

alternative fuel has been introduced along with the requirement of the 

development a new fuel infrastructure. The aims and objectives have been 

presented and the methodology and its originality laid out. 

The next Chapter describes hydrogen as a worthwhile-examined fuel option in an 

endeavour to mitigate the harmful emissions of the transport sector. The 

technical and economic characteristics of the components necessary to build a 

hydrogen transport infrastructure are discussed. Moreover, the evolving transport 

policy framework in the EU, the UK and London, mainly with respect to 

hydrogen, is reviewed. This Chapter also critically reviews various modelling 

works dealing with the same problem and assesses their results and approach. 

Chapter three describes the development of a methodology in order to achieve 

the goal of the present study. The whole procedure that consists of multiple 

sequential steps is presented. 

Chapter four describes the development of the algorithm that is used to address 

the options for supplying renewable hydrogen to urban centres. The structure of 

the algorithm is fully explained and the definition, usefulness and formation of 
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every step of the algorithm are explicitly described. Moreover, the justification of 

every tool that is used to develop the algorithm is explained. 

Chapter five presents the testing strategy that the hydrogen infrastructure 

development model is subjected to. A small-scale case study is also included as 

part of the testing strategy. The focus of this small-scale simulation is how the 

optimal decisions, the outputs, are produced from the input data, rather than on 

how the input data are gathered or estimated. 

Chapter six marks the start of the main case study of this thesis. This Chapter 

begins with the selection of the urban centre under study. The description and 

justification of this choice are laid out. The Chapter continues with the 

presentation of all the specifications that are included in the simulation, such as 

the renewable energy resources of GB, or the hydrogen technologies, or the 

demand. This case study is a large-scale problem that studies the formation of a 

hydrogen delivery network for supplying hydrogen fuel to London. 

Chapter seven includes the results of the modelling work. A sensitivity analysis is 

also carried out to investigate the influence of parametric variation on the outputs 

of the model. In addition, a policy discussion is followed indicating some of the 

main challenges that renewable hydrogen infrastructure developments face and 

how policy intervention may assist in overcoming these challenges. The modelling 

approach of this study is critically assessed and a number of alternative 

applications of the model are also discussed. 

Chapter eight summarises the conclusions of this study with respect to the 

modelling approach, the hydrogen infrastructure development, the results of the 
case study and the policy considerations. Possible model refinements are 

discussed and areas for further work are presented. 
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1.6 Summary 

Having introduced the main theme of this thesis and presented the motivation 

behind the current research, the issue that is aimed to be addressed and the 

methodology that has been selected in order to tackle this issue, the essential 

background has been formed in order to discuss the political EU and UK 

framework related to hydrogen, review the hydrogen and renewable electricity-

generating technologies and assess a number of hydrogen fuel infrastructure 

modelling works in the subsequent Chapter. 
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Policy Framework, Renewable Energy Sources and Hydrogen Technologies 

2.1 Aims and Scope of Review 

In this Chapter, the main theme of the thesis is introduced. Hydrogen is 

presented as a worthwhile-examined fuel option in an endeavour to mitigate the 

harmful emissions of the transport sector. The technical and economic 

characteristics of the components necessary to build a hydrogen transport 

infrastructure are discussed. The discussion includes a review of the different 

stages in the "life" of the fuel, that is the production, conversion, storage and 

transport. Moreover, the evolving transport policy framework in the EU, the UK 

and London, mainly with respect to hydrogen, is reviewed. 

As this thesis focuses on the supply of a clean, zero-emission fuel, the review 

includes only renewable energy sources as feedstock material for the production 

of hydrogen. A range of renewable technologies is assessed, with focus on the 

cost, performance, current status, strengths and weaknesses. The technologies of 

all the stages of the fuel chain are explored, with particular attention given to the 
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technologies that have passed the proof-of-technology stage and mature, although 

not yet in widespread use. 

This Chapter also describes the modelling work that has been carried out 

addressing the issue of a hydrogen supply network. Various models are reviewed 

aimed at exploring the different approaches that have followed and the questions 

that have addressed. Moreover, the assessment of the results and conclusions and 

the extent of their agreement are discussed. 

2.2 Hydrogen as a Transport Fuel 

2.2.1 The Need for Cleaner Fuel 

Modern societies depend on the use of large quantities of energy, most of it in the 

form of fossil fuels. After the two oil crises during the 1970-1980 decade, the 

price rises and the uncertainty of security of supply compelled the governments of 
many industrialised nations to reassess energy policy in order to reduce the 

reliance on oil from the Persian Gulf, one of the most politically volatile regions 

of the world (Bockris, 1999). Phenomena like the greenhouse effect, the ozone 

layer depletion and the acid rains indicate the immediate need for the use of 

cleaner fuels and end-use technologies. In 2003, the world's primary energy 

consumption increased with Asia Pacific being on the front line of this growth 

with 6.3%; while North America had the weakest increase that of 0.2% (BP, 

2004). In a world of growing appetite for energy, the continuation of the reliance 

on fossil fuels will amplify the environmental, political and resource concerns of 

their use. 

Almost 60% of oil consumption in OECD countries is used in the transport 

sector (IEA, 2004). In EU, this sector accounts for 31% of the total energy usage, 

while 98% of it uses petroleum-based fuel (Bellona, 2003). Transportation is the 

greatest source of noise and local air pollution and one of the major contributors 

to carbon dioxide, which is the predominant greenhouse gas. Worldwide it is 

responsible for about 25-35% of CO2  emissions (MacLean and Lave, 2003). On 

environmental grounds, this picture is getting worse as most of the future growth 

in energy is expected to take place in transportation (Dunn, 2002). Realizing the 
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remarkable impact of the transport sector on the environment makes the 

decarbonisation of this sector an imperative need for the amelioration of the 

environmental quality. For this reason, new and environmentally benign 

alternative fuels to the use of petrol and diesel are necessary to be introduced in 

the transport sector. 

2.2.2 Hydrogen as a Candidate Fuel 

A number of alternatives to current fuels have been studied such as methanol, 

ethanol, methane and synthetic liquids from coal and natural gas and hydrogen. 

Among these, hydrogen is of keen interest and perhaps the most promising 

option because it holds the promise of reducing the dependency on fossil fuels, 

delivering deep cuts in greenhouse gas emissions and other air pollutants and 
improving the energy security simultaneously. 

The attractiveness of hydrogen is based on its unique properties. It can be 

produced from and converted into electricity at fairly high efficiencies. The raw 

material for its production is water, which is abundant. So, it is a renewable fuel as 

the product of its utilization is pure water or water vapor. It can be stored in 

gaseous form, liquid form or in the form of metal hydrides. It can be transported 

over large distances through pipelines or via tankers. It can be converted into 

other forms of energy more efficiently than any other fuel. Apart from flame 

combustion, it may be converted through electro-chemical conversion, catalytic 

combustion and hydriding. When fossil fuels are burned, they release significant 

quantities of carbon dioxide into the atmosphere with coal having the highest 

carbon content, then petroleum and lastly natural gas. On the contrary, 

hydrogen's production, storage, transportation and use do not produce any 

pollutants, greenhouse gases or any other harmful effects on the environment 
(expect from small amounts of NOx  when hydrogen is burned with air at high 
temperatures) (Veziroglu and Barbir, 1998). 

Moreover, it can be used in both modified internal combustion engine and fuel 

cell vehicles without the emission of carbon dioxide, carbon monoxide, sulphur 

dioxide and particulates (Veziroglu, 1995). It can be derived from a wide range of 

sources from fossil up to renewable energy sources by a number of different 
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routes. The flexibility in its production may assist in the gradual switch of the 

transport sector from fossil fuels to renewable fuels. As hydrogen during 

combustion is almost free of polluting emittents, its environmental benefits 

strongly depend on the way of production. Thus, the energy used to obtain 

hydrogen is the factor that determines whether hydrogen is clean or dirty. 

As hydrogen produced from fossil fuels eliminates most of the benefits offered by 

hydrogen, the candidate fuel that may be considered as the most attractive option 

is hydrogen produced from renewable energy sources. Renewable hydrogen is not 

only a fuel that does not emit anything when used in fuel cell vehicles but also an 

alternative that offers an emission free production process and can alleviate the 

overdependence on geographically restricted energy sources. This promising 

candidate transport fuel is the fuel under study in this thesis that determines the 

least cost plan for the supply of this attractive alternative. 

2.2.3 Hydrogen Properties 

Hydrogen is the simplest, lightest and most abundant element in the universe. 

Due to its high reactivity it is very rare to find elemental hydrogen in nature. 

Hydrogen gas usually exists only in the molecular state, H2. However, most of it is 
in the form of chemical compounds with other elements. It can be found in 

combination with oxygen in water (H2O), with carbon in various hydrocarbon 

fuels (CxHy), plants, animals and other forms of life. It is an odourless, tasteless 

and colourless gas. It has the highest energy to weight ratio of all fuels, namely its 

specific energy is around 33 kWh/kg, almost three times higher than gasoline and 

twice than natural gas (EURO-ISLAS, 2002). Some important properties of 

hydrogen are shown in table 2.1. 
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Value Property Unit 

Molecular Weight 2.016 

Density 0.0838 kg/m3  

Higher Heating Value 141.90 MJ/kg  
11.89 MJ/m3  

Lower Heating Value 119.90 MJ/kg  
10.05 MJ/m3  

Boiling Temperature 20.3 K 

Density as Liquid 70.8 kg/m3  

Critical 	Point 
Temperature  32.94 K 
Pressure 12.84 bar 
Density 31.40 kg/m3  

Self - Ignition Temperature 858 K 
Ignition Limits in Air 4-75 (vol. %) 

Stoichiometric Mixture in Air 29.53 (vol. %) 

Flame Temperature in Air 2,318 K 

Diffusion Coefficient 0.61 cm2/s 
Specific Heat (cp) 14.89 kJ/(kgK) 

Table 2.1: Properties of hydrogen 

As hydrogen cannot be found freely in nature, it must be produced. Since a 

considerable energy is consumed in the extraction process, the energy released 

when it is used is the energy that was invested in its original manufacture (minus 

any losses). Thus, hydrogen should properly be considered as an energy carrier —

secondary form of energy- and not as an energy source. When it is extracted, it 

becomes a valuable feedstock to several industrial activities and in the near future 

a widespread fuel adequate to energize all aspects of society, from homes to 

electric utilities to business and industry to transportation. 

Today, hydrogen is used worldwide mainly as a chemical commodity in industrial 

processes and rarely as a fuel for stationary or transport applications. However, as 

a fuel it has principally been used to propel spacecrafts and supply on-board 

power during space missions. 
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Energy carriers like electricity and hydrogen increasingly dominate the final-

energy mix. The latter due to the efficient end-use technologies increases its share 

considerably, accounting for almost 49% of the global final consumption by the 

end of the 21st century, becoming the main final energy carrier (Barreto et al, 

2002). This speculation can become reality with intensive R&D programmes and 

deployment strategies aiming for further cost reductions on hydrogen 

technologies resulting in their wider diffusion. 

2.3 Policy Framework 

Throughout the world there has been a huge growth of interest in the potential 

for hydrogen to become an important alternative energy carrier. At present, the 

transition from current fuels to hydrogen fuel is hindered by a number of techno-

economic barriers that make the introduction of a new fuel to the transport sector 

a matter of several decades. 

In previous years changes in transport fuels have been driven by the fact that they 

provided private benefits, such as greater mobility, so that investment in them 

proved worthwhile to private firms and individuals. Because hydrogen has a few 

private benefits compared to current fuels, widespread use will require either 

radically different market conditions or new policies. 

As the introduction of hydrogen is probably a dramatic change to the current 

energy system, Governments should play a catalytic role in its uptake especially at 

the beginning. Governments should provide policies to support its development 

by ensuring the simulation of hydrogen fuel cell vehicle market and the 

development of hydrogen refuelling infrastructure simultaneously. This section 

describes policy measures and initiatives that, directly or indirectly, could favour 

the adoption of hydrogen. 

2.3.1 Policies and Initiatives to Favour the Move to Hydrogen as a Transport 

Fuel 

Hydrogen is not a new concept. It has been developed significantly in the world 

for more than thirty years (Veziroglu, 2000; Momirlan and Veziroglu, 2002). In 
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the USA, the "Strategic Plan for Hydrogen Program" was launched in 1979, 

aiming at promoting hydrogen as a cost-effective energy carrier for transportation, 

buildings and utilities (Chen et al:, 2005). More recently, the Department of 
Energy's Office of Fossil Energy develops the "Vision 21 Program", which is a 

concept that envisions a virtually pollution-free power plant. The aim of this 

program is the development of a wide range of technologies that can be 

interconnected and produce products that have near-zero emissions by 2015. 

Hydrogen fuel is among the multiple products (US DOE, 2006). In 2002, the 

Department of Energy in USA presented the "National Vision of America's 

Transition to a Hydrogen Economy", which described where and how the 

transition to the hydrogen economy will be achieved by the year 2030 and beyond 

(US DOE, 2006a). In 2003, President Bush announced a $1.2 billion initiative to 

develop the hydrogen production and delivery technologies and fuel cell vehicles 

in order to provide a reduced or near-zero emission transportation and energy 

system (US DOE, 2006b). Combined with the FreedomCAR (Cooperative 

Automotive Research) initiative, President Bush is proposing a total of $1.7 

billion over the next five years to develop hydrogen-powered fuel cells, hydrogen 

infrastructure and advanced automotive technologies (FreedomCar Partnership 
Plan, 2002). 

Apart from the USA, another country that has a leading role in the hydrogen and 

fuel cell research is Japan. Japan has vigorously conducted research and 

development on various kinds of new energies. In 1993, the New Energy and 

Industrial Technology Development Organisation established a joint industry-

government-academia effort, the WE-NET project, to research and develop 

hydrogen energy technologies aiming at achieving a hydrogen economy by the 

year 2030. The WE-NET project is divided into three stages up to the year 2020 

with a total funding of $11 billion (WE-NET, 2005). Japan, which has a target of 

50,000 fuel-cell vehicles on Japanese roads in 2010, aims to raise the number of 

such vehicles in use to 5 million by 2020 (Jama, 2003). The Japanese Government 

has adopted a comprehensive strategy including R&D, demonstration 

programmes and market support guided by long-term strategic plans. In 2002, the 

Ministry of Economy, Trade and Industry organized the Japan Hydrogen &Fuel 

Cell Demonstration Project that involves a wide range of activities related to the 

use of fuel cell vehicles (JHFC, 2002). 
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In 2003, the International Partnership for the Hydrogen Economy was launched 

aiming to provide an international institution to accelerate the arrival of hydrogen 

economy. The Partnership has 17 members and offers a significant programme 

focusing on international research, development and demonstration projects of 

hydrogen and fuel cell technologies (IPHE, 2003). On an international level, an 

interesting programme for hydrogen development throughout the world was the 

Euro-Quebec Hydro-Hydrogen Project that promoted the transport of large 

quantities of liquid hydrogen by sea. Due to the huge estimated cost for this 

venture (around 800 Mio Euro) both the European Commission and the 

Government of Quebec did not agree on funding the investment. However, it 

was decided to continue the project aiming to offer a platform for demonstrations 
of hydrogen applications (EQHHPP, 1994). 

A worth mentioning organization that funds demonstration projects in 

developing countries that protect the environment is the Global Environment 

Facility (GEF). GEF grants projects in six focal areas: biodiversity, climate 

change, international waters, ozone depletion, land degradation and persistent 

organic pollutants. The GEF climate change projects are divided into four areas, 

one of which is the support of the development of sustainable transport. Under 

this area, GEF funds programs on fuel cell buses and related infrastructure in Sao 

Paulo, Mexico City, Beijing and Shanghai, Cairo and New Delhi. The total fund of 

these programs is $59.6 million, of which $36 million have already been approved. 

Currently, the demonstration activities have started in Sao Paolo, Mexico City, 
Beijing and Shanghai (GEF, 2004). 

On European level, research on hydrogen is still under-funded and lagging behind 

the programs of the USA and Japan. Characteristically, at the 2nd European 

Hydrogen Energy Conference in 2005, representatives of Japan, USA and EU 

presented their policy framework and the former was first concerning the funding 

on research on hydrogen with $3 billions, the latter was last with $1.8 billions, 

while the USA was in the middle with $2.7 billions (EHEC, 2005). As London is 

the city that has been selected for the case study of this thesis the policy 

framework of the UK and London is described in more detailed in the following 

sections. However, since the European Union is increasingly driving the policies 

32 



Policy Framework, Renewable Energy Sources and Hydrogen Technologies 

of the Member States in a wide range of sectors it is worth briefly mentioning the 
European policy as well. 

2.3.2 Policy in EU 

Energy security, air quality, greenhouse gas emissions and economic 

competitiveness are key drivers for Europe's energy research. The European 

Commission aiming to bring industry, the research community and government 

together in order to provide a sustainable energy system to its citizens, has 

developed several strategies, policies and proposals (EC, 1997; EC, 2000; EC, 

2001; EC, 2001a). Hydrogen has been considered as an energy carrier that has the 

potential to simultaneously address all major energy and environmental 

challenges. For this reason, the European Commission launched in 2002 the High 

Level Group for Hydrogen and Fuel Cells Technologies aiming at accelerating the 

development of these technologies and their contribution to a sustainable 

European future energy system. To reinforce its commitment to hydrogen, 

Europe established in 2004 the European Hydrogen and Fuel Cell Technology 

Platform in order to "assist in the stimulation and efficient coordination of 

European, national, regional and local research, development and deployment 

programmes and initiatives, to ensure a balanced and active participation of the 

major stakeholders and to promote awareness and understanding of fuel cells and 

hydrogen market opportunities and foster deeper co-operation, both within the 

EU and at global scale" (EC, 2002). 

In order for Europe to reap the benefits of hydrogen, it has realized the necessary 

existence of a consistent political framework between the European Union and 

the national governments of member states (EC, 2002). The European impetus to 

hydrogen includes the coordination of strong policy measures in support of the 

technology, research and development such as fiscal, financial and regulatory 

support for projects, review and removal of regulatory barriers to 

commercialisation, international coordination of policy development and 

deployment strategies and review and development of codes and standards to 

support commercial development (Chen et al, 2005). 
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The European scientific effort focuses on addressing non-technical and 

socioeconomic issues and solving the remaining technical obstacles to the uptake 

of hydrogen. More specifically, the attention is given on overcoming the technical 

challenges of the processes included in the fuel chain and decreasing the costs of 

all these processes. Moreover, on the techno-economic, environmental and socio-

economic analyses of different transition pathways and the continuous 

improvement of a European hydrogen roadmap based on targets and criteria 

derived from the ongoing research results (Chen et al, 2005). 

The introduction of hydrogen and the development of a new refuelling 

infrastructure is a venture that requires large capital investments. Funding is 

necessary for research, technological development and demonstrations. The main 

European funding mechanism is the Framework Programme (FP) which is 

principally implemented through calls for proposals (EC, 2002). The EU support 

to hydrogen and fuel cell initiated in 1986 within the 2nd Framework Programme 

(1986-1990) and since then the Framework Programmes have played a lead role in 

hydrogen and fuel cell research and cooperative activities in Europe. From 1986 

to 2007 a lot of progress has been made and most importantly the European 

Commission has gradually reinforced its commitment to hydrogen. This is evident 

first of all from the continuously increasing budget that EC allocates for such 

programmes. The EC contribution on hydrogen and fuel cells research from €8 
million in the 2nd Framework Programme has increased to €53.2 billion within the 

latest Framework Programme. The latter is the 7th Framework Programme that 

spans over seven years (2007-2013) and has the largest budget so far (EC, 2006; 
EC, 2007). 

The 7th Framework Programme has started this year and is the natural successor 
to the 6th  Framework Programme. The latter was intended to be used for a set of 

new instruments designed to focus, integrate research and create a true 

"European Research Area" resulting in an internal market for knowledge and new 

technologies (EC, 2002). This Programme has funded several projects on various 

aspects of hydrogen such as production, storage, safety, regulations, codes and 

standards, pathways and end-use (Hyways, Hysafe, NaturalHy, Solar-H, StorHy). 

The outcome of years of research and technological development of earlier 

Framework Programmes constitutes the backbone of the 7th Framework 
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Programme. The latter aims to support the collaboration of trans-national 

projects, to introduce longer term public private partnerships reinforcing 

industrial technological development, to strengthen the European research and to 

achieve the integration of a European research at local, regional, national and 
international level (EC, 2007). 

The main differences of the 7th Framework Programme to earlier programmes, 

apart from the apparent and aforementioned budget difference, include the 

European Research Council, an agency that intends to finance more high-risk 

projects, a new Risk-sharing finance, a facility mainly aiming to improve backing 

for private investors in projects, the Joint Technology Initiatives, a novel concept 

that aims to provide an alternative approach for goals that cannot be achieved 

through the "Call for Proposals" method (EC, 2007). 

2.3.3 Policy in UK 

As in most developed countries around the world, in the UK hydrogen has been 

seen as good long term fuel option to substitute diesel and petrol in the transport 

sector. The UK even though is not considered as a leader in the hydrogen area, 

has identified hydrogen in many of its strategies as the future transportation fuel 

in the long term (EST, 2002; PFV, 2002). There are a growing number of UK 

companies and research institutions focusing on different aspects of hydrogen 
area. 

However, due to rising concerns over the environmental repercussions of 

transport, several possibilities for future vehicles like electric and hybrid, and low 

carbon fuels such as liquefied petroleum gas and biofuels, have been examined. 

These possibilities may play a major role in the transition from today's fuels to 

hydrogen fuel. More specifically, the Government's effort to reduce UK 

emissions, as highlighted in the Energy White Paper "Our energy future —

creating a low carbon economy", aims at a target of 60% reduction of carbon 

emissions, with respect to 1990 emission levels, by 2050 (DTI, 2003b). As about 

25% of those emissions are at the moment generated by road transport, it is clear 

that in order to meet the target a shift towards low-carbon transport is needed as 
well. 
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The measures to achieve such shift are set out by the Powering Future Vehicles 

strategy, where hydrogen fuelled vehicles are regarded as one of the main options. 

The main objectives of this strategy are the promotion of the development and 

deployment of new vehicle technologies and fuels and the encouragement of 

involvement of the UK automotive industry in the new technologies. Two very 

important commitments within this strategy are the target of achieving the 10% of 

the new car sales to be low-carbon vehicles in the next decade and to increase the 

number of low carbon buses. Beyond 2010, the focus will be on the 

implementation of the shift towards technologies such as hydrogen fuel cells 

(PFV, 2002). An important development originating from this strategy is the 

setting up of the UK Low Carbon Vehicle Partnership in 2003. This is an action 

and advisory group that brings together the vehicle and fuel industries, to 

encourage their engagement in the shift to low carbon transport (Low CVP, 

2003). 

In 2003, the UK-SHEC is established as part of the EPSRC SUPERGEN 

programme involving eight leading UK universities and research centres and the 

Greater London Authority (McDowall and Eames, 2004). The goals of this 

initiative were the knowledge and understanding of hydrogen systems and to 

guide and inform the use and integration of sustainable hydrogen energy systems. 

In July 2007, this four-year initiative was renewed until 2011 forming a proposal 

that is divided into two parts, the CORE and the PLUS. The priorities of this 

proposal involve storage technologies, sustainable methods of hydrogen 

generation and the feasibility and acceptability of sustainable hydrogen energy 

through a range of key socio-economic projects (EPSRC, 2007). 

The UK Department of Trade and Industry has developed its Hydrogen energy 

strategy since 2003. In 2004, it published a report which intended to form a 

strategic framework for hydrogen energy in the UK (DTI, 2004). The main 

outcome of this report is that the use of hydrogen as a transport fuel offers a 

cost-competitive option that may assist in reaching the CO2  emission reduction 

target. The report examined six different pathways for hydrogen supply and 

found them adequate to meet UK's target. However, this requires significant 
changes to the energy system (DTI, 2004). 
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In 2005, the UK Government issued a response to the strategic framework 

showing its intentions for the future of hydrogen in UK. The Government 

supports the idea of establishing a Hydrogen Co-ordination Unit necessary for 

hydrogen activities and a Hydrogen Energy Industry Association in UK. It 

realizes the importance of R&D, demonstration, commercialisation and demand 

simulation and aims to support them mainly through research councils, the DTI 

Technology Programme and appropriate policy measures. It is committed with a 

budget of around L15 million over 4 years for demonstrations of hydrogen and 

fuel cell technologies (DTI, 2004). 

2.3.4 Policy in London 

London has shown particular interest in the use of hydrogen as a transportation 

fuel. This interest is justified as London is one of the cities of the world where 

road transport considerably contributes to environmental pollution. The 

promotion of hydrogen as a clean fuel may well be benefited by the fact that its 

environmental attributes could reinforce the endeavour to tackle the increasing 

pollution problems. The Mayor of London "strongly supports the development 

of hydrogen and fuel cell technologies in London as a means of providing low 
and zero-emission energy" (Joffe et al., 2004). For this reason, Research Councils 

have funded a number of projects aiming to assist the progression of hydrogen 

technologies and evolution of hydrogen refuelling infrastructure. 

The UK capital is one of the cities that have taken early action in the uptake of 

hydrogen fuel and hydrogen powered vehicles. London along with eight other 

European cities has taken part in the EU-funded Clean Urban Transport for 

Europe (CUTE) project by testing the zero-emission hydrogen fuel cell buses. 

The project aimed to demonstrate the feasibility of an innovative, high energy 

efficient, clean urban public transport system. This public transport system 

intended to reduce overall CO2 emissions, thus contribute to the Kyoto 

commitments of the EU Member States, as well as eliminate local NOx, SO2 and 

PM10 emissions, with the result of improving health and living conditions in 

urban areas °ones, 2002). 
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After the successful completion of this project the partners decided to join forces 

with Canada and buy environmentally friendly hydrogen-powered buses. Europe 

supports this affiance and sees it as a means of making the hydrogen fuel cell bus a 

commercially viable technology. London is one of the cities that have signed a 

Memorandum of Understanding in Brussels along with Amsterdam, Barcelona, 

Berlin, British Columbia Province and Hamburg (Fuel Cell Works, 2006). 

Besides that, the Mayor's Draft Energy Strategy clearly indicates the Mayor's will 

to implement a hydrogen economy in London, with the construction of a 

hydrogen energy infrastructure and widespread use of hydrogen fuel cells both for 

transport and for stationary applications (GLA, 2003). In order to achieve this, 

the London Hydrogen Partnership has been set up in April 2002, which aims to 

unify the powers of industry, academia, national and local Government and 

NGOs to facilitate the use of hydrogen as a clean fuel in London. The 

Partnership is working on a London Hydrogen Action Plan, which is currently in 

its second draft, and aims to deliver the hydrogen economy (GLA, 2002). 

Based on the deployment of fuel cell buses, London had taken part in the Public 

Acceptance of Hydrogen Transport Technologies project (ACCEPTH2) 

(ACCEPTH2, 2005). This project had been considered as a means of contributing 
towards the objectives of introducing hydrogen and fuel cell vehicles into the 

market. The aim of the project was to assess the economic preferences towards 

the potential use of hydrogen fuel cell buses by conducting an economic 

evaluation studies within five cities (Altmann et al., 2004). According to the results 

of this study, people are generally positive towards fuel cell buses and feel safe 

with the technology while newspapers and bus stops are where most people get 

information about the buses. The drivers are generally positive to the fuel cell bus 
project whereas passengers above the age of 40 desire more information about 

the new technologies. However, although the environment is rated as an 

important factor, 64% of the bus passengers were not willing to pay a higher fee if 

more fuel cell buses were to be used (Altmann et al., 2004; Haraldsson et al., 2005). 

In February 2006, London's Mayor reinforced its commitment to hydrogen by 

announcing his aim of introducing 70 new hydrogen vehicles to London by 2010 

(LHP 2006). This initiative aims to deploy up to 70 hydrogen cars, vans, 
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motorbikes, buses and other vehicle types both of internal combustion engine and 

fuel cell technologies from a range of suppliers. The vehicles will be operated by 

public sector fleets and a hydrogen refuelling infrastructures will be established 
within the city (LHP, 2006). 

2.4 Renewable Energy Sources 

In this study, renewable energy sources are considered the primary energy 

feedstock for the production of hydrogen fuel. This section presents a brief 

description of the resource, economics and technical maturity of the electricity-

generating (or hydrogen-generating in the case of biomass) technologies for each 

renewable energy source. The technical and economic data of this section have 

been used to understand the range of technologies and issues with them to be 

able to design a model to capture their characteristics. 

Energy sources that rely on the natural flows in the environment like the wind, 

the sunlight, the waves and the tides have the benefit of renewability. The amount 

of solar energy incident on the earth and the resultant natural energy flows are an 

infinite resource with the solar radiation input alone being around 90,000 TW 

(Elliott, 1998). The magnitude of such a number can more likely be realized 

considering that the earth receives yearly an amount of solar energy that is 

approximately equal to 15,000 times the annual energy consumption of the world 
(Kruse et al., 2002). These figures indicate that theoretically the renewable energy 

resource has an enormous potential. 

In practice not all of this resource can be effectively captured and used. Most of it 

is diffuse, some is intermittent and the location of the source has to be taken into 

consideration. However, the issue is not of the availability of the resource, but of 

the efficiency of converting it to forms suitable for human use. A number of 

studies have been carried out evaluating the total amount of renewable energy 
available for extraction (Boyle, 2000; DTI, 1998; Sorensen et al., 2004). This is the 
maximum theoretical potential that may be orders of magnitude greater than the 

practicable potential which is the amount of the resource that is technically 

possible to be used taking into account various technical and physical constraints 

such as geography, intermittency, electricity grid. Other limiting factors that 
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amplify the difference between the theoretical and the practicable potential are 

planning, social and economic constraints. The economic viability of the resource 

depends on the state of the renewable energy technologies and the relative costs 

of alternative energy sources. Many constraints may change over time with the 

advancement of technologies. As costs decrease in line with accumulation of 

experience, the technological progress in conjunction with the political support 

especially to new areas of technology, may accelerate the rate of the development 

and deployment of renewable energy technologies (Chapman and Gross, 2003). 

Technologies that generate electricity from renewable energy sources differ widely 

in costs, environmental impacts and resource availability. Some of the renewable 

technologies are widely used and technologically mature, while others are at 

development stage. The costs of renewable hydrogen production depend on the 

costs of electricity generated from renewable energy sources that are determined 

by the state of the technologies and the market trends and thus change in the 

course of time. 

2.4.1 Wind Energy 

Wind energy is the fastest growing energy source. By the end of December 2006, 

its worldwide installed capacity has been increased to over 73GW (WWEA, 2007). 

As wind power has boomed significantly, likewise its technology has been greatly 

developed. There has been a gradual growth in the size of the wind turbines. 

Current turbines' size ranges between 660kW and 3MW (Vestas, 2004), while 

larger turbines of up to 511M are being tested. Generally, technical improvements 

have facilitated the integration of the wind turbines with the power transmission 

grid that is important for a higher penetration (Komor, 2004). 

The world's wind resources are huge and distributed over almost all regions and 

countries. The global wind resources are estimated to be 53,000TWh/year, while 

its electricity consumption growth is forecasted to be around 25,578TWh/year by 

2020. Several studies have shown that the European onshore wind resource could 

provide 5 to 10% of Europe's electricity consumption (EWEA, 2003). Argentina's 

Patagonia district has such a large wind energy resource that can produce enough 

hydrogen to replace all oil production in the world (Kruse et al., 2002). In North 
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America, USA have states with excellent wind resources and if included the sites 

with average wind resource then forty five out of fifty states can be considered 

appropriate to support wind turbines. China is another country with enormous 

wind resource especially in the northern and western regions and along the coast 
(Vestas, 2004a). 

Generally, the sites that are considered appropriate for the construction of wind 

parks are these with average wind speeds around 8-10m/s. However, as the 

power in the wind is proportional to the cube of the wind speed, sites with fairly 

good average wind speeds (5-6.5m/s) can also be used for wind parks. Although 

this wind speed range increases the wind resource, there are practical and 

economic constraints that reduce the total resource. The constraints of this 

renewable energy source include high population areas, forests, difficult terrain, 

inaccessible mountain areas or far from the transmission lines, visual and noise 
impacts (WEA, 2001). 

Putting the turbines offshore eliminates some of these constraints and also has 

the advantage that offshore wind speeds are higher than on land. Resources 

offshore are much larger than those onshore, but have to be close to electric 

infrastructure in order to be attractive. Several locations worldwide are well 

endowed with offshore wind energy resources like Europe where especially its 
Northern part, has a remarkable offshore resource. 

The economics of wind energy rely on the costs of wind technology and of 

alternative options. Current wind turbine's cost is estimated to be US$650-&700 

per kW. The cost of electricity generated by wind power is to some extent site and 

project dependent. For a good wind speed onshore site the cost of electricity 

amounts to 4-5 US cents per kWh, making it the cheapest of all generating 
technologies. 

Electricity from onshore wind parks is still cheaper than from offshore 

installations. Energy from offshore wind farms is more expensive due to the extra 

costs of civil engineering for substructure, higher transmission cables costs, 

expensive materials to resist the corrosive marine environment and harder access 

for service and maintenance (Komor, 2004). 
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Wind energy has a promising future as it combines electricity production at 

relatively low costs and environmentally benign and mature technologies. The 

wind resource both onshore and offshore is enormous and even though it is 

limited by various constraints such as difficult terrain, inaccessible mountain areas 

or far from the transmission lines, visual and noise impacts, the lack of the 

resource is unlikely going to be a barrier to the exploitation of wind power. 

As wind energy is now commercial, realistic and even a profitable electricity 

generation option, it is rational to expect that in the near future the electricity 

required for the production of hydrogen will be mainly wind based electricity. In 

the short term, wind energy due to its sufficient capacity could assist the uptake of 

hydrogen fuel by providing an amount of the total electricity produced to the 

production of hydrogen. At present, many of the other renewable energy sources 

do not have sufficient capacities and have already contracts in place for the sale of 
the electricity they generate. Consequently, wind energy is an important renewable 

energy source because it may well support hydrogen fuel at the very outset of its 

introduction. 

2.4.2 Solar Energy 

Solar energy can be converted directly into electricity in solid-state devices known 

as photovoltaics (PVs). PVs have many attractive features as they are quiet, have 

no moving parts, no waste products, are flexible in size and can be installed quite 

quickly. There are two main types of PV modules, the crystalline silicon and the 

thin film. At present, the conversion efficiency of a PV power system is around 

12-14% for silicon modules and 7-10% for thin film technology (Komor, 2004). 

Taking into consideration these efficiencies and today's energy consumption that 

means that large areas are needed to trap and convert considerable amount of 

solar irradiance to meet energy needs. 

PVs can be used to produce electricity as grid-connected systems (usually in 

densely populated countries) stand alone systems (in rural regions) and when they 

are integrated into building materials. Another way to generate electricity from 

solar energy is solar thermal systems. These systems can be utilized to produce 

electricity by first producing solar heat to drive a heat engine, which then provides 
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mechanical work to drive an electrical generator. There are various solar thermal 

electricity technologies like power towers, solar ponds, solar chimney available, 

each with distinct characteristics and at different technological stage. Among 

them, the parabolic through concentrator system are the one that rivals the best 

commercially available PV systems (WEA, 2001). 

Solar resource is huge and is available at any location on the surface of the Earth. 

The amount of solar irradiance at a certain place depends on the daily and 

seasonal variations. Solar insolation also depends on latitude. Places near the 

equator receive more solar radiation than subpolar regions. The variation of solar 

energy depending on the geographic location is quite noteworthy. In northern 

Scandinavia and Canada the annual solar power density is approximately 
800kWh/m2, while in some dry desert areas near the equator can be 
2,500kWh/m2  (WEA, 2001). 

Currently, there are numerous solar panel systems installed worldwide. Many 

countries have set targets and programs for the development and deployment of 

PVs. In the European Union, the aim for PVs is to install a 3GW capacity until 

2010. The Million Roofs program intends to install 500,000 grid-connected PV 

systems on roofs and facades and to export 500,000 village systems for 
decentralised electrification in developing countries (EC, 1999). 

The cost of generating electricity through a PV system varies widely. This 

variation results from its dependence on a number of factors. The most important 

of them is the cost of the PV-based electricity system. The cost of a complete 

electricity generating PV system includes not only the cost of the PV module but 

the cost of all the system components like inverters and transformers, the 

electrical installations costs and costs associated with building integration, site 

preparation. Although the initial costs of PV systems are high, the operating costs 

should be quite moderate in comparison with other renewable or non-renewable 

energy systems. The size and the type of the components also affect the 

economics of the system. From country to country the electricity price differs. 

Generally, the higher the solar insolation level, the lower the per-kilowatt-hour 

cost. Nowadays, a representative PV-sourced electricity cost is around 20-40 US 

cents per kWh (Komor, 2004). 
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Despite the high costs of PV systems, world's PV production continues to grow. 

Improvements in the technologies of the PV modules and all the components 

included in a PV based electricity systems will allow a more efficient operation of 

the system. Increased production coupled with technical progress will enable 

reductions in costs. At the moment and for the next decade, the cost of PV 

electricity cannot compete with the fossil fuel electricity cost. 

Considering the large world's solar resource, it is apparent that the share of solar 

energy to global energy supplies scheme will not be restricted by resource 

availability. Of all the renewable energy forms, PVs have the advantage of being 

the least resource-constrained. PVs can operate anywhere the sun shines. The 

extent to which solar energy will be used in the long term is determined by the 

availability of efficient and cost-competitive sun-to-electricity conversion 

technologies. 

The cost of PV electricity is now well above that of conventional electricity and 

this is unlikely to change in the next decade. It is uncertain whether and when the 

PVs will compete with the fossil fuels on a large scale but the costs are dropping 

and this trend is likely to continue as technologies advance. 

2.4.3 Wave Energy 

Compared with wind and solar energy, wave power is still in its infancy, with only 

a few prototype systems actually working. Wave energy devices that can convert 

the energy from waves into electricity can be categorized as shoreline devices, 

near shoreline devices and offshore or deep water devices. There are numerous 

suggestions for the exploitation of wave energy, but the question of which is the 

best wave energy conversion device still remains open. At present, the most 

popular is the oscillating water column that can be sited at the shoreline. The 

wave-based electricity depends on the size of the waves and thus on the distance 

of the conversion device's location from the shoreline (WEA, 2001). 

The worldwide wave energy resource is huge. Apart from being large, it is also 

quite dependable. While solar and wind energy availability is around 20-30%, 

wave energy's availability can be up to 90% (Fujita and Pelc, 2002). Studies 
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assessing this resource have estimated that the global resource is around 8,000-

80,000 TWh/year (BWEA, 2005). The greatest areas for the exploitation of wave 

power are at the temperature latitudes between 400  and 600  north and south on 
the eastern boundaries of oceans, where strong winds occur. UK is one of the 

countries with remarkable wave climate, particularly the north part of Scotland. In 

Europe, apart from the UK, Ireland, Norway, Portugal and Spain have also 

energetic wave climates. In the USA, the Pacific northwest coast may offer a 

satisfactory resource of wave energy. Globally, wave power has the potential to 

supply around 2TW of electricity (Fujita and Pelc, 2002). 

Like many other renewable energy technologies, wave energy's capital costs are 

high. Although the amount of electricity from shoreline systems is relatively small, 

the costs are lower than those for offshore systems. The electricity from wave 

energy plants is not yet competitive with fossil fuel based electricity. Further 

technological developments are required to sink the costs in order to enable wave 

power to fulfil its promise. Currently, costs are projected for less than 10 US 

cents/kWh and optimistic companies aim to drop this to 5 US cents/kWh. If this 

is the case, then wave-sourced electricity may be able to compete with the 

electricity from fossil fuel plants (Fujita and Pelc, 2002). 

Wave energy resource not only is large, but has the advantage of being more 

dependable than most renewable energy resources. Currently, wave power 

remains at an experimental stage, with only few demonstration systems operating. 

In order wave energy to contribute significantly to the energy requirements in the 

long term, it has to move further offshore into deeper water where the energy 

densities are higher due to larger waves. For this to become a reality, extensive 

refinements of the existing prototype systems and development of offshore 
structures are necessary. 

2.4.4 Tidal Energy 

Power plants that use tidal energy depend on the diurnal flow of tidal currents. 

Unlike wind, solar and wave power, tidal energy can provide a highly predictable 

output. The basic technology for electricity generation for tidal power is well 

developed. The rise and fall of the tides is usually exploited with the use of 

45 



Policy Framework, Renewable Energy Sources and Hydrogen Technologies 

barrages across suitable estuaries. As there are only two tides every day a tidal 

barrage will not operate continuously. Instead of using expensive barrages, it is 

possible to harness the energy of the tides in tidal streams at suitable sites using 

wind turbine-like rotors (Elliott, 1998). However, this idea is far from being 

commercially viable with only few prototypes having been tested. 

As tidal power is included in the family of renewable energy sources, shares the 

benefits of being an environmentally benign technology. However, tidal plants 

located at the mouths of estuaries cause a few environmental impacts on local 
marine ecosystems. 

The overall world tidal resource available is estimated at 3000GW, though less 

than 3% is sited at regions suitable for tidal exploitation (BWEA, 2005). Clearly, 

tidal power availability is very site-specific. Europe has a substantial tidal energy 

resource that is of the order of 300TWh/year. There are numerous major sites 

around the world, in Canada, the UK, Russia, the USA, Argentina, China, Korea, 

France, India and Australia with an estimated total potential around 
300TWh/year (Boyle, 2000). 

Currently, there is a number of successfully operating large tidal plants like La 
Rance in the Brittany coast of northern France, Kislaya in Russia, Jiangxia in 

China and Annapolis in Canada (Fujita and Pelc, 2002). Although the major 

potential for tidal energy is expected form large scale plants, there are many 
potentially suitable sites for small and medium plants. 

The economics of tidal barrages depend on their initial capital costs and their 

operational performance. The capital costs of barrages are significant at around 
L1300 per kilowatt of installed capacity (Boyle, 2000). The main factors that 

determine the cost-effectiveness of a tidal power site are the size (length and 

height) of the barrage needed and the difference in height between high and low 

tide. The average power output from a tidal energy plant is approximately 

proportional to the square of the tidal range. Naturally, even small variations in 

the tidal range can cause significant difference to the viability and economics of a 

plant. The manufacturers of most tidal energy technologies hold that the cost of 

electricity from tidal energy is projected around 10-14 US cents per kWh. This 
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cost is expected to decrease to 6 US cents per kWh with the accumulation of 
experience and maturity of technology (Boyle, 2000). 

Tidal energy has the potential to produce considerable amounts of electricity at 

certain sites around the world. The technology required for electricity generation 

from the tides is well established and increasing attention has been given to the 

innovative idea of the tidal stream turbine systems. Currently, the latter 

technology is at the prototype stage, with only small experimental devices in 

operation around the world. Under present conditions, tidal energy appears to be 

a relatively unattractive commercial investment option. However, the 

predictability of the tides coupled with the sizeable resource are the incentives for 

further development of the tidal power technologies. These factors along with 

expected cost reductions will establish the future role of tidal energy in the power 
sector scheme. 

2.4.5 Hydro Energy 

Unlike most of the other renewable energy forms, hydro power is already a major 

contributor to world energy supplies. In some countries it is the principle source 

of electricity. In Brazil, for example, hydroelectricity amounts to 96% of the total 

electricity. Hydropower is a controversial form of renewable energy sources due 

to the negative effects that can have to the environment, such as ecosystem 

changes, fish passage difficulties and damage to the shoreline of the rivers that 

support numerous plants and animals. Hydroelectricity is a mature technology 

that has been generating power at competitive prices for around a century (Boyle, 

2000). As a result further improvements in the performance of the technologies 

are going to be modest. However, modern construction of dams seeks techniques 
that may minimize the ecological impacts. 

Hydro energy, which depends on the natural evaporation of water by solar energy, 

contributes about a third of its potential to the electricity supply (WEA, 2001). 

Hydro practicable resource is not evenly accessible and depends on the 

topography and rainfall patterns of the location (Boyle, 2000). The global 

theoretical hydro resource is estimated around 36,000-44,000TWh/year. 
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However, the world's economic potential ranges from 6,000 to 9,000 TWh/year 
(WEA, 2001). 

The initial costs for the construction of large hydropower plants (with average 

size of 31MW) is between US$1,900 to $2,600 per kW of installed capacity. 

Although the initial costs are high, the operating costs are very low. The electricity 

production cost of large hydroelectricity plants is around 4 US cents per kWh. 

This cost is lower than some fossil fuel based plants and all the renewable 

technologies. For small hydroelectricity plants the cost is higher but is expected to 

come down in the long term (Komor, 2004). 

The potential for new electricity generation from hydropower is significant. 

However, this potential is restricted by environmental concerns and resource 

limitations. In many developed countries, most of the attractive sites appropriate 

for large hydropower plants have been exploited. In such countries, the 

installation of new hydropower facilities has been inhibited due to environmental 

issues. However, small and medium scale new projects are under construction and 

planned in industrialized countries. In less developed regions such as parts of 

South America, Asia and Africa, large hydroelectricity developments have recently 

completed or are under consideration (Boyle, 2000). 

2.4.6 Geothermal Energy 

An ideal energy source is cost-effective and its utilisation causes no harm to the 

environment. Nowadays, cost-effective (a characteristic of fossil fuels) and 

environmentally friendly electricity generating technologies (a characteristic of 

renewable energy sources) usually do not go together. Nevertheless, geothermal 

energy is one of the renewable energy sources that combines these characteristics 

in a pretty good extent. It has the staggering advantage of operating at high 

capacity factor, namely 9O%, and so can supply baseload electricity (Komor, 

2004). Locations with hot water or steam close to the surface are usually 

considered worthwhile regions of geothermal energy exploitation for electricity 

generation. As locations with these requirements are quite limited, geothermal 

power has a geographically restricted resource. 
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The geothermal electricity generating technologies are reliable and 

environmentally clean. Most of the existing geothermal plants are either dry steam 

power or binary cycle power plants. A new method, the hot dry rock technology, 

has been the subject of much recent research but still needs refinements in order 
to be commercially available. 

Although the global geothermal resource for electricity production is estimated at 

12,000TWh per year, only a few countries have exploited their geothermal 

resource to generate electricity (WEA, 2001). The USA has the largest installed 

geothermal electricity generating capacity, that of 2,228MW, while Philippines is 

following with 1,909MW. Italy, Mexico, Indonesia, Japan are also countries with 

more than 500MW of installed capacity. With the development of the hot dry 

rock technology a vast amount of the resource that currently cannot be exploited 

might be tapped as access can be gained to hot rocks deep underground (Komor, 
2004). 

The initial costs of geothermal power plants vary considerably depending on the 

nature of the geothermal resource. A rough estimation of the capital costs of a 

large geothermal power plant, including the plant and the resource infrastructure, 

is between US$1,500 and $2,000 per kW. Geothermal plants generate electricity at 

costs of around 5-6 US cents per kWh. In the case of an ideal resource, which 

means very hot water or stream close to the surface, few contaminants, small 

distance between the power plant and the well, this cost may fall. In northern 

California, the Geysers plant, which is one of the largest geothermal power plants, 

sells its electricity at the price of 3 to 3.5 US cents per kWh (Komor, 2004). The 

fact that the geothermal energy has a mature electricity generating technology 

leaves no space for significant cost reductions in the future. 

Geothermal energy is a significant and dependable source of electricity. A 

geothermal power plant due to its high capacity factor can supply power close to 

its maximum output most of the time. Although the geothermal resource is quite 

substantial, the actual locations in the world that can support electricity generation 

are relatively rare. The cost of generated electricity can compete with the cost of 

electricity from some fossil fuel plants, especially at good geothermal sites. As 
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geothermal energy has a well established technology, this cost is unlikely to fall 
due to technological developments. 

2.4.7 Biomass 

Biomass is another source of renewable energy that has a great potential and 

could be a significant near-term source of hydrogen. Unlike other renewable 

energy forms, biomass can produce hydrogen directly. Biomass is a complex 

source of energy that can be utilized in many ways producing a range of products. 

Biomass resources are any organic matter available on a renewable basis including 

sustainably grown energy crops, agricultural residues and wastes such as municipal 

solid waste, landfill gas and industrial and commercial wastes (Boyle, 2000). 

Currently, biomass contributes considerably to the world's energy needs, 

especially in many developing countries that is the primary energy source. In the 

USA, among the renewable energy forms it is the second energy source (43%) just 

behind hydropower (51%) (Chum and Overend, 2001). Aiming to a carbon 

constrained world, the USA government endeavours to increase the deployment 

of biomass energy and biomass fuels (biofuels). Increasing attention to biomass 

has also been given by the EU. In 2003, the EU brought into force the Biofuels 

Directive in order to promote the use of biofuels and other renewable fuels as 

alternatives to current fuels in the transport sector. Hydrogen from biomass could 

be benefited from this directive as the term biofuels includes the biohydrogen 

fuel, namely hydrogen produced from biomass (EC, 2003; EC, 2000a). 

2.4.7.1 Energy Crops 

Energy crops are those grown exclusively as energy sources. These energy 

dedicated crops are an environmentally benign method of producing fuels. While 

the harvested crops generate carbon dioxide during their combustion or 

gasification, they absorb carbon dioxide during their growth. Thus, carbon 

dioxide follows a loop that as long as this loop remains closed the net emission of 

carbon dioxide is zero. Provided that the replenished rate of the crops matches 

the rate of their utilization, this loop will always stay closed, making the overall 

process of energy crop growing and processing environmentally friendly. Energy 
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crops have the advantages over other renewable energy sources that they are not 

intermittent and unpredictable as they can be produced whenever and wherever 

are required and if it is necessary can be stored. 

Energy crops can be categorized either by the plant species or the replanting rate. 

In the first case they are divided into herbaceous (switchgrass, miscanthus, 

bamboo), woody (hybrid poplar, hybrid willow, sweetgum), agricultural (vegetable 

oils) and aquatic crops (algae, seaweed, marine microflora) (EERE, 2003). In the 

second case they fall into two categories; perennial crops like miscanthus and 

switchgrass. Hydrogen is a biofuel with a quite versatile production as there are 

numerous plant species that can be used as feedstock for its creation. Among 

them some are currently widely used, while others are likely to become the most 

popular option in the future. 

Perennial crops have recently captured increasing attention by both the EU and 

the USA due to their advantages over the annual crops. Some of their attributes 

that justify this attention are their high potential hydrogen yield, low replanting 

rate, requirement of less maintenance and fewer fertilizer inputs than 

(Lewandowski et al., 2003). There are various perennial crops candidates, which 

differ in the potential productivity, properties of their biomass and crop 

management requirements, available for the production of hydrogen. The most 

promising ones are switchgrass, miscanthus, sugarbeet, sugarcane, short-rotation 

plantations of hybrid poplar and willow, reed canary grass, eucalyptus, kenaf, giant 

reed and wheat grass. Extensive research programs evaluate, test and evolve 

continuously these candidates in order to improve their utilization as feedstocks 

for the production of hydrogen. 

The use of land with the purpose of fulfilling human needs has radically been 

increased over the years. This increase can be witnessed by the rising land prices 

and increasing land-use efficiency and intensity, especially in densely populated 

countries. In this context, the introduction of energy crops as a new land-use 

category is not quite simple. Of all the competing uses of land, food production is 

the most important. Thus, the use of energy crops for the production of 

hydrogen is suitable in regions those are not needed or poorly suited for food 

crops. However, hydrogen has not got to compete only with food. The biomass 
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resource that is exclusively used for fuel production cannot be wholly dedicated to 

hydrogen as hydrogen is not the only biofuel. Thus, in order to estimate the 

biomass available resources for hydrogen production, it is noteworthy to take into 

consideration that the unsuitable food production areas are shared among all 

biofuels (Nonhebel, 2005). 

The multiple purposes of land use make the efficient use of land an 

unquestionable necessity. This can be achieved by the multiple land use, namely 

the production of more than one type of product or service on the same tract of 
land, if possible (Londo et al., 2004). Some energy crops, like cellulose crops, can 

be produced more efficiently in terms of land use than others and thus be more 

suitable for hydrogen production (Graham et al, 1995). Energy crops are 

geographically dispersed and because they grow in different soil and weather 

conditions may have variations in quality and productivity. 

The global biomass energy potential is around 100EJ/a, which is approximately 

30% of the current total world energy consumption. From the total worldwide 

biomass resources, the amount of 40EJ/a has been exploited for energy purposes 

of which Asia impressively uses 60% (Parikka, 2004). Asia, though, is an 

exception as in the majority of the countries in the world the current biomass use 

is considerably below the available resources. So, if biomass is to become a major 

feedstock for hydrogen production an increased biomass use is indispensable 

worldwide (Czernik et al, 2004). 

Currently, biomass energy feedstock supply costs range between £25 and £55 per 

delivered oven dry tonne (Lewandowski et al, 2003). The costs are highly variable 

as they depend on several factors such as demand, supply, site of the plantation, 

biomass yield, production costs, final specifications of the fuel like moisture 

content and particle size. As a result, the cost of producing hydrogen from 

biomass differs from country to country and is mostly affected by the specific 

local harvested yields. Production costs are also important and are normally 

broken down into establishment, cultivation, harvest, storage, drying, transport 

and chipping costs (Venturi et al, 1999) . In general, high production costs are 

caused by farm labour, machine use, land costs, conservation and transport. 
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Adequate plantations available in relatively high concentrations may assist in 

making energy crops an economically viable option of hydrogen production as 

they minimize the cost of harvest. From a techno-economic perspective, the main 

problems that energy crops are currently facing are related to the production costs 

and difficulties in harvesting and storing the harvested material, especially in the 

case of annual energy crops. The relatively costly transportation costs have made 

the local or regional biomass production a favourable option. Generally, as the 

harvest yields have a great effect on the production costs, the more the yield per 

hectare increases the more the costs of production decrease (Venturi et al., 1999). 

The extremely diverse biomass feedstocks make biomass one of the most versatile 

renewable energy sources. There are an impressive number of different types of 

energy crops that each one is appropriate for different ecological and climate 

conditions. This diversity makes the deployment of energy crops feasible in 

almost every country of the world. In the hydrogen production context, energy 

crops have many specifications to be a valuable renewable energy source. Energy 

crops' merit of flexibility may well service hydrogen, especially if hydrogen is to 

become a major worldwide fuel. For being such a fuel, hydrogen production 

needs the support of such a highly adaptable renewable energy source. 

In order for energy crops to considerably contribute to the production of 

hydrogen, they need to surmount a few barriers. The main obstacle in the growth 

of energy crops is the high production costs. These costs could be decreased by 

the development of new and the improvements of the already existing agricultural 
practices. 

2.4.7.2 Agricultural Residues 

Agricultural residues are another biomass resource that can be used as a source of 

hydrogen fuel. Agricultural activities generate large volumes of residues, which 

can be divided into crop, forestry and livestock residues. Crop residues are the 

materials remain after harvesting crops for their primary purpose. There is a wide 

range of the remaining materials in terms of their size, shape, form and density. 

The most common crop residues are straws, stalks, sticks, leaves, haulms, fibrous 

materials, roots, twigs, husk, and dust. Operations like thinning and logging of 
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plantations and trimming of felled trees provide large amounts of forestry 

residues, which include leaves, branches, lops, tops, damaged or unwanted stem 

wood (Boyle, 2000). At present the majority of these residues are left to rot on 

site or to be burnt. This results in important environmental problems such as soil 

acidification and harmful air emissions. The production of hydrogen from 

residual wood provides a possible solution to these problems, while creating a 

new market for the forestry residues (Nunez-Regueira et al., 2003; Boyle, 2000). 

Another case that the production of hydrogen in line with the reduction of fossil 
fuel based CO2  emissions has the potential to solve the waste disposal problems is 

the use of livestock residues as a fuel source. Livestock facilities like dairy farms, 

hog farms and chicken houses produce large quantities of wet manure, which 
have a high potential of water and air pollution (Sweeten et al., 2003; Dagnall et al., 

2000). Another kind of animal wastes is the dry manure that is generated by 
feedlots and livestock corrals but is collected and removed only once or twice a 
year (He et al., 1998). 

An important issue with agricultural residues as a source of hydrogen fuel that has 

to be taken into consideration is their variation in harvest volumes. Agricultural 

residues are not available throughout the year. Large amount of residues is 

generated after harvests but during the rest of the year they are minimal. The 

quantity of residues produced varies depending on many factors such as the type 

of the crop, the season, the soil type, the irrigation conditions, the tillage practices 
(Tripathi et al., 1998). The yield of the residues is also different for the same crop 
types as it depends on the type of cultivation and the location of the plantation 
(Di Blasi et al., 1997). 

Generally, the potential for agricultural residues is high in countries with 

enormous agricultural areas and low in countries with small land resources. 

Worldwide large quantities of crop residues are produced every year that are 

greatly underutilized. As the crop production depends on the climatic conditions, 

all residues are not available in all parts of the world. The global potential of the 

most common crop residues, namely bagasse, rice husk, olive flesh and cane 

trash, has been estimated around 3433Mt/yr. In energy terms that is equivalent 
with 62x1012MJ/yr (Natarajan et al., 1998). 
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Wood residues have also significant resource potential especially in countries 

where forests cover a substantial part of the whole land area. The worldwide area 

of forests is estimated to be 3870(106)ha of which large amounts are found in 

countries like Sweden, Finland, Austria, in the eastern European states, North 

America, Southeast Asian and Australia (Parikka, 2004). In the EU the energy 

potential of forest residues is estimated around 649PJ/yr (Nikolaou et al, 2003). 

In rural areas, especially arid and semi-arid regions where there are wood 

shortages, animal wastes could be a significant option as a fuel source. Manure 

from cattle, chickens and pigs are the most common wet animal wastes in 

Europe, particularly in the Netherlands and Denmark (Boyle, 2000). In the EU 

the total resource potential of livestock manure amounts to 646PJ/yr (Nikolaou et 
al, 2003). 

The quantity of agricultural residues that could be used for hydrogen production 

depends on the demand, the economics and the technology. There are a number 
of factors like available equipment, harvesting methods, pre-treatment processes, 

location of the residue sites, amount of residues per site, soil maintenance that 

limits the available resources of residues (junginger et al, 2001). The production 

of hydrogen has to compete with several applications in which agricultural 

residues could be used. These applications include fuels for cooking, water and 

process heating, fodder for animals, feedstocks for fertilizers, materials for roof 

construction, fibre. Technically, apart from the fodder and fertilizer residues, all 

other agricultural residues with low moisture content can be used as feedstocks 

for the biomass-to-gas conversion technology, gasification (Tripathi et al, 1998). 

The cost of agricultural residues, like their quantity, fluctuates strongly, mostly 

depending on harvests, increased use by competitors, season and location 

(junginger et al, 2001). The final delivery cost of residues includes the costs of 

production, harvesting, transportation and storage. For crop residues, the costs of 

collecting, chopping and baling contribute towards the harvest cost. The location 

of the plantations significantly determines whether an agricultural estate is 

economically viable to be used as a source of hydrogen production (Nurmi, 1999). 

Transportation costs depend on the amount of residues those have to be 

transported, the availability of the farm's own trucks or the use of local hauliers 
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and the distance between the farm and the hydrogen production plant. Apart 

from the quantity, the density and water content of the residues have to be taken 

into account as the low values of the former and the high value of the latter make 

difficult to transport them efficiently and thus restrict the feasibility of 

transportation. Generally, due to the low energy densities only for distances less 

than 50miles between the plantation and the hydrogen conversion plant 

transportation is considered economic (R.W.BECK, 2003). 

The production of hydrogen from agricultural residues could be more economical 

when coupled with the production of additional products like activated carbon 
(Kumar et al, 2002). In the EU the cost of crop residues was estimated to be from 

1.4€/GJ in Spain to 6.45€/GJ in Ireland. Differences in the costs are not only 
observed between the states but even within a country. For instance, in Greece 

the difference in residues cost is ±1.9€/GJ (Nikolaou et al, 2003). The operating 
expenses, namely the costs for mowing, raking, baling, gathering and stacking, 
range between $11.26 to $14.01Mg-1  depending upon biomass yield (Thorsell et al., 
2004). At present, some of the lowest cost residues are rice straw and wheat straw. 

The cost of forestry residues is higher than that of crop residues. The total cost 

includes the costs of skidding, yarding, loading, chipping and transporting. In the 

USA the cost of wood residues starts at £30 per bone-dry ton and can increase to 

almost three times that much (R.W.BECK, 2003). In Europe, forestry residues 
cost varies between 1.4€/GJ in Spain and 7.7€/GJ in Slovenia (Nikolaou et al, 
2003). 

As far as livestock manure is concerned, the delivery cost varies from farm to 

farm depending on the storage and handling system and the transport distance. 

The type and cost of storage depends on the kind of manure. The cost of storage 

is roughly estimated about $50/cubic metre (Nurmi, 1999). The transportation 

cost of manure, like the corresponding cost of crop residues, is determined by the 

quantity, the moisture content and the distance it has to be transported. 

Conclusively, agricultural activities produce significant amounts of crop, forestry 

and livestock residues. Every year worldwide large volumes of agricultural 

residues are generated. Due to the different climatologic conditions among the 
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countries, the resources of the residues widely vary from country to country. 

Thus, what is the best residue option for the production of hydrogen in one 

country may be the least favourable option for another country. However, there 

are some residues that are generally considered quite good choices for hydrogen 

generation. One of these is the sugarcane residue, bagasse. Bagasse may have a 

great potential as a source of hydrogen fuel due to its wide distribution and 

abundance in many countries. Like other renewable energy sources, it is not the 

available resources that create a bottleneck in the use of agricultural residues as a 

hydrogen source, is the costs associated with the handling, storage and 

transportation of the residues. 

2.4.7.3 Wastes 

Another form of biomass that constitutes a large proportion of the biomass 

resource is wastes. Although the term 'wastes' encompasses a wide range of 

leftovers, there is an ongoing debate about what should be included as a biomass 

waste. Technically, some wastes are not biomass fuels as a significant fraction of 

them is not biological in origin. Their organic part, though, is considered a 

biomass fuel but it is impossible to completely sort and filter wastes to obtain only 

the biodegradable fraction of them (R.W.BECK, 2003). Apart from the 

disagreements over the definition of biomass wastes, there is also confusion about 

wastes categories due to the numerous different ways in which they can be 

classified. 

In this study wastes are divided into municipal solid, industrial and commercial 

wastes. Much of the industrial and commercial wastes are unsuitable for 

combining with domestic wastes because of safety or for minimizing disposal 

costs (Boyle, 2000). Municipal solid waste originates mainly from households, 

sewage sludge, demolition, and construction debris, public areas, institutions and 

services (Nikolaou et al., 2003; Buenrostro et al., 2001). The wastes generated in 

dwellings include paper, containers, tin cans, aluminium cans, plastic, food scraps, 

cardboard, wood wastes, leather, and yard wastes. Building sites produce wastes 

from activities like construction, renovation, demolition, land excavation and road 

works. Public areas like parks and gardens can also create wastes such as cut grass 

and tree prunnings. Institutional and service wastes include sources like 
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governmental and private offices, education centres, museums, recreation centres, 

department stores, restaurants and marketplaces, among others (Buenrostro et al., 

2001; Demirbas, 2004). 

A significant portion of municipal solid waste ends up in landfill sites. Due to the 

increase of these wastes existing landfills are being exhausted and harmful 

emissions are increasing at alarming rate. The use of wastes to produce hydrogen 

has the dual beneficial effect of the decrease of greenhouse gases emissions and 

the reduction of the amount of disposed wastes. 

Industrial waste is generated in processes like extraction, benefit, transformation 

and production of goods (Buenrostro et al., 2001). The main sources of industrial 

waste are food, timber and tanning industry. Some of the food industries that may 

provide considerable amounts of wastes for the production of hydrogen are dairy, 

slaughter and cereal industry (GEB, 2003). A promising candidate biomass 

feedstock for the production of hydrogen from food industry is nutshells. 

Nutshells originate from nut processing and can be found in large quantities 

around the world (Lau et al., 2002). 

Forest industry is a further source of industrial waste. Wood manufacturing 

processes such as paper mill, saw mill, manufacturing of plywood, lumber and 

furniture generate wastes in the form of sawdust, bark, needles, wood chips, black 

liquor, paper pulp and scrap lumber (Fung et al. 2002). Tanning/leather industry 

disposes large quantities of wastes, including fleshings, shavings and sludges. The 

quantity of wastes depends on the type of leather, the produced by-products and 

the techniques applied (GEB, 2003). 

Commercial waste is generated in areas like scientific research, health, industrial 

and automobile maintenance shops, human and veterinarian drugstores, hospitals 

and airports. This type of waste needs special controlling techniques and requires 

pre-treatment before disposal either because is hazardous due to its chemical 

content or because environmental regulations demand it (Buenrostro et al, 2001). 

The world produces million of tonnes of municipal solid waste each year and a 

similar amount of industrial and commercial wastes. The increase of municipal 
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solid waste in both developed and developing countries every year, justifies the 

consideration of municipal solid waste more as an energy resource than a waste 

matter. It is estimated that in industrialised countries 0.9-1.9kgs/capita of 

municipal solid waste are generated every day (WEA, 2001). From the 210 million 

tons of municipal solid waste that the USA produces every year only a small 

fraction is used for energy purposes the rest (70%) ends up on landfill sites 
(Wallman et al., 1998). In EU the total energy potential of wastes is estimated 

around 846PJ/year. In particular, the energy potential of sewage sludge is 

94,06PJ/year, landfill gas 207,3PJ/year, municipal waste for incineration 

291,7PJ/year and demolition wood 254,04PJ/year (Nikolaou et al., 2003). 

The energy potential of industrial waste for Europe was found to be around 

1107PJ/year. This amount refers to industrial wastes in the form of dry wastes, 

industrial sludges and black liquor. Dry wastes and black liquor represent a large 

fraction of this amount with energy potential equal to 594PJ/year and 454PJ/year 

respectively and industrial sludges are the remaining 119PJ/year. The largest 

European producer of dry industrial waste that can be used as a biomass resource 

for energy purposes, with hydrogen production one of them, is wood industry. 

The amount of wastes from the latter is expected to increase 1% a year from 1990 
to 2020 (Nikolaou et al., 2003). The Nordic countries of the Union use almost all 

the available bark and black liquor for energy production (EFI, 2000). In the USA 

the wood industry consumes 85% of the available waste utilized for energy 

production (Burden, 2003). On the contrary, the wastes of food industry are 

predominately used for animal feeding. The conversion of food industry waste 

into hydrogen fuel is the next low-value option of utilization (GEB, 2003). 

The annually increased amount of municipal solid waste ends up in landfill sites 

intensifying the concerns about the environmental repercussions of landfills and 

the lack of new sites available for landfilling. Typically, the costs of landfilling vary 

between $20 and $50 per tonne. In some locations, though, these costs are very 

high and may be as expensive as $150 per tonne (Warren and El-Halwagi, 1996). 

While this makes landfilling an expensive and unattractive option of waste 

disposal, it reinforces the attractiveness of the use of wastes for hydrogen 

production. 
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The total municipal solid waste management cost includes the cost of collection, 

transfer and disposal (Dogan and Suleyman, 2003). An economical advantage of 

industrial wood waste over municipal solid waste is that the in-forest collection 

and chipping of the former are already included as part of the commercial 

industry operations. This is the reason why wastes from forest industries are a 

more economically desirable biomass feedstock than forestry residues 

(R.W.BECK, 2003). 

In Europe the cost of solid industrial waste ranges between 0.8€/GJ in Latvia and 

Lithuania and 6.9€/GJ in Slovenia. Differences in this cost are also observed 

within a country. For instance, in Germany the average cost is 3.3€/GJ but 

differences within the country are ±2.3€/GJ (Nikolaou et al., 2003). 

Apart from wastes as a biomass feedstock for hydrogen generation, hydrogen can 

also be obtained using electricity generated by landfill gas. The price of electricity 

from municipal solid waste is highly variable and affected by a number of factors. 

The cost of landfill gas electricity is mainly determined by the gas productivity, the 

availability of municipal financing and the size of the landfill gas-to-electricity 

conversion facility (Komor, 2004). A typical cost of landfill gas based electricity 

ranges between $6 and $9cents/kWh (Komor, 2004). 

Unlike other renewable energy sources, wastes can be detrimental to the 

environment if they are not used as a renewable energy source. Wastes are not 

only a source that is replenished; they are also a source that its available resource 

is increased every year. Worldwide, especially in densely populated areas, disposal 

sites are gradually more constrained and the municipal fees are quite high that 

make the conversion of wastes to hydrogen a possibly profitable option. The 

reduction in the number of future landfills followed by the decrease in the 

associated air and water environmental repercussions and the generation of an 

environmentally benign fuel like hydrogen emphasize the importance of the 

utilization of wastes as a hydrogen fuel source. This importance may well 

constitute incentive for the technical and economic development of the 

production of hydrogen from wastes. 
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Table 2.2 summarizes a number of characteristics of each renewable energy 

resource. It shows the worldwide potential and the resource available in the UK, 

which is used for the case study of this project. The former comprises the 

maximum theoretical potential that may be orders of magnitude greater than the 

technical potential which is the amount of the resource that is practically possible 

to be used taking into account various technical and physical constraints. There is 

a considerable difference among various studies in the estimated technical 

potential (Hart, 2002; ETSU, 1994; ETSU, 1999; WEC, 1994; NREL, 2006; 

REvision 2020, 2005; Garrad Hassan and Partners, 2001; Boyle, 2002; Komor, 

2004; Sustainable Development Commission, 2006). The reason for this variation 

is the numerous diverse constraints such as geography, intermittency, electricity 

grid, planning social or economic. Each study estimates the technical potential 

according to different constraints or combination of constraints from others. The 

UK resource potential in Table 2.2 corresponds to the technical potential. Like in 

the worldwide theoretical potential case, the estimations vary from study to study. 

Every estimate is presented along with its reference. 
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Renewable Energy 
Resource 

Global Potential 
(TWh/year) 

UK Technical 
Potential 

(TWh/year) 
Maturity Electricity Cost Hydrogen Route Advantages Disadvantages 

Wind Energy 262 
(Boyle, 2000) 1,666,666 Electrolysis 

-Onshore Wind: 
technologically 
mature 
-Offshore Wind: 
reaches maturity 
over the next 10 years 

-Onshore Wind: 
— 3 p/kWh 
-Offshore Wind: 
— 5 p/kWh 

-Mature technology 
-Relatively 
inexpensive 
-Scalable 

-Sitting 
-Intermittent 

Solar Energy 13,843,611 266 
(ETSU, 1999) — Proven Technology — 40 p/kWh Electrolysis 

-Ubiquitous resource 
-Wide range of 
application 
-Noiseless 

-Very expensive 

Wave Energy 18,055 237 
(Boyle, 2000) Experimental stage — 4 p/kWh Electrolysis -Fairly predictable 

-Large UK resource 
-Lack of 
mature technology 

Tidal Energy 21,944 (Boyle, 2000) 
-Well-established 
-Tidal Streams. 
development stage 

53 -Dispatchable — 5 p/kWh Electrolysis -Larg e UK resource -Relatively expensive 

Hydro Energy 40,833 4.9 
(ETSU, 1999) Technologically mature — 2-7 p/kWh Electrolysis -Dispatchable 

-Can be inexpensive 
-Restricted resource 
due to land, water and  ecological impacts 

Geothermal Energy 3.8E10 210 (Hot Dry Rocks) 
(TEE, 2002) 

-Technologically mature 

new approach 
at development stage 

-Hot Dry Rock -Dispatchable — 3.5 p/kWh Electrolysis -Can be inexpensive -Limited resew" 

Biomass 805,555 84 
(IEE, 2002) 

—Well-established 
technology — 3-8 p/kWh 

-Electrolysis 
-Photosynthetic 
Processes 
-Fermentation 
-Gasification 
-Pyrolysis 

-Dispatchable 
-Large UK resource 

-Can be expensive 
-Produces emissions 

Table 2.2: Characteristics of renewable energy resources 
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2.5 Hydrogen Technologies 

In order hydrogen to be successfully used as a transportation fuel, there is a 

pathway that needs to be followed. This pathway is a chain that consists of certain 

stages. The main stages of a fuel chain are the production, conversion, storage, 

transport and dispensing of the fuel. For each step in the chain there is a 

considerable variety of technologies, making the diversity of different possible 

fuel chains quite wide. The technology options available for each stage in the 

chains differ in technical, economic and environmental characteristics. Apart from 

these characteristics, they also vary in terms of current status and potential. Some 

technologies are mature and widely used, others are still at the development stage 

and others are in the transition from a proven technology to one in widespread 

use. Figure 2.1 shows the structure of the fuel chain. In this study, "fuel chain" 

includes all the necessary stages in order to produce and deliver hydrogen at the 
point of use. 

Figure 2.1: Schematic of a fuel chain 

2.5.1 Hydrogen Production 

There are several technologies able to produce hydrogen that are in different 

points in the path they have to follow in order to become commercially used 

techniques from innovative concepts. Hydrogen production processes vary widely 

in terms of costs and technical performance. The suitability of a technology is 

determined by a number of factors such as the availability of the feedstock or the 

resource, the quantity of hydrogen required and the required purity of the 

produced gas. 

Renewable hydrogen can be produced mainly from water and biomass. Water can 

be broken up and give hydrogen in several ways, such as directly with high 

temperatures, with the help of chemicals, with both chemicals and heat, by the 

use of microorganisms and by an electrical current running through water in 
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electrolysis (Hoffmann, 2002). Of these water-based processes, some are well 

established, though expensive and some are still far from been commercially 

available. 

The attractiveness of methods using biomass as a feedstock for hydrogen 

generation is the direct hydrogen production without the need of electrolysis. The 

elimination of this need results in higher system efficiency (Zittel and Wurster, 

1996). The successful use of biomass technologies is mainly determined by the 

optimum match of feedstock and conversion technology. The suitability of the 

process for a specific feedstock depends on the feedstock qualities such as cost, 

distribution, mass, and physical and chemical characteristics. These qualities, 

which also affect the efficiency of the overall process, must be carefully 

considered before matching the feedstock with the technology (Milne et al., 2001). 

Thermal decomposition of water (Thermolysis) 

It is feasible to decompose water thermally at very high temperatures above 2000 

K. The degree of dissociation is a function of temperature and the product is a 

mixture of gases. The main difficulties of this method are the materials needed for 

high temperatures and the separation of hydrogen from the mixture. Moreover, 

due to the high temperatures required, it is yet impractical outside the laboratory. 

Thermochemical water decomposition 

Water can be split with high temperatures and some catalysts, through a series of 

cyclical chemical reactions that release hydrogen. This process has the advantage 

over the direct thermal decomposition method of employing in lower 

temperatures owning to the presence of the chemical reactions that reduce the 

required temperature. The efficiency of this technique relies on the temperatures 

and can be around 40-50% (Veziroglu and Barbir, 1998). 

Electrolysis 

Electrolysis is regarded as the only water-based process developed to date that can 

be used for large-scale hydrogen manufacture in a post-fossil fuel era. It is a 

64 



Policy Framework, Renewable Energy Sources and Hydrogen Technologies 

mature technology based on a plain and clean process, it is very efficient and does 

not include moving parts. Electrolysis is accomplished by passing an electrical 

current through water to split water molecule into its constituent hydrogen and 

oxygen (Ivy, 2004). 

Electricity is applied to two electrodes immersed in an electrolyte to force the 

dissociation of water. Water is induced in the negatively charged electrode 

(anode), where it is decomposed to oxygen, protons (H+) and electrons (e-). The 

oxygen is released in a gaseous form at the surface of the electrode. The protons 

pass the membrane of the electrolyte to the positively charged electrode (cathode) 

and the electrons move through the external circuit. Hydrogen is formed at the 

cathode, where the protons combine with the electrons (McAuliffe, 1980). 

An electrolyser is a device that can store electrical energy in the form of fuel. 

There are three main advanced electrolyser technologies that have been developed 

for electrolytic water splitting. The first is the liquid alkaline electrolyte, usually 

potassium hydroxide, that uses a diaphragm to separate the cathode and the 

anode parts. This separation prevents the mixing of the gas. Moreover, employs 

new materials for membranes and electrodes that allow advances in efficiency, up 

to 90%. The second is the polymer electrolyte membrane (PEM) employs a 

proton-conducting ion exchange membrane as electrolyte and as a membrane that 

separates hydrogen and oxygen. This electrolyser can operate at very high current 

densities. In addition, dissolved electrolyte is not necessary to increase its 

conductivity for the dissociation of the water, which is added only to the anode 
side (Veziroglu and Barbir, 1998). 

The third type is the high temperature steam electrolysis that uses oxygen ion-

conducting ceramics as electrolyte and operates at temperatures between 700 and 

1000 .C. Heat is supplied for the dissociation of water, reducing the total energy 

requirement for this process. The water in the form of steam enters the anode 

and generates a steam-hydrogen mixture during the process, while oxygen is 

discharged as a gas at the surface of the electrode (Veziroglu and Barbir, 1998). 

At present, the electrolysers most commonly used are the alkaline and the PEM 

that both employ at high efficiencies, up to 90%-94%. Alkaline systems are 
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preferred because the corrosion is more easily controlled and the construction is 

cheaper. Especially, for larger systems they are favoured due to the easier scale—up 

and thermal management resulting from the circulating alkaline electrolyte. 

However, PEM electrolysis can generate hydrogen cost-effectively at high 

pressure without the existence of an extra compressor and with high purity. 

Moreover, they take rapid increases or decreases in electrical input without 

creating any complications in the system (Hoffmann, 2002; Kreuter and 

Hoffmann, 1998; Ivy, 2004). 

Currently, commercially large-scale alkaline electrolysers costs are in the range 

$500-700/kW and the scale production is still small. However, the growing 

interest of hydrogen economy may motivate the manufacturer to raise the 

production to match the future demand of alkaline electrolyser and thus drive 

down the cost to the level of $250/kW. Small-scale alkaline and PEM 
electrolysers' costs are higher as a result of the early development stage and in the 

range $1,000-1,500/kW. Potential costs of PEM electrolysers are estimated to 

decrease to about $300/kW (Thomas and Kuhn, 1995). 

Photoelectrolysis 

In photoelectrochemical water splitting, light illuminates a semiconductor material 

and causes the movement of electrons and thus provides the electricity needed to 

decompose water. This process has the advantage of the elimination of the need 

of an electrolyser. Theoretically, the maximum efficiency can be more than 35% 

but at present demonstrations in the laboratories have achieved up to 13% 

(Dincer, 2002). Photoelectrochemical process is still under experimental stage and 

needs further development in order to become a stable and cost effective 

technique of hydrogen production. 

Biological processes 

Biological processes are mostly operated at an ambient temperature (30-40°C) and 

normal pressure. For this reason they are considered more environmentally 

benign and less energy intensive than thermochemical and electrochemical 

processes. They can be divided into two major categories, photosynthetic 
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processes and fermentation processes. Until today, the latter have received little 

attention, while the former have been studied extensively. 

Photosynthetic hydrogen production uses organisms like green and blue green 

algae and photosynthetic bacteria under light conditions to split water or other 

organic compounds to form hydrogen (DTI, 2003). Theoretically, the maximum 

efficiency of hydrogen production from algae is equal to 25%. The most 

important limitations of this method are the production of oxygen along with 

hydrogen during the process and the low rates of hydrogen evolution (Bellona, 

2003). Research in the field of algal hydrogen production attempts to overcome 
these problems. 

Unlike green and blue green algae, photosynthetic bacteria do not have the 

difficulty of the oxidation of water. These bacteria generate hydrogen from 

organic acids. Utilizing organic substrates for starting compounds they need less 

light energy to produce hydrogen (Miyake et al., 1999). Photosynthetic hydrogen 

production holds great promise due to the relatively high conversion yields of 
organic compounds into hydrogen (the highest conversion yield among all the 

microorganisms that can produce hydrogen), the use of a wide range of the 

spectrum of light and the flexibility of the sources that can be used as starting 

materials (Eroglu et al., 2004). In recent years, the stability and the yield of 

hydrogen production are the main areas that photosynthetic process research has 
been focused to. 

Fermentation processes utilize anaerobic (or fermentative) bacteria to ferment 

organic material like wastes, under dark anaerobic conditions, to produce 

hydrogen. This process is technically simpler and gives higher hydrogen 

production rates than the photosynthetic process (Chang and Lin, 2004). 

However, it has lower yields of hydrogen. Despite this disadvantage, the high rate 

of hydrogen evolution, the fact that it does not rely on the availability of light and 

the wide range of sources that can be used as substrates make it a promising 

hydrogen production method (Math and Das, 2004). The application of anaerobic 

processing is currently an established technology for treating high moisture 

content biomass (Morimoto et al, 2004). Although the fermentation technique of 

biomass is commercially available, the coupling of this technique with hydrogen 
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production is not yet economic and technically viable. In order fermentation to be 

an important hydrogen production method in the future, further investigation is 

necessary upon the physiological and physico-chemical conditions under which 

the microorganisms provide high hydrogen yields (Hawkes et al., 2002). 

Gasification 

Biomass, usually in its solid form, can produce hydrogen thermochemically 

through the gasification method. The term gasification includes a range of 

processes in which solid fuels are reacted with hot steam and air or oxygen to 

generate gaseous products (Boyle, 2000). Most of the process equipments, such as 

reforming, shift reaction, recovery equipment, are commercially available and 

widely used for industrial hydrogen production. However, the gasifier and the gas 

cleaning equipment are still at a pre-commercial stage (DTI, 2003). There is a 

broad range of types of gasifiers with operating temperatures varying from a few 

hundred to over a thousand degrees Celsius and pressures from near atmospheric 

to as much as 30 atmospheres (Boyle, 2000). The choice of the gasifier type is 

determined by the availability and the physical characteristics of the feedstock and 

the temperature and pressure required obtaining the optimal hydrogen yields (Lau 

et al., 2002). Current demonstrations of biomass gasifiers have achieved thermal 

efficiencies of 55-65% (Williams et al., 1995). 

Apart from air and steam gasification, an innovative gasification method that is 

currently under development, is that of supercritical water gasification. The 

purpose of developing this method is the existence of a gasification process that 

can directly utilize the wet biomass, like sewage sludge, without drying, converting 

it with high efficiency into hydrogen of high purity. At present, the research 

challenges of supercritical water gasification are the feedstock preparation, the 

supercritical water process development and the product upgrading (EC, 2001b). 

Pyrolysis 

Pyrolysis is another thermochemical process that can produce hydrogen from 

biomass. Pyrolysis converts biomass into a liquid product, called bio-oil, that can 

form hydrogen through catalytic steam reforming and shift conversion (Abedi et 
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al., 2001). This method is currently at development and demonstration stage. 

Biomass conversion to hydrogen through pyrolysis has lower overall efficiencies 

than gasification because it involves multiple stages (DTI, 2003). However, there 

are quite a few advantages of this process over the gasification technology, which 

constitute incentives for further research. Unlike solid biomass, bio-oil can be 

easily transported and therefore, can be transferred at various locations at which 

hydrogen is needed. In this way, pyrolysis and reforming can be carried out in 

different places, with the latter being able to take place at sites where 

infrastructure for hydrogen use or distribution exists. The product of pyrolysis 

contains several oxygenated components that can be transformed into several 

products, including hydrogen. Co-products opportunity is an important advantage 

as the production of high value products in conjunction with hydrogen may 

considerably influence the economics of this technology (Abedi et al., 2001). The 

cost of hydrogen from pyrolysis with by-products approach is in the range of $6-

$8US/GJ, which is quite encouraging for short-term application (Nath and Das, 

2004). 

There are several comparative studies that have been carried out investigating the 

economics of different hydrogen production methods. Some analyses concluded 

that biomass gasification is the most economic renewable hydrogen production 

method, whereas other assessments showed that pyrolysis combined with the sale 

of co-products is the most economically favourable renewable process and cost-

competitive even with some fossil fuel hydrogen production technologies. 

Hydrogen derived from pyrolysis can compete with hydrogen from natural gas at 

large plants. Going one step further and considering the places where there is no 

natural gas infrastructure, makes hydrogen from pyrolysis possibly cheaper than 

natural gas-derived hydrogen (Bellona, 2002). 

Table 2.3 summarizes the different production technologies that can be used to 

produce hydrogen and their corresponding technical maturity and economic 

status. 
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Cost Production Technology  Technical Maturity 	 Technical Barriers  Attractiveness 

Thermal Decomposition of Water 
(Thermolysis) 

- Impractical outside the laboratory 
- Efficiency: < 30% 

- High temperatures 
- Separation of Hydrogen 
from the mixture. 
-Low efficiency levels 

One of the most expensive technologies 
among new technologies 

- No need of catalysts 
- Environmentally safe process 

Thermochemical 
Water Decomposition 

- Developing technology 
- Efficiency up to —50% 

- Increase of lifetime of cells 
- Design of gas separation equipment 
- Improvement of efficiency 

Projected to be a cost-effective method - High Efficiency 

Electrolysis 
- Mature Technology 
- Efficiency: 70-95%, 
depending on temperature 

- Elimination of exotic material 
on the electrodes 
- Production of electrodes 
with electrochemical stability 

One of the less expensive methods 
from renewable energy sources 

- Proven Technology _ No moving parts 
-Plain and clean ptocess 

Photoelectrolysis 
- Experimental Stage 
- Theoretical efficiency: > 35% 
- Current achieved efficiency: 13% 

- Identification of the suitable 
semiconductor material 
- Performance stability 
- Conversion efficiency 
of photoelectrochemical cells 

Currently, not cost-effective, 
but offers great potential for 
cost-reduction of electrolytically 
produced hydrogen 

- No need for electrolyser 
- High Efficiency 

Photosynthetic Processes 
using green and bleu green Algae 

- Developing Technology 
- Efficiency: 25% 

- Oxidation of water 
- Low rates of hydrogen evolution Moderate than 

- More environmentally benign 
and less energy intensive 

thermochemical and 
electrochemical processes 

Photosynthetic Processes 
using Photosynthetic Bacteria 

- R&D Stage 
- Efficiency: >10% 

- Stability of production rate 
- Increase efficiency  Potentially cost-effective 

of 
- Use spectrum of light 

a wide range 
of the 
- Flexibility of the primary feedstocks 

Fermentation Processes 
- Not yet technically viable 
for biomass-to-hydrogen conversion 
- Efficiency: 15-33% 

Low production yield Not yet economically viable - High production rates 
- Wide range of substrates 

Thermal Gasification 

- Most of the process equipments 
are commercially available 
- Gasifier and gas cleaning equipment 
at pre-Fommercial stage 
- Efficiency: 55-65% 

Gasifier Reactor Relatively cost-effective -Established technology 
-Economically viable 

Supercritical Water Gasification - 	 stage _ EffiR&Dciency: >014  - Feedstock 
- Product Upg 

prep
rading  

aration Potentially cost-effective 
- Directly utilizes wet biomass 

en - High purity produced hydrogen 
Gas available at high pressure 

Pyrolysis - Development and demonstration stage 
-Efficiency: > 50 % 

- Improvement of interim products' 
physical properties such as viscosity, 
longer storage life, lower solids content 

Not expensive 
- Bio-oil, which generates 
the hydrogen, can be easily transported 
- Opportunity for co-products 
exploitation 

Table 2.3: Characteristics of hydrogen production technologies 

Policy Fram
ew

ork , R
enew

able E
nergy S ources

 and  H
ydrogen T

echnologies 



Policy Framework, Renewable Energy Sources and Hydrogen Technologies 

2.5.2 Hydrogen Storage 

Contrary to oil and natural gas, hydrogen is difficult to be stored because of its 

extremely light and low calorific value characteristics. Hydrogen storage methods 

can be divided into physical and chemical. In the former category hydrogen is 

stored by changing its state conditions (temperature, pressure), while in the latter 

category compounds are used to absorb or bound hydrogen through a chemical 

interaction (H-SAPS, 2001). Even though each storage technique has attractive 

attributes, at present there is no method that satisfies all the efficiency, cost and 

safety requirements for stationary applications. Research in storage technologies is 

underway with some methods capturing more attention than others. From the 

aforementioned methods, compressed hydrogen gas, liquid hydrogen and metal 

hydrides are the state-of-the-art techniques normally used in stationary 
applications. 

Each of the numerous possible fuel chain options encompasses hydrogen storage 

at varying scales and stages of the chain. The difference in scale makes possible 

the use of different kind of storage method to store the fuel after its production 

and different method to store it at the point of use (forecourt storage). The choice 

of the best hydrogen storage technology for a certain application is based on a 

number of factors. These factors are the quantity that needs to be stored, storage 

time, required energy density, end use, handling safety, distance between 

production point and point of use, availability of energy forms and capital costs 

(Amos, 1998). At present, the storage methods in which the scientific research in 

this field has been mainly focused on and thus are the most technologically 

developed are compressed hydrogen gas storage, liquid hydrogen storage and 

metal hydrides. 

Compressed Gas 

Currently, the compression of hydrogen in gaseous form at very high pressure is 

the most commonly used storage method. Compressed hydrogen can be stored 

either underground or aboveground. Aboveground storage is the simplest storage 

option as it only requires a compressor and a vessel. The technology of the 

former is well established but still relatively expensive (Bellona, 2002). In 
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aboveground storage systems, hydrogen is compressed and stored in large 

cylinders, spherical containers and long tubes. The main difficulty that this storage 

method faces is the low storage density that depends on the storage pressure. The 

overall storage cost is mainly dependent on the storage time and pressure. 

Typically, the capital cost for a short and long term aboveground storage system is 

estimated around $2,088 and $32,428/MWh of storage capacity, respectively 

(Padro and Putsche, 1999). This storage method is preferred for small to medium 

scale storage applications where underground storage is technically unfeasible 

(Padro and Putsche, 1999). In the case of large scale applications, it becomes an 

economically unfavourable option. 

Contrary to aboveground storage, storage of hydrogen underground on large scale 

is not expensive. Underground reservoirs such as salt or mined caverns, aquifers, 

depleted gas wells are used for storing large quantities of gas (up to a billion 

Nm3). The ability to store hydrogen underground depends on the nature of the 

rock layers (McAuliffe, 1980). In geological suitable places, this type of storage 

may be more economic than any other storage technology for large quantities of 

hydrogen. This type of storage is more appropriate for long term or seasonal 

storage of hydrogen. However, it is not favourable for gradual development. The 

type of storage used affects the capital cost of an underground storage system, 

which ranges between $5.5 and $288/ MWh of storage capacity. In the case the 

storage space exists like depleted gas or oil fields, natural caverns or rock 

formations, this cost can be considerably reduced to $7-$80/MWh of storage 

capacity (Padro and Putsche, 1999). 

Liquid Hydrogen 

Hydrogen can be liquefied and stored in insulated cryogenic containers. Due to 

the higher energy density of liquid hydrogen than that of compressed hydrogen, 

the amount of liquid hydrogen that a truck can store is equal to the amount of 

compressed hydrogen 20 trucks can store. However, liquefaction is an energy-

intensive process that requires 30-40% of the energy content in the hydrogen, 

making this method the one with the lowest efficiency among the other 

technologies (H-SAPS, 2001). Although the high capital costs of liquefaction and 

storing equipment impede the application of this method, liquid hydrogen storage 
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is advisable for long term storage and thus suitable for the transportation of 

hydrogen over great distances (Amos, 1998). 

The capital costs for liquid hydrogen storage facilities depend on the quantity of 

hydrogen that needs to be stored and varied between $25,600/kg/hr and 

$118,000/kg/hr (Amos, 1998). Due to the higher energy density of liquid 

hydrogen than that of compressed hydrogen, the amount of liquid hydrogen that 

a truck can store is equal to the amount of compressed hydrogen 20 trucks can 

store. Moreover, the boil-off losses decrease with the increase of the size of the 

vessel. For large quantities the boil-off losses decrease (with the use of big vessels) 

and the cost of the alternative pressure vessel increase more rapidly than the 

liquefaction costs, making liquid hydrogen storage method competitive. Like 

underground storage, liquid hydrogen storage method is advisable for long term 

storage, making this method suitable for the transportation of hydrogen over 

great distances (Amos, 1998). 

Metal Hydrides 

Metal hydrides can absorb hydrogen at varying temperatures and pressures 

depending on the alloy. Metal hydride storage systems can operate at ambient and 

at high temperatures (> 200 °C) (Dutton, 2002). The former category is possible 

to be used for compression. When a hydride absorbs hydrogen at low pressure 

and is then heated up, it releases hydrogen at a higher pressure. Theoretically, 

metal hydrides can attain high densities and thus are very efficient. Specifically, 

the volumetric energy density is three to four times higher than that of a 

compressed vessel (Conte et al., 2001). However, experimental results to date 

show that the storage densities are relatively low at about 3%wt (Veziroglu and 

Barbir, 1998). This technology is considered one of the safest hydrogen storage 

methods, mainly because the charging and discharging of hydrogen may occur at 

ambient pressure and temperature conditions (H-SAPS, 2001). The high energy 

densities, efficiency and safety of this method constitute incentives for further 

improvement. 

The costs of metal hydride storage systems encompass the storage material, the 

pressure vessel, the heat exchanger and compressors, if they are necessary. For 
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relatively small metal hydride storage system the cost is estimated 

between$820/kg of hydrogen and $60,000/kg (Amos, 1998). From the overall 

cost of this storage method, the cost of the hydride material is the main capital 

cost. This leaves no room for economy of scales. Thus, as the quantity of 

hydrogen required being stored increases, the metal hydrides cost increases as well 

making this method fairly expensive. Thus, metal hydride storage systems may be 

considered the suitable choice of storing small quantities of hydrogen. 

Table 2.4 below summarizes the characteristics of the main hydrogen storage 

technologies. 
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Cost Storage Method  Storage Technology Technical Maturity 	Technical Barriers Suitability 

Compressed Gas - 
Aboveground 

- Large cylinders 
- Spherical containers 
- Long tubes 

-Established Technology 
-Efficiency: 97-99% Low,  storage density 

-Relatively inexpensive 
for short-, medium- term 
and scale applications 
-Expensive for long- term 
and scale applications 

Short- to medium-term 
and scale applications 

Compressed Gas - 
Underground 

- Salt, mined caverns 
- Aquifers 
-Depleted gas wells medium- 

- Established Technology 
-Efficiency: 97-99% 

Applied only on suitable 
geographical regions 

-Inexpensive for long- term 
and scale applications  -Very expensive for small-, 

scale and term 
applications 

Long-term 
and seasonal applications 

Liquid Hydrogen Insulated cryogenic 
containers 

-Proven Technology but 
not yet in widespread use 
- Efficiency: 45-80% 

-Low efficiency 
-Energy consumption 
of liquefaction 
-Boil-off losses during 
storage and handling 

-Inexpensive for long- term 
and scale applications 
-Very expensive for small-, 
medium- scale and term 
applications 

Long-term 
and scale applications 

Metal Hydrides 
-Metals (lanthanum, -Developing technology 

-Efficiency: 70-85% 

-Relatively low storage 
density according to 
experimental results 
up to date - Alloys is 

Fairly expensive 
-Small scale applications 
-Applications where safety 

the highest concern 
titanium, magnesium) 

Table 2.4: Characteristics of hydrogen storage technologies 
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Other than the aforementioned storage technologies, there are various methods 

possible to store hydrogen that are still far from commercialization but each one 

has certain advantages that justify the research attention of industry and research 

institutions. These include: 

1. Carbon nanostructures 

Hydrogen can be stored in carbon materials such as carbon nanotubes, carbon 

nanofibres, fullerenes, carbon onions and activated carbon. Carbon nanostructure 

storage method has been contemplated as an innovative hydrogen storage 

solution with the outlook of improving the volumetric and gravimetric energy 

density of storage systems. Two methods, in particular, have captured the 

attention of the research community, carbon nanotubes and carbon nanofibres 

(Conte et a/., 2001). Theoretically, carbon nanostructures are able to absorb 

considerable amounts of hydrogen but up to date experiments have not yet 

verified the theoretical predictions. Apart from the discrepancy between the 

theory and the experiments, there is an impressive variation in the experimental 

results of different research teams. In order for carbon nanostructures to be a 

viable hydrogen storage method, further research is necessary to decrease the 

deviation between theory and practice and to investigate their volumetric capacity 

and the adsorption/desorption mechanism (Atkinson et al., 2001). 

2. Sponge Iron 

This method utilizes sponge iron (iron oxide) that reacts with hydrogen to form 

iron and water. The hydrogen can be recovered with the reaction of the iron with 

steam. The outcome of experimental results to date indicates that this method 

may have high energy density and low storage cost. However, it is still at research 

and development stage with demonstrations only on a laboratory scale (Amos, 

1998). 

3. Zeolites 

Zeolites as a hydrogen storage method have not been yet greatly investigated. 

Hydrogen can be encapsulated in microporous media and reversibly retrieved 
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from zeolites. The storage capacity of these materials mainly depends on the pore 

architecture and the composition of the zeolite used. Although zeolites have the 

potential of further improvement as a storage method by applying the modern 

techniques of zeolite synthesis and modification, it is unclear whether they will 

play a major role in hydrogen storage in the future (Weitkamp et al, 1995). 

4. Liquid Hydrides 

Another developing method of storing hydrogen is the use of liquid storage in the 

form of liquid hydrides. Hydrogen can react with benzene to form cyclohexane. 

Then, hydrogen can be obtained by the use of a catalyzed reaction with 

membrane separation. Although this method allows hydrogen to be transported 

as a stable liquid, it has the disadvantages of involving toxic chemical and 

requiring complex recovery equipment (Amos, 1998). 

5. Glass Microspheres 

Hydrogen can be contained at very high pressures in small permeable glass 

microspheres and can be recovered by heating the microshperes. Although 

microspheres are permeable to hydrogen at high temperatures, they can store it at 

ambient temperatures (Amos, 1998). 

6. Ammonia 

Hydrogen can be reacted to form ammonia and it can be retrieved along with 

nitrogen using an iron oxide catalyst. This method has the advantage of high 

storage density. On the other hand, it has the disadvantages of using electricity to 

dissociate ammonia and being hazardous to handle (Amos, 1998). 

2.5.3 Hydrogen Transport 

Hydrogen can be transported using various methods such as truck, rail, ship and 

pipeline. The most favourable method for a specific application depends on the 

distance transported, volume transported, production method, cost and use 
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(Padro and Putsche, 1999). Currently, the most commonly used methods of 

transportation utilize compressed or liquid hydrogen. 

Compressed Gas 

Compressed hydrogen may be transported by high pressure cylinders, tube 

trailers, ship, rail and through pipeline. Utilizing high pressure cylinders has the 

benefit of higher energy density and the drawback of expensive vessels. Tube 

trailers could also transport hydrogen in lower pressures and are more suitable for 

small market demand (Amos, 1998). Apart from their use as a transport means, 

they can also be utilized as on-site storage. As tube trailers are suitable for small 

quantities, it could be favourable to use this transport method for the initial small 

scale production of hydrogen at the early stage of hydrogen's introduction in the 

transport system (Simbeck and Chang, 2002). Transporting compressed hydrogen 

by ship is technically viable but not economically beneficial due to the increase of 

stored hydrogen cost with the increase of storage time (Padro and Putsche, 1999). 

Another possible way of transporting compressed hydrogen is through pipelines. 

Pipelines may either be dedicated hydrogen structures or modified existing natural 

gas pipelines. Piping systems are frequently several miles long. Due to their large 

length and thus high volume, changes in the system's operating pressure result in 

large change in the quantity of hydrogen contained in the system, making 

pipelines work as storage. With this method storage at the generation site or the 

delivery site may not be necessary (Amos, 1998). The capital costs of pipeline, 

which includes the pipeline itself and the installation, is determined by length of 

the system and the energy delivery rate. Although pipeline capital costs, compared 

with other methods, are high, they are most effective for transporting large 

amounts of hydrogen. This, in combination with the fact that once they are 

installed is fairly difficult to change their routes or capacities leads to the 

conclusion that this type of transportation is advisable when hydrogen would be 

widely used and it would be easier to determine the capacity and the location of a 

pipeline system, taking into account the possibility of future expansion (Simbeck 
and Chang, 2002). 
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Liquid Hydrogen 

Liquid hydrogen transport methods mainly include cryogenic vessels and tankers, 

both of which have to be heavily insulated to reduce boil-off losses. The capacity 

of tankers ranges between 360 and 4,300kg of liquid hydrogen (Howes, 2002). 

The cost of liquid hydrogen transport is affected by the distance and the amount 

of transported hydrogen. In contrast with compressed hydrogen transport, liquid 

hydrogen transport is more attractive in the case of large quantities of hydrogen. 

Liquid hydrogen may also be transported by rail and ship. With both means, this 

method is more beneficial than compressed gas from an economic viewpoint 

(Padro and Putsche, 1999). Liquid hydrogen is also possible to be transported 

through pipelines that require high insulation, pumping and recooling. However, 

the feasibility of this method as a liquid hydrogen transport alternative is 

questionable (Zittel and Wurster, 1996). 

The characteristics of the major hydrogen transport technologies are summarised 
in Table 2.5. 
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Suitability Transport Method  Technical Maturity Technical Barriers Cost 

Compressed Gas by Road 
-Established technology 
-Efficiency: 90-95% 

-Small deliveries per truck 

-Relatively inexpensive 
for small quantities 
of gas and distances 
-Expensive for large quantities 
and long distances 

Small quantities 
over short distances 

Compressed Gas by Pipeline 
-Established technology especially 
for modified natural gas pipelines 
-Efficiency: 99% 

-Inflexible; routes and capacities 
cannot be easily changed 

-Capital intensive 
-Needs large volumes of hydrogen 
to justify pipeline costs 
-Low operation cost 

Large quantities 
or long distances 

Liquid Hydrogen by Road 
-Established technology 
-Efficiency:99% for transport 
and 50-75% for liquefaction 

-Expense and inefficiency 
of the liquefaction process 
-Boil off losses 

-Expensive for small volumes 
-Economic for large amounts 
of hydrogen 

Large quantities 
over long distances 

Table 2.5: Characteristics of hydrogen transport technologies 
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2.6 Review of Previous Hydrogen Infrastructure Studies 

The potential and promise of hydrogen as a fuel have been universally 

acknowledged and constitute two of the main priorities of the scientific 

community of the energy arena. This is evident from numerous projects around 

the world that examine the viability and challenges towards switching from a 

carbon-based to a hydrogen-based transport system. In the USA, the EU and 

Japan billions of dollars have been invested into hydrogen initiatives planning to 

improve hydrogen technologies and propel them to the market. Automobile and 

energy companies grant even more billions to build the hydrogen fleets and 
refuelling stations. 

The majority of previous studies on the design of hydrogen supply chains from 

well-to-wheel is focused on routes for hydrogen production from non-renewable 

energy sources, such as steam reforming of natural gas or electrolysis using non-

renewable electricity. This general tendency is justified considering that in the 

near- to medium- term future hydrogen production will continue to rely mainly 

on fossil fuels. Comparing various studies, differences among the main findings 

of each study can be observed. This discrepancy is mainly due to the different 

assumptions that have been considered in every study. Moreover, national 

strategies for the development of a hydrogen delivery system vary considerably 

from country to country because of different national constraints. 

Most of the hydrogen projects are examining one particular technology of the fuel 

chain such as the production conversion, storage and delivery of hydrogen instead 

of looking at the fuel chain as whole. Yang and Ogden (2007) have developed 

models to examine costs, emissions and energy use for different types of 

hydrogen transmission and distribution technologies. The aim of their work was 

to identify the factors that mainly determine the hydrogen delivery cost. Their 

results reinforce the idea that factors such as the demand and the delivery distance 

mainly affect the cost of the distribution system. Specifically, for very low demand 

the ideal transport technology is compressed gas truck while for long distances 

and moderate demand liquid transport is more appropriate. Moreover, for dense 

areas and large demand the preferred choice is pipeline delivery. This study is 
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currently being extended to include production options in order to compare 

overall pathways. 

An analysis with similar goals to the Yang and Ogden study is the work that has 

been carried out within the European Commission's Joint Research Centre by the 

Institute for Energy in the Netherlands (Castello et al., 2005). This work is a 

techno-economic assessment of hydrogen transmission and distribution systems 

in Europe in the medium and long term. Its goal is to calculate the evolution and 

size of a hydrogen delivery system and the necessary investment in order to build 

it by 2050. The calculations are based on three scenarios that differ in the degree 

of development of the hydrogen market. In the case of the most optimistic 

scenario, which assumes a penetration of hydrogen of 70% in 2050, the preferred 

option for delivering hydrogen is the pipeline delivery or with trucks as a liquid. 

The latter option is becoming more dominant in the case of the other two more 
conservative scenarios. 

There are many other studies that examine different components of the fuel chain 

(Hawkins, 2006; Altmann et al., 2004; Ivy, 2004; Koroneos et al, 2004; Friedland 
and Speranza, 2001; Adamson, 2004; Farrell et al, 2003; Dutton, 2002) though it 

is worthwhile to mention two of them as they constitute the backbone for many 

studies on hydrogen technologies. Firstly, the study of Amos (1998) that estimates 

the hydrogen storage and transportation costs. In terms of storage this study 

compares the capital and operating costs over a range of production rates and 

storage times for compressed gas, liquid hydrogen, metal hydride and 

underground storage. According to the results, underground storage was the 

cheapest option and liquid hydrogen has some benefits over compressed gas for 

longer storage times. In the case of transportation, the methods that are 

considered are truck and rail compressed gas, metal hydride, liquid hydrogen and 

pipeline delivery. The costs are calculated for a range of production rates and 

delivery distances. Generally, for high production rates pipeline is the preferred 

option, while for lower rates liquid hydrogen is more attractive. This study is very 

useful as a reference point in terms of storage and transportation technologies 

because it includes in satisfactory depth the technical and economic characteristics 

of these technologies. However, it misses the hydrogen production cost in order 

to determine the total pathway cost or the delivered cost of hydrogen. 
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Secondly, Padro and Putsche (1999) carried out a survey on the economics of 

hydrogen production, storage, transport and end-use technologies. This study 

provides a good reference for every component of the fuel chain, though it does 

not include novel technologies. Although a considerable amount of technical 

information was taken from these two surveys, their economic contribution was 

fairly restricted due to the existence of more recent studies. However, sometimes 

this was led to a vicious cycle as many recent studies are based on the findings of 
these two surveys. 

A considerable body of literature focuses on the study and comparison of fuel 

chains as a whole. Various studies have analysed the technical status and cost of 

hydrogen pathways (Tzimas et al, 2004; E4tech, 2005; Chen et al, 2005; Hyways, 
2004; Eyre et al, 2002; Myers et al, 2003). To examine the regional hydrogen 

infrastructure development a static approach, which includes steady state pathway 

simulation that assumes a fixed hydrogen demand is usually adopted. Although 

this approach, with or without optimisation, is straightforward it does not 

consider the dynamics of the infrastructure over time and how transitions from 

one pathway to another should take place as market conditions change. 

Considerable work on hydrogen activities has been carried out in the USA. Ogden 

(1999) examined five hydrogen supply options for fuelling passenger vehicles in 

Southern California. These options included hydrogen production from natural 

gas in a centralized plant with truck delivery as a liquid or small scale gas pipeline 

delivery to the refuelling station, chemical industry sources as a by-product, small 

scale reforming of natural gas or small scale electrolysis both at the refuelling 

station. The cheapest method was found to be the delivery of liquid hydrogen 

produced at a centralized plant at $20-30/GJ. Schoenung (2001) has conducted a 

similar study, but also included partial oxidation at the refuelling station and 

compressed gas delivery by road. The most cost-effective route was found to be 

the delivery of liquid hydrogen produced at a centralised facility, at just under 

$20/GJ. Another work of interest is the cost analysis of Thomas and co-workers 

(1998). In this study a comparison of hydrogen delivery cost was performed for 

various manufacturing and distribution options. Moreover, the potential for cost 

reductions through the economies of scale was examined by varying the hydrogen 

demand and the size of the production units. According to this study, the 
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difficulties developing a hydrogen infrastructure could be surmounted by 

incrementally adding small scale electrolysers and reformers to meet the increase 

in fuel cell vehicle sales. 

Fewer studies consider large-scale systems for supply of hydrogen from renewable 

sources. Mann et al. (1998) conducted a techno-economic analysis of hydrogen 

production from wind energy, solar energy and biomass. The analysis of hydrogen 

from solar energy consisted of direct photoelectrochemical conversion of sunlight 

and photovoltaic technologies. In the case of wind energy, wind-based electricity 

was used to produce hydrogen through electrolysis. The study examined the 

economic viability of these technologies by exploring four different scenarios. 

The factor that determined the cost-effectiveness of each technology was whether 

the renewable system was coupled to the electric grid. The results concluded that 

the photoelectrochemical conversion of sunlight had the potential to be 

economically more attractive than the PV and wind systems, if the latter were not 

connected to the utility grid. In the case they were connected to the grid, then 

along with hydrogen electricity could be produced as a co-product and could be 

sold at peak prices to customers. This scenario improved the economic feasibility 

of the PV and wind systems. The analysis of biomass-derived hydrogen included 

low pressure gasification, high pressure gasification and pyrolysis. According to 

the results, the first system had the greater economic potential. The other two 

systems required negative-priced feedstocks to be within the range of market 

values. 

GM (LBST, 2002) has carried out an extensive well-to-wheel study, comparing 32 

different fuel chains, both renewable and non-renewable, along with 56 alternative 

options with respect to their greenhouse gas emissions and energy efficiency. The 

results showed that the combination of hydrogen produced from renewable 

sources with fuel cell powertrains could considerably reduce greenhouse gas 

emissions while improving fuel supply diversity. Simbeck and Chang (2002) 

analysed the economics of 19 different fuel chains; 15 of them included large-

scale central production facilities utilizing various feedstocks, such as natural gas, 

coal, biomass, petroleum coke and electricity, with both liquid and compressed 

gas hydrogen distribution technologies being considered in their options. The 

other 4 used small-scale reformers and electrolysers at the refuelling station. The 
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central large-scale production from natural gas with liquid truck distribution was 

found to be the option with the lowest delivery cost. This study included steady 

state simulations and thus excluded the dynamics of the infrastructure over time. 

Myers et al. (2003) have conducted a project that was focused on the development 

of a technically feasible pathway to supply 10 quads per year of hydrogen 

produced from renewable energy sources for transportation uses in the years 2030 

to 2050 in the USA. According to the results of this study, such a pathway was 

achievable and leaded to a national average hydrogen delivery cost of $3.98/kg. 

From the renewable energy sources spectrum, wind and biomass were the most 

important resources that would play a significant role in the production of 

hydrogen. 

Apart from the USA, research interest in hydrogen infrastructure issues is 

growing around the world. Mercuri et al. (2002) have carried out an Italian study 

developing a fuel cell vehicles penetration scenario based on a penetration of 2 

million cars by 2015 and 60% of the parc could be fuel cell vehicles by 2030. The 

study included large-scale steam reforming, on-site reforming and electrolysis with 

both liquid and compressed gas hydrogen options considered. All the fuel chains 

were found to have future market potential. In the short-term, large-scale steam 

methane reforming could supply a considerable part of the fuel demand, while 

on-site steam methane reforming appeared to be the most attractive option to 

supply a fuel cell vehicle mass market. Electrolysis could become an attractive 

option if it could use renewable electricity at relatively low cost. Sorensen et al. 

(2003) has examined possible scenarios for a transition to a hydrogen society 

based on renewable energy sources for Denmark. As far as transportation is 

concerned, the general conclusion of the analysis was that it is possible to meet 

the entire transport demand by renewable hydrogen and methanol. By 2030, 

slightly less than 80% of the transport energy could be converted to hydrogen and 

methanol (with three-quarters of the former), while the remainder would be 

covered by gasoline and diesel fuels. The predominant renewable resources that 

would be used for the production of the fuels would be wind energy and biomass. 

Ewan and Allen (2005) analysed and compared 14 hydrogen pathways including 

fossil fuel, nuclear energy and renewable sources routes based on criteria such as 

carbon dioxide emissions, resource availability, land use implications and 
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production costs. The study emphasized the implications of each pathway, the 

limitations and strengths of certain technologies and the areas in which 

technological advances are mostly needed. A Japanese study has examined the 

technical and economic feasibility and the reduction of carbon dioxide emissions 

by developing a hydrogen infrastructure using off-peak power in the existing 

electrical power. The infrastructure cost was found to be 0.12 trillion yen/year 

(around 1.008 billion US $/year) in 2020. In terms of carbon dioxide emissions, 

fuel cell vehicles using hydrogen that has been produced from electrolysis utilizing 

off-peak electricity could achieve 37% reduction in carbon dioxide emissions 

compared with the internal combustion engine private cars running on gasoline 

(Oi and Wada, 2004). 

The Energy Research Centre of the Netherlands has developed a model for 

examining the development of a hydrogen pipeline infrastructure for the 

Netherlands. The model divides Netherlands into 40 regions aiming to calculate 

for each one the development of hydrogen demand for automotive and stationary 

applications and to examine per region the economic feasibility to construct a 

hydrogen infrastructure between the year 2010 and 2030. The calculations, based 
on the assumption of fuel cell cost of 180 €/kW in 2030 and representative 

assumption on hydrogen and infrastructure cost, showed that the infrastructure 

could expand to around half (18 of the 40) regions by the year 2030 (Smit et al., 
2005). Greene et al. (2005) has developed a model capable of simulating the 

market transition to hydrogen aiming to produce possible scenarios for the 

transition. The project focuses more on vehicle choice rather than on 

infrastructure issues relative to technical options and infrastructure design. 

Hugo et al. (2005) have used mixed integer linear programming to build a model 

in order to determine the optimal design of a hydrogen supply chain network in 

terms of both economic and environmental criteria. The features and capabilities 

of their model are illustrated in a case study, which includes an idealised network 

of 6 demand centres and 6 central production sites that include existing refineries, 

chemical complexes and natural gas compression stations. This limits the type of 

technologies that are allowed to be installed there. Moreover, the model does not 

explore the resource potential for the production of hydrogen and gives small 

attention to the spatial details. As this case study is a plain and simplified 
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infrastructure design problem, it may not be argued that the model could support 

more complicated problems. More specifically, this model may be considered as 

an equation template that can be applied to cases similar to the case study for 

something more advanced or completely different from this case study either 

these equations are not applicable or not enough. For example, in the case it is 

desired to develop a hydrogen infrastructure in order to supply hydrogen to a 

geographical region like Venice in Italy that contains water channels instead of 

roads this model in not applicable. 

A similar approach with Hugo et al. is followed by Almansoori and Shah (2006). 

This study examines the design of a hydrogen supply chain network using mixed-

integer linear programming. The difference between that work and the work of 

the present study is fourfold. Firstly, Almansoori and Shah study does not include 

resource optimisation that constitutes a feature of the present study. Secondly, 

their supply chain network is presented as a steady state 'snapshot'. Thirdly, 

Almansoori and Shah carried out the generation of the hydrogen network using 
mixed-integer linear programming while the present study includes a number of 

different technological fields such as XML, image processing, MILP and 

MATLAB. Lastly, there is a difference in the way the geographical region under 

study is divided. The segmentation method is described in detail in Chapter 4. 

A lot of different scenarios have been proposed and are under discussion for a 

possible future hydrogen production and distribution infrastructure. Eames and 

McDowall (2005) have produced 6 different scenarios for the development of 

hydrogen energy systems in the UK. These scenarios differ in the end-uses of 

hydrogen, the production and storage technologies and the degree of 

centralisation/decentralisation of hydrogen production and supply. The scenarios 

were created based on extensive review of literature, a UKSHEC hydrogen 

visions stakeholder workshop and a series of interviews with experts on hydrogen 

area. Watson et al., (2004) have carried out a similar work with a fairly different 

approach. This work includes the elaboration of various possibilities for a 

hydrogen economy in the UK that range for a scenario in which there are no 
explicit drivers for hydrogen to a scenario in which hydrogen plays the major role 

in the energy system. These scenarios are used to model different fuel chains in 

order to achieve a hydrogen energy system for 2050. These studies are intended 

87 



Policy Framework, Renewable Energy Sources and Hydrogen Technologies 

for a national perspective without as much attention to spatial details such as a 

geographical representation of a hydrogen transport infrastructure including 

location and distribution of demand centres or production sites and related 

transport distances. 

An interesting analysis of the integration of hydrogen into energy systems is a 

German study focused on the comparison and evaluation of different hydrogen 

pathways in terms of both economic and environmental criteria and their 

integration into the German energy system (Ball et al, 2007). Their method 

includes the development of a linear programming model aiming to determine the 

cost-optimal way to build up a hydrogen supply infrastructure within Germany 

until 2030. Their model has been developed based on the BALMOREL model, 

which supports analyses of the energy sector in the Baltic Sea region. This is an 

ongoing study and its results have not yet been published. It is worth mentioning 

that their approach includes the application of a Geographical Information 

System for estimating average transport distances between and within the area of 

the model for pipeline and trailer hydrogen delivery. With this approach, they 

tried to incorporate a feature that is generally excluded from relative studies, that 

is an appropriate geographical representation of a hydrogen infrastructure such as 

the location of demand centres or transport distances, modes and costs. 

According to a considerable amount of literature, the issue of the development of 

a hydrogen infrastructure is addressed by means of linear programming. Dynamic 

programming has also captured the attention but is still an on-going effort to 
improve its applicability to large scale problems such is the design of an 

infrastructure (Secomandi, 2001; Godfrey and Powell, 2002; Powell et al, 2000; 
Powell and van Roy, 2004; Powell et al., 2004). Lin et a/. (2006) have developed a 

model, the Hydrogen Infrastructure Transition (HIT) model, and applied it to the 

case study of Beijing. HIT is a dynamic programming model that determines the 

cost-effective way to develop a hydrogen infrastructure in terms of costs, carbon 

externalities and refuelling travel time. The main aim of their report is the 

presentation and capabilities of HIT model in addressing the infrastructure 

development problem. However, the selected case study is a rather simple 

infrastructure problem judging not only from the limited number of pathways 

under examination, that are five, but also from the fact that the focus is more on 
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the last step of the fuel chain which is the distribution of the fuel in the city than 

on the other stages of the fuel chain. Considering though the difficulty and 

complication of solving a large scale problem with dynamic programming justifies 

the size of this case study. Thus, in terms of the distribution of the fuel within a 

city this approach succeeds in capturing the dynamics of the fuel dispersion 

system within a city-specific context. 

From the nature of the hydrogen infrastructure development problem and the 

vast amount of relative literature it may be concluded that modelling is essential to 

understand how hydrogen infrastructure can be efficiently developed and 

deployed. Modelling the design of a renewable hydrogen infrastructure offers the 

necessary decision framework in order to make the successful transition of 

infrastructure development from conceptual idea to reality. The necessity of 

modelling stems from the benefits it offers some of which are: 

> Replacement of real systems; 

> Accessibility; 

➢ Appropriateness for experiments; 

> Appropriateness for observation (eg long time horizon); 

> Intensive dynamics (eg sensitivity analysis); 

➢ Full control; 

➢ Virtual environment; 

➢ Virtual time. 

The use of an optimisation approach may provide a springboard for the 

development of a hydrogen infrastructure. Especially at the moment that the 

transition to new environmentally benign fuels is at a crucial point making its first 

steps, modelling may be used as a tool for exploring the optimal way forward and 

trade-offs between different routes and thus be of vital importance for policy 

makers before deciding their strategy concerning the introduction of hydrogen 

fuel. 
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2.7 Conclusions 

Hydrogen is not a new concept. It has been suggested as a solution to the 

depletion of fossil fuels and the environmental effects of the burning of these 

fuels more than thirty years ago. Recently, it has captured increasing attention as 

the irreversible damage of the environment caused by the use of fossil fuels in 

conjunction with the security of energy supply force towards a more sustainable 

energy system. 

Hydrogen constitutes an attractive alternative to current fuels in transportation as 

it holds the promise of freeing the transport sector from carbon. As hydrogen 

during combustion is almost free of polluting emittents, its environmental 

benefits strongly depend on the way of production. Although fossil fuel derived 

hydrogen produces less harmful emissions than conventional fuels, it limits the 

extent to which these emissions can be reduced. Fossil fuels as a hydrogen source 

eliminate most of the benefits offered by hydrogen. In order hydrogen to fulfil its 

promise as an abundant, available and sustainable fuel, hydrogen from fossil fuels 

shall not be considered as the ultimate alternative to the current fuels but as an 

interim step to a more sustainable transport fuel, that of renewable hydrogen. 

The introduction of a new transportation fuel requires the development of a 

refuelling infrastructure. However, the development of a new infrastructure is a 

challenging, uncertain, and slow process, largely due to the difficulties associated 

with major changes in the social and economic systems. For this reason, 

Governments should play a catalytic role in hydrogen's uptake by providing 

policies to support and promote its infrastructure development and fuel cell 

vehicle market simultaneously. Certainly, some countries are more advanced in 

the hydrogen activities and their Governments are more supportive than in other 

countries. However, generally it can be concluded that hydrogen is gradually 

climbing the energy priority agendas worldwide and this is evident by the 

increasing commitment to it by the Governments. From nearly mentioned at 

previous policy frameworks, hydrogen has started asserting its own section. 

Considerable amounts of funding are granted worldwide to research and 

development of hydrogen activities. These activities include both the 
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infrastructure components, that are necessary to deliver the fuel, and the vehicle 

powertrain, that use the fuel. There is a considerable variety of technologies that 

can be used for developing a hydrogen delivery system. The technology options 

available for each stage of different fuel chains differ in technical, economic and 

environmental characteristics. Apart from these characteristics, they also vary in 

terms of current status and potential. Some technologies are mature and widely 

used, others are still at the development stage and others are in the transition 

from a proven technology to one in widespread use. 

Apart from the development of hydrogen technologies, substantial attention has 

been given to study the most effective way to develop a hydrogen infrastructure. 

Most of the approaches include the creation of models or the improvement of 

already existing ones in order to compare different pathways mainly in terms of 

costs but also in terms of technical maturity and CO2 emissions. Generally, 

probably it is more constructive to compare their methods than their results, as 

the latter are more difficult to be compared as every study has its own 

specifications and assumptions. By comparing their results, it may be concluded 

that there are many ways to develop a hydrogen infrastructure and the most 

effective one depends on the national strategy and the location. Naturally, there 

are some results and conclusions that may be considered general but these are 

mainly relevant with the comparison of individual components of the fuel chain, 

for example the fact that liquid hydrogen delivery is more economical for large 

volumes of hydrogen and long distances than compressed gas delivery, which 

becomes more attractive for shorter distances. By comparing their approaches, it 

could be deduced that there are some general tendencies that seem to be followed 

to address the infrastructure development problem but what overall determines 

the methodology is the key questions desired to be answered and the degree of in-

depth analysis. 

These studies were reviewed and used as a starting point, an inspiration and a way 

towards originality. By examining them the approach that was selected for 

addressing the infrastructure problem of this thesis was formed. This approach is 

described in Chapter 4. 
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3.1 Introduction 

In order to achieve the goal of the present study a procedure consisting of 

multiple sequential steps was necessary to be followed. This Chapter provides an 

overview of the steps of this procedure. Every step comprises a task that has been 

carried out in this study. Figure 3.1 illustrates the main stages of the approach. 

3.2 Problem Articulation 

The first and probably the most important step in the problem's resolution 

process is the definition of the problem. The problem of this study was addressed 

by means of modelling techniques. The clarity of the question intended to be 

addressed is fundamental for the usefulness of the model. A successful model is a 

comprehensive and simplified but meaningful representation of reality. The 

literature review that was described in the previous Chapter comprised the basis 

of forming the research question and developing a suitable method to answer the 

research question. The research question has been stated in Chapter 1 and 
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comprises the problem of determining which is the least-cost way to develop a 

renewable hydrogen fuel infrastructure. 

3.3 Conceptual Model Development 

Once the problem is clearly posed, the next step is to identify the key variables or 

parameters necessary for answering the question and to set the time horizon. This 

step produces the conceptual model. For the present problem, a long time 

horizon was chosen. The selected time framework was 50 years. This choice was 

emanated from the nature of the problem. Switching from conventional fuels to 

hydrogen fuel and building an infrastructure to accommodate this transition is 

clearly a problem that extends to the next few decades. 
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3.4 Optimisation Methods 

The assessment and comparison of different fuel chains are conducted 

considering the cost as the decisive factor. Thus, the issue of the development of 

a least-cost renewable hydrogen infrastructure is addressed by means of 

optimisation techniques. More specifically, the identification of the most cost-

effective infrastructure development plan is treated as a cost minimisation 

problem. In this optimisation problem the aim is to minimize the cost function, 

objective function, by systematically choosing the values of real or integer 

variables from within an allowed set. 

Optimisation problems usually involve three constituents; An objective function 

which is desired either to be minimized or maximized, a set of unknowns or 

variables that affect the value of the objective function and a set of constraints 

that let the unknowns to take on certain values but excludes others. The solution 

of the problem is to find the values of the variables that minimize or maximize 

the objective function while satisfying the constraints (NEOS Guide, 1996). As 

shown in Figure 3.2 optimisation is divided in various subfields. 

Figure 3.2: Optimisation Tree (NEOS Guide, 1996) 
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The suitability of an optimisation method is determined by both the algorithm 

and the model size. The chosen optimisation method for the present problem is 

described and justified in Chapter 4. 

3.5 Optimisation Software 

Thanks to the advances in computing of the past decade, there is no shortage of 

software available for solving optimisation problems. Modern optimisation 

software is divided in two packages: the algorithmic codes and the modelling 

systems. Algorithmic codes are designed to find optimum solutions to particular 

programs. A code is formed in such a way so as to take as input a compact listing 

of the constraint coefficients and to return as output a similarly compact listing of 

optimal solution values and related information. Algorithmic codes can either be 

free or commercial products. Large-scale codes depend on general-structure 

sparse matrix techniques and several other sophistications through years of 

experience that makes them fast and reliable but simultaneously expensive. On 

the other hand, free codes may be an economic option but are usually less robust 
(Optimisation Technology Centre, 2005). 

Modelling systems assist in formulating optimisation problems and evaluating 

their solutions. Generic algorithms are already provided in modelling systems. For 

this reason, the input and output of modelling systems are in a comprehensive 

and convenient form. The majority of modelling systems support several 

algorithmic codes, while only the most popular codes can be used with many 
different modelling systems. Modelling systems are commercial products and 

reasonably expensive and can vary greatly in design and capabilities (Optimisation 

Technology Center, 2005). From the different software tools that have been 

developed for optimisation problems, the selected software along with the 

reasons for this choice are described in Chapter 4. 

3.6 Modelling 

Having decided the suitable approach for dealing with the problem in terms of 

the modelling technique and software the next step is the actual modelling 

process. This process begins with formation of the mathematical model. It 
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involves the transition of the problem from a conceptual idea into a complete 

mathematical model with equations for decision rules and behavioural 

relationships, parameters and constraints. This is achieved by aggregating all the 

necessary variables and parameters and finding all the possible fuel chain options. 

By completing this step, the general form of the equations of the model is 

obtained, namely the objective function and the constraints to which it is subject 

to. Formulating the model is itself a very useful source of insight, as it assists in 

recognising vague concepts that might remain unnoticed throughout the 

conceptual phase. 

The next stage involves the construction of the abstract model. This principally 

means the formation of the superstructure, which is the basis of the model. The 

superstructure has to be built in such a way so as to be able to support all the 

possible fuel chain options. For this reason, the most complicated fuel chain 

option is used in order to form the superstructure. The superstructure serves in 

accomplishing two objects. Firstly, it minimizes the required code and thus saves 

time. Secondly, and most importantly, it gives to the model the possibility of 

being generic. The advantage of generality is valuable as it offers the ability not 

only to be expanded but also to support numerous different scenarios. This 

broadens the applicability and use of the model making it suitable not only for 

London but for geographic locations with different characteristics. This leads to 

the effectuation of a general framework that may be used to solve relevant 

problems for different urban centres, which is the central objective of this study. 

After formulating the superstructure, the abstract model has to be transferred into 

the selected optimisation software. This transfer has to be done in such a way so 

as with the minimum possible number of substitutions the superstructure to be 

able to take the form of any fuel chain. Every feasible fuel chain is crucial to be 

able to be described by the superstructure. At this stage, the construction of a 

"clever" way is necessary in order to feed into the selected software the structural 

details of the system such as the different types of renewable energy sources for 

the primary energy feedstock stage. 
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3.7 Data Collection 

The collection of the information and data that feed into the model has been 

achieved mainly by means of literature and commercial information review. This 

collection was essential to be frequently updated because in the course of three 

years many changes may be occurred. This was particular true in the case of 

relatively new technologies that constantly change characteristics and costs. 

Considering the theme of this problem, revised data. were imperative as the 

majority of the technologies are relatively or completely new. With respect to 

obtaining data, the collection of data concerning the economics of the 

technologies was quite difficult. This difficulty was mainly to due the reluctance of 

the companies and organizations to reveal the costs of their technologies. The 

complexity of this problem was reinforced by the existence of certain 

technologies that are quite novel and their cost data were unobtainable. To deal 

with this problem at certain points ranges of values were used as input variables. 

3.8 Testing 

In order to check the consistent behaviour, the credibility and the robustness of 

the model, testing is necessary. Testing is a critical tool to discover whether they 

are any flaws in the model and set the stage for improved understanding. There 

are two kinds of testing applied in this case; one for the model building process 

and the other for the obtained results. Chapter 5 describes in detail the testing 

process that was used to check the model. 

3.9 Graphical User Interface 

The hydrogen infrastructure model has been developed with emphasis on its 

ability to be applied to any urban centre. Hence, the import of input data and the 

export of output data were created in such a way so as to be used and understood 

by any user and not just the developer of the model. For this reason, the creation 

of a graphical user interface (GUI) is necessary. The GUI is the mode of 

interaction between the user and the model. The setting of the parameters of the 

model and the presentation of the results are implemented in GUI. The explicit 
description of the construction and use of the GUI is presented in Chapter 4. 
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3.10 Sensitivity Analysis 

In some situations the values of the model data are not known with absolute 

certainty. In order to deal with the uncertainties in the input data, which is 

translated into uncertainties in the output of the model, the analysis known as 

sensitivity analysis of the effects of data changes on the optimal solution is 

necessary. Sensitivity analysis offers the benefits of measuring the impact on the 

model outcomes of changing parameters about which there is uncertainty. Such 

an analysis is carried out after the complete construction of the model and can be 

divided into parametric and structural sensitivity. The former deals with changes 

in the parameters of the system and will be carried out systematically for all input 

parameters. The latter involves several different structural options for the 

construction of the model. This type of analysis has been performed qualitatively 

during the stage of the model design. The model has been built in such a way to 

allow the variation of parameters and the comparison of the costs of hydrogen 

and capital investment required for each fuel chain option. Therefore, the results 

would be able to show the effect of uncertainty in projecting future components 

costs on future hydrogen costs. The uncertainties in projected costs of many 

hydrogen technologies may well be significant considering their early stage of 

development and commercialisation. Moreover, the results would demonstrate 

which of the component costs have the greatest effect on the economics of 

hydrogen. 

3.11 Policy Considerations 

The development of a fuel infrastructure is a complex and large capital investment 

venture. In the case of hydrogen this venture becomes more difficult as the few 

private benefits of hydrogen fuel make its widespread use almost impossible 

without drastically different market conditions and new policies. 

The creation of an infrastructure for a new transport fuel is bedevilled by a classic 

`chicken and egg' problem. On one hand, vehicle manufacturers are reluctant to 

invest in hydrogen vehicle production facilities unless there are adequate refuelling 

stations. On the other hand, fuel supply companies are unwilling to invest in a 

completely new fuel infrastructure unless there are a sufficient number of vehicles 

99 



Methodology 

on the road for utilizing it. Government intervention would play a catalytic role in 

assisting in resolving this problem. This intervention should include co-ordinating 

policies to simultaneously stimulate the hydrogen vehicle market and develop a 

hydrogen infrastructure. 

The hydrogen infrastructure model is used in the case of London examining the 

least cost renewable hydrogen infrastructure development plan. The results of this 

simulation form the basis for a policy discussion mainly focusing on how the 

Government may assist the introduction of hydrogen fuel and what are the key 

barriers to the establishment of a hydrogen infrastructure. Moreover, the policy 

discussion includes the suggestion of policy options that may influence and 

promote the uptake of hydrogen fuel making a renewable hydrogen infrastructure 

a more attractive and thus viable option. 

3.12 Conclusions 

This Chapter described the methodology that has been selected in order to solve 

the problem of the renewable hydrogen infrastructure development. All the stages 

that constitute the chosen approach are described and explained in detail in the 

subsequent Chapters. 

The next Chapter presents the first stage of the methodology, the literature 

review. It establishes the necessary background with the purpose of developing an 

understanding of the issues pertinent to hydrogen infrastructure development. 
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4.1 Introduction 

This Chapter describes the development of an algorithm to address specifically 

the options for supplying renewable hydrogen to urban centres. The structure of 

the algorithm is fully explained and the definition, usefulness and formation of 

every step of the algorithm are explicitly described. The first part of the Chapter 

presents the scope of the model and the tools that have been selected to create 

the algorithm along with the justification of their suitability. The Chapter 

continues by adding further detail to the features, inputs and outputs of the 

model. The equations and assumptions that lie behind the conceptual model are 

explained. As an understanding of the maths should not be essential for the user 

of a policy modelling tool, an understanding of the choices and assumptions made 

in the model design is fundamental for the appreciation of the results1 . 

'The developed model has been written and presented as a paper, entitled: Modelling the design of a renewable 
hydrogen fuel infrastructure for urban centres. The paper was presented at the European Modelling Symposium 
(Parissis, 2006) describing the new modelling tool mainly focusing on the original and valuable contribution it 
may provide to the field of simulation while also showing its usefulness to the infrastructure development 
subject. 
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4.2 Scope of the Model 

The question aimed to be explored within the modelling context is which is the 

most economical way of developing a renewable hydrogen infrastructure in order 

to substitute a certain percentage of automotive fuel by hydrogen. As it has been 

concluded from the review of other hydrogen infrastructure development 

modelling works, there is not a single answer to the infrastructure development 

question. The best way to build up a new fuel infrastructure varies considerably 

from country to country due to different national constraints and strategies. These 

factors determine to a great extent the modelling approach. 

Apart from these factors, another factor that affects the modelling approach is the 

extent of in-depth analysis they desired to carry out. The design of a fuel 

infrastructure is a difficult and complicated venture that includes a lot of 

uncertainties and several parameters that need to be taken into account. A model 

is by definition a simplification of a possible reality. Thus, the more parameters a 

modelling study includes the more valuable results may achieve, as the model may 

be considered closer to reality. However, it is almost impossible for a model to 

incorporate all the parameters that may be included in the development of an 

infrastructure in reality, some studies include more parameters than others or 
focus on different parameters than others. 

The model of this study tries to address the infrastructure development problem 

by evaluating various hydrogen supply pathways in terms of both economic and 

technical criteria while allowing the timing of the investment to account for 

changes in the market conditions, in order to identify the least-cost renewable 

hydrogen infrastructure development plan. To produce this plan, the model 

establishes and investigates a number of operational, spatial and temporal 

decisions that include: 

➢ the required renewable energy resources; 
➢ the location and number of all the necessary facilities (renewable energy 

sources and hydrogen production plants); 

➢ the most suitable technologies for all the stages of the fuel chains; 

➢ the expansion and/or "shut down" of the fuel chains; 
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> the switch from one fuel chain to another; 

> the growth of the infrastructure over time in order to meet increasing 

levels of demand; 

> the overall cost for the least-cost plan. 

These decisions are taken considering the cost as the decisive factor and thus lead 

to the creation of a cost-optimal hydrogen supply network scenario. The model 

that supports the design of a renewable hydrogen delivery system is developed 

with particular attention to three points. Firstly, its originality both in terms of the 

design and the way it addresses the infrastructure development issue. This 

attribute is described and explained in detail in the subsequent sections. Secondly, 

its generality as it provides a general tool with applicability to a wide range of 

different geographical areas that is not based on a fixed structure of inputs but the 

structure can be tailored to suit the conditions and the data available in each area. 

Thirdly, its potential to include a large number of parameters depending on how 

much in-depth a simulation is desired. 

4.3 Structure of the Algorithm 

It is important at this point to clarify the sense of two words that are greatly used 

throughout this thesis in order to avoid any misunderstanding. These words are 

the algorithm and the model. The former is used to describe the whole procedure 

that has been followed in order to answer the research question, that is which is 

the least cost way to develop an infrastructure in order to supply hydrogen fuel to 

urban centres. The latter is the mathematical model, which includes the equations, 

and is implemented in the software that has been created in MATLAB. So, the 

one is the procedure and the other the equations. The model is part of the 

algorithm. This can be seen in Figure 4.1. Figure 4.1 illustrates the algorithm that 

has been developed in this study to address the infrastructure development issue. 
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Figure 4.1: Algorithm addressing infrastructure development problem 

As it can be witnessed from Figure 4.1 the problem has been treated as a two-

stage linear programming problem. In multi-stage linear programming a problem 

is broken into subproblems that each one is solved in sequence and thus the 

results of each subproblem are used for the subsequent one. The two-stage linear 

104 



Model Development 

programming problem of this study includes the geographical optimisation stage 

and the fuel chain optimisation stage. The combination of these stages constitutes 

the infrastructure optimisation algorithm. 

The geographical optimisation stage, which is firstly executed, includes the map 

segmentation and the resource optimisation. The former as its name denotes is 

the step in which the map of the region under study is divided into areas. This 

division is not abstract; it is based on the renewable resource potential of the 

region, for example in the case of wind energy it is based on the wind speed of 

every point of the region, and it separates the region into a number of equal (in 

terms of renewable resource potential) parts. This segmentation method of 

dividing the region into areas that have the same renewable resource potential has 

the advantage of creating areas of equal renewable energy exploitation capabilities. 

The next step is the resource optimisation. The aim of this step is to determine 

the optimal sites that may be used for the establishment of renewable energy 

plants. As the region is segmented in a number of areas, every area has a set of 

values, for instance in the case of wind energy every area has a range of wind 

speed values and thus has good and bad possible wind energy sites. Naturally, if 

the region is segmented into numerous areas and thus every area is very small the 
area will have only one value. For all other cases, the best value is determined, the 

site with the higher wind speed in the wind energy example. In case one area has 

the same value in more than one points the optimal site is determined by another 

factor that is the proximity of the site to the demand centre. The site closer to the 

market prevails over the others. 

The second stage comprises the mathematical model, the structure of the 

software that implements the model and the GUI. These steps are described in 

detail in subsequent sections. This stage aims to determine the optimal delivery 

pathways. Thus, as the first stage determines the optimal starting points of the 

fuel chain, that is the primary energy feedstock production, and the second stage 

determines the optimal pathways their marriage produces the optimal 

infrastructure development plan. 
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This two-stage linear programming problem has been implemented both in an 

online and dynamic fashion. Online algorithms are algorithms that treat a problem 

as a sequence of static problems. They are basically myopic models that do not 

take into account any anticipation for the future. In the myopic approach the 

objective function used for the optimisation is sequentially carried out on a year-

by-year basis for the whole region each year. Thus, the problem is divided into 

static subproblems and considering a linear representation the subproblems are 
solved for the whole time horizon. 

The first stage of the problem is static by choice without this choice restricting its 

results as the geographical optimisation does not require a dynamic approach. The 

second stage is static for every subproblem and thus does not include a dynamic 

programming model. However, the model is a time-variant model or a dynamic 

model or even better a linear programming model with dynamic elements. 

4.4 Selection of Tools 

4.4.1 Selection of Optimisation Method 

The need for a model to investigate the integration of hydrogen into energy 

systems has been identified from a critical review of the previous modelling 

works. The specification of the model of this study ensued in part from the 

results of this review. The modelling approach is selected firstly because a 

computer model can simulate an abstract model of a particular system and gain 

insight into the operation of this system and secondly for some problems, such as 

the design of a new fuel infrastructure, the only way of obtaining possible 

solutions is by designing a program to imitate a system. Usually, the modelling of 

a system includes a mathematical model that aims to find solutions to the 

problem and thus enables the prediction of the behaviour of the system from a 

set of parameters and initial conditions. Computer simulations build on and are a 

valuable addition to purely mathematical models. 

Up to now, there have been limited mathematical models that describe and 

integrate all the components of a hydrogen infrastructure within a single 

framework. Moreover, a generalised framework to infrastructure modelling 
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applicable to different situations has been hardly investigated. In this study, the 

issue of the infrastructure development has been addressed by using a 

mathematical model formulated as a linear programming problem. The reason for 

choosing linear programming is manifold. The justification of this selection is 

presented by describing the advantages of this method, its suitability and its 
prevalence over alternative methods. 

LP is greatly used in logistics, transportation, finance, management and many 

other applications. It is the most used program in many areas, despite it has a 

number of arguments against, something that is true for every method, there are 

some solid reasons which lead to select this solving method owing to the 

complexity of the problems that can be handled. As it can be witnessed from the 

review, the overwhelming majority of studies modelling hydrogen pathways have 

used LP. It is not coincidence that dynamic models and programming have not 

been applied to study the creation of fuel delivery systems. 

A sole exception (Lin et al, 2006) that has applied dynamic programming is a 

study that has developed a dynamic programming model to understand the 

dynamics of hydrogen infrastructure transitions. Generally, the word "dynamic" is 

somehow misunderstood or misused. Some studies use it in order to describe a 

model that incorporates the time factor, where in this case the correct term is 

time-variant and not dynamic and others to express the behaviour of the system 

over time, where in these cases the models are indeed dynamic. Realistically, a 

dynamic model by definition could not be used in the case of a fuel infrastructure 

design problem, as it is unknown in the future what will happen but only 

scenarios can be made. So, the Lin et al (2006) study has not developed a dynamic 

model but a mathematical model by means of dynamic programming. 

Dynamic programming is method of solving problems exhibiting the properties 

of overlapping subproblems and optimal substructure. The former breaks down 

the problem into subproblems that are reused several times and the latter means 

that optimal solutions of subproblems can be used to find the optimal solutions 

to the overall problem (Powell and van Roy, 2004). The Lin et al (2006) study 

uses dynamic programming to solve the problem by breaking it into stages and 

finding the best solution to the stages one after another. However, this is 
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applicable in this study where the problem is not a large scale problem. Solving a 

large scale problem with numerous parameters makes the problem a lot more 

complicated and increasing its complication to a great extent may make its 

solution extremely difficult if possible. Thus, considering the size of the problem 

of this study, which does not examine individual hydrogen pathways or part of 

the infrastructure development but includes the design of a whole supply network 

and thus is a large scale problem with several parameters this method has not 

been considered the appropriate approach. 

LP has been considered the most suited approach due to its generality, flexibility 
and ability to handle large scale complex problems with thousands of variables 

and constraints. LP models are flexible enough to adequately describe any realistic 

problems of modern industry and make use of the significant expertise on 

computational linear algebra that has been developed during the last few years. 

The wide applicability of LP in conjunction with the existence of good general-

purpose techniques for finding optimal solutions make LP an important tool of 

Mathematical Programming (Optimisation Technology Centre, 2005). Moreover, 

LP analysis can assist both in determining whether the solution of the 

infrastructure development problem is feasible and in unbounded cases where the 

value of the solution is infinitely large, without violating any of the constraints, 

warning that the problem is improperly formulated. Another advantage of LP is 

that allows to check easily how the results vary when the values of the parameters 

are changed. This is the sensitivity analysis that determines how changes affect the 

optimal solution to the original LP problem. 

Although LP is considered the optimal approach aiming to further improve the 

quality of the results and to be distinguished from all other LP models studying 

the infrastructure development problem, the model has been reinforced with the 

inclusion of dynamic programming elements. Specifically, the model has the 

originality that although is a LP model includes the characteristics of dynamic 

programming, such as the memoization and recursion. Memoization is an 

optimisation method used mainly to accelerate computer programs by storing the 

results of function calls for later reuse, rather than recomputing them at each 

invocation of the function. A recursive algorithm is one that calls itself repeatedly 

until a certain condition matches. It is a common method to functional 
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programming (Andersen and Andersen, 1995; Nash and Sofer, 1996; Chvatal, 

1983). Recursion and memoization were combined together to form the top-

down approach that was implemented. The top-down approach is one of the two 

approaches DP takes and it breaks down the problem into subproblems, the 

solutions of these are remembered in case they need to be solved again. The other 

DP approach is the bottom-up, where all subproblems that might be needed are 

solved in advance and then used to build up solutions to larger problems. This 

approach is sometimes not intuitive to figure out all the subproblems needed for 

solving the given problem (Rein, 2000; Stuart, 1977). Section 4.11 describes 

explicitly the top-down approach. 

In some applications, the solution of an LP optimisation problem makes sense 

only if certain of the unknowns are integers. The problem of this study is one of 

these applications. Integer LP models are ones whose variables are constrained to 

take integer or whole number values. In this problem some variables are restricted 

to be integers and some are not and thus make the problem a mixed integer linear 

programming (MILP) problem. MILP models have the advantage of being more 

realistic than LP models. However, they have the disadvantage of being much 

harder to solve. As in MILP the variables can take the values 0 or 1, a MILP 

model may well support logical operations, such as decisions on the expansion or 

shut-down of production facilities. Because of this feature of MILP, the model is 

able to combine the different options. This combination is an essential ingredient 

for the building up of the infrastructure. In modelling the planning and designing 

of an infrastructure a number of fixed costs at certain stages of the process have 

to be taken into account. MILP can support the inclusion of start up or fixed 

costs, making this another reason that justifies MILP as the preferred method to 

deal with the present problem. Lastly, the application of MILP incorporates 

dynamic systems and thus can be used in this problem which is of dynamic 

behaviour. 

MILP problems have the general form (Nemhauser and Laurence, 1988): 

Minimize cx + dy 

Subject to Ax + By ? b 
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L<x<U 
= {0, 1, 2, ...} 

where cx + dy is the objective function; 

x is a vector of variables that are continuous real numbers; 

y is a vector in variables that can only take integer values; 

Ax+By?b represents the set of constraints; 

L is a vector of lower bounds on the continuous variables; 

U is a vector of upper bounds on the continuous variables; and 

y= {0, 1, 2,...} is the integrality requirement on the integer variables y. 

Concluding the section of the selection of the optimisation technique it is 

worthwhile to mention a rational question that may have been raised, that is why 

linear and not nonlinear programming (NLP). NLP is the process of solving a 

system of equalities and inequalities over a set of unknown real variables along 

with an objective function to maximized or minimized. So, the majority of NLP 

problems have the same structure with LP with the only difference being that in 

NLP some of the constraints or the objective function is nonlinear. 

It is well-known that NLP is a difficult field with very complex mathematics and 

for this reason researchers have identified special cases for study. One of these 

cases is LP. Generally, the attractiveness of LP over NLP emanates from its direct 

applicability to many problems, the availability of good, general-purpose 

algorithms and the fact that in various real-world situations the inexactness in the 

model or the data means that the use of a more sophisticated nonlinear model is 

not warranted. Moreover, linear programs do not have multiple local minima, as it 

is sometimes the case with nonlinear problems, which means that any local 

solution of a linear program also achieves the global minimum of the objective 

function over the whole feasible region (Andersen and Andersen, 1995; Nash and 

Sofer, 1996; Chvatal, 1983). 

However, the use of a nonlinear model may be essential in some applications, 

when a linear or quadratic model may be too simplistic and therefore produce 

useless results. Nevertheless, even in these cases the use of nonlinear models 

entails certain problems, such as the fact that most algorithms cannot guarantee 

110 



Model Development 

convergence to the global minima that is the value of x that minimizes the 
objective function over the entire feasible region. This problem is very difficult to 

be solved and although there are a number of algorithmic approaches for global 

minimization available, because their implementation strongly exploits the special 

properties of the main application, there is a fair chance that they will generate 

useful results in a reasonable amount of computing time. Another disadvantage of 

NLP over LP is that general software is to some extent less efficient because the 

nonlinear models include a variety of problems with a considerable number of 

potential pathologies and eccentricities (Byrd et al., 1996; Bertsekas, 1995). 

Conclusively, it could be deduced that it is not recommended to use NLP in cases 

where useful and meaningful results may be obtained by using LP models. Apart 

from the cases where there is a strong non-linearity in a problem, LP may 

produce valuable results. For this reason, the model of this study is sensibly 

treated as a LP problem as it is slightly non-linear. The degree of non-linearity of 

the current problem stems from the fact that all the equations that describe the 

problem appear large linear coefficients and small non-linear coefficients. Thus, 

there is a trade off between the ability to include non-linear behaviours and to 

support large-scale problems. For the former NLP is the preferred method and 

for the latter LP. In this problem as the non-linearity is small, more attributes are 

sacrificed if NLP is selected. Thus, in order to build a model aiming to address the 

issue of the infrastructure development in the aforementioned way LP is a good 

method of producing valuable results sacrificing the least-desired attributes. 

Of course, every approach has its benefits and its drawbacks and the intention of 

this study is to select an approach that suits the problem best providing valuable 

results and being original. 

4.4.2 Selection of Optimisation Software 

Optimisation technology is traditionally made available to users by means of 

codes or packages for specific classes of problems. Nowadays, modelling 

languages have become an appealing way to interface to packages, as they allow 

the user to define the model and data in a way that makes intuitive sense in terms 

of the application problem. For general optimisation problems, various high-level 
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modelling languages have become available that allow problems to be specified in 

intuitive terms, using data structures, naming schemes, and algebraic relational 

expressions that are dictated by the application and model rather than by the 

input requirements of the optimisation code. 

A useful source of information for LP software is the Optimisation Software 

Guide by Jorge More and Stephen Wright. This Guide includes references to 

around 75 software packages for LP and other programming methods 

(Optimisation Technology Center, 2005). An additional valuable source of 

software packages is the Linear Programming Software Survey compiled by 

OR/MS Today. This survey contains feature summaries and contact information. 

Moreover, the OR/MS Today website has the largest selection of advertisements 

for optimisation software (OR/MS, 2005). Moreover, the NEOS guide (NEOS 

guide, 1996) contains basic information on modelling and algorithmic issues, 

information for most of the available codes in the two areas, and pointers to texts 

for readers who need background information. 

One of the most widely used software for solving MILP problems is the General 

Algebraic Modelling System (GAMS). GAMS is a modelling system for 

mathematical programming and optimisation. It is designed for complex, large-

scale modelling applications and provides stable integrated high-performance 

solvers. GAMS supports various model types with a wide range of solvers for 

each one. For MILP there are around 11 kinds of suitable solvers such as CPLEX 

9.1, BARON 7.4, COIN, MOSEK 3.2, XPRESS 15.30 among others (GAMS, 
2005). 

From the different software tools that have been developed for MILP, MATLAB 

is the software that was chosen for solving the MILP model of this study. The 

reasons for this choice are manifold. MATLAB is a high-performance language 

for technical computing that has been undergone numerous refinements through 

years of experience. In academic environments, it is the standard instructional tool 

for mathematics, engineering and science. In industry, it is the preferred tool for 

high-productivity research, development and analysis. Its burgeoning evolution in 

conjunction with its powerful features make it a widely used language. Its 

application extends to several areas, such as (Mathworks, 2005): 
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➢ Algorithm development; 

➢ Math and computation; 

➢ Data acquisition; 

➢ Modelling, simulation and prototyping; 

➢ Data analysis, exploration and visualization; 

➢ Scientific and engineering graphics; 

➢ Application development, including graphical user interface building. 

Its attractiveness as a modelling language, which leads to its widespread use, 

reinforces the applicability and usefulness of the model of this project. A model 

based on such a language may well be comprehended and thus utilized by other 

users. Hence, it would serve as a valuable reference point or as a starting point for 

future users that may desire to add in some features and expand it. In other 

words, MATLAB enhances the value of this model over time. 

A valuable advantage of MATLAB is that is a fast language. This characterisation 

is referred to two of its features. Firstly, modelling in MATLAB allows for the 

completion of the problem in a relatively short period of time and secondly can 

quickly provide the results after running the code. The former is based on the fact 

that MATLAB is an interactive system whose basic data element is an array that 

does not require dimensioning. This allows to solve several technical computing 

problems, in particular those with matrix and vector formulations, in a fraction of 

the time it would take to write a program in a scalar non-interactive language such 

as C or Fortran (Mathworks, 2005). In comparison with GAMS, MATLAB is 

more attractive as its capabilities for data manipulation and visualization are 

better. MATLAB offers a wide variety of plots and imaging capabilities that could 

be used to view the optimisation results. 

Another important attribute of MATLAB is the easiness of its use. As a high-level 

language it integrates computation, visualization and programming in an easy-to-

use environment where problems and solutions are expressed in familiar 

mathematical notation. MATLAB has also the great advantage of displaying the 

results in a very comprehensive, compact and aesthetically beautiful way. 

Moreover, this choice has been made with the purpose of providing an original 

contribution. It is believed that no MILP models using MATLAB have been 
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developed so far for the problem of the development of a hydrogen 

infrastructure. Thus, the selected approach reinforces the originality of this 

project. 

MATLAB includes a family of add-on application-specific solutions called 

toolboxes. Toolboxes are comprehensive collections of MATLAB functions that 

expand the MATLAB environment to solve specific classes of problems. They are 

available for a number of areas such as signal processing, control systems, neural 

networks, fuzzy logic, simulations and many others. Toolboxes are very valuable 

as they allow learning and applying specialized technology. The toolbox of 

MATLAB that is used in this model is the Optimisation Toolbox. This toolbox 

includes routines for several types of optimisation like (Mathworks, 2005): 

➢ Unconstrained nonlinear minimization; 

➢ Constrained nonlinear minimization, including goal attainment problems, 

minimax problems, and semi-infinite minimization problems; 

➢ Quadratic and linear programming; 

➢ Nonlinear least squares and curve-fitting; 

➢ Nonlinear system of equation solving; 

➢ Constrained linear least squares; 

➢ Sparse and structured large-scale minimization; 

➢ Binary integer programming. 

It can be witnessed from the list above that the Optimisation Toolbox does not 

directly support MILP problems. For this reason, the model is solved using the 

linprog function, which is used to solve LP problems, that has been modified 

appropriately in order to satisfy the constraints of the MILP problem of the study. 

The MATLAB system consists of five main components: 

➢ the development environment; 

➢ the MATLAB mathematical function library; 

➢ the MATLAB language; 

➢ the graphics; 

➢ the MATLAB application program interface (API). 

114 



Model Development 

The development environment is the set of tools and facilities, with which the 

MATLAB functions and files can be used. It contains the MATLAB desktop, the 

command window, the command history, an editor and debugger and browsers 

for help, files, workspace and the search path. The MATLAB mathematical 

function library is a collection of computational algorithms containing from 

elementary functions, like sum, sine, complex arithmetic, to more sophisticated 

functions, like matrix inverse, matrix eigenvalues, fast Fourier transforms. The 

MATLAB language is a high-level matrix/array language with control flow 

statements, functions, data structures, input/output and object-oriented 

programming features. MATLAB has a wide range of facilities for displaying 

vectors and matrixes as graphs. It contains high-level functions for two- and 

three-dimensional data visualization, image processing, animation and 

presentation graphics. Moreover, it allows to customize the appearance of 

graphics and to build graphical user interface on MATLAB applications. The 

MATLAB application program interface is a library that enables programs written 

in C and Fortran language to interact with MATLAB (Mathworks, 2005). 

4.4.3 Selection of Image Processing 

One of the attributes of this model that greatly distinguished it from all other 

infrastructure development models is its capability of performing resource 

optimisation. Resource optimisation is implemented based on maps that show the 

resource potential of every renewable energy source of the desired region under 

study. Moreover, the model includes what the majority of other models exclude, 

that is a geographical representation of a hydrogen infrastructure, such as the 

location of demand centres, production plants and transport distances, modes and 

costs. In order to take these "real world" costs into account, the model needs to 

consider the topological characteristics of the examined region. These kinds of 

data were selected to enter into the model through maps. 

The reasons for choosing to import a number of data in the model in the form of 
maps are the following: 
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➢ Simplicity and time-efficiency. It is less time-consuming to import data in 

the form of maps, where is possible, than in any other way. This can be 

realized considering for example the import of data regarding the 

renewable energy resource of a country, such as the wind energy 

resource. It is substantially more efficient to enter a map showing all the 

wind speeds in every region of this country than to enter manually all the 

data. Considering that the model can run a simulation with all kinds of 

renewable energy resources makes the importance of employing an 

efficient way of entering the day quite important. Moreover, there are 

other types of data that are imported in the model as maps, such as the 
geophysical map of the region under study and maps relative to the 

transportation stage of the hydrogen supply chain. The latter map 

category includes the data for simulations that desire to include the road, 

rail, electrical grid or pipeline network of a region or any other form of 

fuel transport; 

> Extension. The model can easily be extended to include more data. The 

easiness of the extension is referring to the work that needs to be done in 

order the model to include more data. In this model, this work is trivial as 

it only involves the addition of more maps and not any change in the 

mathematical model. The mathematical equations and the data are 

independent and so changes, additions or removals, in data do not mean 

changes in the mathematical model. This feature is very important as it 

reinforces the model's ability to support any kind of simulation and thus 

provides results for any type of hydrogen infrastructure desired to be 

planned in any region; 
> Originality. This is an important feature that when is aspired with the 

intention to produce valuable and not just original results usually leads to 

constructive products. The idea of importing maps into the model has 

not been used in any other hydrogen infrastructure development model; 

> Proof of concept. As this approach is original but promising it has been 

considered worthwhile to examine whether is feasible and thus make this 

model the proof of the practicability and merits of this concept; 

➢ Compact method. This method is very compact as it includes a lot of data 
in a simple figure. 
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In order to enter the maps into the model they need to undergo a certain process. 

This process is necessary because firstly the model has to be able to "read" the 

data on the maps and secondly all the maps have to be the same dimensions. This 

process is described in detail in Section 4.7. The image processing was carried out 

using the GIMP software. GIMP is the GNU Image Manipulation Program that 

can be used for photo retouching, image composition and image authoring 

(GIMP, 2005). GIMP along with Photoshop are the two most popular image 

editors. The capabilities of both of them satisfy the requirements of the present 

study. Photoshop is usually preferred in commercial arts, which is not the case in 

this study. GIMP is a free software replacement for Photoshop and can be 

installed, shared, or redistributed on any number of computer systems with zero 

licensing costs. Actually, this study includes the use of GIMP Portable that is a 

repackaged version of GIMP for Windows, which can be run directly from 

electronic media without installation. The word "portable" is used because this 

version is intended to be carried on portable storage devices such as USB flash 

drive or digital audio player (GIMP, 2005). 

4.4.4 Selection of Graphical User Interface 

Presenting the results as they returned from MATLAB is unlikely to be 

understood other than being the developer of the model. For this reason, the 

creation of a graphical user interface (GUI) is necessary. Moreover, as this model 

provides a general model-tool that can be applied everywhere without the need to 

alter the code, the GUI makes the use of the model possible even by people that 

do not acquire the knowledge of programming. There are various packages of 

software that offer the possibility of creating GUIs, such as the Qt software that 

is a program development environment in the C++ language. The software that 

has been selected is MATLAB. The reason for this choice was to avoid possible 

interconnectivity problem arising from developing the model and the GUI in 

different software. Apart from presenting the results, the GUI is used to enter the 

data into the model. Thus, the GUI is used in the beginning when the user 

imports the data of the desired simulation and at the end when the model passes 

the results to it. That is the reason why the interconnectivity issue is of great 

importance and MATLAB has been preferred over Qt software. 
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The GUI was produced by using GUIDE, which is the MATLAB graphical user 

interface development environment. GUIDE provides a set of tools that simplify 

the procedure of designing and building GUIs. It offers the possibility to lay out a 

GUI by using the GUIDE Layout Editor and selecting the appropriate 

components like panels, button, text fields, menus and so on into the layout area 

and program a GUI by automatically producing an M-file that controls how the 

GUI operates. The M-file activates the GUI and encloses a framework for the 

complete GUI commands (Mathworks, 2005). 

For this study, a GUI has been created that sets the parameters of the model, run 

the simulation and presents the results in the form of a map demonstrating the 

optimal, according to the model, infrastructure development plan. A thorough 
description of the GUI is presented in Section 4.12. 

4.4.5 Selection of Data Transfer Method 

When the data are entered into the GUI it is necessary to pass them to the model. 

The chosen way to pass the details to the model is through an XML file. XML, 

which stands for Extensible Markup Language, is a markup language that was 

designed to describe data and to concentrate on what data are. In other words, it 

can structure, store and send information. A markup language is a mechanism to 

identify structures in a document. The XML technology has a wide range of uses, 

such as exchanging data between incompatible systems or using plain text files for 

sharing data, or creating new languages like WAP and WIVLL. It is a relatively new 

tool that has been rapidly developed and quickly adopted by a large and constantly 

growing number of software vendors in the last years. It is considered that 

possibly will be as significant to the future of the Internet as important HTML 

has been to the establishment of the Internet and is anticipated to be the most 

common tool for all data manipulation and transmission (XML, 2005). 

The reason for choosing the XML technology is the attributes it offers. The XML 

is (XML, 2005): 

Platform independent. It is recognized in any software, such as Windows, 

LINUX, Solaris; 
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➢ Free technology. It can be used without licence or restrictions; 

> Immune to changes in technology. This feature makes possible to create 

an XML file in certain software and use it in any version of this software; 
• Human and machine-readable simultaneously. This characteristic 

contributes to ease of parsing and error detection; 

> Able to support Unicode encoding. This ability allows the software to be 
used in any human language; 

> Suitable for hierarchical structural information. Structured information 

contains both content, like words and pictures, and some indication of 

what role that content plays. Typically, it can represent the most general 

computer science data structures that include records, lists and trees. 

In this study, the XML is used for storing and carrying and structuring data. 

When the data are entered into the GUI, an XML file is produced and it passes 

the data into the model. Moreover, when it is desired to run again the same 

simulation it is not necessary to enter again the data into the GUI because the 

XML file can store the specifications of every simulation. 

4.5 Features of the Model 

The renewable hydrogen infrastructure model may be considered as a generic 

framework for modelling numerous possible fuel chains for establishing a 
renewable hydrogen delivery system for different scenarios and geographical 

regions. The model is able to perform economic and resource optimisation and 

spatial and temporal distribution of the renewable resources and hydrogen 

facilities. It supports the design of a renewable hydrogen supply network by 

accommodating a number of specific features. The main features of the model 

involve: 

> A long-term timescale; 

> Multiple primary energy feedstock sources; 

> Various hydrogen production technologies, both mature and novel 

methods; 

➢ Possibility of choice between large-scale centralized production plants 

and on-site production; 
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➢ A variety of different distribution and storage technologies; 
➢ Economies of scale of production and distribution technologies; 

➢ Geographical site allocation; 

➢ Delivery of both liquid and gaseous hydrogen; 

➢ Transition from one pathway structure to another; 

➢ Evolution of the infrastructure over time, meeting increasing hydrogen 

demand; 

➢ Possibility of expansion in order to include more resources such as non-

renewable sources and technology options; 

➢ Making the least possible assumptions at all the stages of the modelling 

process allowing for a more realistic optimisation that leads to more 

valuable and credible results. 

One of the main characteristics of this modelling approach that distinguished it 

from all other relative modelling studies is that it constitutes an infrastructure 

pattern template and not an equation template. The term template is used to 

describe a generalised framework that can be used in several simulations without 

the need of modifications. More specifically, it does not provide a template of 

equations that are applicable to a limited set of simulations but a template that is 

restricted only in the structure of the fuel chain, namely the sequence of the 

stages in a fuel chain like the production or storage step. Therefore, there is no 

restriction in the geographical region under study, the distances, the renewable 

energy resources, the hydrogen technologies, the demand and any other 

parameter. This feature makes the model able to be applied not only in a number 

of different simulations but in any kind of simulation and thus be truly general. 

4.6 Inputs and Outputs of the Model 

The model is defined by its structure, its implementation and the parameters. The 

first and the second are described in the subsequent sections. The input 

parameters greatly affect the modelling results in two ways. Firstly, the calibration 

of the parameters determines how much realistic and valuable are the results. 

Unsurprisingly, the inputs of the model play a major role in the credibility of the 

outputs. Even if a model is perfectly developed inaccurate inputs most likely will 
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produce incorrect or meaningless results. The calibration is based on up-to-date 

and reliable references, judgement and statistical estimation. 

Secondly, the amount of input parameters determines how much detailed and 

close to reality is a simulation. This model is able to run simulations with 

different numbers of input parameters. According to the aim of every case study 

and the results that are desired to be achieved the inputs parameters and data 
may differ from simulation to simulation. For example, in the case of the 

transmission of electricity through the electrical grid network a simulation may 

include the cost of transmission in the already existing grid network and another 

simulation may include both the cost of transmission but also the cost of building 

new grid cables. 

Figure 4.2 shows the required inputs and the outputs that the modelling is able to 

produce. The top box represents the inputs that need to be fed into the model, 

the pyramid corresponds to the modelling method and the bottom box shows 

the outputs. The pyramid is like a black-box into which when the information is 

entered preprogrammed logic is utilized in order to return the outputs. A black-

box model contains formulas and calculations that the user does not see nor need 

to know to use the model. 
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Figure 4.2: Inputs and outputs of the model 

The inputs of the model include: 

➢ A geophysical map of the area under study, which could be a country or a 

city or any geographical area ; 

> The city distances (geographical coordinates) of the selected demand 

centres within the selected area. The demand centre, which could be one 

or many, constitutes the market that is the final stage of the fuel chain, 

that is the hydrogen supply destination; 

> The hydrogen fuel demand needed to power the desired number of fuel 

cell vehicles in the examined region. The model has the great advantage 
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of being able to run simulations with constant, linearly increased and 

non-linearly increased demand; 

> The renewable energy resource maps that illustrate the renewable 

resource potential of the selected region and they comprise the primary 

energy feedstock for the production of hydrogen; 

> The technologies that form the desired fuel chains under examination. 

These technologies include both hydrogen facilities and renewable energy 

plants, for example wind energy for electricity production, electrolysis for 

hydrogen production, compressor for conversion, compressed gas in a 

vessel for storage, rail for transportation and compressed gas in a vessel 
for on-site storage; 

> The values of all the parameters, for example the efficiency or the capital 
costs of the technologies; 

> The infrastructure development specifications. This refers to a number of 

options that are offered by the model relative to logistics factors, such as 

the timescale or the number of regions the area under study is segmented. 

Importing the required inputs and running the model produce the following 

outputs: 

> The optimum (least-cost) renewable hydrogen infrastructure 

development plan that mainly includes: 
- The renewable resource requirements for hydrogen production; 

- The production plant sizes, locations and lifetimes; 
- The production plant expansion or shut down and at which years; 
- All the chosen primary energy feedstocks and hydrogen 

technologies infrastructure components that comprise the optimum 

development scenario; 

> The overall cost of the optimal infrastructure development plan. 
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4.7 Map Segmentation 

Studying the design of a fuel infrastructure in any geographical region involves the 

discretisation of this region into smaller areas that are compared with each other 

and examined for their suitability of including parts of the infrastructure, such as a 

renewable energy plant or a hydrogen production facility. Usually, in other studies 

this discretisation is carried out by segmenting the region under study in a 

somehow abstract method, for example dividing the region into areas of the same 

dimensions. In this algorithm a region is segmented into areas that do not have 

the same dimensions but have the same renewable resource potential and thus the 

same renewable energy exploitation capabilities. This is very useful particularly in 

the case of the expansion of the infrastructure. 

This discretisation of the spatial domain is based on renewable energy resource 

potential data. These data are provided in the form of maps that show the 

renewable resource potential in the whole region under consideration. An 

example of such map can be seen in Figure 4.3. The example includes the 

resource potential of wind energy and Great Britain as the region under study. 
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at 25m above ground level [m/s] 
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Figure 4.3: Onshore wind energy resource in the UK (Source: ETSU, 1999a) 

In order to implement the discretisation the maps that constitute the input data 

for the segmentation need to undergo processing. The processing of the image 

data is necessary in order firstly to correct geometric distortions, secondly to 

eliminate unwanted areas and thirdly to normalise data from different images to 

physical units of reflectance rather than the arbitrary engineering units of the raw 

data and was carried out using the GIMP software. These reasons are obvious in 

the example in Figure 4.3. 
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Figure 4.3 is the onshore wind energy resource potential in Great Britain and 

shows the annual mean wind speed at 25m above ground level. Every colour of 

the map corresponds to a different wind speed. The range of wind speeds varies 

from less than 5m/s (dark green colour) to more than 10m/s (red colour). 

Naturally, the model does not "understand" the significance of these values and 

thus cannot distinguish between a good and a bad wind energy site. For this 

reason, it is necessary to normalize these values in order to be "comprehended" 

by the model. The normalization method converts these values into efficiencies 

from 0 to 1. The normalization was carried out for all input maps because apart 

from the fact that it is necessary the maps to be read by the model, all the maps 

should be in the same "units", which means that they should undergo the same 

normalization process and be the same size. Of course, as it was impossible to 

find all the required maps in the same size, without distortions and normalized 
they underwent processing. 

Within the GIMP environment a map is converted from a 24 bit RGB into 8 bit 

grey scale. In the 8 bit grey scale form the map includes only a number of colours 

from the range of 255 colours. The number of colours that every map involves 

depends on the map resolution, that is, the number of colours that indicate the 

values of the resource, for example in Figure 4.3 the map includes 7 colours that 

correspond to 7 wind speed values as it can be seen from the table in the figure. 

The colour of the lowest value is replaced with a dark grey colour and as the 

values increase the percentage of white of the colours increases. So, the map after 

processing has dark grey colour in the areas of the lowest value and light grey in 

the areas of the highest value. The values in between are replaced with shades of 

colours between dark and light grey. So, the map of Figure 4.3 becomes the map 
of Figure 4.4. 
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Figure 4.4: Onshore wind energy map in Great Britain after processing 

The map resolution also determines the normalization factor. The latter is used in 

order to transform all the values of a map into efficiencies between 0 and 1. This 

is done by multiplying this factor with the values of each map. As every map has 

different number of values the normalization factor is different among maps. The 

normalization factor for every map is given by: 

1 
Quantity of different resource values 

In the example of onshore wind energy the map has 7 wind speed values and thus 

the normalization factor is 0.14. Apart from the colours, Figure 4.4 differs from 

Figure 4.3 as the former shows only the resource of the selected region under 

study, which is Great Britain. All other areas have been eliminated. Moreover, the 
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black colour in the map of Figure 4.4 represents the sea, which was considered as an 
area of zero potential and thus was necessary to take a colour, like black, that is darker 
than dark grey, which is the colour of the lowest value. Like the example of wind 
energy, the same processing was carried out for all the maps that are used as input 
data. When all the maps were processed they were converted in the same size and 
inclination. 

Importing the processed maps into the model the region under consideration is 
segmented into R that is equal to: 

R= 2 	 RsEZ 

where R, is the map segments after map segmentation is performed and S are the 
map segmentation iterations. As S is defined by the user, the number of segmented 
regions (R) is also determined by the user. The dimensions of every region are given 
by the following real time calculated variables: 

is the lower boundary of width axis of segment / in map i, where 	1=1..Rs  
i=1..D p  
Rx  Z 

D, is the number of primary energy feedstocks. 

is the higher boundary of width axis of segment / in map i, where 	/ = 1..Rs  
i=1..D p  

R x EZ 

is the lower boundary of height axis of segment 1 in map i, where 	/ = 1..Rs  
i=1..D p  

R 	is the higher boundary of height axis of segment 1 in map i, where 	/ =1.. Rs 
i=1..D p  

R y  EZ 
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The aggregation of map data that are the resource potential values, like wind speed, 
of all the points in every segment for a map is given by the equation: 

E 	E 	D„, ,.=.y 
x= R=  y=R 

where / =1.. Rs  
i=1..D p 

FA Z 

Accumulating F A,.,  for all map segments gives the total number of map data in map i 
F A , , which is equal to: 

F A,  =E E Dm ,.=.y 
x=1 y=1 

where i= 1.. D p  
F A,  E Z 

In order to ensure that all segments / in map i have the same renewable resource 
potential F A  is equal to: 

F =F =F A" 	Au+, 	4IR s 

where / =1.. Rs -1 
i=1..D p  

The algorithm that implements the aforementioned equations is displayed in Figure 
4.5. The green box in the top left hand corner is the starting point of the algorithm. 
Next to this box there are two side parallelograms that represent the data. The left 
one is the input data and the right one the output data. The light grey arrows 
represent the data flow and the dark grey arrows show the procedure flow. 
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data = d 
iterations = I 

orientation = o 
wstart = ws 
wend = we 
hstart = hs 
hend = he 

map segmentation 

S = accumulate data(x,y) for 
wstart < x < wend 

hstart < y < E 
until S = T/2 

S = accumulate data(x,y) for 
hstart < x < head 

wstart < y < E 
until S = T/2 

Model Development 

orientation 

call map segmentation for call map segmentation for call map segmentation for call map segmentation for 
data = d data = d data = d data = d 

iterations = I-1 iterations = I-1 iterations — I-1 iterations = I-1 
orientation = vertical orientation = vertical orientation = vertical orientation = vertical 

wstart = ws wstart = ws wstart = ws wstart = E 
wend = we 	 wend = we wend = E 	 wend = we 
hstart = hs 	 hstart = E hstart = hs 	 hstart = hs 
hend = E hend = he hend = he hend = he 

Figure 4.5: Map segmentation algorithm 

When the map segmentation function is called two options are considered related 

to the number of desired iterations. If the iterations are non-zero, all the resource 

values of a map are added up (7) and then there is the orientation control that 

determines whether the segmentation is going to be horizontal or vertical. 

Actually, the first orientation is horizontal and when one type of orientation is 

selected the next one will be the opposite type in order to ensure that the 

segments will be cuboids. When the orientation is selected, for example in the 

case of a horizontal orientation, the resource values are added up and produce the 

sum S where x is between the first (wstart) and the last (wend) point of the map 

while y is between the first point (hstart) and the point E. The latter is the point 

where the sum S is half the total resource T (S = T/2). So, at this point the map is 

divided in two segments with equal resource potential. 
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After this point, the map segmentation function is called again for the same map 
(data = a) , one iteration less (iterations = i-1) and opposite orientation. For every 

orientation there are two possible steps as it can be seen in Figure 4.5 and are 

represented by the squares at the bottom of the figure. So, for example if the 

horizontal orientation is selected and the map is divided into two segments, the 

map segmentation function is called again in order to further divide the segments. 

As the procedure flow shows, the first square from the left divides the top 

segment vertically and the second square divides the bottom segment vertically. 

The same procedure is followed if the initial orientation is vertical. 

When the number of iterations is zero, the segmentation is terminated and the 

results of previous iterations, if any, are stored. The results include the 

coordinates of all the segments in which the map has been divided into. 

4.8 Resource Optimisation 

In this thesis, the issue of establishing a fuel infrastructure involves the very first 

step of the fuel chain that is the production of the primary energy feedstock that 

is used for the production of hydrogen fuel. Thus, it is considered that either 

electricity or biomass feedstock is not provided from already existing facilities. 

For this reason, the design of new renewable energy plants is necessary as they 

constitute the feedstocks. Of course, the model is able to support simulations that 

include already existing facilities. So, in order to develop a hydrogen infrastructure 

development plan as effective and economic as possible it was necessary to 

examine the renewable resource of the region under study and discover the 

optimal places in terms of resource potential for the establishment of renewable 

energy plants. This is accomplished by the resource optimisation. 

Naturally, the resource optimisation is based on the renewable energy resource 

potential of the region under consideration. It is performed after the map 

segmentation aiming to determine the optimal sites that may be used for the 

creation of renewable energy plants and thus geographically allocate the beginning 

of the fuel chains. This allocation is carried out taking into consideration two 

factors. Firstly, the resource potential of the candidate site and secondly its 

proximity to the demand centre. As the discretisation of the map produces 
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segments with equal total resource potential, the resource optimisation distinguishes 
the sites in every segments with the higher resource potential and in the case there are 
more than one promising sites it eliminates the sites that are distant from the supply 
centre favouring the sites closer to the market. 

The distance between the candidate site and the market is calculated by evaluating the 
corresponding Manhattan Distance, which is equal to: 

FTC 	=WeightedManhattanDistance (x d , yd , xo , yo ) 

where F Tc  is the transportation cost from the origin point x , y to destination 
point x,, y,, 

x= 1 	, where S is the map width in pixels 
y = 1 	, where S is the map height in pixels 

FTC CZ 

All transportation costs are calculated using the F Tc 	function. 

In order to ensure that the point of the site is within the boundaries of the segment, 
the following constraints are imposed on its coordinates: 

The origin point of fuel chain in width axis, Ro  , starts from segment 1 in map i for 
which map data are maxima for that segment and the cost of transportation to the 
next chain point is minimum: 

<R0  <.R 

where / = 1.. Rs  
i=1..D p  
Ro E Z 

The origin point of fuel chain in height axis, Roy  , starts from segment / in map i for 
which map data are maxima for that segment and the cost of transportation to the 
next chain point is minimum: 

R <R <R 

where / = 1.. Rs  
i=1..D p  
Roy,,EZ 
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translate to 
{x,y,c} 
where 

c = WeightedManhattanDistance (mx,x,my,y) 
for every element in the set 
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The algorithm that implements the resource optimisation is displayed in Figure 

4.6. As in the case of the map segmentation algorithm Figure, the green box is the 

starting point, the pink box the end, the side parallelograms are the input and 

output data and the light grey arrows represent the data flow while the dark grey 

arrows show the procedure flow. 

resource optimisation 

create set of data: 
{x,y,p} 

where p = data(x,y) 
for 

wstart <= x <=wend 
hstart <= y <=hend 

reduce to: 
{x,y,m} 

where m = max(p) 
for 

every element in the set 

data = d 
wstart = ws 
wend = we 
hstart = hs 
hend = he 

marketx = mx 
markety = my 

terminate 

randomly select one of these tripletsof data 
and store it as result 

reduce to 
{x,y,o} 

where o = min(c) 
for 

every element in the set 

Figure 4.6: Resource optimisation algorithm 

In the beginning of the algorithm, sets of data are formed that include three 

variables, the x5 coordinates and the variable p, which is the value of the resource 

in a map in the xy coordinates. After creating these sets, the number of sets for 

the entire map is reduced as the sets that include the maximum resource value p 

are selected and all the others are eliminated. For all the remaining sites, the 

corresponding Manhattan Distance is calculated and the proximity to the market 

for every set is examined. Then, all the sets in all segments with the higher value 

of resource (x,y, max(p)) are further reduced and from these sets the ones that are 

far away for the market are discarded. Thus, the remaining sets are those that 

fulfil the criteria of having the maximum resource and of being close to the 
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market. In case there are more than one sets in a segment that meet those criteria, the 
selection is random. However, this latter case is very rare. 

When the most suitable sites have been selected the resource optimisation algorithm 
is terminated and its results are stored. These results include the points in the map 
that the fuel chains may begin and thus the model is then ready to perform the fuel 
chain optimisation for these points. 

4.9 Equations of the Model 

This section describes the first step of the fuel chain optimisation, which is the 
second stage of the infrastructure optimisation algorithm. This step consists of the 
equations that comprise the infrastructure development model. For reasons of 
completeness and comprehension the equations of this section include some of the 
map segmentation and resource optimisation equations. 

The design of a hydrogen infrastructure is formulated as a MILP problem that its 
solution consists of a least cost infrastructure development plan, the cost of which is 
given by the following equation: 

D Rs  Dv,,J_ e‘  

Fc„= E E c ci , , x+ F 	C 1.1.v. p+ F 
1=1 1=1 v=1 	 p=x+1 	 p=x 

This equation is the total infrastructure cost and comprises the objective function 
that needs to be minimized. The development of the model and the formulation of 
the objective function are described in detail with reference to the notation presented 
in Table 4.1. 
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Model Settings 

S, Number of simulation periods S, E Z 

Sd  Period duration in years Sa ER 

St Map segmentation iterations S, E Z 

S„ Map width in pixels S„ E Z 

Sh  Map height in pixels Sh  E Z 

Model Input Data 

D 	I, E Number of primary 
energy feedstocks in the model ,  D Z 

D,,,,,,  Map i data in point xy when i is a primary 
energy feedstock map or a transportation map 

1=1..D, 
x=1..S„ 

y=1..Sh  
D„,,,E Z 

Dm.  Market x axis position value Di,,E Z 

Di,,,, Market y axis position value D,,,E Z 

/), Variations of chains using 
primary energy feedstock of map i 

i 	 D =1 . 
• P 

D,,,eZ 

D 4  , Steps of chain using primary energy feedstock 
of map i using variation v 

v=1„.13,,,  
i=1 D . • P 

D,.,, E Z 

Dc,,,,, Capital cost of chain using primary energy 
feedstock of map i using variation v in steps s 

v =1.13,,, 
i=1..Di, 

s =1.D4, 

Dcc.,,,,E R 

D,,,,,,, Expansion cost of chain using primary energy 
feedstock of map i using variation v in step s 

v =1..D, 

. i=1 .13,, 
s=1..D4,  
Da.t.ER 

Da),.. Operation and maintenance cost of chain using primary 
energy feedstock of map i using variation v in step s 

v =1../3,,,  

i=1. .D,  . 
s=1../.),,,  

D„,,,E R 

DR,,,,, Efficiency of chain using primary energy 
feedstock of map i using variation v in step s 

v = LA 
i=1..1), 
s =1.. / 3,,, 
1),,,ve R 
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DDS' 
a„•T"+ao.,•T"+...+a,• T+ao 

Market demand function 

a„ ER 

T ER 

D Dmr E R 

D7, Market demand tolerance lower limit Dr,E R 

Dr. Market demand tolerance upper limit Dr.E R 

Table 4.1: Notation of the hydrogen infrastructure model 

The index v, variation, represents the possible different options that may be 

considered for every step of a fuel chain starting for a specific primary energy 

feedstock. For example, if the primary energy feedstock, which constitutes the 

first step of a fuel chain, is biomass the subsequent step which is the production 

of hydrogen may be one of the various options such as gasification or pyrolysis or 

fermentation. For each one of these options there are again a number of options 

for the next step of the fuel chain. 

As it can be witnessed from Table 4.1, the demand is entered into the model in a 

form of a polynomial function. The advantage of this method is that the demand 

can be different for any simulation. The difference does not only lay in the 

quantity but also in the behaviour. Thus, the model is able to run simulations with 

constant or linearly varied or non-linearly varied demand. 

To economically optimize the construction of a renewable hydrogen delivery 

system, it is necessary to select the most cost-effective fuel chains among the 

various possible fuel chain options. The chosen pathways form the optimal 

renewable hydrogen infrastructure development plan. The optimisation begins 

with the map segmentation, which is carried out according to the Si parameter, 
and produces segments equal to: 

Rs = 2si  
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For the highest resource points of every segment the distance between them and the 
market is calculated: 

FTC 	=WeightedManhattanDistance (xd  , yd , xo , yo ) 

and the promising sites in the geographical region under study for the production of 
the primary energy feedstocks are determined. Thus, the promising points for the 
beginning of the fuel chains are determined. For every candidate point the model 
aims to find the optimal pathways. It selects the optimal fuel chains by 'activating' 
them and simultaneously 'deactivating' the others. To facilitate this decision-making 
process, it is necessary to introduce a binary variable E , : 

Ei/ , : enable variable of chain originating from a primary energy feedstock using 
map i, in segment /with chain variation v, 

where v =1.. D 
1 =1.. Rs  
i=1..D p  

The variable E can only take value 0 or 1: 

0 < E,, v  < 1 

The numerical value of the E 	variable is controlled using the integer constraint, 
which allows this variable to take only integers values: 

E ,I , v  E Z 

The variable 	is a global variable. The variables that form the equations of the 
model are divided into local and global variables. The former are variables that refer 
to particular points in the lifetime of a fuel chains. These points could be the 
activation, expansion, reduction or deactivation of a fuel chain. Thus, they are the 
points at which a fuel chain experiences changes throughout the planning horizon. 
The latter are variables that refer to a fuel chain from its starting point to its end. 
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When a fuel chain is selected (active), its capacity, which is the amount of produced 
hydrogen, is determined by the C, , variable: 

C 	: capacity of chain originating from a primary energy feedstock using map i, in 
segment 1 with chain variation v in time period p, 

where v = 1..D 
1=1..Rs  
i=1..D p  
p=1..S p  

The C 	variable is a local variable that represents the capacity percentage at which 
a fuel chain of map i, segment 1, variation v, operates at a periodp in the selected time 
horizon: 

C, , 1 ,  p E R 

Once a fuel chain is chosen, the variable E 	is set as the high limit of the C 
variable, otherwiseE is set to zero and so is the C variable: 

if E 	= 1 
then 0 < C 	< E 

else if E 	= 0 
then C = 0 

Every fuel chain may have a set of different C 	values, the number of which is 
determined by the demand. Moreover, the upper limit of this number is controlled 
by the number of periods, which is one of the model settings, that the time horizon is 
divided. Setting as upper limit of C 	the E 	variable connects the maximum 
allowed capacity of the fuel chain at a certain point with its activation and thus 
ensures that this capacity takes value only if the fuel chain is selected for activation, 
otherwise its value is zero. 

If a technology is chosen to be expanded, its capacity is expanded within certain 
limits. When a fuel chain is activated and chosen at a period to operate at its maximum 
capacity: 

=1 

and C = 1 
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On the other hand, if a technology is selected to be shut down, its capacity is set to 
zero and it can not be expanded again in the future. All technologies can only be shut 
down once during the planning horizon. 

Some pathways may never be selected to operate at the maximum allowed capacity. 
However, every pathway has it own maximum during the planning horizon. The 
maximum capacity that a fuel chain has experienced during its lifetime is represented 
by the global variable: 

	

MC 	maximum capacity of chain originating from a primary energy feedstock 
using map i, in segment /with chain variation v, 

where v =1.. D, 
1=1..Rs  
i=1..D p  

MC E R 

This variable takes the value: 

0 < MC < 1 

Moreover, the maximum capacity percentage of a fuel chain is greater or equal to 
each capacity percentage at all periods in the planning horizon: 

MC 

When a fuel chain is activated its total capital cost is represented by the F cc  
variable: 

	

cc 	: total capital cost of chain originating from map i, segment 1 using variation v, 
where v =1.. A, 

I=1..Rs  
i=1..D p  

F cc  R 

The F cc,  variable represents the capital cost of the whole chain, which is the capital 
cost of the primary energy feedstock, hydrogen production, conversion, storage and 
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transportation technologies and is equal to: 

F 	= E cc,,,,, s=  

The reason why the variable Fcc, r  includes all the capital of all the stages of a fuel 
chain is the minimization of the simulation time of the model. A different approach 
was initially considered where the capital cost of each stage were not incorporated 
into one variable resulting in a large number of variables which in turn leads to a 
considerably long simulation time. According to that approach, the model gradually 
formed the cost equations of each stage of the fuel chain and then combined these 
equations to form the overall cost equation of the fuel chain. Although this approach 
could work for a limited number of fuel chain options, it is problematic when 
conducting a study with numerous pathway options. For this reason, this approach 
was abandoned. The new approach was carefully selected so as to simultaneously 
minimize the simulation time without restricting the number of fuel chain options 
that the model can support and thus preserve its generality. 

The variable F 	is the total capital cost of a chain assuming that is operating at the 
maximum allowed capacity. It can be witnessed from the equations that the MC 
variable is not connected with the E variable. Once a fuel chain is chosen (E =1) 
the chain capacity can take values between zero and 1 (0 C 	< 1) and the MC 
is the maximum value of the C variable. The capital cost of the chain is 
connected with the MC variable so because this variable is equal to the maximum 
value of the C , variable if the C , variable is zero, the MC, will automatically 
be zero as well. So, if a chain is not activated the MC is zero. This is a result of the 
minimization. 

The total cost of a chain depends on the capital cost, the operation and maintenance 
(O&M) costs and how these grow with the expansion of the chain. 
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The expansion is represented by the variable: 

F CE,,,„ : total expansion cost for a chain originating from map i, segment 1 using 
variation v, 

where v = 	vi  
1=1..Rs  
i=1..D p  

and is equal to: 
	 F cEir.,ER 

F CE",=E 
s=1 

The F CElr  variable includes the expansion costs for all the steps of the fuel chain 
assuming the maximum allowed expansion. 

The same reasoning is applied to the O&M costs of a chain: 

Fco,  total O&M cost of a chain originating from map i, segment / using variation v, 
where v =1..D 

1=1..Rs  
i=1..D p  

F co,.,,,EIR 

The total O&M cost is given by the equation: 

+ F 
s=1 

The overall cost of a fuel chain, FCTC is given by the sum of the capital cost, the 
expansion cost and the O&M cost: 

crc,,,,= F + F 	+ F ,, 

F E 
s. 

where v = 
1=1..Rs  
i=1..D p  

F ElR 

D,„ 

s=1 
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Adding up the Fc,ci., of all the pathways that have been selected for activation gives 
the overall cost of the infrastructure, which is the objective function of the problem: 

As it can be witnessed from the objective function, the total infrastructure cost is the 
summation of the capital, expansion and O&M costs of every fuel chain multiplied 
by the C , variable. This multiplication is the reason why all the costs are determined 

assuming the chains operating at maximum capacity or undergoing a maximum 
expansion. When the maximum costs are calculated the optimal capacities are 
determined and thereafter the multiplication of these capacity percentages with the 
maximum costs results to the formation of the optimal costs and thus gives the 
overall cost of the optimal infrastructure cost. This trick was used as it was 
considered the only method to solve the infrastructure problem using linear 
programming and having to deal with real time variables. This is possible because the 
problem under study is formulated as a linear programming problem and thus the 
model will initially form the necessary pathways for the planning horizon and 
afterwards select the optimal method. So, when it puts values into the variables 
already knows their maximum expanded capacity. 

One of the main issues in designing an infrastructure that delivers renewable 
hydrogen is to ensure that the amount of delivered hydrogen meets the demand of 
the supply centre. The model satisfies the demand both in terms of energy (kWh) 
and power (kW). This is achieved by the formation of the following equations. The 
amount of hydrogen that is delivered through every fuel chain is affected but the 
efficiency of each fuel chain. All the technologies in every step of a fuel chain have 
their corresponding efficiencies. 

For every pathway there is the variable F 

F  EF,,.. : total efficiency for chain originating from map i, segment / using variation 
where v = 

1=1..Rs  
i=1..D p  

F 

v, 
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The total efficiency is equal to: 

F EF —
11 

The amount of hydrogen produced (in kW) in a period from a fuel chain is equal to: 

= Fpc ,.,,,,„ F EF,,,,,, C 1,1, v p 

where v = 
1=1..Rs  
i=1..D p  
p=1..S p  

F p  E IR 

Adding up all the FPS  1  of the fuel chains gives the total amount of hydrogen that is 
generated by the infrastructure in a period: 

F pp  : total infrastructure production for time period p, 

where p=1..S p  
F p,  E R 

The total infrastructure production for period p is equal to: 

D 	D, 

F  P p=  E E (F 
1=11=1 v=1 

This equation includes all the fuel chains that are under comparison but the ones that 
are not selected have the C 

	variable equal to zero and thus are automatically 
eliminated. 

The total production has to satisfy the demand at any time period of the planning 
horizon: 

STa  11) sd+. pl) Sa.(p+1) 
DTI 	 DT.  

f DDM 	 dt < FP < 
T=S p 	

f DDM 	 dt 
S S 

sd.(p+i) 	
DT, The 	f DDM r — ' dt term is the demand from the beginning of a period until 

T 
	Cf 

=S p 	° P 
S d.(P+1) 

the end of the period minus a small amount ( DT I ) . The f D Dm  T.+ 7",
T 
 dt 

T =S a. p 	° P 

term 
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is the demand from the beginning of a period until the end of the period plus a small 

amount ( 	) . This double inequality eliminates possible errors in the formation 
Sp  

of the infrastructure. For example, if the required demand is 100 GW throughout 
the planning horizon the model could activate a number of fuel chains that supply 
this amount in the beginning of the horizon and then shut down the chains. 
However, the inclusion of this inequality rules out that action and ensures the 
demand satisfaction of every period in the time horizon. 

The total amount of hydrogen energy (kWh) that is produced has to be within certain 
limits. A single inequality constraint can be used where the produced hydrogen 
energy should be greater or equal to demand. Instead of this inequality, the total 
amount of hydrogen that is produced throughout the planning horizon is restricted 
within certain limits: 

F pr  
Sd•S, 

f Dm ,— DTi dt 
T=0 

Sd•Si, 
Dmr +DT.dt 

T=0 

The F pT  variable is the total infrastructure production that must be generally fulfilled 
over the whole planning horizon and is equal to: 

F TT = F p 	 F pT ER 
p= 1 

sd.sp 
The lower limit of the double inequality f DDM T 

— D T dt is the required demand 
T=0 

S d• Sp 

lowered by a small amount (DT , ). The upper limit f  ID Dmr +DT.dt is the required 
T=0 

demand increased by the same amount ( DT.  ). As it can be witnessed, both 
constraints involve the inclusion of a small amount the role of which is to increase 
the flexibility of the model and to confine the results. This amount is the "tolerance" 
of the model if the infrastructure produces a little less or more hydrogen energy than 
it is required. Practically, the upper limit is insignificant because the algorithm 
performs a minimization so it will not produce more than the required hydrogen 
energy. However, mathematically the double inequality is more accurate as it bounds 
the problem. 
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The model is designed in such a way so as the value of the tolerance can be 

changed and is determined by the user. The suitable value depends on the 

specifications of the simulation and is determined through experimental 

procedure, testing. Generally, if the value is too small the demand is tried to be 

covered from the fuel chains at any point and thus a lot of periods are necessary. 

If the value is too large the large number of periods is not necessary but the 

problem is less bounded and thus the results slightly less accurate. If it is desired 

to produce the exact amount of hydrogen energy, the user has simply to set 

tolerance to zero (Dtl = Dtu = 0). 

It is important to mention that when a simulation is very complicated, namely 

includes a lot of pathways and/or a high level of demand and/or a large number 
of periods usually requires advanced computation systems. However, one of the 

advantages of this model is that even if it is necessary to run in a not so advanced 

computer by setting the appropriate settings, for example small number of 

periods or large value of tolerance, this is feasible. 

Summarizing the aforementioned, the model for the development of a renewable 

hydrogen infrastructure could be outlined as follows: 

The objective function that is desired to be optimized is a cost function that 

needs to be minimized in order to deliver the least cost option for the design of a 

hydrogen delivery system. This function is minimized taken into account: 

1) technology constraints (for example the efficiency of the technologies); 

2) production constraints due to renewable energy resource availability (the 

locations of the renewable energy plants that act as the primary energy 

feedstocks for the hydrogen production are determined by the resource 

potential of each energy source); 

3) expansion and infrastructure constraints (for example the maximum 

allowed capacity of the renewable energy plants); 

4) hydrogen demand satisfaction; 

5) hydrogen demand satisfaction at any point throughout the planning 

horizon; 
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6) energy losses in all the stages of a fuel chain (for example electric grid 

loss); 

7) costs of all the technologies that are included in the design of an 

infrastructure; 

8) zoning constraints (for example the prohibition of installing a plant at 

certain location such as a city centre); 

9) logical constraints (internalization of the costs in one variable wherever is 

possible). 

4.10 The Superstructure of the Model 

The superstructure (Figure 4.7) is the basis of the hydrogen infrastructure model. 

The flowchart begins with the set of the primary energy sources, which can be 

used as feedstocks for producing hydrogen. The model includes a wide range of 

primary energy feedstocks that can be divided into renewable electricity and 

biomass feedstocks. The first category consists of all the known renewable energy 

sources and the second category involves agricultural residues, energy crops and 

wastes. Agricultural residues comprise residues produced from agricultural 

activities and include crop, forestry and livestock residues. Energy crops are crops 

grown exclusively as energy sources and include herbaceous (switchgrass, 

miscanthus, bamboo), woody (hybrid poplar, hybrid willow, sweetgum), 

agricultural (vegetable oils) and aquatic crops (algae, seaweed, marine microflora). 

The third group comprise the biodegradable fraction of municipal solid, industrial 

and commercial waste. 

The primary energy feedstocks can be used to generate hydrogen onsite using any 

of the production technology options, such as electrolysis, gasification, pyrolysis. 

The produced hydrogen can be stored as a compressed gas, liquid, in metal 

hydrides or in any of the novel methods. For delivering hydrogen to the point-of-

use, the model considers four transportation mode options: road, rail, ship and 

pipelines. Rail and ship options have not captured high attention as hydrogen 

transportation methods but because they are technically viable options (Amos, 

1998) they are included in the model. Once hydrogen is delivered at the refuelling 

station hydrogen is stored in the appropriate small-scale forecourt storage 

technologies. 
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The model is also able to support fuel chain configurations that include the 

production of hydrogen at a regional and forecourt level. In these cases, the 

primary energy feedstocks produce electricity that is transported through the 

electricity grid either to a regional hydrogen production plant or a refuelling 

station. In the former case, hydrogen is generated through large-scale electrolysis 

and then is stored and transported using the aforementioned options. In the latter 

case, electricity is converted to hydrogen through small-scale electrolysis at the 

forecourt and the produced hydrogen is stored in small-scale forecourt storage 
technologies. 
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Although a number of technologies in some of the stages of a fuel chain are quite 

novel as the design of a fuel infrastructure is a venture with a long-term time 

horizon, it is possible during this horizon a novel technology to become a 

technically and economically viable option and for this reason, the model is able 

to support the inclusion of all the known technologies irrespective of their 

maturity. 

As it can be witnessed from Figure 4.7, the flowchart presents the life of the fuel 

from the point of the production of its feedstock until the point it is delivered in 

the demand centre. So, the superstructure does not include the dispensing stage at 

the refuelling station it ends with the storage stage at the forecourt. This is the 

case since the interest of this study, as the title indicates, is the supply of hydrogen 
to the demand centre, namely the development of a hydrogen network that aims 

to produce and deliver hydrogen fuel to urban centres. However, as the model is 

considered a general framework for hydrogen pathways simulations it is able to 

include the dispensing stage, if necessary. 

4.11 The Structure of the Software 

The second step of the fuel chain optimisation stage is the development of the 

software that implements the mathematical model. The software was chosen to be 

developed in the programming environment of MATLAB. Two approaches were 

examined in order to develop the necessary software to solve the problem. The 

first approach involves the construction of only one M-file that contains the 

complete necessary code for identifying the optimal solution and the second is 

based on the concept of object-oriented programming and is the one that was 

followed. The prevalence of the second method was mainly based on the fact that 

the first approach results in the production of one vast and chaotic file that would 

be incomprehensible to anyone else than the developer of the code. 

The idea behind object-oriented programming is that a computer program 

consists of a collection of individual units, known as objects, and is not a list of 

instructions to the computer as is the case in procedural programming. An object 

is a software bundle of related variable and methods. Software objects interact 

and communicate with each other using messages. One of the main attractive 
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attributes of object-oriented programming technique is the ability to create 

modules that do not need to be altered once a new type of object is added. A new 

object can inherit many of its features from an existing one. This makes object-

oriented programs quite flexible and easy to be modified (Sun Microsystems, 

2005). The reason why the present problem was not solved by performing object-

oriented programming but by using the concept of object-oriented programming 

technique was just because the object-oriented programming library of MATLAB 

does not include a wide range of functions. In order to perform object-oriented 

programming an object-oriented language is necessary, such as Java, C++ and 

Smalltalk. 

Following the chosen approach, a structured piece of software was built, which 

has the form of interconnected subsystems. Figure 4.8 presents the software like a 

pyramid that shows the path that the data have to follow in order the results to be 

produced. The pyramid consists of three subsystems that involve the User 

Interface (UI), the Model Builder and the MILP Solver subsystem. 

Figure 4.8: The Structure of the software 
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4.11.1 The User Interface Subsystem 

The first component of the developed software is the UI subsystem. The purpose 

of this subsystem is to transform the input data into matrix structure. This 

transformation is necessary because the chosen software, MATLAB, reads data 

only in the form of matrices. 

When the input data are imported, an XML file is produced and it passes the data 

into the UI subsystem. This subsystem is responsible to read the XML file (or 

input file) and to export the data in the form of matrices. The structure of the 

XML file is shown in Figure 4.9. After the comments, the text in the <!-->, the 

root element of the file is written. This element is the <infrastructure>. The root 

element has a number of child elements, such as the primary energy feedstock or 

the production technology. Every stage of the fuel chain constitutes a child 

element of the root element <infrastructure>. Likewise, every child element has 

its own branches that represent the necessary data of the child element. An 

example can be seen in Figure 4.9 that shows part of the XML file. 
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<?xml version="1.0" encoding="ISO-8859-1"?> 

<!-- Imperial College--> 
<!-- Centre for Environmental Policy--> 
<!-- Olga S Parissis--> 

<infrastructure> 
<primary_energy_feedtsock> 

<name>WindElectricity</name> 
<map>c: \maps \wind.png</map> 
<capital_cost>function of t</capital_cost> 
<operation_cost>function of Kloperation_cost> 
<expansion_cost>function of t<expansion_cost> 
<capacity_factor>function oft or static value</capacity_factor> 

. more parameters here 

<followed_by>Electrolysis</followed_by> 
</primary_energy_feedstock> 

<production_technology> 
<name>Electrolysis</name> 
<capital_cost>function of KIcapital_cost> 
<operation_cost>function of t<operation_cost> 
<expansion_cost>function of t<expansion_cost> 
<efficiency>function of t or static va/ue</efficiency > 

. more parameters here 

<followed_by>Liquefaction</followed_by> 
<followed_by>Compression</followed_by> 

</production_technology> 

<conversion_technology> 
<name>Compression</name> 
<capital_cost>function of t</capital_cost> 
<operation_cost>function of K/operation_cost> 
<expansion_cost>function of Kexpansion_cost> 
<efficiency>function of t or static value</efficiency> 

. more parameters here 

<followed_by>MetalHydrides</followed_by> 
<followed_by>CompressedGas</followed_by> 

</conversion_technology> 

. complete list of technologies for every stage follows here 

</infrastructure> 

Figure 4.9: XML file structure 
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The UI subsystem consists of four main steps. The first step opens the input file. 

In this step a number of diagnostic routines are executed in order to inform the 

user in the case of an error. For example, if the input data does not contain any 

primary energy feedstock, the model will return a message stating this omission. 

Then, the UI reads the input file by applying top-down functional decomposition. 

The top-down technique is a systematic approach aiming to divide a problem into 

subproblems, the solutions of which produce the overall solution (CS, 1998). 

In the next step, the UI reads the produced hierarchical structure and transforms 

it into a tree-like structure that is suitable to be read by MATLAB. This is 

achieved by performing depth first search (DFS). DFS is an algorithm for 

traversing or searching a tree structure or a graph. In this study, DFS searches the 

hierarchical structure and produces a MATLAB-readable tree. DFS has a 

recursive implementation. It begins selecting a node as the root and explores all 

the links of this node. When it finds no other link for this node, it backtracks to 

the preceding node and explores all other links that leave that node. For example, 

Figure 4.10 presents the creation of a tree based on the data from the XML file 

(Figure 4.9). 

Infrastructure 

Figure 4.10: Tree-like structure 

The first node that DFS explores is the "infrastructure" node. This node is 

divided into "primary energy feedstock", which is in turn divided into "name". As 
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it can be witnessed in Figure 4.9 the "name" node does not have any other branch 
(or children as it is usually referred to) and thus, DFS goes back to the "primary 

energy feedstock" node and explores the "map" node, as it is indicated by the 

dotted arrows in Figure 4.10. It follows the same procedure until it completes the 

tree. The dotted arrows show the path that the search procedure follows. The tree 

in Figure 4.10 is a simplified and incomplete version of the actual tree of the 

model but serves as an example in order to explain DFS. 

The data obtained from the input file for each node are imported into matrices. 

The model is able to support three kind of parameters, two concerning time and 

one concerning locality. Time parameters may be either time-variant or time-

invariant parameters. Locality parameters are maps that give information about 

the renewable energy resource potential in Great Britain. Every stage of the fuel 

chain has its own corresponding matrix. The last step includes the exportation of 

the resulted matrices that are imported to the next subsystem. The data that are 

exported by this subsystem includes the parameters of each stage of the 

superstructure, the possible technological options in every step of the 

superstructure, the fixed and variable costs of every stage and all the necessary 

technical characteristics of all the technologies. The model can include an 

unlimited number of fuel chain options, stages in every fuel chain and 

technological options in each stage of every fuel chain. Figure 4.11 presents the 

inputs and outputs of the User Interface Subsystem. 
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Figure 4.11: Inputs and outputs of user interface subsystem 

4.11.2 Model Builder Subsystem 

The convenience of use and "beauty" of the model arise from this very 

subsystem. The importance of this subsystem lays on the ability to eliminate the 

requirement from the user to form equations. More specifically, the inputs that 

pass into the model are in the simplified form of values and parameters. Then, 

this subsystem employing an "abstract" method is able to use the input data in 

this plain form and produce the desired results. This "abstract" method refers to 

the black-box design of the software into which when the data are imported 

preprogrammed logic is utilized in order to return the outputs. Thus, the model 

can be used by users that do not have any knowledge of MATLAB. 

The Model Builder subsystem is responsible for two tasks. At first, the 

geographical optimisation stage is implemented into this subsystem. The map 

segmentation and resource optimisation are carried out providing the possible 

starting points of every fuel chain. Afterwards, for every fuel chain the capital, 

O&M and probable expansion costs and the corresponding equalities and 

inequalities are calculated. The resulted costs and sets of equalities and inequalities 

are added to the cost objective function, set of equalities and set of inequalities, 
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respectively. When this is completed for all pathways under study, the Model 

Builder subsystem has produced the overall cost objective function, which is 

going to be minimized, and the overall sets of equalities and inequalities in which 

the objective function is subject to. 

The procedure that is followed in order to form the objective function and the set 

of equalities and inequalities is a recursive procedure that starts from the primary 

energy feedstock, which is the beginning of the every fuel chain, and ends at the 

market that constitutes the end of the fuel chain. More specifically, when that data 

are passed from the UI to the Model Builder subsystem the latter calls a function 

that starts from the primary energy feedstock assembles its corresponding data 

and for every subsequent stage of the chain calls itself assembling the data of the 

corresponding stage until the point the next stage is the market. With this 

recursive procedure the model builder subsystem builds the model (and for this 

task takes its name) and transforms it into the mathematical form that is necessary 

for the MATLAB function that solves the problem. The outcomes of this 

subsystem are imported to the next and final subsystem, the MILP Solver. Figure 

4.12 demonstrates the flowchart of the algorithm that is performed in the Model 
Builder subsystem. 

Figure 4.12: Flowchart of algorithm performed in the model builder subsystem 
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4.11.3 MILP Engine Subsystem 

The final subsystem uses the overall objective function, the set of equations and 

the set of inequalities imported from the Model Builder subsystem to solve the 

problem and return the results (Figure 4.13). 

Figure 4.13: Inputs and outputs of MILP engine subsystem 

This subsystem uses the linprog function of MATLAB with the only difference 

that involves the definition of the parameters that need to take only integer 

values. The linprog function is the function that solves linear programming 

problems in MATLAB. More specifically, in order to solve the problem it is not 

necessary to write a new algorithm but to use the linprog function and write a 

differentiation. This differentiation is the MILP function that includes the linprog 

function. The MILP function is a wrapper of linprog, namely an interface for 

linprog that solves MILP problems. 
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The linprog function includes an objective function that can be either maximized 

or minimized subject to a number of constraints. Its general form is: 

min f Tx 	such that A 	b 

Aeq x = beq 

lb < x < ub 

where f; x, b, beq ,lb and ub are vectors and A and Aeq are matrices (Mathworks, 
2005). In the problem of the present study, f is the objective function that is the 
cost function and x is a matrix containing the unknowns, namely everything that 
the linprog is called to give values. The matrices A,b and Aeq,beq contain the 
"architect" of the model, for example efficiencies, and the first pair corresponds 

to the inequality constraints and the second pair to the equation constraints. The 
lb and ub vectors are the lower and upper limits for the matrix with the unknowns, 
x, and assist in solving the problem more effective. Figure 4.14 shows the 

algorithm that is carried out in the MILP Engine subsystem. 
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Figure 4.14: Flowchart of the MILP engine subsystem algorithm 

The yellow side parallelogram in the top represents the data that are imported into 

this subsystem and start the MILP subsystem procedure. The light grey arrows 

represent the data flow and the dark grey arrows show the procedure flow. The 

main node of this algorithm is at the beginning where the decision on whether 

some of the variables in x need to take integer or real values is taken. In the 

former case the problem is solved twice for every integer variable in x in order to 

find the optimal value between the two closest integer values of the selected real 

value. 

The results are returned in the form of a number that represents the total 

infrastructure cost and a text document that includes all the logical decisions (eg 

the use or not of a primary energy feedstock, or the expansion of a production 
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facility) during the selected time horizon. The results are passed from the MILP 

Engine subsystem to the GUI that depicts them schematically. As the results, 

especially in the case of large problems that include numerous different pathways, 

include a lot of information that it is impossible to be contained in the GUI, all 

the numerical solutions are presented in a text file. The GUI shows the 

geographical region under study after the map segmentation and resource 

optimisation have been carried out and all the fuel chains and their starting points 

that have been selected. 

Adding together the three subsystems creates the pyramid as demonstrated in 

Figure 4.15. Figure 4.15 is a more detailed version of Figure 4.8 showing the 

inputs and outputs of every subsystem specifying the inputs of the model, how 

they are transformed and the outputs. 

Figure 4.15: The software of the model that consists of three interconnected subsystems. The 

inputs and outputs of every subsystem are specified. 

160 



G 
U 
I 

Model Builder 

MILP Engine 

User 
Interface 

Model Development 

4.12 Graphical User Interface 

The GUI is the chosen way of entering data into the model. It is the mode of 

interaction between the user and the model. It passes the input data into the UI 

subsystem and after the simulation shows the results obtained from the MILP 

Engine subsystem. Thus, the GUI and the pyramid constitute a circle as shown in 

Figure 4.16. 

Figure 4.16: The model software with the GUI 

The data of the desired renewable hydrogen infrastructure development under 

study that enters the model through the GUI involve the formation of the fuel 

chains, which includes the selection of technologies for all the stages in a fuel 

chain, the choice of the geographical region under study, the choice of demand 

centres and the setting of the technical and economic values of all the parameters. 

That means, that without any change in the model (the three subsystems), results 

can be obtained for any desired hydrogen delivery pathway either using wind 

energy or biomass or all renewables for any geographical region assuming one or 

many supply centres by just choosing the desired settings from the available 

options in GUI. For the creation of the fuel chains the user can choose the 

preferred option for every step of the chain by a wide range of alternatives 

available in a dropdown menu (one for each step) in the GUI. The selected 

geographical area is entered in the model in the form of a map which can be 
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loaded from any mounted file system in the computer. Figure 4.17 illustrates a 

screenshot that shows the initial appearance of the GUI before anything is 

selected. 

Figure 4.17: GUI screenshot 

As the window takes up the full screen on the left hand side there is the menu 

column, which includes all the possible options for every component of the 

infrastructure and a number of alternatives concerning the simulation. The first 

item of the menu bar enables the loading of the map files. These files include 

maps for the selected geographical region, the renewable resource potential and 

generally any other data that used to be entered in the form of maps. Although 

these maps can be entered into the model, only the map of the geographical 

region is visible in the GUI. The grey free space in Figure 4.17 is substituted by 

the map of the selected geographical region when the latter is loaded. 

The next item of the menu, titled 'fuel chain options' contains five dropdown 

submenus that correspond to the various stages of the fuel chain. So, there is one 

submenu for the primary energy feedstock, for the hydrogen production 

technology, for the conversion method, for the storage method and for the 
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transportation method. All the submenus include all the possible options for 

every stage. Selecting the preferred technologies from the available options of the 

submenus and clicking on the geographical map form the pathways that compose 

the renewable hydrogen infrastructure. When a technology is selected, a matrix 

appears on the map in which all the technical and economic data are entered. By 

combining different options of this submenu numerous different infrastructures 

can be obtained, for example infrastructures that produces hydrogen only from 

wind and solar or from wind and biomass or use both liquid and compressed gas 

hydrogen. The model is able to support all the possible renewable infrastructure 

types and for each one to determine which is the least cost development strategy. 

As the model can run for numerous delivery pathways it was considered essential 

every designed infrastructure if desired to be able to be saved. This is the purpose 

of the third item of the menu the 'disk options'. The chosen settings can be saved 

by clicking on the 'save file' tab and the GUI can return to those settings by 

clicking the 'load file' tab. The last item of the menu allows to select the number 

of regions that the geographical area will be divided into, the number of changes 

the fuel chains can experience (the word change refers to the activation, 

expansion, reduction and deactivation of a fuel chain), and the lifetime if each 

change. The label 'map segmentation iterations' divides the area under study into 

equal in terms of energy regions according to the value assigned in the 

corresponding box. Because this label refers to iterations and not to the numbers 

of regions if for example it is desired to separate the map into four regions the 

required value that should be set in the box is two. 

The label 'periods' is responsible for the maximum number of changes the fuel 

chains are allowed to experience. The minimum number for this label is two as 

the first change is the activation of a fuel chain. This label gives to the user the 

ability to determine the 'life' of the fuel chains, for example to choose whether the 

fuel chains can have many small changes or a few large changes. However, it is 
possible if it is preferred this decision to be taken by the model by setting a very 

large value. The last label refers to the lifetime of each period (change). As for the 

`period', setting a high value to the 'duration' leaves to the model the change 

lifetime decision. These two labels allow the user to determine the time horizon. 

The multiplication of these labels defines the planning horizon. For example, for 
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the selected 50 years horizon one possible combination is to set 'periods' to 10 

and 'duration' to 5. The last tab of the menu as it is evident by its name, 'start 

simulation', begins the simulation. 

Figure 4.18 illustrates a screenshot showing the appearance of the GUI for an 

example showing six different onshore wind energy pathways. The selected 

geographical area is GB and the demand centre is London. Every step of the fuel 

chain is represented by a different colour in order to make the appearance of the 

design more legible. Every stage has a coloured matrix into which the 

corresponding data are entered such as the capital cost, the O&M cost, the 

efficiency, the location. The fuel chains start from the top left with onshore wind 

energy, which is the selected primary energy feedstock (red colour). After the 

production of the feedstock is the production of hydrogen fuel (blue colour). The 

first two steps are the same for all the fuel chains that is why they are only present 

once. The matrices with the yellow colour represent the conversion technologies 

and in this example there are two; compression and liquefaction. The purple 

matrices correspond to the storage stage. As it can be seen, these matrices are 

present twice, in the fourth and the sixth line. This is because the latter are the 

storage at the forecourt. The light blue matrices are the transportation 

technologies that all but one are connected to the forecourt storage and then to 

the white matrix, which is the final one and represents the market. 

The positions in which the technologies are placed are abstract. The reason for 

this is that the model decides where the position of all the technologies should be 

and thus when the simulation ends returns the results with the exact locations of 

all the selected technologies. As a result, the positions of the technologies at this 

stage do not matter. However, it is possible if a technology is preferred to be at an 

exact point in GB to be located there by entering the coordinates of this point 
into the parameter location of this technology. All the fuel chains conclude at the 

same point that of London, the demand centre, which is represented by a red dot 

in the map. The dot is not abstractly placed is located according to London's 

coordinates. 
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Figure 4.18: GUI screenshot of onshore wind energy fuel chains 

4.13 Limitations of the Model 

A model is a representation of a real system that attempts to explain the 

behaviour of some aspect of it but is always an approximation and thus is less 

complex than reality. For this reason limitations are intrinsic to models. Model 

limitations can be in the data supporting a model, in the model's design or in its 

implementation, which may include assumptions relative to the model application 

or concerning model applicability. The limitations of this modelling study are 

discussed in groups. The groups are divided according to the part of the model 

that the limitations refer to. 

Image Processing 

As it has been mentioned before, a number of data are entered into the model in 

the form of maps. The model can not support maps that have not undergone a 

certain processing. All the maps are required to be of one colour (grayscale) that 

are either in the form of grayscale or RGB colour space with one colour 

representing areas of the same values. Moreover, areas of zero value or areas that 
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are not desired to be included in the simulation should have transparent colour, 

for files that support transparency such as .png and .tif, and black colour for all 

other files. Lastly, the maps can be in any image format that is based on the 

simple reference of colour of every pixel, such as .bmp, .jpg, .gif, .png and .tif and 

not descriptive files and vector files such as .svg, .emf and .wmf. 

Map Segmentation 

The model is able to run simulations for any number of map segmentation 

iterations. However, there is an optical limitation in the segmentation process. 

When the region under study is segmented into areas every segment has a 

different colour and thus it is distinguishable from the others. However, when the 

results produce more than 256 segments some of the colours are repeated and 

thus some of the segments have the same colour. This repetition may produce an 

optical problem in the appearance of the segmentation. The reason that the 

maximum number of colours is 256 is that this number is the maximum number 

that an 8 bit number can give. Therefore, the maximum map segmentation 

iteration number is 7 and produces 128 segments. It is important to mention, that 

the results of the model are not affected by this limitation. So, the model can run 

simulations with any number of segments. This limitation affects the 
segmentation results but only optically. 

The geographical region under study is entered into the model in the form of a 

geophysical map. The dimensions of the map can vary but there is a minimum in 

the size of the map. This minimum is determined by the map segmentation 

iterations. For example, if the number of iterations is 5 then the produced 

segments are 32 and thus the minimum size of a map should be the size of a 36 

pixel map in order every segment to correspond to one pixel. However, the 

selected geographical region it is unlikely to be of such a small size that is 

represented by a 36 pixel map and thus this limitation may never create any 
problem. 
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Primary Energy Feedstock 

The selection, production and location of the primary energy feedstock are based 

on the maps of the renewable energy resource potential. Every primary energy 

feedstock has its corresponding map. The model is able to take into consideration 
only one map for every primary energy feedstock. This may not be a limitation for 

some primary energy feedstocks. For example, in the case of wind energy this is 

not a limitation as for this renewable energy source the only necessary map is a 

map showing the wind speeds of the region under study. On the other hand, in 

the case of energy crops the resource potential may not depend only on one 

factor and thus on one map. In the latter case it is necessary to include more than 

one map such as maps showing the available land for cultivation and the 

appropriate land for the cultivation of a specific energy crop. In this case as the 

model is restricted to consider only one map as input for every primary energy 

feedstock the combination of maps is required. This can be done using the GIMP 

software and following the procedure that was described in the image processing 

Section 4.7. This limitation is also true for the transportation stage as this stage 
also includes maps. 

The inclusion of the first stage of the fuel chain, the primary energy feedstock 

production, into the GUI is necessary for all simulations. Even if a simulation 

examines pathways that do not include the feedstock production stage but begin 

with the production of the fuel, the primary energy feedstock production stage 

has to be entered in the GUI. This necessity is applicable only for the beginning 

(feedstock production) and the end (market) of the fuel chains. In order to run 

the model these stages are compulsory but all other stages in between are not. 

The reason for this necessity is because the amount of hydrogen that every fuel 

chain may possibly produce is entered into the feedstock production matrix at the 

GUI. However, the model is able to run simulations with pathways without 

feedstock production. This is feasible by entering zero to all values of the 

feedstock production matrix, apart from the amount of hydrogen, at the GUI. 
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Market 

As it is the case for the feedstock production stage, the market is necessary. 

However, in this case this may not be considered a limitation as it is unlikely to 

form a pathway without an end point. The model is restricted to include only one 

market. This was considered adequate as it satisfies the requirements of the case 

study that is included in this thesis. Nevertheless, the inclusion of more than one 

market is possible but requires a modification in the resource optimisation stage. 

Moreover, the model considers the market place as a point in the map and thus 

does not include the distribution of the fuel within the market place. If the 

distribution of the fuel is desired to be examined the model is able to support the 

corresponding map showing the market place in detail but an additional static 

algorithm is necessary aiming to determine the optimal places for the 
establishment of the refuelling stations. 

The amount of the demand that the infrastructure has to be able to cover is 

entered in the GUI in the form of a function. The demand is a function of the 

time variable. If the demand function includes known functions such as cosine, 

sine or tangent, these functions have to be consistent with the Maple syntax. This 

is necessary as the MATLAB's symbolic computational tools are a subset of 
Maple. 

4.14 Conclusions 

This Chapter described the complete procedure that was followed in order to 

develop the renewable hydrogen infrastructure development algorithm. The tools 

that have been used to create the algorithm, the structure, the mathematical 

model, the implementation of the model have all been explicitly laid out. 

The model has been designed aiming to explore the fundamental issues 

surrounding the development of a renewable hydrogen infrastructure. It produces 

the spatial and temporal infrastructure build-up decisions that minimize the 

overall cost. It compares several hydrogen pathways technically and economically 

and includes the regionally specific data to determine the optimal plan for meeting 

a specified demand. 
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There are three features of the hydrogen infrastructure development algorithm of 

this study that constitute its strongest and distinguished it from other works. 

Firstly, its originality in the design and the way it addresses the infrastructure 

development issue. The algorithm is a combination of various different 

technological fields, some of which have never been used before in this field. It 

includes the use of MILP, MATLAB, XNIL, GIMP and GUIDE. All these tools 

have reinforced its capabilities but also have increased the difficulty of creating it. 

Moreover, the results of the model are not just a comparison of a number of fuel 

chains but a plan showing explicitly how a hydrogen delivery system is possible to 

be built for any desired region. 

Secondly, its generality as it may be considered a generic framework for modelling 

the development of hydrogen delivery systems. The flexibility with which the 

general structure of energy demand can be defined and the detailed treatment of 

fuel chain formation are vital for the application of the model to a wide range of 

geographical areas with different data structures. This model provides a behaviour 

template contrary to other studies that provide an equation template. For this 

reason, the model is able to support completely different simulations such as 

simulations that include renewable or non-renewable energy sources, whole fuel 

chains or part of them, existing or new facilities, short or ling time horizon. 

Lastly, its potential to examine even more in depth issues pertinent to the 

infrastructure development. The present state of the algorithm examines the 

design of a hydrogen delivery system taking into account all the necessary 

parameters for a detailed simulation. These parameters were determined from 

both the literature and discussions with experts. However, the model is designed 

in such a way that with little or any modification can include more parameters. 

For example, as it can be seen from the application of the model in subsequent 

chapters the simulations do not include the dispensing stage. However, if it is 

desired the model is able to support this inclusion. The latter inclusion is one of 

those that do not require any modification. 
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Having described and explained the hydrogen infrastructure development 

algorithm, the next Chapter presents the application of the model and aims to 

show and test its performing capability. 
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CHAPTER 
Testing 

5.1 Aim and Scope 

The next step after constructing a model is to check the accuracy of its 

predictions. The testing procedure is necessary as it evaluates the model's 

credibility, validity and uncertainty of its results. Moreover, it assesses the model's 

sensibility based on scientific knowledge, whether the assumptions are reasonable 

and the predictions match the observed data. A model is a representation of a 

system that allows for investigation of the behaviour of the system and the 

prediction of future outcomes. Thus, a model is not reality but an imitation of 

reality and considering that the reality itself is not an ideal experiment its imitation 

has by definition flaws. However, whilst "all models are wrong" (Sterman, 2000), 

there are degrees of wrongness and it is important to rule out some basic errors. 

This elimination is feasible through testing. It is worthwhile to mention, though, 

that testing can never be complete, it can only show the presence of errors, not 

their absence. 
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In this Chapter the hydrogen infrastructure model is subject to testing. The focus 

of this Chapter is how the optimal decisions, the outputs, are produced from the 

input data, rather than on how the input data are gathered or estimated. Naturally, 

as the input data determine in a great extent the outputs it is important to be 

representative and valid for real cases. The theoretical assumptions and values for 

all parameters are showed and explained and the results are presented and 

interpreted. The interpretation and discussion of the results are carried out with 

particular attention to the behaviour of the model rather then the numerical 

outcomes. 

5.2 Testing Strategy 

There are three basic criteria for evaluating a model: correctness, completeness 

and consistency. A model is correct when it is equivalent to some reference 

standard that is regarded as a reliable source. This standard may be either a 

reference model that serves as a basis for determining whether the model under 

test is behaving correctly or a human expert who judges based on its knowledge. 

A model is characterised complete if it includes all the elements that are 

considered necessary in order to describe the system being modelled sufficiently. 

The decision whether an element is necessary or not depends on the level of 

maturity and scope of the modelling. Lastly, a model is consistent if there are no 

contradictions among the elements of the model. Consistency depends on 
whether the relationships among elements allow a concept to be represented in 

more than one way (Sterman, 2000). 

There are several ways to test a model. Each approach has its limitations. A model 

can be compared to reality by comparing its results to historical behaviour. By 

entering data from the past into a model events that have already occurred can be 

simulated and the results can be compared and thus prove the validity of the 

model. This is a useful test only in cases where past data are available. Apart from 

the past, the results of a model can be compared to reality by looking at the 

future. The prediction of a model can be verified by waiting until the event that 

was modelled occurs and its behaviour is according to the model's predictions. 

This method is more limited than the previous approach as it is restricted to the 

modelling of events with a very short time horizon. Thus, it can certainly not be 
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applied to the hydrogen infrastructure development model as the creation of a 

fuel infrastructure is a venture with a large timescale. Besides, the problem of this 

study is modelled aiming to foresee the best solution for the future and thus to 

provide a tool for the formulation of the appropriate policy in the present. 

Another way of testing a model is by comparing its results to a reference model 

that represents in the same way the same system. This method is not applicable in 

the present study as there is no other algorithm addressing the issue of the 

development of a hydrogen delivery system in such a way as the one presented in 

this study. Naturally, some general tendencies that have been concluded in other 

studies may be compared, for example the predictions that some technologies are 

more expensive than others. However, this model does not only compare 

technologies and pathways but produces a development plan which is formed in a 

different way than in any other study. 

The hydrogen infrastructure development model has undergone several tests 

from the early stages of its development until the point it was completed. Testing 

is not a judgemental step at the end of the model development process but is a 

continuous process that guides development. In order for the model to reach the 

point of completion it has passed through testing that varies depending on the 

part of the algorithm that is under examination. Testing was implicit to the bug-

catching process that occurred throughout the modelling process and included 

dimensional consistency, checking output against actual outcomes, bug fixing, 

correct representation in the GUI, robustness under extreme conditions and 

sensitivity analysis. 

5.2.1 Dimensional Consistency 

The first check to make on a model is for dimensional or unit consistency in 

order to avoid situations where metres added to metres per second and ensure 

that all functions are consistent. This model is dimensionally consistent. The input 

data that enter the model pertinent to costs can be entered in any currency as long 

as all the costs are converted into the selected currency. The amount of produced 

hydrogen is given in Watts (W). So, the demand is entered in W, the costs are 

given in any currency per W, for example L/W and the transportation costs are 
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entered in any currency per kilometre, for example L/km, with the exception of 

electricity transportation that is given in any currency per W, for instance VW. 

5.2.2 MATLAB Software Check 

The mathematical model is implemented into software that was built in the 

MATLAB environment. When writing code in MATLAB, as in many other 

software, MATLAB returns warnings reporting errors in case mistakes have 

occurred. Thus, the software that implements the mathematical model was tested 

automatically by the MATLAB environment. The fact that the model runs 

without errors signifies that the code is correct. Nevertheless, based on this fact it 

can not necessarily be drawn conclusions for the quality of the code, for example 

whether it has a long or short simulation time. Moreover, if the mathematical 

model is able to run correctly in the software it shows that the software is built 

correctly but does not imply that the mathematical model is correct. 

5.2.3 Robustness 

The model has to behave robustly but intuitively in extreme conditions. For 

example, if the cost of a pathway falls to nearly zero, the model must select this 

pathway to cover the demand or if there are limited resources and large demand 

the model must conclude that the resource of the geographical region are not 

sufficient to satisfy the demand. This is necessary to be carried out for all 

parameters. Two variables were selected and their interaction was compared to 

their expected relationship. The model performed as expected as each parameter 

was varied in this way. Robustness testing was quite useful as it showed a number 

of bugs, which were fixed. 

5.2.4 Sensitivity Analysis 

Sensitivity analysis is conducted when the model is complete to determine the 

amount and kind of change produced in the model predictions by a change in a 

model parameter. Performing a sensitivity analysis can show if a model resembles 

the system under study, the factors that mostly contribute to the output 
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variability, the model's parameters that are insignificant, if there is a region in the 

space of inputs for which the model variation is maximum and if and which 

factors interact with each other (Sterman, 2000). Sensitivity analysis has been 

performed twice. A limited analysis is described in this Chapter and an extensive 

analysis is presented in Chapter 7. 

5.2.5 Illustrative Example 

As the predictions of the infrastructure development model cannot be verified 

from any other reference model the only way to prove that is a valuable and 

reliable tool is by running a simplified simulation, the outcomes of which could 

almost be predicted even without the use of the model, and compare the actual 

outputs with model's outputs. Thus, the behaviour and performing capability of 

the model could be illustrated and the validity of the results could be proved. In a 

way this test includes and shows the results of all other tests that assist in the 

formation of the final, complete and correct state of the model that produces 

credible outcomes. So, this process is more like a proof than a test. 

5.3 Example Formulation 

The simplified simulation includes GB as the geographical region under study and 

aims to produce a hydrogen infrastructure development plan for London, which 

serves as the urban centre that constitutes the market. More specifically, the 

example illustrates the development of a renewable hydrogen supply network able 

to deliver hydrogen fuel to London based on one renewable energy source and six 

different fuel chains. The selected renewable energy source is onshore wind 

energy. Although the selection of the energy that is used as a hydrogen primary 

energy feedstock may be considered relatively arbitrary, there is a reason behind it. 

As wind power has boomed significantly over the past years, likewise its 

technology has been greatly developed. It is a promising energy source as it 

combines mature and relatively low cost (compared with other renewable energy 

sources) electricity-generating technologies. Moreover, Great Britain is very well 

endowed with wind energy resources and thus wind power may be one of the 

main contributors in the production of hydrogen fuel. 
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The six fuel chain configurations under study are the following: 

1. Electricity generated by wind energy is used for electrolytic hydrogen 

production that is followed by compression and storage in tanks as a 

compressed gas. It is transported by road (trucks) and stored in cylinders 

at the forecourt; 

2. Wind-based electrolytic hydrogen is compressed and stored in tanks. 

Hydrogen is transported by rail and stored as compressed gas in cylinders 

at the forecourt; 

3. Wind-based electricity is used to generate hydrogen through electrolysis 

that is stored in metal hydrides in tanks and then delivered by road at the 

refuelling station where it is stored in metal hydrides; 

4. Wind-based electrolytic hydrogen is compressed and transported through 

pipelines at the refuelling station; 
5. Wind-based electrolytic hydrogen is liquefied and stored in cryogenic 

vessels followed by road transportation (trucks) and storage in vessels at 
the forecourt; 

6. Wind-based electrolytic hydrogen is liquefied and stored in tanks. It is 

transported by rail and stored in tanks at the delivery point. 

All the configurations include on-site electrolysis. In terms of storage all but 4 

assume on-site and forecourt storage. Rail option has not captured high attention 

as hydrogen transportation method but because it is a technically viable option 

(Amos, 1998) is included in the simulation. 

These pathways are illustrated schematically in Figure 5.1. The technologies that 

form the chains are technologies that are commercially available and have been 

used either in greater or lesser extent in projects. However, a slight exception 

may be considered that of the rail transportation option not for its feasibility but 

for its non-existent application as a hydrogen transport alternative so far. 
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Figure 5.1: Fuel chains under study 

It can be witnessed that the primary energy feedstock and the hydrogen 

production technology are the same for all fuel chains. For the chosen 

production method, there are two advanced electrolyser technologies that can be 

used, the alkaline and the polymer electrolyte membrane (PEM) electrolyser. 

However, in this simulation only the alkaline is used. The reason for choosing the 

former type is its suitability for large systems. PEM electrolysers are currently 

available for small capacities and thus can not support the development of a fuel 
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infrastructure that requires large amounts hydrogen fuel. However, they may be 

appropriate for forecourt electrolysis but since that option is not considered in 

any of the six chains PEM technology is not included in the example. In the case 

where pipelines are used as a transportation method (fuel chain number 4) it is 

assumed that pipelines also serve as a storage means. This is feasible by changing 

the operating pressure which causes a change in the quantity of hydrogen gas 

contained in the pipeline network (Amos, 1998). 

The collection of technical data which are included in the chains was achieved by 

means of literature and commercial information review. Most of the required 

economic data were mainly obtained from a study analyzing the cost of hydrogen 

infrastructure for Buses in London undertaken at Imperial College London 

(Shayegan, 2003). For the technical data, efficiencies, the values from two reports 

were used (Amos, 1998; Hawkins, 2006). Table 5.1 lists the main parameters and 

their corresponding values that are used in the example. 
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Parameter Technology Value 

Primary Energy Feedstock 
Wind Energy 

- Capital Cost 
- O&M Cost 
- Capacity Factor 

- 1120 E/kW 
-15 E/kW 
- 30% 

Hydrogen Production 
Electrolysis 

- Capital Cost 
- O&M Cost 

- 600 E/kW 
- 12 E/kW 

- Efficiency - 72% 

Hydrogen Conversion - Capital Cost - 393.923 E/kW 
Compression - O&M Cost - 27.574 E/kW 

- Efficiency - 85% 

Hydrogen Conversion - Capital Cost - 1048 E/kW 
Liquefaction - O&M Cost - 52.4 €/kW 

- Efficiency - 70% 

Hydrogen Storage - Capital Cost - 292.431 E/kW 
Compressed Gas - O&M Cost - 2.9 E/kW 

- Efficiency - 85% 

Hydrogen Storage - Capital Cost - 31.69 E/kW 
Liquid Hydrogen - O&M Cost - 0.22 E/kW 

- Efficiency - 70% 

Hydrogen Storage - Capital Cost - 905.76 E./kW 
Metal Hydrides - O&M Cost - 9.05 E/kW 

- Efficiency - 80% 

Hydrogen Forecourt - Capital Cost - 292.431 E/kW 
Storage - O&M Cost - 2.9 E/kW 
Compressed Gas - Efficiency - 85% 

Hydrogen Forecourt - Capital Cost - 75.67 E/kW 
Storage - O&M Cost - 0.52 E/kW 
Liquid Hydrogen - Efficiency - 70% 

Hydrogen Forecourt - Capital Cost - 1,616 E/kW 
Storage - O&M Cost - 16.16 E/kW 
Metal Hydrides - Efficiency - 80% 

Hydrogen Transport - Capital Cost - 272.12 E/kW 
Compressed Hydrogen by Road - O&M Cost - 1.52 E/kW 

- Efficiency - 85% 

Hydrogen Transport - Capital Cost - 400.7 E/kW 
Compressed Hydrogen by Rail - O&M Cost - 4 E/kW 

- Efficiency - 85% 
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Hydrogen Transport 
Liquid Hydrogen by Road 

- Capital Cost 
- O&M Cost 
- Efficiency 

- 33.35 £/kW 
- 0.35 E/kW 
- 69% 

Hydrogen Transport 
Liquid Hydrogen by Rail 

- Capital Cost 
- O&M Cost 
- Efficiency 

- 74.06 f/kW 
- 0.74 VIM 
- 69% 

Hydrogen Transport 
Metal Hydrides by Road 

- Capital Cost 
- O&M Cost 
- Efficiency 

- 295 flicW 
- 2 E./kW 
- 85% 

Hydrogen Transport 
Pipeline 

- Capital Cost 
- O&M Cost 
- Efficiency 

- 2,692 Ginn 
- 53.84 f/km 
- 95% 

Tolerance - Upper Limit 
- Lower Limit 

- 2 MW 
- 2 MW 

Table 5.1: Parameters and values of the example 

As it is shown in the table all the values are in euros. As the selected supply 

centre is London the result will be converted to UK pounds. All the capital costs, 

except from those of road and rail transport, include the cost of the equipment 

and the installation cost. For reasons of simplicity the expansion costs are 

assumed the same as the capital costs. However, for the majority of the 

technologies this is not an assumption but a fact. 

The cost of road and rail transport are assumed 0.508€/km and 1€/km, 

respectively (Shayegan, 2003). For the transportation of the fuel by road and rail 

it is assumed that the existing road and rail networks are used. The possibility of 

extension of the network is not included. Naturally, in the case of pipelines that 

there is no existing network the construction of a pipeline system is considered. 

Apart from the length, the capital cost of the pipelines depends on the diameter 

of the pipes. The cost that is included in this example corresponds to pipelines 

with flow of around 274 kg/h. The resource potential of the selected renewable 

energy source is given by using a map showing the average wind speeds of Great 

Britain. 

Apart from the parameters in the table there is only one more parameter that is 

included in the example, the demand for hydrogen energy. Figure 5.2 shows the 
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hydrogen demand for London over the planning horizon which spans from 2010 

to 2060. It is considered that at the end of the time horizon the infrastructure will 

be able to produce sufficient amount of hydrogen to fuel all vehicles in London. 

The reason for assuming a complete switch to renewable hydrogen fuel is to test 

the model under extreme conditions. In the beginning of the timescale hydrogen 

demand is expected to be restricted to fleet vehicles and then will gradually be 

increased along with the number of fuel cell vehicles. The demand is assumed 

that increases linearly over the course of the fifty years and thus is given by: 

Demand :y = ax + b 

where a is the rate of change of the demand, x is time and b is the initial demand 

at the beginning of the introduction of hydrogen fuel into London. The demand 

figures for the requirements in transport energy of London were obtained from 

Greater London Authority (TfL, 2005). It is assumed that the road transport 

energy demand is steady over the planning horizon and thus the model is based 

in current transport energy figures. That means that the current demand is 

considered the amount of hydrogen fuel that is aimed to be delivered by the 

infrastructure at the end of the time horizon. 

Figure 5.2: Hydrogen demand over the 50 years time horizon 
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Initially, it is assumed that around 2000 cars run on hydrogen fuel. These cars are 

all considered to be fuel cell vehicles. This is clarified because although internal 

combustion engine vehicles may also be powered by hydrogen, they have 

different energy consumption. In the present example all calculations are made 

using the energy consumption of fuel cell vehicles which is 1.2 MJ/km. In order 

to meet the initial demand the infrastructure has to be able to produce around 

8.3GWh of hydrogen energy in the first year. This is the value of b as it can be 
seen in the equation included in Figure 5.2. 

Having as a starting point 2000 vehicles means that in order to achieve a complete 

switch to hydrogen in the transport sector (of London) by the end of the planning 

horizon, a 268 GWh increase in hydrogen energy is required every year. This is 

translated in an increase of around 64 thousands cars per year. Thus, at the end of 

the time horizon, year 2060, the infrastructure is required to supply 13,145 GWh 

of hydrogen energy. This energy is sufficient to power around 3 million vehicles. 

Figure 5.3 shows the increase of fuel cell vehicles per year during the 50-year time 
horizon. 

Figure 5.3: Fuel cell vehicles introduction over the 50-year time horizon 

Figure 5.4 illustrates a screenshot showing the appearance of the GUI for the 

example under study. The fuel chains start from the top left with onshore wind 
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energy, which is the selected primary energy feedstock (red colour). The first two 

steps are the same for all the fuel chains that is why they are only present once. As 

it has been mentioned in section 4.12 the positions in which the technologies are 

placed are abstract. All the fuel chains conclude at the same point that is London, 

the supply centre, which is represented by a red dot in the map. The screenshot in 

Figure 5.4 shows how the data of Table 5.1 are entered into the model. The 

screenshot presents all the necessary parameters and their values that are included 

in this simulation. 

Figure 5.4: GUI screenshot of simulation 

For reasons of legibility the following table (Table 5.2) shows the matrices of one 
technology of each step. These matrices are simplified and adapted to the present 

simulation. In the primary energy feedstock matrix the last parameter, called 

maximum site, is the maximum capacity of the renewable energy facility. This 

parameter is necessary in order to avoid unrealistic outcomes. For example, if this 

parameter was excluded the model would have concluded that the best solution 

would have been the construction of a massive wind energy park that would have 

produced all the required demand. In terms of mathematics this is correct but in 

reality this is impractical. For this reason, a maximum size of onshore wind parks 
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is included that is assumed to be 50MW. Although in the last two years in the UK 

there are onshore wind parks with larger than 50MW capacity (with the largest at 

Hadyard Hill in South Ayrshire with an impressive 120MW capacity 

commissioned in 2006), the majority is less than 50MW (BWEA, 2006). 

The parameter location which is present in all matrices, apart from the 

transportation stage, refers to the position of each step. There are four different 

possibilities as inputs for this parameter. Firstly, when the parameter is set to 
automatic, as in the case of the primary energy feedstock, the position is 

determined based on the maps. Secondly, when the parameter is set to previous, the 

position of the technology is determined after the simulation and is selected 

according to the model's predictions. Thirdly, when the input is market, as in the 
case of forecourt storage, the position of the technology is predetermined. This 

position is at the point of the supply centre. Lastly, when the user wants to 

include a stage at a certain point has to locate that stage at the correct point in the 

map and set the parameter location to user. 

At the left hand side of the screenshot the selected infrastructure pattern can be 

seen. The number of map segmentation iterations is 6, which produces 64 

segments. The time horizon of the simulation is 50 years. The infrastructure 

development has been divided in two periods of 25 years each. The selected 

timescale is considered rational taking into account that the simulation aims to 

produce a plan for an infrastructure that will be able to cover London's road 

transport demand. The development of such an infrastructure is a project with 
long-term time horizon. 
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Primary Energy Feedstock 
Name Wind electricity 
Map Onshore wind energy map 
Location Automatic 
Capital Cost 1120 
Operation Cost 15 
Expansion Cost 1120 
Capacity Factor 0.3 
Maximum Size 50000 
Lifetime 25 

Production Technology 
Name Electrolysis 
Capital Cost 600 
Operation Cost 12 
Expansion Cost 12 
Efficiency 0.72 
Location Previous 
Lifetime 15 

Conversion Technology 
Name Compression 
Capital Cost 393.923 
Operation Cost 27.574 
Expansion Cost 393.923 
Efficiency 0.85 
Location Previous 
Lifetime 25 

Storage Technology 
Name Compressed gas 
Capital Cost 292.432 
Operation Cost 2.9 
Expansion Cost 292.432 
Efficiency 0.7 
Location Previous 
Lifetime 10 
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Transport Technology 
Name Compressed gas by road 
Capital Cost 272.12 
Operation Cost 1.52 
Expansion Cost 272.12 
Efficiency 0.85 
Lifetime 40 

Market 
Name London 
Demand 15302.23, 951.278 
Tolerance 2, 2 
Location User 

Table 5.2: Input data into GUI 

5.4 Results 

Running the model returned the results shown in Figure 5.5 and Table 5.3. GB 

has been segmented into 64 regions and each one is represented by a different 

colour in the map. The straight lines in Figure 5.5 show the starting points of the 

fuel chains that are the locations of the primary energy feedstock production 

plants2. The positions of the starting points are shown in the screenshot and their 

exact locations, namely the geographical coordinates, are specified in the text 

editor that includes all the numerical results that are not shown in the screenshot 

due to space reasons. The fuel chain configurations that are represented with 

green lines are those that are selected. The other chains are with black coloured 

lines, indicating that are not selected. The pathways appeared in this figure 

comprise the fuel chains that have been selected throughout the planning horizon 

and thus form the least-cost infrastructure development plan. 

2 In order to avoid any misunderstanding, the lines in the electronic form of the figure start correctly at the 
mainland. However, previous printed forms of similar figures have shown some lines starting from the 
shore near the mainland. In case this happens to this figure as well, the reason why it happens is the 
printing procedure. 
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Figure 5.5: Screenshot of the results of the renewable hydrogen infrastructure model 

The straight green lines represent the fuel chains that are necessary to be formed 

in order the infrastructure to supply the required amount of hydrogen and the 

four green lines symbolize the four different chain configurations. For the 

establishment of a hydrogen delivery system, the model selects the formation of 

fuel chains of four out of the six configurations under study. Overall, the model 

activates 207 fuel chains that break down to: 

58 fuel chains of configuration 1; 

➢ 58 fuel chains of configuration 2; 

➢ 33 fuel chains of configuration 3; 

➢ 58 fuel chains of configuration 4; 

➢ 0 fuel chains of configuration 5; 

➢ 0 fuel chains of configuration 6. 

Fuel chain configuration 1 

This configuration is selected from the beginning of the infrastructure 

development. The model activates 33 fuel chains of this configuration operating 

187 

about 



Testing 

at maximum capacity, namely the starting point is a wind energy farm of 50MW 

capacity that is considered the maximum plant capacity. This is not a surprising 

result as this configuration includes technologies that combine relatively 

reasonable costs with good efficiencies. These fuel chains are chosen to operate 

throughout the planning horizon. In terms of the geographical allocation of the 

primary energy feedstock production, most of these 33 fuel chains are allocated in 

the segments that include areas of the highest wind resource of GB. These areas 

are mainly in the northern part of GB and some in the eastern part. 

In the middle of the time horizon, the increasing demand is partly satisfied by the 

activation of an extra 25 fuel chains of configuration 1. These pathways start at 

the 25th year with maximum capacity and continued until the end of the horizon. 
The model activates fuel chains of this configuration in all but six segments. 

These six segments cover the Midlands. As it can be seen in the onshore wind 

energy map in Appendix A, the wind energy resource in that area is not 

particularly good as the annual mean wind speed is around 5-6m/s. So, in order to 

obtain a wind park of 50MW capacity in these segments more wind turbines are 

required than in segments of better resource. That means that a 50MW wind park 

in these segments is more expensive than a 50MW wind park in segments of 

better resource. This reasoning is incorporated into the model and the exclusion 

of fuel chains in these six segments proves the model's correct behaviour. 

Fuel chain configuration 2 

Fuel chains of this configuration, like chains of configuration 1, are selected from 

the early years of the introduction of hydrogen fuel. Thirty three fuel chains are 

selected for activation with capacity that of the maximum allowed. These chains 

are activated at this capacity until the end of the horizon. Again the geographical 

allocation of wind energy parks excludes the segments of poor wind energy 

resource. 

At the second period, 25 more fuel chains of this configuration are formed 

operating at the maximum allowable capacity. These chains operate throughout 

the second period. As it can be seen from Figure 5.1, fuel chains of configuration 

1 and 2 are identical apart from the transportation stage that is cheaper in option 
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1. Thus, as all other parameters are the same this stage determines which 

configuration is the cheapest option. As it can be witnessed from the values in 

Table 5.1, configuration 1 is more economical than configuration 2. Generally, for 

the given data these two configurations may be regarded the more economic 

options. This conclusion is in total agreement with the predictions of the model 

that justifiably preferred more fuel chains of configurations 1 and 2. However, the 

number of fuel chains of configuration 4 is also 58 but the difference is that 

although the total number for the whole horizon is the same, the amount of 

hydrogen produced is not the same. Pathways from configuration 1 and 2 

produce more hydrogen. 

A reasonable question arising at this point is why the model does not activate only 

chains of configuration 1 that is the cheapest option and activates chains of all 

configurations. The answer lays in the design of the model. The model has been 

built in such a way that prohibits the creation of identical fuel chains in the same 

region due to mathematical reasons and also because this is not considered 

realistic. Thus, the maximum number of chains of each configuration is equal to 

the number of segments. So, when a fuel chain has been selected for all segments 

and the demand has not been covered, the model in order to meet the remaining 

demand activates the second least cost option. In this case, the maximum number 

of fuel chains of every configuration is 64, which is the total number of segments. 

According to the results, the economic advantage of configuration 1 over 2 due to 

the transport stage is outweighed by the economic advantage of 2 over 1 due to 

the primary energy feedstock stage in certain segments. More specifically, for the 

same segment the transport stage cost difference makes option 1 cheaper than 

option 2 and thus the model selects the first option. However, between the 

activation of an option 1 chain in a segment of poor resource of 1 and of option 2 

chain in a segment of good resource the model chooses the second option. This is 

the reason why the model does not choose to activate option 1 in the six 

Midlands segments. 
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Fuel chain configuration 3 

This configuration is selected in the middle of the planning horizon. The model in 

an attempt to meet the increasing demand of the second period activates the 33 

fuel chains of this configuration with capacity 18. From all the selected 

configurations this one is selected only at the second period. By looking at Table 

5.1 it can be argued that this fuel chain configuration is more expensive than 

configurations 1 and 2. The reason why the model selects these chains is that 

when the cheapest options have already been selected (as the number of 

segmented regions is 64, 64 is the maximum number of a fuel chain 

configuration), the model is obliged to activate the next least cost configuration 

because it has to satisfy the demand. That means that if the map was segmented 

in more regions the selection might have been different. However, the capabilities 

of the pc that the model runs did not allow for higher map segmentation 

iterations. In this case, though, the cheapest options, configuration 1 and 2, have 

not been selected 64 times but 58, however the model instead of selecting the 

remaining six activates chains of configuration 3. This decision shows that the 

model takes into account all the necessary factors as the selection of a relatively 

more expensive configuration in a high resource segment is better than of a 

cheaper option in a low resource segment as is the case of these six segments. 

Fuel chain configuration 4 

The remaining demand for the first period of the infrastructure is covered by the 

activation of 33 fuel chains of this configuration having as a starting point 30MW 

wind farms. After the 25th year these fuel chains are expanded to 50 MW and at 

this capacity operate during the second period (from year 26 to year 50). In the 

second period, 25 more fuel chains of this option are also selected with the 

maximum plant capacity. Although at first this configuration seems quite 

expensive due to the transport stage, it has two advantages: firstly, the 

considerably higher efficiency of the transportation method comparing to other 

options and secondly the lack of storage. The exclusion of storage step eliminates 

storage costs and further reduction in the amount of delivery hydrogen. More 

specifically, every stage in a fuel chain has a specific efficiency and thus inevitably 

an amount of hydrogen is lost in every stage. By excluding storage (both onsite 
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and forecourt) this loss is minimized and considering that this configuration has 

the highest overall efficiency makes it fairly attractive. 

Fuel chain configuration 5 

Fuel chains of this configuration are not selected neither at the first nor the 

second period. The reasons why this configuration is not preferred is firstly the 

considerable more expensive conversion technology and secondly the lower 

efficiencies in all stages than the other options, apart from the primary energy 

feedstock production and hydrogen production stage that are common for all 

configurations. Thus, although this configuration is more economical in some 

stages, such as the storage and transport stage, its overall efficiency outweighs this 
economic advantage. 

Fuel chain configuration 6 

The difference between this configuration and configuration 5 is the transport 

stage. The latter has cheaper transport cost than configuration 6. Thus, since 

configuration 5 is not selected reasonably configuration 6 is not selected as well. 

Generally, the model does not activate any fuel chain that includes liquid 

hydrogen technologies. For the present simulation fuel chains of configuration 5 

and 6 might have been selected if the demand would have not been covered by 

activating 64 fuel chains of other configurations and thus the model would have 

been obliged to activate more chains whether they are expensive or not to cover 

the demand or in the case there is a segment with such a high resource that its 

exploitation is preferred even for configurations that are not very efficient. 

Conclusively, according to the results the least-cost renewable hydrogen 

infrastructure development for London within the 50 years time horizon consists 

of 207 fuel chains. The overall cost for building a renewable hydrogen 

infrastructure able to deliver sufficient hydrogen energy to power all the vehicles 

of a large metropolitan centre like London amounts to 25.5 billion pounds (36.8 

billion euros). This capital investment includes all the necessary costs for the 

entire infrastructure development and operation throughout the 50-year time 

horizon. This is not a discounted cost. 
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The following section includes a discussion of the results and the behaviour of the 

model explaining the reasons why the model selected the aforementioned 

development plan and thus establishing the validity of the model. 

5.5 Discussion 

According to the predictions of the model, the hydrogen delivery network that 

would be able to meet London's demand consists of 207 fuel chains. At first 

glance this number might seem unrealistic but there are two arguments that may 

improve this picture. Firstly, it should be reminded that in the present example it 

is assumed that at the end of the 50 years time horizon a complete switch to 

hydrogen shall be achieved. Dealing with a problem of such a high demand, it is 

sensible to expect that the appropriate infrastructure would be of a large size in 

order to be able to deliver hydrogen energy to fuel all the vehicles of a large urban 

centre. Thus, an infrastructure with a small number of fuel chains for this 

problem is highly unfeasible. 

Secondly, the model develops an infrastructure based solely on one renewable 

energy source. The nature of this energy source is one of the factors that 

determine the total number of fuel chains that comprise the infrastructure. More 

specifically, the features of onshore wind energy that affect the fuel chain number 

are the capacity factor and the maximum allowable capacity of a wind energy 

plant. For the former the value of 30% is used (BWEA, 2006) and for the latter 

50 MW is assumed the maximum capacity of a wind park. For example, if the 

primary energy feedstock was offshore wind energy because of the higher capacity 

factor (40%, BWEA, 2006) and the larger maximum allowed capacity (100 MW) 

the total number of fuel chains would have been considerably smaller. 

A reasonable question arising by observing the results is why the model did not 

activate only chains of configuration 1 that was the cheapest option and activated 

chains of all configurations. The answer lays in the design of the model. The 

model has been built in such a way that prohibits the creation of identical fuel 

chains in the same region, as this was not considered realistic. Thus, the maximum 

number of chains of each configuration is equal to the number of segments. So, 

as configuration 1 fuel chains had already been selected for the areas with the 
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highest wind resource in all segmented regions, the model in order to meet the 

demand activated the second least cost option, which is that of configuration 2 

fuel chains. 

As the maximum number of chains of each configuration is equal to the number 

of segments, the infrastructure pattern is affected by the number of segments. 

However, this is true only for a small number of segmented regions. Increasing 

the number of segmented regions makes the results insensitive to this behaviour. 

This is true as the size of the segments is inversely proportional to the number of 

times a configuration can be used. In this simulation the maximum number of 

chains of each configuration is 64, which is the number of segments. The number 

of regions that the map is segmented in this study is determined by the capabilities 

of the computer. If the map had been segmented to more than 64 regions, the 

model would have selected more fuel chains of configuration 1. 

It is apparent from Table 5.1 and from the predictions of the model that 

configuration 1 is cheaper than configuration 2. However, this conclusion is 

relative. It is true under certain circumstances. More specifically, the comparison 

leads to that conclusion if the configurations are compared for the same position 

in the map. To put it differently, configuration 1 is always more economical than 

configuration 2 if all the costs are included except from the transportation cost. 

The latter is not the cost of the transport equipment technology, for example a 

truck, but the cost to travel the fuel a certain distance. So, when the model 

compares configurations 1 and 2 in the same point, which means the same 

distance from the market, the first prevails, in other cases the distance becomes a 

factor. This is the reason why the model in the first period does not activate 64 

and 3 chains of configurations 1 and 2 respectively but activated 33 of each. So, 

up to a point in the map the cost of the transport equipment prevails the distance 

from the starting point of the chain to the market and makes configuration 1 the 

best option, from that point onwards the distance outweighs the cost difference 

and makes configuration 2 the more suitable option. 

Broadly speaking, from the results of the model it may be concluded that from 

the six configurations under examination, a sequence may be formed showing the 
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configurations in terms of there attractiveness. Starting from the optimal this 

sequence is: 

> configuration 1; 

> configuration 2; 

> configuration 4; 

> configuration 3; 

> configuration 5; 

> configuration 6. 

It is very important to mention that this sequence is valid only under certain 

circumstances. More specifically, it is valid when the configurations are compared 

as steady state chains. This sequence is in agreement with the expected outcomes 

as these can be predicted by looking at Table 5.1 that shows the parameters and 

their values and gives a vague indication on the economics of the configurations. 

For a more solid verification as some issues may not be evident by looking at the 

table the comparison was also carried out manually. The mathematical 

calculations based on the data of Table 5.1 are in accordance with the sequence. 

These calculations justified some actions of the model that at first they may not 

be understood, for example the reason why the model finds configuration 3 more 
attractive than configurations 5 and 6. The former includes a storage option 

(metal hydrides) that is considerably more expensive than the others (liquid 

storage). However, configuration 3 has better efficiencies than configurations 5 

and 6 and as the demand level of the simulation is high and the amount of 

hydrogen is large the difference in the amount of fuel that the configurations are 

able to deliver is substantial. Conclusively, the cost difference due to the storage 

cost factor is outweighed by the efficiency factor. 

However, the model does not only compare steady state fuel chains but compares 

and evaluates fuel chains taking into account region-specific framework 

conditions. These conditions make a configuration that is considered more 

economical at one point to be more expensive at another. The example showed in 

this Chapter is a relatively simple simulation with a limited number of 

technologies — simple for the capabilities of the model — in order to show the 

behaviour of the model and how it takes into account all the factors and the 
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trade-offs between them in order to obtain the results. So, the configuration 

sequence is not of particular importance as there is no optimal configuration 

because this is very relative but there is an optimal infrastructure development 

plan. The model tries to consider all the input ingredients (fuel chain 

configurations and region specifications) in order to create the best possible 
recipe (development plan). 

One of the factors that determine the running time of the model is the complexity 

of the simulation. For very simple simulations the model produces the results in a 

satisfactory time, for complex simulations that represent large scale problems the 

running time of the model is larger. The complexity of a simulation does not only 

refer to the number of fuel chain configurations but also the number of segments 

and periods. For medium and large scale problems the model requires computers 

with minimum 1024MB/Mo RAM. The simulation of this Chapter was run in a 

computer of 512MB/Mo RAM. Although the simulation is simple, the computer 

was not able to produce results for larger number of map segmentation iterations 
and periods. 

In summary, from this simulation the following main conclusions can be drawn: 

➢ the analysis of the results derived from the model verifies the model's 

predictions. Running the model for a simplified simulation allowed 

showing and understanding the behaviour of the model and how the 

model deduces the results. The actual results of the simulation derived by 

the model are consistent with the expected results derived both by logic 

and mathematical calculations; 
➢ The onshore wind energy resource of GB is able to satisfy all the demand 

for hydrogen fuel in London. This is not a surprising conclusion as the 

simulation has only one demand centre. Although this market has a high 

level of demand the geographical region under study is quite large and 

particularly endowed with wind energy resources. However, the example 

considered that the total available resource is not restricted by factors, 

such as the exploitation of the resource for electricity or combined heat 

and power. Although these factors were not included, the fact that each 
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configuration can be activated only once in every segment automatically 

restricts the resource; 

> Examining the least-cost way to develop a fuel infrastructure is a complex 

task that depends on many factors. Even in this example that included 

only 6 fuel chain configurations and one renewable energy source the 

results can not be easily obtained without the use of the model. Actually, 

results from a steady state comparison can be drawn but results from an 

economic and resource optimisation is quite difficult and extremely time-

consuming to be obtained without the use of the model. 

5.6 Sensitivity Analysis 

The overall cost of a hydrogen infrastructure development is affected by various 

factors. Naturally, it is heavily dependent on the infrastructure size, which in turn 

is determined by the demand of the supply centre. Some factors, like O&M costs, 

influence the overall cost but do not affect the choice of configurations that form 

the infrastructure. These factors usually have a relatively small impact on the total 

cost. This is reasonable because, for example the O&M cost is a fairly small factor 

comparing to other factors such as the capital cost that shapes to a great extent 

the overall cost of a chain. There are, though, other factors that not only have an 

effect on the total cost but their values greatly determine which fuel chain 

configuration is selected. The latter category includes factors such as the efficiency 

of the technologies or the maximum allowable size of the production plant. There 

is not a golden rule indicating which factor plays more important role as this is 

quite relative. A primary energy feedstock technology with relatively low capital 

cost, efficiency and maximum allowable plant size may be outweighed, and thus 

dismissed, by another option which is more expensive but has higher efficiency 

and/or maximum plant size. 

The total cost is sensitive to the number of regions the GB map is divided. 

Running the model several times for different map segmentation iterations shows 

that the relationship between the overall cost and the number of regions is 

conversely proportional. Thus, as the number of segmented regions increases the 

total cost decreases. This behaviour is showed in Figure 5.6. For Figure 5.6, the 

number of periods is constant for all runs and equal to 2. 
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Figure 5.6: Effect of map segmentation iterations on total infrastructure cost 

The reason for this behaviour is that when the map is segmented in more areas 

the maximum number of use for each configuration is larger as every 

configuration can only be used once in each segment. When all the fuel chains of 

the cheapest option have been activated and the demand has not been covered 

the model is obliged to activate more fuel chains to produce the required amount 

of fuel from the second cheapest option. So, when the number of segments 

increases the model activates more of the economical fuel chains and thus the 

overall cost decreases. More segments means better optimisation as the selection 

of fuel chains is not affected by the maximum number of use constraint. This is 

evident in Figure 5.6. After a certain point the overall cost is slightly sensitive to 

the number of regions. After this point, the total cost is not further minimized 

and can be considered steady. 

This point is different for every simulation and it depends on several factors, such 

as the demand and the number of fuel chains under study. For example, if the 

demand of the simulation was considerably smaller this point would be more 

towards the left side of the graph (without changing the number of fuel chain 

configurations). The same effect would have if the number of fuel chain 

configurations under examination was larger (without changing the demand). So, 

the elimination of the maximum number of use constraint is not necessarily 
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achieved with low demand level or large number of pathways but from all the 

specifications that form a simulation. There is though one factor that removes the 

constraint regardless of the simulation characteristics. This is a large map 

segmentation iteration number that produces a substantially large number of 

segments. Figure 5.6 is not based on the simulation's results simply because for 

map segmentation iterations less than 6, the demand in the case of the onshore 

wind energy infrastructure can not be satisfied as the maximum number of fuel 

chains of every configuration is greatly restricted. For this reason a simulation 

with the same configurations but both onshore and offshore wind energy is 

considered. The numerical outputs of this simulation are outside the scope as the 

aim of this simulation is to show the relation of cost with the map segmentation 

iteration parameter. 

Another logistic factor that influences the overall cost is the number of periods 

that the planning horizon is divided into and the duration of every period. These 

factors are determined by the user. Generally, the higher the number of the 

periods the higher the total cost. Figure 5.7 shows the effect of the number of 

periods on the total cost. For this graph, the onshore wind energy example has 

been used, as the number of regions is constant and equal to 64. The model has 

run for 5 different periods including 2, 4, 5, 8 and 10. 
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Figure 5.7: Effect of periods on total infrastructure cost 
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The period parameter represents the time variant behaviour of the chains, namely 

the changes that occur in the lifetime of a chain such as the expansion. When the 

number of periods is increased the accuracy of the model's predictions is 

increased resulting in more realistic solutions. This is more comprehensible if it is 

considered that the model is trying to fit a behaviour of energy, of hydrogen 

energy in particular, in a 50-year time horizon and thus the more points (periods) 

the simulation includes the more accurate results are attained. 

The infrastructure cost is the combination of all the costs included in all the stages 

of all the selected pathways. However, the order of magnitude of the overall cost 

is determined by the costs associated with the primary energy feedstock and 

hydrogen production plant. It is important to mention that the overall cost and 

the structure of the hydrogen delivery pathway depend to a great extent on the 

baseline values assumed for all the input parameters of the model. A change in 

these values may affect the overall cost and the selected infrastructure pattern. 

5.7 Conclusions 

In this Chapter the hydrogen infrastructure development model was subject to 

testing. The testing strategy that was followed was described in detail. Every test 

that was carried out has been described along with its outcomes, the 

interpretation of the outcomes and the significance. 

The behaviour and the predictions of the model were examined by running an 

example simulation. This simulation was simplified and represented a relatively 

small scale problem. The reason for this simplification was the prediction, to 

some extent, of the expected results based on the logic, the relative knowledge 

and the mathematical solution in order to be compared to the actual results of the 

model. The model delivered the formation of an infrastructure development plan 

for London based on the wind energy resource of GB and six different fuel chain 

configurations. The main focus of the simulation was not the numerical outputs 

but the understanding and testing of the decision making of the model. According 

to the results, the analysis of the results and the sensitivity analysis, the model 

produces credible outputs and responds properly to changes in parameters. 
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The next Chapter marks the start of the case study of renewable hydrogen 

infrastructure development for supplying a large urban centre, undertaken with 

the new modelling tool. 
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Case Study 

6.1 Introduction 

As the behaviour of the model and the accuracy of its results have been tested, in 

this Chapter the application of the model in a large scale problem is presented. As 

a case study for the new modelling tool, the development of renewable hydrogen 

infrastructure for London is examined. This case study is a large scale simulation 

as it includes a considerable range of renewable energy sources and a large 
number of different fuel chain configurations. Preliminary results of a similar 

simulation were written and presented at a conference (World Hydrogen Energy 

Conference, Lyon, June 2006) entitled: The Design of a Renewable Hydrogen Fuel 

Infrastructure for London. However, the model has been improved since. Although 

both versions of the model are correct, the current version is more evolved, closer 

to reality and takes into account more factors. 

This Chapter begins with the selection of the urban centre under study. The 

description and justification of this choice are laid out. The Chapter continues 

with the presentation of all the specifications that are included in the simulation, 
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such as the renewable energy resources of GB, or the hydrogen technologies, or 
the demand. All the parameters, their values and the assumptions are introduced 

and discussed. 

6.2 Selection of Urban Centre 

As it has been discussed in Chapter 3, the UK's capital is an urban centre that has 

several reasons to be considered as one of the first cities that may succeed in the 

deployment and establishment of hydrogen fuel and its infrastructure. The 

promotion of hydrogen may be benefited by the fact that hydrogen fuel serves 
various purposes of the local Government. Hydrogen has ensured London 

Mayor's attention as it can be used as a means of tackling London's pollution 

problem, one of his key policy objectives. Moreover, the Mayor contemplates that 

facilitating hydrogen fuel cells constitutes an incentive for the development of 

other clean technologies but also expands an industry that has positive 

implications for the future and the economy of the city. 

On national level, as London is the capital of the country and has national 

resonance by supporting the establishment of a hydrogen delivery system may 

constitute a paradigm that could influence other cities and thus fan out the 

development of hydrogen infrastructure to the rest of the country (GLA, 2004). 

The above picture becomes more promising considering that London is a city that 

offers skilful academia, research councils and companies that actively work in the 

field of hydrogen technologies. Research Councils have funded a number of 

projects aiming to assist the progression of hydrogen technologies and evolution 

of hydrogen refuelling infrastructure. 

Considering the above interest, London represents an ideal case study to examine 

the potential of supplying renewable hydrogen urban centres. There are three 

reasons for this selection. Firstly, it is worthwhile to investigate possible options 

for delivering hydrogen to an urban centre that has shown significant activity in 

this field and has already decided that hydrogen fuel will play an important role in 

its sustainable energy system that aspires to develop. Secondly, studying the 

establishment of a hydrogen infrastructure for London assists in the 

understanding of the requirements for such venture and provides useful insight 
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into city-specific issues arising from the introduction of hydrogen in a large urban 

centre. Thirdly, because London is the biggest energy demand centre in the UK 

and the largest city in Europe. That makes the development of a hydrogen 

delivery system for such a large urban centre a large-scale problem that can 

demonstrate the capability of the model in dealing with such problems. 

London is a large city, densely populated. Formally, the urban centre under study 

is the geographical area of the Greater London Authority that was established in 

2000 and covers 32 boroughs and the City of London (GLA, 2004). The Greater 

London Authority area's extensive public transport system, the level of mayoral 

control of public transport and its high number of taxis and small delivery vans, 

offers a massive opportunity for developing the use of hydrogen. This may 

provide a niche market for hydrogen fuel and hydrogen fuel cells in which the 

new products can begin a technological process of learning by doing, economies 

of scale and start the creation of network effects. 

This case study examines the options for supplying a new, green and thus 

environmentally benign fuel to London. Hence, it considers hydrogen produced 

exclusively from renewable energy sources. The available renewable energy 

resources that are used as primary energy feedstocks are both from inside and 

outside London. The production of renewable hydrogen fuel from renewable 

energy sources inside London faces great limitations, especially in the short term. 

London is a large metropolitan centre, whose urban environment restricts the 

types of renewable technologies that are suitable. For instance, wind energy's 

combination of relatively low costs and technical maturity cannot be greatly 

exploited in London due to the lack of a substantial number of suitable open 

spaces. In addition, due to the high population of London the demand for 

renewable hydrogen fuel would be significant, especially over the time the 

infrastructure would gradually be expanded. 

Generally, solar energy, wind energy and biomass are the renewables with the 

greater potential of producing hydrogen in London. As far as wind energy is 

concerned, at present there are a few demonstrating wind turbines systems in 

London like the two wind turbines constructed in Dagenham (GLA, 2004a). 

London being an urban centre has sites with lower or more disrupted wind speeds 

203 



Case Study 

than sites in rural areas. However, there are some locations with good wind 

speeds such as Thames Gateway, where wind speeds are among the highest in 

London. Another possibility of utilizing wind energy is the installation of wind 

turbines on building's roofs. Normally, urban renewables are small and medium 

scale constructions. There are, though, some places that may be suitable for larger 

installations, for instance large wind turbines or PV arrays on noise barriers along 

roads (GLA, 2007). The latter is presently quite expensive but considering it will 

meet its long term economic targets, along with wind energy they will offer great 

opportunities for London in the future. 

Biomass is a renewable energy source with great potential in London due to its 

significant available resource, especially wastes. This large resource may work as a 

benefit for hydrogen production since due to the exhaustion of existing disposal 

sites and the awareness of the environmental implications of such sites, the 

increase of this resource will lead to the imperative need of alternative use of 

wastes, one of which is the production of renewable hydrogen. 

The fact that London has a considerable renewable energy resource available for 

the production of hydrogen does not imply that hydrogen will be produced by 

these resources. Hydrogen has to compete with all the other possible end-uses 

which can also be produced from renewables. The judge of this competition is the 

local Government. The Mayor of London in an attempt to contribute significantly 

to national energy policy objectives and targets has developed a strategy aiming to 

increase the use of London's renewable energy sources. London aims to generate 

665GWh of electricity and 280GWh of heat from its renewable energy resource 

by 2010 (GLA, 2004). 

However, in Mayor's plan this amount of renewable energy is mainly intended to 

be used for power applications (like houses) and hardly for the mass production 

of renewable hydrogen fuel. The limited available resource of renewable sources 

that makes London's renewable energy targets quite challenging coupled with the 

fact that renewable hydrogen is not top priority in local Government's energy 

agenda lead to the conclusion that London's renewable energy resources will 

probably not be sufficient for the production of renewable hydrogen fuel, even in 
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the short term where the small proportion of hydrogen vehicles would require 

relatively small amounts of hydrogen fuels. 

Renewable hydrogen fuel may be supplied, though, by renewable resources 

outside London using UK's indigenous resources or even outside the UK. The 

UK is very well endowed with renewable energy resources, with a slight exception 

in the case of geothermal energy. All of these resources may have the potential of 

supporting renewable hydrogen's production. This support is crucial especially in 

the long term where hopefully the demand of renewable hydrogen fuel will be 

large. 

In the near future, the UK renewable sources that will play a major role in the 

generation of hydrogen fuel are onshore and offshore wind energy. The wind 

resources of UK along with the marine resources are the best in their categories in 

Europe. Of these resources, offshore wind power is the only large (order of 

multigigawatts) UK resource that thus is able to provide significant amount of 

renewable hydrogen fuel (H2, 2004). Conclusively, wind power could assist in the 

uptake of renewable hydrogen fuel in transportation in the short term and in 

conjunction with the other renewables in the long term could complement the 

development of the hydrogen infrastructure in London. 

Like conventional fuels, renewable hydrogen may be produced from foreign 

resources and transported into the UK. Importing renewable hydrogen allows the 

UK to benefit from the large renewable resources of other countries like 
hydropower in Iceland or biomass in Brazil. A possible route of hydrogen supply 

to the UK will be the transmission of solar energy-derived hydrogen in North 

Africa by gas pipelines across the Mediterranean Sea, all through Europe and 

north into the UK. Another possibility will be the transportation of liquid 

hydrogen, that would be produced by hydro power in Canada, by ocean tanker 

(H2, 2004). From an economic perspective, in the near future the exploitation of 

renewable resources in the UK may be a more attractive option as the distance of 

foreign resources may greatly affect the costs of some of the steps in the fuel 

chain. Moreover, ventures like that usually take place when the new fuel is 

relatively more established and thus the demand is large and not at the early stages 

of the introduction of hydrogen fuel. 
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6.3 Simulation Specifications 

This section gives a description of all the characteristics of the London 

simulation. It includes all the parameters, values, choices and assumptions of the 

case study. Figure 6.1 demonstrates the superstructure of the simulation that 

shows the renewable energy sources and hydrogen technologies that are 

considered in the case study. 
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6.3.1 Renewable Energy Sources 

GB renewable resources are very large. Various studies have been carried out, 

mainly analysing the production of electricity from renewable resources (ETSU, 

1994; ETSU, 1996; ETSU, 1999; ETSU, 2001a; ETSU, 2001b; ETSU, 2001c; 

ETSU, 2001d; Garrad Hassan and Partners, 2001; Chris Blandford Associates, 

2000; Sustainability North West, 2001; Land Use Consultants, 2001). Across these 

studies there is no consistent methodology and coherent assumptions. For these 

reasons the outcomes of the resource assessment analysis vary from study to 

study. 

An absolute and exact assessment of the GB's renewable resource potential for 

hydrogen production is outside the scope of this study. It is important to note 

that the development and exploitation of renewable resources for hydrogen 

production has to compete with other end-uses such as electricity and heat. 

However, this case study does not examine the available renewable resources for 

hydrogen production within these constraints but the development of a hydrogen 

delivery system for London considering that the GB renewable resources are 

available to be utilized for the production of the necessary amount of hydrogen 

fuel to meet London's demand. The required hydrogen is assumed to be 

produced from electricity generated by renewable schemes that are not already 

existent in GB. 

GB is very well endowed with renewable energy resources, with a slight exception 

in the case of geothermal energy. It has some of the best renewable energy 

resources in Europe, with wind power considered the largest (order of 

multigigawatts) among them. There are some renewable resources in GB that are 

either purely theoretical — generic but limited in GB — or already fully exploited 

(ETSU, 1999). These are: 

➢ Large hydro power; 

➢ Solar thermal; 

➢ Tidal barrage; 

➢ Geothermal energy (both aquifers and hot dry rock); 

➢ Photoconversion; 
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➢ Ocean thermal energy conversion. 

The above renewable sources are either fully exploited or not considered feasible 

in GB and thus are not considered in the simulation. 

The renewable resources that are considered exploitable in GB are the following: 

> Wind energy (onshore and offshore); 

> Solar energy (photovoltaics); 

> Small hydro energy; 

> Wave energy; 

➢ Tidal stream; 

> Biomass — Energy crops; 

> Biomass — Agricultural residues; 

> Biomass — Wastes. 

As it was mentioned in Chapter 4, the renewable resource potential input data are 

in the form of maps. The maps showing the resource potential in GB of the 

selected renewables along with all the parameters and their corresponding values 

of all the renewable energy sources that are used within the simulation are 

presented in Appendix A. 

6.3.1.1 Wind Energy 

GB has substantial wind energy potential. It has approximately 40% of the total 

realisable wind energy resource in the EU. The case study includes both onshore 

and offshore wind energy. The theoretical GB resource of the latter is much 

larger than the land-based resource (Boyle, 2000). In GB, wind energy is the third 

largest contributor to renewable energy after biomass and hydroelectricity (DTI, 

2007). There are currently 145 wind parks, both onshore and offshore, in the UK 

with a total installed capacity of 2141MW (BWEA, 2007). Generally, the sites that 

are considered appropriate for the construction of wind parks are these with 

average wind speeds around 8-10m/s. However, as the power in the wind is 

proportional to the cube of the wind speed, sites with fairly good average wind 

speeds (5-6.5m/s) can also be used for wind parks. For both onshore and 
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offshore wind energy resource maps are used that include sites that range from 

low wind speed sites (>5 m/s) to high wind speed sites (< 10m/s for onshore 
and <14m/s for offshore). 

The UK onshore wind farms currently in operation range from a capacity of a 

few MW to 97MW. The latter is the capacity of the Black Law A wind farm in 

South Lanarkshire that was constructed in September 2005 (BWEA, 2007). The 

only wind parks with capacity that exceeds 90MW are the Black Law A and the 

Farr Windfarm in Highland, which has a 92MW capacity (BWEA, 2007). 

Generally, in the UK judging from the already existing wind farms the largest 
wind park projects are around 50±10MW capacity. For this reason, in the 

simulation it is considered that the maximum capacity of a wind energy plant is 

50MW. It is worthwhile to mention, though, that the largest onshore wind farm in 

Europe is currently under construction on the Eaglesham Moor, south of 

Glasgow. The Whitelee project is planned to have 140 turbines and a staggering 
322MW capacity (BWEA, 2007). 

In the case of offshore wind energy, this assumption is different. Most modern 

offshore projects have been built with 2-3 MW turbines and in the near future 

this will rise to 3-5 MW and are usually larger than onshore projects. In the UK, 

the largest offshore farms in operation have around 90±10MW capacity (BWEA, 

2007). However, the offshore projects that have been approved and those that are 

under construction (the 500MW Greater Gabbard and 1000W London Array in 

Thames Estuary, the 108MW Ormonde off Walney Island) show that this number 

is going to increase greatly (BWEA, 2007). Marrying the capacity trend and the 

existing capacity in order to capture the trend but also to be realistic, the 

maximum capacity of a single offshore wind energy plant is assumed 130MW. 

6.3.1.2 Solar Energy 

Solar resource is huge and is available at any location on the surface of the Earth. 

In GB, by tilting a surface to an angle the amount of solar radiation falling on it is 

greater than falling on a flat surface (Solar Trade Association, 2005). The map that 

is used as the input data for the solar energy resource shows the average solar 

radiation falling on one square metre surface inclined at 30 degrees to the 
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horizontal, measured in kilowatt hours. Solar energy can generate electricity 

through PV that can be used as stand alone units, grid connected systems or 

integrated into building materials. For the present study, large PV systems are 

considered, as they offer the advantage of large-scale electricity production. 

In 2003, the total capacity for photovoltaics (PV) in the UK was approximately 

6MW, which is a small fraction of its potential (DTI, 2007). Worldwide, there are 

a few large scale solar power plants, like the Solar Energy Generating Systems in 

the Mojave Desert and the Nevada Solar One. The former is a group of nine solar 

power plants that commissioned between 1984 and 1991 and produce 354MW. 

The latter is located in Boulder City in Nevada and has a 64MW capacity (Nevada 

Solar One, 2006). More very large installations are under way such as a 40MW 

plant in Spain, a 64MW plant at Moura in Portugal and 116MW system at La 

Sabina in Southern Portugal (Milford, 2007). However, GB does not have large 

areas of isolated land like deserts and thus large scale installations of these levels 

are considered not feasible due to land use constraints. Nevertheless, the rhythm 

of development is rapid and the gap between existing installations and those 

proposed for very large scale PV systems has narrowed considerably. Considering 

the 12MW PV plant at Erlasse in Germany, the 11MW system at Sepra in 

Portugal and the 10MW PV installation at Pocking in Germany and taking into 

account that there are now over 150 installations larger than 1MW operating in 

the world (Milford, 2007), the maximum capacity for a single solar energy plant in 

GB for the present study is assumed 10MW. 

6.3.1.3 Small-scale Hydro Energy 

Hydroelectric power has the largest share of renewable electricity in the UK. At 

present, 0.8% of UK's electricity is produced from hydroelectric schemes. This is 

equivalent to 4244MW of hydropower capacity (DTI, 2007). In GB, all large-scale 

hydroelectric sites have been either utilised or categorised as areas of great natural 

beauty. Thus, it is considered unlikely that further large-scale hydroelectric 

deployment will be approved. According to the Department of Trade and 

Industry, a large-scale hydro plant is considered the one that its capacity exceeds 

20MW. Hydro plants with capacity less than 20MW and less than 1MW are 

categorised as small and micro-scale respectively (DTI, 2007). As large-scale 
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exploitation is greatly restricted the simulation considers only small and micro-

scale hydro installations. The hydro energy resource map depicts the small-scale 

hydroelectric potential in GB showing the mean annual precipitation. 

6.3.1.4 Wave Energy 

The UK has wave energy levels that are among the highest in the world. 

Currently, in GB there are only two wave energy schemes with total capacity 

1.25MW (DTI, 2007). There are five main types of machines that can generate 

electricity from waves: floating device, underwater buoyant device, hinged flap 

device, oscillating water column and overtopping device (EMEC, 2007). Every 

technology has its own advantages and disadvantages. However, the thing that 

they have in common is that they are not yet at commercial stage. They have 

certain difficulties to overcome such as the device survivability in extreme wave 

conditions or the irregularity in wave amplitude, phase and direction that means it 

is difficult to achieve the device's maximum efficiency over the entire range of 

excitation frequencies (ETAP, 2007). 

Wave energy has only small-scale (order of kilowatts) prototype plants around the 

world. The world's biggest commercial wave plant is a wave farm currently under 

development in Scotland that was announced on February 2007 and includes four 

Pelamis machines, the offshore wave energy converter, with a combined output 

of 3MW (ETAP, 2007). Apart from the technical immaturity and the small-scale 

exploitation, wave energy's capital costs are high. Generally, wave energy is 

relatively new and currently not economically competitive with more mature 

renewable energy sources like wind energy. So, although GB has a substantial 

wave energy resource is not included in the simulation. Even if it was included as 

the model performs an economic minimization the high capital cost in 

combination with the very small plant capacity would have eliminate any 

possibility of selecting wave power as a primary energy feedstock for hydrogen 

production. 
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6.3.1.5 Tidal Stream 

Generally, the best potential tidal stream sites in GB are on the west coasts of 

England and Wales. Like wave energy, tidal stream is a renewable energy source 

with considerable potential in GB but at present its technology and economics 

restrict to a great extent its deployment. Tidal stream technology is still in its 

infancy and there is only one project currently operating in GB, the Seaflow 

project. The latter is the world's first tidal stream device off the north Devon 

coast installed in 2003 with capacity 300kW (DTI, 2007). For the installation of 

large-scale tidal stream schemes it seems that there is still a long way. At the 

moment, tidal stream is not considered an attractive commercial investment 

option. 

Although given the resource potential tidal stream may be used for the 

production of renewable electricity in the future assuming the required progress in 

the technology and reduction in costs, due to its current stage it is not included in 
the simulation. Apart from the technology that is at prototype stage, the 

simulation includes a high level of demand and thus the inclusion of medium and 

large-scale installations is preferred. In the case of tidal stream, medium and large-

scale installations do not exist. Even in the case of assuming the development and 

feasibility of such installations the cost of large-scale tidal stream exploitation at 

the moment cannot be quite determined. There are only cost predictions and 

estimates for large tidal stream farms that not only vary from study to study but 

also their degree of accuracy is quite disputable. 

6.3.1.6 Biomass — Energy Crops 

Among energy crops, short rotation coppice (SRC) of willow is selected for its 

excellent potential rapid growth. Of all the energy crops grown in the UK, willow 

SRC is perceived as the most promising. SRC is perennial, thus minimising energy 

and fertiliser inputs (ETSU, 1999). The SRC is grown on a rotation of 2-4 years, 

with current typical yields in the UK of 10 oven dry tonnes per hectare per year 

(odt/ha/yr) (Bauen, 2001). Yields are expected to increase to 15-20 odt/ha by 

2020/25 (DEFRA, 2002; ETSU, 1999). A plantation could be viable for up to 30 

years before re-planting is required. Better plant husbandry, variety selection and 
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breeding are also expected to increase disease resistance and biological stability 
(ETSU, 1999). 

Willow SRC is included in the Energy Crops Scheme, introduced by DEFRA in 

2000 in partnership with the Forestry Commission (DTI, 2002). Willow has 

already been used in commercial or near commercial operations in the UK. The 

first commercially grown SRC in the UK was to provide fuel for the ARBRE 

gasification and electricity generation project in Eggborough, Yorkshire, and 

covers 2,000 ha (Bauen, 2001). The scale of the SRC scheme used in the 

simulation is equivalent to that needed to power a 30 MWe integrated gasification 

and combined cycle electricity generation plant, as this scale is thought to be 
feasible for local generation in the UK (ETSU, 1999). 

For the case of energy crops the resource is entered into the model in the form of 

a map that is the result of the composition of two different maps. The first map is 

a map showing the agricultural land classification of England. Agricultural land is 

divided into classifications by the physical and chemical limitations of the land for 

agricultural use. The determining factors that are taken into consideration and 

their effect on the versatility of the land and the reliability of the crop yields are 

climate (rainfall, transpiration, temperature and exposure), relief (slope) and soil 

(depth, texture, structure, stoniness and available water capacity) (Royal 

Commission on Environmental Pollution, 2004). The Agricultural Land 

Classification system has divided land into five grades ranges from grade 1 (the 

most versatile) to 5 (the least versatile) (DEFRA, 2006). England has 

approximately 2.5 million hectares (Mha) of grades 1 and 2 land, 6Mha of grade 3 

land and 3 Mha of grades 4 and 5 land. England and Wales use this classification 

and Scotland uses seven grades (Royal Commission on Environmental Pollution, 

2004). Due to the difference in the classification system and the lack of map 

showing both England and Wales classification, the simulation includes the 

possibility of generating feedstock for hydrogen production that can be produced 

from energy crops cultivated within the English agricultural land. 

For the production of biomass feedstock it is not assumed that the 5 grades of 

English agricultural land are all available as this land is also used for other 

purposes such as food production. The latter is likely to continue on grades 1, 2 
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and 3 land. For energy crops land of grades 3, 4 and 5 may be available. However, 

grade 5 land is not considered a strong candidate due to very poor soil quality and 

the exclusion of some of the promising areas based on environmental impact 

assessments. Thus, in the simulation it is assumed that areas from grades 3 and 4 

land are available for energy crops production. According to studies of the 

National Farmers' Union, up to 20% of crops grown in the UK could be available 

for non-food uses by 2020 (DEFRA, 2003; MAFF, 1988). 

Naturally, in order to explore the appropriate sites for the production of SRC the 

available land that this production can take place is not enough. Data concerning 

the suitable conditions for the plantation of this crop are necessary. These data 

are the second map that is used for this renewable energy source. The climate is 

an important factor that determined the yield of the crop. SRC requires 

considerable amounts of water and its growth is substantially reduced when is 

cultivated under dry conditions. Thus, wetter regions of England may be better 

for growing SRC than others (DTI, 2003a). The second map shows the effective 

precipitation, the difference between precipitation and evaporation from 

grassland, across GB. It can be witnessed that the western part of England is 
more suitable for SRC plantation where rainfall is the greatest. 

6.3.1.6 Biomass — Agricultural Residues 

Agricultural industry produces many different kinds of residues that can be used 

for hydrogen production. In the present simulation, the kind that is considered is 

forestry residues such as leaves, branches, lops, tops, damaged or unwanted stem 

wood which are produced from operations like thinning and logging of 

plantations and trimming of felled trees. The yield of forestry residues is 

approximately 1.5odt/ha/yr (Bauen, 1999), with an energy content of 19GJ/odt 

irrespective of species (ETSU, 1999). In the present study, the maximum amount 

of biomass feedstock that can be used in every forestry residues route is 

equivalent to power a 20MWe gasification plant. Around 4 Mt of forestry residues 

are produced each year in the UK (Bauen, 2001). However, this amount is not the 

accessible resource. It has been estimated that 1.4 Modt of this amount can be 

removed and used (Bauen, 2001). The map of forestry residues used in the 

simulation indicates the corresponding resource for GB per year. 
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6.3.1.7 Biomass — Wastes 

Biomass is also considered a primary energy feedstock in the form of wastes. The 

category of wastes that is included in the simulation is the biodegradable fraction 

of municipal solid waste (MSW). MSW is considered a promising option as it 

overcomes some of the barriers of other renewable sources such as resource 

restrictions (as in the case of hydro and geothermal energy), expensive electricity 

generating technologies (as in the case of solar energy), lack of mature and 

commercial technologies (as in the case of wave and tidal energy). In addition, the 

use of wastes to produce hydrogen has the dual beneficial effect of reducing the 
amount of disposed wastes and ensuing environmental repercussions and 

generating an environmentally benign fuel. 

The MSW that is included in the case study is the wastes originated mainly from 

households, sewage sludge, public areas, institutions and services in London. 

Annually, London produces 3.5 million tonnes of wastes (Think London, 2005). 

Due to the increase of these wastes existing landfills are being exhausted and 

harmful emissions are increasing at alarming rate. Wastes are the only renewable 

energy source in the case study that its resource includes only London's wastes 

resource. For this reason there is no waste resource map in Appendix A. 

Although in this case the resource for the production of the primary energy 

feedstock is within the supply point due to the urban environment of the demand 

centre the location of feedstock production facility is assumed to be outside the 

city. The amount of biodegradable MSW used in the simulation is equivalent to 

that needed to power a 30 MWe feedstock production facility. 

6.3.2 Hydrogen Technologies 

The hydrogen technologies that form the fuel chains under examination are 

selected based on options that are commercially available and have been used 

either in greater or lesser extent in projects (including pilot projects). As it can be 

witnessed in Figure 6.1, the case study includes the following technologies: 

> production technologies: electrolysis (onsite, regional and forecourt) and 

gasification; 
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> conversion technologies: compression and liquefaction; 

> storage technologies: compressed gas hydrogen, liquid hydrogen and 

metal hydrides (onsite and forecourt); 

> transport technologies: compressed gas hydrogen by road or pipelines, 

liquid hydrogen by road, metal hydrides by road and electricity grid. 

In the case of hydrogen production, renewable electricity is converted to 

hydrogen through electrolysis. Electrolysis is the only electricity-to-hydrogen 

technology considered as other technologies are still at experimental stage as it 

was concluded in the literature review. However, the simulation involves three 

different electrolysis options: onsite at the primary energy feedstock production 

site, regional where electricity is transported through the electric grid network 

from the feedstock production site to the hydrogen production site and forecourt 

where hydrogen is produced at the refuelling station. Since the location of onsite 

electrolysis is the same as the location of the primary energy feedstock production 

facility, the place of the electrolysis plant is one of the results of the optimisation. 

For forecourt electrolysis the location is determined before the simulation and it is 

at the refuelling station. 

In the case of regional electrolysis the location of the electrolysis plant is also 

determined before the simulation by the user. The case study considers 7 different 

regions for regional electrolysis in GB. The number and location of these regions 

has been selected based on the Transmission Network Use of System (TNUoS) 

charges of the National Grid. The TNUoS charges for generation and demand 

depend on the zone the electricity is produced or consumed respectively. The 

zonal transmission charging for demand is divided into 14 zones with demand 

tariff ranging from 0.5L/kW to 22L/kW (National Grid, 2007). The selected 

regions include zones 1, 3, 6, 7, 8, 9 and 11. As it can be seen from the map of the 

demand zones in Appendix A, this selection involves regions from various 

locations such as the northern and southern part of GB, the Midlands, the eastern 

and western part of GB. The reason for not choosing all the demand zones is the 

size of the current simulation. This case study is a large-scale problem that has 

been solved in only one computer. Choosing 7 demand zones — more than half 

considering that zone 12 is the selected urban centre and it is assumed that no 

large facilities would be built within the city, in particular in a radius of 50km with 
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city centre being the centre of the circle — is regarded as a sufficient number as it 

minimizes the simulation time without restricting greatly the regional electrolysis 

pathway. 

Conventional alkaline electrolysis is the only technology currently available for 

electrolysis at scales greater than 2 MW. Given that the focus of development of 

the other electrolysis technologies is generally on small-scale onsite units, this is 

likely to continue to be the case in the medium term. Thus, in the simulation the 

alkaline technology is considered. 

Biomass-produced hydrogen can be obtained both from gasification and 

pyrolysis. However, only the first is included in the simulation. The reason for this 

selection is threefold. Firstly, pyrolysis has lower efficiency than gasification. 

Secondly, the latter is more mature technology and thirdly at the moment 

pyrolysis is more expensive due to higher capital costs. However, because 

pyrolysis route has co-products opportunities, as the bio-oil that is produced is 

the basis of several processes for the development of fuel chemical and materials, 

it may be more economical. Nevertheless, these opportunities are not included in 
the case study so gasification remains the more economical route. 

For hydrogen production by gasification, all process equipment is well established 

and in commercial use, except for the gasifier itself (Williams et al., 1995). All the 
equipment needed to produce hydrogen from coal gasification, a very similar 

process, is available. According to the way the fuel flows in the gasifier, the 

gasifier technology can be categorized into: fixed-bed, entrained-flow and 

fluidized-bed systems (United Technologies Research Center, 2002). The 

technology that is considered for the biomass pathways in the present simulation 

is the fluidized bed as it has been demonstrated in a number of projects, operating 

over a wide range of conditions and using a variety of biomass feedstocks 
(Ciferno and Marano, 2002). 

For the biomass routes as most biomass feedstocks are bulky and of relatively low 

energy density the cost of transportation becomes greatly expensive outside a 

radius of 80 to 120km. In this study, the gasification plant is assumed to be within 

a radius of 50km from the biomass feedstock production location. 
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In the case of hydrogen storage, compressed gas and liquid hydrogen are the two 

most commonly used methods. Metal hydrides are also included because although 

as an on-board storage option has still to overcome the weight problem, for 

stationary applications is considered a viable option. All the other storage 

technologies that were discussed in Chapter 2 are still at development stage and 

thus are excluded. Pipeline delivery can also be used as a form of storage, by 

allowing pressure changes in the system. This is currently done with natural gas to 

help manage demand fluctuation (pincer, 2002). As a result, no storage at 

production sites or at the forecourt will be considered for fuel chains involving 

pipeline transport. 

In the case of transport technologies, hydrogen can be transported as a 

compressed gas, a cryogenic liquid or a solid metal hydride. The methods of 

delivering hydrogen include truck, rail, ship and pipeline. For understandable 

reasons ship is not included. Moreover, the rail option, although feasible, is not 

included because it has not been used yet. For road transportation, trucks 

containing tubes, liquid tanks and hydride containers are used for compressed gas, 

liquid hydrogen and metal hydrides transport, respectively. It is assumed that the 

trucks use the existing road network of the British mainland. Moreover, the costs 

of transportation technologies have been calculated assuming that the maximum 

delivery distance a truck can cover in one day is 100km (one-way). Thus, as the 

tubes, tanks and containers carry fixed amount of hydrogen once the delivery 

distance exceeds 100km extra trucks are required to maintain the same 

throughput. 

For the transmission of electricity, the electricity grid network in GB is used3. The 

maps showing the demand and generation zones in GB along with the 

corresponding tables that the data have been taken are presented in Appendix A. 

Naturally, from offshore wind parks the construction of cables is involved that 

connects the park to the gird. However, in terms of electricity transmission costs 

apart from the cost for offshore cables, costs for the upgrading of the grid have 

also been included. The development and upgrading of the grid is an issue that 

needs tackling in order to ensure the grid access of the continuously increasing 

renewable capacity (BERR, 2004). So, although it is assumed that the electricity 

3  The electricity transmission efficiency of the grid network is included in the simulation. 
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uses the existing network the cost of reinforcing the grid to handle the renewable 

developments within the time horizon has been taken into account. The 

derivation of this cost has been based on data from the Renewables Innovation 

Review that estimates that for a 8-10GW increase of renewable capacity the grid's 

upgrades amount to £1,125 million. Moreover, £601 million are also required for 

the distribution systems (DTI, 2004a). 

Apart from the renewable energy resource and the zonal transmission charging 

maps, there is another map that has been considered presenting the designated 

areas in GB. This map has been used in order to avoid considering areas that they 

may have a considerable renewable energy resource but can not be used for 

specific reasons. The areas that are excluded are national parks, areas of 

outstanding natural beauty, natural scenic areas and heritage coast (DEFRA, 

2005). 

The collection of technical and economic data those are included in the 

simulation have been obtained by means of literature and commercial information 

review. The gathering of the necessary data has been tried as much as possible to 

be achieved from the same source in order the data to be as coherent as possible. 

However, this is not possible for all the input parameters as there is not a single 

source that includes the values for all the parameters in the simulation. Due to 

space reasons all the parameters and their corresponding values of all the 

hydrogen technologies included in the case study are listed in Appendix A. 

The costs listed in Appendix A are aggregate costs. For this reason the capital 

costs of technologies, for example an electrolysis plant, are assumed equal to the 

expansion costs, the expansion of an already existing electrolysis plant. All the 

values of the input cost parameters are presented in euros. The final result is 

converted to UK pounds. Generally, costs can be entered into the model in any 

currency as long as they are all in the same chosen currency. 
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6.3.3 Demand 

This section presents the method that has been used and the calculations and 

assumptions that have been made to obtain the demand for the simulation. The 

time scale of the simulation is a 50 year time horizon as major infrastructure 

transitions usually occur over a period of fifty years. The development of the 

infrastructure has 5 periods of 10 year duration each. In the spirit of examining 

what would be required to develop an infrastructure for a significant level of 

demand, an aggressive commercialization scenario it is assumed where at the 

beginning hydrogen co-exists with carbon fuels and at the end of the simulation 

London's road transport system is aimed to be free from carbon. 

The development of a hydrogen fuel delivery system is influenced by the 

interactions of complex technological, political, economic and social factors, 

whose evolution cannot be predicted with certainty. Moreover, the hydrogen 

infrastructure is expected to evolve around the development of the hydrogen 

market. Naturally, the demand of hydrogen fuel in the future - which is inherently 

uncertain - is not known but it can only be predicted. 

Generally, in all studies dealing with relative issues a demand scenario or forecast 

is produced. This analysis does not attempt to forecast hydrogen fuel demand or 

fuel consumption within the planning time horizon of the case study. More 

specifically, although a demand profile is predicted, this is done as a means in an 

attempt to produce the demand input data for the simulation and not as a goal of 

this study to predict future hydrogen demand. The analysis does not produce 

demand scenarios of possible hydrogen fuel penetrations as it does not examine 

the possible ways of establishing a hydrogen market. Nevertheless, the production 

of the demand profile has been carried out in such as way in order to ensure as 

much as possible its reliability. The aim of this analysis is to make a rational 

assumption on the demand behaviour supposing that the demand of hydrogen 

starts from zero at the beginning of the simulation and at the end of the planning 

horizon is enough to cover all London's road transport demand. It examines the 

demand growth in the selected time horizon and the production of the necessary 

hydrogen to replace petroleum-based fuels at the end of the horizon. So, the 

method that is described in this section has been followed aiming to produce an 
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equation representing the behaviour of demand. In order to obtain a valuable, 

appropriate and dependable equation its derivation is based on trends from 

previous years and data of reliable sources. 

The demand for hydrogen has been calculated based on data from National 

Statistics reports. Figure 6.2 shows the trend in petroleum consumption by 

transport mode from 1980 to 2005 in the UK. The figure includes the overall 

amount of petroleum including petrol, diesel, marine and aviation fuels. Transport 

petroleum consumption has reached 58 million tonnes of oil equivalent in 2005 

that is a 65% increase from 1980 level (DfT, 2006). 

Figure 6.2: Petroleum consumption by transport mode in the UK: 1980 to 2005. 

(Source: DfT, 2006) 

It can be witnessed from Figure 6.2 the majority of petroleum is consumed by 

road transport. During the first decade road transport has been increased more 

sharply but afterwards its increase is smoother. From the fuel consumption figure 

only the blue region of every column is considered that represents the road 

transport fuel consumption. However, in the case study the infrastructure is 

desired to deliver enough hydrogen to cover London's road demand therefore the 

only London's fuel consumption is required. Unfortunately, the Transport Trends 
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2005 report does not include a detailed breakdown of fuel consumption by region 

and thus London's energy use has been derived from Figure 6.3. 

Figure 6.3 shows transport energy consumption in London by mode. Overall, in 

2002 London consumed around 31,674GWh (TfL, 2004). Although the report 

was published in 2005 the graph corresponds to 2002 figures. Frustratingly, the 

more updated versions of this report (years 2005 and 2006) do not include fuel 

consumption figures. 

Figure 6.3: Transport energy consumption in London by mode (2002). 

(Source: TfL, 2004) 

Road transport accounts for 83% that equals to around 26,289GWh/year. 

Considering that hydrogen fuel cell vehicles have efficiency of almost twice 

greater then gasoline internal combustion engine vehicles this number is 

translated into 13,145GWh/year hydrogen energy. 

Knowing the fuel consumption of London for 2002 from Figure 6.3 and the fuel 

consumption of UK for 2002 from Figure 6.2 and assuming that 1 ton of oil 

equivalent is equal to 11,634kWh the London's consumption percentage of the 

overall UK's consumption has been obtained. This percentage is equal to 
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approximately 5.3%. Due to lack of available data it has assumed that this 

percentage is steady from 1980 to 2005. Thus, the London' consumption has 

been calculated and according to these data the following graph has been plotted. 

Figure 6.4: Road transport energy consumption in London from 1980 to 2005 

Figure 6.4 is used in order to estimate the demand for hydrogen for the future, 

specifically for the next 50 years that is the selected time horizon. Since, the graph 

covers the period to 2005, the hydrogen demand for the period of the next 50 

years is estimated by extrapolating the trend from this graph. The graph in Figure 

6.4 shows the energy consumption of oil and thus in order to obtain the required 

hydrogen energy the data have been divided by 2. The extrapolation has been 

carried out in MATLAB and the following graph has been produced: 
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Figure 6.5: Linear extrapolation of hydrogen demand function 

All the possible extrapolations, including linear, quadratic, cubic and 4th  to 10th 

degree polynomial, have been checked and tried in order to obtain the best 

possible fitting. The quadratic, cubic, 5th and 6th  degree polynomial have not been 

selected because the demand from the middle or at the end of the horizon is 

greatly reduced. Certainly, this scenario is not valid. The 4th,  7th,  8th,  9th and 10th 

degree polynomial do not reduce the demand in the course of the horizon but 

they increase demand though in such a large extent that it is not quite realistic. 

The behaviour of future demand is not known and thus it cannot be absolutely 

certain whether a scenario is valid or realistic but given the demand from past 

years it can be assumed that the behaviour of past years may continue to some 

extent in the future. For this reason, linear extrapolation has been chosen. It 

produces an equation of demand that is quite consistent with the past behaviour. 

This equation is: 

F (x) = 1.9784E+008x — 3.8284E+011 

However, this equation cannot be used in the model in this form. The reason why 

it can not be entered in the model is that the simulation considers that hydrogen 

demand starts from zero at the beginning of the 50 years time horizon and is 
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equal to London's total road demand at the end of the horizon. So, the equation 

needs to start from zero. For this reason, the function is multiplied with sine: 

F(x) = sin (x /r/100) (1.9784E+008(x + 2007) — 3.8284E+011) 

This form can be entered into the model; however, it has undergone another 

process. Generally, polynomial forms are preferred over forms with sine, or 

cosine or any other trigonometric. In order to eliminate the sine in the function 

the Taylor series expansion has been used. Taylor series is the power series of the 

form (Mathworks, 2005): 

 

f(11)( a) 

(x-a)" 
it=0 n! 

The Taylor series is a representation of a function as an infinite sum of terms 

evaluated from the values of its derivatives at a single point (Mathworks, 2005). 

When a function has a Taylor series that is convergent to the function, usually as 

the degree of Taylor expansion rises it approaches the correct function. 

The demand function has been Taylor expanded for a number of different 

degrees of expansion. The selected degree is 9. For the first 9 degrees the change 

in demand is noticeable after the 10th degree the change in demand is quite small. 

So, the last factor of the function is becoming so small that affects slightly the 

demand. That means that more terms will not produce a better approximation 

and so the 9th degree may be considered the best approximation that can be 

obtained. 

Conclusively, the demand function that is entered into the model for the London 

simulation is the following: 

F(x) = 1 .42E+008xn-  + 2E+006nx2  - 1.78E+005/75x3 r3  - 2.47E+003/75n3x4  + 
1.78E+005/1.5E+007x5n5  + 2.47E+003/1.5E+007n5x6  - 1.78E+005/6.3E+0 12x7r7  - 
2.47E+003/6.3E+0 12n7x8  

226 



Case Study 

At the end of the 50 year time horizon the infrastructure is required to deliver to 

London around 24,113GWh hydrogen energy. Every fuel chain depending on the 

amount of hydrogen that produces can deliver fuel to more than one refuelling 

station. Considering the throughput of a medium sized refuelling station in the 

UK around 2.12 million litres per year and the average fuel consumption of the 

UK vehicle fleet 0.0961/km, the hydrogen demand of a medium refuelling station 

has been calculated and found equal to 0.6t/d (Howes, 2002)4. 

6.4 Summary 

Before the presentation of the results of the simulation this section summarizes 

and reminds the main characteristics of the case study. The model is used to 

compare different fuel chains in order to form a development plan for a least-cost 

renewable hydrogen infrastructure able to deliver enough hydrogen to cover 

London's road transport demand within a 50 year time horizon. 

Hydrogen fuel is produced from the exploitable renewable resources of GB and 

in the case of wastes from the MSW generated within London. The hydrogen 

technologies included in the simulation comprise options that are either 

approaching the middle or the end of the long road towards the stage of 

widespread use. The technologies that are used in the case study and form the fuel 

chains under comparison include 7 primary energy feedstock production 

technologies, 2 hydrogen production technologies, 2 conversion technologies, 3 

storage technologies and 5 transport technologies. Table 6.1 shows all the options 

for every stage of the fuel chains. 

4  The calculations assume a lower heating value of hydrogen of 10.783 MJ/Nm3, a density of hydrogen 
of 0.0899kg/Nm3  and an energy use of fuel cell vehicle of 1.2MJ/lcm. 
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London Renewable Hydrogen Infrastructure 

Renewable Energy Sources 

Wind Energy Onshore and Offshore 

Solar Energy Photovoltaics 

Hydro Energy Small-scale Hydro 

Biomass - Energy Crops Short Rotation Coppice of Willow 

Biomass - Agricultural Residues Forestry Residues 

Biomass - Wastes Municipal Solid Waste of London 

Hydrogen Technologies 

Hydrogen Production Technologies 
Electrolysis (Onsite, Regional, Forecourt) 

Gasification 

Hydrogen Storage Technologies 

Compressed Gas 

Liquid Hydrogen 

Metal Hydrides 

Hydrogen Transport Technologies 

Compressed Gas by Road 

Liquid Hydrogen by Road 

Metal Hydrides by Road 

Pipelines 

Electricity Transmission Technology Electricity Grid Network 

Infrastructure Demand 
Demand Target at the End of the Time Horizon 24,113 GWh 

Infrastructure Parameters 
Supply Centre London 

Time Horizon 50 years 

Periods 5 

Period Duration 10 years 

Table 6.1: Summary of London infrastructure simulation characteristics 

The next Chapter presents the results of the modelling of the different pathways 

and a discussion of their implications. A sensitivity analysis is also introduced and 

discussed, to examine the model outputs to changes in data and assumptions. 
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Results, Analysis and Discussion 

7.1 Introduction 

In this Chapter the results of the modelling work are presented and discussed. A 

sensitivity analysis is then carried out to investigate the influence of the parametric 

variation on the outputs of the model. In addition, a policy discussion is followed 

indicating some of the main challenges that renewable hydrogen infrastructure 

developments face and how policy intervention may assist in overcoming these 

challenges. At the end of this Chapter, a number of alternative applications of the 

model are discussed. 

7.2 Presentation of the Results 

The hydrogen infrastructure development algorithm has been used for the case of 

London in an attempt to determine the least-cost infrastructure development 

plan. For the formation of this plan the model has compared 244 different fuel 

chain options. These options are depicted in Figure 7.1. Figure 7.1 shows the 

different fuel chain options that have been examined and compared. All the fuel 
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chains are depicted having the as a starting point the primary energy feedstock 

production and conclude to the market. The latter is the same for all pathways 

while the former may be one of the 7 options of the top row that shows the 

renewable energy sources and their corresponding icons. 

From the 244 fuel chain configurations, the majority involves the production of 

hydrogen from renewable electricity. The biomass routes consist of 12 pathway 

options. This impressive difference is due to the location of the hydrogen 

production plant. In the case of biomass, it has been considered that the plant is 

within a 50km radius from the biomass feedstock production facility while in the 
case of renewable electricity there are more options considered for the distance 

between the feedstock production and the hydrogen production plant. More 

specifically, the simulation includes the fuel production facility at the renewable 

energy scheme or at the refuelling station or in any other area between the 

renewable energy scheme and the refuelling station. For the third option as it has 

been stated in the previous Chapter, 7 different locations have been considered. 

However, due to the results that showed that regional is preferred over onsite 

electrolysis it has been deemed proper to examine more locations. 

The area of GB has been divided into 64 segments. This segmentation has been 

implemented solely because for such a large-scale problem a larger segmentation 

could not be solved by one computer. This technical restriction is more 

comprehensible if it is taken into account the number of combinations that the 

model forms and compares. Although, the number of fuel chains under 

comparison is 244, the actual number of delivery patterns that is considered is 

considerably larger. For example, for an onshore wind energy fuel chain (a fuel 

chain that has as a starting point an onshore wind park) the location of the wind 

farm greatly affects the cost of this chain. The cost of hydrogen that is delivered 

from fuel chain 1 in Figure 7.1 that starts with a wind farm in Scotland is not the 

same with the fuel chain 1 that instead of Scotland starts from Wales. So, every 

fuel chain pattern is combined with possible locations for starting points. So, the 

model more specifically compares 244 fuel chains and their corresponding 

combinations. The number of combinations is equal to: 

Fuel chain options x Periods x Number of segments 
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So, for 10 fuel chain options, 5 periods and 64 segments, which correspond to 

map segmentation iterations 6, the number of combinations is equal to 3,200 and 

for the same number of pathways and periods but 128 segments, which is the 

next possible iteration, the number of combinations increases to 6,400. 

Considering that the present simulation has 244 fuel chains becomes apparent 

why 64 segments have been selected. 

The infrastructure development has been divided into 5 periods of 10 years each. 

The results are laid out from the beginning until the end of the time horizon for 

every period in detail. The results of the modelling are presented with reference to 

Figure 7.1 for ease of comprehension. Every pathway in Figure 7.1 corresponds 

to a number and these numbers will be used throughout the remaining text. 

Moreover, the final infrastructure development plan is also presented in a 

graphical form at the end of the results section. The Figure includes the icons and 

the code numbers from Figure 7.1. 

SYMBOLS OF RENEWABLE SOURCES USED FOR PRIMARY ENERGY FEEDSTOCK PRODUCTION: 
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la Onsite Electrolysis > Compression > Compressed Gas Storage > Compressed Gas by Road Transport > Compressed Gas Forecourt Storage eTh 

e. 

-I 

...../ 

0 Regional Electrolysis* > Compression > Compressed Gas Storage > Compressed Gas by Road Transport > Compressed Gas Forecourt Storage 

clia Grid > Forecourt Electrolysis > Forecourt Compression > Compressed Gas Forecourt Storage 

i Z Onsite Electrolysis > Liquefaction > Liquid Hydrogen Storage > Liquid Hydrogen by Road Transport > Liquid Hydrogen Forecourt Storage 

a Grid > Regional Electrolysis. > Liquefaction > Liquid Hydrogen Storage > Liquid Hydrogen by Road Transport > Liquid Hydrogen Forecourt Storage 

la Grid > Forecourt Electrolysis > Forecourt Liquefaction > Liquid Hydrogen Forecourt Storage 

a Onsite Electrolysis > Compression > Pipeline 

Grid > Regional Electrolysis* > Comrpession > Pipeline 

0 Onsite Electrolysis > Compression > Metal Hydrides Storage > Metal Hydrides by Road Transport > Metal Hydrides Forecourt Storage 

Grid > Regional Electrolysis* > Compression > Metal Hydrides Storage > Metal Hydrides by Road Transport > Metal Hydrides Forecourt Storage 

eii Grid > Forecourt Electrolysis > Forecourt Compression > Metal Hydrides Forecourt Storage 

0:11 Transport > Gasification > Compression > Compressed Gas Storage > Compressed Gas by Road Transport > Compressed Gas Forecourt Storage 

ea Transport > Gasification > Liquefaction > Liquid Hydrogen Storage > Liquid Hydrogen by Road Transport > Liquid Hydrogen Forecourt Storage 

ra Transport > Gasification > Compression > Pipeline 

la Transport > Gasification > Compression > Metal Hydrides Storage > Metal Hydrides by Road Transport > Metal Hydrides Forecourt Storage 

	 (TOTAL NUMBER OF FUEL CHAIN OPTIONS: 244) 	  

Figure 7.1: Fuel chain options under examination 
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First Period 

In the early stages of the infrastructure development the model has chosen to 

produce most of the hydrogen fuel through biomass routes. The majority of the 

required hydrogen fuel is produced from wastes and the selected configuration is 

fuel chain option 14. The model activates 64 pathways of this configuration, 

which is the maximum number a fuel chain can be activated. The capacity of all 

these chains is a 10MW gasification plant. The fuel chain starts from the waste 

collection point, where MSW is gathered and delivered by trucks at the 

gasification plant. At the latter, hydrogen is produced and transported through 

pipelines at the demand centre. MSW is generally considered a cost-effective route 

to hydrogen. The results are in accordance with this perception as this route has 
been selected a large number of times and at the beginning of the horizon. This 

behaviour is reasonable as this is the only route that the production of the primary 

energy feedstock for hydrogen generation is free and the distance between the 

hydrogen production plant and the demand centre is short. 

For the delivery of hydrogen, pipelines have been selected and used also as a 

storage means at the refuelling station. Among the different available options for 

hydrogen transport, such as compressed gas, metal hydrides, liquid hydrogen or 

pipeline delivery, the latter has been most probably selected firstly because of the 

amount of hydrogen and the delivery distance. Generally, pipelines are preferred 

for high flow rates and short-to-medium distances. This fuel chain would have 

been selected more times if the restriction of the resource would have been 

eliminated. As it has been mentioned in the previous Chapter MSW is the only 

renewable energy source in this simulation that its resource is limited to London's 

capacity. If the amount of available MSW was larger the model would have 

selected more pathways from this configuration. This is discussed and analysed in 

detail in the sensitivity analysis that follows the results Section. 

The remaining demand for the first period is covered from forestry residues, SRC 

and onshore wind energy routes. The selected configuration of the two biomass 

feedstocks is option 14. One chain of each feedstock is activated with forestry 

residues chain having the maximum allowable capacity that of a 30MW 

gasification plant and SRC chain a 6MW gasification plant. The primary energy 
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feedstock production facilities of both fuel chains are close to the demand centre. 

The same is true for the onshore wind energy fuel chain. Two option 7 fuel chains 

have been selected and both have as a starting point a wind farm of 50MW 

capacity. As the wind farms are relatively close to the market onsite electrolysis is 

preferred over regional electrolysis. For fuel chain options that include onsite 

electrolysis, the location of the hydrogen production facility is determined by the 

location of the primary energy feedstock production facility. For fuel chain 

options that include regional electrolysis the position of the hydrogen production 

facility is at a certain point regardless of the position of the feedstock production 

facility. Thus, for wind farms that are relatively close to the market onsite 

electrolysis fuel chains are a better choice than regional electrolysis chains because 

they exclude the transmission of electricity over large distances but include a small 

delivery distance between the point of hydrogen production and the refuelling 

station. On the contrary, for wind farms far away from the market regional 

electrolysis chains are a more suitable option as it will be seen in the subsequent 

periods. Overall, in the first period 68 fuel chains have been activated in order to 

cover the demand of this period. 

Second Period 

In the second period, the increasing demand has been covered with the expansion 

or operation of the existing fuel chains and the activation of 49 more chains. The 

latter chains include onshore wind energy, forestry residues and energy crops. 

One of the selected onshore wind energy pathway patterns is fuel chain option 8. 

This option has 13 alternatives each one for different electrolysis location. The 13 

locations correspond to the 13 demand zones of the National Grid. Out of the 13 

location options the chosen one is the demand zone 7. Eighteen fuel chains are 

formed having as a starting point a wind park of the maximum allowable capacity, 

that of 50MW. All the wind parks are located in the Northern part of GB (in the 

area of demand zones 1 and 2) and the electricity they produced is transported 

through the grid to the electrolysis plant that is located at zone 7. As every 

demand zone is a relatively large area the electrolysis plant have been placed 

approximately in the middle of every zone. The produced hydrogen from the 

electrolysis plant is transported through pipelines to the demand centre. 
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In this case, onshore wind regional electrolysis fuel chains are preferred than 

onsite electrolysis chains because the selected sites for the wind farms are distant 

from the market. Generally, the resource of wind energy is considerably larger at 

the Northern part of GB which is very far away from the market. So, for a wind 

energy onsite electrolysis fuel chain hydrogen is produced in the north and has to 

be transported over a large distance in order to be delivered to London. For a 

wind energy regional electrolysis chain electricity is produced in the north and is 

transmitted through the grid to the electrolysis plant, which is closer to London 

and thus hydrogen has to be transported over a much shorter distance. From the 

results, it may be concluded that it is cheaper to transport electricity than 

hydrogen over large distances. So, the model by selecting regional electrolysis has 

combined the exploitation of the best wind resource and a cost effective way of 

hydrogen delivery. So, due to the geographical allocation of the wind resource 

onshore wind energy regional electrolysis fuel chains have been selected 

considerably more times than onsite electrolysis fuel chains. 

As the good onshore wind energy sites in the southern part of GB are 

significantly lower than that in the northern part of GB, onshore wind energy 

option 7 fuel chains have been selected 3 times. The 3 option 7 chains have been 

activated with wind farms of 50MW capacity as starting points. The locations of 

these farms are in the south part of GB and close to the market. 

The 64 waste chains that have been activated in period 1 are expanded to 

maximum capacity that of 17.36W. Fuel chain 14 option is activated 6 times 

with forestry residues as the primary energy feedstock. The amount of forestry 

residues exploited is enough to power a 30MW gasification plant. Forestry 

residues combined with fuel chain 13 option are also used 3 times operating at 

maximum capacity. These 9 forestry residues fuel chains are relatively close to 

London in the southwest part of GB. From the same regions 8 more forestry 

residues fuel chain 12 option are selected with capacity 30MW. 

Another biomass route that has been selected in this period is the energy crops 

pathways. Three chains of the SRC 14 option and 8 chains of 12 option are 

selected to operate at maximum capacity, 30MW. The selected SRC and forestry 

residues fuel chains have as starting points feedstock production facilities located 
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at the southwest region of GB. The SRC option 14 fuel chain that has been 

activated in the first period with 6MW capacity is expanded in this period to 

maximum capacity, which is 30MW. 

Overall, in this period 49 chains have been activated, 65 have been expanded and 

4 chains have continued operating at maximum capacity. At the end of this 

period, the infrastructure consists of 118 fuel chains. 

Third Period 

As the demand increases over the time horizon the infrastructure grows in order 

to deliver to London the required amount of hydrogen fuel. The fuel chains that 

have been selected in the two previous periods continue operating in this period. 

However, the increasing demand results in the activation of more fuel chains. 

From the fuel chains that are formed in this period, the majority of hydrogen 

energy is produced from wind energy. Eighteen offshore wind energy chain 8 

option are formed. Fifteen of them are operate at maximum capacity, 100MW, 

and 3 have 36MW capacity. In the case of offshore wind energy there is no onsite 

electrolysis pathway so the model has to choose between regional and forecourt 

electrolysis. All the selected offshore chains include the installation of offshore 

wind parks in the north where the offshore resource is the largest. The electricity 

produced from the offshore wind farms is transmitted through undersea cables to 

the mainland and then is transmitted through the grid at the electrolysis plant that 

is located at zone 9. Onshore wind energy has also been selected for the activation 

of 19 fuel chains of option 8 with regional electrolysis at the same demand zone 

and capacity of 50MW. 

From the biomass routes 20 fuel chains are selected. These chains break down to 

14 SRC chains and 6 forestry residues chains. The former include 11 chains of 

option 11 and 3 chains of option 14. The latter comprise 1 chain of option 14 and 

5 chains of option 11. Apart from forestry residues option 14 chain that is 

activated with 3.5MW capacity, all the others operate at maximum capacity, which 

is the same for residues and energy crops and equal to 30MW. Although the 

difference in the production costs of SCR and forestry residues is small, the 

relatively large difference in the establishment costs is quite likely the reason why 
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more SCR chains are selected than forestry residues chains. Moreover, the vast 

majority of these chains has as a starting point renewable energy schemes situated 

at the south part of GB. 

Overall, in this period the model has selected 57 additional fuel chains and at this 

stage the infrastructure includes 175 fuel chains from 5 different renewable energy 
sources. 

Fourth Period 

All the selected fuel chains so far continue operating throughout the 4th decade of 

the infrastructure development venture. A fuel chain can be activated throughout 

the 50-years planning horizon, however many of the technologies included in a 

fuel chain do not have a lifetime of 50 years and thus could not last for all the 

horizon. For all the stages in a fuel chain every technology that "expires" is 

replaced by a new one. So, fuel chains that have been activated from the first or 

any previous period until this period or the next one have underwent the 

appropriate replacements. 

Onshore wind energy is selected as the primary energy feedstock for 7 fuel chains 

of option 8 and one option 7 chain. All these chains start from a 50MW wind 

farm that produces the electricity that is transmitted through the grid to the 

regional electrolysis facility at zone 9. The locations for the wind farms that have 

been selected are all in the northwest part of England except from the option 7 
chain that is relatively close to the market. 

The majority of the additional fuel chains in this period use biomass as the 

primary energy feedstock. Forestry residues are used as a feedstock for 4 option 

14 chains and 19 option 13 chains. All of these chains have the maximum 

allowable capacity that is equal to 30MW. Moreover, the 14 option chain that has 

been activated with 4.5MW capacity in the previous period is expanded to 

maximum capacity in this period. The starting points for the chains activated in 

this period are in the south and southwest part of GB. For the forestry residues 

chains although there are segments in the north or middle part of GB that contain 

a promising resource and thus could be selected as feedstock production 
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locations, their distance from the supply centre is the determining factor that 

prevents their selection. For example, if the model has to choose between pipeline 

delivery and liquid hydrogen delivery the location of the feedstock production 

greatly affects the selection because the former method may be cheaper than the 

latter method for a segment close to London but it can be more expensive for a 

segment far away from London. This is the reason the infrastructure does not 

involve a single pattern but is a mixture of different fuel chain options. 

According to the input data, SRC due to the lower production cost and higher 

yield may be considered a relatively less costly biomass feedstock from forestry 

residues. This may also be concluded from the large number of SRC chains that 

have been selected in this period. Overall, the model selected 50 chains with SCR 

as a primary energy feedstock. These chains break down to: 12 option 14 chains, 

37 option 13 chains and 1 option 12 chain. Apart from one of the option 14 

chains that has 4.5MW capacity all others have the maximum capacity, which is 

30MW. The locations of the primary energy feedstock production for all the 

chains are between the middle and south of England in order to minimize 

hydrogen transportation costs. 

In total, throughout this period the model has formed 81 additional fuel chains 

and in conjunction with the existing ones the number of total chains of the 

infrastructure has grown to 256. 

Fifth Period 

In the last decade of the infrastructure development in order the targeted demand 

at the 50th year to be met 40 more fuel chains have been selected and one has 

been expanded. The former chains include fuel chains that use onshore wind 

energy, forestry residues and SRC as their primary energy feedstock. 

The onshore wind energy pathways are 5 chains of option 8 and have as a starting 

point a 50MW wind farm. The forestry residues pathways include 11 chains of 

option 14 and operate also at maximum capacity, which in the case of forestry 

residues is 30MW. The larger number of fuel chains that have been activated in 

this period are SRC chains. In total, 24 fuel chains that use SRC as a primary 
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energy feedstock have been selected and one has been expanded. The latter is the 

option 14 chain that has been activated in the fourth period with capacity 4.5MW. 

In this period it is expanded to maximum capacity that is 30MW. The SRC fuel 

chains that are activated in the fifth period include 22 option 14 chains and 2 

option 13 chains. All of them have a capacity that is equal to 30MW. 

Every fuel chain is considered that may deliver hydrogen fuel to more than one 

refuelling stations depending on the capacity of the renewable energy scheme that 

has as a starting point. The maximum capacity of a renewable electricity 

production facility is different for each renewable energy source and thus the 

number of refuelling stations a fuel chain can supply varies. 

The average throughput of refuelling station in the UK in 2005 was 3.64 million 

litres per year (UPEI, 2006). The average fuel consumption of the UK vehicle 

fleet in 2005 was 0.0751/km (DfT, 2006). These data have been used to calculate 

the daily travel demand per station, of around 132,968km/day. Then assuming 

this is provided entirely by hydrogen fuel cell vehicles, this translates to a 

hydrogen demand of 1.1t/d. A fuel chain that delivers the power output of a 

50MW plant, which is the case for an onshore wind energy fuel chain operating at 

maximum capacity is able to provide hydrogen fuel to maximum 5 refuelling 

stations. For offshore wind energy fuel chains this number is larger because the 

maximum capacity for an offshore wind farm has been assumed double than that 

for an onshore wind farm. Thus, fuel chains using offshore wind energy as a 

primary energy feedstock may supply to maximum 12 refuelling stations. The 

biomass fuel chains may deliver hydrogen fuel to maximum 4 or 8 refuelling 

stations. The latter value corresponds to SRC and forestry residues pathways and 

the former to waste pathways and is lower mainly due to the restricted resource 
and to a lesser extent due to the lower gasification efficiency. 

At the end of the time horizon, the infrastructure is able to cover the road 

transport demand of London by delivering hydrogen fuel from 296 fuel chains. 

So, according to the results of the model the least-cost renewable hydrogen 

infrastructure development plan for London for a 50-year time horizon consists 

of 296 delivery pathways that use the GB resources of 4 different renewable 

energy sources, onshore and offshore wind energy, forestry residues and SRC 
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energy crops, and the London's resource of municipal solid waste. The overall 

cost of this venture amounts to 11.2 billion pounds (16.1 billion euros). This 

capital investment includes all the necessary costs, such as capital, O&M costs, 

feedstock cysts, transportation costs, for the entire infrastructure development 

and operation throughout the 50-year time horizon. This is not discounted in 

financial sense. The produced hydrogen infrastructure development plan for 
London is depicted in Figure 7.2. 
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In general, the values used in the simulation could be characterized as moderately 

optimistic for entry market stage, but yield an overall cost comparable to 

published estimates. More specifically, Mintz et al. (2002) has examined the cost of 

some hydrogen fuel infrastructure options and concluded that the cost of a 

hydrogen infrastructure that delivers fuel sufficient to power 100 million fuel cell 

vehicles is around 285 billion pounds (500 billion dollars). Considering that the 

London infrastructure aims to power 3.5 million vehicles the cost of 11.2 billion 

pounds is a good analogy. Moreover, Ogden (1999) studying the hydrogen 

infrastructure development for Southern California found that the range of 

infrastructure capital costs for a system serving 18,400 fuel cell vehicles is around 

0.8-6.5 million pounds(1.4-11.4 million dollars). Adapting this range to the 

number of London's cars for the sake of comparison shows a close agreement 

with the model's result. 

It is worthwhile to mention that if the simulation included other demand centres 

the infrastructure development would have been different from that presented in 

Figure 7.2. It would have been a completely different simulation. In a simulation 

that includes more than one demand centres, the model forms the appropriate 

pathways for each one. The inclusion of more than one demand centres is 

another case than shows noticeably the importance of examining the development 

of a hydrogen infrastructure using an approach that incorporates region-specific 

framework conditions and resource optimisation. These features enable the model 

to compare different fuel chains based not only on technical and economic 

criteria but also on the resource potential of the region and the location of the 

demand centres in order to select the least-cost pathways for each supply centre. 

So, a fuel chain that may be preferred for a specific market may not be the best 

choice for another market. 
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7.3 Sensitivity Analysis and Discussion 

The results from the model are subjected to a sensitivity analysis to investigate the 

influence of a variation in the model parameters in the outcome of the model. A 

sensitivity analysis has been conducted on each of the parameters feeding into the 

model — listed in Appendix A. Variations in the model parameters have an effect 

on the final model output with some parameters having a greater influence on the 

results than others. In this case, this influence may be either on the resulted 

overall cost of the infrastructure or the final pattern. More specifically, a change in 

a parameter may result in a higher or lower infrastructure cost without changing 

considerably the pattern, namely the type or size or number of fuel chains that 

have been selected, or in a higher or lower cost that combines significant changes 

in the pattern. 

All the parameters have been varied over a range of values and the changes in the 

results have been recorded. The outcome is presented in the form of a spider 

diagram that shows the changes of a result as a function of the percentage change 

in a number of parameters. This diagram shows the changes in the total 

infrastructure cost, however as a number of changes lead to changes in the 

pattern diagrams showing the changes in the pattern are also used. Table 7.1 

shows the parameters used and the range over which they have been varied. The 

Table includes the parameters that cause a large or medium variation and the 

pattern diagrams are formed only for the parameters that cause significant 

variations in the infrastructure pattern. The Table presents the absolute and 

relative variation. The former is a fixed size change in the parameter and the latter 

is a certain percent change in the parameter. In the case of the absolute variation 

the original value is also presented. 
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Min. Original Max. Remark Parameter 

Onshore wind energy 
capital cost (E/kW) 

763 1120 1444 
Lowest and highest value 
encountered in the literature. 

Onshore wind energy 
capacity factor (%) 

25 30 40 
The range of -5/+10% covers all values 
for the onshore wind energy capacity 
factor in the literature. 

Onshore wind energy 
maximum plant 
capacity (MW) 

20 50 90 Based on the existing onshore wind farms in GB. 

Offshore wind energy 
capital cost (eikw) 1250 1650 2050 

This range covers the range of data 
that have been collected for offshore farms. 

Offshore wind energy 
capacity factor ('/o)

35 40 45 
The range of -/+10% covers all values 
for the offshore wind energy capacity factor 
in the literature. 

Offshore wind energy 
maximum plant 

(*pacty (MW) 
70 100 150 Based on the existing onshore wind farms in GB. 

Biomass feedstock 
cost (SRC) (E/kW) 

-20% - +20% 
Little information has been available 
on biomass costs, however, they are 
unlikely to vary widely. 

Biomass maximum 
plant capacity (MW) 

20 30 50
in 
This range covers a number of values 

the literature. 

Biomass feedstock lifetime -30% - +30% 
Variation in the duration of harvesting 
before re-planting. 

MSW resource (tonnes) -40% - +100% 
Variation in the amount of available 
MSW for hydrogen production. 

Electrolysis plant 
capital cost (€/kW) 

-30% - +30% 
This range covers a wide range of values 
encountered in the literature. 
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0 Remark Parameter 

Electrolyser efficiency (%) 60 70 75 
The value of 60 is current electrolyser's 
efficiency and the value of 75 is considered 
conceivable. 

Electrolyser lifetime 10 15 20 
The value of 20 may be considered highly 
optimistic, though not unrealistic. 

Gasification plant 
E capital cost (M W) 

-40% - +40% 
The range -1+40% allows for technological 
improvements given that hydrogen gasification 
is at the early stage of commercialisation. 

Gasification efficiency 
(SRC-forestry residues) (%) 

50 55 58 different 
Range given in Williams (1995) for 

gasifier types. 

Gasification efficiency 
(wastes) (%) 

45 50 55 
This range covers a number of values 
encountered in the literature. 

Compression 
capital cost (£/kW) 

-20% - +20% Established technology. 

Compression efficiency (%) 80 85 85 
Compression's efficiency varies by size 
and pressure and the range of values chosen 
is representative of this variation. 

Liquefaction 
capital cost (f/kW) 

-40% - +40% 
Liquefaction is at a relatively early stage 
of commercialisation so a wide range is used. 

Liquefaction efficiency (%) 70 75 83 
This range covers all values for liquefaction 
efficiency encountered in the literature. 

Compressed gas storage 
l cost  

Bpita 
	(€11cW) 

-40% - +40% 
The tank cost varies by type and material 
and the range of -1+40% is representative 
of this variation. 

Liquid hydrogen storage 
capital cost (€/kW) 

-40% - +40% 
The dewar cost varies by type and material 
and the range chosen is representative 
of this variation. 
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Parameter 	Min. Original Max,  Remark 

Compressed Gas 
and Liquid Hydrogen 
Storage Lifetime 

5 10 15 
This range covers a number of values 
encountered in the literature. 

Compressed gas transport 
capital cost (E/kW/km) 

-40% - +40 % 

Tube trailers vary by operating pressure 
of the truck and storage capacity 
of the tube trailer and thus a large variation 
is considered. 

Liquid hydrogen transport 
capital cost  (E/kW/km) 

-40% - +40% 
The tank trailer varies by storage capacity 
of the tank trailer and the range chosen 
is representative of this variation. 

Pipeline capital cost 
(E/kW/km) estimate 

-20 % - +100% 

There is a wide range of values in the literature. 
The value of the base case is an optimistic 

and thus the upper range 
is higher than the lower. 

Electricity grid transmission 
cost ((f/kW) 

20% 
 

- - +20% 
Variation in the cost of development 
and upgrading of the grid. 

Table 7.1: The parameters varied in the sensitivity analysis 

As it can be observed from Table 7.1, the percentage variation of the parameters 

is from small to large scale. There are even some parameters whose values are 

doubled. These wide ranges has been selected in order to demonstrate the 

response of the model in small, medium and large variations and how the 

infrastructure pattern is changed in order to ensure that for every set of input data 

the least-cost infrastructure development plan is selected. 

All outputs are related to the base case that consists of the infrastructure that 

includes 296 fuel chains and costs 11.2 billion pounds corresponding to the 

central estimate data (full list in Appendix A). The pattern of the base case 

infrastructure is depicted in Figure 7.3. Figure 7.3 shows the five periods of the 

infrastructure development and the number and type of fuel chains in every 
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period. The selected fuel chain options and primary energy feedstocks are 

represented by the corresponding code numbers and icons of Figure 7.1. Any 

pattern produced from the parametric variation that greatly differs from the base 

case is depicted in the same diagram type for ease of comparison. 
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Results, Analysis and Discussion 

Figure 7.4 shows the sensitivity of the infrastructure cost to a range of parameter 

variations. The results that rise from left to right have a positive correlation to a 

change in input values. The others have a similar negative correlation. The former 

category includes capital and O&M cost parameters and the latter the efficiency, 

capacity factor, lifetime and maximum plant capacity parameters. The model has 

been sufficiently sensitive to allow variation of all parameters a result that 

indicates that the problem under study has been modelled in a satisfactory 

manner. It should be mentioned that the scales in Figure 7.4 are the same, to 

allow comparison of the gradients of the lines. 

Figure 7.4: The sensitivity of the total infrastructure cost to parameter changes (1) 

Figure 7.4 includes all the parameters of Table 7.1. As it can be witnessed some 

lines have a steeper gradient than others. As the number of parameters in the 

Figure is fairly large and the variation of parameters that produce a moderate 

change may not be obvious a second graph has been produced that zooms into 

Figure 7.4. Both figures present the results in a spline line chart. This kind of 

chart joins the data points by smooth spline curves instead of straight lines. 

Generally, splines are preferred over straight lines as most of the phenomena in 

nature follow spline lines. 
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Figure 7.5: The sensitivity of the total infrastructure cost to parameter changes (2) 

It may be concluded from the above charts that the overall infrastructure cost and 

the selected pattern are affected by numerous factors. The factors that cause 

greater variation in the overall cost are the lines in Figure 7.4 that have the steeper 

gradients. However, there are lines that correspond to moderate gradients but 

cause significant variations in the final results. This conclusion is not directly 

obvious in the graph because the graph presents only the overall cost but it 

becomes evident when the selected infrastructure pattern is taking into account. 

More specifically, there are some parameters that their variation produces an 

increase to the total cost but does not change the selected pattern, while there are 

others that their increase produces a change in the pattern and thus the cost does 

not increase significantly. For the latter parameters, if the model would have 

selected the original pattern the cost would have been greatly varied but because 

the model for every set of parameters selects the least-cost pattern it does not 

select the original pattern but a new one with a cost closer to the base case cost 

and thus the change in the cost appears smaller. This is the reason why in this 

analysis both changes in the cost and the pattern are discussed as they are closely 

interwoven. 
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One of the parameters that significantly change the results is the pipeline capital 

cost. The reason for this influence is twofold. The first reason concerns the wide 

range of values that has been encountered in the literature for the capital cost of 

the pipeline. The value that has been selected for the base case is a fairly 

optimistic estimate and thus in order to incorporate a representative range in the 

analysis a significantly high upper range value has been selected. So, the variation 

of the pipeline cost has been one of the largest. 

Secondly, the fuel chain option that includes pipeline delivery has one advantage 

over the other options than contain other delivery methods. This advantage is the 

lack of storage at the production site and the refuelling station. This option is the 

only fuel chain configuration that does not include a storage stage as it has been 

considered that the pipeline acts as storage and so no onsite and forecourt tank 

storage are necessary. This exclusion entails the elimination of the capital and 

O&M storage costs and also of the hydrogen energy losses relative to the storage 

step. Hydrogen energy is transferred from the point of production to the point of 

use through each step of the fuel chain. In every step, as the efficiencies of the 

technologies are less than 1 an amount of hydrogen energy, either small or large 

depending on the efficiency of the technology, is lost. In the pipeline fuel chain 

option, the losses are considerably reduced both due to the high efficiency of the 

pipeline and to the exclusion of storage at two points in the fuel chain. This 

makes this option quite attractive and as the base case results show is has been 

selected a considerable number of times. Therefore, as a fuel chain option that 

has been greatly selected variations of the parameters of this option affects the 

overall result to a great extent than parameters of fuel chain options that have not 
been selected at all or only a few times. 

This is evident from the results of the pipeline capital cost variation. Reducing the 

cost of the pipeline brings down the cost from 11.2 billion pounds to around 10.2 

billion pounds. This significant cost reduction is not accompanied by a significant 

change in the pattern. The pattern is similar to the base case with the only changes 

that the capacities of a few pipeline fuel chains have been increased and the 

overall number of pipeline pathway options has been increased by a small 

amount. This minor change in the pattern is reasonable considering that the 

pipeline fuel chain option is a pathway that has already been greatly selected in the 
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base case. The large number of this option included in the pattern is the reason 

why the variation of this parameter resulted in a significant infrastructure cost 

reduction. 

Increasing the cost of the pipeline produces more interesting results firstly 

because this pathway is at a great extent included in the base case and secondly 

because this variation is larger. In this case the cost of the pipeline has been 

considerably larger than in the base case. The results show that this variation 

changes significantly both the cost and the infrastructure pattern. The latter is 

depicted in Figure 7.6. 
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The total infrastructure cost for this pattern is around 13.9 billion pounds. This 

delivery network consists of 368 fuel chains. As it can be seen from the diagram 

the pattern contains the same types of renewable energy sources but includes 

differences in the selected chain options. In this pattern, wind energy is selected 

more times than in the base case. Specifically, throughout the time horizon 108 

onshore wind energy chains and 47 offshore wind energy chains are selected. The 

pipeline delivery of the base case has been substituted by liquid hydrogen delivery. 

The chains, though, start from the same demand zones, zones 9 and 7. Fuel 

chains of option 7 are the only wind energy chains that include pipeline delivery. 

This may be explained as the starting points of these chains are close to the 

demand centre, whereas the chains that contain liquid hydrogen delivery in this 

pattern start from the northern part of GB. So, for long distances liquid hydrogen 

has been preferred over pipelines but for short distances still pipelines are 

favoured. 

Another noteworthy point that can be seen in Figure 7.6 is the inclusion of 

forecourt electrolysis chain options. Option 3 fuel chains have been selected both 

for onshore and offshore wind energy and in particular from these primary energy 

feedstocks this option has been selected more times than the other options. The 

selection between onsite, regional and forecourt electrolysis apart from the 

difference in the capital cost is also determined by the cost of transportation 

technologies. Due to the resource optimisation the model tries to activate fuel 

chains in the best possible locations for the production of the primary energy 

feedstock from renewable energy sources. When the resource optimisation 

determines these locations based on the renewable resource afterwards the fuel 

chain optimisation determines the suitable locations taking into account all the 

parameters of each fuel chain. In the case of electrolysis, when the wind farm 

location is selected a comparison between the transportation technologies is taken 

place. If the transportation of hydrogen is cheaper than the transmission of 

electricity then onsite electrolysis is the preferred option. If the transmission of 

electricity is cheaper than hydrogen transportation then the selected option will be 

between forecourt and regional electrolysis. The former option includes a high 

capital cost and no hydrogen transportation while the latter option includes a 

lower capital cost but hydrogen has to be transported from the electrolysis plant 

to the market. In the base case the high capital cost of forecourt electrolysis made 
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Results, Analysis and Discussion 

the regional electrolysis option more cost-effective. However, this is true for 

demand zones 9 and 7 that have been selected. In the pattern of Figure 7.6, the 

large increase in the cost of pipeline has reversed the situation and thus forecourt 

electrolysis for some locations is now the preferred option. 

Generally, for wind farms that are relatively close to the market the cost of 

electrolysis plays a major role in the selection decision as the proportion of 

transportation costs are minimized because the delivery distance is not very large. 

In this case, onsite electrolysis becomes again a competitive option. Then the 

comparison is between onsite and regional as forecourt has been excluded due to 

the considerably higher capital cost. For wind farm locations closer to the market 

than the predetermined location of the regional electrolysis plant, onsite 

electrolysis chains are preferred. For this reason, in this pattern onsite electrolysis 

chains have been selected, however only 5 times. This number is small because of 
the resource distribution of the onshore wind energy resource in the GB. For 

example, if the market was Edinburgh that is situated in an area of strong wind 

resource the pattern would have not been the same. These results also show the 

importance of resource optimisation in producing an infrastructure development 

plan and the correct implementation of such an optimisation by the developed 
model. 

The difference in the cost of pipeline delivery also affects the biomass routes. The 

number of chains that used pipeline delivery in the base case has decreased both 

for SRC and forestry residues chains. Moreover, hydrogen produced from MSW 

instead of being transported by pipelines in this pattern is transported as liquid 

hydrogen. According to the pipeline cost variation results, it may be concluded 

that the large variation of one parameter that greatly affects the results, such as 

the pipeline cost, evoked a good response of the model. 

Generally, the variation of a component's parameter that is a higher proportion of 

the fuel chain cost is considerable. The sensitivity of costs to the cost of each 

component increases with decreasing number of components. Therefore, a 

variation in the cost of one component that may not have been included in the 

model is likely to have a greater impact on the fuel chains with fewer stages. Since 

the pipeline fuel chain option plays a significant role in the base case 
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Results, Analysis and Discussion 

infrastructure pattern the model was run for a simulation that includes forecourt 

compressed gas storage stage in the pipeline fuel chain option in order to examine 

the effect on the results. The cost of the pipeline in this simulation is the base 

case cost. The infrastructure pattern for this simulation is illustrated in Figure 7.7. 
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Results, Analysis and Discussion 

This hydrogen network costs around 12.9 billion pounds and includes the 

formation of 358 fuel chains. This pattern may be described as in between the 

base case and the pattern of Figure7.6. One of the differences from the base case 

is that wind energy chains that include liquid hydrogen delivery and forecourt 

electrolysis chains have been selected. On the other hand, the difference from the 

pattern of Figure7.6 is that pipeline delivery options have also been activated not 

only for onsite electrolysis. This shows that liquid hydrogen and pipeline delivery 

are the candidate options for transportation over medium to long distances. 

Compressed gas delivery is almost always selected for shorter distances. 

From this simulation it may be concluded that pipeline fuel chain options even 

when the advantage of the elimination of storage stage is removed are still 

preferred in certain cases. The inclusion of storage stage has reduced the 

difference in cost between liquid hydrogen and pipeline delivery options and this 

is evident by the fact that the pattern of Figure 7.7 does not include one option a 

large number of times but both options in a relatively similar frequency. 

Similar behaviour has been recorded for the variation of the liquid hydrogen and 

compressed gas transport cost parameters. More specifically, in each case the 

model decreases or increases, depending on the variation, the number of chains 
that include the corresponding transport technology. Figure 7.8 and Figure 7.9 

show the influence of increasing the cost of compressed gas transport and liquid 

hydrogen transport respectively on the infrastructure pattern. 

257 



cia TOTAL: 6 (50  ow) 

011 
TOTAL: 8 (50Mw) 

TOTAL: 5 PO P.0 

R:9 TOTAL: 3 (67 Mw) 

R:9 TOTAL: 15 (1001.4 

(ZS) R:7 TOTAL: 18 (so mw) 

CM R:9 TOTAL: 27 (50Mw) 

Cgi 	TOTAL: 50 (30 Mw) 

TOTAL:  1 (4.4 Mw) 

TOTAL: 18 (30 ow) 

TOTAL: 6 (3014w) 

TOTAL: 28 (3o .w) 

TOTAL: 14 (30 MW) 

TOTAL: 64 (17.36 Mw 

14 

14. 

Cl* 
TOTAL: 2 PO Kw) 

TOTAL: 1 PO Mw) 

TOTAL: 64 (9.7  Mw) 

(  PATTERN  : COMPRESSED GAS TRANSPORT MAXIMUM COST 

0-10 YEARS 
	

10-20 YEARS 
	

20-30 YEARS 
	

30-40 YEARS 
	

40-50 YEARS PERIODS 

Figure 7.8: Infrastructure pattern for compressed gas transport capital cost variation (maximum value) 



Results, Analysis and Discussion 

The cost of the development plan of Figure 7.8 is 96.2 million pounds more 

expensive than the base case. It can be seen in the above diagram that the chain 

options that include compressed gas transport have been decreased in relation 

with the base case. Moreover, in both the above and below diagram the response 

of the model to significant changes in the transport method costs can be 

observed. When the hydrogen transportation costs are changing forecourt 

electrolysis becomes competitive as the total fuel chain cost of this option stays 

the same due to the lack of hydrogen transport stage but the cost of regional and 

onsite options increases as they include the parameter of hydrogen transportation 

that has been increased. Thus, the difference in the costs of these options is 

getting smaller and for some locations the transportation cost overcomes the high 

cost of forecourt electrolysis and thus the latter option is selected. This is the case 

for the 8 option 3 chains that have been selected as it can be seen in Figure7.8. 

Similar behaviour can be observed in Figure 7.9. In this case the cost difference 

with the base case is around 301 million pounds. The reason why this cost 

difference is greater than the compressed gas transport cost variation is that the 

base case pattern consists of considerably more fuel chains of the liquid hydrogen 

transport option. As it can be seen from the following diagram liquid hydrogen 

transport fuel chain options have been reduced and 18 option 3 fuel chains have 
been activated. 
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Results, Analysis and Discussion 

In both cases the selected forecourt electrolysis chains are option 3 chains that 

include hydrogen as a compressed gas. This shows that for forecourt electrolysis 

the compressed gas conversion and storage has been preferred over liquid 

hydrogen conversion and storage. The liquid hydrogen forecourt electrolysis 

option has a cheaper forecourt storage cost and a more expensive conversion 

technology cost than the compressed gas forecourt electrolysis option. The 

selected patterns show that lower forecourt storage cost of liquid hydrogen has 

been outweighed by the significantly lower forecourt conversion technology of 

compressed gas. This is reasonable considering that the cost difference of these 

two forms of hydrogen is considerable larger in the case of conversion than 

storage technologies. 

The reduction of the liquid hydrogen and compressed gas transport costs produce 

infrastructure patterns similar to the base case. However, these patterns result in 
considerable reductions in the overall infrastructure cost. The largest reduction 

has been the variation of the liquid hydrogen transport parameter for the same 

reason described above the largest increase has occurred. The total cost of the 

hydrogen network is 10.6 billion pounds for the liquid transport cost variation 

and 10.9 billion pounds (24 million pounds reduction) for the compressed gas 

transport cost variation. 

Another parameter that affects the results both in terms of the overall cost and 

the selected pattern is the liquefaction cost. More specifically, increasing the value 

of the liquefaction cost entails changes in the overall infrastructure cost without 

considerable changes in the pattern, while decreasing this value leads to variation 

in the cost and the selected pattern. In the former case, the infrastructure costs 

approximately 11.36 billion pounds and has reduced the number of SRC and 

forestry residues fuel chain options that include liquid hydrogen. The reason for 

reducing only SRC and forestry residues options is that they are the only fuel 

chain options that include liquid hydrogen. In the latter case, the cost is reduced 

to around 10.9 billion pounds (24.66 million pounds reduction). This variation has 

made liquid hydrogen fuel chain options more attractive than in the base case and 

this is obvious from the pattern of Figure 7.10. 
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Results, Analysis and Discussion 

There are three main differences in the pattern of the above diagram in relation to 

the base case. Firstly, the MSW fuel chains activated in this pattern consists of 

fuel chains of option 13 instead of option 14 of the base case. Secondly, the 

onshore wind energy fuel chains that include regional electrolysis in demand zone 

7 deliver the produced fuel both in liquid form and in compressed gas form 

through pipelines while in the base case only pipeline delivery has been selected. 

Lastly, the number of fuel chains that include liquid hydrogen is greater than that 
of the base case. 

As it can be seen in Figure 7.4 the increase in the efficiencies of the technologies 

result in a reduction in the overall cost and vice versa. Generally, the changes in 

the efficiency values as their range of variation is relatively small produce a change 

in the total infrastructure cost but do not change the pattern largely. From the 

variation of the efficiency figures, the larger change in the pattern, which 

comparing it with other parametric variations is a small change, is produced from 

the increase of the onshore wind energy capacity factor. The pattern of this 
variation is depicted in Figure 7.11. 
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Results, Analysis and Discussion 

The pattern of the above diagram includes considerably more onshore wind 

energy chains. The advantage of offshore over onshore wind energy has been 

minimized as the difference in their corresponding capacity factors has been 

reduced. The improved capacity factor in conjunction with the lower than 

offshore costs led to the activation of 35 more onshore wind energy chains and 

deactivation of 15 offshore wind energy chains than in the base case. The cost of 

this pattern is lower than the base case and equal to 10.7 billion pounds. 

Generally, onshore wind energy is a renewable energy source that has been 

selected a substantial number of times. For this reason the parametric variation of 

onshore wind parameters affects considerably the results. This variation affects 

the overall cost and also produces a number of changes in the pattern. Increasing 

the capital cost of onshore wind energy evokes the reduction in the overall 

number of selected onshore wind chains. This is evident in Figure 7.12. 
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Results, Analysis and Discussion 

The overall infrastructure cost for this pattern is about 11.3 billion pounds. The 

decrease of onshore wind chains has been accompanied by an increase in offshore 

wind fuel chains and in forestry residues and SRC fuel chains. This shows that the 

model has responded well to the new set of data and has delivered the least-cost 

pattern under the new circumstances. 

Conversely, decreasing the capital cost of onshore wind energy produces a 

hydrogen network of lower cost with a large number of onshore wind energy 

chains. This variation has brought the overall cost down to 10.7 billion pounds. 

This cost is similar to the infrastructure cost of the onshore wind energy capacity 

factor variation but the latter is larger by 10.6 million pounds. The pattern that 

corresponds to the onshore wind capital cost variation is depicted in Figure 7.13. 
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Results, Analysis and Discussion 

Variations in the cost of biomass feedstocks also affect the overall cost as like 

onshore wind energy biomass is a renewable energy source that has been selected 

a substantial number of times. However, due to the small range of variation and 

the fact that biomass routes are regarded as relatively cheap renewable hydrogen 

delivery pathways and thus for a small variation have still been considerably 

selected the change in the results is not drastic, especially in the pattern. For 

example, the increase in SRC cost produces and increase of 67.7 million pounds, 

while the decrease a 73.1 million pounds reduction. For forestry residues these 

figures are 54.2 million pounds and 60.4 million pounds, respectively. SRC chains 

result in larger variations due to the larger number of times that have been 

selected in all the produced patterns. Generally, for lower biomass feedstock costs 

the overall cost is reduced and the number of selected biomass fuel chains is 

raised. Alternatively, the cost is increased and the number of selected biomass 

chains is moderately reduced. 

In the case of MSW, variation in the cost has not been possible since it has been 

considered that this primary energy feedstock based on the existing policy in 

London and taking into account that their exploitation may assist in the landfill 

sites exhaustion problem is free of charge. However, an interesting change in the 

results is produced by varying the available resource. As it has been mentioned in 

Chapter 6, the simulation considers only that the available MSW resource for 

hydrogen production is the amount of MSW that is produced in London. 

By observing all the aforementioned pattern diagrams it may be concluded that 

MSW chain option 13 and 14 are the only options that have been activated 64 

times, which is the maximum number of times a fuel chain option can be selected 

for the chosen map segmentation. This may be interpreted as an indication of the 

low cost of this delivery option. If the resource would have been larger then the 

model would have selected more options with MSW as a primary energy 

feedstock. The reason for choosing 64 chains is that the amount of MSW 
produced in London annually provides sufficient energy for 64 chains of around 

17.36MW capacity each maximum. The verification of this conclusion can be seen 

in Figure 7.14 
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The pattern of the above diagram corresponds to a simulation that includes twice 

the MSW resource of the base case. As it can be witnessed, more MSW fuel 

chains have been selected. More specifically, the number of MSW chains is double 

than that of the base case. Like in the base case, the number of selected MSW 

chains is the maximum number a fuel chain option can be selected. Considering 

that the primary energy feedstock is free of charge and the transportation distance 

between the production point and the refuelling station is small it is 

comprehensible why the MSW route has been activated to such a large extent. 

From these two factors the latter influences the MSW fuel chain to a greater 

extent than the former. In particular, if the price of the primary energy feedstock 

was non-zero and the distance between the gasification plant and the market was 

small, still MSW routes would have been selected to a large extent but if the 

delivery distance was significantly large then MSW chains would have been 

selected to a moderate extent. 

The cost of developing the infrastructure showed in Figure 7.14 is around 10.2 

billion pounds, approximately 9.17 million pounds more economical than the base 

case. Conversely, decreasing the MSW resource leads to an overall cost of around 
11.9 billion pounds. For the latter variation the change in the pattern does not 

include changes in the type of options only small changes in number of times the 

biomass routes have been selected. 

Generally, the analysis has showed that the model has responded well to 

parametric variations and has demonstrated how these changes affect the overall 

infrastructure cost and the selected pattern. It is worthwhile to mention that 

varying the parameters has produced various patterns but there have been two 

renewable energy sources that have been always excluded from the resulted 

patterns. These are solar energy and hydro energy. The reason for this exclusion is 

the characteristics of each one. 

More specifically, hydro energy has two features that caused its exclusion. Both 

features stem from the fact that only small-scale hydro has been considered as 

only this scale has a remaining available resource in GB. The first impact of this 

restriction is the considerably small plant capacity. The sites available for small-

scale hydro installation are sites with potential output in the range of 0.025-5MW. 
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Moreover, small-scale hydro is significantly more expensive than large scale. So, 

the model if it is necessary to deliver at a particular point in the time horizon up 

to 5MW there are a lot more options that may provide this amount with lower 

cost. However, hydro energy has a high capacity factor but as the results showed 

this advantage was not enough to overcome its weaknesses. 

Solar energy in terms of maximum plant capacity is better than small-scale hydro 

energy but its efficiency and cost are the determining factors that cause its 

exclusion. The range of variation with values that have been encountered in the 

literature did not change this situation. Generally, solar energy may be selected as 

a primary energy feedstock if the cost of the electricity-generating technology 

drops significantly and technical improvements are achieved. This is more likely 

to happen in the next five to ten years provided that the PV market will continue 

to grow. 

7.4 Policy Considerations 

As it has been seen from the modelling results the development of a new fuel 

infrastructure is a complex and large capital investment venture. Generally, the 

transition to new transport fuels is especially problematic because of the diffuse 

nature of the transport system. In the case of hydrogen fuel, in particular, this 

transition becomes more challenging as hydrogen has a few private benefits 

compared to petroleum-based fuels. The use of hydrogen fuel will benefit the 

society as a whole in the long term but it will not offer to its consumers 

immediate returns in order to offset the higher purchase cost. Therefore, the 

introduction of hydrogen fuel and its widespread use are almost impossible 

without drastically different market conditions and new policies. 

Policy support is even more necessary in the case of the development of an 

infrastructure that delivers hydrogen that is produced exclusively from renewable 

energy sources. Although some renewable energy technologies are technically 

mature and widely used the cost of generating hydrogen from green electricity is 

still higher than that from fossil-based electricity. 
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The model of the present study is a tool that may be used in order to produce a 

least-cost infrastructure development plan under a large number of different 

conditions. However, the determination of the way the infrastructure may be 

developed is one factor that is necessary for the implementation of this task but it 

should be accompanied by policy intervention that using the model's results may 

identify the requirements and thus the necessary actions in order to achieve the 

successful implementation of this task. Metaphorically, the model can be seen as 

the driver of the car that may drive down the road from petroleum-based fuels to 

renewable hydrogen fuel and the policy intervention as the fuel that has to power 

the car. For the completion of this journey both these factors are necessary. 

Of course, the car in this metaphor is the fuel cell car as the development of a 

hydrogen delivery system is necessary to be accompanied by the introduction of 

hydrogen fuel cell vehicles. This coupling, though, involves one of the obstacles 

that impede the use of hydrogen as a fuel. It is the classic chicken and egg 

problem that puts the vehicle manufacturers and the fuel suppliers in a vicious 

circle that each one is unwilling to make the step towards hydrogen if the other 
one does not make it. 

Every beginning, particularly the beginning of a challenging task, is difficult but it 

is necessary in order to reach the end, the fulfilment of the task. The role of the 

Government is to assist in the beginning and get the hydrogen transport economy 
started. 

As the use of hydrogen as a transport fuel would contribute significantly to the 

reduction of carbon emissions, the improvement of air quality, the reduction of 

noise and the increase of energy security, it should be supported by the energy, 

transport and environmental policy framework. In particular, the implementation 

of the development infrastructure plan produced from the modelling work could 
have a significant impact on CO2  emissions, especially because the simulation 
includes the substitution of 100°A of transport fuel with renewable hydrogen fuel. 

This substitution would reduce to zero the emissions of CO2  produced from the 
transport system of London. Specifically, London emits 42 million tones of CO2 

annually. The transport sector is responsible for 20% of this, which is around 10 

million tonnes and the road transport accounts for approximately 80% of carbon 
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dioxide emissions (UITP, 2006). So, at the end of the 50-year time horizon that 

the infrastructure will be able to deliver fuel sufficient to meet all road transport 

demand in London the emissions of CO2 from that sector in London would be 

zero minimizing London's CO2 emissions by 8 million tonnes. 

It should be mentioned that hydrogen produced from renewable electricity has 

zero emissions while hydrogen generated from biomass routes are assumed to be 
zero net emissions. The CO2  emissions produced when biomass is converted to 

hydrogen would be absorbed during the plant growth cycle. 

The amount of carbon emissions saved by using renewable hydrogen fuel in 

London is 8 times more than the carbon savings achieved By the Renewable 

Transport Fuel Obligation that will be introduced by the Government in 2008-09. 

According to this Obligation, fuel suppliers have to ensure that a proportion of 

the transport fuel comes from renewable sources (DTI, 2007a). 

Considering the strict targets with regard to the reduction of greenhouse gases 

that the UK government has committed itself, with the most challenging one 
being that of a 60% reduction of CO2  emission, with respect to 1990 emission 

levels by 2050, renewable hydrogen can play a major role since it is a superior 

alternative in terms of CO2 emission reductions among other low carbon options. 

This advantage comprises a substantial argument for greater promotion of 

hydrogen fuel in reflection of this improved environmental performance. 

London may be regarded as a vital place in the UK that may achieve the creation 

of a hydrogen transport system due to the political support in hydrogen and fuel 

cells, the wide public transport system, the level of control of public transport by 

the mayor, the numerous fleet vehicles, its international status and the 

collaboration between government, financial, institutional and academic 

organizations (LHP, 2004). Although it seems that London has the conditions for 

succeeding in the introduction of hydrogen fuel is not currently among the 

leading countries in hydrogen developments such as Germany, the USA and 

Japan. One of the reasons for this situation is that the latter countries invest 

strongly in hydrogen and fuel cells technologies. 
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Although the UK may not dedicate to hydrogen technologies the funds that other 

countries offer it may be maintained that hydrogen is gradually climbing the 

energy policy agenda. This is obvious comparing previous policy reports with 

current reports. Generally, the willingness to support hydrogen of the former 

reports is substituted with a more drastic promotional action plan in the latter 

reports. The action proposed for the development of hydrogen and fuel cell 

technologies as it is stated in the last Energy White Paper that has recently been 

published in May 2007 includes the launch of a demonstration programme in 

September 2006 that offers £15 million funding over three years (DTI, 2007a). 

The Mayor of London continues supporting hydrogen and fuel cells in 

recognition of their potential to assist in achieving his Energy Strategy and 

London Plan. The London Hydrogen Partnership is the main mechanism for 

facilitating the development and deployment of hydrogen and fuel cell 

technologies. Moreover, Transport for London also supports hydrogen fuel by 

continuing operating hydrogen-powered buses and thus accelerating their 

commercialization. As part of the London Hydrogen Partnership Transport 

Action Plan, Transport for London will introduce 10 more buses running on 

hydrogen by 2010 (GLA, 2007). 

Although attention and support has been given on hydrogen and fuel cell 

technologies there are certain challenges related to the implementation of a 

renewable hydrogen infrastructure. As it has been seen from the modelling 

results, creating a large-scale infrastructure involves the considerable exploitation 

of renewable resource. The challenge is not whether GB has sufficient renewable 

resource to produce hydrogen fuel but how much of this resource may be 

available for hydrogen production. The development and exploitation of 

renewable resources will take time and the generation of hydrogen fuel has to 

compete with electricity production and heat. The opportunity of using hydrogen 

fuel generated from renewables in the transport sector must be examined taking 

into account these constraints. 

The judge of the competition for the renewable resource exploitation is the 

Government. The latter aims to use the renewable resource in such a way so as to 

ensure the fulfilment of its energy policy targets. Judging by its action plans, it 
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seems that the Government gives priority to power applications over hydrogen 

fuel production. The reason for this preference may be that the utilisation of 

renewables for power applications is associated with less technical and economical 

obstacles than for hydrogen fuel production. Thus, in the short-term power 

applications may contribute more significantly to national energy policy objectives 

and targets. This picture is getting worse for hydrogen considering that among the 

different kinds of renewable energy sources there are some resources that could 

not be used due to the small resource potential in the UK, like geothermal energy, 

and others due to the premature stage of their electricity-generating technologies, 
such as wave energy. 

A possible way of ensuring the use of renewables for hydrogen production is by 
setting targets that will require the dedication of a percentage of renewable 

electricity to hydrogen fuel production. In the short-term this percentage may be 

small and as the infrastructure develops and the fuel cell vehicles increase the 

percentage should grow. With this method, renewable hydrogen may take part in 

the early stage of the infrastructure development a phase which is generally 

believed will be dominant from fossil fuel based hydrogen and thus ensures that 

non-renewable hydrogen is an interim step and not the final destination. 

Another challenge that has to be overcome concerns the existence of early 

demand for hydrogen fuel. Generally, the cost of hydrogen improves with 

increase production due to economies of scale. However, even if fuel suppliers 

and vehicle manufacturers do coordinate the timing of infrastructure the process 

of hydrogen vehicles has to be competitive in order to be successfully deployed in 

the large numbers needed to ensure adequate fuel demand. A possible way of 

stimulating demand for vehicles is the introduction of hydrogen fuel in a niche 

market. In this case vehicles are deployed in a protected market that allows 

technological innovation and competition that will bring the cost down. 

Introducing hydrogen into a controlled setting associated with managed fleets 

offers also the benefit of reducing the emissions from fleet vehicles something 

which is not addressed in the congestion charging scheme as fleet vehicles are 

exempt. This becomes more promising considering that around 45,000 vehicles 

are exempt from the charge (GLA, 2003a). Another possible option for ensuring 
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a demand for hydrogen vehicles is by offering subsidies or tax incentives to 

consumers or manufacturers for early hydrogen vehicles. 

The launch of a hydrogen infrastructure is a collective action problem that 

requires the collaboration between different bodies. Stakeholders such as fuel 

suppliers, car manufacturers, government agencies, academia, should form 

partnerships and establish long-term technology and infrastructure development 

goals. 

The Government is necessary to strongly support three main areas in order to 

facilitate the introduction of hydrogen fuel in the transport sector. Firstly, support 

to research and development in order to assist in the designing, developing and 

testing hydrogen technologies. Secondly, support to demonstrations in an attempt 

to stimulate the market of the , new technologies. Lastly, support to 

commercialisation in order to succeed in getting the new technologies to the 

market. 

As it has been seen from the modelling results the infrastructure consists of a 

number of different hydrogen delivery pathways. As a fuel hydrogen has a 

diversity of production, conversion, storage and transport methods and thus the 

support and promotion do not need to be committed to a single route. It is 

unlikely that hydrogen used for a large proportion of transport demand would be 

produced and delivered using one set of technologies. 

Although, the funding for hydrogen and fuel cell vehicles is gradually increasing, 

the UK Government has to follow the examples of leading countries in the 

hydrogen field and increase the financial support considerably. Moreover, it may 

be more efficient to separate the funding for hydrogen and fuel cell technologies. 

A separate budget would give the opportunity to identify the political priority of 

hydrogen and fuel cells and the assurance to the industry that a specific fund is 

certainly available. 
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7.5 Critique of Selected Approach 

In this study the issue of developing a renewable hydrogen delivery system has 

been addressed. The chosen way to deal with the infrastructure development 

problem has been the creation of a general modelling tool that can be applied and 

produce results under several different conditions. Naturally, like every approach 
it has its benefits and its drawbacks. 

The comparison of the chosen approach with other methods that have been used 

to tackle the same problem is not particularly feasible. Given that nobody else has 

developed the same algorithm it is difficult to compare it. So, as the only similarity 

of this algorithm with others is the problem that it tries to solve comparing 

modelling approaches may not be totally correct. A more acceptable way of 

evaluating the developed algorithm is by referencing to the advantages and 

disadvantages it involves. 

One of the noteworthy aspects of this approach is the degree of originality it 

includes. This fact comprises two significant elements. Firstly, it raised the 

difficulty of the implementation of the approach as there was not a reference or 

similar work that could have been a helpful guidance. Secondly, it allows the 

examination of the infrastructure problem from a different perspective showing 

possible points that are missed or not taken into account in a great extent in other 

approaches. 

The second element becomes evident from the outcomes of the modelling work. 

According to the results of the model for the development of a hydrogen network 

for London, none fuel chain has been selected for the maximum allowable 

number, which has been 64. This shows that there is not a single route that is the 

absolute least-cost fuel chain option as a chain that is cheap in an area may be 

expensive in another area. This observation shows how important is the 

geographical optimisation as a factor in deciding which is the more economic 

pathway option. Geographical optimisation gave to the model the element of 

relativity that is undoubtedly an important feature in determining the solution of 

the infrastructure problem. The lack of this factor would have produced 

completely different results. It is important to mention that the production of a 
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least-cost development plan is a task that includes several parameters that need to 

be taken into account and every resulted plan is given with respect to certain 
conditions. 

The only route that has been selected 64 times was the waste-based fuel chain 

options. However, even in this case this is not an absolute conclusion as the waste 

fuel chain options were indeed activated the maximum number of times but 

under the conditions that the primary energy feedstock was free of expense and 

the distance from the production point to the market was very short. Changing 

these conditions would have produced different results. 

This encompasses another strong point of the selected algorithm that is its 

generality. This approach provides application flexibility in examining 

infrastructure development options. It investigates different options and answers 

the question of which is the least-cost infrastructure development plan under a 

wide range of different conditions. These conditions may be different 

geographical area, market place, fuel chain options, renewable energy sources, 

available renewable resource, time horizon, demand figure. For example, the 

model may be used to produce a development plan for Paris including biomass 

resources or for Athens including wind energy resources. 

Moreover, the model is constructed in such a way that changes in conditions do 

not require any change in the model. The only thing that is necessary in order to 

run different simulations is the production of the input XML file that includes all 

the input values for the parameters. This fact leads to another positive point 

which is the possibility of using this model without knowing MATLAB or linear 

programming and general any other tool that has been used to develop the model 

that broadens the range of possible applicants. 

As it has been described in Chapter 4, the algorithm is not one single unit but 

consists of a number of individual parts. Having a modular model allows the 

substitution or change of one unit without the need to re-write or change the 

whole model. This construction has another important benefit concerning 

possible desired changes. The model can be extended without the need of 

changing its current form but only to incorporate the new inclusion. This is very 
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important because it allows space for improvements without the need to start 

from zero so makes the addition or reduction of elements a fairly easy task. 

Moreover, it is able to run small-, medium- and large-scale simulations and in a 

satisfactory time. This is significant because there are models that may produce 

valuable results when used for small-scale problems but their application is 

restricted only in problems of this size. The present model has been developed in 

such a way so as to solve even large-scale problems. Evidence of this capability is 

the selected case study. 

The selection of LP for the mathematical formulation of the problem may be 

considered a successful selection as it solves large-scale problems, deliver results 

in a short time and produces valuable results. This is based on the fact that the 

modelled problem has to a large extent linear behaviour. However, for the non-

linear behaviour LP may be regarded as a weakness as it can not incorporate non-

linear behaviours. Generally, in nature nothing has linear behaviour but is not 

accidental that LP is greatly used as a method of programming. The exclusion of 

non-linear behaviour for the present problem that is characterised by a 

significantly large degree of linearity has been preferred over the omission of 

more important aspects. More specifically, with DP would have been quite 

impossible to solve the problem of the case study due to its size. Thus, 

considering the trade-off between LP and DP more elements are sacrificed by 

choosing the latter. 

As it has been mentioned in Section 7.3, the produced overall infrastructure cost 

is not a discounted cost. The reason why the cost has not been discounted is that 

its inclusion increases the complexity of the model. Generally, simulations that 

include large number of segments and periods are complex and need more time 

and RAM to be solved. The simulation for London has 64 seg,ments and 5 

periods of 10 years duration, it could have also been run for 10 periods of 5 years 

duration or 50 periods of 1 year duration. However, for such a large-scale 

problem for more than 5 periods one computer was not sufficient to deliver 

results. The inclusion of the discounted cost would have entailed the decrease in 

the size of the simulation or the number of segments and periods. So, it has been 
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considered more valuable to keep the size of the simulation to the maximum 

possible for one computer and exclude the discounted cost. 

Another exclusion of the model may be regarded the dispensing stage and the 

dispersion of refuelling stations within the market place. The simulation considers 

the market as a point. The latter inclusion would have affected even greater the 

complexity of the simulation as it entails the addition of a new subsystem in the 

algorithm. Moreover, the focus of this study has been the delivery of hydrogen to 

urban centres and not the distribution of refuelling station within demand centres. 

However, this inclusion comprises an interesting recommendation. 

Apart from the transmission of electricity that uses the electric grid, the distance 

that hydrogen is transported using any transportation method is calculated 

assuming that it is a straight line between the starting point and the end point. 

Naturally, this is not quite true in reality because roads and pipelines due to 

geophysical reasons may have not been or will not be constructed in a straight 

line. 

Lastly, another factor that have been attempted to be incorporated into the model 

but it has not been achieved is the learning curve effect. The theory of learning 

curve is based on the concept that the cost of a technology decreases at a constant 

rate as cumulative production doubles. Especially, for hydrogen technologies that 

technical maturity has not yet been achieved the concept of the technology 

learning curve can be applied to estimate the capital investment requirements 

associated with the commercialization process of these technologies. The reason 

of this exclusion is based on the mathematical expression that describes this 

phenomenon. Learning curve is given by a power law function: 

Cn = Cl lia  

where Cr, is the cost of the nth unit of production; 

Ci is the cost of the first unit of production; 

n is the cumulative cost of production; and 

a is the elasticity of cost with respect to the output. 
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As it can be witnessed this is not a linear function and can not be incorporated in 

linear programming model. For this reason, it has been Taylor expanded in order 

to incorporate into the model only the linear part of this equation but 

unfortunately applying the Taylor series in the case of this function showed that 

there is no linear part in this equation and thus had to be excluded. 

7.6 Alternative Applications of the Model 

The model developed in this study allows the investigation of different fuel chain 

options in order to produce a cost-effective renewable hydrogen delivery system. 

The model has been used for the case study of London showing its performance 

and capabilities. The approach taken towards the renewable hydrogen network 

development choice and the methods used to implement the model can be used 

for a number of applications. This Section provides four applications that the 

model could be used and produced results. 

7.6.1 Fossil Fuels as an Interim Step 

Generally, the transport sector is characterized by a strong inertia to change. This 

phenomenon in conjunction with the fact that hydrogen fuel produced from 

renewable energy sources is not at the top of the Government's energy hierarchy 

justifies those who believe that at the uptake of hydrogen fuel fossil fuel will be 

the dominant primary energy feedstock. Apart from fossil fuels, hydrogen may be 

supplied in the beginning from existing refineries and chemical complexes. This 

beginning may bring the cost of production down and assist in the fuel and fuel 

cell technology market development opening the road for the truly sustainable 

fuel, which is renewable hydrogen. 

The model is able to produce results for simulations that include non-renewable 

energy sources. These resources may be either fossil fuels or refineries or nuclear 

power or any other source that can produce hydrogen. Moreover, it may include 

existing facilities or assume the construction of new schemes. The inclusion of 

different options is not only applicable in the primary energy feedstock stage but 

in all fuel chain stages. 
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7.6.2 Renewable Energy Sources outside the UK 

Like conventional fuels, renewable hydrogen may be produced from foreign 

resources and transported into the UK. Importing renewable hydrogen allows the 

UK to benefit from the large renewable resources of other countries like 

hydropower in Iceland or biomass in Brazil. A possible route of hydrogen supply 

to the UK will be the transmission of solar energy-derived hydrogen in North 

Africa by gas pipelines across the Mediterranean Sea, all through Europe and 

north into the UK. Another possibility will be the transportation of liquid 

hydrogen, that would be produced by hydro power in Canada, by ocean tanker 

(H2, 2004). 

Simulations that include the production of hydrogen from renewable energy 

sources outside the UK may also be supported by the model. However, from an 

economic perspective, in the near future the exploitation of renewable resources 

in the UK may be a more attractive option as the distance of foreign resources 

greatly affects the costs of the transportation stage in the fuel chain. 

7.6.3 Renewable Electricity Delivery 

The model also can be used for the production, storage and transportation of 

green electricity. In this case the fuel chains have electricity as the final product 

that can be used for power applications. The model can determine the cost-

effective way of producing green electricity and transmitted it to demand centres. 

This is useful for both centralized and decentralized applications. Moreover, the 

model can determine the way or the extent a region can be electrically 

autonomous by using its renewable energy resources. 

7.6.4 Identification of Renewable Energy Sites 

Another useful application of the model is the investigation of the renewable 

energy resources of a geographical region. Due to the resource optimisation stage, 

the model may determine the best possible sites for the installation of renewable 

energy schemes. This is quite useful as it may be used regardless of the end-use 

application of the produced electricity. 
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7.6.5. Applicability to Decentralized Energy Systems 

In decentralised, or distributed, energy systems the energy in the form of heat or 

electricity is generated close to or at its point of use. Generally, it is believed that 

decentralised energy is important as a means of reducing carbon emissions from 

electricity production. For example, Greenpeace estimates that investing in a 

decentralised energy strategy would assist the UK in reducing half of all emissions 
from the UK electricity sector (PB Power et al., 2006). However, others advocate 

that it is quite disputable whether decentralised power is inherently more efficient 

and better for the environment than centralised power. Malcolm Keay (2006) 

states that while decentralised power plants can be considered overall more 

efficient than centralised plants due to the elimination of transmission losses they 
are not necessarily thermally efficient. 

Generally, the fact that a centralised system wastes a substantial percentage of 

energy used to fuel them while a decentralised system may provide a more secure, 

environmental friendly energy system that could revolutionise the lives of billions 

of people who lack access to basic energy needs and work hand-in-hand with 

renewable energy sources constitute a strong impetus for continuing investing in 

decentralised plants. 

The developed model can be used for the establishment of decentralised energy 

systems. The model can examine different decentralised plant options in various 

locations finding the more technically and economically efficient way of creating 

such plants. Decentralised energy systems include high efficiency co-generation or 

combined heat and power, on-site renewable energy systems and energy recycling 

systems (PB Power et a!, 2006). The model is able to include all these systems. 

It is worthwhile to mention the link between hydrogen production and 

decentralised electricity systems as quite a few hydrogen supporters argue that the 

implementation of a hydrogen economy is based on decentralised energy. More 

specifically, hydrogen fuel infrastructure developments can initiate by 

decentralised systems that could gradually introduce the fuel and eventually 

establish a clean transport system. The development of small-scale installations 
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constitutes a relatively low-cost investment which is crucial for the uptake of a 
new fuel. 

7.7 Conclusions 

In this Chapter the results of the case study have been presented and a sensitivity 

analysis has been carried out in order to examine the influence of parametric 
variation on the outputs of the model. 

For the case of London, in order to deliver sufficient renewable hydrogen fuel to 

power all the road transport of the UK capital a hydrogen delivery network of 296 

fuel chains are required. This venture spans in a 50-year time horizon and the 

overall cost amounts to 11.2 billion pounds (16.1 billion euros). 

The renewables that have been selected for the production of the fuel are onshore 

and offshore wind energy, SRC energy crops, forestry residues and MSW. The 

biomass routes have appeared as a relatively cheap renewable hydrogen delivery 

option, though the transportation of biomass feedstock that is generally expensive 

has been kept down due to the assumption that the gasification plant is within a 

50km radius from the biomass feedstock production point. 

The technical obstacles in the development of a renewable hydrogen fuel 

infrastructure are less than the economic and political obstacles. Policy 

intervention is necessary especially at the beginning in order to provide an early 

demand for hydrogen, establish partnerships among the stakeholders in order to 

coordinate the initiation of the infrastructure, promote the research and 

demonstration of hydrogen and fuel cell technologies aiming at the 

commercialization of these technologies and ensure that hydrogen from 

renewable energy sources is the final destination that will eventually substitute 
current fuels. 

In the next Chapter, the conclusions of the study are summarised and areas that 

would benefit from further development are identified and discussed. 
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Conclusions and Recommendations for further Research 

8.1 Introduction 

The primary aim of this study as was defined in Chapter 1 was the examination of 

different renewable hydrogen fuel chain options in order to supply an 

environmentally friendly fuel to cities in recognition of the necessity of a 

sustainable transport system free of carbon-based fuels and their ensuing harmful 

emissions. 

To deliver the aforementioned aim a modelling approach was followed that 

included the development of an algorithm that compares and evaluates various 

hydrogen delivery pathways and their integration into energy systems, taking into 

account region-specific framework conditions. The developed algorithm was 

applied to the case study of London in order to explore least-cost renewable 

hydrogen infrastructure development plans able to delivery enough hydrogen fuel 

to cover all the road transport demand in London. This was a large-scale problem 

that showed the performance of the model and its capability to support the 

development of options for significantly large infrastructure developments. 
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In this Chapter, the conclusions of the study are summarized and 

recommendations for future areas of work are made. 

8.2 Conclusions 

8.2.1 Modelling Approach 

The approach began by identifying key components that modelling methods 

dealing with infrastructure problems generally lack. Previous studies were used as 

a base for the development of the selected approach and particular attention was 

given to the features that other studies omit in order to comprise the 

characteristics of this algorithm in an attempt to provide an original and 
constructive contribution. 

One of the most common omissions in studies that model the design of a 

renewable hydrogen network is an appropriate geographical representation of 

hydrogen network that takes into account the location and distribution of 

production sites, transport distances between the point of production and the 

demand centre, modes and costs. This feature was successfully incorporated into 

the model as it has been seen in the case study and allows the model to produce 

results concerning the specific locations of all the required facilities for all the 

stages in the fuel chain and derive the least-cost transport distances. The only 

limitation of this feature is the fact that the model calculates the distance between 

points considering it as a straight line which is generally not quite true in reality 
due to geophysical reasons. 

Apart from the spatial optimisation, another important feature that is excluded 

from almost all studies that were reviewed is the resource optimisation. This 

feature comprises a strong advantage of this model as it enables it to determine 

the best possible way to exploit the renewable energy resources of a geographical 

region in order to provide the primary energy feedstock for the production of 

hydrogen. Moreover, is one of the reasons that enable the model to be used in 

alternative applications such as in determining the cost-effective way of producing 

green electricity and transmitted it to demand centres for power application uses. 
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As it was described in Chapter 4, the developed algorithm is a composition of a 

number of units that all work together to produce the results. From the 

simulations of Chapters 5 and 7 it may be concluded that all the units are 
coordinated correctly and produce an outcome that is the result of the 

combination of several parameters. 

The developed model may be considered as a generic framework for modelling 

the development of a renewable hydrogen infrastructure that can be applied to 

different geographical areas. Moreover, it can deliver results under various 

conditions such as the design of a hydrogen infrastructure that combines 

renewable and fossil fuel sources. It is worthwhile to mention that the model is 

able to support small-, medium- and large-scale problems. However, its use in 

large-scale problems would be more beneficial if it is implemented in advanced 

computation systems or computer farms. 

8.2.2 Hydrogen Infrastructure 

The technologies of hydrogen and of renewable energy sources as a primary 

energy feedstock for fuel production that may be used to form the fuel 

infrastructure were discussed and assessed in terms of their technical and 
economic potential in Chapter 2. 

Generally, technologies go through several stages in the long road from concept 

to widespread use. From the technologies that were reviewed some of them are 

still at the proof-of-technology stage, others are widely used and technically 

mature and others are struggling to transition from a proven technology to one in 
widespread use. 

In terms of renewable electricity-generating technologies, onshore and offshore 

wind energy, biomass, hydro energy, geothermal energy are the renewables that 

their electricity-generating technologies have been widely used. Wave energy, tidal 

energy ands solar energy are lagging behind the other renewables due to technical 

and economic obstacles. However, for some renewables there are relatively new 

emerging electricity-generating approaches, such as hot dry rocks in the case of 

geothermal energy, but are still far from being commercially viable. 
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In terms of hydrogen technologies, this classification is also apparent. There are 

proven technologies and novel methods that still need considerable efforts in 

research and development. However, the considerable number of necessary 

hydrogen technologies to build the fuel infrastructure may be considered ready 

and their current technical status is not the major obstacle that impedes the 

initiation of the infrastructure. 

Due to the different maturity level of the technologies the model was applied in 

the case study of London that included only relatively proven technologies and 

technologies that have been widely used. 

8.2.3 Results of the Case Study 

The renewable infrastructure development model was used in the case of London. 

The simulation examined the way a renewable hydrogen delivery system may be 

developed having as a demand centre London and using the renewable energy 

resource of GB, apart from MSW that only the London resource was considered, 

in order to deliver sufficient hydrogen fuel to meet all the road transport demand 

of London in a 50-year time horizon. 

According to the model's results, the least-cost development plan consists of 296 

fuel chains and the cost for implementing this plan amounts to 11.2 billion 

pounds. The renewables that have been selected to produce the primary energy 

feedstock for hydrogen production include onshore and offshore wind energy, 

forestry residues, SRC energy crops and MSW. At the end of the planning 

horizon, the infrastructure would be able to deliver 24,113G'Wh of hydrogen 

energy. 

The results from the modelling work showed that the infrastructure development 

is comprised of a number of different pathways. This outcome demonstrates that 

there is not a single route that is the absolute "winner" as a hydrogen delivery 

pathway may be cheaper under certain conditions while by changing these 

conditions may become expensive. For this reason changing the conditions of the 

simulation will produce a different infrastructure development plan. 
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According to the modelling results, biomass routes may be considered a relatively 

economic renewable option for supplying hydrogen fuel to London. It should be 

mentioned that this conclusion is valid in the case the distance between the 

gasification plant and the biomass feedstock production facility is fairly small. 

Wind energy is also a promising renewable energy that may be used to produce 

hydrogen. Due to the geographical distribution of the UK wind energy resource 

and the position of the demand centre the wind energy routes the transportation 

stage was the crucial stage that determined the economics of the fuel chains. This 

was true for all renewable energy sources. Solar energy and hydro energy were not 

particularly favoured, the first due to high capital costs and the second due to the 
limited resource. 

It is important to mention that in principal the results of the case study can not be 

compared with the results of other hydrogen infrastructure modelling studies. 

This is true as there is no other algorithm addressing the issue of the development 

of a hydrogen delivery system in such a way as the one presented in this study. 

The vast majority of hydrogen infrastructure studies examine and compare 

individual pathways that as the modelling approach and results showed are quite 

different and less complex than a study that tries to integrate all the necessary 

components of a hydrogen delivery system as this study. Moreover, there is an 

understandable difference among studies in terms of their input data and 

assumptions. However, some very general tendencies that have been concluded in 
other studies may be compared, for example the predictions that some 

technologies are more expensive than others under certain conditions. 

Based on the results of the model it can be concluded that the model's predictions 

are in agreement with a number of infrastructure studies in terms of the primary 

energy feedstock used for hydrogen production. More specifically, among the 

different renewable energy sources under examination, biomass was considered a 

relatively cheap option with wastes slightly more preferred than forestry residues 

and SRC. Onshore wind energy was also an attractive renewable energy source. 

These conclusions are consistent with the outcomes of several infrastructure 
studies (Myers et al., 2003; E4tech, 2004; Chen et al., 2005; Mann et al, 1998; 
Simbeck and Chang, 2002; Ewan and Allen, 2005). 
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Another general conclusion that can be drawn from the modelling results is the 

choice of transport technology based on criteria such as the demand and the 

delivery distance. Specifically, for very low demand compressed gas truck is 

preferred while for long distances and high demand liquid transport is more 

appropriate. Moreover, for short distances and large demand the preferred choice 

is pipeline delivery. These choices are in agreement with several projects focusing 

exclusively on the examination and comparison of different hydrogen transport 

technologies (Berry and Smith, 1994; Amos, 1998; Mintz et al., 2002; Castello et 
al., 2005; Hawkins, 2006; Yang and Ogden 2007) or studying hydrogen pathways 

as a whole (Padro and Putsche, 1999; Ogden, 1999; Conte, 2001; Dincer, 2002; 
Dutton, 2002; Farrell et al., 2003; Altmann et al., 2004). 

As it was apparent from the results and the sensitivity analysis, the geographical 

optimisation is an important factor that influences the results and thus needs to 

be taken into account. Because of the geophysical characteristics, the geographical 

distribution of the renewable energy resources and the geographical position of 

the demand centre for the region under study there is not a single route that is the 

absolute least-cost fuel chain option as a chain that is cheap in an area may be 
expensive in another area. 

8.2.4 Policy Considerations 

The development of a new fuel infrastructure is a complex and large capital 

investment venture that involves several parameters. The introduction of 

hydrogen fuel and its widespread use are almost impossible without drastically 

different market conditions and new policies. 

Due to the wide range of environmental benefits that the uptake of hydrogen fuel 

may offer such as the reduction of carbon emissions, the improvement of air 

quality, the reduction of noise and the increase of energy security, it should be 

supported by the energy, transport and environmental policy framework. 

There are three main areas that heavily need the Government's support for the 

implementation of the introduction of hydrogen fuel in the transport sector. 

Firstly, support to research and development in order to assist in the designing, 
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developing and testing hydrogen technologies. Secondly, support to 

demonstrations in an attempt to stimulate the market of the new technologies. 

Lastly, support to commercialisation in order to succeed in getting the new 
technologies to the market. 

In the UK Government, hydrogen and fuel cell technologies are gradually 

escalating in the energy policy agenda. However, more support is necessary if the 

UK wants to be among the leading countries, such as Germany, USA or Japan, in 
the hydrogen activities. 

As it has been seen from the modelling results the infrastructure consists of a 

number of different hydrogen delivery pathways. As a fuel hydrogen has a 
diversity of production, conversion, storage and transport methods and thus the 

support and promotion do not need to be committed to a single route. It is 

unlikely that hydrogen used for a large proportion of transport demand would be 

produced and delivered using one set of technologies. 

According to the modelling results, creating a large-scale infrastructure involves 

the considerable exploitation of renewable resource. However, the development 

and exploitation of renewable resources will take time and the generation of 

hydrogen fuel has to compete with other end use applications such as electricity 

production and heat. The opportunity of using hydrogen fuel generated from 

renewables in the transport sector must be examined taking into account these 

constraints. In order to ensure the use of renewables for hydrogen production the 

Government may set targets for the dedication of a percentage of renewable 
electricity to hydrogen fuel production. 

Another barrier that impedes the uptake of hydrogen fuel is the existence of early 

demand for hydrogen fuel. Generally, the cost of hydrogen improves with 

increase production due to economies of scale. However, even if fuel suppliers 

and vehicle manufacturers do coordinate the timing of infrastructure the process 

of hydrogen vehicles has to be competitive in order to be successfully deployed in 

the large numbers needed to ensure adequate fuel demand. This barrier may be 

overcome by the introduction of hydrogen fuel in a niche market. The latter are 
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protected markets that allow for technological innovation and competition, 

factors that bring the cost down. 

8.3 Recommendations and Subjects for further Investigation 

8.3.1 Model Enhancement 

In the course of the model construction and the case study of London, a number 

of issues have been identified in which further work would be of benefit. These 

issues are possible model improvements on deliberate simplifications or 

assumptions. 

As it was mentioned in Chapter 2, the input data related to the renewable energy 

resource of the geographical region under study are imported to the model in the 

form of a map. For every renewable energy resource only one map can be 

imported. In case a renewable resource is described by more than one parameters, 

such as the resource of SRC that it was evaluated according to the agricultural 

land quality parameter based on the Agricultural Land Classification system of 

England and the effective precipitation parameter, the composition of maps is 

necessary. In order to avoid this procedure and to be able to enter in the model 

various maps describing the renewable energy resource one more function needs 

to be added. The additional function will describe the efficiency of the resource 
with respect to the parameter that is presented in the map. This will enable the 

model to assess the renewable resource taking into account various parameters 

minimizing the effort needed to import these parameters. 

Another interesting inclusion may be the addition of a map showing the height of 

measurement. This parameter will likely affect both the primary energy feedstock 

and the transportation stage. An example of the former stage is wind energy. For 

wind energy the height of measurement is of great importance as the wind speeds 

are different for different altitudes. In the case of the transportation stage has also 

an effect as the model will be able to distinguish the difference between a 

candidate wind park site at the top of a mountain and a wind park site in low land. 

The transportation cost of the latter is less expensive than the former. With this 
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addition the model will be able to understand that difference. In other words, it 

gives to the model a third dimension. 

The distance that hydrogen is transported between two points is calculated 

assuming that it is a straight line between the starting point and the end point. In 

order to avoid this simplification a new transportation shortest path algorithm 

that performs routing is necessary. An example of one algorithm that carried out 

this task is the A* (A star) algorithm. A* algorithm is a general search that finds 

the shortest path from a given initial node to a given goal node. However, the 

inclusion of this algorithm may increase significantly the complexity of the model. 

For this reason an alternative way of dealing with the issue of distance calculations 

is the designing of a simplified pathfinding algorithm based on the A* algorithm. 

This algorithm will use the transportation maps as an input data and will be able 

to evaluate the shortest path. The inclusion of a new transportation algorithm 

affects all transport modes apart from the transmission of electricity. 

A further improvement in the model is the inclusion of discounted cost. 

Developing a renewable hydrogen infrastructure, especially in the case of a 

delivery system that is able to deliver large amounts of hydrogen fuel like the 

problem of the case study, is a project that requires long time horizons. The value 

of money today is different than the value of money in the future due to inflation. 

By discounting the overall infrastructure cost the model is able to take this effect 

into account and produce a more precise cost estimate. 

As it mentioned in Section 7.5 of Chapter 7, the model does not include the 

learning curve phenomenon due to the non-linearity of the equation that 

describes this effect. A possible method that this effect can be incorporated into 

the model is by introducing an additional parameter that corresponds to the 

percentage that the cost of each technology decreases every year. Thus the 

mathematical formula of the learning effect may be used manually in order to 

calculate the cost reduction percentage and this percentage can then be imported 

in the model. It should be mentioned that in order to calculate correctly the cost 

reduction factor the increase of the cumulative production of a technology in a 

global level should be taken into account and not the increase of production in 
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the region under study. This is the case as the cumulative production of only one 

country could not bring down the cost of a technology. 

8.3.2 Suggestions for further Work 

An issue that was not examined in the present study and constitutes a necessary 

component of a hydrogen infrastructure development is the geographical 

distribution of the refuelling stations within the city. The model considers the 

demand centre as a point and thus does not investigate the optimal dispersion of 

the refuelling stations in the city that hydrogen is delivered. The geographical 

allocation of refuelling stations is determined by a number of factors such as the 

city radius, the population size and the market penetration of hydrogen fuel cell 

vehicles. This task may be an independent algorithm or it may be included in the 

algorithm of the present study. The latter case is feasible due to the advantageous 

construction of the algorithm that is separated into subsystems and allows the 

addition of new subsystems without changing the existing ones. The additional 

algorithm would be responsible for the selection of the optimal locations within a 

city that refuelling stations may be allocated. 

Developing a hydrogen infrastructure has to be combined with the introduction 

of vehicles running on hydrogen either fuel cell or internal combustion engine 

vehicles. In order to initiate the uptake of hydrogen fuel, hydrogen vehicles may 

be powered from fuel generated from non-renewable energy sources. The 

development of non-renewable hydrogen projects could facilitate the introduction 

of hydrogen vehicles and the establishment of some fuel infrastructure. This 

action combined with long-term policy measures may lead to a later switch to 

renewable hydrogen. For this reason, it would be interesting to run the model for 

a simulation that includes both renewables and fossil fuels in order to produce the 

least-cost infrastructure development plan for an infrastructure that uses low cost 

primary energy feedstocks that will assist in the initiation of the project and later 

substitution with the zero-emission renewable hydrogen fuel. 

A worthwhile study would be the application of the hydrogen infrastructure 

development model of the present study to other cities or geographical regions in 

order to produce the least-cost infrastructure development plan for their specific 
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conditions. Moreover, the resulted plan may be compared with the modelling 

results of the case study indicating the weaknesses and benefits of each place and 

identifying their degree of attractiveness in developing a hydrogen delivery 

network. 

In this final Chapter, a number of improvements and extensions have been 

suggested. However, the modelling approach that was taken was proved to be 

useful in the present application and also its use may be considered beneficial to a 

wide range of energy related applications. 
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Renewable Energy Sources• 
Name Value Unit Source 

APPENDIX 

Onshore Wind Energy 

Capital Cost 1120 E/kW EWEA (2004) Turbine cost 
Komor (2004) Installation cost 

O&M Cost 15 E/kW EWEA(2004) 
Maximum Capacity 50 MW Assumption 
Capacity Factor 30% BWEA (2007a) 
Lifetime 25 years BWEA(2007a) 
Offshore Wind Energy 

Capital Cost 1650 E/kW EWEA (2004) 
O&M Cost 30 E/kW EWEA(2004) 
Maximum Capacity 100 MW Assumption 
Capacity Factor 40% BWEA (2007a) 
Lifetime 25 years BWEA(2007a) 
Solar Energy- PV 

Capital Cost 5244 E/kW Komor (2004) 
O&M Cost 29.5 E/kW Komor (2004) 
Maximum Capacity 10 MW Boyle (2002) 
Efficiency 14% Komor (2004) 
Lifetime 25 years Boyle (2000) 
Small-scale Hydro Energy 

Capital Cost 2181 E/kW Komor (2004) 
O&M Cost 280 E/kW Komar (2004) 
Maximum Capacity 20 MW Assumption 
Capacity Factor 45% Komor (2004) 
Lifetime 50 years Komor (2004) 
Biomass - SRC of willow 

Establishment Cost 275 E/kW Defra (2006a) 
Production Cost 108.7 E/kW Boyle (2000) 
Transport Cost 0.015 E/kW/Ian Bauen (1999)-monthly delivery, 

within 50km radius 
Maximum Capacity 30 MW ETSU (1998) 
Yield 10 odt/ha/yr Bauen (2001) 
Lifetime 30 years Boyle (2000) 
Energy Content 19 GJ/odt ETSU (1999) 
Biomass - Forestry Residues 

Establishment Cost 635 E/kW Howes (2002) 
Production Cost 111 E/kW Boyle (2000) 
Transport Cost 0.022 €/kW/km Bauen (1999)-monthly delivery, 

within 50Icm radius 
Maximum Capacity 30 MW ETSU (1999) 
Yield 1.5 odt/ha/yr Bauen (1999) 
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Biomass -MSW 
Lifetime 80 years Howes (2002) 
Energy Content 19 GJ/odt ETSU (1999) 
Road Transport Cost 0.043 te/kW/km Viridis et al. (2005) 
Maximum Capacity 30 MW ETSU (1999) 
Thermal Efficiency 64% Castillo (2003) 
Lifetime 50 years Assumption 
Calorific value 10 MJ/kg Castillo (2003) 
Hydrogen Production Technologies 
Onsite Electrolysis 
Capital Cost 734.4 E/kW Adamson (2004) 
O&M Cost 22 E/kW Mann et al. (1998) 
Conversion Efficiency 95% Ivy (2004) 
Energy Efficiency 73% Ivy (2004) 
Overall Efficiency 70% Ivy (2004) 
Location onsite Assumption 
Lifetime 15 years Ivy (2004) 
Regional Electrolysis 
Capital Cost 734.4 E/kW Adamson (2004) 
O&M Cost 22 E/kW Mann et al. (1998) 
Conversion Efficiency 95% Ivy (2004) 
Energy Efficiency 73% Ivy (2004) 
Overall Efficiency 70% Ivy (2004) 
Location regional In 7 different demand zones 
Lifetime 15 years Ivy (2004) 
Forecourt Electrolysis 
Capital Cost 3650 ElkW Adamson (2004) 
O&M Cost 57 E/kW Mann et aL (1998) 
Conversion Efficiency 95% Ivy (2004) 
Energy Efficiency 78% Ivy (2004) 
Overall Efficiency 74% Ivy (2004) 
Location forecourt Assumption 
Lifetime 10 years Ivy (2004) 
Gasification 
Capital Cost 712 E/kW Mann (1995) 
O&M Cost 34.2 E/kW Howes (2002) 
Efficiency (SRC+FR) 55% Howes (2002) 
Efficiency wastes 50% Wallman et al. (1998) 
Density of hydrogen 0.0899 kg/Nm3  Castillo (2003) 
Location regional or onsite Assumption 
Lifetime 25 years Howes (2002) 
Hydrogen (Conversion Technologies 
Large- and medium-scale Compression 
Capital Cost 589 E/kW Amos (1998) (4.5-28.3MW) 
O&M Cost 29.5 E/kW Berry (1996) (5% of capital cost) 
Efficiency 85% Hawkins (2006) 
Location production site Assumption 
Lifetime 25 years Syed (1998) 
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Forecourt Compression 
Capital Cost 830 E/kW Amos (1998) (0.25MW) 
O&M Cost 41.5 E/kW 5% of capital cost 
Efficiency 80% Hawkins (2006) 
Location forecourt Assumption 
Lifetime 25 years Syed(1998) 
Large-scale Liquefaction 
Capital Cost 1141 E/kW Hawkins (2006) (1042kg/h) 
O&M Cost 57 E/kW Berry (1996) (5% of capital cost) 
Efficiency 78% Hawkins (2006) 
Location production site Assumption 
Lifetime 25 years Syed(1998) 
Medium-scale Liquefaction 
Capital Cost 1731 E/kW Hawkins (2006) (417kg/h) 
O&M Cost 86 E/kW Berry (1996)(5% of capital cost) 
Efficiency 78% Hawkins (2006) 
Location production site Assumption 
Lifetime 25 years Syed (1998) 
Forecourt Liquefaction 
Capital Cost 2728 E/kW Amos (1998) 
O&M Cost 136.4 E/kW Berry (1996) (5% of capital cost) 
Efficiency 74% Hawkins (2006) 
Location forecourt Assumption 
Lifetime 25 years Syed(1998) 

- Hydrogen Storage Technologies r• 

Compressed Gas 
Capital Cost 348 E/kW Amos (1998) (1240kg) 
O&M Cost 3.3 E/kW Ogden(1995) (0.95% of cap. cost) 
Efficiency 90% Hawkins (2006) 
Location production site Assumption 
Lifetime 10 years Ogden(1995) 
Forecourt Compressed Gas 
Capital Cost 486 E/kW Amos (1998) (890kg) 
O&M Cost 4.6 E/kW Ogden (1995)(0.95% of cap. cost) 
Efficiency 90% Hawkins (2006) 
Location forecourt Assumption 
Lifetime 10 years Ogden(1995) 
Liquid Hydrogen 
Capital Cost 186 E/kW Amos (1998) 
O&M Cost 1.3 E/kW Ogden (1995) (0.7% of cap. cost) 
Efficiency 80% Hawkins (2006) 
Location production site Assumption 
Lifetime 10 years Shayegan (2006) 
Forecourt Liquid Hydrogen 
Capital Cost 230 E/kW Amos (1998) 
O&M Cost 1.61 E/kW Ogden (1995) (0.7% of cap. cost) 
Efficiency 80% Hawkins (2006) 
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Forecourt Liquid Hydrogen 
Location forecourt Assumption 
Lifetime 10 years Shayegan (2006) 
Metal Hydrides 
Capital Cost 920 E/kW Amos (1998) 
O&M Cost 8.7 E/kW Assumption (0.95% of cap. cost) 
Efficiency 85% Hawkins (2006) 
Location production site Assumption 
Lifetime 3 years Hottinen (2001) 

Forecourt Metal Hydrides 
Capital Cost 715.4 E/kW Amos (1998) 
O&M Cost 6.8 E/kW Assumption (0.95% of cap. cost) 
Efficiency 85% Hawkins (2006) 
Location forecourt Assumption 
Lifetime 3 years Hottinen (2001) 
Hydrogen Transportation Technologies 
Compressed Gas by Road 
Capital Cost 3.84 E/kW/km Hawkins (2006) 

O&M Cost 0.01 E/kW/km Hawkins (2006) 
Efficiency 90% Shayegan (2006) 
Tube Capacity 400 kg/truck Hawkins (2006) 
Lifetime 40 years Fiba Technologies (2006) 
Liquid Hydrogen by Road 
Capital Cost 0.63 E/kW/lcm Amos (1998) 
O&M Cost 0.001 E/kW/lcm Hawkins (2006) 
Efficiency 95% Shayegan (2006) 
Tank Capacity 4082 kg/truck Amos (1998) 
Lifetime 30 years Fiba Technologies (2006) 
Metal Hydrides by Road 
Capital Cost 12.96 E/kW/km Amos (1998) 
O&M Cost 0.01 E/kW/km Assumption 

Efficiency 90% Hawkins (2006) 
Container Capacity 454 kg/truck Amos (1998) 
Lifetime 30 years Assumption 

Pipeline 
Capital Cost 154 E/kW/1031cm Summerer (2004) 
O&M Cost 4.62 E/kW/1031cm Ogden (1997)(3% o f cap. cost) 
Efficiency 99% Hawkins (2006) 
Capacity 710 kg/h Calculated based on data 

from Hawkins (2006) 
Diameter 0.25 m Summerer (2004) 

Lifetime 30 years Shayegan (2006) 

 

Electricity.Transportation Technology 

 

Electricity Grid 
Capital Cost 99 E/kW Garrad Hassan (2003) 

(0.95% of cap. cost) 
Cost of Offshore grid connection 

O&M Cost 35.6 E/kW Berry (2004) 
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Electricity Grid 
Efficiency 92.4% Howes (2002) 
Generation Tariff depends on 

generation zone 
E/kW National Grid (2007) Table A2 

GB Generation Use 

of System Tari ff Zones 2007/8 
Demand Tariff depends on 

demand zone 
E/kW National Grid (2007) Table A3 

GB Demand Use of System 

Tariff Zones 2007/8 
Lifetime 50 years Assumption 
Infrastructure Characteristics 
Time Horizon 50 years Assumption 
Number of Segments 64 segments Assumption 
Periods 5 periods Assumption 
Duration 10 years Assumption 
Demand Target at the 24,113 or GWh or Calculated based on data from 
end of the Horizon 2.75 GW London Travel Report 2004 (TfL ,2004) 

and Trans rod Trends 2006 (TfL ,2006 ) 

Tolerance Upper Limit 1 MW Assumption 
Tolerance Lower Limit 1 MW Assumption 

Table Al: Model input data 
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Figure Al: Onshore wind energy resource in the UK (Source: ETSU, 1999a) 
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Figure A2: Offshore wind energy resource in the UK (Source: DTI, 2004b) 
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Figure A3: Solar energy resource in the UK and Ireland 
(Source: Solar Trade Association, 2005) 

Figure A4: Small-scale hydroelectric potential in the UK (mean annual precipitation) 
(Source: Boyle, 2000) 
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Figure A5: Resource map of forestry residues for the UK (oven dried tonnes per annum-odt/pa) 
(Source: Restats, 2005) 
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Figure A6: The effective precipitation across GB (Source: DTI, 2003a) 
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Figure A7: Agricultural land classification-England (Source: DEFRA, 2004) 
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1 North Scotland 21,590831 

2 Peterhead 19,233718 

3 Western Highland & Skye 19,858255 

4 Central Highlands 16,436431 

5 Argyll 14,677167 

6 Stirlingshire 14,031535 

7 South Scotland 13,017061 

8 Auchencrosh 10,137439 

9 Humber, Lancashire & SW Scotland 5,883070 

10 North East England 9,253848 

11 Anglesey 6,409118 

12 Dinorwig 9,281586 

13 South Yorks & North Wales 3,996719 

14 Midlands 1,973640 

15 South Wales & Gloucester -2,457186 

16 Central London -5,714694 

17 South East 0,908414 

18 Oxon & South Coast -0,265230 

19 Wessex -4,098569 

20 Peninsula -8,568052 

Small Generators Discount (not included above) (1/kW) 	 4,481939 
Table A2: Final TNUoS Tariffs 2007/8 (Source: National Grid, 2007) 
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Figure A10: Demand use of system in GB-Tariff zones 2007/08 (Source: National Grid, 2007) 
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HH Zonal Tariff (£/kW) 	NTH Zonal Tariff (p/kWh) 

1 Northern Scotland 1,445659 0,183742 

2 Southern Scotland 6,362303 0,830136 

3 Northern 9,884146 1,287148 

4 North West 13,646168 1,734890 

5 Yorkshire 13,615270 1,750626 

6 N Wales & Mersey 14,084355 1,805802 

7 East Midlands 16,370802 2,129626 

8 Midlands 17,807318 2,301762 

9 Eastern 17,060375 2,240442 

10 South Wales 21,537451 2,713949 

11 South East 20,076054 2,586190 

12 London 22,164365 2,710106 

13 Southern 21,100281 2,738161 

14 South Western 23,770560 3,000403 

Demand tariffs include a 'small generators' adjustment of: 	 0,055127 
	

0,007090 

Table A3: Final TNUoS Tariffs 2007/8 (Source: National Grid, 2007) 
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